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A critical part of clinical trials in drug development is the analysis of treatment

efficacy in patient subgroups (subpopulations). Due to multiplicity and the small

sample sizes involved, this analysis presents substantial statistical challenges and

can lead to misleading conclusions. In this thesis, we develop methodology for

statistically valid subgroup analysis in a variety of settings. First, we consider

a number of trial designs of varying flexibility for the case of one subgroup of

interest. Some procedures are novel, while others are adapted from the litera-

ture. Included is data-driven consideration of adaptive change of subject eligibil-

ity criteria—known as adaptive enrichment—whereby apparently nonresponsive

patient populations are not recruited after data has been unblinded for an interim

analysis. We conduct an extensive numerical study to investigate design operating

characteristics, as well as sensitivity to subgroup prevalence and interim analysis

timing. We observe that power gains can be substantial when a treatment is only

effective in the subgroup of interest. Following this example, selected procedures

are generalized to allow for analysis of an arbitrary number of subgroups.

Next, we propose a K-stage group sequential design that can be applied as a

confirmatory seamless Phase II/III design. The design is specified through upper

and lower spending functions, defined in terms of calendar times. After the first

stage, poorly performing subgroups are eliminated and the remaining population



is pooled for the duration of the trial. This procedure combines the elimination

of non-sensitive subgroups with the definitive assessment of treatment efficacy

associated with traditional group sequential designs. Numerical examples show

that the procedure has high power to detect subgroup-specific effects, and the use

of multiple interim analysis points can lead to substantial sample size savings. We

address the challenges of adjusting for selection bias, and protecting the familywise

error rate in the strong sense.

All designs are presented either in terms of standardized test statistics or the ef-

ficient score, making the analysis of normal, binary, or time-to-event data straight-

forward.
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Chapter 1

Introduction

1.1 Motivation

Randomized, placebo-controlled clinical trials are the gold standard in medical

experimentation (Freidlin and Simon, 2005a; Jiang et al., 2007; Strassburger et al.,

2004; Wang, 2007; Zhou et al., 2008); traditionally, the aim of such trials is to

demonstrate the effectiveness of an experimental treatment in a broadly defined

patient population. It is however increasingly apparent that patient responses to a

particular treatment can vary considerably. For example, the antibody Herceptin

is currently an approved treatment for breast cancer patients who show a positive

HER2 expression (Romond et al., 2005). No definitive assessment of the effect

of Herceptin on HER2 negative patients has been conducted, and such patients

are therefore advised against its use. However, recent research has indicated that

Herceptin may be effective in a larger population (Paik et al., 2007), which raises

the question of whether HER2 positivity may need to be redefined. Had a larger

clinical trial been conducted in the first place, allowing for both HER2 positive and

negative patients, it is entirely possible that we would have a clearer indication

of the true effectiveness of Herceptin today. This example is not unique, and it

highlights the need for clinical trial designs that enable the assessment of treatment

effectiveness in an overall population, as well as in interesting subgroups. Our

research is focused on developing statistical methodology for precisely this purpose.

We propose a number of testing procedures applicable in a variety of settings, and

we find that our designs can outperform conventional trial designs when treatment

effectiveness is limited to smaller populations, while still performing acceptably

1



when the treatment is broadly effective.

This chapter is outlined as follows. We begin with a brief overview of the

various stages of a therapeutic development program, followed by a more detailed

motivation for subgroup analysis in medical experimentation, including several

practical examples from current medical research. A literature review is given in

Section 1.2. We define various important terms and concepts, detail some of the

difficulties involved with subgroup analysis, and survey existing methods. Finally,

a brief overview of the thesis is given in Section 1.3.

In order for an experimental therapeutic intervention to make the transition

from laboratory testing to practical use, a development program assessing its ef-

ficacy and safety must be conducted. Such programs are traditionally split into

four or five different phases, each designed to answer a separate research question

(Chang, 2010, Ch. 3.4):

• Phase 0 is a small study which involves no estimation of efficacy nor safety,

as doses are normally too small to have any therapeutic effect. Single doses

are given to few (often 10-15) subjects, with the purpose of assessing how

the drug functions in, and is processed by the human body.

• Phase I studies involve the first testing of the drug in small groups (typically

20-100) to evaluate its safety and identify side effects. Phase I also involves

dose escalation, which is a preliminary study aimed to find dose levels appro-

priate for therapeutic use. Usually, healthy volunteers are used for Phase I,

though there are circumstances where terminally ill patients, who lack other

treatment options, may be enrolled. Sometimes, so-called Proof-of-Concept

(PoC) studies are conducted during Phase I. Such studies are conducted on

small and well-defined target populations and are intended to allow for a
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quick demonstration of therapeutic benefit. If a PoC study is successful,

development may proceed aiming at a more broadly defined population.

• Phase II is conducted once initial safety concerns have been addressed in

Phase I. Not all treatments make it from Phase I to Phase II. Larger groups

are involved at this stage; typically 30-300 individuals are enrolled, and the

drug is now tested on patients rather than healthy volunteers. The aim of a

Phase II study is: safety assessment in larger groups of patients; learn about

side effects and how to manage them; select the appropriate dose for thera-

peutic effect (referred to as Phase IIa); and learn whether the treatment is

effective enough to warrant a larger trial (Phase IIb). Phase II is exploratory,

and usually no definitive assessment of treatment efficacy is carried out.

• Phase III trials are carried out if Phase II investigations indicate that the

treatment is efficacious and safe. These are large-scale, confirmatory trials,

involving many hundreds or thousands of patients. Typically, trials are ran-

domized, double-blinded and placebo-controlled to maintain the integrity of

measured results. Randomized, placebo-controlled studies randomly assign

patients to receive either the experimental treatment or a placebo. Stud-

ies are double-blinded if neither the subjects, nor the clinical researchers

are aware of which treatment is being administered to any subject. Phase

III studies are both lengthy and expensive, and are subject to regulations

published by the FDA (US Food and Drug Administration, 1998). At the

conclusion of a Phase III trial data are carefully analyzed in concordance

with statistically valid inference procedures to determine whether the treat-

ment is efficacious (and safe), and whether it should be made commercially

available.

• Phase IV is known as a post-marketing surveillance trial as studies are con-
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ducted after the drug has been marketed. First, a retrospective analysis can

be carried out on the data accumulated during Phase III, where information

is gathered on possibly differing effects in various subgroups (subsets of the

study population) and side-effects associated with long-term use. Second,

Phase IV involves safety surveillance and technical support as the drug is

sold to the general public. Harmful effects discovered during this phase may

result in the drug being removed from the market.

Returning to the discussion in the opening paragraph, a frequent complication

in clinical trials is the fact that patient populations are often heterogeneous with

respect to therapeutic response. In the following paragraphs, we give several ex-

amples, which illustrate the clinical relevance of subgroup analyses, and highlight

the need for statistically rigorous procedures with which subgroup-specific effects

may be analyzed.

Kirsten rat sarcoma (KRAS) mutations are common oncogenic mutations that

play a role in many cancers, and are associated with various malignancies. Ret-

rospective analysis of data from several clinical trials has suggested that KRAS

positive patients may be responsive to the antibodies panitumumab and cetux-

imab. Based on the preliminary evidence gathered in these trials, a targeted study

(see Section 1.2.3) to further test the responsiveness of KRAS positive tumors to

these antibodies is both scientifically and ethically valid (Mandrekar and Sargent,

2009).

Another example concerns HER2 (see opening paragraph), or “Human Epi-

dermal growth factor Receptor 2,” which is a protein giving higher aggressiveness

in breast cancers. It has been estimated that roughly 20% of breast cancers ex-

hibit an amplification of the HER2 gene (Nahta and Esteva, 2003). The antibody

4



trastuzumab (marketed as Herceptin) has been associated with increased survival

rates among HER2 positive breast cancer patients and is currently approved for

treatment of such cancers. This was established with a targeted trial for which only

HER2 positive patients were recruited, ostensibly resulting in substantial savings

in cost and time compared to what might have been the case had an untargeted

trial been carried out. There is, however, recent evidence that some HER2 nega-

tive patients may also benefit from this drug (Paik et al., 2007), and the question

remains open whether Herceptin therapy may benefit a much larger group of breast

cancer patients. We discuss this issue in more detail in Section 1.2.2, and in Section

1.2.3 when we introduce the concept of enrichment.

A BRCA mutation is a mutation in either of the genes BRCA1 or BRCA2

(Petrucelli et al., 1997). Patients carrying mutations in either of these genes

are predisposed to breast cancer and ovarian cancer, as well as prostate cancer

(BRCA1) and other cancers (BRCA2). The mutation is believed to be hered-

itary; each offspring of an individual with BRCA1 or BRCA2 mutation has a

50% chance of inheriting the mutation. From the previous paragraph, we know

that HER2 overexpression is related to more aggressive breast cancers. There is

however recent evidence to suggest that HER2-positive breast cancer and BRCA

mutation-associated breast cancer are mutually exclusive diseases (Maynes et al.,

2010).

Antidepressants have long been thought of as the best treatment for major

depressive disorder. However, meta-analyses conducted by Kirsch et al. (2008)

and Fournier et al. (2010) suggest that drug-placebo differences in antidepressant

efficacy may increase as a function of baseline severity of depression. In other

words, for patients with moderate depression, there may be no discernable differ-

5



ence in efficacy between taking an expensive antidepressant or a sugar pill. Only

for the most severely depressed individuals is there a statistically significant benefit

derived from treatment. Additionally, according to the analysis of Kirsch et al.

(2008), the difference for patients suffering from most severe depression is relatively

small. The meta-analysis conducted by Fournier et al. (2010) encompassed a larger

collection of clinical trials than that of Kirsch et al. (2008), and the authors re-

port substantial difference from placebo for severely depressed patients only. This

topic has received attention in mainstream media, see for example Begley (2010).

Today, commercially sold antidepressants are marketed for patients suffering from

mild to the most severe depression, but the aforementioned meta-analyses suggest

that any future clinical trials take into account the likely heterogeneity of patients.

BRAF is a serine/threonine kinase and is among the most frequently mutated

proteins in human cancers (Greenman et al., 2007). The finding of Davies et al.

(2002) that mutations in BRAF are particularly common in melanoma (mutations

are found in approximately 60–70% of malignant melanomas), has offered hope

that inhibition of BRAF kinase activity could benefit melanoma patients. One

drug that is currently under study, PLX4032 of Plexxikon (Bollag et al., 2010),

has passed through Phase I studies in which the treated group had a median

increased survival time of 6 months over control (also see New York Times article by

Harmon (2010)), and approximately 80% of patients showed partial to completed

regression, though regression lasted only between two to eighteen months (Flaherty

et al., 2010). Phase I and Phase II studies of the efficacy of PLX4032 are ongoing,

and a Phase III trial has been started.

Any trial which does not account for the possibility of heterogeneity among pa-

tient subgroups is only effective for identifying treatments that work “on average”
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for the whole population of interest. Simon and Wang (2006) report estimates

saying that only about 60% of prescriptions written produce the desired therapeu-

tic benefits, while 7% of patients suffer from serious consequences due to negative

side effects. Moreover, if an experimental drug only benefits a small portion of the

target population, a confirmatory Phase III trial is unlikely to yield positive results

as the estimated treatment effect will be diluted by nonresponsive patients. For

example, the Phase III trial “Iressa Survival Evaluation in Lung Cancer” failed

to show overall benefit of treatment with the tyrosine kinase inhibitor gefinitib

versus placebo, but retrospective subgroup analyses have indicated that there are

significant benefits for patients with somatic EGFR (Epidermal Growth Factor

Receptor) mutations (Jänne and Johnson, 2006). Though further (retrospective)

studies imply that this EGFR mutation can be used as a predictive marker for

lung cancer patient response to kinase inhibitors, definitive assessments of drugs

that specifically target the mutation have usually been conducted with conven-

tional trials for broadly defined populations. This has received mainstream media

attention; in a 2010 Newsweek article, Begley (2010) discusses some challenges of

targeting cancer-driving mutations. Problems are exacerbated by the lack of pa-

tient genotyping in Phase III trials that are testing experimental drugs specifically

designed to target a driving mutation; the result is usually, and perhaps unsur-

prisingly, a negative trial. It is therefore becoming increasingly apparent that the

conventional one-size-fits all approach to randomized controlled trials (RCTs) is

inappropriate, inefficient and nonsustainable.

The concept of subgroup analysis is not new; due to the cost and effort required

for Phase III trials, subgroup analyses have commonly been carried out in order to

extract as much information from the data as possible. At the start of clinical trials,

investigators gather a great deal of baseline data on each patient, documenting the
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patient’s current condition and medical history, and regulatory guidance already

recommends that some analysis by demographics such as age, race and gender

take place during the trial. Further, advances in human genomics-based studies

have led to the recognition that phenotypically1 homogeneous patients may be

heterogeneous at the genomic level. In pharmacogenomics2 (Simon and Wang,

2006) there has thus been an increased focus in searching for combinations of

individual genes to form classifiers that predict a patients’ therapeutic response.

The statistical validity of subgroup analysis in published clinical trial reports

has often been the cause of contentious debate (Pocock et al., 2002; Yusuf et al.,

1991). For instance, the presence of multiple endpoints (subgroups can be formed

in many ways), and the possibility of “data-dredging,” can lead to results being

regarded with some suspicion. This is not wholly unwarranted; without use of

proper statistical methodology, a post-hoc search of subgroups exhibiting (possi-

bly spurious) statistically significant treatment effects is likely to be “successful.”

Triallists are therefore often encouraged to look at data for subgroups, but to not

necessarily believe the implied conclusions (we briefly discuss regulatory guidance

in Section 1.2.4). However, if in truth there are subgroups of patients for which a

new treatment differs from the overall effect, either in terms of efficacy or toxicity,

we have a scientific and ethical obligation to identify such subgroups. Hence there

is a need to develop a statistically valid methodology to prospectively evaluate

treatment efficacy in biologically plausible subgroups.

In this thesis, we consider various designs intended for subgroup analysis in

clinical trials. We develop procedures that can handle multiple subgroups, nested

or disjoint, as well as procedures that take place over several stages. Performance

1Phenotype refers here to any observable trait or characteristic of a patient.
2Pharmacogenomics refers to the science of determining how benefits and adverse effects of a

drug vary among a population based on genomic features.
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of these procedures is evaluated in a number of different scenarios, including com-

parison with designs that have been proposed in the literature.

1.2 Literature Review

Subgroup analyses are quite common in clinical research; in a survey conducted

by Pocock et al. (2002), 70% (35 out of 50) of sampled articles included some form

of subgroup analysis. When properly performed, such analysis can yield valuable

insight into therapeutic effects; unfortunately, many commonly used inference pro-

cedures are inefficient and can produce spurious and misleading results. In this

section, we define the types of subgroups that are of interest, highlight some of the

difficulties encountered in subgroup analysis, and survey work that has been done

over the last few decades.

1.2.1 Subgroups and Biomarkers

Subgroups can be categorized as proper or improper, see for example (Yusuf et al.,

1991) and (Huque and Röhmel, 2010, p. 15). A “proper subgroup” is defined as

a group of patients characterized by a common set of baseline characteristics that

cannot be affected by treatment (e.g. age or gender), or prognostic disease char-

acteristics defined before randomization (e.g. previous myocardial infarction). On

the other hand, “improper subgroups” are defined as a group of patients char-

acterized by a variable measured after randomization and potentially affected by

treatment (e.g. subgroups defined by responders vs. non-responders in a cancer

trial). Though analysis of improper subgroups can be tempting, such practices
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can be misleading and suffer from serious selection bias.

If a subgroup is specified before data are unblinded, we say that the subgroup

is prespecified or prospectively specified. Analysis of subgroups that are not pre-

specified should usually be regarded with suspicion, and any reported significant

effects need to be replicated in a separate and independent trial. In this thesis,

we propose procedures that sometimes analyze only those subgroups that exhibit

a positive early effect. Such subgroups may therefore be improper, and appro-

priate statistical methodology is required in order to ensure that final results are

credible. A part of this methodology is the requirement that all subgroups of in-

terest be prospectively specified in the trial protocol. As a result, procedures can

be designed to adjust for the selection bias that results from analyzing improper

subgroups. Henceforth, the term subgroup shall be used to refer to a prospectively

specified subgroup.

The baseline characteristics that define a subgroup are referred to as biological

markers or biomarkers, formally defined as follows (Atkinson et al., 2001):

Definition 1.1. A biological marker (biomarker) is a characteristic that is ob-

jectively measured and evaluated as an indicator of normal biological processes,

pathogenic processes, or pharmacologic responses to a therapeutic intervention.

While “basic” biomarkers such as demographics or medical history have been

studied for some time, the advent of genomic technologies, e.g. DNA sequencing

or transcription profiling, has made it increasingly apparent that different genomic

patient subsets can be heterogeneous in terms of treatment response (Maitournam

and Simon, 2005; Simon and Wang, 2006; Wang, 2007). Studies that incorporate

microarray data for the purpose of identifying genomic biomarkers in clinical trials

are referred to as pharmacogenomic studies (Simon and Wang, 2006). The goal of
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Table 1.1: Biomarkers as classifiers in clinical trials

Response Rate

Marker Status: High Low

Treatment 20 20
No interaction

Placebo 5 5

Treatment 15 20
Prognostic

Placebo 5 10

Treatment 20 5
Predictive

Placebo 5 5

Treatment 20 20
Prognostic-Predictive

Placebo 5 10

such research is the eventual individualization of therapy.

Biomarkers are classified into prognostic markers and/or predictive markers

(Mandrekar and Sargent, 2009; Sargent et al., 2005; Wang, 2007). A biomarker

is prognostic if it separates a population based on disease prognosis (or long-term

outcome) when untreated, or receiving standard (untargeted) treatment. On the

other hand, if a biomarker separates the patient population based on the outcome

of interest in response to a particular treatment or therapy, it is said to be predic-

tive. Biomarkers that are both prognostic of disease state and predictive of drug

effect are called prognostic-predictive biomarkers. In Table 1.1, we show various

treatment effect outcomes that might be expected in a trial for which a genomic

biomarker is used as a classifier to determine the treatment effect in a genomic

subset. Prognostic markers hence only distinguish subgroups based on perceived

long-term prognosis, but unlike predictive markers they cannot guide the choice of

a particular treatment.

We refer to an interaction as the case when treatment effect differs by sub-

groups. When a treatment is beneficial (or harmful) in all subgroups, but the
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magnitude of effect varies among subgroups, we say that the interaction is quan-

titative. When a treatment is only beneficial in some subgroups, and completely

ineffective or harmful in others, the interaction is said to be qualitative. For exam-

ple, we might determine that a new agent is highly effective among male patients,

but actually leads to shorter survival among female patients. Note that qualita-

tive interactions can indicate either that positive treatment effect is confined to a

particular subgroup (no effect elsewhere), or that treatment effects are in oppo-

site directions in different subgroups (Simon, 2002; Wang et al., 2007b). Opposite

treatment effects are generally considered to be highly unlikely (Pocock et al.,

2002); when they are in fact observed they are “subsequently shown to be spuri-

ous” (Yusuf et al., 1991). Wang et al. (2007b) note that if qualitative interactions

truly are present, targeted designs can substantially outperform conventional clini-

cal trials. The magnitude of power gained in targeted trials versus untargeted trials

diminishes when qualitative interactions are not allowed. In the construction of

our procedures, we assume that opposite treatment effects do not occur.

As previously noted, subgroup analyses are frequently conducted in clinical

trials, and there are two main reasons for these studies (Song and Chi, 2007; Wang

et al., 2007a). First, and perhaps most common, is subgroup analysis carried out

when a trial fails to show a statistically significant overall effect, ostensibly in an

attempt to salvage the trial. Such analyses are frequently conducted on improper

subgroups and/or without proper adjustment for multiplicity. For example, in

separate surveys conducted by Pocock et al. (2002) and Wang et al. (2007a), a

number of clinical trial reports were examined and subgroup results evaluated.

In both surveys, several reports were unclear as to whether reported subgroup

analyses were prespecified or post hoc, or if tests were adjusted for multiplicity

and selection bias. Such results are clearly suspect, can be very misleading, and
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at best serve as exploratory studies for hypothesis generation. The second reason

for subgroup analysis is to investigate the consistency in treatment effect across

various subgroups of clinical importance. This may be done to further demonstrate

the strength of evidence for treatment efficacy after overall significance has been

established, or to assess those populations most (or least) likely to benefit from

the treatment.

1.2.2 Subgroup Analysis Concerns

There are several issues and pitfalls associated with analysis and interpretation of

subgroup-specific results: lack of statistical power; multiplicity; appropriate tools

of inference; interpretations and generalizability; and misclassification.

Lack of Statistical Power

The issue of lack of statistical power is well known and has been discussed by

several authors, see for example Maitournam and Simon (2005); Pocock et al.

(2002); Sargent et al. (2005); Song and Chi (2007); Wang et al. (2007a); Wang

(2007); Yusuf et al. (1991). As most clinical trials are only powered to detect

an overall treatment effect, it should not be expected that subgroup effects are

detected, even in relatively large subgroups. In particular, if a truly efficacious

treatment is being tested and many subgroups are analyzed, we should expect

false negatives in some subgroups by chance and lack of power. For example, the

ISIS-2 trial (ISIS-2 (Second International Study of Infarct Survival) Collaborative

Group, 1988) involved over 17,000 patients and clearly demonstrated the beneficial

effect of aspirin for patients experiencing a heart attack. To give an example of the

13



limitations of subgroup analysis, the authors note that “subdivision of the patients

in ISIS-2 with respect to their astrological birth sign appears to indicate that for

persons born under Gemini or Libra, there was a slightly adverse effect of aspirin

on mortality, while for patients born under all other astrological signs there was a

striking beneficial effect.” The finding indicating that Gemini and Libra persons

had an adverse effect was of course spurious, and serves to illustrate that subgroup

analysis can quite easily lead to incorrect findings, even in trials that are positive

overall. We note, however, that it is not impossible for subgroup analyses to be

properly powered. Alosh and Huque (2009) point out that an increase in subgroup

power, relative to that of the overall population, can be achieved through one of

the three following: an increase in the subgroup prevalence, a higher treatment

effect in the subgroup relative to the overall population, and higher measurement

precision in the subgroup compared with the overall study population. While

these factors are of course not controlled by clinical researchers, the fact is that

contrary to what has previously been claimed, subgroup studies are not necessarily

underpowered.

Multiplicity

Given the large amount of observable clinical characteristics and underlying ge-

nomic characteristics, there are many possible subgroup analyses that could be

performed. When multiple subgroups are analyzed, the probability of a false pos-

itive can be substantially inflated. For example, consider a trial comparing an in-

effective treatment to a control. If subjects are divided into 20 mutually exclusive

subgroups, we should expect one spurious finding on average, using a nominal sig-

nificance level of 5%. There are many ways to adjust for multiplicity, some of which

we will discuss in Chapter 2. However, for coherent inferences on treatment effects
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in subgroups, multiplicity adjustment alone is not enough. Subgroups should be

prespecified3, based on biomarkers developed in earlier stages (or from previous

trials), and have a strong biological and clinical rationale (Pocock et al., 2002;

Yusuf et al., 1991). Medical reasons supporting a particular subgroup hypothesis

should be explicitly stated at the outset and analysis of the resulting data should

be carried out in concordance with the trial protocol. Subgroups that are defined

a posteriori can serve as a basis for hypothesis generation for future research, but

to avoid selection bias these hypotheses should only be tested with new and in-

dependently obtained data. Careless analysis of multiple subgroups can be highly

misleading, in particular if subgroup definitions are data-driven (improper) and

post hoc emphasis is placed on the “most interesting” subgroup finding. Prospec-

tive planning is essential to all effective trial designs, and this is holds true no less

when subgroup analysis is envisaged.

Appropriate Tools of Inference

Recognizing the likely very low power of multiplicity-adjusted interaction tests,

Yusuf et al. (1991) recommend that the prudent way to conduct subgroup analysis

is to rely mostly on the overall results to indicate likely “true” effects in sub-

groups. Further, they advocate that medically interesting data-derived subgroup

effects be reported clearly as post hoc analysis so that the resulting hypotheses

can be studied in future trials. However, considering the high cost and significant

time involved in a confirmatory trial, this approach is likely very inefficient. Alter-

natively, Pocock et al. (2002) advise that the only appropriate statistical method

for making inferences from subgroup analyses is the test for interaction. Such

tests are notoriously underpowered, a fact that has frequently been used to argue

3See Section 1.2.4 for a discussion on regulatory guidance for subgroup analysis.
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against their use, but Pocock et al. (2002) suggest that their lack of power recog-

nizes the limited information available for subgroup analysis. However, interaction

tests only aim to demonstrate that treatment effect is heterogeneous across the

subgroups of interest, and there are instances where presence of heterogeneity is

not the appropriate question (Moyé and Deswal, 2001). Indeed, when validating a

predictive biomarker, we are interested in whether or not the experimental treat-

ment is efficacious in the subgroup of interest (defined by the biomarker). In such

cases interaction tests may not be suitable.

Sometimes there is compelling evidence that a treatment affects only a specific

population, and a confirmatory trial can be conducted randomizing only patients

from said population. However, when there is no biological plausibility or no

well established drug target, it is generally not advisable to exclude patients on

the basis of a potential biomarker. In such cases, a composite objective should

be prospectively defined, whereby researchers will test the hypotheses that the

treatment works in all randomized patients, or in the subgroup defined by the

biomarker. As there is more than one opportunity to declare a treatment effect,

adjustment for multiplicity is necessary.

Interpretations and Generalizability

Care needs to be taken when interpreting trial results that involve subgroup analy-

sis. While researchers need to evaluate whether a treatment effect is generalizable

to a larger set of patients, they also need to guard against making sensational con-

clusions regarding subgroup results that are not robust to validation trials. Surveys

of clinical trial reports (Pocock et al., 2002; Wang et al., 2007a) have led to the

view that results of subgroup analyses are generally overinterpreted by authors,

16



which can weaken the foundation on which such research is built. Investigators

should prospectively specify biologically plausible subgroups at the onset of Phase

III trials (development of biomarkers can take place over earlier phases), and all

medically interesting hypotheses should be clearly defined. During specification

of trial protocols, the consequences of prospectively defining subgroups of interest

should be carefully weighted, in particular with respect to the potential general-

izability of the trial results. If analysis of the resulting data leads to data-driven

definitions of subgroups not specified in the trial protocol, the medical relevance

of these subgroups should be evaluated and if deemed important enough, clearly

stated in the trial results as potential for further research.

Mandrekar and Sargent (2009) suggest that validation of predictive biomarkers

may well be achieved by utilizing data from a previously conducted randomized

controlled trial (RCT), known as retrospective analysis. They argue that this is a

valid strategy when “(1) a prospective RCT is ethically impossible based on results

from previous trials, and/or (2) a prospective RCT is not logically feasible (large

trial and long time to complete).” A known problem for retrospective analyses is

a “convenience sampling bias” resulting from the fact that not all patients may

have consented to give samples required for marker validation (e.g. cancer biop-

sies). Samples for a large majority of patients must therefore be available, and

all subgroup hypotheses must be clearly stated up front. The authors go on to

argue that findings from well designed retrospective analyses may be sufficient to

establish predictive utility of a biomarker and to move it into clinical practice.

Retrospective exploration may also be conducted as a sort of meta-analysis,

combining data from several RCTs. In such studies, the right biomarkers need not

necessarily be known beforehand, and data can be divided to validate biomarkers
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defined a posteriori in one of the studies. Retrospective exploration also allows

for evaluation of treatment effect in all patient subgroups (even if some trials

were not designed to answer such questions), and the refinement of previously

defined biomarkers. However, presence of convenience samples can make statistical

inference problematic. When retrospective development of a genomic biomarker is

of interest, difficulties may arise as sample collection and handling may have been

suboptimal, and some sample data may be missing with no apparent method for

imputation available (Wang, 2007). Simon (2005) points out that if a commercial

therapy is already available, the drug sponsor may not have sufficient incentive to

engage in the lengthy and expensive process of biomarker validation, even if there

is strong suspicion that responses truly differ by patient subsets.

Misclassification

In all but the simplest of cases, most baseline data are measured with some chance

of error. This holds true in particular for the evaluation of a molecularly targeted

treatment when there is an assay predictive of which groups of patients will be

more responsive than others. When this occurs, observed subgroups will include

misclassified patients, which can adversely affect the efficiency of any proposed clin-

ical trial. Simon and Maitournam (2004) and Maitournam and Simon (2005) study

the effect of assay performance on the relative efficiency of targeted trials (recruit

only patients predicted to be responsive) compared to untargeted trials (recruit

all patients). The designs are compared in terms of number of patients required

for randomization and the number of patients required for screening, as a function

of the subgroup prevalence (prevalence of marker-positive patients) and the assay

performance. The two measures used for assay accuracy are (1) specificity, the

probability that a marker-negative person be correctly identified as such; and (2)
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sensitivity, the probability that a marker-positive person be correctly identified

as such. The authors highlight that when treatment effect is limited to marker-

positive patients, relative efficiency is primarily affected by assay specificity. When

specificity is large enough (greater than 0.8), the targeted design is generally more

efficient in terms of number of patients randomized. When the treatment effect

for marker-negative patients is half of that for marker-positive patients, efficiency

gains are minimal unless the assay is perfect. Comparing relative efficiency in

terms of number of patients screened, assay sensitivity is of some importance as

well. When there is no treatment effect in marker-negative patients there are only

efficiency gains when prevalence is low, and specificity and sensitivity are both

high. When there is some treatment effect in marker-negative patients (half of

marker-positive), an untargeted design is more efficient even if the assay is perfect.

Case Study: HER2 marker status and Herceptin

As stated in Section 1.1, the antibody trastuzumab (Herceptin) is currently an ap-

proved treatment for HER2 positive breast cancers. A patient is defined as HER2

positive if either (1) immunohistochemistry (IHC 3+) indicates over-expression

of the HER2 protein, or (2) HER2 gene amplification by fluorescence in situ hy-

bridization yields a FISH-HER2:CEP17 ratio of ≥ 2.0 (Perez et al., 2006). Follow-

ing analysis of preclinical evidence, the National Cancer Institute (NCI) decided

to enroll HER2 positive patients in two trials intended to evaluate the efficacy of

Herceptin, combined with standard chemotherapy, in the adjuvant setting4. The

two trials, (1) the National Surgical Adjuvant Breast and Bowel Project trial (NS-

ABP B-31), and (2) the North Central Cancer Treatment Group trial (NCCTG

4In oncology, adjuvant therapy refers to additional treatment usually given after surgery where
all detectable disease has been removed, but where there remains a statistical risk of relapse due
to occult disease.
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N9831), were analyzed in a combined fashion. Roughly 3,700 patients were enrolled

in total and after 394 events had been observed (by March 2005), early stopping

boundaries were crossed with results indicating a clinically and statistically signif-

icant beneficial effect for HER2 positive patients (Romond et al., 2005). Though

the goal of the trial was accomplished, some concerns linger regarding the use of

HER2 as a marker for Herceptin.5

Originally, patients were eligible for the two trials if they tested positive in either

IHC or FISH, and tests were carried out at various locations such as community

hospitals, medical centers and national laboratories. In 2002, the trial protocol was

modified to make central laboratory testing mandatory, and all previously tested

specimen were re-tested at the Mayo Medical Laboratories, Rochester, MN. Analy-

sis of these tests was conducted by Perez et al. (2006), wherein discordance between

local and central testing was reported as high as 25% in some cases. While this

discordance is alarming, it has permitted retrospective analysis of Herceptin bene-

fits for HER2 negative patients. Paik et al. (2007) report results from subsequent

analysis of available tumor tissues from the NSABP B-31 trial which indicate that

patients which were negative for FISH and had less than 3+ staining intensity on

IHC may derive benefit from Herceptin (relative risk was 0.36, CI = (0.14, 0.92),

p = 0.032). In a similar analysis of data from the NCCTG N9831 trial, Perez

et al. (2007) observe a non-significant reduction in risk (relative risk = 0.51, CI

= (0.21, 1.2) and p = 0.13). Though small sample-size concerns are present in the

analysis, as well as issues relating to convenience sampling bias, the results should

not be ignored. Perez et al. (2007) suggest that the findings be used as hypothesis

5This has received national media attention; for example, Kolata (2010) discusses the prob-
lematic lack of reliability of HER2 tests today, where some patients are diagnosed as partly HER2
positive, and partly negative. Similar difficulties are highlighted in a recent discussion by Speed
(2010). This, coupled with the dangerous side-effects of Herceptin, makes the choice of therapy
less than straightforward for many patients.
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generation for further studies, while Paik et al. (2007) conclude that the current

definition of HER2 positivity may need to be modified, as some HER2 “negative”

patients may yet benefit from Herceptin.

Following the results discussed above, Mandrekar and Sargent (2009) point out

that, though the trials were positive and Herceptin is proven to be a highly effective

drug for HER2 positive patients, exclusion of HER2 negative patients means that

no definitive assessment of the predictive utility of HER2 can be conducted. The

authors highlight the possibility that Herceptin potentially may benefit a larger

population than was originally believed, and that further studies to this effect are

warranted. This raises the question of whether an alternate design, one which

allows inclusion of HER2 negative patients, might have been more useful (and

ultimately more efficient (Mandrekar and Sargent, 2009)) than the targeted design

that was employed.

1.2.3 Survey of Existing Methods

One of the likely causes of low success rates for untargeted RCTs is disease het-

erogeneity or varying response rates among patients. Prospectively planning the

analysis of (predictive) biomarker validity is therefore key in the planning of fu-

ture clinical trials. In this section we briefly discuss some designs that have been

proposed as a solution to this problem.

Sargent et al. (2005) and Mandrekar and Sargent (2009) discuss the efficiency

of various randomization schemes designed to allow for biomarker validation with-

out needlessly excluding a number of patients. There are two main categories of

predictive biomarker studies (for one putative marker). First, Marker by treat-
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ment interaction designs split the population into two groups by marker status.

Patients in each group are randomly assigned to one of the two treatments under

consideration (one may be placebo), and testing is carried out either in the form

of separate tests of superiority, or a formal statistical test for interaction between

marker status and treatment assignment. Second, Marker-based strategy designs

begin by testing each patient for marker status, after which each patient is ran-

domly assigned to have his/her treatment determined by their marker status or to

receive therapy independent of marker status. Patients in the marker-based arm

receive placebo treatment if their marker status is negative, and the experimen-

tal treatment if their marker status is positive. Patients in the non-marker-based

arm undergo a second randomization to determine whether they receive placebo or

the experimental treatment. The purpose of this second randomization is to clar-

ify whether findings regarding the predictive/prognostic utility of the biomarker is

truly due to the marker, or just due to an improvement offered by the experimental

treatment in the whole population.

Marker by treatment interaction designs using separate tests are essentially two

separate (independent) clinical trials, which requires that they both be powered

individually. The trial may fail to provide a clinically useful result if the biomarker

is both prognostic and predictive (marker positive patients have worse prognosis

with no treatment, but benefit more from the experimental treatment). Further,

not all subjects are utilized in one test, making the design inefficient. Using a

test of interaction would alleviate concerns of inefficiency, but a significant result

would only provide evidence that the magnitude of treatment effect differs in the

two patient subgroups. In addition, tests of interaction generally require a larger

sample size compared with a study sized for an overall effect (Wang, 2007). In spite

of the concerns mentioned above, Sargent et al. (2005) recommend that marker

22



by treatment interaction designs be used when the purpose of a clinical trial is to

assess the clinical utility of a single putative predictive biomarker.

When there is a panel of markers to be evaluated, marker by treatment in-

teraction designs can be problematic and marker-based strategy designs may have

significant merit (Mandrekar and Sargent, 2009; Sargent et al., 2005). For instance,

if there are there are more than two treatments to which patients can be assigned,

or if there are multiple outcomes of interest, the marker-based design may be ap-

plied to randomize patients based on marker status. Further, the marker-based

design also allows investigation of the prognostic value of a biomarker by com-

paring results among patients who received placebo (or standard treatment) by

marker level. The authors do remark that the marker-based design is inefficient

due to an overlap arising from the additional randomization of patients in the non-

marker-based arm. This results in a significant number of patients receiving the

same treatment in both arms, and the overlap increases as the prevalence of the

subgroups of interest increases.

As mentioned in Section 1.2.2, when there is convincing evidence that effective-

ness of an experimental treatment is confined to a particular subgroup, efficiency

gains may be achieved by only recruiting patients of that particular marker status

(Maitournam and Simon, 2005; Simon and Maitournam, 2004). This is referred to

as enriching the study population with potential responders (Temple, 1994, 2005)

and the goal is to understand the safety and clinical benefit of the treatment in

only a subgroup of patients. A requirement for enrichment is the availability of a

robust diagnostic assay, whose validity must be confirmed before enrichment is car-

ried out. The classical enrichment success story concerns the demonstration that

the antibody trastuzumab (Herceptin) combined with conventional chemotherapy
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significantly improves disease-free survival outcomes among women with surgically

removed HER2 positive breast cancer. However, as mentioned in the introduction

and discussed at length in Section 1.2.2, retrospective analyses have suggested

that Herceptin may be beneficial for a more broadly defined population. A new

confirmative trial may therefore be needed to re-assess the utility of HER2 as a

predictive marker, something that was not achieved in the original trials due to

the exclusion of all HER2 negative patients. It is recommended by Freidlin et al.

(2010) that in most settings, “biomarker-stratified designs be used to obtain a

rigorous assessment of biomarker clinical utility.”

Screening enrichment designs assume a substantial level of confidence in the

accuracy of the biomarker as a classifier, as well as the validity of preliminary data

(from Phases I and II). Early stage data is highly variable, and enriching the study

population based purely on such results may lead to exclusion of populations that

in truth benefit from the experimental treatment. Further, if the diagnostic as-

say is not sufficiently robust, there could be serious concerns about the validity of

conclusions drawn from an enrichment trial. As a compromise, Simon and Wang

(2006) suggest sizing a trial to test the overall population at a reduced significance

level, and to include a contingency plan to test a (single) prospectively defined sub-

group of patients predicted to be particularly responsive, in case the overall trial

is negative. Such a design would provide sponsors with an incentive to develop

classifiers without running the risk of labeling restrictions if their findings indicate

overall efficacy. This could be described as splitting the significance level of the

trial, also known as alpha-splitting, or prospective alpha-allocation. Though per-

haps not developed with subgroup analysis in mind, several alpha splitting schemes

have been proposed, such as a weighted Bonferroni adjustment (Dmitrienko et al.,

2010, Ch. 2.6), the prospective alpha allocation scheme (Moyé, 1998, 2000), or
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the fallback procedure6 of Wiens (2003) and Wiens and Dmitrienko (2005). These

procedures all assume independent endpoints.

More applicable to subgroup analysis however, is the combination of prospective

alpha allocation with the assumption that test statistics may be positively corre-

lated. Alosh and Huque (2009) propose a flexible strategy for subgroup testing

which, in addition to prospectively splitting the significance level and incorporat-

ing correlation, requires a certain consistency of findings between the subgroup

and the overall population. In their design, the overall population is tested first at

a reduced significance level, and if the overall hypothesis cannot be rejected, but

findings are “good enough,” testing of a subgroup hypothesis may be conducted

at a significance level obtained as a function of subgroup prevalence, measurement

precision and desired Type I error. The authors argue that based on the afore-

mentioned consensus that opposite direction treatment effects are unlikely, a weak

level of significance should be met in the overall population in order for subgroup

analysis to be allowed. Another method based on the same requirement was devel-

oped by Song and Chi (2007), in which they use a generalized conditional rejection

region to optimize study power.

It may sometimes be the case that an assay or well-defined biomarker is not

available at the onset of a confirmatory trial. However, if in truth the patient

population is heterogeneous, using a traditional RCT is inefficient and unlikely

to yield a positive result. Freidlin and Simon (2005a) have proposed an adaptive

design that combines prospective development of a genomics-based biomarker to

select sensitive patients with a properly powered test for an overall effect. The

procedure is split into two stages (the authors recommend that sample size be

evenly split between each stage), and after the first stage a logistic regression

6This procedure is described in detail in Chapter 2.
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model is used to identify the genes that have most significant treatment-interaction

coefficients. Following the second stage, the final analysis consists of an overall test

of treatment efficacy using patients accrued over both stages, and a test of patients

in the subgroup developed over the first stage, using only patients accrued over

the second stage. Both tests are carried out at a reduced significance level to

appropriately protect the overall Type I error. To avoid bias, sample size for stage

two may not be altered at the interim analysis. The authors conduct simulations

which indicate that the development of a genomics-based biomarker to identify

subsets of sensitive patients can be incorporated prospectively into a Phase III

design without substantially compromising overall power. It should be noted that

the biomarker is not used to restrict patient entry in stage two, and hence its

development can be conducted at the final analysis (using data assigned to the

first stage). The design is hence particularly appropriate for survival endpoints.

Jiang et al. (2007) propose a Phase III design suitable for settings when a pre-

specified biomarker is measured on a continuous scale. This design combines the

test for an overall treatment effect with the establishment and validation of a cut

point for the prespecified biomarker. The procedure also provides an estimate of

the appropriate biomarker cutoff for sensitive patients. The authors perform sim-

ulation studies which indicate that their design retains adequate power to prove

overall effect when the treatment is in truth broadly effective. When only a sub-

group is responsive, substantial gains in efficiency over traditional randomized

designs were reported, in particular when subgroup prevalence is low.

An alternative enrichment design, for use when a reliable assay to select sen-

sitive patients is not available, was reviewed by Freidlin and Simon (2005b). In

this Phase II design, known as a randomized discontinuation design, patients are
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initially randomized to experimental treatment or placebo. After a predetermined

period of time, early responses are obtained, and responsive patients are allowed

to continue while patients for whom the disease progresses are removed from the

study. Stable patients are randomized again for another fixed period before being

re-evaluated. The authors find that if all patients are sensitive, this design is con-

siderably less efficient than upfront randomization. However, in a heterogeneous

response setting, and with a relatively small sensitive population, efficiency gains

can be considerable. Some issues regarding interpretation need to be addressed; if

the study is positive, generalization can be difficult as the target population might

be hard to identify. The authors conclude that randomized discontinuation can

be a useful tool when reliable assays do not exist, though its application must be

carefully structured to provide sufficient enrichment to sensitive patients. Further,

the procedure should only be used when there is sufficient knowledge of disease

history and biology to allow meaningful analysis of the results.

In recent years, so-called adaptive designs have received increased attention in

clinical trials. Phase III trials are both costly and lengthy, and therefore substantial

care must be taken in the planning process to ensure that the trial is designed in

an efficient and robust way. However, many planning parameters are unknown

after Phase II (early estimates of drug efficacy are highly variable), and hence it is

appealing to allow for some mid-study changes that are prospectively planned in

order to increase the likelihood of a successful trial. Following the seminal paper of

Bauer and Köhne (1994), much research in the statistical literature has focused on

providing valid and efficient procedures that permit various degrees of adjustments

without jeopardizing the integrity of the trial. This can be applied in the context

of subgroup analysis when previous data does not clearly suggest upfront use of

an enrichment design. Namely, we can prospectively plan to enrich the study

27



population with patients from a predefined subgroup, depending on data observed

over early stages of the Phase III trial (Hung et al., 2006).

In principle, adaptive designs can be executed with great flexibility, and adap-

tations need not be planned in advance. However, as we have discussed above,

significant difficulties can arise from cavalier subgroup analysis, and therefore it

may be advisable to limit the flexibility to a selected number of options. Wang

et al. (2007b) explore an adaptive enrichment approach which allows prospectively

planned adaptation to limit a study to a predefined subgroup. The authors as-

sume that a single subgroup has been identified in earlier phases (or earlier trials)

in which a therapeutic intervention may be particularly effective. Data is evaluated

during an interim analysis at which point the decision is to either (1) complete the

trial recruiting patients from the overall population, or (2) exclude patients from

the subgroup complement for stage two, and enrich the subgroup population. In

this case enrichment implies that all planned sample size for stage two is allocated

to the subgroup of interest for the purpose of increasing power. The population

adaptation is made only if the therapy appears to be ineffective or unsafe in the

complement of the predefined subgroup. Hence the adaptation rule is independent

of interim results in the subgroup of interest. Moreover, as the subgroup is enriched

due to safety or ethical concerns about the subgroup complement, concerns about

selection bias should not invalidate the study. The authors compare their design to

that suggested by Freidlin and Simon (2005a) and report substantial power gains

for the subgroup. These gains are mostly apparent when only the subgroup is

sensitive to the experimental treatment.

In a later paper, Wang et al. (2009) consider a slightly different adaptive en-

richment design in the setting of two nested subgroups, S1 and S2 (say S1 contains
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S2). In addition to adaptive enrichment, sample size modification is allowed based

on conditional power evaluated at an interim analysis stage; if conditional power

for the overall population is high enough, second stage sample size is increased

to a prespecified maximum. If overall conditional power is too low at the interim

analysis, the study is enriched to S1. If conditional power for S1 is also too low, the

study is enriched to S2, and early stopping for futility is allowed if no population

looks promising. Simulation studies are conducted to evaluate the performance

of this design relative to more traditional designs. Findings indicate that when

the proposed biomarker is predictive, power gain (for the subgroups) can be sub-

stantial. If the marker is only prognostic, there is not much gain, if any. Interim

analysis timing effect on power varies depending on the true underlying treatment

effects; when there is a favorable nesting pattern in treatment effects (effect is

highest in S2, then S1, then overall) an early interim analysis is beneficial. If there

is no such nesting pattern, a later interim analysis is more informative. In the

numerical study in Chapter 3, we include in our comparisons a similar design as

the one proposed by Wang and colleagues. The authors do not advocate use of

this design over any other, but rather emphasize that when “subgroup adaptation

is a prespecified option, any multiple test procedure that has strong control over

experimentwise type I error rate is an appropriate multiple test procedure.”

For situations in which frequentist analysis of subgroups is likely to be ineffec-

tive, various Bayesian designs have been proposed; see (Berry et al., 2011) for an

overview of current clinical practice. Dixon and Simon (1991), Simon et al. (1995)

and Simon (2002) develop a Bayesian model for subset analysis in clinical trials

with binary covariates. Use of Bayesian statistical methods allows for prior spec-

ification of the likelihood of qualitative treatment-by-subset interactions. Then,

estimates of subgroup-specific treatment effects are computed as a weighted com-
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bination of within-subgroup efficacy estimates and overall efficacy estimates. Their

models are based on a key assumption of exchangeability among the treatment-

by-subset interactions, restricting their appropriateness to the situation where no

a priori distinction can be made between subgroups relative to treatment effect.

The use of hierarchical Bayes modeling means no specification of subjective priors

is required, see for example (Spiegelhalter et al., 2004, p. 277). No formal control

of false positive error rates is included, so these methods are more suitable for

subgroup screening which might be performed in Phase II.

Wathen et al. (2008) propose a hierarchical Bayesian model for Phase II trials

where the exchangeability assumption is not appropriate. This might be the case

when previous studies indicate that patients can be divided into groups of “good”

prognosis and “bad” prognosis. They propose a parametric likelihood (for binary

or survival endpoints) that borrows strength across subgroups, and assume infor-

mative priors for the baseline and prognostic parameters (unrelated to treatment-

by-subgroup interaction parameters). An algorithm is provided to obtain values for

the hyperparameters, and simulation is used to calibrate the model to have “good

frequentist characteristics.” Their simulation results indicate that when subgroup-

specific effects are present, the design substantially outperforms other procedures

that do not account for these interactions. However, when no interactions are

present and the treatment does not achieve its targeted improvement, the design

is less likely to stop the trial for futility.

Due to ethical concerns, adaptive randomization can be used in early stages to

decrease the probability that patients are assigned to an ineffective treatment arm.

Zhou et al. (2008) propose a Phase II Bayesian adaptive randomization design for

patients with advanced stage lung cancer. In this procedure, patients are adap-
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tively randomized to one of four treatments according to continuously updated

response rate estimates as data is accumulated throughout the trial. Treatments

that appear to perform well for a certain biomarker profile have higher random-

ization rates, and vice versa. If a treatment performs poorly enough, it may be

(temporarily) suspended from randomization, with the possibility to be reinstated

later as more data has been examined. A simulation study indicates that in ad-

dition to identifying effective treatments with a high probability, more patients

are treated with treatments that fit their biomarker profile. The design relies on

short assessment times for patient biomarker profiles, as well as short outcome-

observation times so that decisions are based on up-to-date data. The design does

not take into account assay sensitivity and specificity, and the authors point out

that the effect of assay performance on the design requires further investigation.

Adaptive seamless Phase II/III designs, see Bretz et al. (2006) and Schmidli

et al. (2006), involve joint planning of both Phase II and III with the intention of

cutting delays between the two phases, while allowing for flexible adaptation based

both on trial data, and on external factors. We discuss these types of designs in

more detail in Chapter 2. Zuber et al. (2006) and Brannath et al. (2009) combine

Bayesian decision tools with an adaptive seamless Phase II/III design for a targeted

therapy in oncology. They propose a three stage design which is intended to

demonstrate efficacy of a targeted agent for a full population, or for a prespecified

subgroup. They employ a multiple level testing rule that is unaffected by decision

rules used at interim analyses, and they allow the trial to be terminated before the

final analysis, either due to early rejection or futility. The decision rule is based on

predictive power, which combines the uncertainty about current estimates with the

variability inherent in future estimates. Adaptive enrichment is not employed in

this design. Their findings indicate that the procedure achieves gains in time and
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reduction in overall sample size compared to more conventional group sequential

procedures, since data from exploratory and confirmatory studies (Phase II and III)

are combined and no independent Phase II trials are required to confirm sensitivity

of the subgroup in question.

1.2.4 Regulatory Guidance

Regulatory issues and good practice considerations for clinical trials are discussed

at length in, for example, (US Food and Drug Administration, 1998) and are not

detailed in this thesis. Rather, in this section we summarize some of the guidance

principles published by the FDA and EMEA specifically regarding the conduct

of subgroup analysis in clinical trials. On reliable conclusions from a subgroup

analysis, the European Agency for the Evaluation of Medicinal Products (2002)

says the following: “Reliable conclusions from subgroup analyses generally require

pre-specification and appropriate statistical analysis strategies. A license may be

restricted if unexplained strong heterogeneity is found in important sub-populations,

or if heterogeneity of the treatment effect can reasonably be assumed but cannot be

sufficiently evaluated for important subgroups.”

As discussed previously in this chapter, there may be interest in examining the

relationship between treatment efficacy and the measurement of various baseline

covariates. In many studies, such analyses serve a supportive purpose and results

should be interpreted with the appropriate caution. In particular, when subgroup

analyses are exploratory, they should be clearly identified as such; commonly these

analyses are intended to explore the uniformity of treatment effects overall. In

the absence of a pre-specified corresponding null hypothesis and an appropriate

analysis strategy, claims of subgroup-specific beneficial effects are very unlikely to
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be accepted (European Agency for the Evaluation of Medicinal Products, 2002;

US Food and Drug Administration, 1998).

In a draft recently made available on their website, the US Food and Drug

Administration (2010) provides guidance on the conduct of population adaptation

based on treatment-effect estimates. Methods that allow modification of eligibility

criteria after an interim analysis can be cautiously applied, when there is sugges-

tive evidence of subgroup-specific effects but said evidence is not strong enough

to warrant confidently selecting solely this population(s) for a confirmatory trial.

Allowing such types of trials introduces difficulties concerning selection bias, and

any prospective study plan should clearly demonstrate control of the Type I error

rate for all hypotheses of interest. Caution is advised in planning studies that allow

population adaptation to be performed multiple times, as “when multiple revisions

to the study population are made it may be challenging to obtain adequate esti-

mates of the treatment effect in the populations of interest, or to interpret to what

patient population the results apply.”

1.3 Thesis Outline

The remainder of the thesis is outlined as follows. In Chapter 2, we present notation

that is common to the rest of the thesis, and define important terms that are used

in the presentation of our procedures. We also give an overview of technical results

and definitions from the literature.

In Chapter 3, we consider the problem of designing a clinical trial when there

is one subgroup of particular interest. A number of designs are proposed and com-

pared in a comprehensive numerical example. We first devise a one-stage adjusted
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fallback procedure (Section 3.2.1), which sequentially tests treatment efficacy in

all populations of interest, accounting for correlation of the test statistics. This

procedure is however not adaptive, and improvements can be obtained by allow-

ing one or more interim analyses. Accordingly, we extend the adjusted fallback

procedure, introducing the so-called fallback enrichment procedure (Section 3.2.2).

This design allows for one interim analysis where the target population may be

redefined according to an a priori ordering.

We next consider a number of more flexible designs, where testing is conducted

by use of a prespecified combination rule. Three different procedures are discussed,

where the main differences lie in the interim adaptation rules that are employed.

We propose a “hybrid Bayesian” procedure which relies on specifying a prior distri-

bution of treatment effects, and uses a utility function to determine the appropriate

course of action at the interim analysis. Additionally, designs based on conditional

or predictive power are discussed; similar procedures have been proposed in the

literature (Brannath et al., 2009; Wang et al., 2009). To investigate the operating

characteristics of the aforementioned designs, we conduct a numerical experiment

where statistical power is obtained and compared between all procedures based on

subgroup prevalence, interim analysis timing, and interaction of treatment effects

across subgroups.

In Chapter 4, we extend the adjusted fallback procedure, the fallback enrich-

ment procedure, and the hybrid Bayesian design to account for an arbitrary number

of subgroups. The first two of these are mainly intended to deal with a nested pop-

ulation structure, though they could be applied in other situations as well. The

hybrid Bayesian design is developed for disjoint subgroups where no a priori or-

dering is evident. The adjusted fallback procedure is a one-stage design, while the
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other two include one interim analysis and are hence two-stage procedures.

In Chapter 5, we propose a K-stage adaptive group sequential design that al-

lows adaptation of the target population. As developed, the procedure can take

place over any number of stages, and after the first stage non-responsive pop-

ulations may be discarded. Remaining populations are pooled and subsequent

analyses test only one hypothesis, i.e. the null hypothesis of no treatment effect

for the pooled population. Either nested or disjoint subgroups can be handled, or

some combination thereof. A simple bootstrap algorithm is used to account for

selection bias in point estimates. The procedure is illustrated through two worked

examples, with applications in development of antidepressants and cancer treat-

ment. Finally, a numerical example is conducted to compare this procedure with

the fallback enrichment procedure and the hybrid Bayesian design.

The thesis concludes in Chapter 6 with a brief overview of results, and a dis-

cussion of potential future research.
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Chapter 2

Problem Setup and Theoretical

Background

2.1 Setup

In this section we define the scope of the problem that we consider throughout the

thesis. Section 2.1.1 gives common notation and various technical preliminaries,

while Section 2.1.2 gives correlation identities for test statistics of interest.

2.1.1 Common Notation

Let Ω0 denote a complete population of interest for a clinical trial. Suppose that

` subgroups have been identified, denoted as Ωj ( Ω0 for j = 1, . . . , `. The

subgroups are not necessarily disjoint, and some may completely contain others.

Define P = {0, 1, . . . , `} as the index set of all populations of interest. For S ⊆ P ,

let

ΩS =
⋃
j∈S

Ωj

denote the subpopulation consisting only of Ωj, j ∈ S. When S is a singleton, we

omit the curly braces from our notation. We point out two specific population

structures that might arise in practice:

1. Nested subgroups: In this case we have Ωj ( Ωj′ for j > j′. For ex-

ample, in early stage testing or retrospective analysis of previous trials, two

biomarkers are believed to be prognostic or predictive of treatment effect.
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For simplicity, suppose these biomarkers are binary and let B1 and B2 de-

note their respective indicators, such that patients are classified for each

biomarker as B+
j or B−j . Preliminary results may indicate a strong effect

for patients in groups B+
1 (defined as Ω1) and B+

1 ∩ B+
2 (defined as Ω2), so

Ω0 ⊇ Ω1 ⊇ Ω2. This defines a sort of “natural ordering” of subgroups; for

economic and ethical reasons, it is desirable to prove an overall effect, pro-

vided such an effect exist. As a “fallback” option, clinicians might plan to

evaluate efficacy in Ω1 and Ω2 (in that order) to salvage the trial.

2. Disjoint subgroups: Here, Ωj ∩ Ωj′ = ∅ for j 6= j′, and Ω0 =
⋃̀
j=1

Ωj. As

an example, again suppose there are two dichotomous biomarkers of inter-

est, B1 and B2. If preliminary analysis does not indicate that any group is

necessarily stronger than another, it may be of interest to assess whether

subgroups induced by the two biomarkers respond differently to the experi-

mental treatment. If there is no specific subgroup of a priori interest, then

this setup is reasonable. Further, the assumption of exchangeability among

treatment effect parameters is supported, which allows consideration of var-

ious hierarchical Bayesian models.

While more complicated population structures are certainly possible, we focus

mainly on the two examples given above.

We wish to examine efficacy of an experimental treatment (E), versus a control

or placebo (C). Let WE
kj denote the observed response to treatment for subject k in

Ωj, j ∈ P . Similarly, let WC
kj denote patient response to placebo. Define µEj (µCj )

as the mean experimental (placebo) treatment effect in Ωj. Define θj = µEj − µCj

as the mean difference in treatment effect between the experimental and control
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treatments. Let σ2
j be the observation variance in Ωj, and then set

δj = θj/σj =
µEj − µCj

σj
, j ∈ P . (2.1)

Thus, δj denotes the standardized true mean treatment difference. We are inter-

ested in evaluating the family of elementary null hypotheses Hj : δj ≤ 0 versus

Ha
j : δj > 0, j ∈ P . Hence Hj corresponds to the null hypothesis of no treatment

benefit in population Ωj.

Let fij ∈ [0, 1] denote the prevalence of Ωj in Ωi for i, j ∈ P . If Ωi ∩ Ωj = ∅,

then fij = fji = 0. Note that fij = 1 if i = j or if Ωi ⊂ Ωj. For S2 ⊆ S1 ⊆

P , let fS1,S2 denote the prevalence of ΩS2 in ΩS1 . In terms of Ω0, this can be

written as f0,S2/f0,S1 . Let n0 denote the overall sample size for Ω0. If subgroup

observations are stratified according to their relative size, then the sample size for

Ωj for j ∈ P\{0} is given as nj = f0jn0, and nEj (nCj ) denotes the number of

subjects assigned to the experimental treatment (placebo). If the procedure takes

place over a number of different stages, say K total, then we denote the kth stage

sample size for Ωj as nkj.

For S ⊆ P , let δS denote the standardized treatment effect in ΩS . We define

δS as a weighted average of δj where Ωj ⊆ ΩS and the individual Ωj are disjoint.

That is,

δS =
∑
j∈S

fS,jδj. (2.2)

Note that even if the subgroups of clinical interest are not disjoint, we can easily

define an auxiliary collection of subgroups that are disjoint. This new collection

of subgroups is then used to compute δS for a larger population ΩS . The pooled

variance for S, σ2
S , is also given as the weighted average of σ2

j for j ∈ S.
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For j ∈ P , we define our tests in terms of the standardized statistic Zj, or in

terms of the efficient score Yj, with corresponding observed Fisher’s information

level Ij. If θ̂j is the estimated effect size for Ωj, then Zj = θ̂j
√
Ij = Yj/

√
Ij and

the test statistics are distributed as

Zj = θ̂j
√
Ij

a∼ N
(
θj
√
Ij, 1

)
,

Yj = Zj
√
Ij

a∼ N (θjIj, Ij) ,
(2.3)

where
a∼ N indicates that the test statistic is asymptotically normally distributed.

Note also that θ̂j
a∼ N (θj, I−1

j ). The relationship between the standardized statis-

tics Zj and the efficient scores Yj means that tests can be specified in terms of

either statistic, as rejection rules can be easily converted. Denote pj = 1− Φ(Zj)

as the p-value for Hj, where Φ(·) is the cumulative distribution function for a stan-

dard normal random variable. Procedures presented in Chapters 3 and 4 are given

in terms of the standardized statistics Zj and information levels Ij. The design

proposed in Chapter 5 is outlined in terms of the efficient scores Yj. Results are

therefore applicable to the extent that endpoints of interest are asymptotically nor-

mally distributed. E.g. observations can be normal, binary, time-to-event, Poisson

etc. (Jennison and Turnbull, 2000, Ch. 3). For ease of exposition, most explicit

calculations are carried out assuming that observations are normally distributed.

Normal Observations: Suppose that WE
kj ∼ N

(
µEj , σ

2
j

)
and WC

kj ∼

N
(
µCj , σ

2
j

)
. We could assume that measurement precision differs depending on

whether placebo or experimental treatment is administered; however, for simplic-

ity we assume a common known variance σ2
j for Ωj. If an equal number of subjects

is assigned to placebo and experimental treatment (nj/2 = nEj = nCj ), the stan-

dardized statistic Zj is naturally defined as

Zj =

√
nj
4σ2

j

(
W̄E
j − W̄C

j

)
=

1√
njσ2

j

nj/2∑
k=1

WE
kj −

nj/2∑
k=1

WC
kj

 .
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The information in this case is Ij =
nj
4σ2
j
, where nj is the total number of obser-

vations available in Ωj for the trial. We can represent Ij in terms of the overall

information, I0, viz.

Ij =
nj
4σ2

j

=
f0jn0

4σ2
0

σ2
0

σ2
j

= f0j
σ2

0

σ2
j

I0.

Hence, if measurement precision is equal across all subgroups, then Ij = f0jI0.

Given observations Zj and information levels Ij from disjoint subgroups Ωj, j ∈ P ,

we may combine these to obtain the test statistic ZS for S ⊆ P as follows:

ZS =
∑
j∈S

uS,j
√
fS,j · Zj, where u2

S,j =
σ2
j

σ2
S
.

Thus, if we again have equal measurement precision across subgroups, ZS is dis-

tributed as N
(
θS
√
IS , 1

)
, where IS =

∑
j∈S
Ij is the information for ΩS .

If the analysis is conducted over K stages, we obtain stage-wise statistics Zkj for

k = 1, . . . , K and j ∈ P , along with corresponding incremental information levels

∆kj. Cumulative information levels are Ikj =
k∑
i=1

∆ij. The Zkj are distributed as

N
(
θj
√

∆kj, 1
)
, and the final statistic for Ωj is written as

Zj =
K∑
k=1

wkjZkj, where
K∑
k=1

w2
kj = 1. (2.4)

To ensure that Zj is normally distributed under Hj, the combination weights wkj

are specified before any data is unblinded. It is natural to define w2
kj as the fraction

of planned information accumulation for Ωj during stage k. However, definition

of the combination weights is deliberately vague at this stage, and is made more

precise in subsequent chapters as we present various clinical trial designs.
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2.1.2 Test Statistic Correlation

If Ωi ∩Ωj 6= ∅, i, j ∈ P , then test statistics Zi and Zj will be correlated. In many

of the procedures proposed in this thesis, it is essential to know this correlation,

or to obtain an estimate. To this end, let W̄i\j and W̄i∩j (σ2
i\j and σ2

i∩j) denote

observed sample means (observation variances) in Ωi\Ωj and Ωi ∩Ωj respectively.

Then W̄i = fijW̄i∩j + (1− fij)W̄i\j, and

Var
(
W̄i

)
= f 2

ijVar
(
W̄i∩j

)
+ (1− fij)2Var

(
W̄i\j

)
=

fijσ
2
i∩j

ni
+

(1− fij)σ2
i\j

ni
.

Therefore,

Zi =
W̄i√

Var
(
W̄i

) =
√
ni
fijW̄i∩j + (1− fij)W̄i\j√
fijσ2

i∩j + (1− fij)σ2
i\j

=

√
nifij
σ2
i∩j
W̄i∩j

√
fijσ2

i∩j +

√
ni(1−fij)
σ2
i\j

W̄i\j

√
(1− fij)σ2

i\j√
fijσ2

i∩j + (1− fij)σ2
i\j

=
Zi∩j

√
fijσ2

i∩j + Zi\j
√

(1− fij)σ2
i\j√

fijσ2
i∩j + (1− fij)σ2

i\j

= Zi∩j
√
rij + Zi\j

√
1− rij,

where

rij =
fijσ

2
i∩j

fijσ2
i∩j + (1− fij)σ2

i\j
. (2.5)

Hence,

Corr(Zi, Zj) = Corr
(
Zi∩j
√
rij + Zi\j

√
1− rij, Zi∩j

√
rji + Zj\i

√
1− rji

)
=
√
rijrji, i, j ∈ P .

If the populations are nested, i.e. if Ωj ⊆ Ωi, then fji = 1, and

Corr(Zi, Zj) =
√
rij. (2.6)
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Sometimes, the simplifying assumption of equal measurement precision can be

made, in which case rij = fij and Corr(Zi, Zj) =
√
fijfji.

2.2 Technical Results and Preliminaries

In this section, we review several important definitions and theoretical results from

the literature. We define family-wise error rate and multiple testing principles.

Several common multiplicity adjustment methods are reviewed, as well as the

more recently developed literature on flexible adaptive designs.

2.2.1 Multiple Comparison Procedures - Fundamentals

When hypothesis testing is conducted, two types of errors can be committed.

Falsely rejecting a true null hypothesis is termed a Type I error, while failing to

reject a false null hypothesis is referred to as a Type II error. The main regulatory

concern when designing a clinical trial is that false positives occur with sufficiently

small probability. If an elementary hypothesis is tested such that the probabil-

ity of a false positive does not exceed α, we say that the test is carried out at

significance level α. In a family consisting of multiple hypotheses, this is termed

as the comparison-wise error rate, see (Hochberg and Tamhane, 1987, p. 7) or

(Dmitrienko et al., 2010, p. 37).
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Family-wise Error Rate

When considering a family of elementary hypotheses, controlling the comparison-

wise error rate at level α is not adequate. Since erroneously rejecting at least

one true null hypothesis is considered an incorrect conclusion, we must extend the

definition of Type I error to the setting of multiple hypotheses. The definition of

family-wise error rate is stated in many references; we present the definition given

in Dmitrienko et al. (2010, p. 37):

Definition 2.1. Suppose we have a family of hypotheses Hj : δj ≤ 0, j ∈ H, and

let T ⊆ H denote the index set of true hypotheses. Then the family-wise error rate

is defined as

sup FWER := max
T

sup
{δj(T )}

P(Reject at least one Hj, j ∈ T ),

where the supremum is taken over all δj satisfying δj ≤ 0 for j ∈ T and δj > 0 for

j /∈ T .

If T = H, and FWER ≤ α, then we say that we have weak control of the family-

wise error rate. In general, it is not reasonable to expect that all null hypotheses

are true, and hence control of FWER at level α is enforced for an arbitrary set

T . When this is the case, we say that FWER is controlled strongly. We note that

naively testing each elementary hypotheses at nominal significance level α does

not control FWER weakly nor strongly.

Union-Intersection Testing

Union-intersection testing is a heuristic method introduced by Roy (1953), which

involves testing of any hypothesis H that can be stated as an intersection of a
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family of hypotheses. This is commonly used in pharmaceutical applications where

there is an interest to demonstrate that at least one null hypothesis is not true.

Again, suppose that we have a family H of null hypotheses {Hj}j∈H, along with

corresponding alternate hypotheses {Ha
j }j∈H. The union-intersection procedure

tests the global intersection hypothesis against the union of alternative hypotheses,

i.e.

H :=
⋂
j∈H

Hj vs. Ha :=
⋃
j∈H

Ha
j .

In terms of a pharmaceutical objective, the procedure is able to answer the ques-

tion whether all treatments are ineffective (all populations nonresponsive), or at

least one treatment is effective (at least one subgroup is responsive). As a union-

intersection test involves multiple inferences, a proper multiplicity adjusted proce-

dure is required to carry out this test.

Closure Principle

Although union-intersection tests allow for multiple inferences on a family of hy-

potheses, inference on individual elementary hypotheses is not considered. The

closure principle introduced by Marcus et al. (1976) is an important part of mul-

tiple testing theory; most multiple testing procedures employed in pharmaceutical

testing are based on this principle (Dmitrienko et al., 2010, Ch. 2.3.3). The closure

principle is outlined as follows:

• Let {Hj}j∈H be a finite family of hypotheses and form the closure of this

family by taking all nonempty intersections HP =
⋂
j∈P

Hj for all P ⊆ H.

• Define an α level test for each intersection hypothesis HP .
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• Reject HP if and only if all intersection hypotheses HP ′ with P ′ ⊇ P are

rejected using their respective α level tests.

In particular, an elementary hypothesis Hj is rejected if and only if all intersection

hypotheses HP with j ∈ P are rejected with their individual α level tests. It is

a well known fact that closed testing procedures (CTPs) control FWER in the

strong sense. As it is an important result, we state it as a theorem.

Theorem 2.1. A closed testing procedure provides strong control of the FWER.

Proof: Let T ⊆ H be the index set corresponding to all true null hypotheses.

A Type I error is committed if any null hypothesis Hj with j ∈ T is rejected.

However, since HT must be rejected in order for any Hj, j ∈ T , to be rejected,⋃
j∈T

[Reject Hj] ⊆ [Reject HT ] so

P[Reject any Hj, j ∈ T ] ≤ P[Reject HT ] ≤ α.

This completes the proof. �

If the number of elementary hypotheses, m say, is large, then the closure prin-

ciple algorithm can be computationally intensive as it requires the testing of 2m

hypotheses. As a result, “shortcut” procedures have been discussed in the litera-

ture, most recently by Bretz et al. (2009), in which the authors outline a simple

iterative graphical approach for various procedures based on the closure principle.

2.2.2 Common Multiple Testing Procedures

In what follows, we present some commonly used hypothesis testing procedures

that are suitable in multiple testing situations. Throughout, we assume that we
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have a family of m elementary null hypotheses {Hj}j∈H, with associated p-values pj

(or test statistics Zj). Let p(1) ≤ p(2) ≤ · · · ≤ p(m) denote the ordered p-values, and

let H(1), . . . , H(m) denote the corresponding sequence of elementary hypotheses.

Bonferroni-Based Methods

The most common (and perhaps simplest) MCP is likely the Bonferroni procedure

which is attributed to Sir Ronald Fisher (Hochberg and Tamhane, 1987, p. 3).

In this procedure, individual hypotheses Hj are each tested at level α/m which

controls the FWER strongly at level α. This can be a very conservative procedure,

and many alternatives have been proposed.

Holm (1979) proposed the so-called Sequentially Rejective Bonferroni Procedure

which starts by ordering all p-values. Then the hypothesis corresponding to the

smallest p-value is tested at level α/m. If rejected, the hypothesis corresponding to

the next smallest p-value is tested at level α/(m− 1), and so on. If at any point a

hypothesis is not rejected, no further testing will take place. Holm also considered

a weighted version which assigns positive weights to each hypothesis depending

on its importance. If pi and ci are the p-value and weight corresponding to Hi,

respectively, then define the statistic Si = pi/ci. The Si are then ordered and if

S(j) < α
/ n∑

k=j

c(k) then H(j) is rejected. If at any point a null hypothesis is not

rejected, no further testing takes place. This is a step-down procedure, in that it

starts with the most significant p-value and only continues as long as hypotheses

are being rejected.

Simes (1986) proposed a modification of the Bonferroni procedure that orders

the p-values and compares the smallest to α/m, the next smallest to 2α/m and
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so on. However, only the global hypothesis,
⋂
i∈H

Hi, is considered. An application

of the closure principle to Simes’ procedure was introduced by Hochberg (1988) to

allow inference on individual hypotheses. There, for any i = m,m− 1, . . . , 1, if

p(i) ≤ α/(m− i+ 1)

then this procedure rejects all H(i′) for which i′ ≤ i. This is a step-up procedure,

as testing starts with the largest p-value, and rejection of hypothesis H(i) implies

the rejection of all hypotheses with smaller p-values. Since Hochberg’s procedure

is based on the closure principle, it is uniformly more powerful than Holm’s pro-

cedure. As it is also very simple to carry out, it is a common method of choice in

practice.

Improving on Hochberg’s procedure, Hommel (1988) proposed a modified ap-

plication of the closure principle to Simes’ procedure to allow inference on indi-

vidual hypotheses. The procedure is carried out in m steps as follows: In step

i = 1, . . . ,m, accept H(m−i+1) and go to the next step if p(m−j+1) > (i− j + 1)α/i

for j = 1, . . . , i. Else, reject H(m−i+1) and all subsequent hypotheses. Hommel’s

procedure can also be extended to the case of unequally weighted hypotheses.

This procedure, while potentially harder to explain to a non-statistician, is more

powerful than Hochberg’s version of Simes’ test (Hommel, 1989).

Example 2.1. To illustrate the MCPs discussed above, we consider a simple ex-

ample in which three (m = 3) hypotheses H1, H2 and H3 are to be tested. Suppose

we have obtained p-values p1 = 0.012, p2 = 0.0251 and p3 = 0.0087, and α = 0.025.

Ordering these we have p(1) = p3, p(2) = p1 and p(3) = p2. Holm’s procedure starts

by examining the smallest p-value at level α/m, and since p(1) = 0.0087 > α/3,

we retain H(1) = H3 and all subsequent hypotheses. Hochberg’s procedure starts

by accepting H(3) = H2 because p(3) > α. However, p(2) = 0.012 < α/2 = 0.0125
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so both H(2) = H1 and H3 are rejected. Similarly, H(3) = H2 is accepted with

Hommel’s procedure, because p(3) > α. However, since p(2) = 0.012 < α (and also

smaller than α/2), Hommel’s procedure rejects both H(2) = H1 and H3.

Note that Holm’s procedure stops testing as soon as we fail to reject a null

hypothesis, while both Hommel’s and Hochberg’s procedures continue testing until

one rejection occurs (at which point all further hypotheses are also rejected). For a

slightly different example, suppose we had obtained p-values p1 = 0.013, p2 = 0.022,

and p3 = 0.006. In this case, Holm’s procedure rejects H3 because p(1) = p3 =

0.006 < α/3. However, H1 (and hence H2) is retained as p(2) = p1 = 0.013 > α/2.

Both the Hommel and the Hochberg procedure will in this case reject all hypotheses,

as p(3) = p2 < α.

Fixed Sequence Procedure

The fixed sequence procedure of Maurer et al. (1995) and Westfall and Krishen

(2001) is a straightforward way to test a family of hypotheses. Prior to unblinding

data, hypotheses must be ordered according to their clinical importance. That is,

H1 is of most relevance, then H2 and so on. The procedure rejects Hi, i = 1, . . . ,m,

if and only if pi ≤ α, and all hypotheses prior to Hi were also rejected. Hence, as

soon as one hypothesis is retained, all subsequent hypotheses are also retained and

the procedure stops. It is easy to see that the fixed sequence procedure controls

FWER at level α in the strong sense.

A nice feature of this procedure is that any tested hypotheses is evaluated at

the maximum level, i.e. α. On the other hand, as soon as we fail to reject one

hypothesis, we are forced to abandon further testing. This can be particularly

troublesome if the prespecified ordering is unsuitable with respect to actual pa-
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rameter values. In such cases, the procedure can be severely underpowered if early

hypotheses are unlikely to be rejected.

Example 2.2. Continuing with Example 2.1, the fixed sequence procedure will test

H1, H2 and H3 in that order (suppose this was indeed our pre-specified ordering),

and each hypothesis is tested at nominal significance level α = 0.025. In this case,

H1 is rejected as p1 = 0.012 < α, but since p2 > α, H2 is retained. At this point,

no further testing may take place, so H3 is also retained.

Fallback Procedure

Wiens (2003) proposed the so-called fallback procedure as an alternative to the

fixed sequence procedure. As before, hypotheses are ordered beforehand according

to clinical importance. The method also requires the prespecification of “local”

significance-levels αj for j ∈ H, such that
∑
j∈H

αj = α. The procedure is then given

as follows:

• Test H1 at level α1, i.e. rejecting if p1 ≤ α1.

• For j = 2, . . . ,m, test Hj at level α′j =
j∑

i=k+1

αi, where Hk is the last accepted

hypothesis before Hj. If all hypotheses were rejected before Hj, then k = 0.

The idea of the fallback procedure is that Type I error only accumulates as hy-

potheses are rejected. Note that, by setting α1 = α and α2 = · · · = αm = 0, the

fallback procedure reduces to the fixed sequence procedure. In a subsequent paper,

Wiens and Dmitrienko (2005) proved that the procedure is equivalent to a CTP

and hence it controls FWER strongly. They also compared the fallback procedure

to Hommel’s closure of the weighted Simes test (Hommel, 1988), and showed that
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neither procedure is more powerful than the other. The fallback procedure with

larger early weights (larger αj early) has an advantage over the weighted Hommel

procedure. When weights are all similar, the weighted Hommel procedure may

have an advantage.

Example 2.3. To illustrate the fallback procedure, we continue with Examples 2.1

and 2.2. Suppose we have chosen local significance levels α1 = 0.010, α2 = 0.010

and α3 = 0.005. With the p-values p1 = 0.012, p2 = 0.0251 and p3 = 0.0087, this

is a particularly unfortunate weighting scheme as no hypotheses are rejected. To

see this, note that p1 > α1 so H1 is retained and H2 is tested at level α2. We have

p2 > α2, so H2 is retained and H3 must be tested at level α3. Since p3 > α3, H3

is also retained. If, on the other hand, we had chosen α1 = 0.015, α2 = 0 (i.e. H2

can only be tested if H1 was rejected) and α3 = 0.010, then H1 would be rejected

as p1 < α1. However, p2 > α1 + α2 so H2 is still retained. Finally, H3 is rejected

as p3 < α3.

Additional Comments

The procedures described so far are all defined without any distributional assump-

tions. The appeal of such procedures is obviously their generality, as they are

applicable in a variety of settings. For an overview of parametric multiple testing

procedures, see (Dmitrienko et al., 2010, Ch. 2.7).

When test statistics are correlated – as is commonly the case in subgroup anal-

ysis – distribution-free testing procedures can be quite conservative. As detailed

in Chapter 1, Section 1.2.3, Alosh and Huque (2009) and Song and Chi (2007),

propose testing procedures for a single-subgroup setting where correlation is ac-

counted for. Huque and Alosh (2008) also propose the “flexible fixed sequence”
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procedure (FFS) which relies on exploiting endpoint correlation to improve on the

original fallback procedure. In Chapter 3, Section 3.2.1, and Chapter 4, Section

4.1, we introduce the adjusted fallback procedure (AFP) which is developed with a

similar objective in mind. The two procedures are different approaches to the same

idea, and the main insight obtained here is that, just as the fallback procedure,

the AFP is equivalent to a CTP.

2.2.3 Adaptive Designs

Adaptive trial designs have attracted substantial interest over the last decade and

a half. They offer the option to make significant changes to a trial protocol during

an experiment, either depending on data already observed, or due to other external

factors. For example, some doses may be dropped, sample-size can be modified,

and certain patient populations may be excluded. Some changes involve a change to

the hypotheses of interest, and as a result the final analysis may differ significantly

from what was originally planned in the study protocol. Following the work of

Bauer and Köhne (1994), Proschan and Hunsberger (1995), and Bauer and Kieser

(1999), several statistical procedures have been developed that allow various mid-

trial modifications motivated by unblinded data, while ostensibly preserving the

integrity of the trial. If applied recklessly, however, adaptations and subsequent

analysis can lead to wildly misleading conclusions, inflated Type I error rates, and

the introduction of various biases (such as selection bias).

As many important variables particular to a clinical trial are often unknown at

the outset, the appeal of adaptive designs is understandable. However, the flexibil-

ity involved comes at a price, such as reduction in statistical efficiency, difficulties in

interpretation, and concerns about basing data-driven trial modifications on some-
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times highly unreliable interim estimates. For instance, designs that allow sample

size adjustment based on interim data may end up basing the final analysis on

statistics that are not sufficient, and are hence inefficient. The inefficiency of such

trials has been discussed at great length; see for example Tsiatis and Mehta (2003),

Jennison and Turnbull (2003, 2006b) and Fleming (2006). Burman and Sonesson

(2006) showed extreme examples where modifications can lead to rejection of the

null hypothesis when the overall effect estimate (in a lower one-sided hypothesis

setting) is in truth negative. Concerns about inefficiency and anomalous results

has hence led to some scepticism about the legitimacy of data-driven adaptations.

Nevertheless, allowing for “sensible” adaptations, preferably listed in the trial pro-

tocol and clearly explained in the study results, is still an intriguing option. In

an important discussion paper, Gallo (2006) argues that review of accumulating

data and subsequent interim decisions should be carried out by a “data monitor-

ing committee,” independent (or nearly independent) of the trial sponsor. Gallo

further argues that the official study protocol should not list adaptation plans in

detail, as this may allow trial sponsors or other observers to infer likely interim

estimates from adaptations made mid-trial. Rather, full detail of the adaption

protocol should be contained in a separate document, only to be disseminated to

the data monitoring committee. Following these recommendations may alleviate

some of the concerns regarding the validity of adaptive clinical trials.

To further expedite the drug testing process, so-called confirmatory adaptive

seamless Phase II/III designs (see Chapter 1, Section 1.2.3) have been discussed

by Bretz et al. (2006); Schmidli et al. (2006), and by Maca et al. (2006). Adaptive

seamless designs (ASD) are intended to combine Phases II and III into a larger

confirmatory trial, where various data-driven design modifications may be neces-

sary at the end of Phase II. The final analysis combines data from both stages,
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where proper statistical inference methods are applied to prevent bias and Type I

error inflation. Some of the main goals of an ASD, summarized in (Bretz et al.,

2006, p. 624), are:

1. Reduce the time to decide on, plan and implement the next clinical phase

(reduction of the “white-space” between the two studies);

2. Save costs through the combination of evidences across two studies and thus

the need for fewer patients (or, equivalently, increase the information value

and the reliability of decision making while maintaining the same sample

sizes);

3. Get long-term safety data earlier as a direct consequence of following up the

Phase II patients.

The authors show that there are gains in efficiency in a combined Phase II/III

trial, relative to the traditional split of separate Phase II and Phase III trials.

They caution that, though arbitrary modifications to the trial are possible without

inflating Type I error rates, only modest adaptations should be employed in order

for the trial conclusions to be credible. In their discussions of ASDs, Jennison and

Turnbull (2006a, 2007) argue that conventional group sequential methods should

not be overlooked, and point to the work of Stallard and Todd (2003). Therein, a

group sequential design is proposed which consists of K + 1 stages; the first stage

is a treatment-selection phase (Phase II) where the best treatment is selected

to proceed, while the remaining K stages employ traditional group sequential

stopping rules, testing only the selected treatment.
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2.2.4 Adaptive Testing Procedures

The spirit of “truly” adaptive designs is to allow mid-trial modifications that are

not specified beforehand, and Type I error rates are protected by using specific

combination methods to obtain final test statistics. In this section, we describe

some common combination testing procedures that have been proposed in the

literature. Let c ∈ R be given, and suppose we have p-values p1, . . . , pK for a

hypothesis H, collected over K stages. Using a combination function C(p1, . . . , pK)

and the decision rule to reject H if C(p1, . . . , pK) > c, these procedures will control

Type I error regardless of the adaptation rule. A key assumption about the p-values

obtained throughout a trial is that they are p-clud (Brannath et al., 2002):

Definition 2.2. The p-values p1, . . . , pK are p-clud if, under H, the distribution

of p1, and the conditional distribution of pk given previously observed p-values, is

stochastically larger than or equal to the uniform distribution on [0,1].

The authors show that if independent sample units are collected at each stage

and tests are applied that control false positive error rate at a prespecified level

α, then the obtained p-values will be p-clud regardless of adaptations performed

at the interim analyses. Although the assumption that p-values are p-clud is

sufficient, a more common assumption (and slightly stronger) is that the p-values

are conditionally independent and uniformly distributed on [0,1], as long as H is

true. Hence, under H, p-values are also unconditionally independent and uniformly

distributed. Below, we describe some commonly used combination functions.

The first approach, attributed to Sir Ronald Fisher, and preferred by Bauer

and Köhne (1994), is the “inverse χ2” method, which rejects H at level α if

C(p1, . . . , pk) := −2 log

(
k∏
i=1

pi

)
> χ2

2k,α,
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where χ2
2k,α is the upper α percentile of the χ2

2k distribution. This follows be-

cause under the null hypothesis, and conditional on adaptations up to k− 1, Pk is

distributed as U(0, 1). Then, −2 log(Pk) ∼ Exp(1) ∼ χ2
2.

The second approach is the “weighted inverse normal” combination method

(Cui et al., 1999; Lehmacher and Wassmer, 1999), which rejects H at level α if

C(p1, . . . , pK) > zα, where zα is the upper α percentile of the standard normal

distribution,

C(p1, . . . , pk) :=

(
k∑
i=1

w2
i

)−1/2 k∑
i=1

wiΦ
−1(1− pi),

and w1, . . . , wK are prespecified combination weights for which
K∑
k=1

w2
k = 1. We

note that combined test statistics defined in Equation (2.4) are equivalent to the

weighted inverse normal combination function defined above. As mentioned in

Section 2.1, a natural definition of wk is the fraction of information accumulated

in statistic Zk (hence pk), so wk =
√

∆k/IK , where IK is the total planned infor-

mation.

The third approach is based on the conditional error principle. In a two-stage

setting, we define the conditional Type I error probability as A(p1) = P(Reject

H|p1). First discussed by Proschan and Hunsberger (1995), they let A(p1) be a

monotonic non-decreasing function of first stage results, p1, such that

α∗1 +

∫ β∗1

α∗1

A(p1)dp1 = α.

Here, H is rejected if p1 ≤ α∗1, or if α∗1 < p1 ≤ β∗1 and p2 ≤ A(p1). Müller and

Schäfer (2001) proposed that the conditional error function should be defined in

terms of a preplanned hypothesis test. That is, suppose that ϕ = I(p ≤ α) is the

indicator function for our preplanned test of H. This test is to be carried out at

level α after all observations are taken. After performing the desired adaptations
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at an interim analysis (where we have observed p1), we redefine the level of the

original test, setting it to EH [ϕ|p1]. If no adaptations are performed, the originally

planned test ϕ is used at the final analysis.
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Chapter 3

Procedures For One Subgroup

In this chapter, we consider the problem of designing a clinical trial when there is

one subgroup of interest. We propose a number of novel procedures, and compare

these to methods already existing in the literature. Further, we analyze operating

characteristics of a targeted trial with respect to various factors, such as subgroup

prevalence, interim analysis timing, and treatment effect size in the subgroup and

its complement.

3.1 Setup

Let Ω0 denote the complete population of interest. A targeted population, Ω1 ( Ω0,

has been identified, and we wish to examine efficacy of an experimental treatment,

E, versus a control (or best known treatment), C. This will be investigated in both

Ω0 and Ω1. Let Ω2 denote the complement of Ω1, i.e. Ω2 = Ω0\Ω1.

We are concerned with gaining knowledge about the standardized effect sizes

δj = θj/σ, j = 0, 1, defined in Equation (2.1). The hypotheses of interest are:

• H0 : δ0 ≤ 0, the null hypothesis of no treatment effect in the full population,

versus Ha
0 : δ0 > 0.

• H1 : δ1 ≤ 0, the null hypothesis of no treatment effect in the targeted

population, versus Ha
1 : δ1 > 0.

These are tested at a prespecified significance level such that FWER is controlled
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at level α in the strong sense. The hypotheses can of course also be stated in terms

of θ0 and θ1.

The overall sample size for Ω0 is denoted as n0, and as introduced in Chapter

2, f0j denotes the prevalence of Ωj in Ω0, where 0 < f0j < 1, f00 = 1. Then

the sample size for Ωj is given as nj = f0jn0, and the stage-wise sample size for

Ωj during stage k is denoted by nkj, k = 1, 2 and j = 0, 1, 2. We assume that

observation variance is equal across all populations. The mean treatment effect for

Ω0 is then given as

δ0 = f01δ1 + (1− f01)δ2.

We assume that responses are normally distributed, and define our tests in terms

of the standardized statistics Zj which are distributed as N
(
θj
√
Ij, 1

)
, where

Ij =
nj
4σ2 denotes the observed information. The test statistics Z0, Z1 and Z2 are

hence jointly distributed as
Z0

Z1

Z2

 ∼ N



θ0

√
I0

θ1

√
f01I0

θ2

√
f02I0

 ,


1

√
f01

√
f02

√
f01 1 0
√
f02 0 1




Given Z1 and Z2, we can write Z0 =
√
f01Z1 +

√
(1− f01)Z2. We also define p-

values pj = 1−Φ(Zj) where Φ is the cumulative distribution function of a standard

normal random variable. For η ∈ [0, 1], define Cη as the upper η-percentile of the

standard normal distribution. That is, η = P[N (0, 1) > Cη].

For trials that are divided into two separate stages, let t ∈ (0, 1) denote the

timing of the interim analysis. If Ij denotes the cumulative observed information

for Ωj, we have interim information levels ∆1j = tIj for the first stage, ∆2j =

(1 − t)Ij for the second stage, and Ij = ∆1j + ∆2j. Stage-wise test statistics

Zkj, for stage k and population Ωj, k = 1, 2 and j = 0, 1, 2, are approximately
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distributed as N (θj
√
Ikj, 1), and final statistics are written as

Zj =
2∑

k=1

wkjZkj, where w2
1j + w2

2j = 1.

The weights wkj are assigned before the trial, typically chosen such that w2
1j is the

interim analysis time t. Note that

w1j =
√
t =

√
∆1j/Ij and w2j =

√
1− t =

√
∆2j/Ij, (3.1)

so the value of w2
kj represents the fraction of information accumulated during stage

k. If enrichment is envisaged at the interim analysis, more observations are taken

from Ω1 during the second stage than was originally planned. Hence it may seem

reasonable to use different weights that are adjusted for the new (and different)

information levels. Wang et al. (2009) refer to this as empirical data weights. In

this case the weights will depend on the adaptation decision made at interim, so the

final test statistic Z1 is not necessarily a standard normal random variable under

H1. As a result, the Type I error probability may be inflated, and the FDA requires

strong control FWER to be enforced strictly (US Food and Drug Administration,

1998). However, our adaptive procedures only allow very limited adaptations at

interim, and hence the inflation may be relatively small. In Section 3.3, we examine

the effects of using empirical data weights on Type I error probabilities. Adjusted

combination weights for Ω1 are given as

w̃11 =
√
t̃ =

√
tf01

tf01 + (1− t)
(3.2)

and

w̃21 =
√

1− t̃ =

√
1− t

tf01 + (1− t)
. (3.3)
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3.2 Procedures

In this section we detail a number of clinical trial designs that can be used in the

setup discussed above. Some of these procedures, e.g. AFP (see Section 3.2.1)

and FE (see Section 3.2.2), rely on the availability of the joint distribution of test

statistics to compute exact boundaries of the acceptance region. Other methods,

i.e. CP, HPP and HUT (see Sections 3.2.3 and 3.2.4), employ flexible adaptation

rules (Bretz et al., 2006; Schmidli et al., 2006), and must hence use combination

techniques and the closure principle (see Section 2.2) at the final analysis stage.

Here, we use Simes’ method to test intersection hypotheses, the weighted inverse

normal combination rule to obtain final stage test statistics, and apply the closure

principle.

3.2.1 Adjusted Fallback Procedure (One Stage)

We improve the fallback procedure introduced by Wiens (2003) by accounting for

correlation between test statistics. Let α0, α1 be specified beforehand, such that

α0 +α1 = α, the desired FWER. The αi represent local significance levels that will

be used to test H0 and H1. Assume also that we have an adjusted local significance

level α̃1 for H1. Below, we explain how to obtain this value. The adjusted fallback

procedure (AFP) is defined as follows:

• Step 1: Test H0 at level α0, rejecting if p0 ≤ α0.

• Step 2:

– If H0 was rejected in Step 1, test H1 at level α0 + α1 = α, rejecting if

p1 ≤ α.
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– If H0 was not rejected, test H1 at level α̃1, rejecting if p1 ≤ α̃1.

The AFP improves on the original fallback procedure by using a level α̃1 ∈ [α1, α]

to test H1 in the event that H0 was not rejected. When there is only one subgroup

of interest, AFP is a special case of a procedure proposed by Alosh and Huque

(2009). However, in Chapter 4, we present the AFP for the case where there are

multiple subgroups under consideration.

Obtaining α̃1

Define ξ ∈ R, satisfying

α− α0 = P[Z0 < Cα0 , Z1 ≥ ξ | H0 ∩H1]. (3.4)

Set x = P[Z1 ≥ ξ|H1] and finally α̃1 = min(x, α) so α̃1 ≤ α. In what follows, let

fZ0,Z1 denote the bivariate density function for Z0 and Z1, and fZ the marginal

density for Z. Similarly, let FZ0,Z1 and FZ denote the cumulative distribution

functions for the bivariate density and the marginal density, respectively. Then,

α− α0 =

∫ Cα0

−∞

∫ ∞
ξ

fZ0,Z1(z0, z1; ρ)dz0 dz1

=

∫ Cα0

−∞
fZ0(z0)dz0 −

∫ Cα0

−∞

∫ ξ

−∞
fZ0,Z1(z0, z1; ρ)dz0 dz1

= FZ0(Cα0)− FZ0,Z1(Cα0 , ξ; ρ)

= 1− α0 − FZ0,Z1(Cα0 , ξ; ρ)

Thus ξ can be obtained via a numerical search, such that it satisfies 1 − α =

FZ0,Z1(Cα0 , ξ; ρ). The value for α̃1 will depend on the value chosen for α0, as well

as the correlation ρ =
√
f01 between Z0 and Z1.
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Control of the FWER

We have three null configurations: (δ0 = 0, δ1 = 0), (δ0 6= 0, δ1 = 0) and (δ0 =

0, δ1 6= 0). Define the events

R0 := [Z0 ≥ Cα0 ],

R10 := [Z1 ≥ Cα | Z0 ≥ Cα0 ],

R11 := [Z1 ≥ Cα̃1 | Z0 < Cα0 ].

A Type I error can occur in one of the three following ways:

A1 := R0 ∩R10 (both are true and both are rejected)

A2 := R0 ∩ R̄10 (H0 true and rejected, H1 not rejected)

A3 := R̄0 ∩R11 (H0 not rejected but H1 is true and rejected)

Note that A1 ∪ A2 = R0. Under (δ0 = 0, δ1 = 0), we have

P[At least one Type I error] = P[A1 ∪ A2 ∪ A3|H0 ∩H1]

= P[R0|H0] + P[R̄0 ∩R11|H0 ∩H1]

≤ α0 + P[Z0 < Cα0 , Z1 ≥ ξ | H0 ∩H1], since Cα̃1 ≥ ξ

= α0 + (α− α0) = α, ξ satisfies (3.4).

Next note that α̃2 ≤ α and hence [Z1 ≥ Cα̃2 ] ⊆ [Z1 ≥ Cα]. Therefore, under

(δ0 6= 0, δ1 = 0),

P[At least one Type I error] = P[A1 ∪ A3 | H1]

= P
[
(R0 ∩R10) ∪ (R̄0 ∩R11) | H1

]
≤ P[R10 ∪R11 | H1] = P[Z1 ≥ Cα or Z1 ≥ Cα̃2 | H1]

= P[Z1 ≥ Cα | H1] = α.
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Finally, under (δ0 = 0, δ1 6= 0), the event A1 ∪ A2 = R0 leads to a Type I error,

and the probability of this is clearly α0 ≤ α. Hence the above procedure controls

the FWER at level α in the strong sense. Note that the construction of the AFP

does not require that σj are equal for all j.

Rejection Probabilities

We proceed assuming that the overall study for Ω0 (carried out at level α0) is

powered at 1− β for detecting the effect δ0 = θ0
σ

, where σ2 is the pooled variance

for the whole population. Since half of our observations are taken from the control

group, i.e. n0/2 = nE0 = nC0 , we have

δ0 =

√
4

n0

(C1−α0 + C1−β).

Denote δ1 = ηδ0 where η ≥ 0. Non-centrality parameters for Z0 and Z1 are as

follows:

λ0 = E(Z0 | δ0 = δ) = θ0

√
I0 =

√
n0

4
δ0 = (C1−α0 + C1−β), and

λ1 = E(Z1) = θ1

√
I1 =

√
n1

4
δ1 = η

√
f01

√
n0

4
δ = η

√
f01λ0.

Therefore we can compute λ0 by specifying α0 and β, and λ1 by specifying f01 and

η. For short-hand notation, set a0 = Cα0 − λ0, a = Cα − λ1 and a1 = Cα̃1 − λ1.

The power of the subgroup study is then

Power(η, f01, α0, δ0) = P[A1 ∪ A3 | η, δ0]

= P[Z0 > Cα0 , Z1 > Cα | η, δ0] + P[Z0 ≤ Cα0 , Z1 > Cα̃1 | η, δ0]

= 1− Φ(a0)− Φ(a) + Φ(a0, a; ρ) + Φ(a0)− Φ(a0, a1; ρ).

We comment on the performance of the AFP in Section 3.3. In Chapter 4, we also

generalize the method to allow consideration of an arbitrary number of subgroups.
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3.2.2 Adjusted Fallback Procedure with Enrichment (Two

Stages)

We can improve on the AFP by combining the fallback approach with adaptive

enrichment. The resulting procedure, abbreviated as FE, is outlined here for the

case of one subgroup, and generalized to consider multiple subgroups in Section 4.2.

We extend the AFP to allow an interim analysis, at which point three decisions are

entertained. First, we may decide to stop for futility and accept both hypotheses.

Second, we can proceed to the second stage sampling from the complete population

just as planned. Third, we can enrich and sample only from Ω1 during the second

stage. As before, the user specifies local significance levels α0 and α1 that sum to

α. Further, γ0, γ1 ∈ [0, 1] are specified for use in the interim analysis. In the case

that enrichment is carried out, we define the final test statistic for H1 as

Z̃1 = w̃11Z11 + w̃21Z̃21,

where w̃kj are given in equations (3.2) and (3.3), and Z̃21 ∼ N (θ1

√
I20, 1). The

procedure is now given:

I.1 If Z10 ≥ Cγ0 then go to II.1.

I.2 If Z10 < Cγ0 and Z11 ≥ Cγ1 then go to II.2.

I.3 If Z10 < Cγ0 and Z11 < Cγ1 then terminate the trial for futility.

II.1 Take second stage sample from the full population, Ω0, and carry out the

fallback procedure (Wiens, 2003) on H0 and H1 using local significance levels

α0 and α1.

II.2 Take second stage sample from Ω1 only. If Z̃1 ≥ Cα̃1 then reject H1. H0 is

not tested.
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Control of the FWER

The procedure is constructed such that FWER ≤ α under any null configuration.

Analogous to Section 3.2.1, let FX(·) denote the cumulative distribution function

of a random variable X, FX,Y (·, ·;ψ) the joint bivariate CDF of X and Y with

dependence parameter ψ, and FX,Y,Z(·, ·, ·; Σ) the joint three-dimensional CDF of

X, Y and Z with correlation matrix Σ. Define the following events:

S0 := [Z10 ≥ Cγ0 ],

S1 := [Z11 ≥ Cγ1 ],

R0 := [Z0 ≥ Cα0 | Z10 ≥ Cγ0 ],

R10 := [Z1 ≥ Cα | Z10 ≥ Cγ0 , Z0 ≥ Cα0 ],

R11 := [Z1 ≥ Cα1 | Z10 ≥ Cγ0 , Z0 < Cα0 ],

R̃11 := [Z̃1 ≥ Cα̃1 | Z10 < Cγ0 , Z1 ≥ Cγ1 ].

When rejecting a hypothesis, one of the following conclusions must be reached:

A1 := S0 ∩R0 ∩R10 (No enrichment, reject both hypotheses),

A2 := S0 ∩R0 ∩ R̄10 (No enrichment, reject H0 only),

A3 := S0 ∩ R̄0 ∩R11 (No enrichment, reject H1 only),

A4 := S̄0 ∩ S1 ∩ R̃11 (Enrichment, reject H1).

Let (δ0 = 0, δ1 = 0), then (all probabilities taken under H0 ∩H1)

P[At least one Type I error] = P[A1 ∪ A2 ∪ A3 ∪ A4]

= P
[

(S0 ∩R0 ∩R10) ∪ (S0 ∩R0 ∩ R̄10)︸ ︷︷ ︸
=S0∩R0

∪(S0 ∩ R̄0 ∩R11) ∪ (S̄0 ∩ S1 ∩ R̃11)
]

= P[S0 ∩R0]︸ ︷︷ ︸
=(i)

+P[(S0 ∩ R̄0 ∩R11)]︸ ︷︷ ︸
=(ii)

+P[S̄0 ∩ S1 ∩ R̃11]︸ ︷︷ ︸
=(iii)

.
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Referring to Section 2.1.2, we know that Corr(Z10, Z0) = w10, Corr(Z10, Z1) =

w11

√
f01, Corr(Z0, Z1) =

√
f01, Corr(Z10, Z̃1) = w̃11

√
f01 and Corr(Z11, Z̃1) = w̃11.

Hence define the correlation matrices

Σ1 =


1 w10 w11

√
f01

w10 1
√
f01

w11

√
f01

√
f01 1

 and Σ2 =


1

√
f01 w̃11

√
f01

√
f01 1 w̃11

w̃11

√
f01 w̃11 1

 .

Now,

(i) = P[Z10 ≥ Cγ0 , Z0 > Cα0 ] = γ0 + α0 − 1 + FZ10,Z0(Cγ0 , Cα0 ;w10),

and

(ii) = P[Z10 > Cγ0 , Z0 ≤ Cα0 , Z1 > Cα1 ]

= 1− α0 − FZ10,Z0 (Cγ0 , Cα0 ;w10)− FZ0,Z1

(
Cα0 , Cα1 ;

√
f01

)
+ FZ10,Z0,Z1 (Cγ0 , Cα0 , Cα1 ; Σ1) .

Finally,

(iii) = P[Z10 < Cγ0 , Z11 ≥ Cγ1 , Z̃1 ≥ Cα̃1 ]

= 1− γ0 − FZ10,Z11

(
Cγ0 , Cγ1 ;

√
f01

)
− FZ10,Z̃1

(
Cγ0 , Cα̃1 ; w̃11

√
f01

)
+ FZ10,Z11,Z̃1

(Cγ0 , Cγ1 , Cα̃1 ; Σ2) .

Adding these up, we get

(i) + (ii) + (iii) = 1− FZ0,Z1

(
Cα0 , Cα1 ;

√
f01

)
+ FZ10,Z0,Z1 (Cγ0 , Cα0 , Cα1 ; Σ1)

−FZ10,Z11

(
Cγ0 , Cγ1 ;

√
f01

)
− FZ10,Z̃1

(
Cγ0 , Cα̃1 ; w̃11

√
f01

)
+FZ10,Z11,Z̃1

(Cγ0 , Cγ1 , Cα̃1 ; Σ2) .

(3.5)

To obtain α̃1, use a numerical search for Cα̃1 in Equation (3.5) to ensure that

(i)+(ii)+(iii) = α. Then, α̃1 = P[Z1 ≥ Cα̃1 |H1]. Note that if γ1 = 1 (no stopping

for futility), then Cγ1 = −∞ and the terms involving γ1 will equal zero.
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When (δ0 = 0, δ1 6= 0), a Type I error is committed if A1∪A2 = S0∩R0 occurs.

But S0 ∩ R0 ⊂ R0 and P[R0|H0] = α0 < α. Hence Type I error probability is

bounded above by α. Finally, suppose that (δ0 6= 0, δ1 = 0). Then a Type I error

is committed when A1 ∪ A3 ∪ A4 occurs. Note that for a sufficiently large sample

size, A3 and A4 are dominated by A1, which implies that

P[A1 ∪ A3 ∪ A4 | H2] ≈ P[S0 ∩R0 ∩R10 | H1]

≤ Pr[R10 | H1] = α.

We have thus shown that, asymptotically, FWER is strongly protected at level α.

Rejection Probabilities

As in Section 3.2.1, we can compute rejection probabilities numerically for the FE

design. Again we suppose that the study is powered at level 1 − β to detect an

effect δ0 = θ0
σ

in Ω0, where σ2 is the pooled variance for the overall population.

The effect in Ω1 is given by δ1 = ηδ0. The non-centrality parameter λ0 = E[Z0|δ]

is readily obtained by noting that

1− β = P[A1 ∪ A2 | δ]

= P[S0 ∩R0 | δ]

= P[Z10 ≥ Cγ0 , Z0 ≥ Cα0 | δ]

= 1− FZ10(Cγ0)− FZ0(Cα0) + FZ10,Z0(Cγ0 , Cα0 ;w10)

= 1− Φ(Cγ0 − w10λ0)− Φ(Cα0 − λ0) + Φ(Cγ0 − w10λ0, Cα0 − λ0;w10).

By specifying α0, β, γ0 and w2
10 = t, we can solve the above equation numerically

to obtain λ0 ≡ λ0(α0, β, γ0, t). This gives us a known value for E[Z0|δ] =
√

n0

4
δ0,

and

λ1 = E(Z1) = θ1

√
I1 =

√
n1

4
δ1 = η

√
f01λ0.
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When enrichment is envisaged,

λ̃1 = E(Z̃1) =

√
tf01n0

4
+

(1− t)n0

4
δ1 = η

√
(tf01 + 1− t)λ0.

Note that, because f01 ∈ [0, 1],

f01 = tf01 + (1− t)f01

≤ tf01 + 1− t

⇒ λ1 ≤ λ̃1,

which signifies the potential increase in power to reject H1 when enrichment is

carried out. For notational convenience, set a0 = Cα0 − λ0, a1 = Cα1 − λ1, g0 =

Cγ0 − w10λ0, g1 = Cγ1 − w11λ1, a = Cα − λ1 and ã = Cα̃1 − λ̃1. The power of the

subgroup study is then

Power(α0, γ0, γ1, f01, t, η, δ0) = P[A1 ∪ A3 ∪ A4 | η, δ0]

= P[S0 ∩R0 ∩R10 | η, δ0] + P[S0 ∩ R̄0 ∩R11 | η, δ0] + P[S̄0 ∩ S1 ∩ R̃11 | η, δ0],

where

P[S0 ∩R0 ∩R10 | η, δ0] = P[Z10 ≥ Cγ0 , Z0 ≥ Cα0 , Z1 ≥ Cα | η, δ0]

= 1− Φ(g0)− Φ(a0) + Φ(g0, a0;w10) + Φ
(
g0, a;w11

√
f01

)
+ Φ

(
a0, a;

√
f01

)
− Φ (g0, a0, a; Σ1)

and Σ1 is defined in the previous section. Next,

P[S0 ∩ R̄0 ∩R11 | η, δ0] = P[Z10 ≥ Cγ0 , Z0 < Cα0 , Z1 ≥ Cα1 | η, δ0]

= Φ(a0)− Φ(g0, a0;w10)− Φ
(
a0, a1;

√
f01

)
+ Φ(g0, a0, a1; Σ1),
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and

P[S̄0 ∩ S1 ∩ R̃11 | η, δ0] = P[Z10 < Cγ0 , Z11 ≥ Cγ1 , Z̃1 ≥ Cα̃1 | η, δ0]

= Φ(g0)− Φ
(
g0, g1;

√
f01

)
− Φ

(
g0, ã; w̃10

√
f01

)
+Φ (g0, g1, ã; Σ2) .

Note that Φ(·, ·;ψ) is the cumulative distribution function for a bivariate stan-

dard normal density with correlation coefficient ψ, and Φ(·, ·, ·; Σ) is the three-

dimensional CDF, with correlation matrix Σ. Σ2 was defined in the previous

section.

Sample Size and Efficiency

When computing power for the procedures AFP and FE, we obtain the non-

centrality parameter λ0 after specifying desired power, 1 − β, given some value

of δ0 = θ0/σ. However, due to the fact that FE allows an interim analysis, the

required sample size necessary to power the study at the desired level is not the

same in general. Consider the AFP for one subgroup. Knowing λ0 and δ0, we can

re-arrange the well known formula for sample size to obtain the required observed

Fisher’s information IAFP

λ0 =

√
n0

4
δ0 = (Z1−α0 + Z1−β)⇒

(
Z1−α0 + Z1−β

θ0

)2

=
n0

4σ2
=: IAFP .

For the FE procedure we simply use the value obtained numerically for λ0 =

λ(α0, β, γ0, t) and set

IFE =

(
λ(α0, β, γ0, t)

θ0

)2

.

Define EFE := IFE/IAFP to compare the relative efficiency of FE with that of

AFP. Then

EFE =
IFE
IAFP

=
nFE
nAFP
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Table 3.1: FE required sample size as a percentage of that of AFP, given various
values of γ0, with t = 1/2.

γ0 0.1 0.2 0.3 0.4 0.5 0.6

EFE 1.2686 1.0937 1.0378 1.0155 1.0061 1.0022

so EFE gives the sample size required for FE as a percentage of the sample size

required for AFP. Note that sample size requirements for H0 in the FE procedure

are not affected by γ1, the futility parameter. Hence values of EFE will be the same

regardless of whether we allow early stopping for futility or not (in Section 4.2.1,

we discuss the effect of early stopping for futility on expected sample size). Table

3.1 shows EFE for various γ0 values with t = 1/2. We see that for γ0 ≥ 0.3, the

increase in sample size is minimal or less than 4%. As γ0 gets smaller, however,

the difference in necessary sample size starts to increase quite a bit. Under H0

and with γ0 = 0.1, the probability of enrichment is equal to 0.9. Although this

probability will decrease as δ0 increases, the likelihood that enrichment is envisaged

remains quite substantial with such a low value for γ0. Therefore a larger sample

size is required to give sufficient power to test H0.

3.2.3 Adaptive Design with Conditional Power (Two

Stages)

As done by Wang et al. (2009), we can specify an adaptive design where all decisions

at the interim analysis are based on conditional power, i.e. the probability that

we reject the respective hypotheses, conditional on first stage results. We call this

design CP. Let

CPΩj(t, z1j, δ) = P[Reject Hj | Z1j = z1j, δj = δ], j = 0, 1,
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be the conditional power for Hj, given interim analysis time t, first stage results

Z1j = z1j, and true effect size δ. For Ω0, we have

CPΩ0(t, z10, δ) = P [Z0 ≥ Cα | Z10 = z10, δ0 = δ]

= P
[
Z20 ≥

−Cα +
√
t · z10√

1− t
∣∣ δ0 = δ

]
= Φ

(
−Cα +

√
t · z10 + (1− t)

√
I0 · θ√

1− t

)
.

The choice of δ for E(Z2j) =
√

n2j

σ
δj impacts the conditional power, and hence

subsequent decisions. Two possible choices are to use the first stage estimate δ̂j,

or the planned effect size (clinically significant effect size). If we use the first stage

estimate, θ̂10 = z10/
√
I10, CPΩ0 evaluates to

CPΩ0(t, z10, δ̂10) = Φ

(
−Cα +

√
t · z10 + (1− t)

√
I0 · z10/

√
I10√

1− t

)
= Φ

(
1

w20

[
−Cα + w10z10 + w2

20z10/w10

])
= Φ

(
1

w20

[−Cα + z10/w10]

)
.

For Ω1, we get

CPΩ1(t, z11, δ) = P
[
Z̃1 ≥ Cα | Z11 = z11, δ1 = δ

]
= Φ

(
1√

1− t̃

[
−Cα +

√
t̃ · z11 +

√
(1− t)I0

√
1− t̃ · θ

])
,

where t̃ is defined in Equation (3.1). By using θ̂11 = z11/
√
I11, we get

CPΩ1(t, z11, δ̂11) = Φ

(
1

w̃21

[
−Cα + w̃11z11 + w̃2

21z11/w̃11

])
= Φ

(
1

w̃21

[−Cα + z11/w̃11]

)
.

The choices mentioned for δ when computing CPΩi both have drawbacks. First,

the estimated effect size after stage one can be highly variable due to a small

sample size. To see this, note that

Var(θ̂11) = I−1
11 =

1

f01tI0

.
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Now if, for example, f01 = t = 1/4, the variance of θ̂11 is sixteen times the variance

of θ̂0, the final estimate of θ0. On the other hand, using the clinically significant

effect size can lead to poor results if the experimental treatment is believed to be

more efficacious than it truly is, as using too large a value for δ0 when computing

CPΩ0 may result in overly optimistic decisions at interim.

Let LCP0 , LCP1 ∈ [0, 1]. The interim assessment for the CP design is as follows:

• If CPΩ0(t, Z10, δ̂10) ≥ LCP0 , then proceed to stage two with the full population.

• Else, if CPΩ1(t, Z11, δ̂11) ≥ LCP1 , then proceed to stage two sampling from Ω1

only.

• Else, abandon the trial and accept both hypotheses H0 and H1.

The constants LCP0 and LCP1 should be carefully chosen to ensure that “sensible”

decisions are made at interim. To this end, extensive simulations should be run

over a variety of plausible configurations of θ1 and θ2, and choices for LCP0 and

LCP1 made depending on desired operating characteristics.

3.2.4 Hybrid Designs (Two Stages)

As discussed in Section 2.2.3, adaptive seamless designs (Bretz et al., 2006; Schmidli

et al., 2006) allow arbitrary modifications mid-trial while preserving the Type I

error rate. In particular, we can then use Bayesian computational tools at interim

analysis points, which necessitates the specification of prior distributions on all

parameters of interest. As Zj ∼ N (θj
√
Ij, 1) the unknown components of the

parameters of our test statistics are θj, j = 1, 2. In what follows, we assume that

the parameters (θ1, θ2) are exchangeable in the joint distribution so f(θ1, θ2) is
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invariant to index permutations. For the treatment effect parameters, and for the

hyperparameter ν, we impose the following prior distributions:

θ1, θ2
iid∼ N (ν, τ 2), and ν ∼ N (φ, ω2).

We note that since Ω1 has been identified beforehand, the exchangeability as-

sumption may not be appropriate. However, it can be viewed as the “pessimist”

modeling assumption that Ω1 is no more likely to be responsive than Ω2. As

θ0 = f01θ1 + (1 − f01)θ2, a prior on θ0 has implicitly been specified. While one

could also impose prior distributions on the dispersion parameters τ and ω, we

treat these as known. Similarly, we will specify a value for φ. The assumption

that E(θj) = ν for all j models the potential relationship between effect sizes in

individual subgroups, while setting τ large means there is strong a priori belief

in the presence of heterogeneity. Given observations z1j = θ̂1j

√
I1j, posterior

distributions for θj and ν are (derived in Section 4.3)

θj | z1j, ν, τ
2 ∼ N

{
θ̂1j −

I−1
1j

I−1
1j + τ 2

(
θ̂1j − ν

)
,
I−1

1j

I−1
1j + τ 2

τ 2

}
, j = 1, 2

ν | zj, τ 2, φ, ω2 ∼ N

{
σ2
ν|z

(
2∑
j=1

θ̂1j

I−1
1j + τ 2

+
φ

ω2

)
, σ2

ν|z

}

where

σ2
ν|z =

(
2∑
j=1

1

I−1
1j + τ 2

+
1

ω2

)−1

.

Computations based on the posterior distribution of θj require a value for ν. For

this, we use its estimated posterior expected value. That is,

µθj |z := E
[
θj | z1j, ν, τ

2
]

= θ̂1j −
I−1

1j

I−1
1j + τ 2

(θ̂1j − ν̂)

where

ν̂ = σ2
ν|z

(
2∑
j=1

θ̂1j

I−1
1j + τ 2

+
φ

ω2

)
.
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Utility-Based Interim Analysis

We first propose a hybrid design that relies on the use of a utility function at

the interim analysis. The procedure is abbreviated as HUT. We specify a loss

function to quantify the cost of available decisions, depending on the true value of

the parameters θj. Let P1 = {1, 2} denote the index set of available populations

at the onset of the study. Fix θ−, θ+ ∈ R such that θ− ≤ θ+, and suppose the

following rules hold:

1. If θj ≤ θ−, we always want to accept Hj, and incur a cost c1 when Ωj is

chosen;

2. If θj ≥ θ+, we always want to reject Hj, and incur a cost c2 when Ωj is not

chosen;

3. If θj ∈ (θ−, θ+), no costs are incurred either way.1

Ωj is said to be chosen if P2 (the index set of populations chosen for stage two)

contains j. Let kHUT = c2/c1. Hence if kHUT < 1, we will tend to eliminate

populations from consideration unless early results are very good. This might

be an appropriate setting if subsequent stages will either be very time-consuming

and/or expensive. On the other hand, if kHUT > 1 there is a higher cost for false

negatives, and we will refrain from unnecessarily eliminating populations. This is

desirable if early estimates are highly variable.

At the interim analysis, we choose a decision d ⊂ P1. This decision can be

to abandon the trial for futility (d = ∅), proceed with Ω1 only (d = {1}), or to

1Rule 3 describes what is often referred to as an “indifference region,” see for example (Bech-
hofer et al., 1995, p. 8) for further details.

74



proceed with the full population (d = {1, 2}). The decision is based on the set P2

associated with the largest value of our utility function:

• d = ∅ has utility −P[θ1 ≥ θ+|z11]− kHUT · P[θ2 ≥ θ+|z12].

• d = {1} has utility −P[θ1 ≤ θ−|z11]− kHUT · P[θ2 ≥ θ+|z12].

• d = {1, 2} has utility −P[θ1 ≤ θ−|z11]− kHUT · P[θ2 ≤ θ−|z12].

In Chapter 4, Section 4.3, we outline this method for an arbitrary number of

populations. We also give a detailed derivation of the utility function.

Predictive Probabilities

Given the interim data, we can compute the predictive probability that various

hypotheses will be rejected, see (Brannath et al., 2009). The predictive distribu-

tions of second-stage parameter estimates take into account both the variability in

the second-stage observations, and the uncertainty about first-stage estimates.

We first derive the predictive distributions for Z0 and Z1, given the first stage

data. Let µθj |z = E[θj|z1j, ν, τ
2] and σ2

θj |z = Var[θj|z1j, τ
2], j = 1, 2. Note that

µθ0|z = f01µθ1|z + (1− f01)µθ2|z

and σ2
θ0|z = f 2

01σ
2
θ1|z + (1− f01)2σ2

θ2|z.
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Now, with Z1j = z1j,

Zj = w1jz1j + w2jZ2j, where Z2j ∼ N (θj
√
I2j, 1)

= w1jz1j + w2j

[
θj
√
I2j + ε

]
, where ε ∼ N (0, 1)

= w1jz1j + w2j

[
µθj |z

√
I2j +

(
θj − µθj |z

)︸ ︷︷ ︸
∼N (0,σ2

θj |z
)

√
I2j + ε

]

= N
{
w1jz1j + w2jµθj |z

√
I2j, w

2
2j

(
I2jσ

2
θj |z + 1

)}
.

Denote v2
j = w2

2j

(
I2jσ

2
θj |z + 1

)
and let

ηj =
1

vj

(
w1jz1j + w2jµθj |z

√
I2j

)
, j = 0, 1.

Then the predictive distribution for (Z0, Z1) isZ0

Z1

 ∼ N

η0

η1

 ,

 1
√
f01

√
f01 1


 .

If enrichment is envisaged, the predictive distribution for Z̃1 is

Z̃1 ∼ N
{
w̃11z11 + w̃21µθ1|z

√
I20, w̃

2
2j

(
I20σ

2
θ1|z + 1

)}
,

where w̃11 and w̃21 are defined in Equations (3.2) and (3.3), respectively. Next, let

π0 = P[Reject H0 or H1 if continue with Ω0]

π1 = P[Reject H1 if proceed with Ω1 only]

π2 = P[Reject H2 if continue with Ω0],

where the probabilities are taken under the predictive distributions above. Then,

π0 = P[Z0 ≥ Cα or Z1 ≥ Cα]

= 1− Φ
(
Cα − η0, Cα − η1;

√
f01

)
and

π1 = P
[
Z̃1 ≥ Cα

]
= Φ (−Cα + η̃1) .
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with η̃1 =
(
w̃11z11 + w̃21µθ1|z

√
I20

)
/ṽ1 and ṽ2

1 = w̃2
2j

(
I20σ

2
θ1|z + 1

)
. π2 is com-

puted in similar fashion. Note that π0 is only an upper bound on the predictive

probability of rejection when continuing with the full population. This is because

we do not account for multiplicity adjustments which will be carried out in the

final analysis.

Let LHPP0 , LHPP1 , LHPP2 ∈ [0, 1]. At interim, the predictive probability (HPP)

design is outlined as follows:

• If π0 ≥ LHPP0 , π1 ≥ LHPP1 and π2 ≥ LHPP2 , then continue to the second stage

sampling from the full population.

• If π0 ≥ LHPP0 and π1 < LHPP1 , then also continue sampling from the full

population.

• If π0 ≥ LHPP0 , π1 ≥ LHPP1 but π2 < LHPP2 then enrich and continue with Ω1

only.

• If π0 < LHPP0 and π1 ≥ LHPP1 then enrich and continue with Ω1 only.

• If π0 < LHPP0 and π1 < LHPP1 then abandon the trial and accept all hypothe-

ses.

The HPP design will only proceed with the full population if there is a sufficiently

high probability of a positive finding at the trial conclusion. Note that if the first-

stage results in Ω2 are poor, then the design may choose to enrich even if the

overall results are good. This is desirable as in such cases the positive overall effect

is likely driven by very good findings in Ω1. As with the CP design, the constants

LHPPj need to be strategically chosen to ensure desirable operating characteristics

at the interim analysis.
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3.3 Numerical Study

To compare the designs outlined in Section 3.2, we conduct a Monte Carlo sim-

ulation under multiple states of nature, and for a variety of procedure-specific

parameter specifications. One issue of interest is to compare operating character-

istics of the designs previously described. Additionally, we consider a number of

questions that naturally arise when carrying out clinical trials with population-

specific hypothesis testing. For example,

1. What is the influence of the prevalence of Ω1 in Ω0 (f01) on rejection proba-

bilities for H0 and H1?

2. How important is the timing of an interim analysis? Does it affect H0 and

H1 similarly, or is there a trade-off?

3. For what types of values of (θ1, θ2) are adaptive designs preferable to fixed

designs, and vice-versa?

4. How do procedures specifically tailored to subgroup testing perform com-

pared to standard p-value adjustment procedures, or group sequential meth-

ods?

5. How robust are the adaptive designs to selecting the correct course of action

at the interim analysis?

6. For an adaptive design, are transparency and ease of exposition preferable

to a seemingly well performing “black box?”

Simulations were run for values of θ1 ∈ [0, 30], with θ2 ∈ {0, 10, 20} and we set

θ∗ = 20 as the clinically significant treatment effect. We use f01 ∈
{

1
4
, 1

2
, 3

4

}
and

t ∈
{

1
4
, 1

3
, 1

2
, 2

3
, 3

4

}
. The total information Itotal is set as 0.0271, which guarantees
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power equal to 0.9 (β = 0.1) in a 2-stage trial to test H0 only (no subgroup analysis)

at level α = 0.025 (O’Brien and Fleming, 1979). Included with our results, are

simulations from a 2-endpoint, 2-stage O’Brien & Fleming design adjusted for

multiplicity (abbreviated as OBFm) using a weighted Bonferroni correction for the

individual endpoints, see for example (Jennison and Turnbull, 2000, Ch. 15.2). We

also include results from a non-adaptive one stage design that uses the Hochberg-

Simes (HS) method to test individual hypotheses.

For AFP and FE, we use α0 ∈ {0.02, 0.015} and α1 ∈ {0.005, 0.01}. For

the multiple-endpoint OBFm design, we use the same α-levels as in AFP, in

addition to Bonferroni-levels 0.025/2. For FE, we use γ0 ∈ {0.3, 0.4, 0.5} and

γ1 ∈ {0.5, 0.75, 1}. For the adaptive methods CP and HPP, we use the fol-

lowing parameter values: LCP0 ∈ {0.2, 0.4, 0.6, 0.8}, LCP1 ∈ {0, 0.2, 0.4, 0.6, 0.8},

LHPP0 , LHPP1 ∈ {0.2, 0.35, 0.5, 0.65, 0.8}, LHPP2 ∈ {0.1, 0.25, 0.5}. Finally, for the

HUT design we let θ+ ∈ {0, 10, 20} and kHUT ∈ {0.5, 1, 1.5}.

For an initial analysis, Tables 3.2 and 3.3 show simulated rejection- and in-

terim decision probabilities for all procedures described above, using t = 1/4 and

1/2, respectively. Treatment effect parameters, (θ1, θ2), equal (0, 0), (20, 0) and

(20, 20), with f01 = 1/4. First we see that, relative to traditional methods such

as HS or OBFm, procedures that allow enrichment (FE or CP/HPP/HUT) can

substantially improve power for H1. Adaptive procedures also perform reasonably

well when (θ1, θ2) = (20, 20), with FE marginally outperforming others.

When the full null hypothesis is true, (θ1, θ2) = (0, 0), all procedures control

Type I error at the required level. Note that the adaptive procedures use empirical

data weights, and are still within specified limits for α for the cases considered.

Stops for futility range from rare (2–3% for OBFm), to quite common (55–65%
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for CP/HPP). For adaptive procedures, these decisions are highly dependent on

predetermined decision parameters such as LHPP0 and LHPP1 . E.g. for CP, with

LCP0 = LCP1 = 0.6 and t = 1/2, futility stops occur with 87% probability. This is

certainly desirable under the complete null hypothesis, but for other values of θi

(and same LCPi ), CP stops too often for futility (23% when (θ1, θ2) = (20, 20) and

t = 1/2). Entries in the tables are obtained from LCP0 = 0.4 and LCP1 = 0.2.

It is quite clear that for t = 1/2, interim decisions are “better” than for t = 1/4.

We should expect this, as t = 1/2 implies that more information is accumulated

during the first stage than for t = 1/4. A more interesting question is whether

delaying the interim analysis leads to better decisions at the end of the trial.

Consider the case (θ1, θ2) = (20, 0). In this case, enrichment is the proper decision

at interim, and at the final analysis we should reject H1 only (though reaching a

positive result for Ω0 is not necessarily “wrong”). For t = 1/4, HPP and HUT

enrich roughly 47% of the time and both reach a positive result for Ω1 roughly 45%

of the time. When t = 1/2, enrichment is more likely (51% and 56% respectively)

but now HPP has lower power for H1. HUT, on the other hand, has similar

power for H1 and reaches a positive result with slightly higher probability than

for t = 1/4 (52% vs. 51%). FE sees a slightly larger power reduction for H1 when

t is increased for reasons detailed in Section 3.3.1. Overall, there is only a slight

difference between the adaptive designs in power performance.

If (θ1, θ2) = (20, 20), the correct interim decision is to proceed to the second

stage using the full population. Enrichment, while undesirable, is not as disastrous

as abandoning the trial for futility. Again, as expected, increasing t has a positive

effect on interim decisions for all adaptive procedures. We also see that a positive

result is reached with greater frequency, in particular for methods such as CP, HPP
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and HUT. With t = 1/2, adaptive procedures are closer to fixed procedures such

as FE or AFP, as HUT reaches a positive conclusion with 83% probability vs. 88%

for FE and AFP. With t = 1/4, this difference is almost doubled.

In conclusion, early findings discussed above indicate that t should not be too

small. Most adaptive designs achieve similar power for H1 (when (θ1, θ2) = (20, 0))

regardless of whether t = 1/4 or t = 1/2, but do much better for H0 (when

(θ1, θ2) = (20, 20)) when t = 1/2. In subsequent sections, we inspect in greater

detail the effects of t and f01, the performance of adaptive designs at interim, and

the performance of all designs at the final stage. The analysis of t and f01 is limited

to selected procedures.
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3.3.1 Influence of Interim Analysis Timing

We begin by examining the effect of differently timed interim analyses. Intuitively,

an early interim analysis (small t) suffers from inexact estimates due to a relatively

small sample size in the first stage. On the other hand, there should be more to

gain from enrichment, as the second stage offers a potentially larger sample size

increase for Ω1. Early results from the previous section indicated that t ∈ [1
4
, 1

2
]

may be appropriate. Figure 3.1 shows empirical probabilities for interim analysis

decisions for the HUT procedure, using various values of t. It is clear in these

plots that using larger values of t increases the probability of making the correct

decision at interim. This result is not surprising, as a longer first stage leads to

more accurate estimates at interim.

An argument in favor of small t might be that shortening the first stage leaves

more room for error in the trial planning process. That is, should we discover that

enrichment is necessary, a shorter first stage allows us to sample more patients

for Ω1 during the second stage, and hence the likelihood of a positive outcome is

increased. To investigate this, the impact of t on HUT power performance is shown

in Figure 3.2, which displays various rejection probabilities using both θ2 = 0 and

θ2 = 20. When θ2 = 0 (plot (a)), we see that when θ1 ≥ 20, power is largest for

t = 1/2. Using t = 1/4 is close for smaller values of θ1 while power for t = 3/4 is

dominated until θ1 ≈ 25. It is clear from the plot that using a longer first stage,

i.e. t = 3/4, is helpful for interim decisions but does not necessarily lead to high

power at the end. On the other hand, power for t = 1/4 is dominated by that of

t = 1/2 for moderate-to-high values of θ1. The behavior is similar in plot (c), as

t = 1/2 results in highest probability of a positive outcome. As θ1 grows, power

for t = 3/4 is greater than power for t = 1/4.
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Figure 3.1: Empirical interim analysis probabilities for the HUT procedure. The left
and right columns use θ2 = 0 and 20 respectively. Plots (a) and (b) show the probability
of stopping for futility, (c) and (d) show enrichment probabilities, and (e) and (f) show
the probability of proceeding with the full population. f01 = 1/4 throughout.

If θ2 = 20, we are interested in power for H0. In plot (b), we see that power

appears to increase with t, as expected. If θ2 = 20, enrichment should not be

carried out at interim, and larger t reduce the probability of erroneously restricting

sampling to Ω1 in stage two. Referring to plot (d), we can see that increasing t

past 1/2 results in no tangible gain in power for H0 or H1. Power for t = 1/4 is

always dominated by that of t = 1/2 or t = 3/4.

In light of the results observed in Figure 3.2, it appears that a sensible choice

for the interim analysis is close to the middle of the trial (t = 1/2). An early

analysis (t = 1/4), while allowing for a greater benefit of enrichment in stage two,
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Figure 3.2: Empirical rejection probabilities for the HUT procedure. The left and
right columns use θ2 = 0 and 20 respectively. Plots (a) and (b) show the probability of
rejecting H1 and H0, respectively. Plots (c) and (d) show the probability of a positive
outcome. f01 = 1/4 throughout.

does not result in highest power for either H1 nor H0. Similarly, setting t too

large has a detrimental effect on the probability of a positive study, particularly

in the case that θ2 = 0. We note that differences in power are generally quite

small, and hence logistical reasons may drive the choice of interim analysis timing,

rather than the desire for best power performance. Similar plots for HPP and CP

were examined (not shown), and these exhibited the same characteristics as those

described here in reference to the HUT procedure.

We also examined results for larger values of f01. When f01 ≥ 1/2, the difference

between t = 1/2 and 3/4 is smaller, but in both cases, power is always better
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Figure 3.3: Empirical probabilities for FE. Plot (a) shows enrichment probability, and
plot (b) shows power for H1. Throughout, θ2 = 0 and f01 = 1/4.

than for t = 1/4. In fact, the difference between power for t = 1/4 and higher

t is more pronounced in this setting. We conclude that procedures employing

flexible adaptation rules (similar to those examined here) will likely benefit from

using t ≈ 1/2, though thorough simulations should always be conducted for the

particular setting at hand.

It is also of interest to inspect the effect of t on FE. This procedure, while

allowing for some adaptation at interim, is essentially fixed at the outset of the

trial and rejection regions are known. Figure 3.3 shows enrichment andH1 rejection

probabilities when θ2 = 0 for t = 1/4, 1/2 and 3/4. In plot (a) we see that, contrary

to what we observed above, enrichment is more likely for small values of t. This

can be explained by considering the design of FE: at the interim analysis, Z10

is checked and, if large enough, the trial proceeds with the full population. The

non-centrality parameter of Z10, E [Z10] = w10λ0 = θ0

√
tImax, is increasing in t (if

θ1 > 0), and hence a longer first stage will decrease the likelihood of enrichment,

even when θ2 = 0. Plot (b) shows further consequences of this characteristic, as

power for H1 is at its largest when t = 1/4.
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The observation made from Figure 3.3 may motivate a modification of the

FE design. Indeed, we can add a “check” for Z12 before allowing the trial to

proceed with the full population. However, an appealing characteristic of FE is its

simplicity. Adding decision rules will make computation of the critical boundaries

more complicated, in particular when the number of subgroups is increased. In

addition, some care must be taken in the determination of how small a value for

Z12 is “small enough.” In Chapter 5, we propose a multi-stage design that only

eliminates subgroups that show early signs of non-responsiveness. This design may

offer a reasonable compromise to the weakness inherit in the FE design.

3.3.2 Influence of Subgroup Prevalence

It is clear that power for Ω1 is increasing in f01 (Alosh and Huque, 2009). It

is therefore of greater interest to inspect the effect that f01 has on power for Ω0.

Figure 3.4 shows rejection probabilities for various values of f01, as obtained for the

HUT procedure in our simulations. In plots (a) and (c), we see that for θ2 = 0, as

f01 increases so does the probability that H0 is rejected, as well as the probability

of a positive outcome in the study. This is expected, since the effect is only positive

in Ω1 it naturally becomes easier to detect an overall effect if Ω1 is large.

Plots (b) and (d) show that the same does not hold when θ2 = 20. Power for

Ω0 is now maximized when f01 = 1/4, as seen in plot (b). The reason is likely that

a larger Ω1 will dilute the estimate of θ0 when θ1 is small and θ2 = 20. In such

cases, a small sample size from Ω1 is actually beneficial. In plot (d) we see that, if

θ1 is much smaller than 20, a smaller subgroup is again better for the probability of

a positive outcome. However, as θ1 exceeds clinical significance, a larger subgroup

becomes advantageous.
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Figure 3.4: Empirical rejection probabilities for the HUT procedure. The left and
right columns use θ2 = 0 and 20 respectively. Plots (a) and (b) show the probability
of rejecting H0. Plots (c) and (d) show the probability of a positive outcome. t = 1/2
throughout.

Figure 3.5 is set up as Figure 3.4, showing the same probabilities, only for FE.

In plot (a) we see that, as expected, larger values of f01 increase the probability of

rejecting H0 when θ2 = 0. The reason for this is the design of the FE procedure,

as explained in Section 3.3.1. When θ2 = 0, P[Reject H0 or H1] also increases with

f01. Plots (b) and (d) show similar behavior as for the HUT procedure. That is,

small f01 is beneficial when θ1 < 20, and large f01 is preferred for θ1 ≥ 20.

In conclusion, we have observed that if θ2 = 0, thenH0 is likelier to be rejected if

f01 is large. However, if θ2 = 20, a small f01 is results in better power performance

for H0. Examination of enrichment behavior reveals that in their current form,

FE and CP are better suited to handle small subgroups. This can be fixed, for
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Figure 3.5: Empirical rejection probabilities for FE. The left and right columns use
θ2 = 0 and 20 respectively. Plots (a) and (b) show the probability of rejecting H0. Plots
(c) and (d) show the probability of a positive outcome. t = 1/2 throughout.

instance by requiring that [p10 ≤ γ0, p21 ≤ γ2] in order for FE to continue without

enrichment. For CP, if CPΩ0(t, z10, δ̂10) ≥ LCP0 , then we could force a check to see

if CPΩ2(t, z12, δ̂12) is large enough to warrant continuation without enrichment.

3.3.3 Interim Analysis Decisions

In this section we investigate the robustness of the adaptive designs to selecting the

correct course of action for the second stage. Figure 3.6 shows empirical interim

decision probabilities for FE, CP, HPP and HUT, where the left and right columns

are based on θ2 = 0 and θ2 = 20 respectively, and t = 1/2. For example, when

f01 = 1/4 and (θ1, θ2) = (20, 0), we see from the left column that HUT will enrich,
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Figure 3.6: Empirical probabilities for interim analysis decisions. The left column
corresponds to θ2 = 0, and the right column to θ2 = 20. Plots (a) and (b) show
enrichment probabilities, plots (c) and (d) show the trial abandonment probabilities, and
plots (e) and (f) show the probability that a study continues with the full population.
f01 = 1/4 and t = 1/2 throughout.

stop for futility and continue with the full population roughly 56%, 16% and 28%

of the time, respectively.

When θ2 = 0, and θ1 is small, stopping for futility is the appropriate decision

at interim. In plot (c), we see that CP and HPP have the highest likelihood of

early stopping (66% when θ1 = 0) though, when θ1 = 20, they still stop for futility

with probability 0.24. While these probabilities may seem high, we keep in mind

that f01 = 1/4, so the number of observations accumulated for Ω1 at interim is

relatively low. When θ2 = 20, stopping for futility is much less likely. In that case,
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CP has the largest probability, 0.08.

In plot (a), we observe that HUT achieves the highest enrichment probability

throughout, though HPP and CP are quite close. The enrichment probability for

FE actually decreases when θ1 increases, but this is due to the aforementioned

design issue, whereby a large value for θ1 starts to affect the estimate for θ0. When

θ2 = 20 (plot (b)), enrichment is very unlikely for all procedures, for all considered

values of θ1. At θ1 = 20, enrichment probability is < 0.05 for all procedures,

which is desirable as the correct decision is now to proceed sampling from the full

population.

When θ2 = 0 (plot (e)), CP, HPP and HUT are unlikely to proceed with the

full population, while FE does this with a substantially higher probability. As

said before, we might improve the interim decision making for FE by enforcing

a check for efficacy in Ω2. When θ2 = 20 (plot (f)), all procedures proceed with

the full population with high probability. CP is slightly worse here than the other

procedures, but the difference is very small.

Figure 3.7 shows the same plots as Figure 3.6, only with f01 = 1/2. The

overall behavior is quite similar though there are a few things of note. First, when

θ2 = 0, enrichment probability does not appear to change much compared to that

for f01 = 1/4 (see plot (a), Figure 3.6). Intuitively, we might have expected that

a larger Ω1 would increase the chance of enrichment. A possible explanation is

that higher prevalence of Ω1 implies increased correlation between θ̂1 and θ̂0. We

also note that, for θ2 = 20 and θ1 < 20, futility stops are a bit more common

when f01 = 1/2 than for f01 = 1/4. Likewise, the probability to proceed with the

full population is slightly decreased as compared to Figure 3.6. The effect is most

noticeable when θ1 is small; when θ1 ≥ 20 futility probabilities are roughly the
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Figure 3.7: Empirical probabilities for interim analysis decisions. The left column
corresponds to θ2 = 0, and the right column to θ2 = 20. Plots (a) and (b) show
enrichment probabilities, plots (c) and (d) show the trial abandonment probabilities, and
plots (e) and (f) show the probability that a study continues with the full population.
f01 = 1/2 and t = 1/2 throughout.

same as in Figure 3.6.

Throughout this section, we chose the procedure-specific parameter values that

appeared (in a rough analysis) to work best for that particular procedure. Overall,

HUT and HPP perform better than CP and FE at the interim analysis, though

the latter two procedures could be improved as previously remarked. There is no

substantial difference in the performance of the two hybrid Bayesian methods. In

general, our procedures perform reasonably well at the interim analysis, particu-

larly in light of the fact that with the value chosen for Itotal, interim estimates of

θj are quite variable (standard deviations of θ̂10 and θ̂11 approximately equal to
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8.6 and 12.1, respectively).

3.3.4 Empirical Power

First, we examine the impact of using empirical data weights on Type I error.

See Section 2.1.1 for discussion on these weights. Type I error probabilities were

examined across all configurations for θ1, θ2, f01 and t, as well as for all parameter

values for the procedures in question (CP, HPP and HUT). When futility checks

were enforced, Type I error was not greater than α = 0.025 for any of the tested

configurations. The largest Type I error probability was 0.0246 for HPP with

(θ1, θ2) = (0, 20), f01 = 1/4, t = 1/4, using procedure-specific parameters LHPP0 =

0.35, LHPP1 = 0.2 and LHPP2 = 0.1. If, on the other hand, futility stops are

removed, we see some increase in Type I error. For example, the CP method with

(θ1, θ2) = (0, 20) will reject H1 erroneously with maximum probability 0.0264 (for

our configurations). Wang et al. (2009) report similar results for empirical data

weights and note that in general the Type I error inflation is essentially negligible.

We do note that current FDA regulations insist on strict α-protection (US Food

and Drug Administration, 1998).

Figure 3.8 shows empirical rejection probabilities for all procedures under con-

sideration, with f01 = 1/4. Since FE and CP seem to favor small t, and HUT and

HPP favor large t, we use t = 1/3. One-stage procedures are shown in blue, and

two-stage procedures are shown in red. In plot (a), we see that the probability of

rejecting H1 is highest for the hybrid procedures HUT and HPP, as well as CP.

FE is close, with a maximum difference appearing to be less than 5%. While one-

stage procedures AFP and HS are expected to perform poorly relative to two-stage

procedures, we note that the multiplicity adjusted OBFm procedure does just as
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Figure 3.8: Empirical power for all procedures, using f01 = 1/4. One-stage procedures
are shown in blue, and two-stage procedures in red. Plots (a) and (c) use θ2 = 0, and
plots (b) and (d) use θ2 = 20. Throughout, t = 1/3.

poorly. This can partly be explained by the fact that test statistics Z0 and Z1

are correlated, which is known to make procedures based on p-value adjustments

conservative. When θ2 = 20 (plot (b)), most procedures perform in a similar man-

ner. Adaptive procedures are still more powerful than AFP and HS, though the

difference is not great. For θ1 ≥ 10, OBFm is dominated by all other procedures.

Plot (c) shows the probability of a positive result when θ2 = 0. Patterns are

similar to those of plot (a); two-stage procedures, sans OBFm, dominate one-

stage procedures. HUT and HPP seem to perform best, though CP and FE are

quite close. Finally, plot (d) shows the probability of a positive result with θ2 =
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Figure 3.9: Empirical power for all procedures, using f01 = 1/2. One-stage procedures
are shown in blue, and two-stage procedures in red. Plots (a) and (c) use θ2 = 0, and
plots (b) and (d) use θ2 = 20. Throughout, t = 1/3.

20. We see that fallback-based procedures, AFP and FE, have highest rejection

probabilities, while HS and OBFm are quite close. We note that CP, HPP and

HUT do not compare favorably in this scenario, and they are dominated for all

values of θ1 that were considered. Out of the three, HUT appears to perform best.

We show results for f01 = 1/2 in Figure 3.9. In plots (a) and (c) we see

similar results as when f01 = 1/4, though power curves are now closer. HUT still

dominates other procedures when θ2 = 0, but FE and HPP are very close. We also

note that OBFm is still dominated by all other procedures. Plots (b) and (d) show

results for θ2 = 20. In (b), we see that AFP, FE, HS and HUT are most powerful,

and the difference between these four procedures is essentially negligible. In plot
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Figure 3.10: Empirical power for all procedures, using f01 = 1/4. One-stage proce-
dures are shown in blue, and two-stage procedures in red. Plot (a) shows the probability
that H1 is rejected, while plot(b) shows the probability that the study yields a positive
result. Here, θ2 = 10 and t = 1/3.

(d) we see that rejection probabilities for either H0 or H1 are highest for AFP and

FE across all values of θ1. As when f01 = 1/4, HUT, HPP and CP are dominated

in this scenario, though HUT comes the closest to matching other procedures.

To summarize, adaptive methods such as HUT, HPP and CP perform well when

there is only an effect in the subgroup Ω1. FE can get very close, in particular

when t is chosen to be reasonably small (e.g. 1/4 or 1/3). When θ2 = 20, adaptive

methods such as HUT, HPP and CP do not perform as well, and AFP and FE

seem to achieve highest probability of rejecting H0 (or H1). The gain (in power)

for adaptive methods is greater when the subgroup is smaller, as evidenced by

comparing Figures 3.8 and 3.9. Finally, in Figure 3.10, we include two plots of

empirical power when θ2 = 10. For these plots, we use f01 = 1/4 and, as before,

t = 1/3. In plot (a), which shows rejection probabilities for H1, HUT, HPP and

CP are roughly equal, and perform better than other procedures. Plot (b) shows

the probability of a positive result (reject H0 or H1), and in this case, FE achieves
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the best performance for most values of θ1. As θ1 increases, adaptive procedures

achieve performance roughly equal to FE.

In the scenarios analyzed above, it appears that HUT and HPP can be quite

useful for detecting effects in a small subgroup. However, when there is an overall

positive effect, FE outperforms other methods. No procedure dominates all others

across all scenarios, so experimenters must choose a procedure appropriate for the

specifics of a clinical trial. FE is appealing due to its transparency and, to a

certain degree, simplicity. It performs very well when there is a positive overall

effect, and can still detect effects only present in the subgroup. HUT and HPP

are more powerful when only a subgroup effect is present, but suffer when θ2 is

close to clinical significance. Of the two, HUT may be preferable as it requires

very little parameter tuning. In particular, if there is more than one subgroup it

can be difficult to choose appropriate values for LHPPi , whereas HUT just requires

specification of kHUT and θ+.

We conclude this chapter by summarizing the six questions that were raised in

the beginning of Section 3.3, along with lessons learned in our numerical analysis.

1. What is the influence of the prevalence of Ω1 in Ω0 (f01) on rejection proba-

bilities for H0 and H1?

As we expected, power performance for Ω1 increases with f01. If there is no

effect in the subgroup complement, i.e. θ2 = 0, then probability of rejecting

H0 increases with f01. When there is a significant effect in Ω2, i.e. θ2 = 20,

then rejection probabilities for H0 decrease with f01.

2. How important is the timing of an interim analysis? Does it affect H0 and

H1 similarly, or is there a trade-off?

Correct decisions at interim are made with greater consistency as t increases.
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Setting t large (e.g. equal to 3/4) yields high power for H0, but results in

reduced power performance for H1. The difference in power for H1 depending

on t is not great, and logistical reasons may drive the choice for interim

timing, rather than desired “optimal” power performance.

3. For what types of values of (θ1, θ2) are adaptive designs preferable to fixed

designs, and vice-versa?

The FE procedure, as well as adaptive procedures CP, HUT and HPP are

useful for detecting a treatment effect that is confined to the subgroup Ω1.

When θ2 = 0, these designs have substantially higher power for H1 than

the fixed procedures we considered. The multiplicity-adjusted OBF design

does poorly in this setting. When both subgroups are effective however,

fixed designs achieve highest power, and the FE procedure is close. Adaptive

designs see a power reduction on the order of 5–10%.

4. How do procedures specifically tailored to subgroup testing perform com-

pared to standard p-value adjustment procedures, or group sequential meth-

ods?

The FE procedure performs quite well overall (for both H0 and H1), and can

be improved as has been discussed. This improvement will likely reduce FE

power for H0. The AFP has low power to detect an effect only existing in

one subgroup, but does well when there is an overall effect. As mentioned

in the previous point, CP and hybrid Bayesian designs are primarily strong

when θ2 = 0.

5. How robust are the adaptive designs to selecting the correct course of action

at the interim analysis?

Qualitatively, the utility-based design (HUT) was found to make correct

decisions at interim with higher probability than the other two-stage designs.
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HPP also performed quite well at interim, but CP and FE were seen to favor

the overall population when θ1 was large and θ2 = 0. These issues – which

can be fixed – suggest that the decision to restrict sampling should be based

on apparent lack of efficacy in particular subgroups, rather than an overall

statistic. In Chapter 5, we propose an adaptive group sequential procedure

that takes this approach.

6. For an adaptive design, are transparency and ease of exposition preferable

to a seemingly well performing “black box?”

In general, procedures that are easy to explain and implement are used with

greater frequency in practice (Dmitrienko et al., 2010, Ch. 2.6). Hence, pro-

cedures such as FE or HPP have real merit. For HPP in particular, predictive

probabilities can be intuitively explained to participants that are not statis-

tically inclined so interim decisions will be easy to understand. On the other

hand, the HUT procedure is likely difficult to explain, and “blindly” follow-

ing a utility function at interim can make participants nervous if they result-

ing course of action seems unintuitive. Carefully determining the loss/gain

function so as to reflect practical implications of the decisions that can be

made might address these concerns. Doing so would be desirable, as the

HUT design was seen to perform relatively well in comparison to our other

procedures.
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Chapter 4

Multi-Subgroup Procedures

In this chapter, we extend some of the procedures introduced in Chapter 3 to

allow consideration of any number of subgroups. Reviewing notation introduced

in Chapter 2, let Ω0,Ω1, . . . ,Ω`, ` > 1, denote the populations of interest, and

Ωj ( Ω0 for all j = 1, . . . , `. For each Ωj, we have a corresponding null hypothesis

Hj : δj ≤ 0. The subgroups are not necessarily disjoint, and some may completely

contain others. Procedures outlined in Sections 4.2 and 4.3 take place over two

separate stages. Let Pi denote the index set of populations under consideration

for stage i. Thus, P1 = {0, 1, . . . , `} and P2 ⊆ P1.

Recall that fij was defined as the prevalence of Ωj in Ωi. Now, for S ⊆ Pi, and

ΩS :=
⋃
j∈S

Ωj,

we define fS as the prevalence of ΩS in Ω0. If 0 ∈ S, then fS = 1. Finally, we note

that for j ∈ P2, the prevalence of Ωj during stage 2 is f0j/fP2 .

4.1 Adjusted Fallback Procedure (One Stage)

We suppose that the Hj, j = 0, . . . ` are naturally ordered in the sense that we

wish to establish efficacy for H0 first, then H1 and so on. This ordering is imposed

a priori, i.e. before any data analysis takes place. Define local significance levels

αj ∈ [0, 1] for j = 0, . . . , `, requiring that

α =
∑̀
j=0

αj
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where α is the desired FWER. As in the one-subgroup case, we also require adjusted

significance levels α̃j, j = 1, . . . , ` (α̃0 = α0). For now, we take these as known, and

computational details are given in Section 4.1.1. Let Tj denote the test statistic

corresponding to Hj, and let pj be its associated p-value. Denote ρij = Corr(Ti, Tj)

for 0 ≤ i, j ≤ `. As discussed in Chapter 1, we assume treatment effects in opposite

directions do not occur, so ρij ≥ 0 for all i, j. The general procedure is given in

Algorithm 1. Note that in the original fallback procedure (Wiens, 2003), Hi is

Input: αi, α̃i and pi for i = 0, . . . , `
α′0 = α0

if p0 ≤ α′0 then
Reject H0

end
for i = 1 to ` do

if pj ≤ α′j for all j = 0, 1, . . . , i− 1 then
m∗i = −1

else
m∗i = max

{
j ∈ {0, . . . , i− 1} : pj > α′j

}
end

α′i =


i∑

k=m∗i+1

αk if m∗i < i− 1

α̃i if m∗i = i− 1

if pi ≤ α′i then
Reject Hi

end

end

Algorithm 1: Testing algorithm for the adjusted fallback procedure.

tested at level αi−1 if Hi−1 was not rejected (if m∗i = i − 1). Hence, if α̃i ≥ αi

we have uniform improvement in power to reject Hi. See Section 4.1.1 for further

details.

Example 4.1. Suppose we have one subgroup with α0 = 0.02 and α1 = 0.005.

Further, α̃1 = 0.012. Suppose we observe p-values p0 = 0.025 and p1 = 0.01. The

original fallback procedure rejects neither hypothesis (p0 > 0.02 and p1 > 0.005),

but the AFP does reject H1 since p2 = 0.01 < 0.012 = α̃2.
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4.1.1 Obtaining α̃i

In this section, we outline how to obtain the adjusted levels α̃i, given values of ρij

for 1 ≤ i, j ≤ `. The idea is to exploit the correlation structure in order to test

Hi at a level higher than αi in the case that Hi−1 was not rejected. Recall that,

in Section 3.2.1 we saw that for ` = 1, α̃1 may be easily obtained. When ` = 2,

α̃2 can also be derived analytically but more work is involved, and the algebra

becomes increasingly tedious as more subgroups are added. A more succinct way

of specifying computational details for α̃i is therefore desirable. We propose using

a so-called decision matrix, used by Wiens and Dmitrienko (2005) to define closed

testing procedures.

Definition 4.1. Given an intersection hypothesis H, define the (`+1)-dimensional

decision vector v(H) as

v(H) = (v0(H), v1(H), . . . , v`(H)),

for given vi(H) ∈ [0, 1], i = 0, 1, . . . , `. Next, for a collection of intersection

hypotheses {Hj}, j = 1, . . . , J , define the J × (`+ 1) dimensional decision matrix

V as

V =


...

v(Hj) = (v0(Hj), . . . , v`(Hj))

...

 .

Definition 4.2. Given a decision matrix V , a particular intersection hypothesis

Hj is tested as follows. Obtain the corresponding decision vector v(Hj), and for

each elementary hypothesis a p-value pi, i = 0, . . . , `. If there exists i ∈ {0, 1, . . . , `}

such that pi ≤ vi(Hj), then Hj is rejected.

Clearly, one may use a decision matrix to carry out a closed testing proce-

dure: reject the elementary hypothesis Hi if each H containing Hi was rejected,
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using the approach given in Definitions 4.1 and 4.2. If each intersection hypothesis

is tested at level α, that is, if for each H,

P [∃i ∈ {0, 1, . . . , `} such that pi ≤ vi(H) | H] ≤ α,

then Theorem 2.1 implies that FWER is controlled strongly at level α. We next

give a simple example to illustrate how a decision matrix is defined, and how it

may be used to test naturally ordered hypotheses.

Example 4.2. Suppose ` = 1, and we are therefore testing the two hypotheses

H0 and H1. We let α0 = 0.02 and α1 = 0.005 so α1 + α2 = 0.025. With two

hypotheses, we need to test the intersection hypotheses H11 = H0 ∩H1, H10 = H0

and H01 = H1. Applying the closure principle, H0 is rejected if and only if H11

and H10 are rejected. Likewise, to reject H1, we must reject H11 and H01. Using

the specified local significance levels, the decision matrix is given as

V =


0.02 0.005

0.02 0

0 0.025

 .

Hence, H11 is rejected if either p0 ≤ 0.02 or p1 ≤ 0.005, H10 is rejected if p0 ≤ 0.02,

and H01 is rejected if p1 ≤ 0.025. If p0 = 0.015 and p1 = 0.021, then both H0 and

H1 are rejected. However, if p0 = 0.021 and p1 = 0.004 then only H1 can be

rejected. In the proof of Theorem 4.1, we use the decision matrix to show that

applying the closure principle is equivalent to the adjusted fallback procedure.

We now explain how the α̃i are obtained, proceeding inductively. Suppose

` = 1. The intersection hypotheses are then H11 = H0 ∩ H1, H10 = H0 and
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H01 = H1. We have

V =


v(H11)

v(H10)

v(H01)

 =


α0 α̃1

α0 0

0 α0 + α1

 .

Here, α̃1 is set such that P[Reject H11|H11] = α0 + α1. Note that this requires

distributional assumptions for T0 and T1, as well as a given value for ρ01. Also

note that the value for α̃1 is exactly that of Section 3.2.1, i.e. for the one-subgroup

AFP. Since ` = 1, α0 + α1 = α, and this defines a closed testing procedure. In the

proof of Theorem 4.1, we show that this closed testing procedure is equivalent to

the AFP.

Now, let ` ≥ 2. We have α0, . . . , α` and ρij for all 0 ≤ i, j ≤ `. We have seen

how to obtain α̃1. Suppose further, that we have α̃1, α̃2, . . . , α̃j for 1 ≤ j < `.

Then α̃j+1 is obtained as follows. There are 2j+1 existing intersection hypotheses

(obtained from H0, H1, . . . , Hj, and counting H00···0). Each such hypothesis will be

part of two new intersection hypotheses; one will contain Hj+1, and one will not.

For those that do not contain Hj+1, v(H) will be as before, only adding a zero

in the (j + 1)th place. Denote the intersection hypotheses that contain Hj+1 as

H̃1, . . . , H̃K , where K = 2j+1. For i = 1, . . . , K, let m∗i denote the largest number

of an elementary hypothesis in H̃i, that is smaller than j + 1. Then, for each of

the H̃i, the (j + 1)th slot of v(H̃i) is set as

vj+1

(
H̃i

)
=


j+1∑

k=m∗i+1

αk if m∗i < j

ξi if m∗i = j

Each ξi is determined such that

P
[
Reject H̃i | H̃i

]
= P

[
∃k ∈ {0, 1, . . . , j + 1} such that pk ≤ vk(H̃i) | H̃i

]
=

j+1∑
k=0

αk.
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In Section 4.1.3, we outline a computational approach using iterated integrals as

developed by Armitage et al. (1969), which allows for easy computation of ξi even

if many subgroups are involved. Finally, each ξi is replaced with α̃j+1 := min
i=1,...,K

ξi,

which guarantees that

sup
i=1,...,K

P
[
Reject H̃i | H̃i

]
≤

j+1∑
k=1

αk.

As the original fallback procedure can be stated using decision matrices without

adjusted α-levels, and since it controls FWER strongly, we note that all adjusted

α levels α̃j will be at least as large as their unadjusted counterparts αj. Hence,

the adjusted fallback procedure attains uniform improvement in power over the

original fallback procedure.

4.1.2 Control of the FWER

The main result of this section is Theorem 4.1, which proves that the adjusted

fallback procedure is equivalent to a closed testing procedure (CTP). Since CTPs

control the FWER strongly (i.e. under any null hypothesis configuration), the same

holds for the adjusted fallback procedure. The proof of Theorem 4.1 follows closely

the proof given by Wiens and Dmitrienko (2005), with additional arguments where

necessary due to differences in the two procedures.

Theorem 4.1. The adjusted fallback procedure, defined in Algorithm 1, is a closed

testing procedure.

Proof: Fix ` ≥ 1. We will show that the AFP rejects an arbitrary elementary

hypothesis Hj, j = 0, 1, . . . , `, if and only if a CTP rejects Hj. The proof is by

induction in j. We are given α0, . . . , α`, and α̃1, . . . , α̃` have been obtained using
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the method outlined in Section 4.1.1. The case of j = 0 is trivial, so consider the

case of j = 1, and the resulting intersection hypotheses H11, H10 and H01. The

three decision vectors are

v(H11) = (α0, α̃1)

v(H10) = (α0, 0)

v(H01) = (0, α0 + α1).

The AFP rejects H0 if p0 ≤ α0. In a CTP, p0 ≤ α0 implies H11 and H10 are rejected,

and hence H0 is rejected. If AFP rejects H1 there are two cases to consider:

(i) AFP rejects H1 with p0 ≤ α0 and p1 ≤ α0 + α1. In this case, a CTP rejects

H11 because p0 ≤ α0, while H01 is rejected as p1 ≤ α0 +α1. Hence H1 is also

rejected by a CTP.

(ii) AFP rejects H1 with p0 > α0 and p1 ≤ α̃1. In this case, a CTP rejects both

H11 and H01 as p1 ≤ α̃1.

We also see, with similar ease, that the AFP and a CTP will accept H0 and H1

under the same circumstances. Hence we have proved that the AFP and a CTP

will reach the same conclusion when two hypotheses are considered.

Induction Hypothesis: Suppose now that for j hypotheses, 1 < j < `, the AFP

corresponds exactly to the decision rule defined by using V (a CTP). That is, for

any i ≤ j, AFP rejects Hi if and only if a CTP rejects Hi.

We now add hypothesis Hj+1 to consideration, possibly H`. We must consider

three new types of intersection hypotheses: The ones that contain Hj+1 among

others, the ones that do not contain Hj+1, and that consisting solely of Hj+1.

We need to show that rejections (and non-rejections) made using the decision
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matrix V for all elementary hypotheses H0, H1, . . . , Hj+1 correspond exactly to

those made by the adjusted fallback procedure. Note that adding Hj+1 does not

change the value of vi(H) for i ≤ j, nor does it affect the AFP for those hypotheses.

Therefore, we need only consider two cases: AFP rejects Hj+1, and AFP accepts

Hj+1. The induction hypothesis assumes equivalence for all intersection hypotheses

not containing Hj+1, so we focus only on those that do contain Hj+1.

Suppose that the AFP does not reject Hj+1. Let

H =

 ⋂
i≤j : pi>α′i

Hi

 ∩Hj+1,

so H is the intersection hypothesis that contains Hj+1, as well as all elementary

hypotheses before Hj+1 that were not rejected by the AFP, given our natural

ordering of hypotheses. Next, let Hi be an arbitrary hypothesis in H, and let

i∗ = max{k = 0, 1, . . . , i− 1 : H contains Hk} such that Hi∗ is the last hypothesis

in H, before Hi. Note that if i = 0, then we set i∗ = −1 and all steps below still

hold. Further, note that Hi∗ was not rejected by the AFP. Now,

if i∗ + 1 = i then vi(H) = α̃i;

else, if i∗ + 1 < i then vi(H) =
i∑

k=i∗+1

αk.

Since Hi∗ was the last hypothesis before Hi that was not rejected, the levels used

by the AFP were α′i = α̃i if i∗+1 = i, and α′i =
i∑

k=i∗+1

αk if i∗+1 < i. In either case,

vi(H) = α′i and hence vi(H) = α′i for all Hi contained in H. Since the AFP did

not reject any of those hypotheses (by the definition of H), we know that pi > α′i

for all Hi in H. Hence pi > vi(H) for all i, so H is not rejected. In order to reject

Hj+1, a CTP needs to reject all intersection hypotheses containing Hj+1, and since

H was not rejected, a CTP does not reject Hj+1.

Suppose now that the AFP rejects Hj+1. Let H be an arbitrary intersection
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hypothesis containing Hj+1, and let k∗ = max{k = 0, 1, . . . , j : pk > α′k}, so

Hk∗ is the last hypothesis before Hj+1 that was not rejected by the AFP. If all

were rejected, then set k∗ = −1 (note that H need not contain Hk∗). Next, let

k∗∗ = min{k = k∗ + 1, . . . , ` : H contains Hk} so Hk∗∗ is the first hypothesis after

Hk∗ that is contained in H. If necessary, Hk∗∗ = Hj+1, so Hk∗∗ always exists.

Also note that the definitions of Hk∗ and Hk∗∗ imply that Hk∗∗ was rejected by the

AFP. Next let m∗ = max{k = 0, 1, . . . , k∗∗ − 1 : H contains Hk}, so Hm∗ is the

last elementary hypothesis in H, before Hk∗∗ . Then,

vk∗∗(H) =


k∗∗∑

i=m∗+1

αi if m∗ + 1 < k∗∗

α̃k∗∗ if m∗ + 1 = k∗∗

Also, recalling that Hk∗ was the last hypothesis before Hk∗∗ that was not rejected,

we have

α′k∗∗ =


k∗∗∑

i=k∗+1

αi if k∗ + 1 < k∗∗

α̃k∗∗ if k∗ + 1 = k∗∗

Now, Hm∗ is the last hypothesis in H before Hk∗∗ , and Hk∗∗ is the first hypothesis

in H after Hk∗ . If Hk∗ is in H, then Hm∗ = Hk∗ , and if not, then m∗ < k∗. Hence

m∗ ≤ k∗ and vk∗∗(H) ≥ α′k∗∗ . If k∗∗ = j + 1, then by assumption Hk∗∗ is rejected

by the AFP. Hence pj+1 ≤ α′k∗∗ ≤ vk∗∗(H), so H is rejected. On the other hand,

if k∗∗ < j + 1, then the induction hypothesis implies that Hk∗∗ was rejected by a

CTP for the first j hypotheses. Hence, pk∗∗ ≤ vk∗∗(H) and H is rejected. Since

H was arbitrary, and contains Hj+1, a CTP will reject Hj+1. This concludes the

proof. �
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4.1.3 Computational Details

In this section we explain a computationally convenient way to obtain adjusted

levels α̃k for the adjusted fallback procedure. Following the steps given in Section

4.1.1, obtaining the adjusted level α̃k for the elementary hypothesis Hk involves

computing a k-dimensional multivariate normal integral. Evaluating such inte-

grals can be challenging, particularly in higher dimensions. However, if a certain

structure is imposed, e.g. nested or disjoint subgroups, the computation may be

reduced to evaluating k − 1 univariate normal integrals. This is accomplished by

use of recursive formulae in the style of Armitage et al. (1969).

We have ` + 1 populations, the overall population Ω0 and the subgroups

Ω1, . . . ,Ω`. We assume that these populations are nested, i.e. Ωi ⊇ Ωj when

1 ≤ i ≤ j ≤ `. Associated with each of these populations is an elementary null

hypothesis (lower-sided) Hi, and a local significance level αi ∈ [0, 1], i = 0, . . . , `.

Note that
∑

i αi = α where α is the desired FWER. From Section 3.2.1 we know

how to obtain α̃1. Suppose then that we have obtained adjusted levels α̃i for

i = 1, . . . , k − 1 < ` and need to compute α̃k. We detail how the computation is

carried out for the hypothesis H0 ∩ · · · ∩ Hk; the basic technique is the same for

other intersection hypotheses.

We will find ξ to solve

k∑
i=0

αi = P

[
p0 ≤ α0 or p1 ≤ α̃1 or . . . pk−1 ≤ α̃k−1 or pk ≤ ξ

∣∣∣∣ k⋂
i=0

Hi

]

= 1− P

[
T0 < Cα0 , T1 < Cα̃1 , . . . , Tk−1 < Cα̃k−1

, Tk < Cξ

∣∣∣∣ k⋂
i=0

Hi

]
=: 1− ζk(α0, α̃1, . . . , α̃k−1, ξ;θ = 0)

where θ and 0 are Rk+1 vectors. θ is the mean vector of [T0, . . . , Tk]
′ and 0 is a
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vector of all zeros. Solving the function

ζk(α0, α̃1, . . . , α̃k−1, ξ; 0) = 1−
k∑
i=0

αi

for ξ involves evaluating the k + 1-dimensional integral∫ Cα0

−∞

∫ Cα̃1

−∞
· · ·
∫ Cα̃k−1

−∞

∫ Cξ

−∞
f(t0, . . . , tk;θ)

k∏
i=0

dti (4.1)

where f is the joint distribution of the test statistics T0, . . . , Tk, with mean parame-

ter θ. We proceed assuming that these are normally distributed and standardized

to have variance equal to one. That is, we are working with the standardized

statistics Z0, Z1, . . . , Zk as defined in Equation (2.3). Furthermore, we assume

that measurement precision is equal across subgroups, so from Equation (2.6),

ρij := Corr(Zi, Zj) =
√
fij for 0 ≤ i < j ≤ `, where fij ∈ [0, 1] is the prevalence of

Ωj in Ωi.

As populations are nested, Zj depends on Zj+1, . . . , Zk only through Zj+1.

Hence, the conditional distribution of Zj, given Zj+1 = zj+1, . . . , Zk = zk depends

only on zj+1. Recall that Ij is the observed information for Ωj. Define θ∗j as

the treatment effect size in Ωj\Ωj+1, for j = 0, 1, . . . , k − 1, and similarly let

∆∗j = Ij−Ij+1 be the observed information for Ωj\Ωj+1. Then, Zk ∼ N (θk
√
Ik, 1),

and for j = k − 1, . . . , 0, increments are distributed as

Zj
√
Ij − Zj+1

√
Ij+1 ∼ N

(
θ∗j∆

∗
j ,∆

∗
j

)
,

where increments are independent of Zk, . . . , Zj+1. Hence, the conditional density

of Zj, given Zj+1 = zj+1, . . . , Zk = zk is equal to

fj(zj | zj+1;θ) =

√
Ij
∆∗j

ϕ

(
zj
√
Ij − θ∗j∆∗j − zj+1

√
Ij+1√

∆∗j

)
. (4.2)

Now we can rewrite the joint density of Z0, Z1, . . . , Zk as

f(z0, . . . , zk;θ) = f0(z0|z1;θ)f1(z1|z2;θ) · · · fk−1(zk−1|zk;θ)fk(zk;θ)
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so (4.1) becomes∫ Cξ

−∞
fk(zk;θ)

∫ Cα̃k−1

−∞
fk−1(zk−1|zk;θ) · · ·

∫ Cα̃1

−∞
f1(z1|z2;θ)

∫ Cα0

−∞
f0(z0|z1;θ)

k∏
i=0

dzi

which we write recursively as

ζk(α0, α̃1, . . . , α̃k−1, ξ;θ) =

∫ Cξ

−∞
ek−1(u;θ)fk(u;θ)du (4.3)

where the conditional densities of Zj are given in Equation (4.2), and

ej(x;θ) =

∫ Cαj

−∞
ej−1(u;θ)fj(u|Zj+1 = x;θ)du, j = 1, . . . , k − 1,

with e0 ≡ 1. Details on how to evaluate the integrals in (4.3) may for example be

found in (Jennison and Turnbull, 2000, Ch. 19). When populations are not nested

or disjoint, the above method is not feasible. However, Genz and Bretz (2002)

have developed powerful algorithms that enable quick computation of multivariate

normal and t probabilities with as many as twenty dimensions.

4.2 Adjusted Fallback Procedure with Enrichment (Two

Stages)

We extend the FE procedure introduced in Section 3.2.2. For ease of exposition,

we first consider the case of ` = 2 subgroups, and then give the general design for

` > 2 subgroups. Though the setup of the procedure does not require assumptions

on the structure of the patient populations, it is mainly intended for the case of

nested subgroups, i.e. Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ω`.
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4.2.1 FE for ` = 2 Subgroups

Let ` = 2, P1 = {0, 1, 2}, and let α denote the desired FWER. As in Section

4.1, we specify local significance levels α0, α1 and α2 such that α0 + α1 + α2 = α.

Equivalently, define weights ci ∈ [0, 1], i = 0, 1, 2 that sum to 1, and let αi = ciα.

Below we describe how adjusted significance levels α̃1 and α̃2 are obtained (using

the important representation αi = ciα), but for now these are considered known.

Also, stage-one decision parameters γi, i = 0, 1, 2 are specified, all taking values in

[0, 1].

The procedure takes place over two stages where, at stage i and for popula-

tion Ωj, we obtain the standardized test statistic Tij, or equivalently the p-value

pij. After the first stage, results are inspected and prespecified decision rules are

followed to determine whether testing should proceed using the full population,

or whether we should enrich to certain subgroups. As for the adjusted fallback

procedure of Section 4.1, we assume that there is a natural ordering on the hy-

potheses under consideration. Greatest emphasis is placed on rejecting H0, then

H1 and finally H2. Hence, populations are eliminated sequentially, so P2 can be

set as {0, 1, 2}, {1, 2} or {2}. That is, Ω0 is eliminated first, retaining only Ω1∪Ω2.

Or, we can eliminate Ω0 and Ω1, analyzing only Ω2 at the final analysis. P2 can

also equal ∅ if we abandon the trial for futility.

If no enrichment takes place, P2 = P1, the standardized test statistic for Ωj

after the second stage is given as (combination weights are defined below)

T
(0)
j = w

(0)
1j T1j + w

(0)
2j T

(0)
2j , j = 0, 1, 2.

If we decide to restrict testing to Ω1 and Ω2 (P2 = {1, 2}), we get

T
(1)
j = w

(1)
1j T1j + w

(1)
2j T

(1)
2j , j = 1, 2.
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and, finally, if only H2 is tested (P2 = {2}), we get T
(2)
2 = w

(2)
12 T12 +w

(2)
22 T

(2)
22 . Here,

the superscript k in T
(k)
j corresponds to the smallest index of population Ωk that is

tested after the second stage. Having computed T
(k)
j , corresponding p-values p

(k)
j

can of course also be obtained.

This design uses empirical data weights, discussed in Section 2.1.1, and is de-

signed to protect FWER strongly at level α while doing so. This is in contrast

to adaptive procedures like CP, HPP and HUT, which will experience Type I er-

ror inflation if empirical data weights are used. When no enrichment takes place,

weights are just as defined in Chapter 3, Section 3.1:

w
(0)
1j = w1j =

√
t and w

(0)
2j = w2j =

√
1− t, j = 0, 1, 2.

If P2 = {1, 2}, then for j ∈ P2,

w
(1)
1j =

(
tf0j

tf0j + (1− t)fP2,j

)1/2

,

w
(1)
2j =

(
(1− t)fP2,j

tf0j + (1− t)fP2,j

)1/2

.

where fPi,j = f0j/fPi for i = 1, 2. Finally, for P2 = {2}, we have

w
(2)
12 =

(
tf02

tf02 + 1− t

)1/2

and w
(2)
22 =

(
1− t

tf02 + 1− t

)1/2

.

It is evident that all observations are given equal weight, and resulting test statistics

T
(k)
j are functions of sufficient statistics.

The procedure is now given, where the first stage analysis proceeds as follows:

I.0 If p10 ≤ γ0, then go to Stage II.0;

I.1 Else, if p11 ≤ γ1, then go to Stage II.1;

I.2 Else, if p12 ≤ γ2, then go to Stage II.2;

Else, abandon the trial and accept all hypotheses.
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Step I.2 represents a futility check so if none of the results are promising enough the

trial will be abandoned. Of course, γ2 may be set equal to 1, forcing the second

stage to take place. After taking the second stage observations, the following

analysis is carried out:

II.0 Carry out the original fallback procedure of Wiens (2003), using levels αi, i =

0, 1, 2.

II.1 Test H1 at level α̃1. If H1 is rejected, test H2 at level α̃1 + α̃2. If H1 is

accepted, test H2 at level α̃2.

II.2 Test H2 at level α̃2.

The fallback procedure was reviewed in Section 2.2.2, but is briefly recalled here: If

p0 ≤ α0 then H0 is rejected. In general for Hi, let Hm∗ be the last hypothesis before

Hi that was rejected, with m∗ = 0 if all have been rejected. Then Hi (i > m∗) is

tested at level αm∗ + · · ·+ αi.

Depending on the value chosen for γ2 ∈ [0, 1], early stopping may be allowed

due to futility. Specifically, if 0 < γ0, γ1, γ2 < 1, there is a positive probability that

stage two is not carried out if early results are not satisfactory. The total sample

size, N , say, therefore becomes random, and

N = tn+ (1− t)n · I
{
T1j ≥ Cγj for some j ∈ P1

}
,

where I(A) is the indicator function of an event A. Hence, the expected sample

size becomes

E(N) = tn+ (1− t)n [1− P (T10 < Cγ0 , T11 < Cγ1 , T12 < Cγ2)]

= n [t+ (1− t) (1− FT10,T11,T12 (Cγ0 , Cγ1 , Cγ2))]

≤ n,
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with equality only if γj = 1 for some j = 0, 1, 2.

Example 4.3. Suppose all null hypotheses are true. Let γ0 = 0.4, γ1 = 0.5 and

γ2 = 0.6 and t = 0.5. Suppose that f01 = 0.5 and f02 = 0.25. Using correlation

identities derived in Section 2.1.2, we can evaluate the CDF given above to see that

E(N) = 0.86·n. If t = 0.25, E(N) = 0.79·n. We do note that savings in sample size

are only possible when stopping the trial for futility (no early rejection). However,

if early results indicate that efficacy is very unlikely, then the trial sponsor will

likely want to abandon the trial and allocate resources elsewhere.

4.2.2 Obtaining α̃i

Let FX,Y,Z(x, y, z) and FX,Y,Z,W (x, y, z, w) denote the CDFs of the random variables

X, Y, Z and X, Y, Z,W , respectively. Then, under the complete null hypothesis

H0 ∩H1 ∩H2, it can be shown that (proof given in Section 4.2.6)

P[Type I Error] = 1− F
T

(0)
0 ,T

(0)
1 ,T

(0)
2

(Cα0 , Cα1 , Cα2)

+F
T10,T

(0)
0 ,T

(0)
1 ,T

(0)
2

(Cγ0 , Cα0 , Cα1 , Cα2)

−F
T10,T

(1)
1 ,T

(1)
2

(Cγ0 , Cα̃1 , Cα̃2) + T
T10,T11,T

(1)
1 ,T

(1)
2

(Cγ0 , Cγ1 , Cα̃1 , Cα̃2)

−FT10,T11,T12(Cγ0 , Cγ1 , Cγ2)− FT10,T11,T (2)
2

(Cγ0 , Cγ1 , Cα̃2)

+F
T10,T11,T12,T

(2)
2

(Cγ0 , Cγ1 , Cγ2 , Cα̃2).

(4.4)

In Section 2.1.2, we derived correlation identities needed to specify correlation

matrices in the above equation. Note that, if we do not allow stopping for futility,

then γ2 = 1, so Cγ2 = −∞ and the two terms that involve γ2 will evaluate to zero.

In order to obtain α̃i, i = 1, 2, we proceed as follows. Set

ri =
ci

2∑
j=1

cj

, i = 1, 2,
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and replace α̃i in Equation (4.4) with riξ0. Then, use a numerical search1 to find

ξ0 when P[Type I Error] is set equal to α. Next, consider an auxiliary system

consisting only of Ω0 and Ω2. Using parameters γ′0 = γ0, γ′2 = γ2, α′0 = α0 and

α′2 = α1 + α2, we can follow steps given in Section 3.2.2 (see Equation (3.5)) to

obtain the adjusted significance level, ξ1, say, that ensures strong protection of

FWER at level α in the auxiliary system. In the notation of Section 3.2.2 this is

actually α̃1, but here it is more convenient to use ξ1, as will become apparent when

considering general ` > 2. Now, set ξ− = min{ξ0, ξ1}, and α̃i = riξ
− for i = 1, 2.

Note that, since ξ1 ≤ α, this ensures that α̃1 + α̃2 ≤ α, and α̃2 ≤ ξ1. Hence critical

values for the full system are larger than those obtained from the auxiliary system,

which consists only of Ω0 and Ω2. By construction, the procedure has Type I error

probability bounded above by α, under the complete null hypothesis. Proof of

strong FWER control is given in Section 4.2.6.

4.2.3 Non-Centrality Parameters

Let β ∈ [0, 1] be given, and suppose we wish to power the study for H0 at 1 − β

for the effect δ0 = θ0/σ, where σ2 is the pooled variance for the overall population.

The non-centrality parameter λ
(0)
0 = E

(
T

(0)
0 |δ0

)
=
√

n
4
δ0 (and hence the required

sample size) is obtained numerically by solving the following equation for λ
(0)
0 :

1− β = P[Reject H0 | δ0]

= P
(
T10 ≥ Cγ0 , T

(0)
0 ≥ Cα0 | δ0

)
= 1− FT10

(
Cγ0 − w

(0)
10 λ

(0)
0

)
− F

T
(0)
0

(
Cα0 − λ

(0)
0

)
+ F

T10,T
(0)
0

(
Cγ0 − w

(0)
10 λ

(0)
0 , Cα0 − λ

(0)
0 ;w

(0)
10

)
.

1CDFs in Equation (4.4) can for example be evaluated in Matlab using functions such as
mvncdf or qsimvnv.
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Let δj = ηjδ0 denote the standardized treatment effect in Ωj, where ηj ≥ 0 for

j = 1, 2. When no populations are dropped, non-centrality parameters for Ωj are

given as

λ
(0)
j = E

(
T

(0)
j | δj

)
=

√
f0jn0

4
· δj = ηj

√
f0j · λ(0)

0 , j = 1, 2.

It is also easily seen that λ
(0)
2 = η2

η1

√
f12 · λ(0)

1 . If P2 = {1, 2}, we get the following

non-centrality parameters:

λ
(1)
1 = E

(
T

(1)
1 | δ1

)
=

√
tf01n0

4
+

(1− t)n0

4
· δ1

= η1

√
tf01 + 1− t · λ(0)

0 ,

and

λ
(1)
2 = E

(
T

(1)
2 | δ2

)
=

√
tf02n0

4
+

(1− t)f12n0

4
· δ2 = η2

√
tf02 + (1− t)f12 · λ(0)

0 .

Finally, if P2 = {2}, then

λ
(2)
2 = E

(
T

(2)
2 | δ2

)
= η2

√
tf02 + 1− t · λ(0)

0 .

Note that f01 ≤ 1 implies that λ
(1)
1 ≥ λ

(0)
1 , and f02 ≤ f12 ≤ 1 implies λ

(k)
2 ≤ λ

(k′)
2

for k < k′, signifying the potential increase in power when stage two is carried out

on smaller populations only.

When subgroups are not nested (e.g. disjoint), quantities such as f12 may equal

zero. In such cases, it may be more useful to think of f12 as the percentage of

observations allocated to Ω2, compared to that of Ω1. As hypotheses have been

ordered by importance (proving treatment efficacy in Ω1 is more important than

proving efficacy in Ω2), it should still be the case that f02 ≤ f12 ≤ 1.
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4.2.4 FE for ` ≥ 2 Subgroups

We now extend the procedure to the case of an arbitrary number of populations,

Ω0,Ω1, . . . ,Ω` where Ω0 ) Ωj for j ∈ P1 := {0, 1, . . . , `}. These populations

admit a natural ordering, where establishing efficacy for Ωi is of greater importance

than for Ωj, for i < j. We have the usual null hypotheses Hj : δj ≤ 0 for

j ∈ P1. Local significance levels α0, α1, . . . , α` ∈ [0, 1] are specified such that∑
j∈P1

αj = α, the desired FWER. Equivalently, values cj ∈ [0, 1] are specified such

that
∑
j∈P1

cj = 1 and αj = cjα. Finally, before any data is unblinded we must

specify enrichment parameters γj ∈ [0, 1] for j ∈ P1. In Section 4.2.5 we describe

how to obtain adjusted significance levels α̃1, . . . , α̃`, but for now we take these as

given. Standardized statistics (p-values) at stage i for Ωj are

Tij (pij), for i = 1, 2; j ∈ Pi.

As before, fS,j denotes the prevalence of Ωj in ΩS , j ∈ P1 and S ⊆ P1. The

allotted sample size for the whole trial is n, and n1 = tn and n2 = (1 − t)n for

stage one and two respectively. The sample size for Ωj in stage i is then

nij = fPi,jni, for i = 1, 2; j ∈ Pi.

If the trial is not stopped for futility, let k = minj P2 be the index of the first

population (in our ordering) that is carried on to stage two. If k = 0, then

combination weights are given as w
(0)
ij = (nij/f0jn)1/2 = (ni/n)1/2 for i = 1, 2 and

j ∈ P1. For k > 0, we use

w
(k)
1j =

(
tfP1,j

tfP1,j + (1− t)fP2,j

)1/2

w
(k)
2j =

(
(1− t)fP2,j

tfP1,j + (1− t)fP2,j

)1/2

,

for j = k, . . . , `. Final statistics after stage two are given as

T
(k)
j = w

(k)
1j T1j + w

(k)
2j T

(k)
2j , j = k, . . . , `.
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Following the work in Section 2.1.2, we can give correlation identities of interest

for this method:

Corr
(
T1j, T

(k)
j

)
= w

(k)
1j , 0 ≤ k ≤ j ≤ `,

Corr
(
T

(k)
i , T

(k)
j

)
=
√
rijrji, 0 ≤ k ≤ i, j ≤ `,

Corr
(
T1i, T

(k)
j

)
= w

(k)
1j

√
rijrji, 0 ≤ k, i, j ≤ `, j ≥ k,

where rij is given in Equation (2.5). Finally, the non-centrality parameter for T
(k)
j

is given as

λ
(k)
j = ηj

√
tfP1,j + (1− t)fP2,j · λ

(0)
0 , j ∈ P2,

where δj = ηjδ0 and λ
(0)
0 is obtained as described in Section 4.2.3. The testing

algorithm for this procedure is given in Algorithm 2. Note that when we eliminate

populations Ω0, . . . ,Ωk−1 after stage one, hypotheses H0, . . . , Hk−1 are regarded as

having been accepted without further investigation.

Input: αj for j ∈ P1, α̃j for j = 1, . . . , ` and T1j for j ∈ P1

k = 0;
while T1k < Cγk do

k = k + 1;
end
if k < `+ 1 then

if k = 0 then

Use fallback procedure on Ω0, . . . ,Ω` with αj and T
(0)
j , j ∈ P1;

else

Use fallback procedure on Ωk, . . . ,Ω` with α̃j and T
(k)
j , j = k, . . . , `;

end

else
Stop the trial for futility;

end

Algorithm 2: Testing algorithm for FE.
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4.2.5 Obtaining α̃j

In this section, we describe how to obtain the adjusted significance levels α̃1, . . . , α̃`.

First, we define some notation that is useful to describe decision paths taken

through the procedure. In what follows, let Ē denote the complement of the

set E. For stage one, let Sk = [p1k ≤ γk], k = 0, . . . , `. Hence if we observe

S̄0 ∩ · · · ∩ S̄k−1 ∩ Sk, then P2 = {k, . . . , `} for stage two. Let

s
(k)
ji =

i∑
m=j

α(k)
m , where α(0)

m = αm and α(k)
m = α̃m for k = 1, . . . , `.

For the second stage we define rejection events R
(k)
ij as follows. If no enrichment is

carried out (i.e. the event S0 is observed), then

R
(0)
00 =

[
T

(0)
0 ≥ Cα0

]
R

(0)
10 =

[
T

(0)
1 ≥ Cα0+α1

]
R

(0)
11 =

[
T

(0)
1 ≥ Cα1

]
...

R
(0)
ij =

[
T

(0)
i ≥ C

s
(0)
ji

]
, i = 0, 1, . . . , ` and j = 0, . . . , i.

Following stage one events S̄0 ∩ · · · ∩ S̄k−1 ∩ Sk for k = 1, . . . , `, let

R
(k)
ij =

[
T

(k)
i ≥ C

s
(k)
ji

]
, i = k, . . . , ` and j = k, . . . , i.

The notation can be explained as follows: R
(k)
ij is the rejection of Hi with P2 =

{k, . . . , `} at level s
(k)
ji =

i∑
m=j

α
(k)
m , where Hj−1 is the last hypothesis that was not

rejected. If j − 1 < k, then all hypotheses prior to Hi have been rejected (minus

those eliminated due to enrichment). We point out the special case where no

enrichment took place, and all hypotheses prior to Hi were rejected. In this case

(as in the original fallback procedure), Hi is simply tested at level
i∑

m=0

αm.
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Example 4.4. Suppose we have three populations and Ω0 is eliminated at the end

of stage one. Then ` = 2, k = 1, and

R
(1)
11 =

[
T

(1)
1 ≥ Cα̃1

]
; R

(1)
21 =

[
T

(1)
2 ≥ Cα̃1+α̃2

]
; R

(1)
22 =

[
T

(1)
2 ≥ Cα̃2

]
.

Now, for stage one events S̄0 ∩ · · · ∩ S̄k−1 ∩ Sk, k ∈ P1, which defines the index

set P2 = {k, . . . , `} of populations to be tested after stage two, and for the index

set B(k) ⊆ P2, define the event

R
(
B(k)

)
:=
[
Reject Hj, j ∈ B(k) and accept Hj, j ∈ P2 \B(k)

]
.

We illustrate this notation in an example:

Example 4.5. Suppose we have four populations and Ω0 is eliminated after stage

one. Then, ` = 3, k = 1 and P2 = {1, 2, 3}. Suppose that B(1) = {1, 3}. Then

R
(
B(1)

)
= S̄0 ∩ S1 ∩

[
R

(1)
11 ∩ R̄

(1)
21 ∩R

(1)
33

]
=
[
T10 < Cγ0 , T11 ≥ Cγ1 , T

(1)
1 ≥ Cα̃1 , T

(1)
2 < Cα̃1+α̃2 , T

(1)
3 ≥ Cα̃3

]
.

Suppose that h hypotheses are true, indexed as Ah := {m1,m2, . . . ,mh} ⊆ P1.

Then, the Type I error probability is given as

P

{ ⋃̀
k=0

⋃
B(k)⊆{k,...,`}:
B(k)∩Ah 6=∅

R
(
B(k)

) ∣∣∣∣∣ Hm1 , Hm2 , . . . , Hmh

}
.

We now outline the steps needed to obtain adjusted significance levels α̃j, j =

1, . . . , `:

1. Following the notation defined above, and under the global null hypothesis⋂̀
j=0

Hj, the Type I error probability is

P

{ ⋃̀
k=0

⋃
B(k)∈2{k,...,`}\∅

R
(
B(k)

) ∣∣∣∣∣ H0, H1, . . . , H`

}
. (4.5)
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As we did in Section 4.2.2 when ` = 2, replace α̃j in the expression given in

Equation (4.5) with rjξ0, where rj = cj/(c1 + · · ·+ c`), and solve numerically

for ξ0 with (4.5) set equal to α.

2. For i = 1, . . . , `− 1, do

• Consider the auxiliary system consisting of all populations except Ωi.

• Assign stage-one decision parameters γ′j = γj for j = 0, . . . , i − 1, and

γ′i+1 = 1. (Subsequent γj do not matter.)

• Assign local significance levels α′j = αj for j 6= i, and α′i+1 = αi + αi+1.

Note that this implies c′j = cj and c′i+1 = ci + ci+1.

• Under the global null hypothesis, H0∩· · ·∩Hi−1∩Hi+1∩· · ·∩H`, in the

auxiliary system, obtain adjusted significance levels α̃′j = r′jξi, where

r′j = c′j

/∑̀
k=1

ck, j = 1, . . . , i− 1, i+ 1, . . . , `.

and ξi is obtained numerically to ensure that Type I error probability

is equal to α under the global hypothesis for the auxiliary system.

3. Set ξ− =
`−1∧
j=0

ξj and α̃j = rjξ
− for j = 1, . . . , `.

We see that in order to obtain the adjusted significance levels α̃j, we need to solve

numerically for ξj in a total of ` equations. Namely, we must evaluate the probabil-

ity of a Type I error under the global null hypothesis in the system of populations

Ω0,Ω1, . . . ,Ω`, and in each of the auxiliary systems Ω0, . . . ,Ωi−1,Ωi+1, . . . ,Ω` for

i = 1, . . . , ` − 1. Many multiple comparison procedures that rely on the closure

principle, require explicit specification of intersection hypotheses. The number of

required intersection hypotheses increases exponentially with new elementary hy-

potheses, which can make the underlying testing strategy difficult to communicate.
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This is not the case here, and the preparatory computational burden (computing

adjusted significance values) does not increase exponentially with the number of

hypotheses considered.

4.2.6 Control of the FWER

Proof for ` = 2

We first provide a proof for the case ` = 2. In the following, Ha
i denotes the

alternative hypothesis to Hi. We start with the global null hypothesis H0∩H1∩H2.

In the notation of Section 4.2.5, a Type I error occurs with P2 = P1 if any of the

following events occur:

S0 ∩
[ (
R

(0)
00 ∩R

(0)
10 ∩R

(0)
20

)
∪
(
R

(0)
00 ∩R

(0)
10 ∩ R̄

(0)
20

)
∪
(
R

(0)
00 ∩ R̄

(0)
10 ∩ R̄

(0)
22

)
∪
(
R00 ∩ R̄(0)

10 ∩R
(0)
22

)
∪
(
R̄

(0)
00 ∩R

(0)
11 ∩R

(0)
21

)
∪
(
R̄

(0)
00 ∩R

(0)
11 ∩ R̄

(0)
21

)
∪
(
R̄

(0)
00 ∩ R̄

(0)
11 ∩R

(0)
22

) ]
.

If P2 = {1, 2}, or if P2 = {2}, the following events lead to a Type I error:

{
S̄0 ∩ S1 ∩

[(
R

(1)
11 ∩R

(1)
21

)
∪
(
R̄

(1)
11 ∩R

(1)
22

)
∪
(
R

(1)
11 ∩ R̄

(1)
21

)]}
∪
{
S̄0 ∩ S̄1 ∩ S2 ∩R(2)

22

}
.
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Taking the union of these two expressions and simplifying yields

P[Type I error] = P

{(
S0 ∩

[
R

(0)
00 ∪

(
R̄

(0)
00 ∩R

(0)
11

)
∪
(
R̄

(0)
00 ∩ R̄

(0)
11 ∩R

(0)
22

)])

∪
(
S̄0 ∩ S1 ∩

[
R

(1)
11 ∪

(
R̄

(1)
11 ∩R

(1)
22

)])
∪
(
S̄0 ∩ S̄1 ∩ S2 ∩R(2)

22

)}

= P
[
T10 ≥ Cγ0 , T

(0)
0 ≥ Cα0

]
+ P

[
T10 ≥ Cγ0 , T

(0)
0 < Cα0 , T

(0)
1 ≥ Cα1

]
+ P

[
T10 ≥ Cγ0 , T

(0)
0 < Cα0 , T

(0)
1 < Cα1 , T

(0)
2 ≥ Cα2

]
+ P

[
T10 < Cγ0 , T11 ≥ Cγ1 , T

(1)
1 ≥ Cα̃1

]
+ P

[
T10 < Cγ0 , T11 ≥ Cγ1 , T

(1)
1 < Cα̃1 , T

(1)
2 ≥ Cα̃2

]
+ P

[
T10 < Cγ0 , T11 < Cγ1 , T12 ≥ Cγ2 , T

(2)
2 ≥ Cα̃2

]
.

Expressing this in terms of the respective CDFs and simplifying leads to equation

(4.4) in Section 4.2.2. Hence, by construction, we know that this probability is

bounded above by α, which is the desired Type I probability.

For notational convenience we adopt the following convention. For a given set

A, let BA denote a set B which contains at least one element of A. Then, for

Ha
0 ∩H1 ∩H2, a Type I error can be expressed as

2⋃
i=0

⋃
B

(i)
{1,2}⊆{i,...,2}

R
(
B(i)

)
⊆
{
S0 ∩

[
R

(0)
10 ∪

(
R̄

(0)
11 ∩R

(0)
22

)]}
∪
{
S̄0 ∩ S1 ∩

[
R

(1)
11 ∪

(
R̄

(1)
11 ∩R

(1)
22

)]}
∪
{
S̄0 ∩ S̄1 ∩ S2 ∩R(2)

22

}
.

Now, for sufficiently large n, the event paths involving S̄0 ∩ S1 and S̄0 ∩ S̄1 ∩ S2

will be dominated by the first path so

P[Type I error] ≤ P
{
S0 ∩

[
R

(0)
10 ∪

(
R̄

(0)
11 ∩R

(0)
22

)] ∣∣H1, H2

}
≤ P

{
R

(0)
10 ∪

(
R̄

(0)
11 ∩R

(0)
22

) ∣∣H1, H2

}
.

The last line is the probability of a Type I error event in a three population fallback

procedure under Ha
0 ∩H1 ∩H2, and hence it is bounded by α.
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Next, for H0 ∩Ha
1 ∩H2, a Type I error is expressed as

2⋃
i=0

⋃
B

(i)
{0,2}⊆{i,...,2}

R
(
B(i)

)
⊆

{
S0 ∩

[
R

(0)
00 ∪

(
R̄

(0)
00 ∩R

(0)
21

)]}
∪
{
S̄0 ∩ S1 ∩R(1)

21

}
∪
{
S̄0 ∩ S̄1 ∩ S2 ∩R(2)

20

}
.

For large n, the last event path (corresponding to step II.2 in Section 4.2.1) is

dominated by the first two event paths. Furthermore, S̄0 ∩ S1 ∩ R(1)
21 ⊂ S̄0 ∩ R(1)

21 ,

so

P[Type I error] ≤ P
{
S0 ∩

[
R

(0)
00 ∪

(
R̄

(0)
00 ∩R

(0)
21

)] ∣∣H0, H2

}
+P
{
S̄0 ∩R(1)

21

∣∣H0, H2

}
which is simply a Type I error probability for the same procedure in the reduced

two population system consisting of Ω0 and Ω2. Here we are using critical values

for the three population system, which are at least as large as those of the reduced

system. Hence FWER is bounded above by α.

For H0 ∩H1 ∩Ha
2 , a Type I error is given by

2⋃
i=0

⋃
B

(i)
{0,1}⊆{i,...,2}

R
(
B(i)

)
⊆

{
S0 ∩

[
R

(0)
00 ∪

(
R̄

(0)
00 ∩R

(0)
11

)]}
∪
{
S̄0 ∩ S1 ∩R(1)

11

}
.

This corresponds to a Type I error event for the same procedure, but for a system

consisting only of Ω0 and Ω1. However, the critical values correspond to those

of the three population system, and are hence larger. Therefore the above event

occurs with probability less than or equal to α.

For H0 ∩Ha
1 ∩Ha

2 , the Type I error probability is easily expressed as

P[S0 ∩R00 | H0] ≤ P[R00 | H0] = α1 ≤ α.

For Ha
0 ∩H1 ∩Ha

2 , a Type I error is contained in(
S0 ∩R(0)

10

)
∪
(
S̄0 ∩ S1 ∩R(1)

11

)
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and, for sufficiently large n, this event is dominated by S0∩R(0)
10 , which clearly has

probability ≤ α. Similarly, it is easy to see that under Ha
0 ∩ Ha

1 ∩ H2, a Type I

error event is contained in(
S0 ∩R(0)

20

)
∪
(
S̄0 ∩ S1 ∩R(0)

21

)
∪
(
S̄0 ∩ S̄1 ∩R(1)

22

)
which is again dominated by S0 ∩ R(0)

20 , which has probability less than α. Thus,

we have shown that when ` = 2, FWER is strongly protected at level α.

Proof for General `

Suppose h < `+ 1 hypotheses are true. (The case where h = `+ 1 is taken care of

by construction.) Define the index set

Ah := {m1,m2, . . . ,mh} ( P0

corresponding to those true hypotheses. We need to show that

P

{⋃̀
i=0

⋃
B

(i)
Ah
⊆{i,...,`}

R
(
B

(i)
Ah

) ∣∣∣∣Hm1 , . . . , Hmh

}
≤ α.

Let `∗ = min{I\A} correspond to the first hypothesis (in our ordering) which is

not true. We then consider the following two cases.

Suppose `∗ = 0. Then H0 is not true and hence, for sufficiently large n, the

Type I error event is dominated by

⋃
B

(0)
Ah
⊆{0,...,`}

R
(
B

(0)
Ah

)
= S0 ∩

(⋃
i∈Ah

[Reject Hi with fallback procedure]

)

⊆
⋃
i∈Ah

[Reject Hi with fallback procedure]

which is simply a Type I error event for the fallback procedure. This is known to

have probability less than or equal to α.
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Now, suppose that `∗ > 1. Then, as Pr[S̄`∗ ] ≈ 0 for sufficiently large n, the

Type I error event is dominated by

`∗⋃
i=0

⋃
B

(i)
Ah
⊆{i,...,`}

R
(
B

(i)
Ah

)
⊆


`∗−1⋃
i=0

⋃
B

(i)
Ah
⊆{i,...,`}

R
(
B

(i)
Ah

)
∪

{
S̄1 ∩ · · · ∩ S̄`∗−1 ∩

( ⋃
i∈Ah,i>`∗

[Reject Hi with adjusted α-values]

)}

This is a Type I error event for the reduced system in which Ω`∗ is eliminated, and

γ`∗+1 = 1. The critical values being used are for the `+1 population system, and are

hence at least as large as the critical values needed to guarantee P[Type I error] ≤ α

for the reduced system. Therefore P[Type I error] ≤ α for the ` population system

as well, which proves strong control of FWER.

4.3 Hybrid Bayesian Adaptive Design with Utility-Based

Interim Analysis (Two Stages)

As a generalization of Section 3.2.4 (the HUT design), we consider the use of adap-

tive seamless designs (ASD, see Section 2.2.3) for subgroup selection. The design

proposed here is a two-stage design, representing the combination of Phases II and

III in a clinical trial. For the interim analysis, we use a hierarchical Bayes setup,

and specify a gain (loss) function to model the costs of making incorrect decisions

before stage two. A key assumption is the exchangeability among treatment-by-

subgroup interactions. That is, there is no a priori distinction to be made of the

subgroups of interest with respect to treatment effect. (As stated in Chapter 3,

this is often not a reasonable assumption.) An important feature of the hierar-

chical Bayes setup, is that it allows researchers to specify upfront the strength of
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their belief that subgroup-specific effects are present.

4.3.1 Setup

As in the notation introduced in Section 2.1.1, Ω0 denotes the overall population,

and Ω1, . . . ,Ω` are ` disjoint subgroups, identified prior to the start of the trial.

The assumption of disjointness can be made without loss of generality, as we

can always redefine given subgroups to be disjoint (there may just be more of

them). We consider Hj : θj ≤ 0, j = 0, 1, . . . , ` as our hypotheses of interest. Let

P1 = {1, . . . , `} denote the index set of populations under consideration during

stage one. At the interim analysis, we may eliminate any number of subgroups,

and P2 ⊆ P1 denotes the index set of populations carried on to stage two. If

P2 = ∅, the study is abandoned due to futility.

Conditioning on Pi, Zij denotes the standardized statistic for population Ωj

in stage i, i = 1, 2 and j ∈ Pi. We use vector notation Zi ∈ R|Pi| to denote the

stage-wise statistics for stage i, and Z ∈ R|Pi| to denote the vector of combined

test statistics for both stages. It is assumed that

Zi ∼ N (δ, I) , where δj = θj
√
Iij, i = 1, 2 and j ∈ Pi.

Here, I is the appropriately sized identity matrix. Conditioning on Pi, the infor-

mation Iij is known, so the unknown component of δj is θj.

We shall specify a hierarchical Bayesian model for the parameters θ1, . . . , θ`,

which are assumed exchangeable. That is, the prior distribution p(θ1, . . . , θ`) is

assumed to be invariant to permutations of the indices 1, . . . , `. For the treatment
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effect parameters, and for the hyperparameter ν, we use the priors

θ1, . . . , θ`
iid∼ N (ν, τ 2), and ν ∼ N (φ, ω2).

Since θ0 =
∑
j∈P1

f0jθj, a prior on θ0 has been implicitly specified. We do not place

priors on the dispersion parameters τ and ω, nor on the parameter φ.

Note the important role of the dispersion parameter τ . By varying the value of

τ , researchers are able to specify the prior belief about presence of heterogeneity

among subgroups. Namely, if τ is small, the θj are likely all concentrated narrowly

around their mean, ν. On the other hand, if τ is large, it is implied that the

parameters θj can vary considerably.

We now compute the posterior distribution of θj and ν, given first stage data

Z1 = z1. For shorthand, write bj =
√
I1j and δj = bjθj. Then

p(θj | z1j, ν, τ
2) ∝ p(z1j | θj)p(θj | ν, τ 2)

∝ exp

{
−1

2
(z1j − bjθj)2 − 1

2τ 2
(θj − ν)2

}
∝ exp

{
−
(

1

2σ2
j

+
1

2τ 2

)(
θ2
j − 2

(
1

σ2
j

+
1

τ 2

)−1(
1

σ2
j

θ̂j +
1

τ 2
ν

)
θj

)}

where σ2
j = 1/b2

j and θ̂j = z1j/bj. Note that(
1

σ2
j

+
1

τ 2

)−1(
1

σ2
j

θ̂j +
1

τ 2
ν

)
= θ̂j − g(σ2

j , τ
2)(θ̂j − ν)

where g(σ2
j , τ

2) =
σ2
j

σ2
j+τ2

, so

p(θj | z1j, ν, τ
2) ∝ exp

{
− 1

2g(σ2
j , τ

2)τ 2

[
θj −

(
θ̂j − g(σ2

j , τ
2)(θ̂j − ν)

) ]2
}

= N
{
θ̂j −

σ2
j

σ2
j + τ 2

(
θ̂j − ν

)
,

σ2
j

σ2
j + τ 2

τ 2

}
.
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To obtain the posterior distribution of ν given Z1 = z1, we compute

p(ν | z1, τ
2, φ, ω2) ∝ m(z1 | ν, τ 2)p(ν | φ, ω2)

∝
∏̀
j=1

m(z1j | ν, τ 2)p(ν | φ, ω2),

where

m(z1j | ν, τ 2) ∝
∫

Θ

p(z1j | θj)p(θj | ν, τ 2)dθj

∝ exp

{
−1

2
z2

1j

}
exp

{
1

2

(
1

σ2
j

+
1

τ 2

)−1(
1

σ2
j

θ̂j +
1

τ 2
ν

)2
}

×
∫

Θ

p(θj | z1j, ν, τ
2)dθj︸ ︷︷ ︸

=1

∝ exp

{
−1

2

1

σ2
j + τ 2

(
z1j

bj
− ν
)2
}

= N
{
bjν, b

2
j

(
σ2
j + τ 2

)}
,

and Θ denotes the parameter space for θj. Then,

p(ν | z1, τ
2, φ, ω2) ∝ m(z1 | ν, τ 2)p(ν | φ, ω2)

∝ exp

{∑̀
i=1

−1

2

1

b2
j(σ

2
j + τ 2)

(z1j − bjν)2 − 1

2ω2
(ν − φ)2

}

∝ exp

{
−1

2
σ−2
ν|z

[
ν − σ2

ν|z

(∑̀
i=1

θ̂j
σ2
j + τ 2

+
φ

ω2

)]}
,

where

σ2
ν|z =

(∑̀
j=1

1

I−1
1j + τ 2

+
1

ω2

)−1

.

We have hence shown that

θj | z1j, ν, τ
2 ∼ N

{
θ̂1j −

I−1
1j

I−1
1j + τ 2

(
θ̂1j − ν

)
,
I−1

1j

I−1
1j + τ 2

τ 2

}
, j ∈ P1

ν | zj, τ 2, φ, ω2 ∼ N

{
σ2
ν|z

(∑̀
j=1

θ̂1j

I−1
1j + τ 2

+
φ

ω2

)
, σ2

ν|z

}
,
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In the posterior mean of θj, we see the role that τ plays in strengthening/weakening

evidence for subgroup specific effects:

θ̂1j −
I−1

1j

I−1
1j + τ 2

(
θ̂1j − ν

)
→
τ→∞

θ̂1j

θ̂1j −
I−1

1j

I−1
1j + τ 2

(
θ̂1j − ν

)
→
τ→0

ν.

That is, if τ is large, the posterior mean for θj will tend towards θ̂j, strongly

implying heterogeneity. If τ is small, the posterior mean for every θj will tend

towards ν.

4.3.2 Interim Analysis

We specify a loss (gain) function to quantify the cost (profit) of the available

decisions, depending on true values of the parameters θj. We say that a population

Ωj is chosen if j ∈ P2, where P2 is the set of populations carried on to stage two.

As in Chapter 3, let θ−, θ+ ∈ R such that θ− < θ+ and impose the following costs:

1. If θj ≤ θ−, we say that population Ωj is not responsive, and a cost of c1 is

incurred if Ωj is chosen;

2. If θj ≥ θ+, we say that population Ωj is responsive, and a cost of c2 is

incurred if Ωj is not chosen;

3. If θj ∈ (θ−, θ+), no costs are incurred either way.

A natural value for θ− is zero or the null value of θ, while θ+ could be set as

proportional to the clinically significant treatment effect. Note that the terms

“reject Hj” and “choose Ωj” are not exchangeable. In the current setup, we can

only reject hypotheses at the end of the trial, and all such decisions are carried out
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using frequentist analysis. It is at the interim analysis that we choose a population,

and this decision is based purely on posterior expected loss, given first stage data.

Define the set of nonresponsive populations as B = {j ∈ P1 : θj ≤ θ−}, and

the set of responsive populations as G = {j ∈ P1 : θj ≥ θ+}. Let k = c2/c1,

representing the relative cost of false negatives compared to false positives. Thus,

when k < 1 we will eliminate populations early unless results are good, while if

k > 1 the cost for false negatives is higher and early elimination is less likely. Now,

for a decision P2 ⊆ P1, we define our gain function as

G(θ, d) = −|P2 \ Bc| − k|G \ P2|.

The set P2\Bc contains all false positive decisions, i.e. selected populations Ωj with

θj ≤ θ−. Similarly, the set G\P2 contains all false negative decisions, i.e. responsive

populations (with θj ≥ θ+) that were not selected.

At the interim analysis, we will determine the decision P2 such that the poste-

rior expected gain (utility) is maximized. That is, we take

P2 = arg max
S⊆P1

E [G(θ,S) | Z1 = z1] =: arg max
S⊆P1

U(S, z1),

where z1 ∈ R` is the observed data from stage one. Note that, for given P2 ⊆ P1,

U(P2, z1) = E [G(θ,S) | Z1 = z1]

= E

−∑
j∈P2

1{θj ≤ θ−} − k
∑
j /∈P2

1{θj ≥ θ+}
∣∣∣∣ Z1 = z1


= −

∑
j∈P2

P[θj ≤ θ− | Z1 = z1]− k
∑
j /∈P2

P[θj ≥ θ+ | Z1 = z1]

As the parameters θj have a normal posterior distribution, computing the quantity

U(P2, z1) is straightforward. Obtaining the posterior mean requires an estimate of

ν, as

µ̂θj |z = E[θj|z1j, ν, τ ] = θ̂j −
σ2
j

σ2
j + τ 2

(θ̂j − ν̂), j ∈ P1.
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The estimate ν̂ can be obtained in various ways, for example by using its posterior

expected value, i.e.

ν̂ =

(∑̀
j=1

1

σ2
j + τ 2

+
1

ω2

)−1(∑̀
j=1

θ̂j
σ2
j + τ 2

+
φ

ω2

)
.

4.3.3 Final Analysis

The final analysis can make use of any procedure that controls FWER strongly

at level α. For example we could obtain adjusted p-values via the Hochberg or

the Hommel method, see Chapter 2 for more detail. Here, we show two alternate

methods that are somewhat less standard. The first strategy relies on conditional

error rates, while the second approach involves modifications to the hypotheses of

interest, and may entail a simpler final analysis.

Before proceeding, we introduce the following notation. For S ⊆ P , define H∩S

as the intersection hypothesis containing all hypotheses Hj for which j ∈ S. That

is, H∩S =
⋂
j∈S

Hj. Recall that θS is the weighted average of all θj with j ∈ S, and

defineH∪S as the hypothesis of no overall treatment effect in ΩS , that isH∪S : θS ≤ 0.

Conditional Error Rates

We follow the approach used by Müller and Schäfer (2001), discussed in Section

2.2.4, whereby the conditional error function is defined in terms of a predefined

test ϕ. Let ϕS denote a predefined levels α test for the hypothesis H∩S , S ⊆ P1. If

H∩S is rejected (accepted), then ϕS = 1 (ϕS = 0).

Definition 4.3. Let S ⊆ P1. The conditional error rate (CER) for H∩S is defined
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as

AS(Z1) = EH∩S [ϕS | Z1j, j ∈ S] = PH∩S [Reject H∩S | Z1j, j ∈ S] .

AS(Z1) is a measurable function of the first stage results2, taking values in [0,1],

and satisfying EH∩S [A(Z1)] ≤ α. After the first stage is completed, we can compute

AS(Z1) for all S ⊆ P1. We choose P2 based on the utility function discussed in the

previous section, and following the second stage we obtain p-values p2,S , based only

on second stage results. Hence p2,S is p-clud (see Section 2.2.4) and testing H∩S at

level AS(z1) ensures that Type I error is controlled at level α for H∩S . Applying

the closure principle of Marcus et al. (1976) then implies that FWER is strongly

protected at level α.

Following the above discussion, the CER combination procedure is carried out

as follows:

1. Specify tests ϕS of H∩S for all S ⊆ P1.

2. After stage one, determine P2 = arg maxS⊆P1 U(S, z1).

3. After stage two, for subsets S of P1:

(a) If S ⊆ P2, then test H∩S with the preplanned test ϕS .

(b) If S * P2, then compute AS(Z1) and the p-value p2,S := p2,S∩P2 and

reject H∩S if and only if p2,S ≤ AS(Z1). Per convention, p2,∅ = 1.

There is a great deal of flexibility regarding the types of tests ϕ that can be

used. Here, we give one example, similar to the approach taken by Koenig et al.

(2008) in which many competing treatments are compared to a common control.

2Measurable with respect to the σ-algebra generated by the first stage results, see (Liu et al.,
2002).
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Specify weights rj, j ∈ P1 such that
∑
j∈P1

rj = 1 and αj = rjα. Let S ⊆ P1, and

define adjusted weights rSj , computed as

rSj = rj/r
S
· , where rS· :=

∑
j∈S

rj.

Now define critical values CSj = Φ−1
(
1− rSj ξ

)
, where Φ−1 is the inverse normal

CDF, and ξ ∈ [0, 1] is determined numerically such that

1− α = PH∩S
[
Zj < CSj ,∀j ∈ S

]
.

The test ϕS rejects H∩S if Zj ≥ CSj for some j ∈ S. By construction it is a level α

test. Based on this test, we can compute the CER for H∩S :

AS(z1) = PH∩S (ϕS = 1|Z1 = z1) = PH∩S

[
max
j∈S

(
Zj − CSj

)
≥ 0

∣∣∣ z1,j, j ∈ S
]
.

A simpler approach is to compute 1 − α equicoordinate boundaries DS of the

|S|-variate normal distribution with the appropriate correlation structure. In the

above notation this is equivalent to setting rj = α/|P1| for all j ∈ P1. Note that

since we allow for early stopping due to futility, the procedure is conservative and

the true FWER is strictly less than α. A common remedy is to simply adjust α

via simulation (“buy back alpha” or “reclaim alpha”) to make the procedure tight.

The final analysis relies on combining test statistics from different stages. We

use the inverse normal combination method, see Equation (2.4) of Section 2.1.1.

Combination weights are as defined for FE in Section 4.2.4, i.e.

w1j =

(
tfP1,j

tfP1,j + (1− t)fP2,j

)1/2

w2j =

(
(1− t)fP2,j

tfP1,j + (1− t)fP2,j

)1/2

,

for j ∈ P2. Finally, we specify how to obtain p-values p2,S after the conclusion of

the second stage. If S ⊆ P2, then H∩S is tested with the preplanned test ϕS . If,
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however, S * P2, then we use conditional second stage tests (Koenig et al., 2008),

which reject H∩S if

p2,S := PH∩S

[
max
j∈S∩P2

Zj ≥ max
j∈S∩P2

zj

∣∣∣ z1j, j ∈ S ∩ P2

]
≤ AS(z1).

Equivalently, we can use a numerical search to find critical values C̃Sj =

Φ−1
(
1− r̃Sj ξ

)
, where r̃Sj = rj

/ ∑
j∈S∩P2

rj, such that

PH∩S

[
max
j∈S∩P2

(
Zj − C̃Sj

)
≥ 0

∣∣∣ z1j, j ∈ S ∩ P2

]
= AS(z1),

and reject H∩S if max
j∈S∩P2

(
Zj − C̃Sj

)
≥ 0. We can see that using the preplanned test

ϕS or AS(Z1) yields the same rejection region when S ⊆ P2.

Example 4.6. Suppose that P1 = {1, 2} so Ω0 is partitioned into two smaller

populations. If, at the interim stage, it is decided to continue only with Ω1, then

P2 = {1}. Hence,

p2,S = PH1(Z1 ≥ z1 | z11)

= PH1 (w11z11 + w21Z21 ≥ w11z11 + w21z21) = 1− Φ(z21) =: p2,

for S = {1} and S = {1, 2}. Now, H12 = H1 ∩ H2 is rejected if p2 ≤ A{1,2}(z1).

Then, H1 is rejected if p2 ≤ A{1}(z1) and if H12 was rejected. Note that since

{1} ⊆ P2, we could have just tested H1 using the originally planned test ϕ{1}. This

is seen by observing that for S ⊆ P2, C̃Sj = CSj .

Population Combination

We consider an alternate methodology for selecting subgroups that is somewhat

simpler than the CER principle discussed above. For S ⊆ P1, recall that ΩS =⋃
j∈S

Ωj. Then ΩP2 is the overall population carried on to stage two after the interim
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analysis. Recall that θS is the overall treatment effect in ΩS , specified as the

weighted average of θj for which j ∈ S, see Equation 2.2 of Section 2.1.1. Now,

the hypothesis of interest is

H∪P2
: θP2 ≤ 0, no treatment effect in ΩP2 .

which is tested using the standardized statistic ZP2 for ΩP2 . Applying the closure

principle, we must now test all intersection hypotheses H∩S such that P2 ( S ⊆ P1.

Let Zi,S denote the pooled standardized statistic for ΩS over stage i. Then H∩S

can be tested using the statistic

ZS = w1,SZ1,S + w2,S∩P2Z2,S∩P2 , (4.6)

where empirical data weights are given as

w1,S =

√
tf0,S

tf0,S + (1− t)
, and w2,S∩P2 =

√
1− t

tf0,S + (1− t)
.

If, instead of using the empirical weights, we use prespecified weights, then the

procedure controls FWER strongly at level α. As previously noted in the thesis,

and in (Wang et al., 2009), using empirical data weights may result in some inflation

of error rates. With limited options for adaptation however, inflation is often

negligible. If early stopping is enforced, the procedure is likely conservative, even

if empirical data weights are used.

Note that this procedure simplifies the final analysis as we only consider one

elementary hypothesis, HP2 . This can be both a virtue and a weakness. If we

fail to reject any HS where P2 ⊆ S then there is no room to consider smaller

populations, P ′2 ( P2, without violating the closure principle. We see this by

noting that the test statistics for H∪P2
and H∩P2

, defined in Equation (4.6), are

exactly the same. Hence, if H∪P2
cannot be rejected, then neither can H∩P2

in this

setting. Note however, that rejection of H∪P2
does imply rejection of H∩P2

. Hence, if
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H∪P2
is indeed rejected, we may proceed to investigate intersection hypotheses H∩P ′2

for j ∈ P2 in a step-down manner without inflating Type I error probability.
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Chapter 5

K-Stage Group-Sequential Design with

Subgroup Selection

In this chapter, we propose a K-stage sequential confirmatory design that incorpo-

rates the data-driven option to redefine the target population at the first interim

analysis (the procedure name is abbreviated as GSDS). In practice, this design can

be thought of as a seamless Phase II/III design, where the first stage represents

Phase II, after which populations appearing to be non-responsive are dropped.

Subsequent stages represent interim analyses in a large-scale confirmatory Phase

III trial which is intended to prove treatment efficacy in the overall remaining

population following Phase II.

To demonstrate the procedure in practice, we include two worked examples in

Section 5.8. The first is an application to development of antidepressants, and

the second is for the testing of a promising agent in oncology. In Section 5.9, two

numerical examples are conducted to analyze basic operating characteristics of the

GSDS design. Also, we correct for the selection bias that results from stage-wise

testing. We conclude the chapter with a comparison of GSDS with the FE and

HUT procedures, developed in chapters 3 and 4.

5.1 Setup

We have an experimental treatment that is to be tested on a population of interest

Ω0. Suppose that from earlier phases of development, or from previous clinical

trials, there is evidence suggesting that Ω0 can be partitioned into disjoint subsets

140



Ω1, . . . ,Ω`, and that treatment efficacy may differ across these smaller populations

(subgroups). As before, define P = {1, . . . , `} as the index set of subgroups under

consideration. For S ⊆ P , define

ΩS =
⋃
j∈S

Ωj.

Let treatment efficacy in Ωj be parameterized by θj, and define θS as the weighted

average treatment effect over populations Ωj where j ∈ S, and S ⊆ P . We plan

to allow for a total of K − 1 interim analyses.

We construct our tests in terms of the efficient score and observed Fisher’s

information. Referring to Chapter 2, for k = 1, . . . , K, and j ∈ P , define Ykj and

Ikj as the efficient score and the cumulative observed information for θj at stage

k, respectively. Define the respective stage-wise increments as Xkj = Ykj − Yk−1,j

and ∆kj = Ikj −Ik−1,j. It can be shown that, asymptotically for small θj we have

Xkj ∼ N (θj∆kj,∆kj) , k = 1, . . . , K and j ∈ P . (5.1)

For now, we shall assume that the observation variance, σ2, is known. Hence the

relation in Equation (5.1) is exact. For composite populations ΩS with S ⊆ P ,

we define the efficient score, Yk,S , and the observed information Ik,S in a similar

manner.

5.2 Population Selection

At the first interim analysis, we allow non-responsive populations to be dropped

from the trial. We propose two decision rules for use during the first interim anal-

ysis. The first rule applies when we can assume no a priori ordering on treatment
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effects. In other words, other than believing that populations may respond differ-

ently to the proposed treatment, we have no prior belief that any one subgroup

is more responsive than another. The second rule applies when subgroups are or-

dered according to their expected treatment response. That is, the prior belief is

that θ1 ≥ θ2 ≥ · · · ≥ θ` (this might be applicable for nested populations). For

example, this could apply when testing an antidepressant believed to work best

on severely depressed individuals. Both decision rules rely on the use of a stop-

ping rule boundary l1, which for now we will assume is given (see Section 5.4 for

computational details.)

Decision Rules:

I For each j = 1, . . . , `, if X1j ≤ l1
√
I1j, then population Ωj is eliminated from

the trial. If S denotes the index set of retained populations, we know that

Y1,S >
∑
j∈S

l1
√
I1j =: l̃1,S . Also note that

∑
j∈S

√
I1j ≥

√∑
j∈S
I1j =

√
I1,S .

II Starting at Ω` and searching backwards (through the indices), find the first

Ωj for which X1j ≥ l1
√
I1j. Call this population Ωr, eliminate all Ωj for

j > r and retain all populations for which j ≤ r.

We refer to these decision rules as DR-I and DR-II. In each case, the remaining

populations, indexed by P∗ ⊆ P say, are pooled together and the hypothesis of

interest becomes HP∗ : θP∗ = 01. We also enrich the chosen subgroups, so all

planned observations for remaining stages may be allocated to ΩP∗ . Note that

enrichment is not required, but intentions should be prospectively specified. We

shall see that computation of stopping boundaries requires knowledge of planned

information accumulation at each stage.

1Note that this is the hypothesis H∪
P∗ which was defined in Section 4.3. However, as there is

no ambiguity in the notation in this chapter, we simplify our notation by removing the “∪” from
the superscript.
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If populations do not admit a natural ordering, then DR-I may be applied. In

this case however, it is possible that subgroups are selected in such a way as to

make the resulting composite population appear biologically implausible. To guard

against this, the decision rules could be combined to guide population selection in a

“medically reasonable” way. This may be done by partitioning P into q < ` disjoint

subsets P1, . . . ,Pq, and imposing an ordering within each of these subsets. Then

within each subset Pi, for i = 1, . . . , q, DR-II is used to determine the population

ΩSi , Si ⊆ Pi, that will be carried on to stage two. The overall population taken to

stage two is thus ΩS1 ∪ · · · ∪ ΩSq .

5.3 Control of the FWER

We aim to control Type I error rates at level α. Note that since the treatment

effect in ΩS is a weighted average, θS = 0 only if θj = 0 for all j ∈ S. Hence, false

positives can only occur when we have selected a composite population in which all

θj = 0. Note that null hypotheses are simple rather than composite, i.e. H : θ = 0

rather than H : θ ≤ 0. This is done so as to eliminate the possible presence of

opposite direction treatment effects, which are believed to be very unlikely (see

discussion in Section 1.2).

To control FWER strongly at level α, we must ensure that no combination

of ineffective populations is chosen, and the resulting null hypothesis is rejected,

with probability greater than α. It is easy to see that the probability of selecting

a population S for which θS = 0 at the first interim analysis is maximized when

all populations are nonresponsive, i.e. θj = 0 for all j ∈ P . (Else we would have a

non-zero probability of selecting a composite population with positive treatment
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effect.) Hence, in order to protect FWER strongly at level α, it suffices to obtain

decision boundaries such that Type I error probability is bounded above by α when

the global null hypothesis H0 : θ1 = · · · = θ` = 0 is true.

The decision rules employed at the first interim analysis mean that information

levels for subsequent stages depend on stage one observations Y1j, j ∈ P . In

(Jennison and Turnbull, 2000, Ch. 7.4), an example is given where such dependence

can result in inflated Type I error. However, this inflation occurs as a result

of skipping an interim analysis if early results are unimpressive, and the critical

boundaries that are used in the example are not computed to account for the exact

decision rules. Hence Type I error probability is not guaranteed to be less than

α. In our procedure however, we specifically evaluate the probability of rejection

for any combination of populations. These probabilities are then summed up

to obtain the marginal probability of rejection, and a numerical search obtains

stopping boundaries that ensure that probability of false rejection is no larger

than α for the whole trial.

As currently stated, the decision rules introduced in Section 5.2 only allow

populations to be discarded early for futility. In particular, it is not permitted

to reject the null hypothesis for an individual population Ωj and then to proceed

with the remaining populations to later stages. There are two reasons for imposing

this restriction. First, as we see in the next section, the fact that we need only

be concerned with the global null hypothesis greatly simplifies computation of

stopping boundaries. If we allowed early rejection of individual populations, then

protecting FWER strongly would be significantly more complicated. Second, Wang

et al. (2007b) caution against early rejection of small subgroups even if they appear

promising; early findings are often based on sample sizes that are too small to
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assert with confidence that a treatment is effective in such populations. On the

other hand, if early results appear very negative (or potentially harmful), we have

an ethical obligation not to unnecessarily expose patients to a treatment that is

unlikely to be of any benefit. Therefore it is desirable to eliminate populations

that appear to be nonresponsive at a reasonably early point in the trial.

5.4 Construction of Sequential Stopping Rules

Let P∗ be the random index set of populations chosen after the first stage. Suppose

we have planned interim analysis times {tk}Kk=0, such that 0 = t0 < t1 < · · · <

tK−1 < tK = 1. A stopping rule is constructed via the use of spending functions

(Lan and DeMets, 1983), defined in terms of calendar times (Lan and DeMets,

1989). We compute upper and lower boundaries (lk, uk)
K
k=1 with lk ≤ uk for all k,

where crossing the lower boundary results in termination of the trial and acceptance

of all hypotheses, while crossing the upper boundary results in termination with

rejection of HP∗ . To ensure trial termination at stage K, we require that lK = uK .

As we use the efficient score as our test statistic, actual rejection and accep-

tance boundaries will depend on information already observed. To this end, define

adjusted boundaries

l̃k,S := lk
√
Ik,S and ũk,S := uk

√
Ik,S for k = 1, . . . , K, S ⊆ P .

If Yk,S ≥ ũk,S (Yk,S ≤ l̃k,S) for some k, then HS is rejected (accepted) and the

trial stops. Else, if Yk,S ∈
(
l̃k,S , ũk,S

)
, the trial proceeds to stage k+ 1. We derive

boundaries using the approach of Stallard and Facey (1996), in which two spending

functions are defined under the assumption that the global null hypothesis is true.

Let α∗U : [0, 1]→ [0, α] and α∗L : [0, 1]→ [0, 1−α] be non-decreasing functions with
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α∗U(0) = α∗L(0) = 0, α∗U(1) = α, and α∗L(1) = 1−α. Let θ ∈ R` denote a particular

treatment efficacy configuration, and define (for S ⊆ P)

ψk,S (l1, u1, . . . , lk, uk;θ)

:= Pθ[Select S and reject HS exactly at stage k]

= Pθ

[
P∗ = S, Y1,S ∈

(
l̃1,S , ũ1,S

)
, . . . , Yk−1,S ∈

(
l̃k−1,S , ũk−1,S

)
, Yk,S ≥ ũk,S

]
,

(5.2)

and

ξk,S (l1, u1, . . . , lk, uk;θ)

:= Pθ[Select S and accept HS exactly at stage k]

= Pθ

[
P∗ = S, Y1,S ∈

(
l̃1,S , ũ1,S

)
, . . . , Yk−1,S ∈

(
l̃k−1,S , ũk−1,S

)
, Yk,S ≤ l̃k,S

]
,

(5.3)

where Pθ indicates that the probability is computed under the configuration θ. By

summing over subsets S ⊆ P , we get marginal stopping probabilities for a given

stage k, viz.

ψk (l1, u1, . . . , lk, uk;θ) := Pθ[Stop trial exactly at stage k with rejection]

=
∑
S⊆P

ψk,S (l1, u1, . . . , lk, uk;θ) ,

and

ξk (l1, u1, . . . , lk, uk;θ) := Pθ[Stop trial exactly at stage k with no rejection]

=
∑
S⊆P

ξk,S (l1, u1, . . . , lk, uk;θ) .

Upper and lower boundaries are now obtained by recursively solving the expressions

ψk (l1, u1, . . . , lk, uk; 0) = α∗U(tk)− α∗U(tk−1) (5.4)

and

ξk (l1, u1, . . . , lk, uk; 0) = α∗L(tk)− α∗L(tk−1), (5.5)
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where 0 is an `-vector of zeroes. Hence, both upper and lower boundaries are

obtained by evaluating path probabilities under the complete null hypothesis. The

definition of functions α∗U(t) and α∗L(t) ensures that the boundaries meet at stage

K, forcing the trial to end. To ensure a desired power, a numerical search for

required observed information is required. This is discussed in more detail in

Section 5.5.

We can specify probabilities ψk,S and ξk,S in terms of iterated integrals. First,

given S ⊆ P , we write

ψk,S (l1, u1, . . . , lk, uk;θ) = Pθ [P∗ = S]× ψ̃k,S (l1, u1, . . . , lk, uk;θ) , (5.6)

where

ψ̃k,S (l1, u1, . . . , lk, uk;θ)

= Pθ

[
Y1,S ∈

(
l̃1,S , ũ1,S

)
, . . . , Yk−1,S ∈

(
l̃k−1,S , ũk−1,S

)
, Yk,S ≥ ũk,S | P∗ = S

]
A key insight is that the sequence of random variables Yk,S is Markovian, so the

conditional distribution of Yk,S given Y1,S = y1,S , . . . , Yk−1,S = yk−1,S depends only

on yk−1. Hence, for each k = 2, . . . , K,

ψ̃k,S (l1, u1, . . . , lk, uk;θ)

= Pθ

[
Y1,S ∈

(
l̃1,S , ũ1,S

)
, . . . , Yk−1,S ∈

(
l̃k−1,S , ũk−1,S

)
, Yk,S ≥ ũk,S | P∗ = S

]
=

∫ ũ1,S

l̃1,S

· · ·
∫ ũk−1,S

l̃k−1,S

∫ ∞
ũk,S

f1(y1,S |θ)f2(y2,S |y1,S ;θ) · · · fk(yk,S |yk−1,S ;θ)
k∏
i=1

dyi,S ,

(5.7)

where fi(yi,S |yi−1,S ;θ) is the conditional density of Yi,S given P∗ = S and Yi−1,S =

yi−1,S for 2 ≤ i ≤ k, and f1(y1,S |θ) is the conditional density of Y1,S given P∗ = S.
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Similarly,

ξ̃k,S (l1, u1, . . . , lk, uk;θ)

= Pθ

[
Y1,S ∈

(
l̃1,S , ũ1,S

)
, . . . , Yk−1,S ∈

(
l̃k−1,S , ũk−1,S

)
, Yk,S ≤ l̃k,S | P∗ = S

]
=

∫ ũ1,S

l̃1,S

· · ·
∫ ũk−1,S

l̃k−1,S

∫ l̃k,S

−∞
f1(y1,S |θ)f2(y2,S |y1,S ;θ) · · · fk(yk,S |yk−1,S ;θ)

k∏
i=1

dyi,S .

(5.8)

For i = 2, . . . , k, the conditional densities fi(yi,S |yi−1,S ;θ) are normal with mean

yi−1,S + θS∆i,S and variance ∆i,S . That is,

fi(yi,S |yi−1,S ;θ) ≡ fYi,P∗ |P∗=S(yi,P∗|yi−1,P∗ ,P∗ = S;θ)

=
1√
∆i,S

ϕ

(
yi,S − (yi−1,S + θS∆i,S)√

∆i,S

)
, (5.9)

where ϕ(·) is the standard normal density. What remains then is to derive the

density

f1(y1,S |θ) ≡ fY1,P∗ |P∗=S(y1,P∗|P∗ = S;θ),

the form of which depends on the decision rule that is followed at the first interim

analysis.

5.4.1 Derivation of f1 with respect to DR-I

For j ∈ P , we have X1j ∼ N
(
νj, ς

2
j

)
, where νj = θj∆1j, ς

2
j = ∆1j. Write l1j =

l1
√

∆1j. Then, define the density of X1j|X1j > l1j as

hj(xj) := [P(X1j > l1j)]
−1 1{xj > l1j}

1

ςj
ϕ

(
xj − νj
ςj

)
=

[
Φ

(
νj − l1j
ςj

)]−1

1{xj > l1j}
1

ςj
ϕ

(
xj − νj
ςj

)
.
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Without loss of generality, suppose that the first r populations were chosen, and

the rest were eliminated. (If this were not the case we can easily relabel the

populations to make it so.) Now define the partial sum

Ỹi =
i∑

j=1

X1j,

and let gi(yi) denote the density of Ỹi. Using convolution, we can write the densities

gi for i = 2, . . . , r:

g2(y2) =

∫ ∞
−∞

h1(x1)h2(y2 − x1)dx1

=

∫ y2−l12

l11

h1(x1)h2(y2 − x1)dx1,

where the integration limits arise from the fact that h1(x1) > 0 if and only if

x1 > l11, and h2(y2 − x1) > 0 if and only if y2 − x1 > l12. Similarly,

g3(y3) =

∫ y3−l13

l11+l12

g2(y2)h3(y3 − y2)dy2,

...

gr(yr) =

∫ yr−l1r

r−1∑
j=1

l1j

gr−1(yr−1)hr(yr − yr−1)dyr−1.

Hence, the density of Y1,S , given P∗ = S, can be written as a (r− 1)-fold multiple

integral:

f1(y1,S |θ) =

y1,S−l1r∫
lr−1,S

yr−1−l1,r−1∫
lr−2,S

· · ·
y2−l12∫
l1,S

mr(y1,S , yr−1, . . . , y1)
r−1∏
i=1

dyi, (5.10)

where

mr(y1,S , yr−1, . . . , y1) = hr(y1,S − yr−1)hr−1(yr−1 − yr−2) · · ·h2(y2 − y1)h1(y1),

and li,S :=
i∑

j=1

l1j = l1
i∑

j=1

√
∆1j. If we want non-zero probability of stopping for

rejection at the first interim analysis, then u1 will be finite, and this probability
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can be written as

Pθ (Y1,S ≥ ũ1,S |P∗ = S) =

∫ ∞
ũ1,S

∫ yr−l1r

lr−1,S

gr−1(yr−1)hr(yr − yr−1)dyr−1dyr

=

∫ ũ1,S−l1r

lr−1,S

gr−1(yr−1)

(∫ ∞
ũ1,S

hr(yr − yr−1)dyr

)
dyr−1

+

∫ ∞
ũ1,S−l1r

gr−1(yr−1)

(∫ ∞
yr−1+l1r

hr(yr − yr−1)dyr

)
dyr−1.

Define

er−1 (yr−1, ũ1,S ;θ) =

∫ ∞
ũ1,S

hr(yr − yr−1)dyr =

∫ ∞
ũ1,S−yr−1

hr(z)dz

= Pθ (X1r ≥ ũ1,S − yr−1 | X1r > l1r) .

Since yr−1 < ũ1,S − l1r, X1r ≥ ũ1,S − yr−1 implies that X1r > l1r, and hence

er−1 (yr−1, ũ1,S ;θ) =

[
Φ

(
νr − l1r
ςr

)]−1

Φ

(
νr − (ũ1,S − yr−1)

ςr

)
.

Also note that by setting z = yr − yr−1, we get∫ ∞
yr−1+l1r

hr(yr − yr−1)dyr =

∫ ∞
l1r

hr(z)dz

= Pθ(X1r > l1r|X1r > l1r) = 1.

Therefore, we have

Pθ (Y1,S ≥ ũ1,S |P∗ = S) =

∫ ũ1,S−l1r

lr−1,S

gr−1(yr−1)er−1 (yr−1, ũ1,S ;θ) dyr−1

+

∫ ∞
ũ1,S−l1r

gr−1(yr−1)dyr−1, (5.11)

which can be computed recursively using numerical integration.

5.4.2 Derivation of f1 with respect to DR-II

Deriving the density f1(y1,S |θ) is quite a bit simpler when DR-II is used, as the

ordering assumption only restricts the values that X1r can take on. Suppose we
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are given P∗ = S ⊆ P with a total of r populations chosen. Then we know that

X1r > l1
√

∆1r = l1r, and its density is hr(xr) as defined above. As there are

no restrictions on the values of X11, . . . , X1,r−1, the partial sum Ỹr−1 is normally

distributed with mean ν̃S = θS\{r}∆1,S\{r} and variance ς̃2
S = ∆1,S\{r}. Denote

its density by h̃r−1(·). In the notation introduced in the derivation for DR-I, the

density of Y1,S is then

f1(y1,S |θ) =

∫ ∞
l1r

hr(xr)h̃r−1(y1,S − xr)dxr, y1,S ∈ R. (5.12)

Hence, if we allow non-zero probability of termination with rejection after stage

one, this can be expressed as

Pθ (Y1,S > ũ1,S |P∗ = S) =

∫ ∞
ũ1,S

∫ ∞
l1r

hr(xr)h̃r−1(yr − xr)dxrdyr

=

∫ ∞
l1r

hr(xr)

∫ ∞
ũ1,S−xr

h̃r−1(z)dzdxr

=

∫ ∞
l1r

hr(xr)Φ

(
ν̃S − (ũ1,S − xr)

ς̃S

)
dxr,

where, after changing the order of integration in the second line, the substitution

z = yr − xr was performed to yield the final result.

5.5 Power and Maximum Information

Our specification of stopping boundaries ensures that the Type I error probability

in this design is bounded above by α. To achieve desired probability of a positive

result, we must conduct a numerical search for the required information. As there

are many populations under consideration, the term “power” is not well defined.

We therefore list a number of treatment efficacy configurations under which one

might wish to achieve a certain rejection probability. Denote a clinical treatment
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difference as θ∗, and let β ∈ (0, 1) be given. Let

Imax =
K∑
k=1

(Ik − Ik−1) =
K∑
k=1

∆k

denote the maximum cumulative observed information, where Ik and ∆k are the

cumulative and stage-wise observed information levels, respectively. (If σ is known,

we can think of this as proportional to the maximum sample size that the trial

might require before a conclusion is reached.)

1. Find Imax to ensure that

1− P[Accept all Hj | θj = θ∗, ∀j ∈ P ] = 1− β,

that is ∑
S⊆P

K∑
k=1

ψk,S (l1, u1, . . . , lk, uk;θ
∗) = 1− β. (5.13)

This guarantees a “positive result” with probability 1− β assuming all sub-

groups enjoy a clinically significant benefit, but might be underpowered to

yield stronger results involving many subgroups.

2. Find Imax to ensure that

P[Reject H0 (all subgroups) | θj = θ∗, ∀j ∈ P ] = 1− β,

⇐⇒
K∑
k=1

ψk,P (l1, u1, . . . , lk, uk;θ
∗) = 1− β (5.14)

This gives a “complete result” with probability 1 − β, and makes positive

results involving some but not all subgroups quite likely. However, this power

requirement might be too expensive in terms of required sample size.

3. Fix P∗ ⊆ P and suppose θj = θ∗ for j ∈ P∗ and θj = 0 elsewhere. We can

find Imax to ensure that

P[Reject HS , some P∗ ⊆ S ⊆ P | θj = θ∗, j ∈ P∗ and θj = 0 else] = 1− β,
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which is equivalent to

∑
P∗⊆S⊆P

K∑
k=1

ψk,S (l1, u1, . . . , lk, uk;θ
∗) = 1− β (5.15)

This might be appropriate if we have a subset P∗ ⊆ P of populations of

particular interest, and guarantees a positive result with probability 1 − β

when only a portion of the overall population is responsive.

An additional option is to search for Imax such that these power requirements are

satisfied with an average probability of 1− β.

5.6 Sample Size Distribution

Let Iterm denote the observed cumulative information upon termination of a clinical

trial. Then Iterm is a random variable, whose expectation can be computed. If we

assume that planned stage-wise information levels I1, . . . , IK are fixed before the

trial starts, then the expected information on termination is

Eθ [Iterm] =
∑
S⊆P

{
K∑
k=1

[ψk,S(l1, u1, . . . , lk, uk;θ) + ξk,S(l1, u1, . . . , lk, uk;θ)] Ik

}
,

(5.16)

where quantities ψk,S and ξk,S are defined in Equations (5.2) and (5.3).

Note that this definition of expected information includes the information that

is “discarded” after nonresponsive populations are eliminated during the first stage.

If we prefer that expected information refers only to ΩS , we can replace Ik with

Ik,S in Equation (5.16).
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5.7 Point Estimation

In this section we consider point estimation of the parameter θS where P∗ = S ⊆ P

is the index set of retained populations after stage one. Let Ck,S = (l̃k,S , ũk,S) be

the continuation region at stage k. If we assume that S and k fix Ik,S , we can

express the result of a trial with the statistic (S, T, YT,S), where

T = min{k : Yk,S /∈ Ck,S},

i.e. T is the stage at which a stopping boundary was crossed. The form of the

density for Y1,P∗|P∗ = S does not easily imply a sufficient statistic for θS . However,

we can estimate θS (conditioning on P∗ = S) using the MLE from group sequential

designs, θ̂S = YT,S/IT,S , see for example (Jennison and Turnbull, 2000, Ch. 8.2).

The conditional bias can be estimated by computing Eθ

[
θ̂P∗ − θP∗|P∗ = S

]
, as

follows. Let pk(yk,S |θ) denote the density of Yk,P∗ given that P∗ = S. That is, let

p1(yk,S |θ) = f1(yk,S |θ), where f1 is given in Equation (5.10) or (5.12) depending

on which decision rule is used. Then, for k = 2, . . . , K, let

pk(yk,S |θ) =

∫
Ck−1

pk−1(yk−1,S |θ)fk(yk,S |yk−1,S ;θ)dyk−1,S ,

where fk(yk,S |yk−1,S ;θ) is given in Equation (5.9). Then,

Eθ

[
θ̂P∗ |P∗ = S

]
=

K∑
k=1

∫
yk,S /∈Ck,S

pk(yk,S |θ)
yk,S
Ik,S

dyk,S

=
K∑
k=1

{∫ ∞
ũk,S

pk(yk,S |θ)
yk,S
Ik,S

dyk,S +

∫ l̃k,S

−∞
pk(yk,S |θ)

yk,S
Ik,S

dyk,S

}
.

(5.17)
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It is straightforward to show that∫ ∞
ũk,S

pk(yk,S |θ)
yk,S
Ik,S

dyk,S

=

∫ ũk−1,S

l̃k−1,S

∫ ∞
ũk,S

pk−1(yk−1,S |θ)fk(yk,S |yk−1,S ;θ)
yk,S
Ik,S

dyk,S dyk−1,S

=

∫ ũk−1,S

l̃k−1,S

pk−1(yk−1,S |θ)U
(1)
S (ũk,S , yk−1,S ,∆k,S , Ik,S ;θ) dyk−1,S ,

where

U
(1)
S (ũk,S , yk−1,S ,∆k,S , Ik,S ;θ) :=

∫ ∞
ũk,S

fk(yk,S |yk−1,S ;θ)
yk,S
Ik,S

dyk,S

=
1

Ik,S

{
ϕ

(
ũk,S − (yk−1,S + θS∆k,S)√

∆k,S

)√
∆k,S

+Φ

(
yk−1,S + θS∆k,S − ũk,S√

∆k,S

)
(yk−1,S + θS∆k,S)

}
.

Similarly, ∫ l̃k,S

−∞
pk(yk,S |θ)

yk,S
Ik,S

dyk,S

=

∫ ũk−1,S

l̃k−1,S

pk−1(yk−1,S |θ)L
(1)
S

(
l̃k,S , yk−1,S ,∆k,S , Ik,S ;θ

)
dyk−1,S ,

where

L
(1)
S

(
l̃k,S , yk−1,S ,∆k,S , Ik,S ;θ

)
:=

∫ l̃k,S

∞
fk(yk,S |yk−1,S ;θ)

yk,S
Ik,S

dyk,S

=
1

Ik,S

{
− ϕ

(
l̃k,S − (yk−1,S + θS∆k,S)√

∆k,S

)√
∆k,S

+Φ

(
l̃k,S − (yk−1,S + θS∆k,S)√

∆k,S

)
(yk−1,S + θS∆k,S)

}
.

We can hence evaluate the conditional bias of θ̂P∗ given P∗ = S, using a given value

of θS . Computations are straightforward, involving only a succession of univariate

integrals (as was the case when computing stopping boundaries).
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It may also be of interest to evaluate the conditional variance of our estimates,

i.e. Var
(
θ̂P∗|P∗ = S

)
. For this, we need to compute

Eθ

[
θ̂2
P∗ |P∗ = S

]
=

K∑
k=1

{∫ ∞
ũk,S

pk(yk,S |θ)
y2
k,S

I2
k,S
dyk,S +

∫ l̃k,S

−∞
pk(yk,S |θ)

y2
k,S

I2
k,S
dyk,S

}
.

(5.18)

In similar fashion as above, we can show that∫ ∞
ũk,S

pk(yk,S |θ)
y2
k,S

I2
k,S
dyk,S

=

∫ ũk−1,S

l̃k−1,S

∫ ∞
ũk,S

pk−1(yk−1,S |θ)fk(yk,S |yk−1,S ;θ)
y2
k,S

I2
k,S
dyk,Sdyk−1,S

=

∫ ũk−1,S

l̃k−1,S

pk−1(yk−1,S |θ)U
(2)
S (ũk,S , yk−1,S ,∆k,S , Ik,S ;θ) dyk−1,S ,

where

U
(2)
S (ũk,S , yk−1,S ,∆k,S , Ik,S ;θ) :=

∫ ∞
ũk,S

fk(yk,S |yk−1,S ;θ)
y2
k,S

I2
k,S
dyk,S

=
1

I2
k,S

{[
∆k,Szu + 2(yk−1,S + θS∆k,S)

]
ϕ(zu)

+
[
∆k,S + (yk−1,S + θS∆k,S)2

]
Φ(−zu)

}
,

and zu =
[
ũk,S − (yk−1,S + θS∆k,S)

]
/
√

∆k,S . Similarly,∫ l̃k,S

−∞
pk(yk,S |θ)

y2
k,S

I2
k,S
dyk,S

=

∫ ũk−1,S

l̃k−1,S

pk−1(yk−1,S |θ)L
(2)
S

(
l̃k,S , yk−1,S ,∆k,S , Ik,S ;θ

)
dyk−1,S ,

where

L
(2)
S (ũk,S , yk−1,S ,∆k,S , Ik,S ;θ) :=

1

I2
k,S

{
−
[
∆k,Szl + 2(yk−1,S + θS∆k,S)

]
ϕ(zl)

+
[
∆k,S + (yk−1,S + θS∆k,S)2

]
Φ(zl)

}
,

and zl =
[
l̃k,S − (yk−1,S + θS∆k,S)

]
/
√

∆k,S .
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We can get unconditional bias Eθ

[
Eθ

[
θ̂S − θS |S

] ]
using Equation (5.17), and

by summing over stage one decision probabilities. In the case that P∗ = {j},

j ∈ P , we can compute the conditional bias of θ̂j using the above formulae. It

might also be of interest to obtain the unconditional bias of θ̂j. In that case, we

could evaluate the quantities Eθ

[
θ̂j|j /∈ P∗

]
and Eθ

[
θ̂j|j ∈ P∗

]
. The first of these

is straightforward: evaluate Eθ

[
Y1j/I1j|Y1j < l1

√
I1j

]
using the inverse Mills ratio.

In the analysis of Section 5.4 we do not keep track of individual populations past

the first stage, so Eθ

[
θ̂j|j ∈ P∗

]
might be easier to obtain with simulation. More

work is required to express the unconditional expectation Eθ(θ̂j) analytically.

It is known that group sequential designs yield biased estimators. Wang and Le-

ung (1997) proposed a bootstrap algorithm for bias-reduction in a single-population

group sequential design, and we employ a simple extension of this algorithm that

accounts for multiple populations. At the termination of a clinical trial, we have

maximum likelihood estimates θ̂j for all populations Ωj. For populations elimi-

nated at the first interim analysis, this is simply θ̂1j, and for remaining populations

use θ̂T,j. The bootstrap algorithm is now outlined, taking input θ̂.

1. Generate B bootstrap samples via simulation, using θ̂ as the treatment effect

parameter. That is, simulate B clinical trials using original information levels

and stopping boundaries. Each run will yield a bootstrap estimate θ̂∗bj for

j ∈ P and b = 1, . . . , B. The mean bootstrap MLE for θj is then defined as

θ̄∗B1,j =
1

B

B∑
b=1

θ̂∗bj .

2. Set θ̂∗1,j = θ̂j −
(
θ̄∗B1,j − θ̂j

)
, where

(
θ̄∗B1,j − θ̂j

)
is the simulated bootstrap bias

estimate.

As suggested by Wang and Leung (1997), the algorithm can be repeated to reduce
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higher order bias, using the most recent bias-adjusted estimate of θ, θ̂∗, as the

input. In general, suppose we have applied the adjustment algorithm r − 1 times,

and currently have adjusted estimates θ̂∗r−1,j for j ∈ P∗. Now, redo step 1 above

to get θ̄∗Br,j . Then our new bias-adjusted estimate of θj is given as

θ̂∗r,j = θ̂j −
(
θ̄∗Br,j − θ̂∗r−1,j

)
. (5.19)

This re-application of the bootstrap might be considered as a simple version of

the “double bootstrap” introduced by Beran (1988). In subsequent numerical

examples, we also construct bootstrap confidence intervals. A 1 − 2α interval is

obtained in a non-parametric fashion by evaluating α and 1− α percentiles of the

B bootstrap simulations that are generated via the algorithm discussed above.

5.8 Worked Examples

In this section, the GSDS procedure is illustrated by showing how it could be

employed in two types of clinical trials where the target populations may exhibit

heterogeneity with respect to treatment response.

5.8.1 Clinical Trial for Depression Treatment

We consider the example of testing a new treatment intended to treat patients suf-

fering from depression disorder. The efficacy of the new treatment is compared to

that of an active control, and the primary endpoint is change in the Hamilton De-

pression Index (HAMD) after 6 weeks of therapy. Let µE and µC be the respective

mean 6-week declines (negative change from baseline, so µ > 0 implies improve-

ment) in HAMD for the experimental treatment and control, and let θ = µE − µC
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be the HAMD improvement resulting from the new treatment. As has been seen

with past experience in similar trials (Mehta and Patel, 2006), we assume that the

observation standard deviation σ is known and equal to 10. Assuming that patient

responses are normally distributed, the efficient score and observed information are

given as

Y = I ·
(
X̄E − X̄C

)
, I =

n

4σ2
,

where X̄E and X̄C are the respective sample mean treatment responses from ex-

perimental and control treatments, and n is the total sample size. Note that the

numbers of patients assigned to the new and control treatments are equal to n
2
.

The HAMD takes integer values 0–52, where scores from 8–13 indicate mild

depression, 14–18 moderate depression, 19–22 severe depression and 23 or greater

very severe depression. Meta-analyses conducted by Kirsch et al. (2008) and

Fournier et al. (2010) have found evidence suggesting that benefits for treatment

versus control are mostly confined to patients suffering from the most severe form

of depression. This issue has also received widespread mainstream media attention,

see for example Begley (2010). In our example, we therefore assume that there

are two populations of interest. Namely, let Ω1 consist of patients whose initial

HAMD score is ≥ 23, and let Ω2 be the remaining patients suffering from less

severe depression (i.e. HAMD ≤ 22). Fournier et al. (2010) report that roughly

70% of treatment-seeking outpatients have HAMD scores ≤ 22, so we assume that

f01 = 0.3 = 1− f02. We let θ1 and θ2 denote the respective mean HAMD improve-

ments of the new treatment over control for Ω1 and Ω2. Then, θ0 = f01θ1 + f02θ2

denotes the mean HAMD improvement for the general population, Ω0 = Ω1 ∪ Ω2.

As it is believed that patients with severe depression are likely more responsive,

we consider the population structure to be a nested one, and so DR-II is applicable
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(see Section 5.2). A three stage trial is planned, where each of the three stages

uses an equal amount (33%) of the planned sample size.2 If the trial continues but

Ω2 is eliminated, then all planned observations are allocated to Ω1 for stages two

and three. Hence there are three possible conclusions to this trial:

• Fail to reject any null hypothesis, hence concluding that the new treatment

does not constitute an improvement, i.e. overall futility.

• Reject the null hypothesis H1 : θ1 = 0, while accepting H2 : θ2 = 0. The

treatment only improves on the control for the most severely depressed pa-

tients (HAMD ≥ 23).

• Reject the null hypothesis H0 : θ0 = 0, where θ0 = f01θ1 + f02θ2. The

treatment constitutes an improvement for all patients.

Spending functions are defined as

α∗U(0.33) = 0.0083; α∗U(0.67) = 0.0167; α∗U(1) = 0.025,

and

α∗L(0.33) = 0.3250; α∗L(0.67) = 0.6500; α∗L(1) = 0.975.

Recursively solving Equations (5.4) and (5.5) as described in Section 5.4 results in

the following standardized boundaries:

(l1, u1) = (0.1766, 2.5551); (l2, u2) = (0.4580, 2.4649); (l3, u3) = (2.3365, 2.3365).

Following the work of Mehta and Patel (2006), we consider the value θ∗ = 4 to

represent a clinically meaningful improvement over the active control. We set

α = 0.025, and determine the required sample size so as to guarantee a positive

2It is not necessary to make all stages be of equal length, as the procedure outlined is able
to handle unequal increments in information (as long as planned information accumulation is
explicitly stated at the outset).
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result (reject H0 or H1) with probability 1 − β = 0.9, when θ1 = 4 and θ2 = 2

(i.e. treatment effect in Ω2 is positive but not practically significant). Solving for

Imax in Equation (5.13) of Section 5.5, this power requirement results in Imax =

1.6494 which, given the fact that σ = 10, is approximately equivalent to a sample

size of 660 patients. For comparison, requiring that the power specification be

satisfied when (θ1, θ2) = (4, 0) results in a sample size of 1,665, while (θ1, θ2) =

(4, 4) requires only 313 patients. With a total sample size of 660, each stage will

sample 220 patients, with 66 coming from Ω1 and 154 from Ω2.

After the first stage, observed information for Ω1 and Ω2 is I11 = 0.1649 and

I12 = 0.3849, respectively. Hence the population-specific lower boundaries are

l11 = l1
√
I11 = 0.0717 and l12 = l1

√
I12 = 0.1096. Suppose that we observe ef-

ficient scores Y11 = 0.1803 and Y12 = −0.0119 (giving point estimates θ̂11 = 1.09

and θ̂12 = −0.03). Then, as Y12 < l12, patients from Ω2 will no longer be recruited

for the trial (H2 : θ2 = 0 is accepted at this point). The upper boundary for

Ω1 is u11 = u1

√
I11 = 1.0377, so Y11 ∈ (l11, u11) and sampling continues with all

patients coming from Ω1 (i.e. we enrich the subpopulation Ω1). The Ω1 increment

in information for stage two will now be ∆21 + ∆22 = 0.5498 (220 patients). Stage

two boundaries are l̃2,{1} = l2
√
I2,{1} = 0.3872 and ũ2,{1} = u2

√
I2,{1} = 2.0839.

Suppose Y2,{1} = 2.3408. Then Y2,{1} > ũ2,{1} and the trial stops with rejection of

H1 : θ1 = 0. Stage three is not conducted, and the trial reached a positive con-

clusion based on observed information equal to I2,{1} = 0.7147 which corresponds

to approximately 286 patients (from Ω1). The 220 observations planned for stage

three are not needed.

The resulting point estimates, θ̂1 = Y2,{1}/I2,{1} = 3.2752 and θ̂2 = Y12/I12 =

−0.0309, can be adjusted according to the bias-correction procedure outlined in
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Section 5.7. Applying the bootstrap algorithm, we obtain bias adjusted estimates

θ̂∗new
1 = 2.8199 and θ̂∗new

2 = 0.5736. The respective standard errors for these

adjustments (using B =10,000 bootstrap replications) are 1.59 and 1.16. We can

also obtain 1 − 2α bootstrap percentile intervals in a non-parametric fashion by

using the α and 1 − α bootstrap sample percentiles. Doing so for α = 0.025, we

obtain the intervals

For θ1 : (1.64, 7.08); For θ2 : (−2.73, 1.11).

Bootstrapped bias estimates can exhibit a fair amount of variability, so the stan-

dard errors and intervals we observe here are not surprising. We do note that

θ∗ = 4 is excluded from the interval for θ2, but is included in the interval for

θ1. Also of note is that 0 is included in the interval for θ2 but excluded from the

interval for θ1. Hence the intervals are concordant with the trial conclusions.

We end this example by investigating what the trial conclusion would have

been, had a flexible adaptive seamless Phase II/III design been employed, where

arbitrary trial modifications are allowed at interim analysis points (Bretz et al.,

2006). We still assume that α = 0.025, and that Type I error spending is equally

allocated over the three stages, so α∗ = 0.0083 will be spent at each stage. Stage-

wise p-values are computed as

p1j = 1− Φ
[
Y1j/

√
I1j

]
, and pkj = 1− Φ

[
Ykj − Yk−1,j√
Ikj − Ik−1,j

]
,

for k = 2, 3 and j = 0, 1, 2. For stage k, the p-values are combined using the

weighted inverse normal combination method:

C(p1, . . . , pk) =

(
k∑
s=1

w2
s

)−1/2 k∑
i=1

wiΦ
−1(1− pi),

and rejection occurs if 1 − Φ[C(p1, . . . , pk)] < α∗. As each stage uses an equal

amount of the planned sample size, combination weights wk, for k = 1, 2, 3, are all

equal to
√

1/3.
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The hypotheses of interest are H0 : θ0 = 0 and H1 : θ1 = 0, so we must

account for multiple testing by computing multiplicity-adjusted p-values.3 We do

this according to Simes’ procedure (Simes, 1986), whereby the kth stage p-value

for the intersection hypothesis H01 = H0 ∩H1 is

p∗k0 = min {2 min{pk1, pk0},max{pk1, pk0}} , k = 1, 2, 3.

Now suppose that at the end of stage one, a decision is (arbitrarily) made to

discontinue sampling from Ω2, and to continue only with patients from Ω1. Using

the numbers given above, stage one results in p-values p11 = 0.3285, p12 = 0.5077 so

p10 = 0.4102 = p∗10. As Ω2 is not sampled during stage two, H01 must be tested by

computing C(p∗10, p21). Using the observed value of Y21, we get that p21 = 0.0018,

and hence

C(p11, p21) = 2.3743, and C(p∗10, p21) = 2.2209.

Noting that 1 − Φ[2.3743] = 0.0088 > α∗ = 0.0083, we see that H1 cannot be

rejected at this stage (neither can H01). Note that C(p11, p21) and C(p∗10, p21)

were computed using the pre-specified weights, so wk =
√

1/3 for all k, which are

inefficient as the population Ω1 was enriched for the second stage.

Using empirical data weights, i.e. using weights that are adjusted to reflect

observed increments in information (accounting for enrichment), we get

C̃(p11, p21) = 2.7689, and C̃(p∗10, p21) = 2.6647.

which leads to rejection of both H01 and H1. However, as noted in (earlier section

in thesis), data-dependent adjustment of weights is known to inflate Type I error

as tests are not necessarily based on standard normal statistics.

3As the trial allows for any modification, we could feasibly be interested in testing H2 : θ2 = 0
as well. However, to follow the population structure, we assume that restricting to Ω2 was not
part of the trial protocol.
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5.8.2 I-SPY 2 – Neo-Adjuvant Treatment of Breast Cancer

The I-SPY 2 trial (“Investigation of Serial Studies to Predict Your Therapeutic

Response with Imaging and Molecular Analysis 2”) is an ongoing highly adaptive

Phase II clinical trial, intended to foster efficient clinical development of oncologic

therapies and biomarkers (Barker et al., 2009). The trial tests numerous promis-

ing agents in the neo-adjuvant4 setting for women with breast cancer (> 3.0 cm)

using a Bayesian design for adaptive randomization. Treatments that show a high

Bayesian predictive probability of being more effective than standard therapy will

“graduate” from the Phase II trial, and pass on to a concentrated Phase III trial.

The overall trial design features two arms of standard neo-adjuvant chemotherapy

treatment. Patients are administered “weekly paclitaxel (plus trastuzumab (Her-

ceptin) for HER2 positive patients) followed by doxorubicin (Adriamycin) and

cyclophosphamide (Cytoxan)” (Barker et al., 2009). Other arms will be assigned

to five new drugs, to be tested simultaneously in addition to the standard ther-

apy. The primary endpoint is the measurement of pathologic complete response5

(pCR), and secondary endpoints include up to 10 years monitoring for overall and

disease-free survival.

Part of the unique approach of I-SPY 2 is the inclusion of biomarker identifi-

cation for each candidate drug. Hence each drug that is successfully passed to a

Phase III trial comes with a number of recommended subgroups, as obtained by

use of a hierarchical model that enables borrowing of information across all pos-

sible subgroups. Though research over the last decade has generally established

4In oncology, neo-adjuvant therapy refers to the administration of chemotherapy prior to
surgery.

5Pathologic complete response refers to the disappearance of all clinical evidence of disease.
This does not necessarily mean cure, as microscopic metastases may remain undetected, and can
regrow and become resistant to treatment.
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that cancer is a number of heterogeneous diseases, the development and valida-

tion of biomarkers that can accurately classify patients according to prognosis and

treatment has proven to be immensely challenging. The hierarchical model used

in I-SPY 2, in combination with the ongoing testing, analytic validation and qual-

ification of biomarkers, is a revolutionary approach to breaking the “biomarker

barrier.”

Biomarkers consist of three classes: standard, qualifying and exploratory. Stan-

dard biomarkers are approved by the FDA and are used to determine patient

eligibility for the trial, while qualifying and exploratory biomarkers are not yet ap-

proved, and some are defined on the basis of promising preliminary data in I-SPY

2. Tissue and blood samples are collected prospectively in I-SPY 2, which con-

tributes to the validation of exploratory biomarkers both during the trial, and with

retrospective analyses following the trial. The standard biomarkers are hormone

receptor (HR) status (+/−), human epidermal growth factor receptor 2 (HER2,

discussed in Chapter 1) status (+/−), and MammaPrint status (high risk MP2,

low risk MP1). Hormone receptor status is determined by assessing estrogen re-

ceptor status (ER) and progesterone receptor status (PR). If ER and PR are both

negative, then HR is said to be negative as well, and if either of ER or PR is

positive (or both), then HR is positive. MammaPrint (Mook et al., 2007) is a

molecular diagnostic test that assesses the risk for recurrence of a cancer. To be

eligible for enrollment in the trial, a patient’s cancer must be one of the following:

1. MammaPrint High Risk score;

2. MammaPrint Low Risk score and ER negative;

3. MammaPrint Low Risk score and ER positive and HER2 positive.
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Patients with low MammaPrint score, as well as ER positive and HER2 negative,

are excluded from the trial as they would not be considered ideal candidates for

chemotherapy. Combinations and unions of combinations of the subgroups defined

by the standard biomarkers are narrowed down from 256 possibilities to 14 distinct

signatures (Barker et al., 2009). This is done based on clinical relevance, as most

signatures are rare and biologically uninteresting.

I-SPY 2 involves exploratory testing of numerous novel drugs in comparison

with the efficacy of standard chemotherapy alone. Each drug is added to standard

therapy, and is tested on a minimum of 20 patients, and a maximum of 120 patients.

Based on biomarker signature and eligibility, patients are randomized to the novel

drugs, and Bayesian methods of adaptive randomization ensure that randomization

probabilities are relatively high for drugs that do well with a particular biomarker

signature. Namely, if π(z, t) is the probability of pCR for a patient with biomarker

signature z and for treatment t, then allocation probabilities are proportional to

P [π(z, t) > π(z, t′), t′ 6= t | data] ,

the posterior probability that treatment t is most likely to benefit this particular

patient (Berry et al., 2011). Not only does this allow promising drugs to progress

through the trial more rapidly and efficiently, but adaptively randomizing in this

fashion also addresses ethical concerns as patients are more likely to be assigned

to drugs genuinely believed to be helpful.

As the I-SPY 2 trial progresses, a Bayesian posterior predictive probability

of success in a future Phase III trial is computed for each drug, and for each

possible biomarker signature. The future Phase III trial is intended to compare the

drug in question against standard therapy with a prespecified sample size. Hence,

drugs that have a high Bayesian posterior predictive probability of being more
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effective than standard therapy, are “graduated” along with their corresponding

subgroups and passed on to confirmatory testing in a separate Phase III trial.

When the posterior predictive probability of success becomes sufficiently low for

all signatures, the drug is dropped from consideration. New drugs can be added at

any time during the I-SPY 2 trial as other drugs are either dropped or graduated.

For the purposes of demonstrating an application of the design developed in

this chapter, we carry out an illustrative example of how a Phase III trial might be

conducted for a novel drug that has graduated from the I-SPY 2 trial. Assumptions

and conclusions are not necessarily realistic in a clinical sense; rather they are

presented here for the sake of demonstrating our procedure. Suppose then that

a promising agent has graduated from a Phase II study as described above, and

passed on to confirmatory testing in a Phase III trial. We assume that there were

three biomarker signatures positively associated with the new drug, and for ease of

exposition these are taken to be the populations defined by the inclusion criteria

for I-SPY 2. Hence we have three disjoint patient populations:

• Ω1 = Patients with MammaPrint High Risk score;

• Ω2 = Patients with MammaPrint Low Risk score and ER negative;

• Ω3 = Patients with MammaPrint Low Risk score and ER positive and HER2

positive.

As the three biomarkers were passed on with the drug, but no obvious preference

is present, we can apply DR-I of Section 5.2. The best case conclusion for this

procedure is that all three populations respond well enough during the first stage,

and the trial is consequently concluded having determined a positive effect for all

patients involved. In the case that one (or more) of the three populations appears
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to be nonresponsive, we can drop said population(s) and proceed to later stages

while pooling the remaining populations. Hence there is some flexibility to salvage

the trial should this become necessary. This is desirable, as the Phase II testing

conducted in I-SPY 2 did not necessarily involve very large sample sizes.

To proceed, we need to specify patient stratification among the signatures

passed to this Phase III trial. For efficient screening, we will stratify patients

according to the estimated prevalence of each of the three populations defined

above. Barker et al. (2009) provide a supplemental document containing expected

prevalence (obtained in an earlier program, I-SPY 1) for patient populations de-

fined by HR (+/−), HER2 (+/−) and MammaPrint (MP1/MP2) status, from

which we obtain signature prevalence (estimates are somewhat crudely rounded

for simplicity) as f01 = 0.6, f02 = 0.18 and f03 = 0.22. We note that patient

inclusion criteria are based on ER (and not PR), while prevalence information is

only available for HR (depends both on ER and PR). However, as this example is

only for illustrative purposes, we proceed under the simplifying assumption that

ER prevalence is the same as that of HR.

Let pE and pC denote the respective pCR probabilities for experimental and

control treatments, and let θ = pE − pC . Alternatively, we could define θ as the

log-odds ratio

θ = log

{
pE
(
1− pC

)
pC (1− pE)

}
= log

{
pE

1− pE

}
− log

{
pC

1− pC

}
.

Let θj denote the mean improvement in pCR probability for Ωj, so θ0 = f01θ1 +

f02θ2 + f03θ3 is the mean improvement for the general population. Using the

parametrization of θ defined above, and assuming that the numbers of patients

assigned to the new and control treatments are equal to n
2

(recall that n is the
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total sample size), the efficient score and observed information are given as

Y = Î ·
(
p̂E − p̂C

)
, Î =

n

2p̃(1− p̃)
. (5.20)

Here, p̂E and p̂C are the respective estimates of success probabilities for experimen-

tal and control treatments. Furthermore, p̄ =
(
pE + pC

)
/2 denotes the common

response probability, estimated by p̃ under the null hypothesis by pooling ob-

servations from both treatment arms. We note that information depends on the

unknown p̄, so when designing the trial we shall use the conservative value of p̄ = 1
2
.

Hence, observed information will be larger than expected, and actual power will

be greater than desired.

A two-stage trial is envisaged, and planned sample size is divided evenly over

the two stages. If the trial continues past the first stage, but one or more popula-

tions are eliminated, then all planned observations are allocated to the remaining

populations for the second stage.6 Given the population structure, there are eight

possible conclusions to the trial (futility, or reject HS for some S ⊆ P = {1, 2, 3}).

Spending functions are defined as

α∗U(0.5) = 0.0125; α∗U(1) = 0.025, and α∗L(0.5) = 0.4875; α∗L(1) = 0.975.

Recursively solving Equations (5.4) and (5.5) as described in Section 5.4 results in

the following standardized boundaries:

(l1, u1) = (0.7962, 2.7625); (l2, u2) = (2.5204, 2.5204).

Pooled pCR response for control (standard chemotherapy) from I-Spy 1 was

roughly 40%, and we arbitrarily consider θ∗ = 0.2 to be a clinically significant

effect. We set α = 0.025 and determine the required sample size to guarantee that

6Depending on subgroup prevalence and type of disease, using enrichment in this setting may
not be feasible, particularly if the screening process is expensive and/or time-consuming.
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Table 5.1: Results of the Phase III trial following I-SPY 2. Displayed are efficient
scores, observed Fisher’s information levels, sample sizes, Z-scores and p-values.

Stage 1: X1j ∆1j n1j Z1j P1j

Ω1 −10.71 480 240 −0.49 0.6875
Ω2 12.84 144 72 1.07 0.1423
Ω3 19.06 176 88 1.44 0.0754

Stage 2: X2j ∆2j n2j Z2j P2j

Ω2 34.07 360 180 1.80 0.0363
Ω3 69.60 440 220 3.32 0.0005

Ω{2,3} 103.67 800 400 3.67 0.0001

Total: Y2j I2j nj Zj Pj

Ω2 46.91 504 252 2.09 0.0183
Ω3 88.66 616 308 3.57 0.0002

Ω{2,3} 135.57 1120 560 4.05 0.0000

H0 is rejected (use a numerical search for Imax in Equation (5.14) of Section 5.5)

with probability 1 − β = 0.9 when θ∗ = 0.2 for all populations. This results in

Imax = 1495.5, which from Equation (5.20) is equivalent to approximately 748 pa-

tients, which we round up to 800 to allow for drop-outs. Hence, each stage recruits

240 patients from Ω1, 72 patients from Ω2, and 88 patients from Ω3 (assuming all

three populations are carried on to the second stage).

After the first stage, observed information for Ω1,Ω2 and Ω3 will be I11 =

480, I12 = 144 and I13 = 176, respectively. Hence, population-specific lower

boundaries are l11 = l1
√
I11 = 17.44, l12 = l1

√
I12 = 9.55 and l13 = l1

√
I13 = 10.56.

Suppose we observe the efficient scores Y11 = −10.71, Y12 = 12.84, and Y13 = 19.06

(giving point estimates θ̂11 = −0.0223, θ̂12 = 0.0892 and θ̂13 = 0.1083). We see

that Y11 < l11, so patients from population Ω1 will not be recruited for stage

two. Furthermore, Y12 + Y13 = 31.90 < u1,{2,3} = u1

√
∆12 + ∆13 = 49.42, so

the trial continues to stage two. Increments in information for stage two will be

∆̃22 = 360 and ∆̃23 = 440 (180 and 220 patients) for Ω2 and Ω3 respectively. As
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Table 5.2: Effect estimates, first and second bootstrap adjustments, and the resulting
percentile confidence intervals.

Estimates Raw θ̂j θ̂∗new
1,j θ̂∗new

2,j CI-Low CI-High

Ω1 −0.0223 −0.0302 −0.0410 −0.0778 0.0049
Ω2 0.0931 0.0527 0.0479 0.0134 0.2157
Ω3 0.1439 0.1179 0.1169 0.0665 0.2507

Ω{2,3} 0.1210 0.0886 0.0858 0.0590 0.2064

the two populations are now pooled together, the critical values after stage two

will be l̃2,{2,3} = ũ2,{2,3} = u2

√
∆12 + ∆13 + ∆̃22 + ∆̃23 = 84.35. Suppose respec-

tive second stage efficient scores are Y22 = 46.91 and Y23 = 88.66, yielding the

combined score Y2,{2,3} = 135.79. Then, as Y2,{2,3} > ũ2,{2,3}, the null hypothesis

H{2,3} : θ{2,3} = 0 is rejected and the treatment is approved for patients in the

population Ω2 ∪ Ω3.

The resulting point estimates are θ̂2 = 0.0931 and θ̂3 = 0.1439, and θ̂{2,3} =

0.1210. After twice applying the bootstrap algorithm of Section 5.7 to remove first

and second order bias, we get adjusted estimates θ̂∗new
2 = 0.0479, θ̂∗new

3 = 0.1169

and θ̂∗new
{2,3} = 0.0858. The bias-adjusted estimate of θ1 is θ̂∗new

1 = −0.0410. The

1− 2α bootstrap percentile intervals for θ2, θ3, θ{2,3} and θ1 are:

θ2 : (0.0134, 0.2157);

θ3 : (0.0665, 0.2507);

θ{2,3} : (0.0590, 0.2064);

θ1 : (−0.0778, 0.0049).

We note that θ∗ = 0.2 is included in the first three intervals, but excluded from

the interval for θ1. Furthermore, the interval for θ1 is the only one that contains

the value zero. Table 5.2 contains the raw effect estimates, as well as bootstrap

adjustments and confidence intervals.

171



Table 5.3: Tests of intersection hypotheses using the weighted inverse normal com-
bination rule and Simes’ p-value adjustment method. Weights are prespecified and set
equal to

√
1/2.

Hypothesis P-values Combined

Stage 1 Stage 2 Z P

H1 0.6875 – – –

H2 0.1423 0.0363 2.026 0.0214

H3 0.0754 0.0005 3.362 0.0004

H12 0.2846 0.0363 1.672 0.0472

H13 0.1508 0.0005 3.077 0.0010

H23 0.1423 0.0009 2.962 0.0015

H123 0.2135 0.0009 2.767 0.0028

As in Section 5.8.1, we consider an alternate approach to the Phase III trial.

Using two stages and equal spending α∗ = 0.0125 for each stage, we assume that a

more adaptive approach was taken, whereby arbitrary modifications were allowed

at the first analysis (Bretz et al., 2006). P-values are combined using the weighted

inverse normal combination rule, and Simes’ method is used to adjust p-values for

multiple testing. As equal sample size is used for both stages, combination weights

are preset to equal
√

1/2. Statistics are observed exactly as given in Table 5.1.

Table 5.3 shows p-values for each stage, as well as Z-scores and p-values combined

over both stages using Simes’ method.

We assume that Ω1 was dropped after stage one, so after stage two it is only

possible to reject H2 and/or H3. The adjusted p-value, P̃j, for testing Hj with

strong protection of FWER is the maximum p-value for all intersection hypotheses

containing j. Hence, for testing H2, we get the multiplicity adjusted p-value

P̃2 = max{P2, P12, P23, P123} = 0.0472,

and for testing H3, we have

P̃3 = max{P3, P13, P23, P123} = 0.0028.
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Hence, as P̃2 = 0.0472 > α∗ = 0.0125, H2, which concerns the subgroup of patients

with low risk MammaPrint and ER negative, cannot be rejected. On the other

hand, H3, concerning the subgroup of patients with low risk MammaPrint, ER

positive and HER2 positive, is rejected as P̃3 = 0.0028 < α∗ = 0.0125. In this

example, the adaptive approach did not result in a negative trial, but the conclusion

was not as strong as that obtained using the method developed in this chapter.

The flexibility obtained by allowing arbitrary modifications at interim analysis

points hence comes at a price. We also note that in contrast to our method, the

prespecified weights are inefficient after stage one, and final test statistics are not

functions of sufficient statistics.

5.9 Numerical Results

In this section, we present two simple numerical examples to demonstrate operating

characteristics of the GSDS procedure. In the setting of two subgroups using DR-I,

we show how stopping boundaries are computed, as well as power, point estimates

and expected information. Example 1 is conducted without early stopping for

rejection, while Example 2 does allow early rejection.

5.9.1 Example 1

Suppose we have two subgroups and plan for two stages of equal length. Then

` = 2, K = 2, and t1 = 0.5 and t2 = 1. Set α = 0.05, and define α∗U(0.5) = 0 and

α∗U(1) = α, so rejection can only occur after stage two. For lower spending function,

define α∗L(0.5) = (1− α)/2 and α∗L(1) = 1− α. We can compute boundary values
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using an arbitrary value for total information (say 1), and then use a numerical

search to find a value for Imax that ensures sufficient power. Let θ∗ = 1 denote a

clinically significant effect, and use Equation (5.13) to compute required maximum

observed information. Note that the definition of α∗L(t1) ensures that under the

global null hypothesis, the trial stops with early acceptance after the first stage

with probability 0.475.

We compile results for f01 = 1/4 and f01 = 1/2, which can be seen in Tables

(5.4) and (5.5). We first comment on the results, and then give equations, par-

ticular to this setup, for computing stopping boundaries, as well as the rejection

probabilities, point estimates and expected sample size seen in the aforementioned

tables.

First, we see in Tables (5.4) and (5.5) that conditional parameter estimates

can be severely biased upwards, which is an expected consequence of the stage-one

selection algorithm. To counter this, we apply the bootstrap algorithm discussed

in Section 5.7. The algorithm is applied twice, using B = 10,000 iterations each

time. The mean adjusted bias shown in Tables (5.4) and (5.5) is the result of the

second adjustment, and we observe a substantial overall reduction in bias for the

cases considered. Mean lower and upper endpoints of bootstrap 95% confidence

intervals are also reported, and on average these are generally concordant with

the desired conclusion. For example, when θ1 = 0, the resulting interval for θ1

contains zero, and does not contain the clinically significant effect size θ∗ = 1.

Coverage probabilities are also reported and can vary considerably. When the

“correct” decision is made (e.g. selecting P∗ = {1, 2} when θ1 = θ2 = 1, or selecting

P∗ = {1} when θ1 = 1 and θ2 = 0), coverage probabilities are approximately 95%.

On the other hand, if an incorrect decision is made after the first stage, we see some
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decrease in coverage probability. For instance, if θ1 = 1 and θ2 = 0, and P∗ = {2}

is selected, coverage probability drops to 89%. It is well known that bootstrap

samples are highly variable, which explains why the percentile-based intervals we

use may appear as being too wide.

In Figures (5.1) and (5.2), we show results from running the bootstrap bias-

reduction method using B = 10,000 replications for various values of θ1 and θ2.

Plots depict raw bias, as obtained by evaluating Equation (5.17), and empirical

adjusted bias as obtained by applying the bootstrap algorithm both once (single

adj-bias) and twice (double adj-bias). We see that while raw bias decreases as θ

gets large, adjusting twice all but eliminates any discernable bias for all values of θ1

and θ2 considered. As the algorithm is not computationally expensive (Matlab can

run 10,000 simulations in fractions of a second), we conclude that adjusting twice

rather than once is clearly beneficial. Further adjustments do not seem necessary.

The column E[Iterm] gives expected observed information at trial termination.

The first figure is the expected observed information for the selected population(s),

while the second is the total expected observed information. The upper halves of

Tables (5.4) and (5.5) also include rejection probabilities and expected observed

information for a group sequential design that uses the same spending functions,

but does not allow any subgroup analysis. This design is discussed, for example,

by Stallard and Facey (1996). As expected, when θ1 = θ2 = 1, the standard design

reaches the correct conclusion (positive for the whole population) with greater

probability than GSDS. However, when effect is limited to Ω1, we see a clear

advantage for our procedure. This is especially clear in Table 5.5, where f01 = 1
4
,

and a strong effect in Ω1 is hard to detect without specifically checking both

subgroups. For example, when θ1 = 2 and θ2 = 0, our procedure rejects H1
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with probability 0.657, and either H1 or H0 with 0.858 probability. The standard

procedure, on the other hand, only reaches a positive conclusion with probability

0.428.

In this setup, l1 is found by solving

α∗L(t1) =
1− α

2
= P0

[
X11 ≤ l1

√
I11, X12 ≤ l1

√
I12

]
,

which yields

l1 = Φ−1

(√
1− α

2

)
= 0.4936.

where Φ−1 denotes the inverse of the standard normal CDF. As we do not allow

early stopping for rejection, u1 =∞. Using the values for l1 and u1, we find l2 and

u2 with a two-dimensional numerical search, such that Equations (5.4) and (5.5)

are satisfied. To this end, we compute

ψ2,{1}(l1, u1, l2, u2;θ) = Pθ[P∗ = {1}] · ψ̃2,{1}(l1, u1, l2, u2;θ)

= Φ

[
l12 − θ2I12√
I12

] ∫ ∞
l11

1√
I11

ϕ

(
y11 − θ1I11√

I11

)
× Φ

(
y11 + θ1∆2,{1} − u2

√
I2,{1}√

∆2,{1}

)
dy11, (5.21)

and

ξ2,{1}(l1, u1, l2, u2;θ) = Pθ[P∗ = {1}] · ξ̃2,{1}(l1, u1, l2, u2;θ)

= Φ

[
l12 − θ2I12√
I12

] ∫ ∞
l11

1√
I11

ϕ

(
y11 − θ1I11√

I11

)
× Φ

(
u2

√
I2,{1} − y11 − θ1∆2,{1}√

∆2,{1}

)
dy11. (5.22)

Here, ∆2,{1} is the information increment for stage two, given that we are only

sampling from Ω1. In this example, it is assumed that all observations during

stage two are taken from Ω1 (including observations initially intended for Ω2).
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I2,{1} denotes the cumulative observed information after stage two, given that

stage two sampled only from Ω1. We obtain ψ2,{2} and ξ2,{2} in a similar fashion.

For the choice P∗ = {1, 2}, we compute (for brevity, we use 0 to denote the set

{1, 2} below)

ψ2,0(l1, u1, l2, u2;θ) =

∫ ∞
l̃1,0

f1(y10|θ)Φ

(
y10 + θ0∆20 − u2

√
I2,0√

∆20

)
dy10, (5.23)

ξ2,0(l1, u1, l2, u2;θ) =

∫ ∞
l̃1,0

f1(y10|θ)Φ

(
u2

√
I20 − y10 − θ0∆20√

∆20

)
dy10, (5.24)

where

f1(y10|θ) =

∫ y10−l12

l11

1√
I11I12

ϕ

(
x11 − θ1I11√

I11

)
ϕ

(
y10 − x11 − θ2I12√

I12

)
dx11,

and ∆20 and I20 denote the information increment and total information for stage

two, respectively.

Using identities (5.21-5.24), and the specified spending functions along with

Equations (5.4) and (5.5), we get that

l1 = 0.4936 and u2 = l2 = 1.8937.

Note that these are on the scale of standardized statistics where, in the single-

stage, single-population problem, using α = 0.05 results in the one-sided boundary

1.645. For comparison, we can compute stopping boundaries for an equivalent

design, only where no populations are eliminated after stage one (using the same

error spending functions). In that case, l1 = −0.0627 and u2 = l2 = 1.6347. As

expected, the added flexibility of target population adaptation results in larger

stopping boundaries.

Using Equation (5.17), we can write down Eθ

[
θ̂S |P∗ = S

]
for S = {1}, {2}
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and {1, 2}. For j = 1, 2, we can show that

Eθ

[
θ̂j|P∗ = {j}

]
= θj +

√
∆1j

I2,{j}
· ϕ

(
l1j − θj∆1j√

∆1j

)[
Φ

(
θj∆1j − l1j√

∆1j

)]−1

.

Note that, for large ∆1j, if θj 6= 0,

ϕ

(
l1j − θj∆1j√

∆1j

)
≈ 0 and

[
Φ

(
θj∆1j − l1j√

∆1j

)]−1

≈ 1.

Hence, the conditional estimate of θ̂j given that P∗ = {j} for j = 1, 2, is asymp-

totically unbiased as ∆1j gets large. With a bit of algebra, we can also show

that

Eθ

[
θ̂0|P∗ = {1, 2}

]
=

1

I20

{
θ0∆20 +

∫ ∞
l11

h1(x11)

[
(θ2∆12 + x11) +

√
∆12

ϕ(w)

Φ(−w)

]
dx11

}
where w = l12−θ2∆12√

∆12
. Hence we can again see that if ∆11 and ∆12 are large (and

θ1, θ2 6= 0), then

Eθ

[
θ̂0|P∗ = {1, 2}

]
≈ 1

I20

(θ0∆10 + θ0∆20) = θ0.

5.9.2 Example 2

Again suppose we have two subgroups and plan for two stages. Spending functions

are the same as in Example 1, but this time we set α∗U(t1) = α/2, which enables

early stopping with rejection. We find l1 in the same way as in Example 1, so

l1 = Φ−1
(√

(1− α)/2
)

= 0.4936. Early stopping for rejection is now allowed, so

we must also compute u1. For this, we compute

ψ11 = Pθ [P∗ = {1}] · ψ̃1,{1}(l1, u1;θ)

= Φ

(
l12 − θ2∆12√

∆12

)
· Φ
(
θ1∆11 − u1

√
∆11√

∆11

)
,

ψ12 = Φ

(
l11 − θ1∆11√

∆11

)
· Φ
(
θ2∆12 − u1

√
∆12√

∆12

)
.
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For the decision P∗ = {1, 2}, we use Equation (5.11) and get

ψ10 =

∫ ũ10−l12

l11

ϕ

(
x11 − θ1∆11√

∆11

)
1√
∆11

Φ

(
θ2∆12 − (ũ10 − x11)√

∆12

)
dx11

+ Φ

(
θ1∆11 − l11√

∆11

)
Φ

(
θ1∆11 − (ũ10 − l12)√

∆11

)
.

Next, we compute ψ1 = ψ10 +ψ11 +ψ12, and perform a numerical search for u1 such

that ψ1 = α∗U(0.5) = α/2. Doing so for f01 = 1
2

yields the first stage boundaries

(l1, u1) = (0.4936, 2.297). For stage two, l2 and u2 are found as in Example 1

where identities from Equations (5.21-5.24) are evaluated and a two-dimensional

numerical search for l2 and u2 is conducted. Note that we now replace∞ with the

corresponding upper limits, e.g. use ũ1,{1} instead of ∞ in Equation (5.21). Doing

this yields l2 = u2 = 2.0980.

To compute E
[
θ̂P∗|P∗ = S

]
, we again use Equation (5.17), but now we need

to account for the possibility that the trial was terminated with rejection of HP∗

after the first stage. For j = 1, 2, we get∫ ∞
ũ1,{j}

p1(y1j|P∗ = {j};θ)
y1j

I1j

dy11

=
1

∆1j

∫ ∞
ũ1,{j}

y1jhj(y1j)dy1j

=
1

∆1j

[
Φ

(
θj∆1j − l1j√

∆1j

)]−1

×

{
ϕ

(
ũ1,{j} − θj∆1j√

∆1j

)
√

∆1j + Φ

(
θj∆1j − ũ1,{j}√

∆1j

)
θj∆1j

}
,

and ∫ ∞
−∞

p2(y2j;θ)
y2j

I2,{j}
dy1j =

1

I2,{j}

∫ ũ1,{j}

l1j

hj(y1j)(y1j + θj∆2,{j})dy1j

=
1

I2,{j}
Φ (−wlj)−1

{
[ϕ(wlj)− ϕ(wuj)]

√
∆1j

+
[
θj(∆1j + ∆2,{j})

]
[Φ(wuj)− Φ(wlj)]

}
,
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where wuj =
(
ũ1,{j} − θj∆1j

)
/
√

∆1j and wlj = (l1j − θj∆1j) /
√

∆1j.

For P∗ = {1, 2}, we get (for brevity, 0 denotes the set {1, 2})∫ ∞
ũ10

p1(y10;θ)
y10

I10

=
1

I10

∫ ∞
ũ10

y10

∫ y10−l12

l11

h1(x11)h2(y10 − x12)dx11 dy10

= [I10Φ(−wl2)]−1

×
∫ ũ10−l12

l11

h1(x11) [ϕ (w̃(x11)) + (θ2∆12 + x11)Φ (−w̃(x11))] dx11

+

∫ ∞
ũ10−l12

h1(x11)

[
(θ2∆12 + x11) +

√
∆12

ϕ(wl2)

Φ(−wl2)

]
dx11,

where wl2 is defined above, and w̃(x11) = (ũ10 − x11 − θ2∆12) /
√

∆12. Finally,∫ ∞
−∞

p2(y20;θ)
y20

I20

dy20 =
1

I20

[
I + θ0∆20 · II

]
,

where

I =

[
2∏
j=1

Φ (−wlj)

]−1

×
{

[Φ(w̃u2)− Φ(wl2)] ·
[√

∆11 (ϕ(wl1)− ϕ(w̃u1)) + θ1∆11 (Φ(w̃u1)− Φ(wl1))
]

+
[√

∆12 (ϕ(wl2)− ϕ(w̃u2)) + θ2∆12 (Φ(w̃u2)− Φ(wl2))
]
· [Φ(w̃u1)− Φ(wl1)]

}
,

and

II =

[
2∏
j=1

Φ (−wlj)

]−1 (
Φ(w̃u2)− Φ(wl2)

)
·
(

Φ(w̃u1)− Φ(wl1)
)
.

Here, wlj are as defined above, and

w̃u1 =
ũ10 − l12 − θ1∆11√

∆11

, and w̃u2 =
ũ10 − θ2∆12√

∆12

.

We again use θ∗ = 1 as clinical significance, and Equation (5.13) to obtain the

maximum observed information. Results are summarized in Tables 5.6 and 5.7.
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Figures (5.3) and (5.4) show results from running the bootstrap bias-reduction

method using B = 10,000 replications.

Many of the observations made in Example 1 hold true here as well. We do

note that bias reduction is not always as successful as in Example 1, and for values

of θ close to 2 there is sometimes lingering bias. For example, referring to Table 5.7

where θ1 = 2 and θ2 = 0, the mean (double) adjusted bias of θ̂1 is 0.041. However,

when compared to the raw bias of 0.307 this does not seem too alarming, and if

we increase θ further (> 2) then lingering bias was observed to decrease towards

zero again.
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Figure 5.1: Results from bootstrap bias-reduction algorithm in example 1, in which
u1 = ∞. Plots depict conditional bias of θ1 given S = {1} for various values of θ2. In
the right column, f01 = 1

4 , and in the left column, f01 = 1
2 .
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Figure 5.2: Results from bootstrap bias-reduction algorithm in example 1, in which
u1 =∞. Plots depict conditional bias of θ0 given S = {1, 2}, for various values of θ2. In
the right column, f01 = 1

4 , and in the left column, f01 = 1
2 .
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Figure 5.3: Results from bootstrap bias-reduction algorithm in example 2, in which
u1 < ∞. Plots depict conditional bias of θ1 given S = {1} for various values of θ2. In
the right column, f01 = 1

4 , and in the left column, f01 = 1
2 .
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Figure 5.4: Results from bootstrap bias-reduction algorithm in example 2, in which
u1 <∞. Plots depict conditional bias of θ0 given S = {1, 2}, for various values of θ2. In
the right column, f01 = 1

4 , and in the left column, f01 = 1
2 .
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5.9.3 Comparison with FE and HUT

We conclude with a numerical study comparing the operating characteristics of

GSDS with those of the methods FE (see Section 4.2) and HUT (see Section 4.3),

developed earlier in this thesis. The comparison is carried out in the setting of

three disjoint subgroups Ω1, Ω2 and Ω3 (P = {1, 2, 3}), where a nesting effect is

considered likely, i.e. θ1 ≥ θ2 ≥ θ3, and θj is the effect size for Ωj. In the case of

GSDS, this suggests the use of DR-II at the first interim analysis.

Setup

We assume that patient responses are normally distributed with mean µj, j ∈ P

and common variance σ2 = 5. Define θj = µEj −µCj as the mean difference between

treatment and control for population Ωj, j ∈ P . The three hypotheses of interest

are

H{1,2,3} : θ{1,2,3} = 0, H{1,2} : θ{1,2} = 0, and H{1} : θ{1} = 0.

For shorthand notation, we use H0 and θ0 to respectively denote the hypothesis

H{1,2,3} and effect size θ{1,2,3}. Let θ∗ = 1 represent clinical significance.

Operating characteristics for GSDS and FE can be obtained numerically, while

Monte Carlo simulation is conducted for HUT, using 100,000 replications per

parameter configuration. All procedures are compared using the same sample

size (observed information), and maximum observed information is set equal to

Imax = nmax

4σ2 = 25, which is equivalent to a maximum sample size of 500 patients.

Of the three procedures being investigated, only GSDS allows early rejections.

Hence FE and HUT will always use the total allotted sample size (unless stopping

early for futility).
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Following the blueprint offered by Wang et al. (2009), we consider prevalence

levels ranging from low (f01, f02, f03) =
(

1
4
, 1

4
, 1

2

)
, to moderate (f01, f02, f03) =(

3
8
, 1

8
, 1

2

)
, to high (f01, f02, f03) =

(
9
16
, 3

16
, 1

4

)
. Interim analysis times are t = 1

4
, 1

2
or

3
4
. We consider three main effect size patterns, which respectively correspond to

the three patterns identified to be of importance by Wang et al. (2009):

• Favorable nesting pattern corresponds to the pattern θ1 > θ2 > θ3, or θ0 <

θ{1,2} < θ{1}. In this case, subgroup classification is predictive of treatment

response.

• No nesting pattern corresponds to the situation where there is no favorable

nesting pattern. For example, this is the case when θ0 = 0.8, θ{1,2} = 1.2,

and θ{1} = 0.7. Here, subgroup classification is not predictive of treatment

response.

• Homogeneity pattern is present when treatment effects are roughly equal

across all subgroups, i.e. when θ1 ≈ θ2 ≈ θ3.

Both FE and GSDS are use empirical data weights by design and hence their strong

control of FWER has been established. When empirical data weights are applied

for the HUT design, control of FWER is not guaranteed. We hence investigate

empirical Type I error rates to inspect the extent of error rate inflation (if any).

For the GSDS procedure, error spending is set to be proportional to stage

length, so α∗U(t) = α · t and α∗L(t) = (1 − α) · t. We do allow early re-

jection for GSDS, but as neither FE nor HUT can do so, we also consider

the case of no GSDS early rejection (α∗U(t) = 0). For FE, we use two

different configurations of local significance levels and enrichment parameters.

Namely, (α0, α1, α2) ∈ {(α/3, α/3, α/3), (0.015, 0.007, 0.003)}, and (γ0, γ1, γ2) ∈
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{(0.5, 0.5, 0.5), (0.3, 0.4, 0.5)}. For HUT, we keep θ− fixed at zero, while θ+ ∈

{0, 0.5, 1}, and kHUT ∈ {0.5, 1, 2}.

Effect of Empirical Data Weights on Type I Error

In Table 5.8 we show simulated Type I error probabilities for the HUT design,

based on the use of empirical data weights. The table relies on procedure-specific

parameters θ+ = 0 and kHUT = 2. The choice of these parameter values exaggerate

the outcome in the sense that small θ+ and large kHUT will tend to encourage the

inclusion of more populations for the second stage. Hence, under this configuration

the HUT design will proceed with populations it otherwise might not have, had

θ+ been larger or kHUT smaller. We see that for the cases considered, Type I

error probabilities do not exceed α = 0.025. Comparison with Type I error rates

obtained with pre-specified weights (proportional to interim analysis timing, not

reported in a table) indicates that inflation is essentially negligible. In no situation

did we observe error rates in excess of the desired FWER of α = 0.025.

In general, error rate inflation as compared to pre-specified weights is not com-

mon. Wang et al. (2009) report negligible Type I error inflation when evaluating

a number of different designs that rely on using conditional power at the interim

analysis. They do obtain error rates that exceed the nominal α (a maximum er-

ror rate of 0.0263 is reported), but this occurs in designs that include a potential

increase in sample size at the interim analysis.
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Power Performance

Tables 5.9–5.14 show power performance for the methods under consideration,

using interim timing t = 1
2
. Performance is reported for various configurations

of procedure-specific parameters for easy comparison. We consider two examples

of each of the three effect size patterns discussed above. For favorable nesting

patterns, we use (θ1, θ2, θ3) = (1, 0.4, 0) and (1.5, 0.2, 0). For (unfavorable) patterns

with no nesting, we use (θ1, θ2, θ3) = (0.4, 1.2, 0.4) and (0.2, 1.5, 0.2). Finally,

the two homogeneity patterns (θ1, θ2, θ3) = (0.4, 0.4, 0.4) and (0.8, 0.8, 0.8) are

considered. Tables are divided into three main sections, each corresponding to

particular prevalence levels of Ω1, Ω2 and Ω3.

Recall that a clinically significant effect size worth detecting has been identified

as θ∗ = 1. Hence, if a population (composite or not) has effect size “considerably

smaller” than 1, a positive finding for said population is not desirable. For exam-

ple, consider the two homogeneity patterns shown above. The first, (0.4, 0.4, 0.4),

represents a scenario where there is a slight and constant effect across all popula-

tions. This effect is however not large enough to be considered meaningful (likely

any trial would not be powered to detect this effect anyway). The second pattern,

(0.8, 0.8, 0.8), is close enough to clinical significance for a trial sponsor to be inter-

ested in detecting this effect. A favorable outcome in this scenario is to reject the

overall null hypothesis H0, though positive findings in smaller populations are also

of interest.

Impact of Nesting Pattern: When a favorable nesting pattern is present,

i.e. (θ1, θ2, θ3) = (1, 0.4, 0) or (1.5, 0.2, 0), it is desirable to find a positive result

in Ω1 only. In other words we want to reject H{1} only, and accept all other

hypotheses. We see in Tables 5.9 and 5.10 that when the nesting pattern is present,
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Table 5.9: Power performance of three two-stage enrichment designs when (θ1, θ2, θ3) =
(1, 0.4, 0). As an example, the column “Ω{1,2} (w/other)” gives the probability that only
H{1,2} is rejected, and the parenthesized value includes events where other hypotheses are
also rejected. Prevalence levels are given in the table. Entries are based on Imax = 25
and t = 1/2. HUT parameters are θ+ = 0.5, and kHUT = 0.5, 1 and 2, respectively.
FE parameters are (γ0, γ1, γ2) = (0.5, 0.5, 0.5) in the first two rows, and (0.3,0.4,0.5)
in rows three and four. Local significance levels are α/3 in rows one and three, and
(0.015,0.007,0.003) in rows two and four. The top GSDS row refers to no early rejection.

Effect Sizes Procedure Power Performance

θ0 θ{1,2} θ{1} Ω0 Ω{1,2} (w/other) Ω{1} (w/other) Any

f{1,2} = 3/4, f{1} = 9/16

0.6375 0.85 1
HUT

0.20 0.32 (0.52) 0.42 (0.94) 0.95
0.32 0.34 (0.66) 0.29 (0.96) 0.96
0.45 0.32 (0.77) 0.18 (0.96) 0.97

FE

0.79 0.05 (0.55) 0.01 (0.56) 0.92
0.84 0.02 (0.55) 0.01 (0.56) 0.92
0.78 0.05 (0.56) 0.01 (0.57) 0.93
0.83 0.03 (0.55) 0.01 (0.56) 0.93

GSDS
0.12 0.33 (N/A) 0.43 (N/A) 0.88
0.10 0.33 (N/A) 0.43 (N/A) 0.86

f{1,2} = 1/2, f{1} = 3/8

0.425 0.85 1
HUT

0.13 0.33 (0.46) 0.42 (0.88) 0.89
0.21 0.39 (0.59) 0.31 (0.89) 0.91
0.29 0.41 (0.68) 0.20 (0.89) 0.91

FE

0.39 0.14 (0.36) 0.02 (0.39) 0.79
0.48 0.09 (0.35) 0.01 (0.36) 0.78
0.39 0.16 (0.38) 0.03 (0.41) 0.82
0.47 0.11 (0.36) 0.02 (0.38) 0.81

GSDS
0.09 0.29 (N/A) 0.44 (N/A) 0.82
0.07 0.14 (N/A) 0.43 (N/A) 0.79

f{1,2} = 1/2, f{1} = 1/4

0.35 0.7 1
HUT

0.11 0.29 (0.39) 0.37 (0.76) 0.81
0.17 0.33 (0.47) 0.29 (0.77) 0.83
0.23 0.34 (0.53) 0.21 (0.75) 0.82

FE

0.26 0.28 (0.50) 0.13 (0.63) 0.72
0.34 0.20 (0.49) 0.08 (0.57) 0.67
0.25 0.31 (0.53) 0.14 (0.67) 0.75
0.33 0.24 (0.51) 0.09 (0.61) 0.71

GSDS
0.07 0.33 (N/A) 0.34 (N/A) 0.74
0.05 0.18 (N/A) 0.34 (N/A) 0.71
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Table 5.10: Power performance of three two-stage enrichment designs when
(θ1, θ2, θ3) = (1.5, 0.2, 0). As an example, the column “Ω{1,2} (w/other)” gives the prob-
ability that only H{1,2} is rejected, and the parenthesized value includes events where
other hypotheses are also rejected. Prevalence levels are given in the table. Entries are
based on Imax = 25 and t = 1/2. HUT parameters are θ+ = 0.5, and kHUT = 0.5, 1
and 2, respectively. FE parameters are (γ0, γ1, γ2) = (0.5, 0.5, 0.5) in the first two rows,
and (0.3,0.4,0.5) in rows three and four. Local significance levels are α/3 in rows one
and three, and (0.015,0.007,0.003) in rows two and four. The top GSDS row refers to no
early rejection.

Effect Sizes Procedure Power Performance

θ0 θ{1,2} θ{1} Ω0 Ω{1,2} (w/other) Ω{1} (w/other) Any

f{1,2} = 3/4, f{1} = 9/16

0.881 1.175 1.5
HUT

0.21 0.27 (0.48) 0.52 (1.00) 1.00
0.34 0.29 (0.63) 0.37 (1.00) 1.00
0.49 0.29 (0.77) 0.23 (1.00) 1.00

FE

0.98 0.01 (0.90) 0.00 (0.90) 1.00
0.99 0.00 (0.90) 0.00 (0.90) 1.00
0.98 0.01 (0.90) 0.00 (0.90) 1.00
0.98 0.01 (0.90) 0.00 (0.90) 1.00

GSDS
0.17 0.25 (N/A) 0.54 (N/A) 0.96
0.16 0.25 (N/A) 0.54 (N/A) 0.95

f{1,2} = 1/2, f{1} = 3/8

0.588 1.175 1.5
HUT

0.15 0.31 (0.47) 0.53 (0.99) 0.99
0.25 0.36 (0.62) 0.38 (0.99) 1.00
0.37 0.39 (0.76) 0.24 (1.00) 1.00

FE

0.71 0.16 (0.73) 0.01 (0.74) 0.97
0.78 0.10 (0.72) 0.00 (0.72) 0.97
0.70 0.17 (0.74) 0.01 (0.75) 0.98
0.77 0.11 (0.73) 0.00 (0.73) 0.98

GSDS
0.13 0.23 (N/A) 0.55 (N/A) 0.91
0.11 0.23 (N/A) 0.55 (N/A) 0.90

f{1,2} = 1/2, f{1} = 1/4

0.425 0.85 1.5
HUT

0.13 0.29 (0.42) 0.55 (0.96) 0.97
0.21 0.34 (0.54) 0.43 (0.97) 0.98
0.29 0.37 (0.66) 0.31 (0.97) 0.97

FE

0.39 0.37 (0.75) 0.17 (0.94) 0.94
0.48 0.28 (0.75) 0.14 (0.90) 0.91
0.39 0.40 (0.78) 0.16 (0.95) 0.96
0.47 0.32 (0.77) 0.14 (0.92) 0.93

GSDS
0.08 0.25 (N/A) 0.51 (N/A) 0.85
0.07 0.25 (N/A) 0.51 (N/A) 0.83
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Table 5.11: Power performance of three two-stage enrichment designs when
(θ1, θ2, θ3) = (0.4, 1.2, 0.4). As an example, the column “Ω{1,2} (w/other)” gives the
probability that only H{1,2} is rejected, and the parenthesized value includes events where
other hypotheses are also rejected. Prevalence levels are given in the table. Entries are
based on Imax = 25 and t = 1/2. HUT parameters are θ+ = 0.5, and kHUT = 0.5, 1
and 2, respectively. FE parameters are (γ0, γ1, γ2) = (0.5, 0.5, 0.5) in the first two rows,
and (0.3,0.4,0.5) in rows three and four. Local significance levels are α/3 in rows one
and three, and (0.015,0.007,0.003) in rows two and four. The top GSDS row refers to no
early rejection.

Effect Sizes Procedure Power Performance

θ0 θ{1,2} θ{1} Ω0 Ω{1,2} (w/other) Ω{1} (w/other) Any

f{1,2} = 3/4, f{1} = 9/16

0.55 0.6 0.4
HUT

0.40 0.09 (0.27) 0.02 (0.29) 0.66
0.50 0.08 (0.30) 0.01 (0.30) 0.70
0.56 0.05 (0.30) 0.00 (0.31) 0.71

FE

0.64 0.00 (0.12) 0.00 (0.13) 0.70
0.72 0.00 (0.12) 0.00 (0.13) 0.74
0.63 0.01 (0.12) 0.01 (0.13) 0.70
0.71 0.00 (0.12) 0.00 (0.13) 0.74

GSDS
0.22 0.36 (N/A) 0.02 (N/A) 0.60
0.19 0.23 (N/A) 0.02 (N/A) 0.55

f{1,2} = 1/2, f{1} = 3/8

0.5 0.6 0.4
HUT

0.38 0.07 (0.20) 0.02 (0.22) 0.58
0.46 0.06 (0.21) 0.01 (0.22) 0.63
0.50 0.04 (0.22) 0.00 (0.23) 0.64

FE

0.54 0.01 (0.08) 0.01 (0.09) 0.61
0.63 0.00 (0.08) 0.00 (0.09) 0.67
0.53 0.01 (0.08) 0.01 (0.09) 0.62
0.62 0.00 (0.08) 0.00 (0.09) 0.67

GSDS
0.31 0.23 (N/A) 0.02 (N/A) 0.56
0.26 0.20 (N/A) 0.02 (N/A) 0.50

f{1,2} = 1/2, f{1} = 1/4

0.6 0.8 0.4
HUT

0.48 0.05 (0.15) 0.01 (0.16) 0.75
0.58 0.04 (0.16) 0.00 (0.16) 0.83
0.65 0.03 (0.16) 0.00 (0.17) 0.85

FE

0.73 0.01 (0.16) 0.00 (0.16) 0.81
0.79 0.00 (0.16) 0.00 (0.16) 0.84
0.72 0.01 (0.16) 0.00 (0.17) 0.82
0.78 0.00 (0.16) 0.00 (0.16) 0.85

GSDS
0.38 0.35 (N/A) 0.01 (N/A) 0.73
0.33 0.27 (N/A) 0.01 (N/A) 0.67
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Table 5.12: Power performance of three two-stage enrichment designs when
(θ1, θ2, θ3) = (0.2, 1.5, 0.2). As an example, the column “Ω{1,2} (w/other)” gives the
probability that only H{1,2} is rejected, and the parenthesized value includes events where
other hypotheses are also rejected. Prevalence levels are given in the table. Entries are
based on Imax = 25 and t = 1/2. HUT parameters are θ+ = 0.5, and kHUT = 0.5, 1
and 2, respectively. FE parameters are (γ0, γ1, γ2) = (0.5, 0.5, 0.5) in the first two rows,
and (0.3,0.4,0.5) in rows three and four. Local significance levels are α/3 in rows one
and three, and (0.015,0.007,0.003) in rows two and four. The top GSDS row refers to no
early rejection.

Effect Sizes Procedure Power Performance

θ0 θ{1,2} θ{1} Ω0 Ω{1,2} (w/other) Ω{1} (w/other) Any

f{1,2} = 3/4, f{1} = 9/16

0.444 0.525 0.2
HUT

0.24 0.04 (0.09) 0.00 (0.09) 0.50
0.31 0.03 (0.09) 0.00 (0.09) 0.54
0.36 0.02 (0.10) 0.00 (0.10) 0.55

FE

0.43 0.00 (0.05) 0.00 (0.06) 0.53
0.52 0.00 (0.05) 0.00 (0.05) 0.57
0.42 0.01 (0.05) 0.00 (0.06) 0.53
0.51 0.00 (0.05) 0.00 (0.05) 0.57

GSDS
0.11 0.41 (N/A) 0.00 (N/A) 0.53
0.09 0.38 (N/A) 0.00 (N/A) 0.47

f{1,2} = 1/2, f{1} = 3/8

0.363 0.525 0.2
HUT

0.18 0.03 (0.07) 0.00 (0.07) 0.40
0.23 0.03 (0.07) 0.00 (0.08) 0.45
0.26 0.03 (0.08) 0.00 (0.08) 0.45

FE

0.28 0.01 (0.04) 0.00 (0.04) 0.41
0.36 0.00 (0.04) 0.00 (0.04) 0.44
0.28 0.01 (0.04) 0.00 (0.04) 0.42
0.35 0.01 (0.04) 0.00 (0.04) 0.45

GSDS
0.13 0.31 (N/A) 0.01 (N/A) 0.45
0.11 0.28 (N/A) 0.01 (N/A) 0.39

f{1,2} = 1/2, f{1} = 1/4

0.525 0.85 0.2
HUT

0.31 0.03 (0.06) 0.00 (0.06) 0.71
0.40 0.02 (0.06) 0.00 (0.06) 0.84
0.48 0.02 (0.06) 0.00 (0.06) 0.85

FE

0.59 0.00 (0.07) 0.00 (0.07) 0.80
0.67 0.00 (0.07) 0.00 (0.07) 0.81
0.58 0.01 (0.07) 0.00 (0.07) 0.81
0.66 0.00 (0.07) 0.00 (0.07) 0.83

GSDS
0.21 0.56 (N/A) 0.00 (N/A) 0.77
0.17 0.55 (N/A) 0.00 (N/A) 0.72
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Table 5.13: Power performance of three two-stage enrichment designs when
(θ1, θ2, θ3) = (0.4, 0.4, 0.4). As an example, the column “Ω{1,2} (w/other)” gives the
probability that only H{1,2} is rejected, and the parenthesized value includes events where
other hypotheses are also rejected. Prevalence levels are given in the table. Entries are
based on Imax = 25 and t = 1/2. HUT parameters are θ+ = 0.5, and kHUT = 0.5, 1
and 2, respectively. FE parameters are (γ0, γ1, γ2) = (0.5, 0.5, 0.5) in the first two rows,
and (0.3,0.4,0.5) in rows three and four. Local significance levels are α/3 in rows one
and three, and (0.015,0.007,0.003) in rows two and four. The top GSDS row refers to no
early rejection.

Effect Sizes Procedure Power Performance

θ0 θ{1,2} θ{1} Ω0 Ω{1,2} (w/other) Ω{1} (w/other) Any

f{1,2} = 3/4, f{1} = 9/16

0.4 0.4 0.4
HUT

0.20 0.05 (0.17) 0.09 (0.26) 0.37
0.27 0.05 (0.21) 0.06 (0.27) 0.41
0.32 0.04 (0.24) 0.03 (0.28) 0.42

FE

0.35 0.01 (0.08) 0.02 (0.11) 0.40
0.43 0.00 (0.09) 0.01 (0.10) 0.45
0.34 0.01 (0.08) 0.02 (0.11) 0.41
0.42 0.00 (0.09) 0.01 (0.10) 0.45

GSDS
0.14 0.12 (N/A) 0.10 (N/A) 0.36
0.12 0.09 (N/A) 0.09 (N/A) 0.31

f{1,2} = 1/2, f{1} = 3/8

0.4 0.4 0.4
HUT

0.21 0.04 (0.12) 0.07 (0.19) 0.34
0.29 0.04 (0.15) 0.05 (0.21) 0.39
0.33 0.03 (0.17) 0.03 (0.20) 0.41

FE

0.35 0.01 (0.05) 0.02 (0.07) 0.40
0.43 0.00 (0.06) 0.01 (0.07) 0.46
0.34 0.01 (0.05) 0.02 (0.08) 0.40

E 0.42 0.00 (0.06) 0.01 (0.07) 0.46

GSDS
0.24 0.07 (N/A) 0.06 (N/A) 0.37
0.20 0.09 (N/A) 0.06 (N/A) 0.32

f{1,2} = 1/2, f{1} = 1/4

0.4 0.4 0.4
HUT

0.22 0.03 (0.09) 0.06 (0.15) 0.34
0.29 0.03 (0.11) 0.04 (0.15) 0.40
0.33 0.02 (0.12) 0.03 (0.15) 0.41

FE

0.35 0.01 (0.10) 0.02 (0.13) 0.40
0.43 0.01 (0.11) 0.01 (0.12) 0.46
0.34 0.02 (0.10) 0.02 (0.13) 0.40
0.42 0.01 (0.11) 0.01 (0.12) 0.46

GSDS
0.23 0.09 (N/A) 0.04 (N/A) 0.37
0.19 0.10 (N/A) 0.04 (N/A) 0.31
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Table 5.14: Power performance of three two-stage enrichment designs when
(θ1, θ2, θ3) = (0.8, 0.8, 0.8). As an example, the column “Ω{1,2} (w/other)” gives the
probability that only H{1,2} is rejected, and the parenthesized value includes events where
other hypotheses are also rejected. Prevalence levels are given in the table. Entries are
based on Imax = 25 and t = 1/2. HUT parameters are θ+ = 0.5, and kHUT = 0.5, 1
and 2, respectively. FE parameters are (γ0, γ1, γ2) = (0.5, 0.5, 0.5) in the first two rows,
and (0.3,0.4,0.5) in rows three and four. Local significance levels are α/3 in rows one
and three, and (0.015,0.007,0.003) in rows two and four. The top GSDS row refers to no
early rejection.

Effect Sizes Procedure Power Performance

θ0 θ{1,2} θ{1} Ω0 Ω{1,2} (w/other) Ω{1} (w/other) Any

f{1,2} = 3/4, f{1} = 9/16

0.8 0.8 0.8
HUT

0.71 0.11 (0.73) 0.10 (0.84) 0.94
0.82 0.08 (0.80) 0.04 (0.84) 0.95
0.89 0.05 (0.83) 0.02 (0.85) 0.96

FE

0.95 0.00 (0.40) 0.00 (0.40) 0.95
0.97 0.00 (0.40) 0.00 (0.40) 0.97
0.94 0.00 (0.40) 0.00 (0.40) 0.95
0.96 0.00 (0.40) 0.00 (0.40) 0.97

GSDS
0.56 0.17 (N/A) 0.08 (N/A) 0.81
0.52 0.17 (N/A) 0.08 (N/A) 0.76

f{1,2} = 1/2, f{1} = 3/8

0.8 0.8 0.8
HUT

0.77 0.05 (0.59) 0.09 (0.68) 0.91
0.87 0.04 (0.64) 0.03 (0.68) 0.95
0.92 0.02 (0.66) 0.01 (0.68) 0.96

FE

0.95 0.00 (0.27) 0.00 (0.28) 0.95
0.97 0.00 (0.27) 0.00 (0.28) 0.97
0.94 0.00 (0.27) 0.00 (0.28) 0.95
0.96 0.00 (0.27) 0.00 (0.28) 0.97

GSDS
0.78 0.06 (N/A) 0.04 (N/A) 0.88
0.74 0.06 (N/A) 0.04 (N/A) 0.84

f{1,2} = 1/2, f{1} = 1/4

0.8 0.8 0.8
HUT

0.79 0.04 (0.47) 0.05 (0.52) 0.91
0.88 0.03 (0.49) 0.02 (0.51) 0.95
0.92 0.02 (0.49) 0.01 (0.51) 0.96

FE

0.95 0.00 (0.48) 0.00 (0.49) 0.95
0.97 0.00 (0.49) 0.00 (0.49) 0.97
0.94 0.00 (0.48) 0.00 (0.50) 0.95
0.96 0.00 (0.49) 0.00 (0.50) 0.97

GSDS
0.78 0.08 (N/A) 0.02 (N/A) 0.88
0.74 0.08 (N/A) 0.02 (N/A) 0.83
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GSDS arrives at the correct conclusion (pass treatment for Ω1 only) with greater

probability than FE (always) and HUT (usually). HUT performs well in this

scenario if kHUT = 0.5, as this penalizes false positives more so than false negatives.

The weakness of FE, discussed in Chapter 3, is present in this setting. This is more

obvious when prevalence levels are moderate to high (first two sections of the two

tables); we can see that FE tends to reach a positive conclusion for Ω0 rather

than identify strong effects in subgroups. This can be countered by making γFE0

small, and we consider the values 0.3 and 0.5, though lower values might be useful

especially if prevalence of Ω1 and Ω2 is high.

By design, GSDS can only make inference on a single population at the end of

the trial. For example, it is not possible for GSDS to reject both H{1} and H{1,2},

something both FE and HUT can easily do. This represents a sort of trade-off

that must be carefully considered by a trial sponsor. GSDS will reach the correct

conclusion with higher probability in comparison to the two other designs, and

has smaller expected sample size if early stopping for rejection is allowed. On the

other hand, there is no inbuilt mechanism to “rescue” the trial at the final analysis

if results are not as good as hoped. In particular, there is no unused Type I error

that may be spent on examining smaller populations than the one selected at the

first interim analysis. Whether the design can be modified to allow for testing of

smaller populations while maintaining its simplicity is a topic for further research.

We discuss some possible remedies in Section 6.2.

If the prevalence levels of Ω1 and Ω2 are high, it may appear as if a positive

result in Ω{1,2} would also be desirable. This occurs for example when (θ1, θ2, θ3) =

(1.5, 0.2, 0) and (f01, f02, f03) = (9/16, 3/16, 1/4), see Table 5.10. In this case,

θ{1,2} = 1.175, which exceeds the effect size considered to be of clinical significance.
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However, we believe that the correct conclusion should still exclude Ω2, as the high

effect size in Ω{1,2} is primarily a result of θ1 = 1.5 and the high prevalence of Ω1

in Ω{1,2} (f{1,2},1 = 0.75).

Overall, while GSDS reaches a positive conclusion (i.e. reject any null hypothe-

sis) with lower probability than either FE or HUT, it does perform better in terms

of rejecting only the hypotheses that should be rejected. Power performance of

HUT and FE is also fairly dependent on procedure-specific parameters (local sig-

nificance levels and enrichment parameters for FE; θ+ and kHUT for HUT), while

GSDS only requires specification of the two spending functions α∗L and α∗U . These

functions are naturally defined as proportional to the interim analysis timing. As

a result, GSDS is reasonably simple to implement and its performance does not

overly rely on the specification of a number of parameters. This is desirable, as

procedure-specific parameters can substantially influence the probability of a pos-

itive result depending on the true effect size pattern and prevalence levels.

Effect of No Nesting Pattern: We see in Tables 5.11 and 5.12 power per-

formance when there is no nesting pattern. Here, the effect size is only large

enough for population Ω2, while effects in Ω1 and Ω3 are not worth detecting.

None of the designs under consideration are particularly useful for this scenario.

GSDS could be applied, but DR-I (see Section 5.2) would be more appropriate

than the rule used in this example (DR-II, which is used because of the perceived

nesting structure). Depending on prevalence levels, the most desirable conclusion

may be rejection of H{1,2}, in particular when (f01, f02, f03) = (1/4, 1/4, 1/2), in

which case θ{1,2} = 0.8 in Table 5.11 and 0.85 in Table 5.12. The GSDS procedure

achieves highest rejection probabilities for H{1,2} in all cases that are considered.

As expected though, the overall performance of the three designs is uninspiring.
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Effect of Homogeneity Pattern: Tables 5.13 and 5.14 show performance

in the case of equal effect size across all subgroups. In this type of scenario, the

correct conclusion is to reject Ω0, though secondary findings involving (possibly

composite) subgroups are also valid. When all θj = 0.4, we expect that all designs

are underpowered, and this is confirmed in Table 5.13. In this case, it can be

argued that the “best” conclusion is simply a negative trial, as effect sizes are not

close to a clinically meaningful difference. The FE and HUT designs achieve higher

rejection probabilities for Ω0 than GSDS does.

When all θj = 0.8, it is desirable that the trial ends with a positive finding,

preferably for Ω0. Inspecting Table 5.14, we again see that FE achieves this with

high probability, dominating the other procedures in the cases considered. This

finding is with the caveat that by design, FE tends to have high power for H0,

even when there is heterogeneity among the subgroups. HUT can perform well

in the homogeneity setting, though power is quite dependant on the value chosen

for kHUT . Our results indicate that kHUT = 2 leads to good performance (using

kHUT = 2 means false negatives are penalized heavily, which makes subgroup

elimination unlikely at the interim analysis). We note that GSDS is dominated in

this setting, but comes closest to the other procedures when prevalence levels are

low rather than high.

Impact of Early Rejection in GSDS: In Tables 5.9–5.14 we have included

power performance for GSDS with α∗U(t) = tα and α∗U(t) = 0, i.e. both early

rejection and no early rejection. In all cases, we observe that power is slightly

lower when early rejection is allowed. The difference is essentially negligible when

a favorable nesting pattern is present, but more pronounced when treatment effects

are equal across the subgroups. Hence there is a trade-off to consider for a trial

203



sponsor; if early findings warrant terminating the trial with a positive finding,

early rejection can mean substantial savings in time and financial resources. On

the other hand, it may be necessary to budget for a slightly larger maximum sample

size due to the fact that power tends to be lower when early rejection is possible.

Impact of Interim Timing: Figure 5.5 shows the impact of interim timing

on power performance for GSDS. (Timing properties for HUT and FE were con-

sidered in Chapter 3.) We see that when a favorable nesting pattern is present,

the procedure benefits from a late interim analysis. Recall that lower limits are

l1
√

∆1j, j ∈ P , and hence they increase proportionally to the square root of ac-

cumulated information. When effect sizes are small or non-existent, a longer first

stage hence decreases the probability that an ineffective population be passed on

to stage two. However, for the homogeneity pattern (θ1, θ2, θ3) = (0.8, 0.8, 0.8) (red

line in Figure 5.5), we see the opposite effect.

When a favorable nesting pattern is present, Wang et al. (2009) report that

the earlier an interim analysis is performed, the higher the power performance for

all subgroups and here we see the opposite effect. This is in contrast to GSDS,

and the difference can be explained by examining the procedure used to eliminate

populations; GSDS employs a sort of “bottom-up” approach, whereby the popu-

lation believed to be least responsive is first up for elimination. In particular, the

decision on whether or not to eliminate a particular subgroup is based purely on

results from that subgroup. Wang et al. (2009), on the other hand, employ a “top-

down” approach, where the overall results are checked first. If these are not strong

enough, Ω3 is eliminated, and results involving only Ω1 and Ω2 are considered, and

so forth. Hence, a long first stage implies that the non-centrality parameter for Z10

(first stage, overall population) is large relative to when the first stage is shorter.
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Figure 5.5: Rejection probabilities for the GSDS procedure over t values 0.25, 0.5 and
0.75. For the nesting pattern, power performance is for rejection of Ω{1} only. For the
homogeneity pattern, power performance is for rejection of Ω0.

This makes detection of heterogeneity more difficult, and the incorrect decision to

proceed with Ω0 is probable. As discussed in the previous paragraph, GSDS is

well equipped to detect this favorable nesting pattern, and does so with greater

probability as the first stage is lengthened.
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Chapter 6

Discussion

6.1 Conclusions

We have considered the problem of designing and analyzing clinical trials that

prospectively incorporate analysis of subgroup-specific effects. This issue is very

prevalent in modern day clinical trials, and several motivating examples were dis-

cussed in Chapter 1. We face many challenges with subgroup analysis, including

lack of study power, issues with multiplicity, as well as interpretability and gen-

eralizability of study results. The small size of many subgroups can mean that

prohibitively large sample sizes are needed to guarantee desired power, and hence

trials must be carefully designed to detect effects restricted to certain subgroups.

In addition, a study that entertains multiple questions must provably bound the

probability that any false positive decision is made. This can become quite compli-

cated when there are many subgroups to chose from. In Section 1.2.2, we discussed

in detail these issues and others that should be taken into consideration when con-

ducting subgroup analysis.

In Chapter 3, we considered the case where there is one subgroup of interest.

In this scenario, it is preferred to detect an overall effect if one is present; if not, a

subgroup effect should be detected with high probability. By prospectively speci-

fying the subgroup of interest, it is possible to design trials that allow confirmatory

evaluation of treatment effect in this subgroup, while protecting FWER strongly

at the desired level and also maintaining the integrity of the trial. Several novel

designs were proposed, and others were adapted from the literature for compar-
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ison. We saw that adaptive designs that incorporate an interim analysis can do

particularly well in this setting, specifically if only the subgroup is responsive. In

contrast, traditional designs such as a fixed Hochberg-Simes procedure or a mul-

tiplicity adjusted O’Brien and Fleming group sequential trial are not suited to

detect heterogeneity. Procedures that showed particular promise allow adaptive

enrichment at interim (e.g. FE or HUT), whereby all resources can be focused on

the subgroup for the second stage. In Chapter 4, the procedures AFP, FE and

HUT were extended to allow consideration of any number of subgroups.

As part of the analysis conducted in Chapter 3, we also investigated the effect of

subgroup prevalence and interim analysis timing on the power performance, as well

as the quality of interim analysis decisions. As expected, power for the subgroup

was observed to increase with its prevalence, while power to detect an overall

positive effect also relies on the effect size in the subgroup complement. There is

no obvious “correct” time for an interim analysis, though our conclusions indicate

that t between 1/4 and 1/2 is appropriate. For the scenarios that we analyzed,

there is little difference in power performance as t varies, though obviously the

interim analysis is more robust as t increases.

An important observation made in our research is that the decision on whether

or not to enrich the subgroup of interest should be based on (or at least incorporate)

the analysis of treatment effect in the subgroup complement. It is possible to see a

strong overall effect, while at the same time the subgroup complement is completely

nonresponsive. In such cases, the observed positive overall effect is mainly driven

by very strong results in the subgroup of interest. Basing interim decisions only on

the overall statistic Z10 can result in designs that are biased towards positive results

for the complete populations, and do not detect heterogeneity except under very
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favorable circumstances. FE and CP are the two proposed procedures to which

this applies. However, this weakness is less obvious when the interim analysis is

conducted early, and the prevalence of the subgroup of interest is relatively low.

In Chapter 5 we proposed a confirmatory adaptive multi-stage group sequential

design (GSDS) that only eliminates populations that show early signs of being non-

responsive. At the end of the first stage, results from each prospectively specified

subgroup are examined, and those falling below a certain threshold are discarded

for the remainder of the trial. The remaining populations are then pooled to create

a single overall population of interest that is tested at subsequent interim analyses.

The pooling approach is novel, and has certain strengths as well as drawbacks. For

instance, combining the remaining populations is a simple way to deal with issues

of multiplicity, which can be very challenging when conducting a group sequential

trial. One of the strengths of group sequential trials is the high probability that the

trial can be terminated before the final analysis with a positive conclusion. The

GSDS design thus combines this strength with the possibility to detect subgroup

heterogeneity while avoiding issues that can arise when more flexible designs are

used (Burman and Sonesson, 2006). A weakness of the pooling approach is that

once a stopping boundary is crossed, no further testing is allowed (all α has been

spent). This can be problematic if the trial was negative, but the combined pop-

ulation consists of multiple prospectively specified subgroups, some of which may

actually be responsive to treatment.

The GSDS procedure was compared to the FE and HUT procedures in terms of

power performance when there were three subgroups of interest, and no procedure

was dominated over all cases considered. We found that when a favorable nesting

pattern is present, the GSDS procedure reaches the correct conclusion only with
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greater probability than FE and HUT, while the latter two procedures are more

powerful when treatment effect is homogeneous across all populations. GSDS does

have the advantage of easily incorporating early stopping for rejection, and hence

has a smaller expected sample size than the other two designs.

In conclusion, we have presented several confirmatory adaptive clinical trial de-

signs that are specifically tailored to allow analysis of subgroups. When effects are

confined to a subgroups, procedures that incorporate at least one interim analysis

were seen to achieve substantial gains in power over non-adaptive designs. In our

examples, no adaptive design outperformed another for all configurations, nor was

any design outperformed for all configurations. The FE procedure, while powerful

overall, can struggle to detect heterogeneity if subgroup prevalence is high, or if the

interim analysis is unsuitably timed. The HUT procedure performs well in a variety

of scenarios, but power performance can be highly dependent on procedure-specific

parameters such as kHUT and θ+. Further, while using empirical data weights is

desirable to increase efficiency, protection of Type I error is not guaranteed and

hence their use may be unacceptable in the eyes of regulatory authorities. If empir-

ical data weights are not used, then equally informative observations are weighted

unequally at the final analysis. The GSDS procedure, though adaptive in nature, is

essentially a fixed design that requires minimal specification of procedure-specific

parameters. Once spending functions are chosen, critical boundaries can be ob-

tained in a straightforward manner, and the trial then has a clear and unambiguous

decision path. Further, unlike procedures considered in Chapters 3 and 4, GSDS

can incorporate more than one interim analysis, any of which can result in trial

termination due either to rejection or acceptance. We believe that this flexibility,

coupled with its relative simplicity, makes the GSDS design a suitable procedure

of choice for confirmatory trials where subgroup analysis is desired.
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6.2 Future Research

In Chapter 3 we observed that the FE procedure can struggle to detect hetero-

geneity, instead attributing positive results to an overall effect. Hence, FE power

for H0 is usually higher than power for a subgroup, unless the subgroup is rela-

tively small or if the interim analysis is conducted early. In the single-subgroup

setting, we can counter this using an approach similar to that given by Brannath

et al. (2009). Let γ2 ∈ [0, 1], and let Cγ2 = F−1 (1− γ2) where F is the cumulative

distribution function of the test statistic Z (see notation in Section 3.2.2). Now

the first stage analysis FE procedure can be stated as follows:

1. If Z10 < Cγ0 and Z11 < Cγ1 , then stop the study for futility.

2. If Z10 < Cγ0 and Z11 ≥ Cγ1 , then proceed to stage two and enrich the

subgroup Ω1.

3. If Z10 ≥ Cγ0 and Z11 ≥ Cγ1 , but Z12 < Cγ2 , then also enrich to Ω1 for stage

two.

4. If Z10 ≥ Cγ0 , Z11 ≥ Cγ1 , and Z12 ≥ Cγ2 , then proceed to stage two with the

full population.

5. If Z10 ≥ Cγ0 and Z11 < Cγ1 , then proceed to stage two with the full popula-

tion.

Steps 3–5 contain the modified decision process that is proposed, where we require

some consistency of findings in the subgroup complement in order to allow the

procedure to go forward with the full population. A new value for α̃1 will need

to be computed, and when there is only one subgroup of interest the analysis

involved is manageable. Incorporating steps 3–5 will affect power for H0 negatively,
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even when there is no heterogeneity among subgroups. However, the purpose of a

method such as FE is to detect subgroup-specific effects, and the proposed changes

will help accomplish this.

The HUT and HPP designs presented in Chapter 3 rely on Bayesian computa-

tional methods when conducting the interim analysis. A Phase III trial needs to

provably protect FWER strongly at level α, and this can be problematic to show

for a pure Bayesian design. However, the relatively strong performance of HUT

and HPP suggests that more effort should be put into the development of hybrid

Bayesian designs for confirmatory Phase III trials. In particular, exchangeability

was a key assumption in our setup, which is appropriate when there is no natu-

ral ordering of subgroups. When this is not the case, however, a general method

that accounts for patient heterogeneity is still needed. Wathen et al. (2008) have

proposed a class of model-based Bayesian designs for Phase II trials, specifically

tailored to handle differing prior beliefs about particular subgroups, but to our

knowledge no such designs exist yet for use in Phase III trials.

The GSDS procedure, proposed in Chapter 5, presents a new approach to

combine “traditional” group sequential trials with the problem of detecting het-

erogeneity among subgroups. We presented the procedure in terms of the efficient

score statistic, relying on the normal approximation which holds for a variety of

endpoints. However, when endpoints are binary and sample sizes are small, or suc-

cess probabilities p are small, this approximation is inaccurate. Moreover, observed

information depends on p, and in our examples we chose the conservative estimate

by using p̄ = 1
2
. To remedy this, we could use exact methods for Bernoulli data,

where the number of successes for each population at a given stage are distributed

as a binomial random variable. For the first stage, the conditional distribution of
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the cumulative number of successes for retained populations Ωj, j ∈ P∗, can be

obtained with convolution. Its exact form will depend on the decision rule used at

the first analysis (nested or not).

We list other extensions/modifications of GSDS that might be of interest:

1. Include a prospectively specified option to delay population elimination.

That is, stage 1 < k∗ < K is predetermined as the stage at which some

populations may be dropped. Prior to stage k∗, the trial will run as a one-

population trial, testing only H0. If stage k∗ is reached without rejection or

acceptance of H0, each population can be examined individually in the same

fashion as described in Section 5.2. Hence, after stage k∗ the trial would

behave exactly as the original GSDS design.

2. Another option is to allow elimination of populations in more than one stage.

For example, say we have three populations Ω1,Ω2 and Ω3 and a three stage

trial is planned. At the first interim analysis, Ω3 is dropped, but the other

two populations look promising. If, at the end of the second stage, only

Ω1 looks responsive, it is desirable to have the option to drop Ω2 as well.

The current formulation of GSDS does not account for this, and the added

complexity may make the resulting analysis more computationally intensive.

Approximate boundaries could still be easily obtained by use of simulation.

3. As currently stated, if the GSDS accepts HP∗ at a given stage, no more test-

ing may take place. However, if ΩP∗ was composed of multiple populations

and there is reason to believe some were incorrectly chosen after the first

analysis, we would like for there to be some flexibility to test smaller popu-

lations, as a sort of “fallback” option. In such cases, it may be possible to

use up unspent α and test hypotheses corresponding to the remaining pop-
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ulations using a simple multiplicity adjustment. Test statistics of interest

can be computed using a combination rule such as the weighted inverse nor-

mal method, where combination weights are proportional to the originally

planned information increments. Then the closed testing principle would be

applied, taking all original hypotheses into consideration (even those corre-

sponding to dropped populations). If the procedure terminated at stage T ,

then the remaining unspent α can be expressed in terms of the upper spend-

ing function α∗U(·), as
K∑

i=T+1

α∗U(i)−α∗U(T ). Note that if acceptance occurred

at the final analysis, all α has been spent. P-values could be adjusted using,

for example, Hochberg’s method, and tests carried out using the remaining

α as the effective FWER. Further investigation is required to assess the op-

erating characteristics (e.g. possible Type I error inflation) of this type of

“rescue” testing.

4. It might be of interest to not force pooling of chosen populations, and to

test these individually. In this case, we are essentially running a number of

parallel and independent group sequential trials, and the GSDS procedure

would no longer apply. Sample size requirements would certainly be cause

for concern, and while obtaining integral representations of stage-wise prob-

abilities (as we did for GSDS) is straightforward, accounting for multiplicity

is not.

5. The procedure is developed under the assumption that observation variance

σ2 is known. If σ2 is not known, then observed information is not known; it’s

estimate depends on the estimate of σ. In this case tests would be specified in

terms of t-distributed test statistics, see for example (Jennison and Turnbull,

2000, Ch. 4.4).
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Bauer, P. and Köhne, K. (1994). Evaluation of Experiments with Adaptive Interim

Analyses. Biometrics, 50(4):1029–1041.

Bechhofer, R. E., Santner, T. J., and Goldsman, D. M. (1995). Design and Analysis

of Experiments for Statistical Selection, Screening, and Multiple Comparisons.

John Wiley & Sons, Inc.

Begley, S. (2010, January 29). The Depressing News About An-

tidepressants. Newsweek . http://www.newsweek.com/2010/01/28/

the-depressing-news-about-antidepressants.html.

214



Begley, S. (2010, September 07). Curing Cancer. Newsweek . http://www.

newsweek.com/2010/09/07/what-we-can-learn-from-curable-cancers.

html.

Beran, R. (1988). Prepivoting test statistics: a bootstrap view of asymptotic

refinements. Journal of the American Statistical Association, 83(403):687–697.

Berry, S. M., Carlin, B. P., Lee, J., and Müller, P. (2011). Bayesian Adaptive

Methods for Clinical Trials. Chapman & Hall/CRC, Boca Raton, FL.

Bollag, G., Hirth, P., Tsai, J., Zhang, J., Ibrahim, P. N., Cho, H., Spevak, W.,

Zhang, C., Zhang, Y., Habets, G., et al. (2010). Clinical efficacy of a RAF

inhibitor needs broad target blockade in BRAD-mutant melanoma. Nature,

467:596–599.

Brannath, W., Posch, M., and Bauer, P. (2002). Recursive Combination Tests.

Journal of the American Statistical Association, 97(457):236–244.

Brannath, W., Zuber, E., Branson, M., Bretz, F., Gallo, P., Posch, M., and Racine-

Poon, A. (2009). Confirmatory adaptive designs with Bayesian decision tools

for a targeted therapy in oncology. Statistics in Medicine, 28:1445–1463.

Bretz, F., Maurer, W., Brannath, W., and Posch, M. (2009). A graphical approach

to sequentially rejective multiple test procedures. Statistics in Medicine, 28:586–

604.

Bretz, F., Schmidli, H., König, F., Racine, A., and Maurer, W. (2006). Confirma-

tory Seamless Phase II/III Clinical Trials with Hypotheses Selection at Interim:

General Concepts. Biometrical Journal, 48(4):623–634.

Burman, C.-F. and Sonesson, C. (2006). Are Flexible Designs Sound. Biometrics,

62:664–683.

215



Chang, M. (2010). Monte Carlo Simulation for the Pharmaceutical Industry: Con-

cepts, Algorithms, and Case Studies. Chapman & Hall/CRC, Boca Raton, FL.

Cui, L., Hung, H., and Wang, S. (1999). Modification of sample size in group

sequential clinical trials. Biometrics, 55(3):853–857.

Davies, H., Bignell, G., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J.,

Woffendin, H., Garnett, M., Bottomley, W., et al. (2002). Mutations of the

BRAF gene in human cancer. Nature, 417(6892):949–954.

Dixon, D. O. and Simon, R. (1991). Bayesian subset analysis. Biometrics,

47(3):871–881.

Dmitrienko, A., Bretz, F., Westfall, P. H., Troendle, J., Wiens, B. L., Tamhane,

A. C., and Hsu, J. C. (2010). Multiple Testing Methodology. In Dmitrienko, A.,

Tamhane, A. C., and Bretz, F., editors, Multiple Testing Problems in Pharma-

ceutical Statistics. Chapman & Hall/CRC, Boca Raton, FL.

European Agency for the Evaluation of Medicinal Products (2002). Points to

Consider on Multiplicity Issues in Clinical Trials. http://www.tga.gov.au/

docs/pdf/euguide/ewp/090899en.pdf.

Flaherty, K., Puzanov, I., Kim, K., Ribas, A., McArthur, G., Sosman, J., O’Dwyer,

P., Lee, R., Grippo, J., Nolop, K., et al. (2010). Inhibition of mutated, activated

BRAF in metastatic melanoma. New England Journal of Medicine, 363(9):809–

819.

Fleming, T. (2006). Standard versus adaptive monitoring procedures: a commen-

tary. Statistics in Medicine, 25(19):3305–3312.

Fournier, J., DeRubeis, R., Hollon, S., Dimidjian, S., Amsterdam, J., Shelton,

R., and Fawcett, J. (2010). Antidepressant drug effects and depression severity:

216



a patient-level meta-analysis. Journal of the American Medical Association,

303(1):47.

Freidlin, B., McShane, L., and Korn, E. (2010). Randomized clinical trials with

biomarkers: design issues. JNCI Journal of the National Cancer Institute,

102(3):152–160.

Freidlin, B. and Simon, R. (2005a). Adaptive Signature Design: An Adaptive Clin-

ical Trial Design for Generating and Prospectively Testing a Gene Expression

Signature for Sensitive Patients. Clinical Cancer Research, 11:7872–7878.

Freidlin, B. and Simon, R. (2005b). Evaluation of randomized discontinuation

design. Journal of Clinical Oncology, 23(22):5094.

Gallo, P. (2006). Operational challenges in adaptive design implementation. Phar-

maceutical Statistics, 5(2):119–124.

Genz, A. and Bretz, F. (2002). Methods for the Computation of Multivariate

t-Probabilities. Journal of Computational and Graphical Statistics, 11:950–971.

Greenman, C., Stephens, P., Smith, R., Dalgliesh, G., Hunter, C., Bignell, G.,

Davies, H., Teague, J., Butler, A., Stevens, C., et al. (2007). Patterns of somatic

mutation in human cancer genomes. Nature, 446(7132):153–158.

Harmon, A. (2010, February 21). A Roller Coaster Chase for a Cure. The New York

Times . http://www.nytimes.com/2010/02/22/health/research/22trial.

html.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of signifi-

cance. Biometrika, 75(4):800–802.

Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures. Wiley.

217



Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scan-

dinavian Journal of Statistics, 6:65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a

modified Bonferroni test. Biometrika, 75(2):383–386.

Hommel, G. (1989). A comparison of two modified Bonferroni procedures.

Biometrika, 76(3):624–625.

Hung, H. M. J., O’Neill, R. T., Wang, S.-J., and Lawrence, J. (2006). A regulatory

view on adaptive/flexible clinical trial design. Biometrical Journal, 48(4):565–

573.

Huque, M. F. and Alosh, M. (2008). A flexible fixed-sequence testing method for

hierarchically ordered correlated multiple endpoints in clinical trials. Journal of

Statistical Planning and Inference, 138:321–335.
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