
ENGINEERING
CORNELL QUARTERLY

M
S. -fl» es

r r-

F 1 i • -i

BiybBraa*1

3'fe . jca

TWENTY YEARS

COMPUTER SCIENCE

IN THIS ISSUE
Twenty Years of Computer Science at Cornell / 2

David Grles

Immediate Computation or How to Keep a Personal Computer

Busy/12

Tim Teitelbaum and Thomas Reps

Reaching Agreement: A Fundamental Task Even in Distributed

Computer Systems / 18

Fred B. Schneider, Ozalp Babaoglu, Kenneth P. Birman, and Sam Toueg

Programming Methodology: Making a Science Out of an Art / 23

David Gries and Fred B. Schneider

Robotics and Computer Science / 28

Dean B. Krafft

Computer Architecture: The Software-Hardware Interface / 34

Jon A. Solworth

Setting an Example: Administrative Computing in Cornell's

Department of Computer Science / 41

Diane Duke and Michele Fish

Vantage / 44

Faculty Publications / 50

Editorial / 60

Register / 46

Letters / 58

Engineering: Cornell Quarterly (ISSN 0013-7871), Vol. 20, No. 2, Autumn 1985.
Published four times a year, in summer, autumn, winter, and spring, by the College of Engineering,
Cornell University, Campus Road, Ithaca, New York 14853. Second-class postage paid at Ithaca,
New York, and additional offices. Subscription rate: $6.00 per year; $9.00 outside the United States.

Outside cover illustrations from Cornell research in computer science (clockwise from upper
left): a small section of a computer image representing a VLSI design, part of a project in
computer architecture; solid-model imaging—a gate valve assembly with blending surfaces
shown in blue; a demonstration of computer-controlled robot assembly; an outer corridor of
Cornell's projected performing arts center, as modeled by a researcher in the Program of
Computer Graphics; a simple example of solid modeling with a blending surface.

Opposite: The terminal room in Upson Hall for graduate research. An addition to the
building will provide less crowded facilities.

Gries

TWENTY YEARS OF
COMPUTER SCIENCE AT CORNELL

by David Gries
Twenty years ago Cornell became one
of the first universities in the nation to
create a computer science department.
The initiative was unusual in several
ways. It was helped by a grant from the
Sloan Foundation. It was established
initially as a graduate research program
in order to begin educating the Ph.D.s
who would populate the expected new
departments in the new discipline. And
because of the interdisciplinary nature
of the field, the department was placed
where it still is today, in both the
College of Engineering and the College
of Arts and Sciences.

In his first annual report the first
chairman, Juris Hartmanis, wrote:

The major goal of this department is to
become a Distinguished Department of
Computer Science. We sincerely believe
that computer science is a major new
science, with an extensively broad range
of influence, and that Cornell must
excel in this area.

Twenty years later, we believe we are
meeting that goal.

The most common way to measure
such things is by peer rankings: in the

1982 survey conducted by the Con-
ference Board of Associated Research
Councils, Computer Science at Cornell
placed fifth in faculty quality out of all
the Ph.D.-granting departments—many
considerably larger than ours—in the
United States.

Another criterion is the effectiveness
of the educational program: over the
years, our department has produced 110
Ph.D.s, most of whom hold positions
in academic institutions or industrial
research laboratories. In research the
department's program has expanded to
include many areas of theoretical and
experimental computer science, and
research expenditures have increased
more than three-fold in the last five
years (see Figure 1).

These numbers do not, of course, tell
the whole story. Priorities have been
established and challenges met. Building
an outstanding faculty and research
program, developing courses and edu-
cational programs, acquiring facilities
and keeping them up-to-date, and
managing, somehow, to make room for
an expanding operation are continuing
goals.

)f
 D

ol
la

rs
lio

ns
 (

M
il

2.5

2.0

1.5

1.0

0.5

-

-

1979-80 1984-85
Academic Year

Figure I. Annual expenditures for research
in computer science at Cornell over the last
six years. The graph shows the rise from
$0.6 million to $2.1 million. The figures for
1984-85 do not include the donation by the
Xerox Corporation of thirty workstations,
related equipment, and maintenance service.

STARTING FROM SCRATCH
IN BUILDING A FACULTY
The main faculty instigators at Cornell
for establishing the Department of
Computer Science were Dick Conway
of the operations research faculty and 2

Richard W. Conway

Patrick C. Fischer

Juris Hartmanis
Christopher Pottle

Gerard Salton
Sidney Saltzman

Table I.
FACULTY IN 1965

Appointed jointly in operations research; now in the Johnson
Graduate School of Management
Now chairman of the computer science department at
Vanderbilt University

Appointed jointly in electrical engineering; now fully in that
school

Appointed jointly in operations research; now in the
Department of City and Regional Planning

Robert J. Walker Appointed jointly in mathematics; now professor, emeritus

Bob Walker of the mathematics depart-
ment; both initially had joint appoint-
ments in the new department. (Bob
retired in 1974 from the mathematics
faculty. Dick played a major role in the
computer science department until just
last year, when he moved to the
Johnson Graduate School of Manage-
ment at Cornell.)

In its first year, 1965-66, Computer
Science had a faculty of seven (listed in
Table I). Remarkably, five of the seven
are still at Cornell, although only two
are still with the department: Juris
Hartmanis, the first chairman, and
Gerard Salton, the second chairman. By
the mid-1970s the faculty had doubled,
and it remained at about fourteen
members until the very late 1970s, when
increasing interest in computer science,
both locally and nationwide, forced the
department to grow rapidly to its
current size of twenty-four members
(see Figure 2).

The recent growth has not been easy
to accommodate. In a period of
retrenchment within the University it
has been difficult to get additional
resources. The needs were documented,

In 1965 the initial computer science faculty
at Cornell consisted of three full-time and
four half-time people, as listed in Table I.
Of the original seven, two are still in the
department, five are still at Cornell, one is
retired, and one is chairman of the computer
science department at another university.

The scope of the department is suggested
by Table II, which lists the current faculty
members and the specialty areas in which
they teach and conduct research. The youth
of the field is illustrated by the fact that
sixteen of the twenty-four professors—those
whose names are printed in color—were
appointed during the 1980s.

but the money was not always available.
Also, the youth of the discipline—the
oldest computer science department was
established only in 1964—and its
phenomenal growth have made it dif-
ficult to find faculty members, let alone
to assimilate and retain them. Even now
the demand for Ph.D.s is about four
times the supply, which is about three
hundred a year. The growth of the
discipline is illustrated forcefully in the
makeup of the Cornell department. The
first retirement is perhaps ten years
away, and the department consists of

Table II.
FACULTY IN 1985

Ozalp Babaoglu: distributed systems,
performance evaluation
Gianfranco Bilardi: VLSI algorithms
and architectures, VLSI complexity,
parallel computation
Ken Birman: distributed systems, fault
tolerance, signal processing
Dina Bitton: databases
Tom Coleman: numerical analysis
Robert L. Constable: computational
complexity, formal semantics,
programming logics
John R. Gilbert: analysis of algorithms,
combinatorial algorithms for
numerical problems
David Gries: programming
methodology, programming
languages, compiler construction
Juris Hartmanis: theory of
computation
John E. Hopcroft: algorithms, robotics
Greg Johnson: programming
environments, compilers
Kevin Karplus: VLSI, computer music,
computer-aided design
Dexter Kozen: computational
complexity
Abha Moitra: programming
methodology
Alex Nicolau: parallel computation,
architecture, optimizing compilers
Prakash Panangaden: programming
languages and logics, mathematical
foundations of semantics
Gerard Salton: information
organization and retrieval
Fred B. Schneider: concurrent
programming, fault tolerance,
distributed systems
Jon Solworth: VLSI design, computer-
aided design, computer architecture
Ray Teitelbaum: programming
languages and systems
Sam Toueg: computer networks and
protocols, distributed computing
Charles Van Loan: numerical analysis
Vijay Vazirani: algorithms,
computational complexity
Kay Wagner: applied logic

Figure 2. Growth in the computer science
faculty at Cornell. Since its establishment in
1965, the faculty has increased almost five-
fold, with much of the increase occurring
during the past five years. The numbers refer
to full-time-equivalent positions.

five full professors, four associate
professors, fourteen assistant profes-
sors, and one lecturer.

A DISTINGUISHED FACULTY:
THE FUNDAMENTAL ASSET
Regardless of its size, a department can
only be as good as its individual faculty
members, and in this regard Cornell's
computer science department is clearly
outstanding. Gerard Salton is an
example. He received the first annual
SIGIR (Special Interest Group in
Information Retrieval) award in 1982
for long-lasting contributions to re-
search in that area, and in 1983 the
University of Helsinki recognized him
for his research contributions. Another
charter member of the department,
Juris Hartmanis, was elected a member
of the New York State Academy of
Science in 1981, and that same year
became the first computer scientist to
receive an automatic extension to a
National Science Foundation research
grant under a program for special
creativity. At Cornell Hartmanis was
named the Walter R. Read Professor of
Engineering in 1980. Another chair-

25

20

1
E 15

"5u
CO

"" 5

-

-

1965-66

/ — •

1970-71
i i i i i i

1975-76
Academic Year

1980-81

holder is John Hopcroft, named this
year as the Joseph C. Ford Professor of
Computer Science. David Gries was
awarded a Guggenheim fellowship in
1983-84; a few years earlier he parti-
cipated in the Distinguished Scholar
Exchange Program, spending a month
in China.

The younger faculty members have
also received recognition. John Gilbert
was a recipient this year of a National
Science Foundation Presidential Young
Investigator Award. Kevin Karplus,
Fred Schneider, and Vijay Vazirani
have all received IBM Faculty Devel-
opment Awards under a program es-
tablished just three years ago. And
Ozalp Babaoglu was a recipient of the
1982 Sakrison Memorial Prize at
Berkeley for his work in developing the
Berkeley-UNIX operating system, which
is the major system used in most
computer science departments.

Faculty effectiveness is demonstrated
also by the success of students. Cornell
Ph.D.s have done well both in academia
and in industrial research. In 1983, for
example, Tom Reps received the second
Doctoral Dissertation Award of the

Association for Computing Machinery
(ACM) for his thesis Generating
Language-Based Environments, written
under the direction of Tim Teitelbaum.
In 1977 Susan Owicki and David Gries
received the ACM Award for the Best
Paper in Programming Languages and
Systems; it was based on her Ph.D.
thesis Axiomatic Proof Techniques for
Parallel Programs.

Ever since the department's begin-
nings, the faculty has been prolific in
publishing not only professional papers,
but books and monographs (see Table
III). In fact, more highly regarded texts
appear to have originated at Cornell
than at any other university. Many of
these books have received wide acclaim
and have been translated into other
languages.

The department is well represented in
professional activities at the national
level. In a typical year it provides about
twenty editors and members of editorial
boards of respected journals and book
series and eight to fifteen members of
program committees for technical con-
ferences. Working on editorial boards
and program committees can be ardu- 4

Table III.
BOOKS BY MEMBERS OF THE COMPUTER SCIENCE FACULTY

1966 J. Hartmanis (with R. E. Stearns). Algebraic
structure of sequential machines. Prentice-Hall.

1968 R. Conway, W. L. Maxwell (with L. W. Miller).
Theory of scheduling. Addison-Wesley.

G. Salton. Automatic information organization
and retrieval. McGraw-Hill.

P. Wegner. Programming languages, information
structures and machine organization.
McGraw-Hill.

1969 J. Hopcroft (with J. Ullman). Formal languages and
their relation to automata. Addison-Wesley.

1971 D. Gries. Compiler construction for digital
computers. John Wiley.
G. Salton. The SMART retrieval system:
Experiments in automatic document processing.
Prentice-Hall.

1973 R. Conway, D. Gries. An introduction to
programming: A structural approach. Winthrop.

1974 J. Hopcroft (with A. V. Aho and J. D. Ullman). The
design and analysis of computer algorithms.
Addison-Wesley.

1975 G. Salton. Dynamic information and library
processing. Prentice-Hall.

1976 R. Conway, D. Gries. Primer on structured
programming. Winthrop.

R. Conway, D. Gries (with E. C. Zimmerman).
Primer on Pascal. Winthrop.
J. E. Donahue. Complementary definitions of
programming language semantics. Lecture notes
on computer science, vol. 42. Springer-Verlag.

1977 R. Conway. A primer on disciplined
programming. Winthrop.

R. Conway, D. Gries (with D. Wortman).
Introduction to structured programming using
SP/k. Winthrop.

1978 R. Constable. A programming logic. Winthrop.

R. Conway. Programming for poets: A gentle

introduction using PL/I. Winthrop. [Other
versions for FORTRAN, BASIC, and Pascal
appeared in 1978, with J. Archer and R. Conway
as coauthors.]

D. Gries, ed. Programming methodology: A
collection of articles by members of IF IP WG2.3.
Springer-Verlag.

1979 R. Cartwright. A practical formal semantic
definition and verification system for TYPED LISP.
Garland.

R. Conway, D. Gries (with C. Bass and M. Fay). An
introduction to microprocessor programming.
Winthrop.

1981 D. Gries. The science of programming.
Springer-Verlag.

1982 R. Constable (with S. D. Johnson and C. D.
Eichenlaub). Introduction to the PL/CV2
programming logic. Lecture notes in computer
science, vol. 135. Springer-Verlag.

1983 J. Hopcroft (with A. V. Aho and J. D. Ullman).
Data structures and algorithms. Addison-Wesley.
G. Salton (with M. J. McGill). Introduction to
modern information retrieval. McGraw-Hill.
G. Salton, ed. (with H. J. Schneider). Research and
development in information retrieval. Lecture
notes in computer science, vol. 146.
Springer-Verlag.

C. Van Loan (with G. Golub). Advanced matrix
computations. The Johns Hopkins Press.

1984 T. Coleman. Large sparse numerical optimization.
Lecture notes in computer science, vol. 165.
Springer-Verlag.

F. B. Schneider (with six others). Distributed
systems: Methods and tools for specification.
Lecture notes in computer science, vol. 190.
Springer-Verlag.

T. Reps. Generating language-based
environments. MIT Press.

"Today more
than half of

all Cornell
undergraduates...

take at least
one computer

science course."

ous and time-consuming, but it is an
important way to provide leadership
and help ensure high quality in a new
and growing field.

The faculty should grow to about
thirty members in the next five or six
years. Especially needed are senior
professors, to bring more balance into
the department. (This year some pro-
gress seemed to be made when Dexter
Kozen, a theoretician, came from an
industrial research laboratory to an
associate professorship at Cornell;
however, another associate professor,
Alan Demers, was lost to industry.) The
department also needs to increase the
number of research associates (currently
there are three). Such growth in faculty
and research staff is essential not only
because of the increasing teaching load,
but also because of the need for more
education and research in computer
science at Cornell and throughout the
United States. Research in computer
science is an increasingly vital part of
the nation's efforts to maintain tech-
nological and scientific leadership in
today's "information society".

THE COMMITMENT TO
UNDERGRADUATE EDUCATION
Although computer science at Cornell
was originally conceived as a graduate
program, the department has always
taken its undergraduate teaching ser-
iously. For example, in the early 1970s,
drawing on strong faculty research
interest in programming methodology,
we assumed responsibility for teaching
introductory programming to all en-
gineering students. Today more than
half of all Cornell undergraduates in the
various colleges take at least one
computer science course, and many

nonmajors take junior- and senior-level
courses simply because of their interest
in the subject. The department performs
a vital service for the whole University.

To help teach these courses, the
department has continually developed
appropriate software. The programming
languages CORC and CUPL were
introduced in the early 1960s. Dick
Conway's PL/C compiler, the first
error-correcting load-and-go compiler,
was used heavily throughout the 1970s
for teaching programming not only at
Cornell, but in many other universities.
Tim Teitelbaum's development of the
Cornell Program Synthesizer on the
Terak computer was the first serious
effort to provide an interactive en-
vironment on microcomputers that was
suitable for teaching large numbers of
students. These contributions have
placed Cornell at the forefront of the
drive to provide urgently needed soft-
ware aids for teaching programming.

The introductory programming
courses are large. For example, the first
course, CS100, has between 600 and 900
students each semester; the second
course, CS211, has between 325 and
400. Generally, two faculty members are
assigned to such a course, and they do
the lecturing in large sections. Teaching
assistants are in charge of recitations
and optional lectures. Any student can
get individual help from the teaching
staff if that is necessary. And finally,
undergraduate proctors—students who
have been through the course—staff a
consulting room for at least eight hours
a day so that students can get help with
their programs. We believe that these
large courses are taught quite effectively—
with our current resources there is no
better way to teach them. Still, we feel

15

12

ts
 T

au
g

h
t

lo
u

sa
n

d
s)

n 6

3

f\

-

-

-

1965-66 1970-71

/
^ - —

i i i I i I

1975-76
Academic Year

1980-81

that the students would benefit from
more individual attention than they are
now getting. We would like to set up
more recitation sections so that all the
students could be accommodated in
required sections of no more than thirty
students each.

Our main problem is the tremendous
growth in enrollments (see Figure 3).
Since 1965-66, when instruction began,
the number of courses taught by the
department has increased eighteen-fold,
and last year computer science profes-
sors had approximately twice the
teaching load of the average College of
Engineering faculty member.

Teaching in such a young field entails
other problems. Each year new research
uncovers new concepts, new ways of
presenting material, and new software
and hardware to teach with, and the
continual change is felt at the under-
graduate as well as the graduate level.
Texts are often unsuitable and out of
date. (In 1973 Conway and Gries wrote
an introductory programming text that
was used at Cornell for twelve years,
but the switch to different machines and
programming languages, as well as

advances in the knowledge of program-
ming, has made it obsolete.) And
finally, the widespread use of computers
in many academic areas besides com-
puter science has created a whole new
set of problems. These challenges tend
to make teaching more exciting, of
course, and give the faculty more
opportunity to lead in the development
of the field. The large number of
textbooks written by Cornell computer
science professors is evidence of this
leadership.

Throughout the first ten years, the
department felt it was best for a student
interested in computer science to minor
in that field and major in another area
such as mathematics, physics, or
linguistics. The thought was that in such
a new field it would take time for the
faculty to determine what concepts were
important and lasting, and which should
be taught in an undergraduate curri-
culum. Further, it was important to
educate people in other fields to use
computers intelligently. Accordingly,
the department taught many under-
graduate courses but gave no under-
graduate degree.

Figure 3. The explosive expansion in en-
rollments in computer science. The amount
of instruction provided by the department is
plotted in terms of the total number of
credits earned by the students (a typical
course gives three or four credits). In
1984-85 the number of credits averaged 578
per faculty member.

Pressures for an academic major
increased in the late 1970s, however,
and in 1978 the department established
two programs leading to undergraduate
degrees: the Bachelor of Science in the
College of Engineering and the Bachelor
of Arts in the College of Arts and
Sciences. The programs are going
strong. In 1984-85 there were 220
computer science majors, and thirty-five
B.S. and forty-six A.B. degrees were
awarded. Last year the Association for
Computer Science Undergraduates
(ACSU) was formed on campus. More
communication between students and
the faculty has been promoted also
through the efforts of our undergrad-
uate administrator, Michele Fish. These
initiatives have created a friendlier and
more satisfactory environment for the
undergraduates.

Unfortunately, the establishment and
growth of the two undergraduate pro-
grams has created additional strain in
the department, for the faculty has not
grown in proportion to the workload.
Our professors advise computer science
majors from two colleges in programs
that have different requirements. And

Figure 4. Floor plans for the addition to
Upson Hall. Two floors will be built for the
Department of Computer Science on the
north-south wing, above the space now
occupied by the School of Operations
Research and Industrial Engineering. The
lower of the two new floors will connect
with the fourth floor of the east-west wing,
currently occupied by the computer science
department.

In the diagram, most of the rooms along
the exterior walls are offices. Laboratories
are shaded in gray, and special-purpose
rooms in color.

of course the number of students in
junior- and senior-level courses has
increased and continues to rise; some
400-level courses have had more than
one hundred students enrolled.

In his recent state-of-the-University
address, Cornell President Frank H. T.
Rhodes set forth as a major goal the
provision of "diversified, distinctive,
and distinguished undergraduate pro-
grams". In the efforts to achieve this
goal, the computer and the science of
computing should play important roles,
the former as a tool and the latter as an
aid in understanding how the tool might
be used. An equally important function
of computer science is to contribute
exciting new scientific concepts through
vigorous research activity. With ade-
quate resources, the Cornell department
intends to fulfill its responsibilities in
reaching President Rhodes's goal.

MAKING ROOM
FOR COMPUTER SCIENCE
In 1965 the Department of Computer
Science was housed in a few offices on
the north side of the fourth floor of
Upson Hall. (The four large rooms on

Fourth Level

Robotics

L 1 1 1 1 1 1 1 1 1 1 - :
Programming
Refinement

VLSI Solid Termin
Modelingt

Computer Room Computer
Room

FTTTTTTTTT

Fifth Level

L l l l l

TTTTTT
the south side were being used to teach
drafting.) Since then, the department
has expanded by encroaching on the
space of others. Such expansion was not
too difficult in the early 1970s, but it
became a critical problem toward the
end of the decade as the College
buildings became more and more
crowded. In his 1980-81 annual report,
Chairman Hartmanis wrote that "the
most urgent need for the department is
space. Doubling our space would just
barely take care of our needs for the
next five years. Critical problems in-

clude the crowded conditions for the
students, the lack of a conference room,
and the lack of space for consulting for
undergraduate courses." Although it
was not recognized at the time, the
accommodation of equipment as well
as people mandated expansion. Over
the past seven years, research in
computer science at Cornell has changed
from a pencil-and-paper operation to a
laboratory enterprise using millions of
dollars worth of computing equipment.

Thus began the department's long,
earnest lobbying for more room, an

effort that is finally getting results. This
fall construction begins on a $6.8-
million addition to Upson Hall for
Computer Science that will provide an
additional 22,000 net square feet of
space (see Figures 4 and 5). Including
the third- and fourth-floor space the
department now occupies in Upson,
Computer Science will have about
37,000 square feet to house its 150
people and its equipment. For the first
time, the department will have adequate
conference rooms, computing labor-
atories, administrative office space, and
room to house its graduate students.
There will be a special robotics labor-
atory, and a lounge with pantry. The
addition will be completely wired for
the department's distributed computing
facility so that a workstation or terminal
connected to the department's central
computing faculty can be placed on the

9 desk of every faculty member, staff

member, and graduate student. Because
of the computing equipment, the
addition will be completely air-
conditioned.

Meanwhile, the department struggles
to maintain a sense of community while
being housed in parts of three buildings.
Some thirty graduate students and the
graduate faculty representative, Charlie
Van Loan, are in Carpenter, forty
graduate students are in Kimball, and
the rest of the department is in Upson.
Use of the College's Ethernet, a com-
puter communications network, allows
us to have central computing accessible
from each location and is one of the
reasons this temporary arrangement is
feasible.

BUILDING THE CAPABILITIES
OF THE DEPARTMENT
Until the late 1970s computer scientists
at Cornell were content to use the

Figure 5. The architects' model showing how
Upson Hall will look with the two-story
addition. The view is from the northwest
(from the direction of Carpenter Hall across
the engineering quadrangle). The two floors
to be added are on the far wing of Upson.

University's computing facilities. Soft-
ware projects were in progress, but
much of the research was theoretical
rather than experimental and just didn't
require computers. The department
purchased the first computer of its own,
a PDP 11/60, in 1977 on a National
Science Foundation (NSF) research
grant, and that began an era of rapid
expansion into the world of exper-
imental computing. One year later, for
example, Tim Teitelbaum had finished
the first version of his Cornell Program
Synthesizer, which provided a much
improved programming tool, and
Cornell's Computer Services was per-
suaded to buy enough Teraks so that
the new software could be used in
course work. As a result, the beginning
programming course, CS100, could be
taught using a much more effective
computing environment.

In 1980 the department was awarded
a Coordinated Experimental Research
(CER) grant in a new NSF program to
equip computer science departments.
Our proposal centered around the pro-
gramming process, since the research of
so many of our faculty members in-

The distributed computing facility of the
Department of Computer Science has more
CPU units than the entire University had
ten years ago. A list of the equipment is
given in Table IV.

Right: The department's facilities include
computing equipment provided through a
Coordinated Experimental Research (CER)
grant from the National Science Foundation.
Terminals are set up in an adjacent room
(see the photograph on the inside front cover).

volved programming in one way or
another. The grant provided $2.5 mil-
lion over five years for computing
equipment and an operating staff of
four. It propelled Cornell into the
forefront in a number of experimental
research areas, including distributed
computing, programming environ-
ments, program verification, theorem
proving, and robotics.

During the past few years, the de-
partment has received several additional
NSF equipment grants. The most re-
cent, for $240,000, will be used to
acquire a Gould computer that will at
least double our UNIX computing
cycles. Last year Xerox contributed
thirty workstations (called Dandelions)

Table IV.
THE DEPARTMENT'S COMPUTING FACILITY

Central
Facility

1 PDP 11/60
2 VAX/750s
2 VAX/780s
1 Gould/9080

Workstations and
Microcomputers

40 Xerox Dandelions
9 Suns
4 Symbolics LISP machines
3 HP workstations
13 Macintoshes
1 IBM PC

Peripheral
Equipment

3 laser printers
3 spinwriters and diablos
2 line printers
1 hard-copy graphics printer
1 robot arm
1 video recorder

and associated equipment, a gift es-
timated to be worth about $l million.
Other gifts and grants from AT&T,
General Electric, Gould, Hewlett-
Packard, and IBM have helped us build
a departmental computing facility that
now has more raw computing power
than Computer Services had for the
whole University ten years ago.

Our facility is truly a distributed
system, with more than fifty work-
stations and many more terminals on
desks and in public rooms, all connected
to our central computers (see Table IV).

Everyone, including the administrative
staff, uses the facility daily for such
operations as word processing and
electronic mail service, as well as for
research. We anticipate expanding the
system so that there is a workstation on
every desk and enough "computing
cycles" to accommodate the expanding
experimental program.

In addition to serving departmental
needs, our computing facility functions
as the gateway for the entire University
to national electronic nets such as the
ARPAnet and CSnet. The software and 10

Po
Pi

= -4
^ * *~>.C ~t

h.4

11

administration support for this has been
provided entirely by our technical staff
of four. Frequently we also provide
consulting service and assistance to
other units of the University that have
questions about networking, word pro-
cessing, operating systems, etc. Last
spring, for example, the department
worked with Computer Services and the
Center for Theory and Simulation in
Science and Engineering (the new
supercomputing facility, commonly
called the Theory Center) to establish
needed computer linkages. Also, the
University facilities at Langmuir Lab-
oratory were linked to other parts of
the campus through our computing
facility using PROnet, a token ring
system. This year we wrote software
that allows the Xerox Dandelions to be
integrated into our UNIX environments.
Some of this software will be inserted
into the new Berkeley 4.3 operating
system release and distributed to other
universities.

In maintaining, operating, and im-
proving the facilities, an important
factor is industrial support. The recently
established Industrial Affiliates Pro-

gram in Computer Science should bring
in some of the funds needed for
equipment maintenance (this alone costs
more than $100,000 a year), as well as
for expanding the research program.
Corporate members benefit as well as
contribute: they have closer contact
with our research—joint projects are
possible—and with our students.

As we look forward to larger, well-
equipped quarters, we foresee the need
to expand our personnel as well. We
feel we have done very well, with a
technical staff of only four, to provide
hardware and software support and
consulting advice to other groups in the
University. But we would like to be able
to interact more with units such as the
Theory Center and the College of
Engineering's Computer-Aided Design
Instructional Facility (CADIF). We
hope to double the computing facility
staff and add more faculty members and
research associates.

After twenty years of existence,
Cornell's Department of Computer
Science is coming of age. The prospects
are for continued health and strength in
a productive period of maturity.

David Gries, professor of computer science
at Cornell, contributes this article in the
Quarterly as chairman of his department.
He also collaborated on an accompanying
article about his specialty, programming
methodology.

His research interests include related
topics such as programming languages and
compiler construction. In addition to editing
a 1978 book on programming methodology,
he has written widely used texts on compiler
construction (1971), introductory program-
ming (1973), and the "science" of pro-
gramming (1981). He is on a committee of
the Association for Computing Machinery
to review the contents of lower-level com-
puter science courses.

Gries' honors include a Guggenheim
fellowship, which enabled him to spend the
1984-85 academic year at Oxford University,
England. In 1981 he spent a month in China
on the Distinguished Scholar Exchange
Program.

He received his Ph.D. in mathematics in
Munich, Germany, in 1966, and came to
Cornell in 1969 after three years as an
assistant professor at Stanford University.

IMMEDIATE COMPUTATION
Or How to Keep a Personal Computer Busy

by Tim Teitelbaum and Thomas Reps
The trip between the keypunch and the
computer center was a very familiar
route to early computer users. Data
prepared in advance were submitted as
batches of input to be processed by the
central machine.

Timesharing improved matters con-
siderably. The interval between suc-
cessive runs was reduced from hours to
seconds and the trip to the computer
center was eliminated. The essence of
the batch mode—an alternation between
data preparation and program exe-
cution—remained dominant, however,
even under interactive timesharing.

Today a new way of computing is
taking hold. The inexpensive micro-
processors of personal computers, more
powerful than yesterday's costly main-
frames, are bringing about a shift from
batch processing to immediate com-
putation. And the trend appears certain
to continue: far more powerful micro-
processor workstations are just around
the corner.

In the immediate mode of computa-
tion, each modification to data has
instantaneous effect, since the editing
function is embedded within the applica-

tion program itself. An important result
is that a computation is always consistent
with the current state of the data,
thereby providing useful immediate
feedback to the user as the data are
manipulated. Extra steps are required,
of course, because the data pass through
many intermediate states not apparent
in the batch mode. These extra steps
are acceptable, however, because im-
mediate processing can use surplus
processing capacity. (While the unused
cycles of timeshared computers are at the
disposal of others, the spare cycles of
single-user computers are only wasted.)

The trend away from batch processing
and toward immediate computation is
illustrated by developments in three
areas:
• Recent word-processing systems use
the immediate-computation paradigm.
In the traditional batch-process mode,
an input file, consisting of interleaved
formatting commands and textual data,
is prepared using a conventional text
editor. The page layout is created only
when this file is submitted to a doc-
ument compiler. With the newer
systems, formatting is performed inter-

actively on a character-by-character
basis, and at all times the screen
resembles the final page layout. Such
editors are called WYSIWYG, because
What You See Is What You Get (see
Figure 1).
• Electronic spreadsheets, which have
become very popular, depend on im-
mediate computation. In such a system
a collection of related arithmetic
calculations is displayed on the screen
and a modification to any of the
constants in the formulas causes all
affected computations to be updated
immediately (see Figure 2).
• In computer programming, "dumb"
text editors are being replaced by
"smart" editors. In the traditional
method, the program prepared with a
dumb editor is submitted to a compiler
for analysis, error reporting, and code
generation. This is unnecessary with
smart editors because they exploit
language-specific knowledge embedded
within them to provide all these services
while the program is being edited.
Errors are detected early and the delay
for compilation is eliminated. As in a
WYSIWYG text editor, formatting 12

"...each modification to data
has instantaneous effect."

Figure la

13

Figure I. A comparison of word processing
by a batch method (a) and by an immediate-
processing method (b).

The information displayed in a is used by
the batch-oriented word-processing software
of the UNIX operating system. This typical
input file consists of the interleaved text and
commands from which the formatted
document of b would be produced.

With a WYSIWYG (What You See Is
What You Get) editor, the formatted page,
such as the one in b, is displayed on the
screen at all times while the document is
being modified.

Figure 2. An electronic spreadsheet, an
example of immediate computation. The
screen is instantly updated in response to
each editing revision.

In this example, the Item, UnitPrice, and
Quantity columns are user data: the
Amount column and the Total are results of
computations. A change in data would
immediately be reflected in the compu-
tations. For example, if the Quantity of
pens were changed, the Amount and the
Total would be immediately re-computed
and displayed. Entering an improper value
such as a nonarithmetic Quantity would
result in a error message.

•PP
This is a right justified paragraph containing
\flitalicized\fR and \fBboldface\fR words. In batch
mode, it is difficult to tell from the
input file what the final page will look like.
•ip
This is an indented paragraph containing
the formula @x sup 2 - y sup 2@.

Figure lb

This is a right justified paragraph containing

italicized and boldface words. In batch mode, it

is difficult to tell from the input file what the

final page will look like.

This is an indented paragraph containing the

formula x2-y2.

Item

pen
pad

UnitPrice

$0.50

$0.75

Quantity

2

3

Amount

$1
$2

$3

.00

.25

.25

Figure 2

Total

according to program structure is
immediate, and as in an electronic
spreadsheet, each modification to the
program causes all affected analysis,
error detection, and code generation to
be immediately updated. Our Cornell
Program Synthesizer was one of the
earliest programming systems to in-
corporate a smart editor. Since 1979,
when it was introduced for instruction
in introductory programming, the
Synthesizer has become widely recog-
nized as a model for the future devel-
opment of highly interactive, profes-
sional programming environments (see
Figure 3).

THE NEED FOR
INCREMENTAL ALGORITHMS
Widespread adoption of the immediate
mode of computation by new appli-
cation software is making the study of
incremental algorithms very important.

Suppose a program computes the
function / on the user's data x. If the
program follows the immediate-com-
putation paradigm, then the moment
the user changes the data from x to x'
the program must compute f(x') and

discard f(x). Of course, f(x') could be
calculated from scratch, but this would
usually be too slow to provide instant
response. What is needed is an al-
gorithm that reuses as much old in-
formation as possible. Because the
increment from x to x' is often small,
the increment fromf(x) tof(x') will also
be small, provided that/is continuous.
An algorithm that uses information in
the old value f(x) to compute the new
value f(x') is called incremental.

The advantage of an incremental
algorithm is illustrated by what happens
on the screen when a document is
corrected on a word processor that has
a WYSIWYG editor. In the WYSIWYG
editor, f(x) would be the initial for-
matted document andf(x') would be the
corrected version. Suppose a small
change, such as inserting a single
character in the middle of a document,
is made. It is possible that a major
change in the format would result, but
this is unlikely for two reasons:
independence and quiescence. The
format of the text that precedes the
inserted character in no way depends
on that character, and is thus unaffected
by the change. This is independence. In
the text that follows the inserted
character, the format might change only
locally, and even if the inserted
character caused some words to snake
around to succeeding lines, the propaga-
tion of changes would die out and—at
least if there is enough space on the last
line of the paragraph to prevent the
addition of an extra line—the remainder
of the document would be unaffected.
This is quiescence. An incremental
formatting algorithm can exploit in-
dependence and quiescence so that the
minimal amount of reanalysis is done.

We can distinguish between two
approaches to incremental algorithms:
selective recomputation and differential
evaluation. In selective recomputation,
values independent of changed data are
never recomputed. Values that are
dependent on changed data are re-
computed, but after each partial result
is obtained, the old and new values of
that part are compared, and when
changes die out, no further recompu-
tations take place. In differential
evaluation, rather than recomputing
f(x') in terms of the new data x\ the old
value/frj is updated by some difference
A/computed as a function of x, x\ and
f(x).

The spreadsheet example of Figure 2
can be used to illustrate the two
approaches.

To illustrate selective recomputation,
let us suppose that UnitPricepen and
Quantitypen are changed to $1.00 and
1, respectively. Dependency information
can be used to determine that
Amountpad need not be recomputed,
since it cannot change. Although
Amountpen must be recomputed, it
turns out to be unchanged, and therefore
Total need not be recomputed.

To illustrate differential evaluation,
let us suppose that UnitPricepen is
changed to $1.00 and Quantitypen is left
unchanged. Then the differences

AUnitPricePen = $0.50
AAmount

pen

pen = AUnitPricepen
Quantitypen = $1.00

ATotal = AAmountpen = $1.00

can be computed and used for updating
Amountpen and Total. Note that with
differential evaluation, even if there are
hundreds of lines of data, Total can be
updated in a single addition. 14

Figure 3. Three screen images taken from
the authors' Pascal program editor to
illustrate its immediate error-analysis
capability.

The Pascal program in a shows the names
size, index, list, and A defined in terms of
one another. In b, after redefinition of size
from 10 to x, an error message appears
because the name x has nowhere been
defined. Changing x to 9 instantly removes
this error, but introduces another at a
distant location, as illustrated in c.

This editor is, in effect, a spreadsheet for
Pascal programs: the computations, updated
after each editing transaction and displayed
on the screen, concern the structural cor-
rectness of the given program.

Photograph below: An initial version of the
"smart" editor illustrated in Figure 3 was
used for several years at Cornell for
instruction in introductory programming.

Figure 3a Figure 3b

program p;
const

size = 10;
type

index = 1 .. size;
list = array [index] of integer;

var
A: list;

begin
A[10] : = 0

end.

program p;
const

size = x { -NOT A DEFINED CONSTANT NAME};
type

index = 1 .. size ;
list = array [index] of integer;

var
A: list-

begin
A[10] : = 0

end.

15

Figure 3c

program p;
const

size = 9;
type

index = 1 .. size;
list = array [index] of integer;

var
A: list;

begin
A[10 {--SUBSCRIPT OUT OF BOUNDS}

end.
] : = 0

"Much of the
capacity of

hardware...is
currently going

to waste."

SCALING UP THE CORNELL
PROGRAM SYNTHESIZER
Sophisticated incremental algorithms
were not used in the smart editor of the
prototype Cornell Program Synthesizer
because exhaustive recomputation was
fast enough for small student programs.
But before such systems can have a
major effect in improving the produc-
tivity of software production, they must
be scaled up to meet professional
requirements. The original Synthesizer
whetted appetites, but offered no
algorithmic solution to the scaling
problem.

In 1981, therefore, the Synthesizer
group turned its attention to the
fundamental problem of incremental
analysis in smart editing environments.
In an early paper we proposed the use
of a formalism known as attribute
grammars and showed how incremental
analysis could be done in this frame-
work. A major breakthrough occurred
when Reps discovered an optimal
incremental attribute-updating algor-
ithm. It follows the selective-recompu-
tation paradigm described above, and
is optimal in the sense that the amount
of processing required in response to a
given editing change is linearly pro-
portional to the amount of computed
information that changes in value.

ADAPTING SPECIFICATIONS
FOR IMMEDIATE COMPUTATION
Traditional systems make use of
imperative programming languages, in
which computation follows an ordered
sequence of actions—that is, each action
is specified as a function of the previous
state. Imperative programming is ap-
propriate for batch-mode computation,
in which an input file is processed

sequentially, but it is inappropriate for
immediate-mode computation, in which
data are inserted and deleted in arbitrary
order.

When there is no predetermined
order for data and immediate compu-
tation is desired, a declarative speci-
fication is called for. This defines a
collection of simultaneous equations
whose solution is the desired compu-
tation. The salient features of declar-
ative specifications are (1) the order of
solution is left unspecified, and (2) the
dependence of variables on data and on
one another is implicit in the equations.
Whenever the data change, an incre-
mental algorithm is used to re-solve the
equations, retaining as much as possible
of the previous solution.

For example, the "program" exe-
cuting the spreadsheet of Figure 2 is
merely the set of equations:

UnitPricepen = $0.50
Quantitypen = 2
UnitPricepad = $0.75
Quantitypad = 3
Amountpen = UnitPr icep e n x

Quantitypen

Amountpad = UnitPricepad x
QuantityPad

Total = Amountpen + Amountpad-

Changing data is, in effect, changing
some of the equations, after which those
equations and perhaps other equations
must be re-solved.

The attribute-grammar formalism
adopted by the Synthesizer group for
defining the smart part of program
editors is exactly such a declarative
specification language. An attribute
grammar defines, for each program that
a user may create, a corresponding set
of simultaneous equations whose sol- 16

Reps and Teitelbaum

ution expresses the deductions of the
smart editor about the given program.
Each unknown variable in these equa-
tions represents a deduction relevant at
a particular point in the program.
During editing, each modification to the
program causes a related change in the
set of equations and their solution.
Error messages that appear and dis-
appear on the screen (as in Figure 3) are
merely the values of textual variables
that change from time to time as the
equations are re-solved. The accom-
plishment of our optimal updating
algorithm is that equations arising in
the setting of attribute grammars can
be incrementally re-solved so that the
amount of computation, and therefore
the cost, is proportional to the number
of variables that actually change value.

The expertise of future smart editors
will not be restricted to programming
languages. In fact, any application that
follows the immediate-computation
paradigm is, in effect, a smart editor.
Because many of these editors will share
similar computational requirements, it
is effective to implement generators of

17 smart editing systems. Such a generator

provides a declarative language which,
when compiled together with an in-
cremental updating algorithm, creates
the desired application editor.

The Cornell Synthesizer Generator is
one such editor generator. Already it
has been used to produce editors for a
variety of applications: prototype
WYSIWYG editors for both text and
mathematical formulas, an editor that
verifies the correctness of a proof in
mathematical logic, program editors for
several different programming langu-
ages, and even a smart editor for
manipulating a database of facts about
historic landmarks. A parallel effort, in
the program PEOGEN directed by
Gregory Johnson of the computer
science faculty, has the same goal but is
exploring different strategies for pro-
viding an interface with the user and for
incremental updating. With two groups
working in smart-editor generation,
Cornell is one of the leading centers for
research in this important emerging
area of computer science.

Today's powerful stand-alone com-
puters provide virtually free processing.
But to make full use of their potential,

the impressive advances in hardware
must be accompanied by the devel-
opment of appropriate, innovative
software. Much of the capacity of
hardware, which can perform millions
of operations between every pair of
consecutive keystrokes, is currently
going to waste. Smart editors know how
to use that capacity.

77m Teitelbaum and Thomas Reps have
collaborated in the field of language-based
programming systems since 1978.

Teitelbaum is an associate professor of
computer science. He has often taught the
course CS100, which each year introduces
more than twelve hundred Cornell under-
graduates to computer programming. He
holds the B.S. degree in mathematics from
the Massachusetts Institute of Technology
and the Ph. D. in computer science from
Carnegie-Mellon University. He has been a
member of the faculty here since 1973.

Reps received the B.A. degree in applied
mathematics from Harvard University and
the Ph. D. in computer science from Cornell.
His thesis, written under Teitelbaum's
direction, received the 1983 Doctoral
Dissertation Award of the Association for
Computing Machinery. This fall Reps joined
the faculty of computer science at the
University of Wisconsin as an assistant
professor.

A METAPHOR: THE COORDINATED ATTACK PROBLEM

Two allied armies occupy the mountains on opposite sides of a valley, with an enemy
army between them. If they mount a coordinated attack, they will win; otherwise,
defeat is certain. Alice and Bob, the generals of the allied armies, can only
communicate with each other by sending messengers through enemy territory. When
messengers are caught, they never divulge the contents of their messages—but of
course the messages are not delivered.

Can the generals exchange messages so as to coordinate an attack? Unfortunately
for the allies, the answer is no. Alice cannot commit her army to attack after sending
the message

ml: "Bob: Attack tomorrow, Alice"
because she cannot be certain that Bob received it. She needs to know whether her
messenger got through. However, having Bob reply with an acknowledgment
message

ml: "Alice: Received your note, Bob"
doesn't help. This is because even if Alice receives the acknowledgment, she must
reason as follows.

Bob doesn't know whether the messenger carrying his message (m2) got
through. Thus, Bob doesn't know if I know whether he got my message. I
won't attack unless 1 am certain that he will attack, and he knows this.
Therefore, he must conclude that I won't attack, until he knows that I know

that he got my message.

Alice can send an acknowledgment for m2 to Bob:
m3: "Bob: Received your acknowledgment, Alice"

But this still isn't enough. Alice must receive an acknowledgment from Bob for m3,
and then Bob needs an acknowledgment for that, and so on. What is required? Alice
must know the decision, Bob must know the decision, Alice must know that Bob
knows the decision, Bob must know that Alice knows the decision, Alice must know
that Bob knows that Alice knows the decision, Bob must know that Alice knows that
Bob knows the decision, etc.

To prove that there is no protocol that allows Alice and Bob to coordinate an
attack, we can assume there is a protocol and derive a contradiction. Suppose Alice
and Bob use a protocol that requires the fewest number of messages. Consider the
last message sent. Suppose it was sent by Alice to Bob. (The other possibility is
symmetric.) Clearly, Alice's decision whether to attack must be independent of the
delivery of the last message she sent to Bob. Moreover, Bob's decision must also be
independent of whether he received the last message, since the protocol is correct and
therefore ensures a coordinated attack even if this message is lost. The last message
doesn't affect the behavior of Alice or Bob, so it must be redundant. This, however,
contradicts the assumption that the protocol required the fewest number of messages.

REACHING AGREEMENT
A Fundamental Task—
Even in Distributed Computer Systems

by Fred B. Schneider, Ozalp Babaoglu,
Kenneth P. Birman, and Sam Toueg

19

Coordinating computers can be as
difficult as coordinating the actions of
people.

The problem arises in working with a
distributed computing system, which
consists of a collection of computers
interconnected by communication
channels. The computers are usually
physically separated, and therefore if
they fail, they do so independently. This
makes it possible for such a system to
be fault-tolerant, for data and tasks can
be replicated so that if one computer
fails, the others can assume its work.
Unfortunately, coordinating the actions
of a collection of computers when
failures must be tolerated can be dif-
ficult, if not (provably) impossible.

A provably impossible form of co-
ordination is illustrated in the metaphor
recounted on the facing page. In the
Coordinated Attack Problem, each of
the generals can be thought of as a
computer and the unreliable messenger
as an imperfect communications chan-
nel. In terms of the metaphor, we prove
that if the communications channel
connecting two fault-tolerant computers
can lose messages, it is impossible for

the computers to agree on whether or
not to perform an action suggested by
one of them.

Is the Coordinated Attack Problem
of practical interest? Unfortunately, it
is. If information is to be replicated at
computers so that it can remain avail-
able despite possible failure of some of
those computers, then some arrange-
ment must be made for the replicated
data to be kept consistent. This man-
dates that when one copy of the data is
updated, all available copies be updated.
Performing the update is an instance of

the Coordinated Attack Problem: either
all or none of the available copies must
be updated.

ATTACKING THE BYZANTINE
GENERALS PROBLEM
A second example, the Byzantine
Generals Problem, demonstrates an-
other practical problem in distributed
computing systems. This problem differs
from the Coordinated Attack Problem
in two ways. First, Byzantine generals
can be traitors and exhibit arbitrary and
malicious behavior; in the Coordinated

THE BYZANTINE GENERALS PROBLEM
The generals of the Byzantine army are preparing a final campaign. There are N
generals, of whom /, at most, are traitors. The traitorous generals are not known to
the others, but may collude and attempt to foil a coordinated attack by the rest. As
long as the armies controlled by the nontraitorous generals all attack or all retreat,
the campaign will be successful.

The Commanding General, known to all the others, decides whether the army
should attack. Generals communicate by means of a reliable messenger service. A
protocol is needed that will achieve Byzantine Agreement:

Agreement. All nontraitorous generals execute the same action.
Validity. If the Commanding General is not a traitor, then all nontraitorous

generals execute her command.

"The generals correspond to processors,
traitors... to faulty processors, and

the Commanding General's order...to the value
of the sensor being read. "

Attack Problem, generals always ex-
hibited correct behavior. Second,
Byzantine generals have access to
reliable communication; in the Co-
ordinated Attack Problem, communi-
cation was not reliable.

The Byzantine Generals Problem
must be solved whenever processing is
replicated in order to counteract the
effects of failures in a computing system.
This is the basis for triple-modular-
redundancy (TMR), which is used by
the computing system on board the
space shuttle, as well as in other
applications in which fault-tolerance is
required. The idea is simple. If all
processors read the same input from
sensors and process it using the same
program, then all non-faulty processors
will produce identical results. Thus, as
long as a majority of the processors are
non-faulty, simply voting on the outputs
produced by the processors will produce
the correct action. A key premise,
however, is that all non-faulty pro-
cessors read the same input. Simply
reading from sensors does not ensure
that all correct processors will agree on
these inputs—a faulty sensor might

furnish different values to different
processors.

A protocol is required that will
permit the non-faulty processors to
agree on the value of the sensor. A
trivial solution to this problem would
be for processors always to use the same
value, say 0. This is clearly unaccep-
table. An agreement protocol must also
ensure that if the sensor is non-faulty,
processors actually use its value in their
computation.

A solution to the Byzantine Generals
Problem is exactly the needed protocol.
The generals correspond to processors,
traitors correspond to faulty processors,
and the Commanding General's order
corresponds to the value of the sensor
being read.

PROCEEDING
BEYOND BYZANTIUM
Research aimed at developing and
understanding the Coordinated Attack
Problem and the Byzantine Generals
Problem is actively being pursued at
Cornell, M.I.T., and IBM's research
laboratory at San Jose. By identifying
those aspects of the environment that

influence the cost of achieving agree-
ment, researchers learn how to construct
agreement protocols that are well suited
for particular applications. For ex-
ample, suppose that the communication
channels link only pairs of processors
and that up to t processors might be
faulty; in this case, achieving agreement
can take as many as t+\ rounds of
message exchange. This is because a
faulty processor can send conflicting
information along disjoint routes to
other processors and can generate
spurious messages and then pretend to
be forwarding them on behalf of other
processors.

One of us (Babaoglu) has recently
shown that as few as two rounds suffice
to establish Byzantine Agreement if all
processors share broadcast channels. In
fact, there exists a continuum of
Byzantine Agreement protocols that
require between 2 and t+l rounds,
depending on the number of broadcast
channels available and the intercon-
nection topology of processors. Faster
agreement protocols are possible when
more processors share more broadcast
channels. Clearly, there are trade-offs 20

involving delay, fault-tolerance, and
hardware cost. Broadcast channels help
to speed up Byzantine Agreement
because when a faulty processor broad-
casts a message on such a channel, it
has witnesses to its action. Subsequent
attempts to send conflicting information
can then be detected and ignored by
other processors. The Xerox Ethernet
and most other local-area communi-
cation networks support the requisite
broadcast property for these protocols,
making them quite practical.

Byzantine Agreement can be made
practical even when broadcast channels
are not available. It turns out that t+\
rounds are necessary to reach agreement
only if t failures actually occur during
execution of the agreement protocol. If
/failures occur, where/</, agreement
can be achieved in fewer rounds. Thus,
the cost of execution is proportional to
the amount of fault-tolerance actually
needed. Another of us (Toueg) recently
was involved in the development of such
an early-stopping protocol. It can
tolerate as many as N/3 faulty pro-
cessors and terminates in 2/+3 rounds.
Since most executions of the protocol
are failure-free, agreement is typically
achieved in three rounds. And when t
failures occur, the protocol is as efficient
as the best previously known pro-
tocols—even those that do not support
early stopping.

INEXACT AGREEMENTS
AND FAULT TOLERANCE
One can devise fast agreement protocols
that do not achieve agreement and
validity, but come close. For example,
an Inexact Agreement (formulated by
Schneider) allows processors, each of

21 which has its own value, to converge on

some value. While this would not be
very useful when the Byzantine generals
must decide whether to attack or
retreat, it is perfectly appropriate for
applications such as clock synchron-
ization. Clocks on computers typically
run at different rates and are difficult to
synchronize because delays in message
delivery are variable—receipt of the
message "It is 9:00", for example, tells
the receiver very little about what time
it is now; it tells only at what time the
message was sent. On the other hand,
having synchronized clocks can be quite
useful, especially in a system intended
to be fault-tolerant, since it is easy to
detect that a processor has halted by
noting that it has taken too long for an
expected reply to arrive. An Inexact
Agreement can form the basis for a
clock synchronization protocol: period-
ically, processors use Inexact Agree-
ment to agree on a clock value and then
reset their local clocks accordingly.

Byzantine Agreement and other pro-
tocols that underlie the construction of
fault-tolerant systems are complex and
subtle. The ISIS Project (under
Birman's direction) is concerned with
packaging such protocols and building
tools that a programmer can use to
convert a fault-intolerant program into
a fault-tolerant one without worrying
about the details of agreement and
replication. ISIS programmers have
access to a broadcast (agreement)
routine that can be used to disseminate
information to copies of program
modules. The system also provides
failure-monitoring facilities so that an
ISIS program can reconfigure itself in
response to failures. A prototype ISIS
is now running on the computer science
department's network of DEC VAX

SELECTED READING

Babaoglu, O., and R. Drummond.
1985. Streets of Byzantium: Net-
work Architectures for fast reliable
broadcasts. IEEE Transactions on
Soft ware Engineering S E-11 (6):
546-54.

Birman, K. P., T. A. Joseph, T.
Raeuchle, and A. El Abbadi. 1985.
Implementing fault-tolerant distri-
buted objects. IEEE Transactions
on Software Engineering SE-11(6):
502-08.

Mahaney, S., and F. B. Schneider.
1985. Inexact agreement: Accuracy,
precision, and graceful degradation.
In Proceedings of 4th annual
SIGACT-SIGOPS symposium on
principles of distributed computing.
In press.

Toueg, S., K. Perry, and T. K.
Srikanth. 1985. Fast distributed
agreement. In Proceedings of 4th
annual SIGACT-SIGOPS sym-
posium on principles of distributed
computing. In press.

Schneider Babaoglu

11/780's and SUN Workstations. It has
been used to build a number of fault-
tolerant application systems and has
performed surprisingly well.

Reaching agreements and tolerating
faults are modes of conduct for
computer-to-computer as well as
person-to-person communication. At
least in the world of computers, we are
finding that logic and imagination are
the keys to implementation.

The four authors of this article are all faculty
members of Cornell's Department of
Computer Science.

Fred B. Schneider, an associate professor,
studied at Cornell for his undergraduate
degree, awarded in 1975, and received his
doctorate from the State University of New
York at Stonybrook in 1978. His main
interests are in programming methodology,
concurrency, and distributed systems; he is
currently writing a text on concurrent
programming.

Ozalp Babaoglu, an assistant professor,
came to Cornell in 1981 from the Lawrence
Berkeley Laboratories, where he was a staff
scientist. He holds the B.Sc. degree from
George Washington University and the
Ph.D., granted in 1981, from the University
of California at Berkeley. While in graduate
school, he spent a summer at the IBM
Research Laboratory in San Jose, and a
semester as a foreign scholar at the National

Research Council in Pavia, Italy. In 1982 he
was a co-recipient of the Sakrison Memorial
A ward for his contributions to the Berkeley
UNIX operating system. His specialties are
operating systems, performance evaluation
and modeling, and distributed systems.

Kenneth P. Birman received his under-
graduate degree from Columbia University
in 1978 and his doctorate from the Uni-
versity of California at Berkeley in 1981. At
Columbia he helped develop computer
systems for analyzing 24-hour electro-
cardiogram recordings, and after earning his
doctorate he spent six months in the
cardiology department of the Vienna state

hospital in Austria, developing a database
system for clinical use. At Berkeley he
developed a network version of the UNIX
operating system. He joined the Cornell
faculty as an assistant professor in 1982.

Sam Toueg, an assistant professor, studied
at the Israel Institute of Technology for his
B.S. degree, awarded in 1977, and went to
Princeton University for graduate work.
After receiving the Ph.D. in 1979, he was a
postdoctoral fellow at IBM's T. J. Watson
Research Center and then came to Cornell
in 1981. A specialist in computer networks
and distributed computing, he has been a
referee for several professional journals. 22

PROGRAMMING METHODOLOGY
Making a Science Out of an Art

by David Gries and Fred B. Schneider
It doesn 't take too long for an intel-
ligent, scientifically oriented person to
learn to cobble programs together in
FORTRAN, BASIC, or Pascal Sure,
there are mistakes, but everyone makes
mistakes, so one simply spends the
necessary time debugging. And one gets
better at programming simply by doing
lots of it. So what do they teach about
programming? What is there to it?

This attitude is common and may
even be reasonable for casual pro-
gramming. For any serious program-
ming, however, it invites disaster. A
casual program bears little resemblance
to the system of a thousand to a million
lines of codes that a professional must
be able to write (and read) in concert
with as many as fifty other people. Such
a program must be correct, as simple as
possible, and capable of being readily
understood, modified, and used by
others.

How does one write programs that
satisfy these requirements? That was the
subject of a NATO conference held in

23 Germany in 1968. At the conference the

term software crisis was often heard, for
there was indeed a crisis. The pro-
gramming industry was being asked to
develop larger and more complicated
systems of programs, and they didn't
have the expertise to do so effectively.
The conference led to world-wide re-
cognition that programming was indeed
a difficult intellectual activity. The term
software engineering was coined there
to denote the collection of technical and
managerial techniques used in the
"software life cycle"—in the planning,
analysis, design, implementation, test-
ing, documentation, distribution, and
maintenance of a programming system—
and research in all these aspects began
in earnest.

A SCIENCE CONCERNED
WITH MENTAL TOOLS
At Cornell, prompted partly by our lack
of understanding of how to teach
programming, we became involved in
the study of methods for developing and
understanding programs, a field that
has become known as programming
methodology.

Programming methodology has been

a central theme in the Cornell de-
partment for fifteen years and has
influenced our work in other areas. For
example, ideas about the process of
program development influence thought
on compiler construction, programming-
language design, structured editors,
debugging tools, "pretty printers"
(which print a program in an indented
format in accordance with the program
structure), and computer verification of
the correctness of a program or, indeed,
of any mathematical proof. These
related areas deal with supplemental
tools used by the programmer; pro-
gramming methodology in its narrowest
sense is more concerned with the mental
tools that are needed.

Research done so far has convinced
us that programming can become a
science, based on the knowledge and
application of principles, rather than an
art, which can be learned simply by
watching and doing. We have dis-
covered that programming at its best is
a mathematical activity, requiring from
the programmer all the taste, elegance,
and desire for simplicity that char-
acterizes mathematicians. Our exper-

ience has greatly influenced how we
teach programming and how we present
algorithms in higher-level courses. So
far, most of the research has dealt with
small programs, but larger ones are
being considered.

In this article we describe some of the
basic ideas involved in programming
methodology. We use only one small
example, but this should be enough to
whet your appetite for more. Toward
the end we present a couple of problems
with the solutions we developed; we
encourage you to try to solve them
before looking at the solutions.

TAMING COMPLEXITY:
THE FIRST NECESSITY
As any programmer will tell you, even a
ten-line program can be complex and
difficult to understand. Think, then, of
the complexity of a ten-thousand-line
program! Somehow, the programmer
must master the complexity, must
prevent it from rearing its ugly head.

The amount of work required to
understand a program must be pro-
portional to its length. This will only be
the case if the program structure and
the interactions between the program
segments are kept simple. And the
longer the program, the more important
it is to keep things simple. Computer
science already has a branch called
computational complexity, in contrast,
we like to call the field of programming
methodology computational simplicity.

How do we achieve simplicity? The
general method is to introduce suitable
notations and use abstraction: various
aspects of a problem are brought to the
fore and others are hidden in the
background to be dealt with later. New
formalisms are developed, along with

notations that allow the expression of
concepts and the manipulation of
formulas in various ways in order to
prove things about them. In essence,
mathematics is used, as in any scientific
field, to master complexity.

In our research we have turned
mostly to formal logic to help us
determine what is meant by correctness
of a program, for without knowing that,
it is difficult to write correct programs.
This has led to definitions of pro-
gramming languages in terms of correct-
ness rather than in terms of how a
program is executed. And from these
mathematical definitions, theories and
principles for developing programs have
arisen.

This does not mean that every
program must be developed and proved
correct in a formal manner. It does
mean, however, that the programmer
with a sound knowledge of the theory
and principles behind program correct-
ness and program development can use
them in an informal manner, relying on
the formalism when it is needed—when
the problems become more complex.

WHAT DOES PROGRAM
CORRECTNESS MEAN?
A program (or a segment of one) is
correct if its execution, begun in any
"reasonable" state, ends in a desired
final state. That is: if its input variables
have proper values, then so will its
output variables.

We describe sets of reasonable or
desired states by true-false statements,
called assertions, about the program
variables. To illustrate, let us suppose
we want a program S to store in an
array the cubes of the first n natural
numbers, where integer value n is at

least 0 and the array is denoted by
b[0..n-l]. (By convention, if n = 0 the
array is assumed to be empty.) For
example, if we execute the program
with n = 4, the resulting array will be
b[0] = 0, b[l] = 1, b[2] = 8, b[3] = 27.
Below, we specify S by giving a
precondition P that describes the set of
possible initial states and a post-
condition R that describes the correspond-
ing final states. In assertion R, the
phrase 0 < i < n means we are interested
only in integers at least 0 and less than
n; for such integers i, b[i] = i3.

P:n>0
R: (for all i: 0 < i < n: b\i\ - P)

We say that S is correct with respect to
P and /?, written as {P} S {R}, if
execution of S begun in a state in which
P is true terminates in a state in which
R is true. Nothing is said about execution
of S begun in a state in which P is not
true.

HOW CAN CORRECTNESS
BE PROVED?
It is difficult to prove {P} S {R} using
only our operational understanding of
how S is executed. Given some initial
state, we can execute the program by
hand (or let the computer do it) to
determine what the final state is, but to
prove correctness using this approach
we would have to execute the program
once for each possible initial state, and
most of us don't have time for that! No,
a way must be found that allows us to
deduce correctness without relying on
the notion of execution, and this calls
for a mathematical theory of correct-
ness. For each kind of statement, we
need a definition that gives the pairs of
pre- and post-conditions related by it. 24

The theory will tell us, for example, that
the following are true about the as-
signments x :- 0 and x :- x + 1 to integer
variable JC:

{OV = 0} JC := 0 {x^y = 0},
{x+1 > 0 } JC := jc+l { J C > 0 } .

(Note that ()• y - 0 is always true, so that
precondition is equivalent to true.
Similarly, the second precondition is
equivalent to JC > 0.)

The possible pre- and post-conditions
for a statement should be related by a
simple syntactic transformation, and
not only by meaning, so that one really
can manipulate statements the way one
does arithmetic or logical statements.
For example, the statement JC := ey

which assigns the value of expression e
to variable JC, is defined by the rule

{Rj!} x := e {R}
(for all assertions R).

In this expression R£ is the assertion
obtained by simultaneously replacing
every occurrence of "JC" in R by *V\
Thus, given that R is to be true after
execution of JC := e, we can determine
easily what has to be true before
execution: R*. We see that this holds
for the two examples given above. For
example, in

{P: 0\y = 0} JC := 0 {R: x\y = 0},

P is the result of substituting 0 for x in
R.

It is rather neat that this simple
notion of textual substitution, which is
a basic concept of mathematical logic,
can be used so simply to define the
assignment statement.

Other statements are defined similarly.
For example, sequencing of two state-

25 ments SO and S\ is defined:

Problem 1
COMPUTING CUBES

Write a program to store the cubes of
the first n natural numbers in array
b[0..n-\]. Use only addition oper-
ations. (See page 26 for a solution.)

Problem 2
THE MAXIMUM-SUM

SEGMENT

Suppose we are given integer array
b[0..n~\] for n > 0. Let 5fJ denote the
sum of the values of segment b[i\.j-\].
(If / =j, the segment is empty and the
sum is 0.) Write a program to store in
variable s the largest sum SQ over all
segments b[i..j~\] of array b[0..n-l].
(See page 27 for a solution.)

U {P} SO {Q} SI { l
then {P} SO; SI {R}
(for any assertions P, Q, and R).

This definition allows us to compute the
precondition for a sequence of assign-
ments simply by beginning with the
postcondition and iteratively working
"backward", using the assignment state-
ment definition. For example, it allows
us to prove that the sequence t := JC; JC .:=
y\ y :- t exchanges the values of
variables x and y. (Below, X and Y
denote the final values of JC and y,
respectively.)

{y = X and x = Y}
t := JC;

{v = X and t = Y}
x :- y\
{x = X and t = Y]

{JC = X and v = Y}

WHAT ABOUT
PROGRAM DEVELOPMENT?
Proving a program correct after it has
been written is difficult. It makes more
sense to develop a program and its
correctness proof hand-in-hand, with
the proof leading the way. When doing
this, it is important to write the program
specification as precisely as possible (in
terms of pre- and post-conditions)
because the specification should drive
program development. To convey this
idea through an example, we will
consider again the problem of writing a
program to store the cubes of the first n
natural numbers in array b[0..n-l], with
the restriction that since exponentiation
and multiplication are expensive, only
additive operations should be used in
the program. Try writing a program for
PROBLEM 1 yourself before looking
at our development on the following
page.

In the event that you have a little
trouble, we should point out that
SOLUTION 1 was developed using
various principles of programming
methodology that have only been out-
lined here. Naturally, you might have
difficulty applying them yourself at this
point. However, any programmer well
versed in the methodology would derive
essentially the same program as the one
in SOLUTION 1 in perhaps twenty
minutes. How did your solution
compare?

We give one more example without
the program development. Try to
develop PROBLEM 2 yourself before
reading our solution on a following
page.

The program for PROBLEM 2 has
an interesting history. Jon Bentley at
Carnegie-Mellon and Bell Laboratories

SOLUTION TO PROBLEM 1

The first step is to specify the program formally by writing
pre-and post-conditions:

Precondition P: 0 < n
Postcondition R: (for all i: 0 < i < n: b[i\ - i3)

Assuming the use of a loop to calculate the elements of array b,
our correctness ideas require writing an assertion that indicates
what is true of b just before and after each iteration of the loop.
To find this assertion, we introduce a fresh variable k (say),
which in this case will be what is often called a "loop counter",
put suitable bounds on it, and replace n in R by k, yielding the
following two assertions PO and PI:

PO: 0 < k < n
PI: (for all /: 0 < i < k: b[i\ = f)

We can make PO and PI true by setting k to 0. Also, when
k - n, R is true. And we write the following program:

fc:=0;
while k ^ n do begin b[k] := k3;

k := k + 1
end

PO and P\ are known as loop invariants, for they are
"invariantly true" before and after each iteration of the loop.
One understands the loop in four steps: (0) show that the loop
invariants are true just before execution of the loop; (1) show
that each iteration leaves them true, so that they are true before
and after each iteration and thus upon loop termination; (2)
show that the desired result R follows from the loop invariants
and the falsity of the loop condition; and (3) show that the loop
terminates.

The process used here to argue about correctness should be
used to argue about the correctness of every nontrivial loop. It
is the programmer's task to annotate each nontrivial loop with
the necessary loop invariants, because they are a necessary part
of understanding the loop. It may seem like a lot of work, but,
we maintain, it is simply formalizing what a programmer does
anyway when reasoning about why a loop works.

We now have a correct program. However, it uses

exponentiation k3. To get rid of it, we simply introduce a fresh
variable x (say) and its definition:

PI: x = k3

With this new loop invariant, we can replace the assignment
b[k] := k3 by b[k] := x. However, PI also depends on k. Before
k is increased by 1, x has to be changed to contain (k + I)3 in
order to maintain the truth of PI. Since

(k + I)3 = k3 + 3*k2 + 3*k+ \

and since x - A:3 just before each iteration, x can be changed to
contain (k + I)3 by executing the assignment

x := x+ 3*k2 + 3*k + 1.

This yields the program

k := 0; x := 0;
while k ¥=• n do begin b[k] := JC;

x := JC + 3«&2 + 3*£+ 1;
k := k + 1

end

The program still contains exponentiation and multiplication.
Repeating (twice) the process that introduced x yields the
program

k :=0; JC := 0; j> := 1; z := 6;
while k ¥" n do begin b[k] :- x;

x := x + y;
y - y + z\
z := z + 6;
k := k + 1

end

where there are five loop invariants:

P0: 0 < k < n
PI: (for all i: 0 < i < k: b[i\ = P)
Fl:x^k3

P3: y - 3*k2 + 3*k + 1
P4: z = 6*k + 6

26

SOLUTION TO PROBLEM 2

The formal specification, using some
notation that should be fairly obvious,

Precondition P: 0 < n
Postcondition R: s -

MAX(iJ: 0 < i <j < n: Sitj)

The program is

k := 0; c := 0; s := 0;
while & # « do begin

c := mfl.v(c + b[kl 0);
5 := wa;c(5, c);
A: := A: + 1

end

The program is understood in a
manner similar to that described for
understanding the cube program, using
the following loop invariants:

P0: 0 < k < n
P\: 5 = MAX(i,j: 0 < i < y < A: S,v)

(i: 0 < i < A: Sa)

discovered that a statistician was using
a program for this problem that re-
quired time proportional to n3 —the
program was actually computing the
sums of all segments of the array.
Several days later, Bentley returned
with an algorithm that required time
proportional to A?2, and later one that
required time nm\og(n). Another statis-
tician then showed Bentley a program,
similar to ours, that required time
proportional only to n. During a visit
to Cornell, Bentley asked us to write a

27 program for his problem. Several of us

who were experienced with the pro-
gramming methodology came up with
the program, independently, in about a
half-hour. (Of course, it took time to
present it as cleanly as SOLUTION 2 is
presented.) We never had to think of
the n2 or nm\og(n) algorithms; the
methodology led us quite directly to the
solution we have shown here.

WHERE TO LEARN MORE
ABOUT PROGRAMMING
Some of the concepts underlying pro-
gramming methodology have found
their way down to undergraduate
courses at Cornell such as CS100 and
CS211, although in an informal manner,
and more will do so as we gain
experience and hone our skills. Pro-
gramming methodology is taught at the
upperclass level in course CS400,
introduced this spring, as well as at the
graduate level; both courses are based
on The Science of Programming, which
was written by Gries in 1981. An
additional graduate course, CS613,
extends the concepts to deal with
concurrency, which arises in operating
systems, networks, and databases, where
various programs are executed simul-
taneously and communicate through
shared data or message-passing.
Schneider is writing a text on the
subject of this course.

Because of the youth of the field,
computer science enjoys the problem
that many research results are incor-
porated quite rapidly into education.
Last year's research problem has moved
into this year's first-year graduate course
and will be in next year's senior-level
course. Our students, even in the early
undergraduate years, are learning about
a relatively new discipine as it develops.

The practicality of theoretical research
is demonstrated every day not only in
advanced computing centers, but in
university classrooms where tomorrow's
practitioners are learning their skills.

David Gries is chairman of the Department
of Computer Science and a specialist in
programming methodology (see the bio-
graphical sketch on page II).

Fred B. Schneider is an associate professor
in the department. A specialist in concurrent
programming, operating systems, and dis-
tributed systems, he has also written another
article in this issue in collaboration with
three of his colleagues (see pages 18 22). He
is on the College Board Committee on
Advanced Placement in Computer Science,
which prepares an examination that reflects
much of what is taught at Cornell in the
introductory courses.

ROBOTICS AND COMPUTER SCIENCE

by Dean B. Krafft
Robotics as a significant area of com-
puter science is a recent phenomenon.
In the traditional view, robotics is the
study of designing, controlling, and
instrumenting robots, and clearly this
view characterizes a large body of
problems that must be solved to use
robots effectively. A robot must be able
to move quickly and precisely to a
location and perform some action such
as grasping an object; this is a problem
in design and control. Next, there must
be some mechanism for storing a
sequence of robot actions for later
playback; this is a control problem.
Finally, the most sophisticated current
robots have the ability to modify their
actions in response to sensory input;
this presents a problem in instrumen-
tation and control.

For research in these three essential
areas—design, control, and instru-
mentation—a traditional engineering
approach seems appropriate. But in
very different ways, computer science
can also contribute to robotics.

Let us consider what robots do. They
manipulate physical objects in accord-
ance with a set of prespecified in-

structions and their perceptions of the
workspace. This differs from computer-
controlled hard automation, long the
province of mechanical, electrical, and
industrial engineers, in that general-
purpose, programmable robots are not
specialized to solve a single physical
problem. Instead, they can potentially
perform a number of arbitrary physical
manipulations.

One way in which robots can be used
is simply to replace hard automation.
By manually stepping them through the
series of motions they are to perform,
they can be programmed for a single
task. The advantage is that when the
task changes, it is not necessary to scrap
the production line, but only to re-
program the robots for the new task.
This is a rather limited use for a very
powerful tool, however.

GENERALIZING ROBOTICS
USING COMPUTER SCIENCE
By making use of off-line programming,
robot actions can be specified without
actually moving the robot through the
steps, and this allows the system to
provide more powerful capabilities and

to deal with much more complex
situations. For example, numerical
codes can be generated by a computer
using information from a computer-
aided-design database and used for
controlling machining or assembly
operations. A robot can make use of
sensory feedback and a database of
possible actions to guide its behavior; if
it detects errors, it can take alternative
actions and proceed with the task. Off-
line programming also allows the robot
to deal with variations in the objects or
processes it is handling, without having
had all the cases preprogrammed by hand.

Off-line programming brings with it
new requirements, of course. Pro-
grammers can no longer make use of
the actual robot and physical prototypes
to answer all their questions about
position, action, and movement. In-
stead, the robot task must be described
in terms of computer models of the
workspace and the objects to be
manipulated.

The next step immediately suggests
itself. If the robot system has models of
the physical objects with which it is
dealing, why not use these models to 28

"... off-line programming... allows
the system to provide more powerful capabilities
and to deal with much more complex situations.J

simulate and reason about the objects?
This would allow robot programmers
to work at a much higher level, saving
time and money. For example, such
reasoning might allow the robot system
to figure out a grip, to plan motion, to
determine the stability of an assembly
(and thus how to move it from one
location to another), and to understand
the behavior of nonrigid objects (such
as a pair of pliers it must pick up).

We have now arrived at a much more
general view of robotics. Functions
involving high-level programming,
reasoning about objects, and perception
are qualitatively different from the
design, control, and instrumentation
tasks described earlier. The problems
and goals are much less clearly defined
and the techniques required to elucidate
and solve them are different. It is in
dealing with these areas that the analytic
tools of computer science can make
great contributions.

USING THE ANALYTIC TOOLS
OF COMPUTER SCIENCE
In approaching problems in robotics,

29 computer scientists follow a general

sequence of steps. They analyze a
problem to identify its components;
abstract the problem to eliminate un-
needed specifics; restate the problem in
a formal and rigorous manner; and
(ideally) provide provably correct
solutions to the formal problem state-
ments. Then they try to apply the
solutions to real problems, determine
errors arising from failures in under-
standing the original problem, and
repeat the cycle. In solving such prob-
lems, researchers must make use of
tools and techniques for complexity
reduction, formal reasoning, modeling,
data abstraction, algorithmic analysis,
and so forth. Computer science provides
the training and tools to solve large, ill-
defined, complex problems, and com-
puter scientists can apply this training
and these tools to the problems of
robotics.

The process has already begun.
Computer scientists are already studying
the design of robot languages and are
working on such problems as how to
plan the motion of robots through
potentially crowded workspaces and
how to program robot arms to grip

objects. Researchers in the area of
artificial intelligence have been studying
certain aspects of robotics for years;
they are working on how computer
vision can be used to recognize arbitrary
scenes, and how mobile robots can be
made capable of navigating through
unknown terrain. Research undertaken
so far has been limited, however, to
specific subproblems of robotics.

SOLID MODELING FOR
RESEARCH IN ROBOTICS
The first step in applying computer
science to robotics is to develop models
of objects. One requirement is to repre-
sent physical surfaces and volumes; over
the last five years, a number of systems,
called solid modelers, have been built
to do this kind of modeling. These
systems represent objects as mathemati-
cal equations pertaining to either the
surfaces of the object or a set of
primitive solids, and they represent
surfaces as either planar polygons or
quadrics (a quadric is a surface that can
be represented with a second-degree
polynomial).

Although much progress has been

made in solid modeling, much more
work remains to be done. As an
example, let us look at a current
problem. Most machined objects can be
almost entirely represented by quadric
surfaces. However, the blending and
filleting surfaces that smooth off sharp
inside and outside edges of machined
objects tend to be much more complex,
not easily represented in the solid-
modeling systems now available. A
designer may spend far more time
describing the blending surfaces of an
object, even though the exact shape of

An example of solid modeling development
at Cornell is this representation of the loggia
of the University's planned center for the
performing arts. The modeling was done by
Phil Brock, a graduate student working in
the Program of Computer Graphics. A view
of the adjacent corridor is shown in color on
the front cover.

these may not be essential, than in
specifying the functional surfaces. The
computer science robotics research
group at Cornell, led by John E.
Hopcroft, has recently developed a

technique for automatically deriving
fourth-degree blending surfaces for
joining quadric-surface solids. With this
system, a designer needs to specify only
the functional surfaces and the system
will fill in the blending surfaces. This
technique has been used in the design of
blending surfaces for several assemblies,
including a gate valve (see the image
reproduced in color on the front cover;
the blending surfaces are blue).

Another interesting problem in solid
modeling involves the rapid display of
complex solid models. In designing a
physical assembly, graphically display-
ing the partially created object is an
important part of the user/system
interaction. When the user makes a
change in the assembly, it should not be
necessary to wait for minutes or hours
to see a display of the new object. At
the same time, the more accurate and
complete the display of the object, the
more useful it will be to the designer.
The work of two groups at Cornell
typifies research on this problem. One
team, led by Donald P. Greenberg,
director of the Program of Computer
Graphics, is working on the fast display
of very complex environments for design.
Objects are represented by polygonal
panels or by procedurally represented
surfaces, including quadratic surfaces
and swept splines. The other group, led
by Hopcroft, is attempting to display
solids whose surfaces are represented by
implicit algebraic equations. Polynom-
ials up to fourth degree or even greater
are used.

There is a trade-off between the
techniques involved: Polygonal panels
are simple to display, but an accurate
representation of a curved surface
requires a large number of panels. On 30

the other hand, curved surfaces usually
can be modeled with just a few higher-
degree algebraic surfaces, but the
individual surfaces are much harder to
render. For the fastest display, some
combination of techniques will be
needed.

REPRESENTING ASSEMBLIES:
THE NEXT STEP
One of the most important challenges
in object representation is to advance
beyond present-day solid modelers.
Existing solid-modeling systems can
represent single solids, such as the result
of a machining or casting operation,
quite well, but they have the drawback
of being able to represent assemblies
only as the fixed relative positioning of
a group of simple solids. There is no
capability to represent joints (and their
degrees of freedom), attachments, flex-
ibility, and so forth.

A simple extension to existing solid-
modeling systems provides a few of
these extended capabilities by using
feature-based models to represent
assemblies. This method involves the
identification of a set of sites as being
the focus of some activity, such as
attachment or insertion. These sites are
explicitly represented in the object
model, and actions affecting the object
are specified in terms of them.

Along these lines, the Cornell com-
puter science robotics group has de-
veloped a system that uses a feature-
based model to describe and perform
some simple assemblies. The current
version of the system deals with a very
restricted assembly environment—it
builds Lincoln Log cabins. The user
provides what is effectively an exploded

31 diagram of the desired assembly (Figure

1) and the system, running in Interlisp
on a Xerox Dandelion (an $8,000
workstation), converts this diagram to
actual VAL code (Figure 2). This code
then drives our PUMA 560 robot to
perform the assembly. The conversion
process involves planning grips, mo-
tions, and transformations on an in-
ternal computer model of the actual
workspace (see Figure 3). While the
existing problem domain is still quite
restricted, the underlying structure of
the system should be able to handle
more complicated and realistic assembly
problems.

The lack of any representation for
joints, attachments, and so forth in
existing solid modelers has other im-
plications. For one thing, it means that
solid modelers are totally inadequate to
determine the physical behavior of an
assembly, and this leads to the next
important area of object representation:
reasoning about objects. Given a repre-
sentation for a collection of objects, a
designer needs to be able to make
predictions about their real-world be-
havior. The questions can be as simple
as whether or not an object will fall over
or fall apart under the force of gravity,
or they can be as complex as how long
a car will last if it is driven over a
cobblestone road.

Recently Rick Palmer, a Cornell
graduate student in computer science,
developed an algorithm for testing the
stability of a collection of arbitrary
objects. Unfortunately, his work also
showed that the general problem is very
costly to solve (it falls into the class of
problems that computer scientists term
NP-complete). There is reason to be-
lieve, however, that the problem is
much more tractable for structures that

can be built without temporary scaf-
folding, and the robotics group plans to
use this idea as the basis for developing
a new system for planning and per-
forming assemblies. One of the prob-
lems in automating assembly procedures
is to determine the stability of inter-
mediate objects; the Cornell group
intends to develop a system that uses
heuristics to choose paths that appear
likely to lead to stable partial assem-
blies. The stability algorithm could then
be used to test the proposed assembly
steps. In cases in which the inter-
mediates are not stable, it might be
possible to automatically deduce the
scaffolding necessary to render the
partial assembly feasible.

REPRESENTING TASKS:
A FURTHER CAPABILITY
The next step, beyond reasoning about
simple object behavior, involves repre-
senting and reasoning about tasks. Two
simple ways to represent tasks illustrate
some of the challenges. One way is to
simply represent a task as a sequence of
actions; this is the method used in all
existing robot-programming languages

A system that can be used in describing and
performing simple robot assemblies is being
developed by the Cornell computer science
robotics group. These figures illustrate a
prototype version that has been devised for
building a simple assembly—a Lincoln Log
cabin.

Figure I. An exploded diagram description
of a Lincoln Log assembly. The letters label
the logs.

Figure 2. The VAL code for assembly, used
to drive the robot. This was produced by the
computer from the exploded diagram of the
desired assembly (Figure I).

Figure 3. A sample execution of the assembly-
planning system. This is part of the process
of converting the diagram to the VAL code.

Right: Krafft demonstrates the assembly of
a Lincoln Log cabin.

Figure 1

Log

1 1

m
i
L

u

1
I
1

1
1

i i r

1—1

Log A

Log-B

Log-C

m
1

. L
1
1
L

1—1—1
1
L

1
L
1
1
1

J_ + _.

r — —• — — — — *

r^a
Figure 2

-> (build)
(Setting up modules)
(Initializing variables)
(Compiling assembly graph)
(Assembly Planner called to compile)
(Ordered list is:)

(transformation-node-type1 transformation-node-type2
transformation-node-type3 transformation-node-type4)

(Transformation Manager called to plan:)place
(Grip Planner called to grip object:)"log1 origin"(at location:)

{444090.0 557340.0 -356630.0 1.0}
(Grip Planner called to plan an ungrip)
(Motion Planner called to move robot object:)"manipulator"
(Motion Planner called to move robot object:("manipulator"
(Transformation Planner called to plan:)logstack
(Grip Planner called to grip object:)"Iog2 upper left slot"(at location:

{444090.0 557340.0 -356630.0 1.0}
(Grip Planner called to plan an ungrip)
(Motion Planner called to move robot object:)"manipulator"
(Motion Planner called to move robot object:)"manipulator"
(Generating VAL code in file VALCODE.PG)

val. example

Figure 3

Thu Sep 26 16:23:17 1985 Page 1,line 1

.PROGRAM VALCODE
MOVE TRANS (400.000000,
MOVE TRANS (444.090000,
MOVE TRANS (444.090000,
DELAY .1
OPENI
MOVE TRANS (444.090000,
DELAY .1
CLOSEI
MOVE TRANS (444.090000,
MOVE TRANS (444.090000,
MOVE TRANS (600.000000,
MOVE TRANS (600.000000,
SPEED 20
MOVE TRANS (600.000000,
DELAY .1
OPENI
.END

0.000000, 300.000000, 90.000000, 90.0 0.0)

557.340000, -16.630000, 0.000000, 90.0 0.0)

557.340000, -316.630000, 0.000000, 90.0 0.0)

557.340000, -356.630000, 0.000000, 90.0 0.0)

557.340000, -316.630000, 0.000000, 90.0 0.0)

557.340000, -16.630000, 0.000000, 90.0 0.0)

100.000000, -19.340000, 0.000000, 90.0 0.0)

100.000000, -319.340000, 0.000000, 90.0 0.0)

100.000000, -359.340000, 0.000000, 90.0 0.0)

32

(see Figure 2 for an example). With this
method it is easy to specify and perform
the task, but it may be hard to reason
about the effect of the task on the
workspace. A second technique is to
represent a task as a set of objects in
two states, the current state and the
desired state. Here the effect of the task
is specified and therefore simple to
reason about, but determining the
sequence of actions may be a formidable
problem in reasoning.

The second of these representation
methods has obvious applications in
robotics. It encompasses the classic
problems of how to move a robot arm
and a gripped object through a
workspace—problems that are generally
extremely difficult, as verified by
theoretical work at Cornell and else-
where. The method also applies to
compliant motion (the motion of objects
in contact), which is of critical im-
portance in many robotics problems.
Except for a few specialized appli-
cations, such as spray-painting or laser
cutting, almost all uses of robots involve
compliant motion. An important the-
oretical result was obtained recently by
Gordon Wilfong, who was then a
graduate student in the department,
working with Hopcroft. They proved
that if it is possible for two objects to
move from one configuration in which
they are in contact to another configura-
tion in which they are in contact, then
there is a motion that continuously
maintains contact between the objects.

Work in the areas of motion planning,
compliant motion, and related task-
reasoning problems is just beginning to
break through from the purely the-
oretical to results that can be applied to

33 real problems in robotics.

THE POTENTIAL IMPACT ON
INDUSTRIAL PRODUCTIVITY
As the use of robots grows and as they
are applied to more and more sophis-
ticated tasks, the need for computer
science research in robotics will increase
dramatically. A broad area of research
based on the problems of robotics offers
a significant challenge to computer
scientists; if it can be met, computer
science will make a valuable contri-
bution to a number of areas of pro-
duction and engineering.

Research of this kind has already
begun, but if continued progress is to
be made, it is essential that scientists at
Cornell and other institutions recognize
its significance. The prospect is that
over the next decade, robotics will
become one of the most vitally im-
portant research areas in all of computer
science.

Dean B. Krafft has been a research associate
in Cornell's Department of Computer
Science since he received his Ph. D. here in
1981. As an undergraduate, he majored in
mathematics at Carleton College.

Krafft's specialty is robotics, the subject
of this article, and he has been heavily
involved in Cornell's robotics program,
which is funded by the National Science
Foundation. He is an author, with his
Cornell colleague John E. Hopcroft, of a
more extensive paper, "The Challenge of
Robotics for Computer Science, "which will
appear in Advances in Robotics, vol. 1:
Algorithmic and Geometric Aspects of
Robotics, to be published by Lawrence
Erlbaum Associates.

"As the use
of robots grows
...the need for
computer science
research in robotics
will increase
dramatically."

COMPUTER ARCHITECTURE
The Software-Hardware Interface

by Ion A. Solworth
The architects of computers, like those
who plan buildings, must design for
soundness of construction, effective use
of materials, economy, and function.
And like their counterparts in the
building industry, computer architects
make use of the available technology.

With computers the technology today
is based on semiconductors and is the
result of combined efforts of specialists
in such fields as electrical engineering,
semiconductor physics, chemistry, and
materials science. Computer architects
must effectively combine this technology
with structure to attain high-perform-
ance systems. This involves the added
element of software, for the archi-
tecture-software interface plays a sig-
nificant role in determining the structure
of advanced computer systems, and will
become dominant as the size and
sophistication of software continues to
increase. It is here that computer science
disciplines are critical to computer
architecture.

Some of the software is general-
purpose and functions to make the
computer usable. Compilers, for ex-
ample, allow programmers to write in

languages like FORTRAN, BASIC, or
Pascal; operating systems manage re-
sources such as processors, memory,
disk drives, and terminals. Other soft-
ware is specific to the applications that
run on the machine. To achieve high
performance—speed, reliability, and
ease of programming—the interactions
among the architecture, the system
software, and the applications programs
must be taken into account.

THE RISE IN CAPABILITY
AND ITS LIMITATIONS
The challenges to computer architecture
have changed and rapidly accelerated
as the modern computer has developed.
Indeed, one of the striking differences
between traditional architecture and
computer architecture is the speed of
change: The introduction of steel as a
building material in the 1900s—making
possible the skyscraper—was the last
major change in the underlying tech-
nology available to the architects of
buildings. In computer architecture,
three major technological innovations-
vacuum tubes, transistors, and now
integrated circuits—have been intro-

Figure I

Figure /. The bead abacus, an Asian form
of one of the earliest kinds of calculators.
(Photo courtesy of IBM.)

duced since 1946, and each has caused
or will bring about large shifts in the
ways computers are built.

The history of the computer dates
back to the use of devices for counting,
such as the abacus and the sixteenth-
century calculator. With these instru-
ments the operations were sequenced
(entered) by hand. In the nineteenth
century, the Jacquard loom was in-
vented, and although it was not a
calculating device, it introduced a new
sequencing method—the use of punched
cards to order the steps necessary to
weave a complex textile. Some time 34

Figure 2. Napier's Bones, a sixteenth-
century precursor of the slide rule. When
the vertical pieces are arranged to show a
given number across the top row, a multiple
can be read from the line corresponding to
the desired multiplier. (Photo courtesy of
IBM.) In the example at right, the selected
"bones" correspond to 2698. Readings are
made from right to left, as in ordinary
addition, with numbers that appear in the
parallelograms added together and two-digit
sums carried over. For instance, 2698
multiplied by 3 yields:

0 (6+1) (8+2) (7+2) 4orO 8 0 9 4.
Thus 2698 x 3 = 8094.

Figure 3. Jacquard's loom, a nineteenth-
century invention that introduced the use of
punched cards. The cards automatically
controlled the sequence of operations to
produce the desired pattern in the woven
fabric. (Photo courtesy of IBM.)

Figure 4. Part of the Babhage Differential
Engine, the first mechanical computer. This
late-nineteenth-century machine was steam-
driven. (Photo courtesy of the Science
Museum of London.)

Figure 2

81

2
/

/
/ o
1 /
/2

\ y

X

6
1 /

x
3 /

/ O

X
/»X
X5 k

1/
/ «

X
X4,/

X
/ 3 ,

X
7 a

8
\7
x«
X
X
/°
X
5 /

cf S

X
7 /

oU

35

after that, Charles Babbage set out to
build the first computer, the completely
mechanical, steam-driven Differential
Engine. Because Babbage's invention
preceded the introduction of inter-
changeable mechanical parts, his at-
tempt to build a working computer
failed; yet he pioneered many of the
concepts used in computers even today.

The first electronic computer, the
ENIAC, was completed in 1946. It used
vacuum-tube technology and was very
slow by today's standards. Because of
their expense, not a great many vacuum

tubes could be used (the ENIAC had
eighteen thousand). The number was
limited also by the relatively high failure
rate: increasing the number of tubes
meant a higher probability of failure
and therefore a decrease in the amount
of computing actually accomplished.

From the time of the ENIAC to the
present, computers have increased in
speed by five orders of magnitude. Now
computers use transistors fabricated on
integrated circuits (chips) instead of
vaccum tubes. The number of tran-
sistors that can fit on an integrated

rf |i! iff:
k 1

JLH1 i^

Figure 3

JB J

Figure 4

Right: The EN I AC, introduced in 1946, was
the first electronic computer. The controls
are at far left and a small part of the output
equipment is seen at right. The development
of the machine was sponsored by the federal
Ordnance Department; researchers at the
Moore School of Electrical Engineering at
the University of Pennsylvania (which
loaned the photograph) helped with the
programming.

circuit has dramatically risen from one
in 1960 to about 250,000 now; such a
chip typically sells for less than five
dollars. Making chips smaller also
makes them faster because signals have
a shorter distance to travel and
switching time is reduced. The gains of
the last twenty-five years cannot go on
forever, however; fundamental physical
laws will ultimately limit chip size to
about 10 million transistors, and this
size limitation (coupled with problems
of heat generation) imposes a limitation
on the speed with which we can
practically compute.

The most important physical limi-
tation is the speed of light. It may be
difficult to believe that the speed of light
can really limit the size of computers,
but it must be remembered that in
state-of-the-art computers the times
involved are very short, of the order of
nanoseconds, and in one nanosecond
(one billionth of a second) light travels
only about 4 inches. The CRAY-XMP,
a modern supercomputer, performs an
addition in 18 nanoseconds, but the
time required to send a signal from one
end of the computer to the other (a

distance of 56 inches) is 14 nanoseconds.
A fast computer must be small or it will
spend more time communicating than
computing. Size reduction brings prob-
lems of heat dissipation, however, so
there is a tradeoff.

TAKING UP THE CHALLENGE
IN UNIVERSITY RESEARCH
Since it is becoming increasingly dif-
ficult to make computers faster by
improving the underlying technology,
an alternative is being attempted: the
use of more, rather than faster,

components. Traditional computers
have several adders; what if there were
a thousand? Potentially, a thousand-
fold speed-up in computation would be
possible. A difficulty is that traditional
computer architectures cannot manage
so many resources because the control
issues become dominant: instead of
performing computations at full speed,
adders would be idle, waiting for the
control mechanism to decide what
should be done next. If computers are
to achieve the computation rates needed
for science, engineering, and business,
new and perhaps radical computer
architectures must be discovered. The
foremost challenge is the effective use
of massive parallelism for solving
computationally extensive tasks.

Within this context, the primary
focus of university research is to
combine thousands to millions of
processors so as to provide aggregate
execution rates of over a billion in-
structions per second (GIPS). The raw
potential of such computing ensembles
eclipses the capability of today's largest
computers, but this increase in per-
formance will not come free—new

"The most important physical
limitation is the speed of light.'

methods of designing computers,
systems software, and applications
software are required. It is only through
an integrated approach on these three
fronts that the potential of massively
parallel computers can be exploited.

MICROFLOW: AN APPROACH
TO PARALLEL COMPUTING
At Cornell the aim of a project on which
my colleague Alexandru Nicolau and I
are working is to combine systems
software with architecture in one co-
herent system we call Microflow. The
most important piece of software, from
this perspective, is the compiler. In the
Microflow method, classical compiler
technology is used to analyze the
properties of applications programs,
yielding information that enables the
computer to reduce the time it takes for
execution.

Even with traditional architectures,
this technique speeds up computing by
a factor of 2 to 5—an impressive
speedup that occurs without involving
the programmer at all. But while
compiler-implemented program optimi-

37 zation is an important part of preparing

computationally intensive jobs for
traditional architectures, it is absolutely
imperative for massively parallel pro-
grams. Not only is the speedup
potentially much larger, but there are
more details to deal with—the program
must know where the data are and on
what processor a particular computa-
tion is being run. The compiler's analysis
simplifies the code, and provides feed-
back to the user as well.

To get high performance from a
massively parallel computer, it is
necessary to rewrite critical programs
so that they will run efficiently. To help
users do this, we are working on a
parallel programming environment that
combines highly efficient, hand-tailored
code for critical sections along with the
automated analysis and optimization
features of the compiler. This envi-
ronment is being targeted not only at
the Microflow architecture, but also at
several computers being acquired by the
supercomputer center recently estab-
lished at Cornell by the National Science
Foundation.

The systems software we envision for
Microflow will enable us to build a

computer that would otherwise be
impractical to program. Microflow is
aimed at exploiting very fine-grain
parallelism. This means we expect to
take advantage of parallelism not at the
level of running separate programs on
the same machine, or manually separ-
ated parts of the program in parallel,
but at the level of interleaving in-
structions (for example, additions) in
the same part of the program. To
efficiently accomplish this, we must
reduce the control overhead that is
inherent in traditional design. One way
to do this is to move the overhead to
the compiler so that it is handled only
once—when the program is compiled,
and not when the program is executed.
A second way is to introduce novel
architectural mechanisms that will effi-
ciently execute the code produced by
the compiler and environment. We are
working on both these techniques.

ACCESSING AND
ENHANCING MEMORY
Along more traditional lines, Nicolau
and Kevin Karplus, a member of the
electrical engineering faculty, are in-

vestigating methods to speed up von
Neumann architectures, which are the
basis of all commercially produced
general-purpose computers.

A problem is the so-called von
Neumann bottleneck—the time it takes
to get information from the central
memory to the processor. This bottle-
neck is alleviated, in part, by retrieving
more information from memory than is
needed, with the hope that the extra
information will be used shortly by the
processor. This technique works well
when the accesses are predictable, but
when they are not the processor is idled
while it waits for memory. Another way
to reduce the bottleneck is to improve
the prediction of accesses to memory so
that requests can be anticipated better.
A Cornell project called ROPE (Ring
of Prefetch Elements) is exploring novel
programming techniques intended to
ensure that the processor very rarely has
to wait for access to memory in order to
receive instructions.

Another important problem in com-
puter architecture is support for special
programming languages and applica-
tions. The goal of Cornell research in

this area is to improve the performance
of very sophisticated programming
languages or, equivalently, to reduce the
time penalty associated with their use.
One approach is to build very-high-
performance systems out of unconven-
tional languages; another is to provide
environmentally rich computer systems
that will enable programmers to build
software more quickly.

A popular programming language
structure (called a class) is Simula,
which incorporates both the data and
the operations performed on data in a
single entity. My research group is
investigating an enhanced-memory
architecture called a Negotiator, which
should implement such systems better
than traditional architectures can.

COMPUTER-AIDED DESIGN:
KEY TO ARCHITECTURE
Computer-aided design (CAD) of inte-
grated circuits is a key technique in
computer architecture. Several of our
projects require prototype computers
for testing theories, and without soph-
isticated CAD, these prototypes would
be too complex for us to build.

Errors in design result in unusable
chips. There is no way to patch a chip;
the design must be changed and the
whole manufacturing process repeated
from scratch. Not only is this time-
consuming and expensive, requiring
typically several months and costing
several thousand dollars, but there is a
worse problem. A chip containing, say,
250,000 transistors would have about a
hundred pins where electrical signals are
input or output, and there is no way to
probe the interior (as there is in
conventional electronic design) to
identify the error.

All sophisticated chips produced
today, either in industry or in a uni-
versity research laboratory, are both
simulated and validated. Simulation
applies signals to a computer model of
the input/output (I/O) pins and pro-
duces the same output as the actual chip
would. Since the simulation is a
computer model, it is possible to probe
interior points and diagnose problems.
Simulation is dynamic: it tests that the
chip will work on certain supplied
inputs. Because the designer has to be
responsible for making sure that the
tests are complete, simulation serves as
an assurance test rather than a guar-
antee that the chip is correct. Validation,
on the other hand, is an absolute check
on certain correctness properties—for
example, it verifies that wires have at
least some minimum width. Validation
is always preferable to simulation, but
may not be available for all properties.

Validation of timing can also be
accomplished with the help of CAD.
The transistors on an integrated circuit
can be thought of as implementing a
series of switches that propagate
electrical signals along wires, much as a
railroad switching yard routes trains on
tracks. A problem in designing a chip,
then, is to ensure that valid information
is always on the wires when these are
used in a computation; in the railroad
analogy, this corresponds to ensuring
that trains do not collide in the yard. At
Cornell, Karplus is working on graph
theoretic algorithms to analyze and
verify that integrated circuits meet this
important condition.

A third pertinent area of CAD is the
management of the design process and
effective exploration of design alter-
natives. With today's VLSI (very-large- 38

a «iaf ft .lafft faffi aafft iafft Safd
iffaa; :r4 a • aw a; spa a - « m i a l =1fefft

39

ms&smmsm&mi

?p^-i?c^:s?

LTP f t I lia^

r/1/5 computer plot of a section of a VLSI
layout was generated in Solworth's lab-
oratory in three colors. The section shows a
queue of nine bit elements, eleven elements
deep—part of a switch for a large parallel-
processor communication network. The
structural appearance of the tiny chip
produced from this design will be almost
exactly like this plot.

scale integration) chips, it is difficult to
evaluate all the design alternatives;
CAD simplifies the job.

A GENERIC APPROACH
TO PROBLEMS OF LAYOUT
An area of particular interest to Cornell
researchers is layout, the placement of
components on an integrated chip. An
integrated circuit contains transistors
and wires embedded in a plane; the
database for a million-transistor chip,
for example, contains about five million
geometric shapes. These components
should be packed as tightly as possible
without overlapping, but since the
design begins with an electrical circuit
rather than with a planar mapping, the
embedding, or layout, must be worked
out later to achieve maximum efficiency
and compactness.

Layout is now performed manually
at a color graphics workstation, a
method that is a linear extrapolation of
the historical process of integrated-
circuit (IC) design. This method is
reaching the limits of its ability to
handle effectively the complexity of
current chips, for the designer, in effect,
must draw each object in the integrated
circuit. To the extent that objects are

reused, they can be replicated rather
than redrawn, but there is a tradeoff:
the more general-purpose (and hence
more easily replicated) the objects, the
lower the performance of the chip.

In a project called GENERIC (for
GENERation of Integrated Circuits),
my research group is working on
improved layout techniques. Since pro-
gramming languages have been used for
thirty years for both abstraction and
specification of computation in a wide
variety of problems, we believe that a
language approach would be suitable
for IC design. The starting point is a
description, in GENERIC, of the
electrical circuit that implements the
desired function. Using both library
routines and special-purpose routines,
the designer creates an embodiment of
an integrated circuit by "fleshing out"
the original circuit.

In explaining GENERIC, we often
draw an analogy between designing an
integrated circuit and flying an airplane.
The graphics approach is like flying by
sight; it is simple, develops intuition
about how to "fly", and is the least
expensive method. However, flying by

sight (normal graphics layout) is not
sufficient when the weather is bad or
when the plane must land at a busy
airport. For these conditions, it is
necessary to fly by instruments (use
programming techniques). Before they
can replace the simpler fly-by-sight
method, though, these instruments must
be sufficiently accurate, complete, and
comprehensible. The design instru-
mentation of VLSI CAD is not yet good
enough, and GENERIC seeks to im-
prove it. We are developing instruments
for assessing (without looking) the
quality of the design. We are creating
powerful operators to achieve high-level
objectives. And we are working on
mechanisms for managing design
details.

THE CONTINUING FUNCTION
OF COMPUTER ARCHITECTURE
However advanced computer tech-
nology is or becomes, it depends on
actual physical structures in order to
function.

The first computer, the Babbage
Differential Engine, was mechanical.
Now computers are electronic. In the

future they may be based on optical or
biological technology. But regardless of
the available materials, techniques, and
underlying technologies, computers
must be designed as overall structures
that work. Architecture will continue to
be an important aspect of the re-
markable evolution of the computer.

Jon A. Solworth, a specialist in computer
architecture, VLSI, and computer-aided
design, joined the Cornell computer science
faculty in 1984. He holds two degrees in
computer science from New York University
and soon will receive his doctorate.

While he was an undergraduate, Solworth
worked as a programmer and analyst for
the Standard Security Life Insurance
Company. As a graduate student he served
as a research assistant and assistant research
scientist at New York University and also
had experience as a consultant to Bankers
Trust. 40

SETTING AN EXAMPLE
Administrative Computing in Cornell's
Department of Computer Science

by Diane Duke and Michele Fish
Our department acquired its first
computer, a DEC PDP 11/60, in 1978.
The faculty members may have thought
of computers as tools for research and
instruction, but the administrative staff
soon developed other ideas! It wasn't
long before an interactive terminal was
placed in the main office for shared use
by the staff members. The department's
exciting—but sometimes harrowing—
move into the use of computers for
administrative purposes had begun.

At the time, the department had no
computer technicians or staff program-
mers; it was the faculty members and
graduate students who had to keep the
hardware running and the software
usable. After a while, many procedures
such as booting the system after crashes
and taking system dumps became
routine. (The system crashes when, for
an unknown reason, it simply stops
working; one then reboots the system
by loading it into memory from mag-
netic tape. Dumping means to store the
contents of disks on magnetic tape so
that the information can be recovered if
the disks fail. Currently, one of our

41 central computers has disk space to

hold almost 550 million characters of
information, and losing them would be
catastrophic.) A staff member became
familiar with these procedures and
began performing them; and for the
next four years, many problems that
arose with the system were fixed by an
office staff member. It was not the
typical "secretarial" work.

Since our departmental computing
equipment is mainly for experimental
research, this was the main consider-
ation in deciding on an operating
system. Less importance was placed on
word-processing capability. For this
reason, the system is not as "user
friendly" as those generally used for
word processing, but it provides much
more flexibility and function for those
who learn to use it. We learned a lot
about computer systems. And, having
been innovators, we have been able to
train people in other departments as
well as in our own.

Today all the administrative staff
members in Computer Science, as well
as everyone on the faculty and technical
support staff, have on their desks
interactive terminals with access to the

main computers. Typewriters are rarely
used. Management, administrative, and
clerical duties are performed with the
same computer system used for research.

COMMUNICATION USING
ELECTRONIC MAIL
How does the computer system affect
the day-by-day conduct of department
business? Take communication as an
example. No one has to check a
mailbox for telephone messages because
they are all delivered by electronic mail,
along with many intradepartmental
communications. If a call for x cannot
be received personally, for whatever
reason, the receptionist simply types
"mail x", along with the message, into
the terminal; the time and date are
automatically recorded. Within seconds,
the message is stored in x's files and
appears on his or her terminal screen;
an answer can be sent at a convenient
time. There is also a broadcast capa-
bility so that we can alert a group of
people to a special problem, an im-
minent meeting, or some other matter
of common concern.

The electronic mail service is not
limited to the department, for the
system is connected to several national
and international networks such as the
ARPAnet of the Department of De-
fense, and CSnet, which serves the
computer-science community. Depend-
ing on the network used, transmission
of a message can take from five minutes
to one day. An impressive demonstra-
tion of the usefulness of network
communication was provided recently
by the chairman of our department,
who used it to write a twenty-page
report in collaboration with colleagues
in Seattle, Atlanta, and Palo Alto. A
draft was mailed electronically to the
authors in round-robin fashion, and
within two days each had read and
edited it on the computer.

Besides our own address file, we have
access to central address files (one in
Boston and one in Palo Alto) listing
people around the country who are in
computer science or related fields. One
can query these from a desk terminal
and get both a post-office address and
an electronic address in a few seconds.
Some day such electronic address files

will be available for other disciplines as
well.

More and more units at Cornell are
acquiring their own computers and a
University-wide network is being in-
stalled. Already the College of En-
gineering has its own Ethernet that links
the computers in all its buildings. Soon
it will be possible to mail electronically
an article like this to Engineering:
Cornell Quarterly, and an edited draft
could be returned the same way. An
initial difficulty is that different units
have different word-processing or
computer equipment and software; ways
will have to be found to translate from
one system to another.

HANDLING CORRESPONDENCE
AND OTHER CLERICAL TASKS
In our office most correspondence is
typed using the computer system instead
of a typewriter. A letter can be com-
posed on the system, mailed electron-
ically to others for comments or re-
vision, and checked electronically for
spelling errors. Figures and tables can
be incorporated easily by picking them
up from other files. The final step is to
produce the hard copy—the actual
letter—using either a typewriter-like
device or a laser printer. When almost-
identical but personalized letters are to
be sent to a number of people, they can
be prepared by "filling in the blanks" in
a standard format, thus avoiding having
to type each one separately; this pro-
cedure is used, for example, by the
graduate faculty representative and his
secretary in corresponding with pro-
spective graduate students.

Many other clerical tasks are easily
accomplished using the system. Tech-
nical reports, annual reports, mailing

labels, address lists, course-enrollment
adds/drops—all these are handled
routinely.

The preparation of our annual report
is an example of how the system can
reduce work. The report contains, for
each faculty member, lists of University
activities, professional activities, lectures
given, and publications. A secretary
mails each faculty member the section
of the previous report that pertains to
him or her, and the faculty member (or
a secretary) changes it electronically to
bring it up to date. A simple electronic
collation completes the work on that
part of the annual report. The in-
formation can also be used to update
the faculty member's vita, which is kept
in a central file.

The preparation of research proposals
is greatly facilitated by the computer
system because many parts that are
required—technical data, vitae, refer-
ences, budgets, etc.—can be gathered
from stored files. From the adminis-
trative point of view, the computer
system is particularly useful in preparing
the proposed budget for a research
project: various packages, such as
spreadsheets, are very helpful. Once a
project is funded, the budget can be
transferred to active accounting records
within the system.

Accounting is another big job that is
made easier by the computer system.
Records from Cornell's computer must
be verified and interpreted at the
departmental level, and it is simple to
check charges to an account against the
original approved budget on file in our
system. We can also verify available
balances in research accounts and
prepare financial reports to the prin-
cipal investigators. Department records 42

Duke and Fish

pertaining to such items as purchase
and work orders, accounts payable/
receivable, equipment inventory, and
the payroll are also kept on the system.
Spreadsheet programs are utilized in
maintaining and handling the data. For
security reasons, some personnel and
management records have not yet been
computerized, but soon we will get
around this problem by using personal
computers and workstations that make
it possible to store sensitive data locally
and still have access to the central
system.

Student records, which are especially
complicated for an intercollege depart-
ment like Computer Science, are well
handled by the interactive system. An
Apple Macintosh database package has
been adapted for keeping the records of
undergraduate computer science majors
in both the College of Engineering and
the College of Arts and Sciences.
Computerized records for graduate
students, including information about
admission, financial aid, and academic
status, makes life easier for the graduate
faculty representative and also for his

43 secretary.

A SYSTEM FOR EVERYONE
IN THE DEPARTMENT
We know from personal experience that
the interactive computer system has
increased the effectiveness of the de-
partment's administrative staff. One of
us, Diane Duke, works with personnel
and accounting records, and the other,
Michele Fish, coordinates the under-
graduate academic program. Other staff
members use the system in carrying out
their special responsibilities. Anita
Affeldt works with the graduate faculty
representative in administering the
graduate program. Geri Pinkham uses
the department computer to keep
accounting records. Donette Isenbarger
has attended a seminar on adminis-
tration using the department's new
Xerox workstations and is now re-
sponsible for training the rest of the
clerical staff on the Xerox STAR
system.

These staffers and many others in the
department are using the continually
changing and growing computer system,
or are learning to do so. They have
discovered a new truth—that the
requirements for administrators and

secretaries have expanded in a very
short time as terminals have replaced
typewriters. The office, as well as the
classroom and the research laboratory,
is at the forefront of advances in
computer science.

Diane Duke, administrative manager of the
Department of Computer Science, came to
Cornell nine years ago as an administrative
aide. She now supervises a staff of twelve,
including research and department secre-
taries, an accounts coordinator, adminis-
trative aides, and office assistants. She
majored in business education at Oregon
State University.

Michele Fish joined the department as a
secretary in 1980 and was one of the first
staff members to become proficient in the
use of computers. Currently an adminis-
trative aide, she coordinates the depart-
ment 5 supervision of undergraduate majors
in two colleges. She is a participant in the
University 's employee degree program and
recently enrolled in the College of Human
Ecology with a major in human development
and family studies.

VANTAGE
Burns

• An additional ring around Jupiter,
discovered by researchers including a
Cornell engineering professor, will be
an unexpected feature for NASA's
Galileo space probe to observe when it
explores the giant planet in 1988-1990.
In fact, the discovery has brought about
a rerouting of Galileo to avoid passage
through the ring.

The engineering professor is Joseph
A. Burns of the Department of
Theoretical and Applied Mechanics,
whose specialty is celestial mechanics.
He worked with Mark R. Showalter, a
Cornell postdoctoral associate in as-
tronomy who was a graduate student at
the time of the study, and two NASA
scientists, Jeffrey N. Cuzzi and James
B. Pollack. They found evidence of the
previously overlooked ring by repro-
cessing data of a particular Voyager 2
image.

Right: This reprocessed image from Voyager
2 shows the newly discovered ''gossamer"
ring as a faint band at center-right. The
bright ring and the halo ring are at upper
left.

tr

44

Particles detected so far in the
band—called the "gossamer" ring
because of its faintness—are in the
micrometer range, about the size of
smoke particles. NASA's concern about
Galileo is that even particles as small as
this might penetrate the probe's heat
shield, causing heat "spikes" that on
entry into the planet's atmosphere could
shatter the heat shield, jeopardizing the
mission. Individual ring particles have
lifetimes that are very limited because
of the ring's location in the planet's Van
Allen belt, a region of intense electro-
magnetic radiation. Presumably, the
ring is continually regenerated by micro-
meteoroid collisions into larger unseen
parent bodies. The particles, dark red
in color, may be continually coated by
the outpourings of the volcanoes on the
Jovian moon Io.

The gossamer ring extends some
210,000 kilometers from the planet. It is
about twenty times as faint as the
previously known "bright" ring, which
can be seen only by the largest telescopes
on Earth. The other known feature is a
"halo" ring that extends about 10
degrees out of the main ring plane. The
Galileo mission, scheduled for launch
next spring, is expected to provide
images and detailed data about these
features, as well as Jupiter's satellites,
surface, and atmosphere, during the
probe's voyage of two or more years
through the Jovian system.

• Key problems for United States
manufacturers were discussed at a
week-long conference this summer that
brought more than forty senior ex-
ecutives to the campus. "Managing the

45 Next Generation of Manufacturing

Technology," offered for the second
year, was held August 12 through 16.

The main topics were applicable
engineering developments, business
analysis of technology, and factors
involved in introducing change. John
A. Muckstadt of the College of
Engineering, who is director of the
Cornell Manufacturing Engineering and
Productivity Program (COMEPP), and
L. Joseph Thomas of the Johnson
Graduate School of Management were
the symposium directors. Other faculty
participants represented University units

Above: C. Reid Rundell, an executive vice
president at General Motors, gave an after-
dinner talk about changes in production and
process design that are being implemented
in the manufacture of the new Saturn
automobile, a world-class car in terms of
quantity and cost.

Other after-dinner speakers were AI
Zettlemoier of IBM, who gave the keynote
address, and Cornell Professor Alfred E.
Kahn, who talked on the economic future—
government policy, international compe-
tition, and business decisions.

Left: Industrial delegates participated in the
discussions.

in architecture, in arts and sciences, and
in industrial and labor relations.
Speakers from the engineering college
and their areas of expertise included
Muckstadt (distribution systems),
Herbert H. Johnson (new materials), K.
K. Wang (CAD/CAM/CAE or com-
puter-aided design, manufacturing, and
engineering), Noel MacDonald (auto-
mated manufacture of integrated cir-
cuits), and John E. Hopcroft (robotics).

REGISTER

• Six engineering schools or depart-
ments opened the fall term with new
faculty members.

Harry E. Stewart, a specialist in
geotechnical engineering, joined the
School of Civil and Environmental
Engineering as an assistant professor in
the Department of Structural Engineer-
ing. He received the B.S. degree in
chemistry at the State University of
New York (SUNY) at Brockport, and
then switched to civil engineering,
earning the B.S. at SUNY Buffao and
the M.S. and Ph.D. at the University of
Massachusetts at Amherst. After re-
ceiving the doctorate in 1982, he taught
at Amherst and at the University of
South Carolina before coming to
Cornell. Stewart's honors include mem-
bership in Tau Beta Pi, Chi Epsilon,
and Sigma Xi. He belongs to the
American Society of Civil Engineers,
the Transportation Research Council,
and the United States branch of the
International Society of Soil Mechanics
and Foundation Engineering.

A new associate professor in the
Department of Computer Science is
Dexter C. Kozen, who came to the

University from IBM Research Labor-
atories, where he was a research staff
member and manager of the theory of
computation group. After graduating in
1974 from Dartmouth College (where
he received the John G. Kemeny Prize
in Computing), he came to Cornell for
graduate work and received his doc-
torate in 1977. Before joining IBM, he
was a postdoctoral fellow at the Uni-
versity of California, and he has been a
visiting professor at Aarhus University
in Denmark and an adjunct professor
at Columbia University. He is a member
of the Association for Computing
Machinery and the American Mathe-
matical Society.

Victor Solo, formerly an associate
professor at Harvard University, joined
the School of Electrical Engineering as
an associate professor. A specialist in
stochastic processes, he has also served
as an assistant research scientist at the
University of Wisconsin and as a
visiting associate professor at Purdue
University. Solo earned two under-
graduate degrees in Australia: the B.Sc.
in mathematics at the University of
Queensland (where he won the math-

ematics prize) in 1971; and the B.Sc. in
statistics, with first class honors, at the
University of New South Wales in 1973.
The following year he received the B.E.
degree in mechanical engineering, with
first class honors, from the University
of New South Wales, and in 1979 he
was awarded the Ph.D. in statistics by
the Australian National University. He
spent two years with the Common-
wealth Scientific and Industrial Re-
search Organization as a consulting
statistician. He is an editor or reviewer
for several journals in engineering and
statistics, and belongs to the Institute of
Electrical and Electronics Engineers
and the Institute of Mathematical
Statistics.

A new assistant professor in the
School of Mechanical and Aerospace
Engineering is Michel Y. Louge, whose
field is thermal sciences. Louge received
the degree of Ingenieur from the Ecole
Centrale des Arts et Manufactures in
1978, and took his graduate work in
mechanical engineering at Stanford
University, which awarded him the
M.S. in 1979 and the Ph.D. in 1985.
Since the fall of 1984 he had been a 46

Cady Hammer

47

process development engineer at Shell
International.

In the School of Operations Research
and Industrial Engineering, William J.
Cook has joined the faculty as an
assistant professor. Cook came to
Cornell from West Germany, where he
was an Alexander von Humboldt Re-
search Fellow at the University of Bonn
for two years. His degrees are the B.A.
from Rutgers University, the M.S. from
Stanford University, and the Ph.D.
from the University of Waterloo. His
specialty fields are combinatorics and
combinatorial optimization.

Also new to the operations research
and industrial engineering faculty is
Michael Phelan, who studied for his
M.S. and Ph.D. degrees at Cornell. He
earned the B.A. degree at the State
University of New York college at
Oneonta in 1978. He has had experience
in applications and systems program-
ming with Townsend and Greenspan,
Inc. His professional interests include
inference problems from stochastic pro-
cesses, particularly counting processes.

Timothy J. Healey, a specialist in
solid mechanics, is an assistant professor

in the Department of Theoretical and
Applied Mechanics. His three degrees
in civil engineering are the B.S. from
the University of Missouri and the M.S.
and Ph.D. from the University of
Illinois at Champaign-Urbana. At
Illinois he received the 1985 Chester P.
Siess Award, which recognizes out-
standing doctoral work and promise for
research. His experience includes two
years with Agbabian Associates of Los
Angeles beginning in 1978, and teaching
mathematics at the University of
Maryland last year. Healey is a member
of the honorary societies Chi Epsilon,
Tau Beta Pi, and Omicron Delta Kappa,
and belongs to the American Math-
ematical Society, the American Aca-
demy of Mechanics, and the Society for
Industrial and Applied Mathematics.

• A new administrative appointment at
the College of Engineering is that of K.
Bingham Cady as associate dean for
college affairs. Cady, a professor of
nuclear science and engineering and of
applied and engineering physics, has
been serving as associate dean for
professional programs. Cady has been

at Cornell since he received his doc-
torate from the Massachusetts Institute
of Technology in 1962. In addition to
his academic and administrative work
at the University, he has has extensive
experience as a consultant to industrial
firms and national facilities, including
the Knolls Atomic Power Laboratory,
the U.S. Atomic Energy Commission,
Brookhaven National Laboratory,
Hanford Engineering Development
Laboratory, and Fauske and Associates.
He has held a Ford Foundation Pre-
induction Scholarship, a Bethlehem
Steel Industrial Fellowship, a Woodrow
Wilson Fellowship, and a U.S. Atomic
Energy Commission Fellowship in
Nuclear Science and Engineering. He is
a member of Phi Eta Sigma, Sigma Xi,
and Tau Beta Pi.

• The new director of the Laboratory
of Plasma Studies is David A. Hammer,
professor of nuclear science and en-
gineering and a specialist in plasma
physics, nuclear fusion, and high-power
electron- and ion-beam physics. He
succeeds Ravindra N. Sudan, who is
now deputy director of the Center for

Shoemaker Liu

Theory and Simulation in Science and
Engineering, one of four recently es-
tablished National Advanced Comput-
ing Centers. Hammer came to Cornell
in 1977 after seven years as a research
physicist with the Naval Research
Laboratory, and has been on the facul-
ties of the University of Maryland, the
University of California at Los Angeles,
and Imperial College, London. He is a
fellow of the American Physical Society,
a senior member of the Institute of
Electrical and Electronics Engineers,
and a member of the American Asso-
ciation for the Advancement of Science
and of Sigma Xi.

• In administrative changes at the
School of Civil and Environmental
Engineering, Professor Christine A.
Shoemaker has been named chairman
of the Department of Environmental
Engineering and Professor Philip L.-F.
Liu has succeeded her as associate
director of the School.

Shoemaker has been at Cornell since
1971, when she received the Ph.D.
degree in mathematics from the Uni-
versity of Southern California. After a

year as a research associate here, she
joined the environmental engineering
faculty. A specialist in pest manage-
ment, water resources systems, and
mathematical ecology, Shoemaker is a
member of several graduate fields at
Cornell: applied mathematics, agricul-
tural engineering, entomology, and
ecology, in addition to civil and en-
vironmental engineering. She has served
on National Academy of Sciences panels
on pest management and on ground-
water contamination. She is a member
of the U.S. National Committee for the
Scientific Council on Problems in the
Environment—a standing subcommittee
of the Environmental Studies Board of
the National Academy of Sciences.
Also, she is on an advisory panel on
pest management for the Food and
Agriculture Organization of the United
Nations. She is a member of the
Entomological Society of America, the
American Geophysical Union, the
Biometric Society, and the Operations
Research Society of America.

Liu, a specialist in fluid mechanics
and coastal engineering, is a professor
in the Department of Environmental

Engineering. He joined the Cornell
faculty in 1974 after earning the B.S.
degree at National Taiwan University,
and the M.S. and Sc.D. at the
Massachusetts Institute of Technology.
He has also been a visitor at the
University of Delaware and the Cali-
fornia Institute of Technology. His
honors have included the 1978 Walter
L. Huber Research Prize awarded by
the American Society of Civil Engineers
(ASCE), a Justice Foundation faculty
fellowship at Cornell, an Engineering
Foundation fellowship in 1980, and a
Guggenheim fellowship in 1980. He is a
member of the ASCE and the American
Geophysical Union.

• Benjamin Nichols, professor of
electrical engineering, has been named
associate director of the School of
Electrical Engineering. A Cornell
faculty member since 1946, Nichols has
had a continuing interest in educational
policies and techniques; his work in this
area at the College of Engineering has
included directing the former Division
of Basic Studies and serving on the
committee that set up the current core 48

Nichols Scheele

curriculum. Nichols is a Cornell
alumnus and holds the Ph.D. in geo-
physics from the University of Alaska.

• At the National Research and
Resource Facility for Submicron Struc-
tures (NRRFSS), Gregory Galvin, a
postdoctoral associate, and J. Peter
Krusius, an associate professor, have
been named associate directors. Galvin
works with the user program, which
accommodates researchers from across
the nation who come to work at the
national facility, and Krusius is in
charge of the Cornell Program on
Submicrometer Structures (PROSUS),
a program for industrial affiliates.

• Recently appointed staff members
who work with students include Judy
Jackson, coordinator for advising in the
Office of Admissions, Advising, and
Records; and Linda Van Ness, coor-
dinator of the Engineering Cooperative
Program.

Jackson holds a B.A. degree in
French from the University of North
Carolina at Greensboro and an M. A. in

49 Francophone African literature, geo-

graphy, and foreign policy from Buckell
University. She has taught at Susque-
hanna University and headed the Office
of Minority and Foreign Student
Advising at Bucknell.

Van Ness has been at Cornell since
1981, most recently as a staff member
in the dean's office. She holds an
associate degree in psychology from
Genesee Community College.

• George F.Scheele, associate professor
of chemical engineering, has been
named a fellow of the American
Institute of Chemical Engineers. He was
cited for his contributions to engineering
education and to research in fluid
mechanics.

A graduate of Princeton University
and a Ph.D. from the University of
Illinois, Scheele has been at Cornell
since 1962. He has also been a visiting
professor at the University of California
at Berkeley, a "Year-in-Industry Pro-
fessor" at E. I. duPont de Nemours, and
a research engineering with the Dow
Chemical Company. He is currently
serving as associate director of the
School of Chemical Engineering.

• The National Best Student Section
of the Society of Women Engineers is
our own SWE chapter. The selection of
the Cornell group, announced early this
term, was made in recognition of the
chapter's ambitious and well-rounded
program in 1984-85. The award is
accompanied by a cash grant from the
Union Carbide Corporation.

SWE's events during the year in-
cluded an awards banquet, a visit to
Corning Glass Works, a barbeque, an
ice-skating party, and a party on the
engineering quadrangle open to every-
one at Cornell. The society also spon-
sored programs for prospective stu-
dents: High School Day in November,
and Accepted Candidates Weekend in
April. A program in career guidance
included seminars, workshops, and the
publication of members' resumes.
Younger members were helped aca-
demically and personally through
tutoring and a Big/Little Sister
program.

The 1984-85 president was Margot
Haartz, a senior in mechanical engi-
neering. This year's president, Margaret
Au, is an electrical engineering major.

FACULTY
PUBLICATIONS

Current research activities at the Cornell
University College of Engineering are represented
by the following publications and conference
papers that appeared or were presented during
the four-month period February through May,
1985. (Earlier entries omitted from previous
Quarterly listings are included here with the year
of publication in parentheses.) The names of
Cornell personnel are in italics.

• AGRICULTURAL
ENGINEERING

Steenhuis, T. S., C. Jackson, S. K. J. Kung, and
W. Brutsaert. 1985. Measurement of groundwater
recharge on eastern Long Island. Journal of
Hydrology 79:145-69.

Taylor, R. W., and G. E. Rehkugler. 1985.
Development of a system for automated detection
of apple bruises. Paper read at conference, Society
of Manufacturing Engineers, 25-28 February
1985, in Chicago, IL.

• APPLIED AND
ENGINEERING PHYSICS

Del Priore, L. V., and A. Lewis. 1985. Vanadate,
tungstate, and molybdate activate rod outer
segment phosphodiesterase in the dark. Bio-
chimica et Biophysica Acta 845:81-85.

Dowben, P. A., D. Mueller, T. N. Rhodin, and
Y. Sakisaka. 1985. Molecular bromine adsorption
and dissociation on iron and nickel surfaces.
Surface Science 155:567-83.

Dowben, P. A., Y. Sakisaka, and T. N. Rhodin.
1985. Angle-resolved photoemission from bro-
mine chemisorbed on Ni(100). Journal of Vacuum
Science and Technology A3:1855-59.

Park, S., L. C. Rathbun, and T. N. Rhodin. 1985.
Effect of inert ion bombardment on chemi-

sorption and etching of aluminum films in CI2,
Br2, CCI4, and CBr4. Journal of Vacuum Science
and Technology A3.791-94.

Rhodin, T. N., M.-H. Tsai, and R. V. Kasowski.
1985. Chemisorptive bonding of carbon monoxide
on Ni(OOl) and Fe(l 10). Applied Surface Science
22/23:426-43.

Sakisaka, Y., T. Rhodin, and D. Mueller. 1985.
Angle-resolved photoemission from Fe(110):
Determination of E(k). Solid State Communi-
cations 53:793-99.

• CHEMICAL ENGINEERING
Anderson, C. C, and F. Rodriguez. (1984.)
Polymeric plasticizers for poly(methyl meth-
acrylate). In Proceedings, American Chemical
Society Conference on Polymeric Materials
Science and Engineering, vol. 51, pp. 609-13.
Washington, DC: ACS.

Calado, J. C. G., and P. Clancy. (1984.) The
development of a flexible intermolecular potential
energy function for ethylene. Revista Portuguesa
de Quimica 26:85-91.

Calado, J. C. G. 1985a. The dialogue between
order and disorder. Boletim da Sociedade
Portuguesa de Quimica, 2d ser., 20:9-10.

. 1985Z>. The need for new developments
in thermodynamics. Paper read at ChemPor 85,
4th International Chemical Engineering Con-
ference, 15-19 April 1985, in Coimbra, Portugal.

Chen, J., A. L Tannahill, and M. L. Shuler. 1985.
Design of a system for the control of low dissolved
oxygen concentrations: Critical oxygen concen-
trations for Azotobacter vinelandii and Es-
cherichia coli. Biotechnology and Bioengineering
27:151-55.

Cho, T, G. F. Payne, and M. L. Shuler. 1985.
Integrated product recovery and byconversion
reactors. Paper read at 7th Symposium on

Biotechnology for Fuels and Chemicals, 14-17
May 1985, in Gatlinburg, TN.

Clark, D. S., J. E. Bailey, and D. D. Do. 1985. A
mathematical model for restricted diffusion effects
on macromolecule impregnation in porous
supports. Biotechnology and Bioengineering
27:208.

Cohen, C, and D.-h. Hwang. 1985. Diffusion and
relaxation in polymer-solvent systems by photon
correlation spectroscopy. In Physical optics of
dynamic phenomena and processes in macro-
molecular systems, ed. B. SedlaCek, pp. 49-57.
Berlin: Walter de Gruyter.

Eggebrecht, J., K. E. Gubbins, A. Shreve, S. M.
Thompson, and J. P. R. B. Walton. 1985. The
vapour-liquid interface for a Stockmeyer fluid.
Paper read at Dense Fluids Conference, Royal
Society of Chemistry, 10-12 April 1985, in Bristol,
U.K.

Einsele, A., R. K. Finn, and W. Samhaber. 1985.
Mikrobiologische und biochemische Verfahrens-
technik: Eine Einfiihrung. Weinheim, Germany:
Verlag Chemie.

Georgiou, G., J. J. Chalmers, M. L. Shuler, and
D. B. Wilson. 1985. Continuous immobilized
recombinant production from E. coli capable of
selective protein excretion: A feasibility study.
Biotechnology Progress 1:75-79.

Gray, C. G., C. G. Joslin, V. Venkatasubra-
manian, and K. E. Gubbins. 1985. Induction
effects in fluid mixtures of dipolar-quadrupolar
polarizable molecules. Molecular Physics
54:1129-48.

Gubbins, K. E. 1985a. Computer simulation and
theoretical studies of liquid mixtures: Brute force
vs. insight. Paper read at ChemPor *85: 4th
International Chemical Engineering Conference,
15-16 April 1985, in Coimbra, Portugal.

. 19856. Molecular studies of gas pro-
perties. Paper read at Gas Research Institute
Workshop on Thermophysical Properties, 21-22
March 1985, in Houston, TX.

Joslin, C. G., C. G. Gray, and K. E. Gubbins.
1985. Renormalized perturbation theory for
dipolar and quadrupolar polarizable fluids.
Molecular Physics 54:1117-28.

Kung, D. M., and W. L. Olbricht. 1985. The
breakup of liquid drops in creeping flow. Paper
read at 56th Annual Meeting, Society of
Rheology, 25-27 February 1985, in Blacksburg,
VA.

Lee, A. L, M. M. Ataai, and M. L. Shuler. 1985.
Double substrate limited growth of Escherichia
coli. Biotechnology and Bioengineering
26:1398-1401.

Lee, D. J., K. E. Gubbins, and M. M. Telo da
Gama. 1985. Surface activity at the liquid-vapour
interface of binary mixtures. Paper read at Dense
Fluids Conference, Royal Society of Chemistry,
10-12 April 1985, in Bristol, U. K. 5 0

Lobo, L. Q., L. A. K. Staveley, V. Ven-
katasubramanian, P. Clancy, K. E. Gubbins, C.
G. Gray, and C. G. Joslin. 1985. Thermodynamic
properties of liquid mixtures of hydrogen chloride
and tetrafluoromethane. Fluid Phase Equilibria
22:89-105.

Naik, C. D., P. Clancy, and K. E. Gubbins. 1985.
The use of computer graphics to teach thermo-
dynamic phase diagrams. Chemical Engineering
Education 19:78-82.

Nollert, M. U., and W. L. Olbricht. 1985.
Macromolecular deformation in periodic exten-
sional flows. Rheologica Acta 24:3-14.

Nunes da Ponte, M., J. C. G. Calado, and W. B.
Streett. 1985. Phase equilibria in Ar and CO2
mixtures. Paper read at 9th Symposium on
Thermophysical Properties, 24-27 June 1985, in
Boulder, CO.

Nunes da Ponte, M., D. Chokappa, J. C. G.
Calado, P. Clancy, and W. B. Strett. 1985.
Vapor-liquid equilibrium in the xenon and ethane
system. Journal of Physical Chemistry 89:2746-51.

Rodriguez, F. 1985a. Compact correlation of flow
data for solutions of rigid polymer molecules.
Chemical Engineering Communications 33:287-99.

. 19856. Positive-working electron beam
resists. Paper read at IBM Lithography Sym-
posium, 9 May 1985, in Tarrytown, NY.

. 1985c. Visualizing molecular weight
averages and distributions. In Proceedings,
American Chemical Society Conference on
Polymeric Materials Science and Engineering,
vol. 52, pp.523-27. Washington, DC: ACS.

Rodriguez, F, C. H. Chu, W. T. W. K. Chu, and
M. A. Rondinella. 1985. Adiabatic photopoly-
merization of acrylamide. Journal of Applied
Polymer Science 30:1629-37.

Rodriguez, F., R. J. Groele, and P. D. Krasicky.
1985. Dissolution rates of thin polymer films using
laser interferometry. In Advances in Resist
Technology and Processing. Proceedings, Society
of Photo-Optical Instrumentation Engineers, vol.
539, pp. 14-20. Redondo Beach, CA: SPIE.

Rodriguez, F, P. D. Krasicky, and R. J. Groele.
1985. Dissolution rate measurements. Solid State
Technology 28:125-31.

Schmidt, S. K, M. Alexander, and M. L. Shuler.
1985. Predicting threshold concentrations of
organic substrates for bacterial growth. Journal
of Theoretical Biology 114:1-8.

Shuler, M. L. 1985. Immobilized cell bioreactors.
Paper read at New England Biotechnology
Association Colloquium II, 21-22 March 1985, in
Worcester, MA.

Shuler, M. L, D. B. Wilson, J. J. Chalmers, and
G. Georgiou. 1985. Immobilized cell bioreactor
for continuous recombinant protein production
from E. coli capable of selective protein excretion.

51 Paper read at 85th Annual Meeting, American

Society for Microbiology, 3-8 March 1985, in Las
Vegas, NV.

Smith, J. C. 1985. The rise of research: Fifty years
of change in Cornell's engineering program.
Engineering: Cornell Quarterly 20(1):26-36.

Smith, J. C, and P. H. Steen. 1985. Chemical
engineering at Cornell. Chemical Engineering
Education 19(2):58-61, 103-06.

Streett, W. B., J. A. Zollweg, and P. Clancy. 1985.
Thermophysical property measurements to sup-
port parallel developments in computer simu-
lation and molecular theories of fluids. Paper read
at 1985 Spring Meeting, American Institute of
Chemical Engineers, 24-28 March 1985, in
Houston, TX.

Telo da Gama, M. M., and K. E. Gubbins. 1985.
A microscopic model for the interfacial properties
of mixtures of oil, water and non-ionic sur-
factants. Paper read at ChemPor *85: 4th
International Chemical Engineering Conference,
15-16 April 1985, in Coimbra, Portugal.

Thurtell, J. H., M. M. Telo da Gama, and K. E.
Gubbins. 1985. The liquid-vapour interface of
simple models of nematic liquid crystals. Mole-
cular Physics 54:321-32.

Tolan, J., and R. K. Finn. 1985. Alcohol tolerance
of enterobacteria growing on pentoses. Paper read
at 7th Symposium on Biotechnology for Fuels
and Chemicals, 14-17 May 1985, in Gatlinburg,
TN.
Zudkevitch, D., and W. B. Streett. 1985. Fluid
mixtures at high pressures: Behavior and
applications. In The role of data in scientific
progress, ed. P. S. Glaeser, pp. 217-22.
Amsterdam: Elsevier.

• CIVIL AND ENVIRONMENTAL
ENGINEERING

Barnard, T. E., and J. J. Bisogni, Jr. 1985. Errors
in gran function analysis of titration data for
dilute acidified water. Water Research
19(3):393-99.

Brutsaert, W. (1984.) A seminal contribution to
the fluid mechanics of porous media and soils by
Matano. Nagare [Journal of the Japan Society of
Fluid Mechanics] 3(4):92-94.

. 1985. Meteorological and hydrological
experimentation in complex and hilly terrain.
Invited paper read at Spring Meeting, American
Geophysical Union, 27-29 May 1985, in Bal-
timore, MD. (Abstract in EOS 66:233.)

Buss, A., and M. Grigoriu. 1985. Crossings of
non- Gaussian processes. Department of Struc-
tural Engineering Report no. 85-5. Ithaca, NY:
Cornell University.

Charlie, W. A., J. P. Turner, and F. H. Kulhawy.
1985. Review of repeated axial load tests on deep
foundations. In Drilled piers and caissons, 2 ed.,

ed. C. N. Baker, pp. 129-50. New York: American
Society of Civil Engineers.

Dick, R. I., and S. A. Kishbaugh. 1985. Basic
physical properties of pollution control residues:
Specific resistance to filtration. In Proceedings,
Conference on Environmental Engineering and
Pollution Control Processes, ed. D. F. Carey, pp.
167-86. Washington, £>C: U.S. Environmental
Protection Agency.

Dworsky, L. B. 1985. Canada's water—America's
needs. Paper read at Foreign Policy Conference,
Canadian Institute of International Affairs, 3-5
May 1985, in Toronto, Canada.

Dworsky, L. B., and D. J. Allee. 1985. A national
program for water resources research. Paper read
at National Conference on Water Resources
Research, 7-8 February 1985, in Washington,
DC.

El-Kadi, A. /., and W. Brutsaert. 1985. Appli-
cability of effective parameters for unsteady flow
in nonuniform aquifers. Water Resources
Research 21:183-98.

Grigoriu, M. 1985. Response of linear systems to
quadratic Gaussian excitations. Department of
Structural Engineering Report no. 85-4. Ithaca,
NY: Cornell University.

Grigoriu, M., M. Khater, and T. O'Rourke. 1985.
Stochastic beams on elastic foundations. In
Proceedings, ASCE Symposium, ed. J. Yao, R.
Corrotis, C. Brown and F. Moses, pp. 96-106.
New York: American Society of Civil Engineers.

Irwin, L. H., I. Ishibashi, and W. S. Yang. 1985.
Validation of the mechanistic approach to non-
destructive pavement evaluation for aggregate
surfaced road. U.S. Forest Service Report no.
53-56A1-00756. Milwaukee, WI: USFS.

Ishibashi, I., M. Kawamura, and S. K. Bhatia.
1985. Effect of initial shearing on cyclic drained
and undrained characteristics of sand. National
Science Foundation Report no. CEE-8314009.
Washington, DC: NSF.

Kustas, W. P., and W. Brutsaert. 1985. The
roughness characteristics of rugged hilly water-
sheds. Paper read at Spring Meeting, American
Geophysical Union, 27-29 May 1985, in
Baltimore, MD. (Abstract in EOS 66:261.

Liggett, J. A. 1985. Multiple boundary conditions,
free surface flow, and the boundary element
method. Communications in Applied Numerical
Methods 1:105-12.

Liu, P. L-F, S. B. Yoon, and J. T. Kirby. 1985.
Nonlinear refraction-diffraction of waves in
shallow water. Journal of Fluid Mechanics
153:185-201.

Orloff, N. 1985. Commentary: Why EPA's
approach to toxic chemicals doesn't work.
Engineering: Cornell Quarterly 20(l):37-39.

O'Rourke, T. D., and F. H. Kulhawy. 1985.
Observations on load tests for drilled shafts. In

Drilled piers and caissons, 2 ed., pp. 113-28. New
York: American Society of Civil Engineers.

Perdiharis, P. C , S. Hilmy, and R. N White.
1985. Extensional stiffness of precracked rein-
forced concrete. ASCE Journal of Structural
Engineering 111(3):487-504.

Perdiharis, P. C , and R. N. White. 1985. Shear
modulus of precracked reinforced concrete. ASCE
Journal of Structural Engineering 111(2):270-89.

Philipson, W. R., D. R. Gordon, W. D. Philpot,
and V. L. Williams. 1985. Calibration for
radiometric measurements with non-white re-
flectance standards. In Proceedings, 51st Annual
Meeting, American Society of Photogrammetry,
pp. 47-54. Falls Church, VA: ASP.

Philipson, W. R., V. L. Williams, D. K. Gordon,
and W. Philpot. 1985. Vegetable and fruit tree
inventory with Landsat TM data. In Proceedings,
51st Annual Meeting, American Society of
Photogrammetry, pp. 39-46. Falls Church, VA:
ASP.

Philpot, W. 1985. Experimental verification of a
radiative transfer model for assessment of water
quality. NSF report no. PB-85-181519. Spring-
field, VA: National Technical Information
Service.

Philpot, W. and W. R. Philipson. 1985. Thermal
sensing for characterizing the contents of waste
storage drums. Photogrammetric Engineering and
Remote Sensing 51:237-43.

Stedinger, J. R., D. P. Lettenmaier, and R. M.
Vogel. 1985. Multisite ARMA(1,1) and dis-
aggregation models for annual streamflow
generation. Water Resources Research
21(4):497-510.

Stedinger, J. R., D. Rei, and T. A. Cohn. 1985. A
condensed disaggregation model for incorporating
parameter uncertainty into monthly reservoir
simulations. Water Resources Research
21(5):665-75.

Steifel, R. C , L. B. Dworsky, et al. 1985.
Research and development: Water resources
research in the FY 1986 budget. American
Association for the Advancement of Science
report no. 10. Washington, DC: A A AS.

Taigbenu, A. E., and J. A. Liggett. 1985.
Boundary element calculations of the diffusion
equation. ASCE Journal of the Engineering
Mechanics Division 111:311 -28.

Turnquist, M. A., and W. C. Jordan. 1985. Fleet
sizing under production cycles and uncertain
travel times. General Motors Research Labs
report no. GMR-5012.

Vodacek, A., and W. Philpot. 1985. Use of
induced fluorescence measurements to assess
aluminum-organic interactions in acidified lakes.
In Proceedings, 51st Annual Meeting, American
Society of Photogrammetry, pp. 460-69. Falls
Church, VA: ASP.

Vogel, R. M., and J. R. Stedinger. 1985.
Minimum variance streamflow record augmen-
tation procedures. Water Resources Research
21(5):715-23.

Willmott, C. J., C. M. Rowe, and W. Philpot.
1985. Small-scale climate maps: A sensitivity
analysis of some common assumptions associated
with grid point interpolation and contouring. The
American Cartographer 12:5-16.

Wu, C.-S., and P. L.-F. Liu. 1985. Finite element
modeling of nonlinear coastal currents. ASCE
Journal of Waterway, Port, Coastal, and Ocean
Engineering 111(2):417-32.

• COMPUTER SCIENCE
Alford, M. W., J. P. Ansart, G. Hommel, L.
Lampert, B. Liskov, G. P. Mullery, and F. B.
Schneider. 1985. Distributed systems: Methods
and tools for specification. Heidelberg: Springer-
Verlag.

Bilardi, G., and F. P. Preparata. 1985a. A
minimum area VLSI network for 0(log N) time
sorting. IEEE Transactions on Computers C-
34(4):336-43.

. 1985&. Tessellation techniques for area-
time lower bounds. In Proceedings, 19th Annual
Conference on Information Sciences and Systems,
pp. 7-9. Baltimore, MD: The Johns Hopkins
University Press.

. 1985c. The VLSI optimality of the AKS
sorting network. Information Processing Letters
20(2):55-59.

Gries, D. and J. Prins. 1985. A new notion of
encapsulation. Paper read at SIGPLAN 85
Symposium on Language Issues in Programming
Environments, 23-25 June 1985, in Seattle, WA.

Hopcroft, J., and A. Borodin. 1985. Routing,
merging and sorting on parallel models of
computation. Journal of Computer and System
Sciences 30(1): 130-45.

Hoffmann, C , and J. Hopcroft. 1985. Quadratic
blending surfaces. Paper read at Society for
Industrial and Applied Mathematics-Rensselaer
Polytechnic Institute Conference, 15-18 July
1985, in Albany, NY.

Jacobs, £>., and D. Gries. 1985. General
correctness: A unification of partial and total
correctness. Acta Informatica 22:67-84.

Johnson, G. F, and C. N. Fischer. 1985. A meta-
language and system for nonlocal attribute flow
in language-based editors. In Proceedings, 12th
ACM Symposium on Principles of Programming
Languages, ed. B. K. Reid, pp. 141-51. New York:
Association for Computing Machinery.

Nguyen, V., A. Demers, D. Gries, and S. Owicki.
1985. Behavior: A temporal approach to process
modeling. Paper read at Conference on Logics of
Programs, 12-13 June 1985, in Brooklyn, NY.

Nguyen, V., D. Gries, and S. Owicki. 1985. A
model and temporal proof system for networks of
processes. Paper read at Annual Symposium on
Principles of Programming Languages, 23-25
January 1985, in New Orleans, LA.

Salton, G. 1985. A note on information retrieval
models and theories. In Recherche d'Information
Assistee par Ordinateurs, pp. 1-27. Proceedings,
RIAO 85 Conference. Grenoble, France: RIAO.

Salton, G., E. A. Fox, and E. Voorhees. 1985.
Advanced feedback methods in information
retrieval. Journal of the American Society for
Information Science 36(3):200-10.

Teitelbaum, T, and S. Horwitz. 1985. Relations
and attributes: A symbiotic basis for editing
environments. In SIGPLAN 85 Symposium on
Language Issues in Programming Environments.
ACM Special Interest Group on Programming
Languages, vol. 20, no. 7, pp. 93-106. New York:
Association for Computing Machinery.

Valiant, L. G., and V. V. Vazirani. 1985. NP is as
easy as detecting unique solutions. In Proceedings,
17th Annual Symposium on Theory of Com-
puting, pp. 458-63. New York: Association for
Computing Machinery.

Vazirani, U. V., and V. V. Vazirani. 1985. The
two-processor scheduling problem is in R-NC. In
Proceedings, 17th Annual Symposium on Theory
of Computing, pp. 11-21. New York: Association
for Computing Machinery.

• ELECTRICAL ENGINEERING
Adesida, I., E. Kratschmer, E. D. Wolf, A.
Muray, and M. Isaacson. 1985. Ion beam
lithography at nanometer dimensions. Journal of
Vacuum Science and Technology B3(l):45-49.

Berger, T., and J.-C. Huang. 1985. Delay analysis
of interval-searching contention resolution al-
gorithms. IEEE Transactions on Information
Theory IT-31:264-74.

Brown, A. S., S. C. Palmateer, G. W. Wicks, L.
F. Eastman, and A. R. Calawa. 1985. The
behavior of unintentional impurities in
Ga47ln53As grown by MBE. Journal of Elec-
tronic Materials 14(3):367-78.

Byrne, D. M., A. J. Brouns, F. C. Case, R. C.
Tiberio, B. L. Whitehead, and E. D. Wolf 1985.
Infrared mask filters fabricated by electron beam
lithography. Journal of Vacuum Science and
Technology B3(l):268-71.

Capani, P. M., S. D. Mukherjee, L. Rathbun, H.
T Griem, G. W Wicks, and L. F. Eastman. 1985.
The characterization of alloyed NiGeAuAgAu
ohmic contacts to the GalnAs/AlInAs hetero-
structure by Auger electron spectroscopy sputter
depth profiling. Paper read at Materials Research
Society Conference, 15-18 April 1985, in San
Francisco, CA.

Chan, K. T, L. D. Zhu, and J. M. Ballantyne. 5 2

53

1985. Growth of high quality GalnAs on InP
buffer layers by MOCVD. Applied Physics
Letters 47:44-48.

Chinn, J. D., and E. D. Wolf. (1984.) Character-
istics of reactive ion beam and ion assisted etching
using direct ion mass analysis and emission
spectroscopy. Paper read at 166th Electro-
chemical Society Meeting, 16 October 1984, in
New Orleans, LA.

. 1985. The role of reactive ions in ion-
beam assisted etching. Journal of Vacuum Science
and Technology B3(l):410-15.
Delchamps, D. F. 1985. New approaches to the
sensitivity analysis of feedback systems. In Pro-
ceedings, 19th Annual Conference on Information
Science and Systems, pp.476-82. Baltimore, MD:
The Johns Hopkins University Press.

Eastman, L. F. 1985a. Compound semiconductor
high speed electron devices. Paper read at Cornell
Electrical Engineering Centennial, 15 March 1985,
in Stanford, CA.

. 19856. Compound semiconductor mate-
rials growth and properties and compound
semiconductor microwave transistors. Invited
paper read at International Workshop on Digital
and Analog GaAs MMIC Devices and Appli-
cations, 28-31 May 1985, in Rome, Italy.

. 1985c. Device physics. Paper read at
conference, American Physical Society, 25-29
March 1985, in Baltimore, MD.

. 1985*/. Recent results in microelectronics
research at Cornell: A layman's view. Paper read
at alumni talk, 22 April 1985, in Rhinebeck, NY.

Erskine, D. J., C. L. Tang, and A. J. Taylor.
(1984.) Dynamic Burstein-Moss shift in GaAs and
GaAs/AlGaAs multiple quantum well structures.
Applied Physics Letters 45:1209-11.

Frey, J. 1985. Materials engineering for semi-
conductor devices. Paper read at Annual Meeting,
Electrochemical Society of Japan, 5 April 1985,
in Kofu, Japan.

Frey, J., and K. Bhasin. 1985. Microwave
integrated circuits, 2nd ed. Boston: Artech House.

Gharachorloo, N., and C. Pottle. 1985. Super
buffer: A systolic VLSI graphics engine for real
time raster image generation. In 1985 Chapel Hill
Conference on Very Large Scale Integration, ed.
H. Fuchs, pp. 285-305. Rockville, MD: Computer
Science Press.

Gosnell, T. R., A. J. Sievers, and C R. Pollock.
1985. Continuous wave operation of the KBnCN-
solid state vibration laser in the 5/xm region.
Optics Letters 10:125-27.

Guillen, M. A., and R. L. Liboff (1984.) Unified
kinetic theory of plasma correlations. Journal of
Plasma Physics 32(l):81-98.

Hagfors, T. 1985. The Arecibo observatory: Past
achievements and future prospects in the ex-

ploration of the ionosphere and the solar system.
Paper read at Electrical Engineering Centennial
Celebration, 17-18 April 1985, in St. Louis, MO.

It oh, T, T. Griem, G. W. Wicks, and L. F.
Eastman. 1985. Sheet electron concentration at
the hetero-interface Alo.48lno.52As/Gao.47Ino.53As
modulation doped structures. Electronics Letters
21(9):373-74.

Itoh, T, G. W. Wicks, and L. F. Eastman. 1985.
Progress toward InSb FET's on semi-insulating
substrates. Paper read at Workshop on Com-
pound Semiconductors for Microwave Materials
and Devices, 11-13 February 1985, in Fort
Lauderdale, FL.

Krusius, J. P. 1985a. Process integration for 1/4
micrometer MOS technologies. Invited paper
read at IEEE Electron Devices Section Meeting,
5 March 1985, in Rochester, NY.

. 19856. Toward gigabit logic with silicon.
Invited paper read at General Motors Research
Laboratories, 26 February 1985, in Warren, ML

Krusius, J. P., J. Nulman, and A. Per era. 1985.
Self-aligned dual surface lithography. Paper read
at 29th International Symposium on Electron,
Ion, and Photon Beams, 28-31 May 1985, in
Portland, OR.

Lee, T.-A., and C. Heegard. 1985. An inversion
technique for the design of binary convolutional
codes for the 1-DN channel. Paper read at 1985
Conference on Information Sciences and Systems,
27-29 March 1985, in Baltimore, MD.

Li, J. Z., I. Adesida, and E. D. Wolf. 1985. Profile
control for submicron structures in GaAs by
reactive ion etching using S1CI4. Journal of
Vacuum Science and Technology B3(l):406-09.

Liboff, R. L. (1984a.) An elementary deviation of
a group-theoretic property of many-particle spin
states. American Journal of Physics 52:561.

. (19846.) The correspondence principle
revisted. Physics Today 37:50-55.

. (1984c.) Criteria for physical domains in
laboratory and solid-state plasmas. Journal of
Applied Physics 56:3530-35.

. 1985a. Generalized Bogoliukov hypo-
thesis for dense fluids. Physical Review
31:1883-89.

. 19856. Geometrical properties of the
Fermi energy. Foundations of Physics 15:339-52.

. 1985c. Plasma domains in extrinsic GaAs
and InP. Journal of Physics and Chemistry of
Solids 46:103-05.

Luk, F. T. 1985a. On the minres method of factor
analysis. SI AM Journal on Scientific and
Statistical Computing 6:562-72.

. 19856. A parallel method for computing
the generalized singular value decomposition. In
Proceedings, 7th Symposium on Computer

Arithmetic, ed. K. Hwang, pp. 260-65. NY:
Institute of Electrical and Electronics Engineers.

Lunardi, L. M., P. M. Enquist, P. J. Tasker, and
L. F. Eastman. 1985. Microwave characteristics
of an (AlGa)As/GaAs heterojunction bopolar
transistor. Paper read at Workshop on Com-
pound Semiconductors for Microwave Materials
and Devices, 11-13 Februrary 1985, in Fort
Lauderdale, FL.

McCombe, B. D., B. V. Shanabrook, J. Comas,
J. Ralston, and G. Wicks. 1985. Binding of
shallow donor impurities in quantum-well
structures. Physical Review Letters 54(12): 1283-86.

Mukherjee, S. D., and D. W. Woodard. 1985.
Etching and surface preparation of GaAs for
device fabrication. New York: Wiley.

Nastasi, M., R. Fastow, J. Gyulai, / . W. Mayer,
S. J. Plimpton, and E. D. Wolf. (1984.) Ion
induced reactions in Fe/As bilayers by pulsed
beam ion irradiation and Xe implantation. Paper
read at 1984 Conference on Ion Beam Modi-
fication of Materials, 16-20 July 1984, at Cornell
University, Ithaca, NY.

Nulman, J., J. P. Krusius, and A. Gat. 1985.
Rapid thermal processing of thin gate dielectrics:
Oxidation of silicon. IEEE Electron Device
Utters EDL-6:205-07.

Pollock, C. R., J. F. Pinto, and L. W. St rat ton.
1985. Stable color center laser in K-doped NaCl
tunable from 1.41 to 1.76 fim. Paper read at
Optical Society of America Conference on
Tunable Solid State Lasers, 15-16 May 1985, in
Arlington, VA.

Rosker, M., and C. L. Tang. 1985. Widely tunable
optical parametric oscillator using urea. Journal
of the Optical Society of America B2:691-96.

Set hares, W. A., D. A. Lawrence, C. R. Johnson,
Jr., and R. R. Bitmead. 1985. On the existence of
unbounded parameters in adaptive identificaiton.
In Proceedings, 19th Conference on Information
Sciences and Systems, pp. 38-43. Baltimore, MD:
The Johns Hopkins University Press.

Sonek, G. J., and J. M. Ballantyne. (1984.)
Reactive ion etching of GaAs using BCI3. Journal
of Vacuum Science and Technology B2(4):653.

Tang, C. L. (1984.) Femtosecond solid state
measurements. Invited paper read at Annual
Meeting, Optical Society of America, November
1984, in San Diego, CA.

Tang, C. L., M. Rosker, and K. Cheng. 1985. A
broadly tunable urea optical parametric oscillator.
Invited paper read at Conference on Lasers and
Electro-Optics, 21-24 May 1985, in Baltimore,
MD.

Taylor, A. J., D. J. Erskine, and C. L. Tang.
1985. Ultrafast relaxation dynamics of photo-
excited carriers in GaAs and related compounds.
Journal of the Optical Society of America
B2:663-73.

von Lehmen, A., and / . M. Ballantyne. (1984.)
Picosecond luminescence measurements on fast
GaAs Schottky diodes under changing circuit
conditions. Applied Physics Letters 45:767-69.

. 1985. Investigation of the nonlinearity in
the luminescence of GaAs under high density
picosecond photoexcitation. Journal of Applied
Physics 58:958.

Welch, D. F, G. W. Wicks, and L. F. Eastman.
1985. Luminescence lineshape broadening mech-
anisms in GalnAs/AlInAs quantum wells.
Applied Physics Letters 46(10):991-93.

Wolf, E. D. (1984a.) Microfabrication research at
the National Submicron Facility. Invited papers
read at 31st National Symposium of the American
Vacuum Society, 4-7 December 1984, in Reno,
NV.

. (19846.) Microminiaturization: Fanning
the microelectronics revolution. 10th Annual
Mohler Lecture, 23 October 1984, at McPherson
College, McPherson, KS.

. 1985a. Chemistry and physics of micro-
structures fabrication. Invited lecture given at
Chemistry Colloquium Series, 21 February 1985,
at University of North Carolina, Chapel Hill, NC.

. 19856. Research at the National Sub-
micron Facility. Invited lecture, Distinguished
Speaker Series, Microelectronics Center of North
Carolina, 22 February 1985, in Raleigh, NC.

. 1985c. Submicron electronics. Invited
paper read at 1984-85 Grumman-University
Technology Forum, 11-12 February 1985, in
Bethpage, NY.

Wong, S., and W. Oldham. 1985. Anodic
nitridation of silicon and silicon dioxide. IEEE
Transactions on Electron Devices ED-32:978.

Zhu, L. D., K. T. Chan, D. K Wagner, and / . M.
Ballantyne. 1985. Photoluminescence study of the
growth of indium phosphide by MOCVD.
Journal of Applied Physics 57:5486.

Zhu, L. D., P. Sulewski, K. T. Chan, and J. M.
Ballantyne. 1985. 2DEG in Ino.53Gap.47As/InP
heterostructures grown by atmospheric pressure
MOCVD. Paper read at March Meeting,
American Physical Society, 25-29 March 1985, in
Baltimore, MD.

• GEOLOGICAL SCIENCES
Allegre, C. J., and D. L. Turcotte. 1985.
Geodynamic mixing in the mesosphere boundary
layer and the origin of oceanic islands. Geophysics
Research Letters 12:207-10.

Allmendinger, R. W., and T. E. Jordan. (1984.)
Mesozoic structure of the Newfoundland
Mountains, Utah: Horizontal shortening and
subsequent extension in the hinterland of the
Sevier belt. Bulletin of the Geological Society of
America 95:1280-92.

Arnow, J., K. D. Nelson, J. McBride, J. Oliver,
L. Brown, and S. Kaufman. 1985. Location and
character of the late Paleozoic suture beneath the
southeastern U.S. coastal plain: Evidence from
new COCORP profiling. Paper read at meeting
of American Geophysical Union, 27 May-1 June
1985, in Baltimore, MD. Abstract in £0566:358.

Bassett, W. A. 1985. High pressure-temperature
x-ray diffraction using synchrotron radiation.
Nuclear Instruments and Methods in Physics
Research BIO/11:309-12.

Bassett, W. A., M. D. Furnish, and E. Huang.
1985. Applications of synchrotron radiation in
high pressure-temperature mineralogy. In Solid
state physics under pressure, ed. S. Minomura,
pp.335-41. Tokyo: Terra Scientific.

Brown, L. D. 1985. Vertical crustal motion and
the North American vertical datum. In Pro-
ceedings, 3rd International Symposium on the
North American Vertical Datum, ed. D. B.
Zilkoski, pp. 207-16. Rockville, MD: National
Geodetic Survey.

Cimino, J. B., A. Bloom, J. Rabassa, and S. Wall.
1985. Multiple incidence angle SIR-B imagery of
the Chubut Province of southern Argentina.
Paper read at International Symposium on
Remote Sensing of Environment, 1-4 April 1985,
in San Francisco, CA.

Kay, R. W. 1985. Island arc processes relevant to
crustal and mantle evolution. Tectonophysics
112:1-15.

Kay, R. W., and S. M. Kay. 1985. Eclogite model
and primary magmas of the Aleutian arc. Paper
read at meeting of American Geopysical Union,
27 May-1 June 1985, in Baltimore, MD. Abstract
in EOS 66:422.

Kay, S., V. Maksaev, and C. Gordillo. 1985.
Middle-late Tertiary volcanism over a section of
the modern shallowly-dipping Andean Benioff
zone (29-32° S). Paper read at American Geo-
physical Union Meeting, 27 May-1 June 1985, in
Baltimore, MD. Abstract in EOS 66:422.

Klemperer, S., and L. Brown. 1985. Simulations
of noise rejection and mantissa-only recording:
An experiment in high-amplitude noise reduction
with COCORP data. Geophysics 50:709-14.

Klemperer, S. L., L. Brown, J. Oliver, C. Ando,
B. Czuchra, and S. Kaufman. 1985. Some results
of COCORP seismic reflection profiling in the
Grenville-age Adirondack Mountains, New York
State. Canadian Journal of Earth Sciences
22:141-53.

McBride, J., K. D. Nelson, J. Arnow, J. Oliver,
L. Brown, and S. Kaufman. 1985. New COCORP
profiling in the southeastern U.S. coastal plain:
Late Paleozoic suture and Mesozoic rift basin.
Paper read at meeting of American Geopysical
Union, 27 May-1 June 1985, in Baltimore, MD.
Abstract in EOS 66:358.

Nelson, K. D. 1985. Suture and rift basin evident

from new COCORP profiles on the southeastern
U.S. coastal plain. Paper read at Geological
Society of America, Penrose Conference, 27
May-3 June 1985, in Liscombe Mills, Nova
Scotia.

Nelson, K. D., T. F. Zhu, A. Gibbs, R. Harris, J.
Oliver, S. Kaufman, and L. Brown. (1984.)
COCORP deep seismic reflection profiling in the
northern Sierra Nevada Mountains, California.
Paper read at annual meeting, Geological Society
of America, 5-8 November 1984, in Reno, NV.

Ni, J., and M. Barazangi. 1985. Active tectonics
of the western Tethyan Himalaya above the
underthrusting Indian plate: The upper Sutlej
river basin as a pull-apart structure. Tectono-
physics 112:277-95.

Ockendon, J. R., A. B. Taylor, S. H. Emerman,
and D. Turcotte. 1985. Geodynamic thermal
runaway with melting. Journal of Fluid
Mechanics 152:301-14.

Schweller, W. J., P. H. Roth, D. E Karig, and S.
B. Bachman. (1984.) Sedimentation history and
biostratigraphy of ophiolite-related Tertiary
sediments, Luzon, Philippines. Geological Society
of America Bulletin 95:1333-42.

Taylor, F. W., C. Jouannic, and A. L. Bloom.
1985. Quaternary uplift of the Torres Islands,
northern New Hebrides frontal arc: Comparison
with Santo and Malekula Islands, central New
Hebrides frontal arc. Journal of Geology
93:419-38.

Turcotte, D. L. 1985. Fractals, fragmentation, and
a renormalization group determination of the
frequency-mass distribution of meteorites and
asteroids. Paper read at 16th Lunar and Planetary
Science Conference, 11-15 March 1985, in
Houston, TX.

Turcotte, D. L., and J. C. Pflugrath. 1985.
Thermal structure of the accreting earth. Journal
of Geophysical Research 90:C541-C544.

• MATERIALS SCIENCE
AND ENGINEERING

Ast, D. G. (1984.) a-Si: H FET-addressed LCD
panel. In Semiconductors and semimetals, vol.
21, pt. d, pp. 115-38. New York: Academic Press.

Baik, S., D. E. Fowler, J. M. Blakely, and R. Raj.
1985. Segregation of Mg to the (0001) surface of
doped sapphire. Journal of the American Ceramic
Society 68:281-86.

Baik, S., and R. Raj. 1985. Effect of silicon
activity on liquid phase sintering of nitrogen
ceramics. Journal of the American Ceramic
Society 78:124-26.

Barbour, J. C, F. W. Saris, M. Nastasi, and J.
W. Mayer. 1985. Amorphous Ni-Zr alloys as
barriers for self-diffusion. Physical Review B
32:1363-65. 5 4

Birecki, H., S. Naberhuis, T. Anthony, and D. G.
Ast. 1985. Magnetooptic quadrilayer reliability
and performance. In Optical mass data storage,
p. 19. Proceedings, Society of Photo-Optical
Instrumentation Engineers, vol. 529. Bellingham,
WA: SPIE.

Bordia, R. K, and R. Raj. 1985. Sintering
behavior of ceramic films constrained by a rigid
substrate. Journal of the American Ceramic
Society 68:287-92.

Brister, K. E, Y. H. Vohra, and A. L. Ruoff.
1985. High-pressure phase transition in CsCl at
V/Vo = .53. Physical Review B 31:4657-58.

Carter, C. B. (1984.) What's new in dislocation
dissociation. In Comptes rendus du colloque
international du CNRS dislocations: Structure de
coeur et proprieties physiques. Paris, France:
Editions du CNRS.

Chen, S. H, J. C. Barbour, L R. Zheng, C. B.
Carter, and J. W. Mayer. 1985. Structure analysis
of Ni-silicides formed in lateral diffusion couples.
In Proceedings, Materials Research Society
Symposia, vol. 37, pp. 635-40. Pittsburgh, PA:
MRS.

Chiang, S.-W., and D. L Kohlstedt. 1985. Load
relaxation studies in germanium. Journal of
Materials Science 20:736-55.

Christensen, T. M. 1985a. Annotated bibliography
of ellipsometry and optical properties of solids.
Materials Science Center Report no. 5615. Ithaca,
NY: Cornell Unversity.

. 19856. Annotated bibliography of metal
oxidation. Materials Science Center Report no.
5616. Ithaca, NY: Cornell University.

Cooper, R. F., and D. L. Kohlstedt. (1984a.)
Sintering of olivine and olivine-basalt aggregates.
Physics and Chemistry of Minerals 11:5-16.

. (19846.) Solution-precipitation creep in
olivine-basalt aggregates. Tectonophysics
107:207-33.
DeMott, G. J., and D. L Kohlstedt. 1985a. Sol-
gel synthesis of fayalite. Paper read at spring
meeting. American Chemical Society, 6-10 May
1985, in Cincinnati, OH.

. 19856. Surface modification of alumina
by sol-gel technique. Paper read at spring meeting,
American Chemical Society, 6-10 May 1985, in
Cincinnati, OH.

Dimos, D., D. L Kohlstedt, and H. Schmalzried.
1985. Kinetic demixing in a stress gradient. Paper
read at spring meeting, American Chemical
Society, 6-10 May 1985, in Cincinnati, OH.

Durham, W. B., and D. L Kohlstedt. (1984.)
Observations of shape change parameters in single
crystal olivine with application to dislocation
climb. Paper read at fall meeting, American
Geophysical Union, 2-8 December 1984, in San

55 Francisco, CA.

Galvin, G. L, J. W. Mayer, and P. S. Peercy.
1985. Solidification kinetics of pulsed laser melted
silicon based on thermodynamic considerations.
Applied Physics Letters 46:644-46.

Gleichmann, R., B. Cunningham, and D. G. Ast.
1985. Process-induced defects in solar cell silicon.
Journal of Applied Physics 58:223-29.

Gleichmann, R., J. P. Kalejs, and D. G. Ast. 1985.
EBIC evidence for carbon-based gettering in EFG
silicon. In Proceedings, Materials Research
Society Symposia, vol. 36, pp. 181-86. Pittsburgh,
PA: Materials Research Society.

Gleichmann, R., M. D. Vaudin, and D. G. Ast.
1985. Recovery of edge-defined film-fed grown
silicon: Dislocation/twin boundary interaction
and mechanisms for twin-induced grain boundary
formation. Philosophical Magazine A 51:449-67.

Green, P. F., P. J. Mills, C. J. Palmstrom, J. W.
Mayer, and E. J. Kramer. 1985. Ion beam analysis
of diffusion in polymer melts. In Electronic
packaging materials science, ed. E. A. Giess, K.-N.
Tu, and D. R. Uhlmann, pp. 265-70. Pittsburg,
PA: Materials Research Society.

Green, P. F., C. J. Palmstrom, J. W. Mayer, and
E. J. Kramer. 1985. Marker displacement
measurements of polymer-polymer interdiffusion.
Macromolecules 18:501-07.

Grubb, D. T. (1984a.) On shrinkage and
molecular extension. Journal of Materials Science
Letters 3:499-502.

. (19846.) Radiation damage of organic
materials in the transmission electron microscope.
Ultramicroscopy 12:279-80.

Grubb, D. T., and /. J.-H. Liu. (1984.) Real time
small-angle x-ray scattering during annealing of
polymer single crystals. Journal of Polymer
Science 22:367-78.

Hannula, S.-P., D. Stone, and C.-Y. Li. 1985.
The use of indentation techniques in evaluating
mechanical properties of thin film metallizations.
In Proceedings, 35th Electronic Components
Conference, p. 424. New York: Institute of
Electrical and Electronics Engineers.

Herschitz, R., and D. N. Seidman. 1985.
Radiation-induced precipitation in fast-neutron
irradiated tungsten-rhenium alloys: An atom-
probe field-ion microscope study. Nuclear
Instruments and Methods in Physics Research
B718:137-42.

Huang, T.-L, and A. L Ruoff 1985. High-
pressure-induced phase transitions of mercury
chalcogenides. Physical Review B 31:5976-83.

Hung, L. S., and J. W. Mayer. 1985. Marker
experiments in growth studies of Ni^Si, Pd2Si,
and CrSi2 formed by thermal annealing and by
ion mixing. Journal of Applied Physics
58:1527-36.

Kavanagh, K, S. H. Chen, C. Palmstrom, C. B.
Carter, and S. D. Mukherjee. (1984.) RBS and

TEM analysis of Ta silicides of GaAs. In
Proceedings, Materials Research Society Sym-
posia, vol. 25, pp. 143-48. Pittsburgh, PA: MRS.

Kohlstedt, D. L 1985a. Electron diffraction and
weak-beam electron micrscopy. Invited paper
read at Mineralogical Association of Canada 1985
Short Course on Applications of Electron
Microscopy in the Earth Sciences, 12-14 May
1985, in Fredericton, New Brunswick, Canada.

. 19856. Structure and rheology of partially
molten rocks. Invited seminar given at Conference
on Melt and the Mantle, 29-30 April 1985, at
Woods Hole Oceanographic Institute, Woods
Hole, MA.

Kohlstedt, D. L, and R. F Cooper. (1984.)
Rheology and structure of olivine-basalt partial
melts. Invited seminar given at U.S.-Japan Joint
Seminar on Partial Melting, 4-8 September 1984,
in Eugene, OR.

. 1985. Flow of olivine-basalt partial melts.
Invited paper read at spring meeting, American
Geophysical Union, 27-31 May 1985, in Bal-
timore, MD.
Kohlstedt, D. L, and D. L Ricoult. (1984.)
High-temperature creep of silicate olivines. In
Deformation of ceramic materials: II, ed. R. Radt
and R. Tressler, pp. 251-80. New York: Plenum.

Kramer, E. J. 1985. Polymer-polymer inter-
diffusion. In Electronic packaging materials
science, ed. E. A. Giess, K.-N. Tu, and D. R.
Uhlmann, pp. 227-37. Pittsburgh, PA: Materials
Research Society.

Kuester, K.-H., B. C. De Cooman, and C. B.
Carter. 1985. Dislocation motion in GaAs and
AlGaAs/GaAs devices. In Proceedings, 13th
International Conference on Defects in Semi-
conductors, ed. L. C. Kimerling and J. M. Parsey,
pp. 351-57. New York: American Institute of
Mining, Metallurgical and Petroleum Engineers.

Kuo, C. C, S. L. Phoenix, and E. J. Kramer.
1985. Geometrically necessary entanglement loss
during crazing of polymers. Journal of Materials
Science Letters 4:459-62.

List, F. A., and J. M. Blakely. 1985. Kinetics of
CO formation on singular and stepped Ni
surfaces. Surface Science 152/153:463-70.

Mackwell, S. J., D. L. Kohlstedt, and M. S.
Paterson. 1985. Water weakening of olivine single
crystals. Paper read at spring meeting, American
Geophysical Union, 27-31 May 1985, in
Baltimore, MD.

Milkove, K. R. 1985. Theoretical consideration
of the Volmer-Weber growth mechanism for thin
epitaxial films. In Proceedings, Materials
Research Society Symposia, vol. 37, pp. 89-98.
Pittsburgh, PA: MRS.

Milkove, K. R., P. A. Lamarre, F. Schmuckle,
M. D. Vaudin, and 5. L. Sass. 1985. Diffraction
studies of the atomic structure of grain boundar-

ies. In Proceedings, Materials Research Society
Symposia, vol. 41, 195-206. Pittsburgh, PA:
MRS.

Milkove, K. R., and S. L. Sass. 1985. Exper-
imental observations on the growth of epitaxial
films by the Volmer-Weber mechanism. In
Proceedings, Materials Research Society Sym-
posia, vol. 37, pp. 83-88. Pittsburgh, PA: MRS.

Morel, D. E, and D. T. Grubb. (1984a.) Craze
behavior in isotactic polystyrene: 1. Craze-
spherulite interaction. Polymer 25:417-29.

. (19846.) Staining of melt crystallized
isotactic polystyrene by RUO4. Polymer Com-
munications 25:68-71.

Morrisey, K. J., and C. B. Carter. 1985.
Characterization of grain boundaries in alumina.
In Advances in materials characterization: II, ed.
R. L Snyder, R. A. Condrate, and P. F. Johnson,
pp. 179-87. New York: Plenum.

Morrissey, K. J., K. K. Czanderna, R. P. Merrill,
and C. B. Carter. (1984.) Analysis of transition
alumina structures using HRTEM. In Pro-
ceedings, 42nd Annual Meeting, Electron Micro-
scopy Society of America, pp. 648-49. McLean,
VA. EMSA.

Nastasi, M., L. S. Hung, H. H. Johnson, and J.
W. Mayer. 1985. Phase transformation of N12AI3
to NiAl: I. Ion irradiation induced. Journal of
Applied Physics 57:1050-54.

Palmstrom, C. J., and D. V. Morgan. 1985.
Metallization for GaAs devices and circuits. In
Gallium arsenide, ed. M. J. Howes and D. V.
Morgan, pp. 195-261. New York: Wiley.

Quinn, C. J., and D. L Kohlstedt. (1984a.)
Reactive processing of titanium carbide with
titanium: I. Liquid phase sintering. Journal of
Materials Science 19:1229-41.

. (19846.) Reactive processing of titanium
carbide with titanium: II. Solid-state hot pressing.
Journal of Materials Science 19:1242-50.

. (1984c.) The solid-state reaction between
titanium carbide and titanium. Journal of the
American Ceramic Society 67:305-10.

Raj, R., and F. F. Lange. 1985. On the retention
of equiaxed grain structure after superplastic and
other forms of high temperature deformation.
Ada Metallurgica 33:699-703.

Ricoult, D. L, and D. L Kohlstedt. (1984.) Effect
of chemical environment on high-temperature
creep of olivine. Paper read at IOth Annual
Meeting, European Geophysical Society, 30
July-3 August 1984, in Louvain-la-Neuve,
Belgium.

Saris, F. W., L. S. Hung, M. Nastasi, J. W.
Mayer, and B. Whitehead. 1985. Failure tem-
perature of amorphous Cu-Ta alloys as diffusion
barriers in Al-Si contacts. Applied Physics Letters
46:646-48.

Rathbun, B. C. De Cooman, and C. B. Carter.
1985. The effect of doping on the interface
between GaAs and AlGaAs. In Proceedings,
Materials Research Society Symposia, vol. 37, pp.
15-21. Pittsburgh, PA: MRS.

Sickafus, K, and S. L. Sass. 1985. Grain
boundary structural transformations induced by
solute segregation. In Proceedings, Materials
Research Society Symposia, vol. 41, pp. 207-12.
Pittsburgh, PA: MRS.

Skrotski, W., H. Wendt, C. B. Carter, and D. L.
Kohlstedt. (1984a.) Structural changes of a 2 = 51
tilt boundary in Ge during high-temperature
creep. Paper read at fall meeting, Materials
Research Society, November 1984, in Boston,
MA.

. (19846.) Structure and dissociation of a
15° <110> tilt boundary in Ge. In Proceedings,
Materials Research Society Symposium, vol. 25,
pp. 299-304. Pittsburgh, PA: MRS.

Stone, D., S.-P. Hannula, and C.-Y. Li. 1985.
The effects of service and material variables on
the fatigue behavior of solder joints during the
thermal cycle. In Proceedings, 35th Electronic
Components Conference, p. 46. New York:
Institute of Electrical and Electronics Engineers.

Vaudin, M. D., F. Schmuckle, P. A. Lamarre,
and S. L. Sass. 1985. Analysis of the structure of
grain boundaries normal to the boundary plane
using diffraction techniques. In Proceedings,
Materials Research Society Symposia, vol. 41, pp.
221-26. Pittsburgh, PA: MRS.

Vohra, Y. K, S. J. Duclos, and A. L Ruoff.
1985a. Instability of the CsCl structure in ionic
solids at high pressures. Physical Review Letters
54:570-73.

. 19856. The Madelung constant for the
tetragonal distortion of the CsCl lattice. Journal
of Physics and Chemistry of Solids 46:515-17.

Whetten, T. J., and A. L Ruoff. 1985. Segregation
of copper in aluminum-copper alloys during ion
beam etching. Nuclear Instruments and Methods
in Physics Research B7:836-39.

Widom, E, M. S. Weathers, W. A. Bassett, D. L
Kohlstedt, and A. F. Anderson. (1984.) Micro-
analysis of glass inclusions in grain boundaries of
Kilauea olivine aggregates. Paper read at fall
meeting, American Geophysical Union, 2-8
December 1984, in San Francisco, CA.

Wolf ens tine, J., D. Dimos, and D. L. Kohlstedt.
1985. Kinetic decomposition of Ni2SiO4. Paper
read at spring meeting, American Chemical
Society, 6-10 May 1985, in Cincinnati, OH.

Yamada, I., C. J. Palmstrom, E. Kennedy, J. W.
Mayer, H. Inokawa, and T. Takagi. 1985. Epitaxy
of aluminum films on semiconductors by ionized
cluster beam. In Layered structures, epitaxy and
interfaces, ed. J. M. Gibson and L. R. Dawson,
pp. 3-21. Boston: D. Reidel.

Schaff, W. J., P. A. Maki, L F. Eastman, L Yang, A. C.-M., and E. J. Kramer. 1985. Craze

fibril structure and coalescence by low angle
electron diffraction. Journal of Polymer Science
23:1353-67.

Zheng, L. R., L S. Hung, and J. W. Mayer. 1985.
Redistribution of dopant arsenic during silicide
formation. Journal of Applied Physics 58:1505-14.

• MECHANICAL AND
AEROSPACE ENGINEERING

Auer, P. L, M. Alonso, and J. Barkenbus. 1985.
Prospects for commercial nuclear power and
proliferation. In The nuclear connection, ed. A.
Weinberg, M. Alonso, and J. N. Barkenbus, pp.
19-47. New York: Paragon House.

Dawson, P. R. (1984.) A model for the hot or
warm working of metals with special use of
deformation mechanism maps. International
Journal of Mechanical Sciences 26(4):227-44.

Dawson, P. R., J. Lipkin, and H. S. Lauson.
1985. A state variable model for volumetric creep
of clays. ASCE Journal of Engineering Mechanics
111(1):42-61.

Dewhurst, T. B., and P. R. Dawson. (1984.)
Analysis of large plastic deformations at elevated
temperatures using state variable constitutive
models. In Constitutive equations: Micro, macro
and computational aspects, pp. 149-64. Pro-
ceedings, annual winter meeting, American
Society of Mechanical Engineers. New York:
ASME.

Ettestadt, D., and J. L. Lumley. (1984.)
Parameterization of turbulent transport in
swirling flows: I. Theoretical considerations. In
Turbulent shear flows: 4, ed. L. J. S. Bradbury,
F. Durst, B. E. Launder, F. W. Schmidt, and J.
H. Whitelaw, pp. 87-101. Berlin: Springer-Verlag.

Gates, R. S.t N. R. Scott, R. E. Pitt, and D. L.
Bartel. (1984.) Biomechanics of teat/liner inter-
actions. Paper no. 84-3535, read at annual winter
meeting, American Society of Agricultural
Engineers, 11-14 December 1984, in New Orleans,
LA.

George, A. R., and S.-T. Chou. 1985a. A
comparative study of tail rotor noise mechanisms.
Paper read at 41st Annual Forum, American
Helicopter Society, 15-17 May 1985, in Fort
Worth, TX.

. 19856. Broadband noise of propellers and
rotors. In Proceedings, NOISE-CON 85, pp.
461-68. New York: The Noise Control
Foundation.

Gouldin, F. C, J. S. Depsky, and S.-L. Lee. 1985.
Velocity field characteristics of a swirling flow
combustor. AIAA Journal 23:95-102.

Hollis, P., and D. Taylor. (1984.) Hopf
bifurcation in multi-degree-of-freedom systems
using MACSYMA. In Proceedings of MACSYMA
Users* Conference, pp. 169-85. Cambridge, MA:
MIT Laboratory for Computer Science. 5 6

Kwon, T. H, D. Chu, and K. K. Wang. 1985.
Pressure loss prediction in a runner-gate-cavity
system including juncture loss. In Proceedings,
ANTEC '85, pp. 809-13. Society of Plastics
Engineers Technical Papers, vol. 31. Stamford,
CT:SPE.

Kwon, T. H, and S. F. Shen. (1984.) Application
of recently proposed constitutive model for
polymeric liquids to stress relaxations after
various shear-deformation histories. In Pro-
ceedings, 9th International Congress on Rheology,
ed. B. Mena, A. Garcia-Rejon and C. Rangel-
Nafaile, vol. 2, pp. 347-54. Mexico: Universidad
Nacional Aut6noma de Mexico.

Leibovich, S. 1985. Dynamics of Langmuir
circulations in a stratified ocean. In The ocean
surface, ed. Y. Toba and H. Mitsuyasu, pp.
457-64. Dordrecht, Netherlands: Reidel.

Leibovich, S., and S. Lele. 1985. The influence of
the horizontal component of Earth's angular
velocity on the instability of the Ekman layer.
Journal of Fluid Mechanics 150:41-87.

Leu, M. C. (1984.) Solid geometric modeling
towards robot intelligence. In NSF study on
supercomputers in mechanical systems research,
pp. MSXVIIM-MSXVIII-4. Livermore, CA:
Lawrence Livermore National Laboratory.

Leu, M. C, and M. Jirapongphan. 1985.
Modeling and analysis of flow-induced vibrations
in circular saws. Journal of Vibration, Acoustics,
Stress, and Reliability in Design 107:196-202.

Leu, M. C, and R. Mahajan. (1984.) Computer
graphic simulation of robot kinematics and
dynamics. In Proceedings, Robots 8 Conference,
pp. 4.80-4.101. Dearborn, MI: Society of Manu-
facturing Engineers.

Leu, M. C, and S. H. Park. (1984.) Application
of PADL-2 solid modeler to robot simulation. In
Proceedings, 3rd Canadian CAD/CAM and
Robotics Conference, pp. 10.13-10.19. Ancaster,
Ontario: Canadian Institute of Metalworking.

Lin, G. C. I., and M. C. Leu. (1984.) The role of
dynamic computer graphics simulation in the use
of robots. Paper read at National Conference and
Exhibition on Robotics, 20-24 August 1984, in
Melbourne, Australia.

Lumley, J. L, and I. Van Cruyningen. 1985.
Limitations of second order modeling of passive
scalar diffusion. In Frontiers in fluid mechanics,
ed. S. H. David and J. L. Lumley, pp. 199-218.
Berlin: Springer-Verlag.

Moore, F. K., and E. M. Greitzer. 1985. A theory
of post-stall transients in axial compression
systems: I. Development of equations; II.
Application. Papers 85-GT-171 and 85-GT-172
read at 30th International Gas Turbine Con-
ference and Exhibit, American Society of
Mechanical Engineers, 18-21 March 1985, in
Houston, TX.

Calculation of transonic potential flow past wing-
tail-fuselage configurations using the multi-grid
method. In Proceedings, 9th International
Conference on Numerical Methods in Fluid
Dynamics, pp. 508-13. Lecture notes in physics,
vol. 218. Berlin: Springer-Verlag.

Tseng, H. C, C. A. Hieber, K. K. Wang, H. H.
Chiang, and G. E. Grant. 1985. Analysis of
rheological data from an automated-injection-
molding capillary rheometer. In Proceedings,
ANTEC 85, pp. 716-19. Society of Plastics
Engineers technical papers, vol. 31. Stamford, CT:
SPE.

Wang, V. W., C. A. Hieber, and K. K. Wang.
1985. An interactive simulation of cavity filling in
injection molding with color graphics. In
Proceedings of ANTEC 85, pp. 826-29. Society
of Plastics Engineers technical papers, vol. 31.
Stamford, CT: SPE.
Wright, T. M., and D. L. Bartel. (1984.) Surface
damage in polyethylene total knee components.
In Advances in bioengineering, pp. 102-03. New
York: American Society of Mechanical Engineers.

• OPERATIONS RESEARCH AND
INDUSTRIAL ENGINEERING

Avram, F., and M. S. Taqqu. 1985. Generalized
powers of strongly dependent random variables.
In Seminar notes on multiple stochastic inte-
gration, polynomial chaos and their applications,
ed. W. A. Woyczynski. Cleveland, OH: Case
Western Reserve University.

Bechhofer, R. E. and A. C. Tamhane. 1985.
Tables of admissible and optimal balanced
treatment incomplete block designs. Selected
tables in mathematical statistics 8:41-139.

Bechhofer, R. E., and D. M. Goldsman. 1985a.
On the Ramey-Alam seqeuntial procedure for
selecting the multinomial event which has the
largest probability. Communications in Statis-
tics—Simulation and Computation 14(2):263-82.

. 19856. Truncation of the Bechhofer-
Kiefer-Sobel sequential procedure for selecting
the multinomial event which has the largest
probability. Communications in Statistics—
Simulation and Computation 14(2):283-315.

Boudouris, J., and B. W. Turnbull 1985. Shock
probation in Iowa. Journal of Offender Coun-
seling, Services, and Rehabilitation 9:53-67.

Fox, R., and M. S. Taqqu. 1985. Non-central
limit theorems for quadratic forms in random
variables having long-range dependence. Annals
of Probability 13:428-46.

Jackson, P. L. (1984.) Debt vs. equity in a simple
model with transaction costs: I. Form of the
optimal policy. Operations Research Letters
3(5):251-56.

57 Shmilovich, A., and D. A. Caughey. 1985. Jackson, P. L, W. L. Maxwell, and J. A.

Muckstadt. 1985. The joint replenishment pro-
blem with a powers-of-two restriction. HE
Transactions 17(l):25-32.

Prabhu, N. U. (1984.) Wiener-Hopf factorization
of Markov semigroups: I. The countable state
space case. In Proceedings, 7th Conference on
Probability Theory, ed. M. Iosifescu, pp. 315-24.
Bucharest: Editura Academiei Republicii Social-
iste Romania.

Prabhu, N. U., and P. K. Reeser. 1985. A random
family of queuing systems with a dynamic priority
discipline. Mathematics of Operations Research
10:24-32.

Taqqu, M. S. 1985. Orthogonal processes. In
Encyclopedia of statistical sciences, ed. S. Kotz
and N. Johnson, pp. 536-37. New York: Wiley.

Taqqu, M. S., and C. Czado. 1985. A survey of
functional laws of the integrated logarithm for
self-similar processes. Stochastic models 1:77-155.

Taqqu, M. S., and Fox, R. 1985. Non-central
limit theorems for quadratic forms in random
variables having long-range dependence. Annals
of Probability 13:428-46.

Todd, M. J. 1985. "Fat" triangulations, or solving
certain non-convex matrix optimization problems.
Mathematical Programming 31:123-36.

Weiss, L. 1985. Tests of independence of
continuous random variables which guard against
special alternatives. Naval Research Logistics
Quarterly 32:337-46.

• THEORETICAL AND
APPLIED MECHANICS

Burns, J. A. (1984.) Planetary rings. In Advances
in space research, vol. 4, ed. G. Morfill, C. T.
Russell, and M. S. Hanner, pp. 121-34. London:
Pergamon.

Chandra, A., and S. Mukherjee. (1984.) A finite
element analysis of metal forming processes with
thermomechanical coupling. International Jour-
nal of Mechanical Sciences 26:661-76.

Hart, E. W., and Y.-W. Chang. 1985. Material
rotation effects in tension-torsion testing: Exper-
imental results. In Plasticity today: Modelling,
methods, and applications, ed. A. Sawczuk and
G. Bianchi, pp. 235-46. New York: Elsevier.

Holmes, P. J. 1985a. Dynamics of a nonlinear
oscillator with feedback control: I. Local analysis.
A SME Journal of Dynamic Systems, Measure-
ment and Control 107:159-65.

. 19856. Review of The Lorenz equations:
Bifurcations, chaos, and strange attractors, by C.
Sparrow. SI A M Review 27:106-10.

Schaffer, L, and J. A. Burns. (1984.) Dust motion
in Jupiter's tilted magnetic field. In Advances in
space research, vol. 4, ed. G. Morfill, C. T.
Russell, and M. S. Hanner, pp. 107-10. London:
Pergamon.

LETTERS

The Rise of Research

Editor: Julian C. Smith ["The Rise of
Research: Fifty Years of Change in Cornell's
Engineering Program" in the Summer 1985
issue of the Quarterly] should realize that
students in the 1930s were unaware of the
"decline in reputation" of the College. They
were acutely aware, however, that "the
College was overwhelmingly a teaching
institution, with emphasis on training young
men for careers in the rough-and-ready
world of professional engineering practice."

The College of Engineering in the 1930s
was certainly not worse off than other
prominent schools. In those early post-
depression years, we students were fortunate
to be at Cornell and worked hard to prepare
for the "rough-and-ready" practice of
engineering. I was proud to receive at
graduation in 1935 a civil engineering degree
(not a B.S. in C.E.) in recognition of the
caliber of the curriculum at that time. Our
reputation then, as perhaps now, as a top
College of Engineering was freely acknow-
ledged by our peers in professional en-
gineering practice.

As for our teaching faculty in the 1930s,
Professor Smith makes it abundantly clear
that our academic work was practical in
orientation, taught by professors and
assistant professors without Ph.D.s, who did
little research and published even less....We

alumni remember them fondly and, over the
years, have appreciated more and more what
they did to provide us with a first-class
engineering education. [Professor Smith
should keep this in mind while] raising so
high the banner for research and plotting on
probability paper the percent of professors
with Ph.D.s.

Just four years before Hitler's invasion of
Poland, the engineering graduates in 1935
were unknowingly being trained to serve our
country in World War II. Those who
survived performed outstandingly in the
years following, improving the welfare of
mankind....Today's College of Engineering
will do well to...graduate students as well
prepared to tackle the real world of
engineering.
Haywood G. Dewey, Jr. '35
Sacramento, California

Reply from Julian C. Smith: In preparing
my article, I tried to chronicle the changes
that have occurred in the College of
Engineering over the past fifty years, es-
pecially in attitudes toward research, but to
avoid value judgements as much as I could.
Certainly there was no intention of giving
an uncharitable picture of the faculty and
students of the 1930s. I was a Cornell
student then myself, and I also was not
aware of the long period of decline in the

College between 1910 and 1935. I too
admired the many distinguished faculty
members and felt the training I received was
excellent preparation for my work in
industry during World War II. And now, in
my fortieth year of teaching at Cornell, I
wouldn't say that our current engineering
students are any smarter or better prepared
for engineering practice than they were in
those days.

But engineering practice is different, and
the subject matter is different, and the
faculty's attitude toward research and
publication is very different. About a third
of our engineering students are graduate
students; about a third are women. Research
is big business in the College. The history of
these changes, and their underlying causes,
were the subjects of my article. I tried to
report them accurately, not to judge them.

As to the plot of the percentage of
doctor's degrees in the engineering faculty, I
found it amusing and rather surprising that
it made such a good straight line on
probability paper—almost as if some ex-
ternal force were driving the percentage
upward. Is it good that almost all the faculty
members—96.3 percent—now have doctor's
degrees? I don't know. I don't have one
myself—my degree is Chemical Engineer. A
doctorate doesn't necessarily make a good
engineer, or make him or her unfit for
engineering practice, but it is absolutely
essential to getting a teaching position in
any leading engineering college. That's just
the way things are these days.

The Fear of Pollutants

Editor: Professor Neil Orloffs Commentary
in the Summer 1985 issue, "Is the Fear of
Pollutants Overemphasized in Our Society?"
focuses on people's perceptions of risks. He
states that in the U.S. one of our greatest
fears is of toxic chemicals (although there
are greater risks of mortality from other
sources such as car accidents and mountain
climbing), and points out that people's focus 58

"reflects their view of moral and immoral
conduct" and that dangers perceived "are
exaggerated or minimized according to the
social acceptability of the underlying
activities." He then suggests three reasons
why there is such widespread concern about
chemicals: (1) the presence of chemicals in,
for example, foods, provides a simple and
plausible explanation for development of a
dreaded disease such as cancer—and thus
absolves the individual from responsibility;
(2) it is simpler and [perversely?] more
reassuring to blame man-made chemicals
rather than nature; and (3) a focus on
chemicals provides an outlet for anti-
business attitudes, such as the "power and
perceived indifference of large corpora-
tions." Dr. Orloff believes that because
[regulatory?] "officials have failed to con-
sider the[se] cultural factors underlying
people's fear of chemicals", they could not
possibly have properly approached environ-
mental controversies, since all they have to
offer the fearful public is generalized risk
statements about, for example, only a one-
in-a-million chance of cancer (a small risk).

Dr. Orloff short-changes his readers by
failing to offer any evidence supporting such
colorful suggestions as being the basis of
widespread public concern and by neglecting
at least two other relevant aspects of the
discussion. First, he ignores what I and
many others believe to be one of the most
important characteristics of risk perception:
its "voluntariness" (that is, is the risk
assumed voluntarily, or is it imposed on
one?). Second, his article omits any real
consideration of the "track record" of toxic
chemicals and "high tech"—for example,
how often and how repeatedly we have been
unpleasantly suprised, not only by a well-
known chemical pesticide like DDT, but
also by such practices as the formerly
routine x-raying of children's feet to see how
their shoes fit, or the routine use of food
additives such as dyes, which were once
"generally regarded as safe" (GRAS) and

59 used without adequate testing.

I'm not at all sure (as one can infer Dr.
Orloff to be) that an individual would refuse
to take responsibility for his chemical-
demanding/chemical-based lifestyle—if he
knew about it. But there is no indication at
the federal administratiave level or national
industry level of any interest in helping the
consumer make educated, informed choices.
In fact, there is no indication of any attempt
to view things from the consumer's point of
view at all—for example, to require com-
prehensive food and beverage and material
labeling; to point out what is known and
not known; to support the Delaney clause;
to forbid overseas sale of products banned
in the U.S.—in other words, to undertake
honest public education and to demonstrate
that the consumer should believe what
regulatory agencies, government, and busi-
ness tell him about risk. These major players
on the scene have lost the trust of the lay
person and must earn it back. There is no
simple prescription for this—except to re-
member that actions speak louder than
words.

Thus, it is not so much that people are
irrational to fear something they are told
has a low level or risk as they are wise to
have learned from history that such state-
ments have been wrong before. That
historical "knowledge" is reflected in their
attitudes toward accepting involuntary risk,
whether chemical, nuclear, or otherwise.
Dooley Kiefer, A.B. '57
Ithaca, New York

Architectural History

Editor: I recognize that the future direction
of the College is more important than the
real-estate history; however, I wish to offer
corrections to several captions accompany-
ing Kermit C. Parson's article on the history
of the engineering facilities at Cornell. This
appeared in the summer 1985 issue,
"Building for a New Era."

On page 20, the caption for a 1936 aerial
photograph of the main Cornell campus

indicates that the only building on the site
of the present engineering quadrangle was
an armory and gymnasium. Actually, the
site was occupied by faculty residences from
the location of Kimball-Thurston through
the locations of Upson and Phillips. These
faculty residences are readily visible in the
oblique aerial view. Also, Kappa Alpha is
barely visible over the roof of Myron
Taylor. The 1948 proposal on page 21
indicates Kappa Alpha as K.A.

Faculty residences, and the armory and
gymnasium are mentioned in the page 14
caption pertaining to the 1902 proposal
shown on page 15. However, there are two
other buildings on the map. The building
southwest of the armory is Kappa Alpha.
The building southeast of the armory is a
former central heating plant. The armory
and gymnasium, which are the same
building, stood until 1956; the projection to
the south enclosed a swimming pool. Kappa
Alpha was occupied at this location at least
until 1957.
Richard P. Spiro, BCE '59
Bronx, New York

Editor's Note: Another error in the Summer
issue (on page 25) is a misspelling of the
name of the architect for Snee Hall. He is
Mario L. Schack, who was then in the
Washington office of Perkins & Will. Before
joining that firm, Schack was chairman of
Cornell's architecture department, and he
has now returned to the University as a
professor of architecture in the College of
Architecture, Art, and Planning.

K. C. Parsons: I've just read your "Building
for Engineering at Cornell" in the Quarterly.
It's a fine history, and of interest to college
and university planners generally. Also, the
P&W staff will enjoy seeing the good
coverage of Snee Hall.
Bill Brubaker, Senior Partner
Perkins & Will
Chicago, Illinois

An Editor's Testimonial

Computer science affects the working methods of practically everyone these days,
and we are no exception. The ways in which publications are written, edited, and
produced have changed dramatically in the past few years. We are always glad to
tell about what has been happening to Engineering: Cornell Quarterly and other
College publications, and this issue on computer science provides a good
opportunity.

As recently as the beginning of 1982, the Quarterly was edited in the red-pencil
mode, with instructions for typesetting written in the margins of the copy. Proofs
were received in long galleys, corrections were written in, and the galleys were
returned to the typesetter along with a dummy layout. Next the printer prepared a
mechanical, which was photographed to make plates for the actual printing. All this
took about two months from the time the copy was ready.

The first change in our office was the introduction of a word processor, which
facilitated writing and editing. (We also use it to maintain our subscription files and
to print mailing labels.) Then, using a modem, we began to transmit copy over the
telephone lines to our printer in Massachusetts; carefully-worked-out codes replaced
hand-written "specs" and the copy was set automatically without having to be
retyped. For the issue before this one, we began to use a local typesetter who could
supply proofs the next day, and to prepare the mechanicals ourselves. Small changes
could be taken care of right away, simply by transmitting a few new lines and
pasting in the resulting patches on the mechanical. Weeks of "turn-around" time
were saved and production costs were reduced by about $10,000 a year.

We began editing in the days when type was set in lead on huge clanking Linotype
machines. Innovations in printing techniques changed that and much more, but
until quite recently, editors still worked with the traditional sequence of typed copy,
galley proofs, page proofs, and bluelines. Now computer science and its sister
disciplines provide new tools almost faster than we can keep up with them. For
instance, in the article in this issue by Tim Teitelbaum and Thomas Reps, we read
about a WYSIWYG system that eliminates visible coding from word-processor
output so that What You See Is What You Get; with this system, we would be able
to code manuscripts as we input them and still be able to print out readable copies
for authors' approval. With improved interfacing, we could eliminate some retyping
by copying an author's diskette and making editing changes directly on it. Maybe
some day soon we can simplify mechanical preparation by formatting right on the
screen.

Computerized publication doesn't improve content, of course, but it enables an
editor to be more productive and decrease costs. Here's a vote of confidence for
computer technology from a happy user.—GMcC

•a t

•if
it

ENGINEERING
Cornell Quarterly

Published by the College of Engineering,
Cornell University

Editor: Gladys McConkey

Associate Editor: David Price

Editorial Assistant: Lindy Costello

Graphic Art Work: Francis Russell

Typesetting: Davis Graphic Services
Lansing, New York

Printing: Davis Press, Inc.
Worcester, Massachusetts

Photography credits:

Jon Reis: 1 (top), 44 (top), 47 (left), 48, 49 (right)
David Ruether: inside front cover, 1 (except top),

10, 11, 17, 22, 32,40,43,45,47 (right), 49 (left)

Please address any correspondence, including
noti f icat ion of change of address, to
ENGINEERING: Cornell Quarterly, Carpenter
Hall, Ithaca, New York 14853-2201. 60

	VOLUME 20 NUMBER 2 AUTUMN 1985 TWENTY YEARS OF COMPUTER SCIENCE
	IN THIS ISSUE
	TWENTY YEARS OF COMPUTER SCIENCE AT CORNELL
	IMMEDIATE COMPUTATION Or How to Keep a Personal Computer Busy
	REACHING AGREEMENT A Fundamental Task— Even in Distributed Computer Systems
	PROGRAMMING METHODOLOGY Making a Science Out of an Art
	ROBOTICS AND COMPUTER SCIENCE
	COMPUTER ARCHITECTURE The Software-Hardware Interface
	SETTING AN EXAMPLE Administrative Computing in Cornell's Department of Computer Science
	VANTAGE
	REGISTER
	FACULTY PUBLICATIONS
	LETTERS
	An Editor's Testimonial

