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.RESEARCH ON A l'{E.'\'/71([ND OF HAGIC SQ,UARE 

BU-4®5-M January, 1972 

1. A very curious question which has taxed the wisdom of many people for 

same time led me to make the following investigation which seems to open a new 

Field of Analysis and in particular of the theory of combinations. This question 

concerns a group of 36 officers 1 of six different ranks and dra'\m from six differ-

ent regiments, whom it was a question of arranging in a square in such a way that 

on each line, horizontal as well as vertical, there would be found six officers 

different from each other in both raru~ and regiment. However, in spite of the 

trouble taken to resolve this problem, one is obliged to admit that such an 

arrangement is absolutely impossible, although one is not able to give a rigorous 

proof. 

2. To explain more clearly the question mentioned, I ·will mark the six 

different regiments by the Latin letters 

a, b 1 c 1 d, e, f 1 

and the six different grades by the Greek letters 

and it is clear that the characteristics of each officer are determined by two 

letters, one Latin and the other Greek, of which the first indicated his regiment 

and the other his raruc, and that there will be actually 36 combinations of two 

of these letters, as follows: 

aa ~ ay ao aE as 

bCX bt) by bo bE bs 

CCL ct3 cv co C€ cs I 

da dt3 d\' do dE ds 

ea et) ey eo eE es 

m ft3 fy f5 fE f~ 
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each one of which expresses the characteTistic of an officeT. It is a question 

of writing these 36 terms in the 36 divisions of a square so that on each line, 

horizontal as well as vertical, one finds the six Latin and the six Greek letters. 

3. One vlill then have three conditions to fulfill; first, that on each row 

one finds the six letters, Latin as well as Greek; second, that the same be true 

in all the columns; and lastly, that all the 36 terms above be found actually 

inscribed in the square, or that no symbol be found twice, which comes to the 

same thing. For, if it were only a matter of satisfying the first two condi-

tions, it >'lould not be difficult to find several solutions; here is one 

acx bs co d€ ey ff3 

bf3 a:x f€ eo ar; dy 

c-y d€ ~ .b~ fO ea 

do f-y es cf3 ba a€ 

e€ aO by fa d(3 cs 

fs ef3 da ay C€ bo 

but this arrangement has the fault that the terms b~ and de are found t\dce and 

that the terms bE and ds are lacking entirely. 

4. Then after all the care that has been used for the construction of such 

a square of thirty-six entries has proved useless, to give v7ider generality to 

my research, in place of six regiments and six different raru~s, I will put an 

arbitrary number n, in such a way that there will be n Latin letters 

a b c d etc. 

and as many Greek letters 

a f3 y o etc. 

to combine in 
2 

n different ways and to arrange in an n X n square array in such 

a way that each row and each column contains all the Latin and Greek letters and 

that no term is found twice in the square. 
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5o Since each line of the sq'tiare COif~~~p.s all. t~ese different letters ¥1d 
~3· 

consequently the sum is everywhere the sam@~ it is clear that such an arrJl-~~e-

ment will satisfy the co~~ ion of the ordinary magic squares. For, to.; ·:p:p.()duce 

all the numbers in the natural order, one has only to give to the Latin letters, 
:__ ;_ r.=·-

a, b, c, d, e, etc., the values o, n, 2n, 3n, 4n, ••• (n-l)n, and to the Greek 

letters a, (3 1 "'(' 5 1 € 1 etc., the values 1, 2 1 31 4, 51 ••• n. But since in 

these squares it is a question only of the sum of all the numbers which are found 

in each line, horizontal as well as vertical, it is not at all necessary that 

all the numbers be found on each line provided that the sum be eve~1here the 

same; which is also the reason that one can construct _ordinary magic squares of 

36 boxes. 

6. To make easier the operations which I will have to perform eventually, 

I will put in place of the Latin and Greek letters the natural numbers 1, 2, 3, 

4, 5, etc., vThere in order to distinguish betv1een them I vlill call the ones 

Latin numbers and the others Greek numbers; and finally, so as never to con-

fuse them, I will join the Greek numbers to the Latin numbers in the form of 

superscripts, in the way that will be seen in the following square of 49 boxes, 

11 26 34 43 57 65 72 

22 37 15. 54 41 76 63 

33 61 56 75 12 47 24 

44 52 67 16 73 21 35 

55 13 71 27 ~ 32 46 

66 74 42 31 25 53 17 

77 45 23 62 36 14 51 

in which I have arranged the Latin numbers following their natural order, in 

the first row as vTell as. the 1 fit'st'coluiih," in' such a way that these numbers 
l.Jr .. 

represent simultaneously the indices of these two lines and those of their 
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companions. I have also made the Greek numbers, or superscripts, equal to the 

Latin numbers in the first vertical line, as I will do every.·rhere below, since 

the significance of these numbers is completely arbitrary. 

7• Since it is easy to convince oneself that all the ter.ms written in the 

preceding square satisfy perfectly the three conditions required and indicated 

above; to bring the reader closer to the point of view from uhich one must 

picture most of the methods which have brought us to the follm·ring research, we 

are going to begin by the analysis of the construction of the square mentioned 

above. For this purpose, we take once more the fundamental Latin square which, 

omitting the superscripts, will have the following form: 

1 2 3 4 5 6 7 

2 3 l 5 4 7 6 

3 6 5 7 1 4 2 

4 5 6 l 7 2 3 

5 1 7 2 6 3 4 

6 7 4 3 2 5 1 

7 4 2 6 3 1 5 

where each one of the seven lines, horizontal as well as vertical, contains 

all the seven numbers, 1 1 2, 31 4, 5, 6, 1· 

8. Having thus established this Latin square, everything comes back to 

finding a sure method of joining Greek numbers, or superscripts, to each Latin 

number of this square; and first, in order to begin with the superscript 1, 

since it is necessary that it recur in each line, horizontal as 1vell as 

vertical, it is a matter of taking from the vertical columns seven numbers such 

that they are different from each other and that they are related at the same 

time to different horizontal rows or rather: the numbers i<Thich one takes from 



-5-
•. : .· -~ . 

each vertical column should all be taken from different levels, uhich must be 

done similarly in relation to the other exponents, 21 31 4, 5, etc. At this 
.. 

point, it must once more be noted that since we suppose the exponents of the 

first column to be known, and since we always make them equal to the Latin 

numbers of this column, the first ter.ms of these :functions which we are going 

to describe will always follow the order of the natural numbers 1, 2, 3, 4, 5, 

6, 1· 

9· Since, then, in the following investi&ation everything depends on these 

:functions 'N}.'lich serve to regulate the writing. of the superscripts, or ~o qeter-

mine the ranks of the officers arranged, I '\'Till call them below square-forming 
~--~ . . . . 

:functions; one must have one for each superscript. Thus~ in the squa;:e o;f, 49 

entries listed above in the 6th paragraph, the square-forming functions are: 

for the superscript 1 this: 1 6 7 3 4 2 5, 
II II II 2 II 2546137, 
II II II 3 II 3 1 2 4 7 5 6, 
II II II 4 II 4 7 3 5 6 1 2, 
II II " 5 II 5 4 1 7 2 6 3, 
II II II 6 II 6 2 5 1 3 7 4, 
II II II 7 II 7 3 6 2 5 4 1. 

This then is what one must under:stalid oy the terin square-forming functions, 

which we will make use of throughout in the following; and it is f'irst of all 

evident that, in order to construct a complete square, it is necessary to have 

such a :function for each Greek number or superscript. To follow 1 it is necessary 

that all the functions should agree in such a way among themselves that in writ-

ing them one on top of the other, one will find in each column all the different 

numbers, because otherwise the same number of the Latin (or base) square should 

receive two different exponents. 
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lOo Having therefore established for an arbitrary case a square of Latin 

numbers, the first step consists of finding the square-forming functions for each 

superscript, and if it happens that for a single one of these numbers one is un

able to find any such a function one can boldly state that the Latin square is 

incapable of providing a complete square. And even if one has found functions 

for all the superscripts, if it is impossible to choose them in such a way that 

they agree among themselves in the way in which I have just described, since 

that has succeeded in the example above, it is once more a sure sign that the 

Latin square is not capable of furnishing a solution to the problem. But one must 

be careful not to come to this conclusion except after being fully convinced 

that one has found and studied all the square-forming functions which are valid 

for the proposed square. 

11. The formation of the square-forming functions is therefore the first 

and the main object of this paper; but I must admit that up to this time I have 

not had any sure method by which I can conduct this investigation. It even 

seems that one should be content with a sort of simple process of trial and 

error that I am going to explain for the Latin square of 49 boxes set forth 

above. 

For example, to find the characteristic function of the superscript 4 of 

this square let us choose arbitrarily the first four entries which I will take 

as they have been marked 

4 7 3 5 

and which are taken from the first four columns and from the four rows which 

correspond to the indices 4, 6, 1, 2; and it is clear that the last three values 

of our function, 

l 2 6, 
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should be drawn from the last th:uee columns and from the three rows which 

correspond to the indices 3, 5, 7•. Therefore, the remaining pieces of the 

3rd, 5th, and 7th rows furnish us the follm·ling table (or array) 

1 4· 2 

6 3 4 

3 l 5 

from which obviously result the last three terms of our functions in the order 

6, 1 1 2 as we have shown them above. If the first four terms had not been knmm 

to us, one sees by what we have just said that it would have been necessary to 

examine in the same way all the possible combinations. 

12. After having shown in general the operations which one mu~t unde'rtake 

in order to construct such complete squares, I go on to more particular investi-

gations which naturally will vary in accordance with the nature of the Latin 

squares, which can be formed in as many more different ways as the number of 

entries of which it is made up is large; and one easily perceives that soon the 

number of all the possible methods of constructing it becomes so great that one 

no longer la1ows how to make a count. This is the reason that I 1vill be content 

here to run through some simple and regular kinds of Latin squares, which will 

not fail to lead us to some much more complicated types. 

13. First, the simplest Latin square is without doubt the one where all 

the numbers 1 1 21 3, 4, · ••• n progress cyclically in each rmv and column. The 

squares of this first kind, of a classification which so to speak arose 

naturally, will have in general for any number n2 of entries, the following 

form: 
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1 2 3 4 5 6 • • • n 

2 3 4 5 6 • • • n 1 

3 4 5 6 • • • n 1 2 

4 5 6 • • • n 1 2 3 

5 6 • • • n 1 2 3 4 

6 • • • n 1 2 3 4 5 

etc. 

The squares of this first type which occur for all n by n arrays will here

after be named Latin squares a simple marche. 

14. Following this classification, the second kind vTill contain the Latin 

squares a double marche, which are formed by taking the numbers of the first 

line, arranged in their natur.al order, two by two and transposing them in the 

second line, which will consequently be: 

2 1 4 3 7 6 5 8 7 etc. 

From this and from the first row, one then constructs the third and the fourth 

by adding 2 to each of their terms, the fifth and sixth by adding 2 to the 

terms of the third and fourth, and so forth. The squares of the second rank 

thus formed will have in general the following form: 

1 2 3 4 5 6 7 8 etc. 

2 1 4 3 6 5 8 7 etc. 

3 4 5 6 7 8 9 10 etc. 

4 3 6 5 8 7 10 9 etc. 

5 6 7 8 9 10 11 12 etc. 

6 5 8 7 10 9 12 11 etc. 

etc., 

by \'lhich one can easily see that this second kind could not occur except for 

the squares vThere the number of boxes in each line is even. 
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15. For the third class; I refe·r to the Latin squares a triple marche, 
' ~ . 

where in the first line one considers three numbers jolntly, in order to vary 

them in three different ways, before fo~ing the subsequent lines, which one 

obtains three by three by adding 3 to the terms of the three preceding, as one 

can see in the general form which follows: 

1 2 3 4 5 6 7 8 9 etc. 

2 3 1 5 6 4 8 9 7 etc. 

3 1 2 6 4 5 9 7 8 etc. 

4 5 6 7 8 9 10 11 12 etc. 

5 6 4 8 9 ·7 ll 12. 10 etc. 

6 4 5 9 7 8 12 10 11 etc. 

7 8 9 10 11 12 13 14 15 etc. 

· · etc. 1 

which shous us that this construct ion is valid only if the numbers of the boxes 

contained in a line is divisible by 3. 

l6o In the same way, one can fo~ squares of the fourth ldnd proceeding 

a quadruple marche by taking separately four by four the entries of the first 

horizontal line and passing through all the transpositions '·Thich are possible 

and which form the four first horizontal lines, from which one derives the four 

following by adding 4 to each entry, and so on with the others. But since 

the first four entries, 

1 2 :3 4' 

allow several different transpositions, we wili have several general forms for 

the squares of this kind, of which it iV"ill be sufficient to cite the first 

member (I call 11member of a square" any one of these parts which for.m a separate 

square) since it is easy to deduce from it the general form, the transpositions 
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being the same in all the other members or simple squares from which is fanned 

the large Latin square which, in this case, should always have a number of boxes 

2 4 divisible by 4 =16. Here are similar transpositions 

I II [II IV 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

2 1 4 3 2 1 4 3 2 3 4 1 2 4 1 3 

3 4 1 2 3 4 2 1 3 4 1 2 3 1 4 2 

4 3 2 1 4 3 1 2 4 1 2 3 4 3 2 1 

since it would be superfluous to fonn or to cite the general fonns for the 

squares composed of similar members. One perceives easily that following the 

same laws one has only to vary the following Quaternaries of the first row. 

One sees also that this classification could guide us to many other 

regular squares; but we stop here, to develop more carefully in the following 

sections the four kinds which we have just established and to deduce from them 

some complete squares. 

First Section 

SOMS LATIN SQUARES A SJMPLE MARCHE OF THE GENERAL FORM 

1 2 3 4 5 6 • • • n 

2 3 4 5 6 • • • n 1 

3 4 5 6 • • • n 1 2 

4 5 6 • • • n 1 2 3 

5 6 • • • n 1 2 3 4 

6 • • • n 1 2 3 4 5 

etc. 
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CASE OF n - 2 

17· Let us begin by the simplest case, where n; 2 and the Latin square 

is 

1 2 

2 1 

from which one is not able to take any square-forming fUnction, and conse-

quently this case is impossible, since it is not possible to deduce any other 

square. And in fact, if one satisfies the first two conditions of the question, 

cited in Section 3, one comes to the square 

11 22 

22 11 

1 2 1 . 2 
where the two terms 1 and 2 are found twice, while the two others 1 2 and 1 , 

are missing entirely. Thus, if the question concerns a group of 4 officers of 

two different ranks and regiments, one sees first that it l'lill be impossible to 

arrange them in a square in the mann~r prescribed. 

CASE OF n = 3 

18. Let us go on to the case of n = 3, and our Latin square will be 

1 2 3 

2 3 1 

3 1 2 

where the diagonal with different entries, 1 3 2, furnishes first a character-

istic function for the superscript 1; and since all the numbers increase, while 

descending, by one, it is clErar that the characteristic functions will follm1 

the same order and that consequently they vrill be 
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for the exponent 1 - 1 2, 

II II II 2 - 2 1 3, 

" 
II .. .·II 

3 - 3 2 1. 

So in inserting the exponents following this system of !1Inctions one will ob-

tain the following complete square; 

11 23 32 

22 31 13 

33 12 21 

which is the only solution which can take place for the squares a simple marche 

of nine entries since function 1, 3, 2 is the only square-forming function for 

the exponent 1 and since the fundamental or Latin square proposed is the only 

one for the case cited. 

CASE OF n = 4 

19· Let us consider the cas·e where n = 4, vThich brings us to the following 

Latin square: 

1 

2 

3 

4 

2 

3 

4 

1 

3 

4 

1 

2 

4 

1 

2 

3 

but here, one sees first that it is impossible to find any function for the 
·,)·· 

superscript 1, and, on examining the square according to the prescribed rules, 
....:.~~·· 

we will see that it is the same for all other superscripts; from vThich one must ··.c: 

conclude that this Latin square cannot furnish any complete square for the valup 

n = 4. But one must notice carefully that this Latin square is not the only~·~ 

one which can occur for the value cited, cansidering that one can form.three 

others, among which will be found one which will lead us to three beautiful 

.. ~,. 

.:-: 

.. { 

'• 
(·-· 
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solutions, and so it is only the square of 16 entries a simple marche which 

fails to meet the required conditions. 

20. The same inconvenience'-is found in all the values vThere the number 

n is even, and this observation leads us to the following theo.rem: 

For all the cases where the number n is even the Latin square 

a simple marche can never furnish a solution to the questi9n ;proposed. 

To prove this, one has only to show that it is impossible to find any 

functions for the iu:perscript 1 of any square ~ simple marche where the number 

of horizontal or vertical entries is even. Let us suppose for this purpose that 

such a function might be 

1 a b c d e etc. 

where the letters a, b, c, d, etc., of which the number is n- 1 1 indicate 

the numbers 21 31 4 ••• n, in a given order, which is determined by the 

(horizontal) rows corresponding to the values a t) 'Y o € etcc, vThich indicate 

also the numbers 2, 3, 4, 5 etc. in such a way that the sum of all the numbers 

a, ~~ "{1 o, etc. must be equal to the sum of a, b, c, d1 etc. 

Then since, in our Latin square, all the numbers of the (horizontal) rows 

increase in arithmetical progression where the difference is 1, noticing that in 

passing on to the numbers beyond n it is necessary to begin again vTith one, it 

follows that, because the second number, a, of the assumed function is drawn 

from the second (vertical) column and from the (horizontal) row which corresponds 

to the value a, one vTill have 

a =a + 1. 

In the same way, since the third entry, b, of this function is drawn from the 

third (vertical) column and from the (horizontal) ro;-1 corresponding to the value 

~ there will be 

b = 13 + 2. 
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In following this reasoning, one finds that there will be for the other 

entries 

c = y + 31 d = 5 + 4, e = € + 51 f = s + 6 etc., 

noticing always that having arrived at a number larger than n one will put in 

its place the excess above n. Now let the sum of all the letters be 

a + ~ + y + 5 + etc. = s, 

and the sum of the letters 

a + b + c + d + etc. will be = S + 1 + 2 + 3 + ••• + (n - 1), 

or rather there will be 

a + b + c + d + etc. = s + n(n - 1) /2 . 

Nm-1, the sum of the Latin letters, a + b + c + d + etc., and that of the Greek 

letters a + ~ + y + 5 + etc., as we have seen above, should be equal to each 

other or, which comes to the same thing, the difference should be a multiple 

of the number n, which being put = f,.n brings us to this equation 

n (n - 1) /2 = f,.n, 

which gives 

;.. = :n - 1}'2. 

Consequently, since A is a whole number, this equality could not exist unless 

n - 1 was an even number or n an odd number. In this way 1 the truth of our 

theorem is rigorously proven, and it would be useless to wish to apply the Latin 

squares to any case where n is an even number. 

CASE OF n = 5 

21. Let us go back to our squares, and the case of n = 5 leads us to the 

following Latin square a simple marche 
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1 2 3 1+ 5 

2 3 4 5 1 

3 4 5 1 2 

4 5 1 2 3 

5 1 2 3 4 

from which one can without difficulty derive the following three functions for 

the exponent 1: 

1 3 5 2 4 

1 4 2 5 3 

1 5 4 3 2 

By adding one to each of the terms of these functions, one vlill op;tain those for 

the exponent 2, which, by adding one to it again, will give those for the ex-

ponent 3, and so on for the others. In this way 1 one '\'lill be able to construct 

the following three squares capable of determining the writing of the superscripts 

I II III 

1 3 5 2 4 1 4 2 5 3 1 5 4 3 2 

2 4 1 3 5 2 5 3 1 4 2 1 5 4 3 

3 5 2 4 1 3 1 4 2 5 3 2 1 5 4 

4 1 3 5 2 4 2 5 3 1 4 3 2 1 5 

5 2 4 1 3 5 3 1 4 2 5 4 3 2 1 

22. By means of these three complete systems of functions, >ve will be able 

to make three complete squares of 25 entries and consequently as many solutions, 

if the problem concerns a group of 25 officers of five different rallies from five 

different regiments. * Here are the three complete squares: 

*To establish the relation between these three complete squares and the functions 
at the end of Section 21, one must invert the order of squares II and III. L.G.D. 
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I II III 

11 25 34 43 52 11 23 35 42 54 11 24 32 45 53 

22 31 45 54 13 22 34 41 53 15 22 35 43 51 14 

33 42 51 15 24 33 45 52 14 21 33 41 54 12 25 

44 53 12 21 ~5 44 51 
-' 

13 25 32 44 52 15 23 31 

55 14 23 32 41 55 12 24 31 43 55 13 21 34 42 

The construction of these three squares is all the easier since after one has 

written the superscript 11 the others follow in their natural order, descending 

by the (vertical) columns. 

23. It remains for us to remark again regarding the square-forming 

functions, that their entries go in arithmetical progression, by increasing in 

the first by 21 in the second by 3, in the third by 4, in the 4th by 5 and so on 

with the others. Next, that the superscripts of the first rows of the three 

complete squares are 

in the first 1 5 4 3 2 

in the second 1 3 5 2 4 

in the third 1 4 2 5 3, 

which agree with the three square-forming functions. Finally, the first of 

these three kinds of squares, in changing the order of the (horizontal) rows, 

furnishes the following very remarkable square 

11 25 34 43 
') 

5'-

33 42 51 15 24 

55 14 23 32 41 

22 31 45 54 13 

44 53 12 21 35 
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in which not only do the (vertical) columns- and (horizQntal) rmrs contain the 

different Greek and Latin letters, but >-There even the diagonals and their 
~< 

completed parallels· as 

' 
satisfy all the prescribed conditions. 

CASE OF n = 7 

24. The case of n = 7 gives us the following Latin square a simple marche 

of 49 entries. 

1 2 3 4 5 6 7 

2 3 4 56 71 

3 4 5 6 7 1 2 

4 5 6 7 1 2 3 

5 6 7 1 2 3 4 

6 712 3 4 5 

7 1 2 3 4 5 6 

where the consideration of the functions increasing in arithmetical progression 

(section 20) furnishes us first the following functions for the superscript 1 

1 3 5 7 2 4 6 

1 4 7 3 6 2 5 

1 5 2 6 3 7 4 

1 6 4 2 7 5 3 

1 7 6 5 4 3 2 

where the first increases by 2, the second by 3, the third by 4, the fourth by 5, 

and the fifth by 6. But one must not think that here are all the functions for 

----------------- -----
-l'· This is what is called broken diagonals. L.G.D. 
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the superscript 11 because in examining the square more carefully one in addition 

finds the folloidng 14: 

1 3 6 2 7 5 4 

1 3 7 6 4 2 5 

1 4 6 3 2 7 5 

1 4 7 5 3 2 6 

1 4 7 2 6 5 3 

1 4 2 7 6 3 5 

1 5 4 2 7 3 6 

1 5 7 3 6 4 2 

1 6 4 7 3 5 2 

1 6 4 3 7 2 5 

1 6 5 2 4 7 3 

1 6 2 5 7 4 3 

1 7 4 6 2 5 3 

1 7 5 3 6 2 4 

25. All these square-forming functions have been found by the very laborious 

method explained above (section 8); but the beautiful order ·Hhich prevails in 

the squares a simple marche gives us very easy methods of finding many such 

functions, as soon as one has found only one, which will be the subject of the 

following problem: 

Having found a square-forming function for some square ~ ~~1§ marche 

of which the num_per n is odd, find the sure rules by means of vlhich one can find 

several other square-forming functions. 

26. Let 

1 a b c d e etc. 



-19-

be the charact.eristic function which has been found, which refers to the super-

script 1, and from which the entry which corresponds to the undeterm;n~d index 

t be= x, so that taking t = 1 1 x also becomes:;: 1. It is necessary_ to note 

1st) that giving to t all the values possible from 1 to n1 the entry x should 

also·receive all these different values; 2nd) that, since tis the ind~x of:tl_le. 

(vertical) column from which the number x is taken, the index of the(horizont~l) 

row will be 1 as one sees from the cons_truction of the, square 1 = x - t + 1 1 l'Thich 

corresponds also to the entry x. Then since the numbers a, b1 c, d1 etc. must 

be taken from different (horizontal) rows, it follows that this fonmula x - t + 1 1 

and consequently also x - t 1 should include all the different values, in the 

same manner as the numbers t and x. 

27. That noted, let 

1 A B C D E etc., 

be a new square-forming function which one wishes to derive from the one given 

and where the value of any entry X will be = T; and one understands, because we 

have said so above, that in giyi~g to T all the values possible, not only the 

entry X, but also the difference X - T should likewise receive all these same 

different values. These conditions will be obviously filled in taking 

T = x and X = t 
and consequently one will always obtain a new function by exchanging the two 

numbers t and x (between themselves) from l'Thich comes this rule for the formation 

of a nel-T function: 

Take x for the index and t for the entry which corresponds to it. 

This new function will t~en be formed per inversionem, by reversal. 

28. One can make another ne1'1 function by taking 

T=tandX=CX+t-x. 
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For, if one varies the value of t through all the values from 1 to n1 it is 

evident that the entry·a +.t - x will also receive all these different values, 

no matter >vhat may be the number o:. Therefore, since X - T = a - x, this equation 

will also receive all the possible values. But, for this found function to 

correspond to the superscript 1, it is necessary that, putting t = 1 and x = 1 1 

there also ensue X = 1, which gives us a = 1. 

Therefore one 'i<~ill always obtain a new function by taking 

T = t and X = 1 + t - x 1 

and it is in this that the second rule which I have proposed to give consists. 

29. In combining the two rules which I have just explained, it 'i'Till be 

easy to derive from only one given function a number of new functions which one 

can represent in the following way: 

I II III IV v VI 

T = t t X 1 + t - X X 1 + t - X 1 + X - t 

X=x 1 + t - X t t 1 +x - t 2- X X 

VII VIII IX X XI XII 

2- X 1 +X- t 2 - X 2 - t 2 - t 2 - t 

1 + t -X 2- t 2 - t 1 +X- t 2 - X 2 - X 
--

Here then are eleven different rules by the use of which one can derive eleven 

new functions, all different (from each other), from one single proposed square-

forming function. 

30. To clarify the two principal rules and those of the preceding section, 
. r 

which have been derived from them, by an example, let us take at random one of 

the functions cited above (section 24), for example this bne 

1 4 2 7 6 3 5 ' 
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to which we can apply alternately the first and second :rul.e1 or else the second . ~· n~:· ... 

and the first. The two sets of functions which they give rise to, _are as follows: 

given furictiori 1 4 2.7 6 3 5 given function· 1:427635 

1st rule 1362754 2nd rule 1625743 

2nd rule 1753624 lst rule 1376425 
,' -:. ~ 4-

,_ 
1 7 '4 '() 2. 5 3 1st rule 1647352 2nd rule 

2nd rule 1475326 1st rule 1 5 7 3 6 4 2 

1st rule 1 6 5: 2 4 7 3 2nd rule 1C5!·4" 2 7 3 6 

2nd rule 1 4 6; 3.-2 7 5 1st rule 1 4' 6 3 2 7 5 

1st rule 1 5 4+2:-7 3 6 2nd rule 1652473 

2nd rul.e 1. 5 7t·3-'"6 4 2 1st rule 1.475326 

1st rule 1 7'4 16 2 53 2nd rul.e 1.647352 

2nd rule 1376425 lst rule 1753624 

1st rule 1625743 2nd rule 1362754 

2nd rule 1427635 1st rule 1427635 

perfectly equal, with the only difference being that in beginning with the second 

rule, the order of the functions is reversed. 

31. Here then are eleven new functions which all derive their origin from 

only one, and even from any one among them. Also all these new functions are 

found among the 14 cited above (section 24) and there are only two which failed 

to appear in the course of this operation, namely 

1 4 1 2 6 5 3 and 1 6 4 3 7 2 5 

both of an unusual kind, since each one r~~roduces itself by the first rule, 

while, by the second rule,_ one is reproquced by the other. 
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32. After having found for the value n :;:, 7 nineteen different functions, 

we could derive from each one a complete square, and consequently nineteen 

different kinds. For in taking any one and letting it be 1, a, b, c, d, e, f, 

and continuing these numbers according to their natural order, one vTill have the 
·"': 

functions for the following exponents, 2, 31 4, 5, 6 and 7, and in this way, one 

will obtain the follmqing square of functions: 

1 

2 

3 

4 

5 

6 

7 

a 

a+ 1 

a + 2 

a + 3 

a+ 4 

a + 5 

a + 6 

b 

b + 1 

b + 2 

b + 3 

b + 4 

b + 5 

b + 6 

c 

c + 1 

c + 2 

c + 3 

c + 4 

c + 5 

c + 6 

d 

d + 1 

d + 2 

d + 3 

d + 4 

d + 5 

d + 6 

e 

e + 1 

e + 2 

e + 3 

e + 4 

e + 5 

e + 6 

f 

f + 1 

f + 2 

f + 3 

f + 4 

f + 5 

f + 6 

where it is evident that each (vertical) column as well as each row, contains . 

all the (various) numbers from 1 to 7, no matter what may be the order of the 

numbers a, b1 c1 d1 e and f. 

33. To facilitate the construction of the complete square being sought, 

it will be well to assign the superscripts which agree with the first row 1 llhich 

is always the natural series of (the) numbers 1, 2, 3, 4, 5, 6, 7• For this 

purpose, in the proposed function 

1 a b c d e f 

let the entry which corresponds to the index t = x ; and to this entry x in the 

square one should add the superscript 1. Then, as the superscripts increase, in 

descending through each (vertical) column, following their natural order, the 

following entry, x + 1, will have the superscript 2 and, in general, the entry 

x + A will have the superscript X + 1. Let us take then X in such a way that 
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it becomes 'x +). = t, from which one'·derives A= t ,;_.-il and consequently, the 
- .... ~ ... ;'·: ~;· .· ~ ?-~t ·l'" 

number t in the :first horizontal line *ill have the superscript 

A + 1 = t + 1 - X • 

Then let us give to t successively the values 1 1 2, 31 4 etc., and the super

scripts of the first row will be the folloiing: 

1, 3 - a, 4 - b 1 5 - c1 6 - d1 7 - e, 8 - f • 

34. We have seen above that this ±Unction is also a square-forming function 

which results from the first by use of the second rule. This is why, to construct 

the complete square, one should first take each square-forming function, to show 

the superscripts which should be given to the numbers of the first (horizontal) 

row; then, going down the (vertical) columns, one has only to increase the higher 

superscripts following their natural order. In this way, if the proposed function 

1 1 a, b, c, d1 e, f is at the same time the sequence of the superscripts of the 

first row, the complete square which is derived will have the following form: 

3a+l 

4a+2 

5a+3 

6a-+4 

7a+5 

a+6 
1 

3b 

4b+l 

5b+2 

6b+3 

7b-t4 

lb+5 

2b+6 

4c 

5c+l 

6c+2 

7c+3 

lc+4 

2c+5 

3c+6 

5d 

6d+l 

7d+2 

ld+3 

2d-t4 

3d+5 

4d+6 

6e 

7e+l 

1e+2 

2e+3 

3e-+4 

4e+5 

5e+6 

'(•:t•'l,,. 

2f+2 

3f+3 

4f-+4 

5f+5 

6f+6 

35. Having then found, in all, nineteen functions for the value n = 71 

one could make from them as many complete squares; so that, if the question 

concerns 49 officers of seven different ranl~s and taken from seven different 

regiments, one can derive a large number of different solutions, all derived 

:from a single Latin square a simple marche. One can even draw from the same 
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source several other' solutions; since the number of'):f'Uict.i'ons is s6' considerable, 

having tru~en one at random for the superscript 11 ~n~ could truce the functions 

for the following superscripts from other kinds, so that aluays in arranging 

these different functions in a square, the numbers in the (vertical) columns 

all differ among themselves. One sees then, in this way 1 that one -vrill obtain 

a much larger number of new kinds of complete squares, mixed with several square-

forming functions joined together. It will suffice to clarify this mixture of 

functions by a single example. 

Functions of superscripts Typeo of square-forming functions 

1 4 7 2 6 5 3 1 4 7 2 6 5 -::> 
...J 

2 7 5 4 1 3 6 1 6 4 3 7 2 5 

3 6 1 5 4 2 7 1 4 6 3 2 7 5 

4 1 3 6 2 7 5 1 5 7 3 6 4 2 

5 2 6 3 7 4 1 1 5 2 6 3 7 4 

6 3 2 7 5 1 4 1 5 4 2 7 3 6 

7 5 4 1 3 6 2 1 6 5 2 4 7 3 

One easily understands, from this single example, that one can find many other 

equally suitable combinations whose number it would even be very difficult to 

determineo 

36. If one inserts the exponents in conformity with these functions, the 

complete square which results therefrom vrill have this form: 
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J/.1 25 
I, 

J,2-
r 

67 73 3'1- . c. 
'+ 5 

22 36 47 53 61 
I 

5 7'+ 1 

33 41 52 ~ 75 16 27 

4 4 57 65 76 12 23 31 

55 63 71 17 24 32 46 

66 72 13 21 37 45 5 
4 

77 14 26 35 43 51 62 

Here, one sees first that the superscripts of the rovrs ·are no longer square-

forming functions, as in the nineteen preceding kinds, and that one is not able. 

to discover any order,since one finds there a mixture of seven different kinds. 

This observation is of the utmost importance, because the consideration of the 

regular squares might delude us into believing that the superscripts of the first 

(horizontal) rows should generally have the properties of square-forming functions. 

Moreover, it is vTithout doubt very surprising that, >·Thile the case of n = 7 

furnishes us such a prodigious number of solutions, which will be· further augmented 

later 1 the case of n = 6 -is riot able to furnish even one, even thol!lgh the case 

which precedes it, n = 5, has led us to three different solutions·. -

CASE OF n = 9 

37· Now let n = 9; and 'the Latin square ~ simple marche to which the follow-

ing applies 1 will have this form: 

1 2 3 4 5 6 7 8 9 
2 3 4 5 6 7 8 9 1 

3 4 5 6 7 8 9 1 2 
4 5 6 7 8 9 1 2 3 
5 6 7 8 9 1 2 3 4 

6 7 8 9 1 2 3 4 5 

7 8 9 1 2 3 4 5 6 

8 9 1 2 3 4 5 6 7 

9 1 2 3 4 5 6 7 8 
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38. Since it would be very diff~cult to look for all the functions which 

might be found in this Latin square and since the number undoubtedly will be 

enormous, I will be satisfied to consider only those which go in arithmetical 

progression, excluding those where the difference would be 3 or 6, since it ~uld 

not be prime to the number n = 9· For generally, it is always necessary that the 

difference between the terms of these progressions, as well as the difference 

between the number x and t, or rather x - t, have no common divisor with the 

number n, because a function chosen without regard for this rule would not con

tain all the values fxo.m 1 to n, or could not be arranged in: the class of 

square-forming functions. So when these two cases are excluded, the functions 

which go in arithmetical progression are these: 

1 3 5 7 9 2 4 6 8 

1 6 2 .. 7 3 8 4 9 5 

1. 9 8 7 6 5 4 3 2 

fram which one can make three cQmplete squares of 81 entries by taking the functions 

for the following supersc:t.'ipts of the ·same kind, considering that \·Te are except

ing ourselves from malting an enumeration of the others. 

For, in tru~ing one of these three functions, and letting it be 

1 a b c d etc., 

for the superscript 1, one will see from what we have said above, (sections 23 

and 33), that the superscripts of the first rm-1 which are 1, 3 - a, 4 - b, 5 - c, 

6 - d, etc., also comprise a square-forming function and that, consequently, one 

can tru~e first each of these three functions which we have found for the super

scripts of the first (horizontal) row, which gives us these three complete squares: 
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I. 

11 23 35 47 59 62 74 86 98 

22 34 46 58 61 73 85 97 19 

33 45 57 69 72 84 96 18 21 

44 56 68 71 a3 95 17 29 32 

55 67 79 82 94 16 28 31 43 

66 78 81 93 15 27 39 42 54 

77 89 92 14 26 38 41 53 65 

88 91 13 25 37 49 52 tfl- 76 

99 12 24 36 48 51 93 75 a7 

II. 

11 26 32 47 53 68 74 s9 95 

22 37 43 58 ~ 79 85 91 16 

33 48 54 69 75 81 96 12 27 

44 59 65 71 86 92 17 23 38 

55 61 76 82 97 13 28 34 49 

66 72 87 93 18 24 39 45 51 

77 83 98 14 29 35 41 56 62 

88 94 19 25 31 46 52 67 73 

99 15 21 36 42 57 63 78 84 
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III. 

11 29 38 47 56 65 74 83 '2 
9 

22 31 49 58 67 76 85 94 13 

33 42 51 69 78 87 96 15 24 

44 53 62 71 s9 98 17 26 35 

55 ~ 73 82 91 19 ·a 
2 } 46 

66 75 84 93 12 21 39 48 57 

77 86 95 14 23 l 41 59 68 

88 97 16 25 34 43 52 61 79 

99 18 27 36 45 54 63 72 gl 

4o. Here then are three complete squares, derived fraro the three regular 

(isometrical?) functions which we intended to ex~ine. To clarify better the 

use of the rules cited above (sections 26, 27 and 28) for the formation of 

fUnctions and finally to be able to judge more easily their number, we are 

going to choose one of the functions at random; and by applying to it 

ively the two rules, we will obtain the 

from which one 

derives 

characteristic adopted 

of which the reverse is 

I 
~ 

by the 2nd rule 

by the 1st rule 

by the 2nd rule 

by the 1st rule 

by the 2nd rule 

following twelve functions: 

1 6 5 9 2 4 8 7 
1 5 9 6 3 2 8 7 

Jl 6 8 5 4 3 9 2 
I 

1 7 4 8 3 5 9 2 

1 8 6 5 4 2 9 3 
l 8 5 3 6 9 2 4 

l 4 7 9 2 5 8 6 

1 4 8 2 9 7 6 5 

1 5 9 2 6 8 3 7 
~ 

l 4 9 2 8 7 6 3 

1 7 4 3 9 8 5 2 

)1 8 4 3 7 9 2 6 

success-

3 
4 

7 
6 

7 

7 

3 

3 

4 

5 

6 

5 
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>·7here one must stop at the sixth pair, since, if one wished to apply to it 

again the first rule, one would obtain the same functions uhere one reproduces 

the other by reversal; thus, our tvTo rules have given us all together eleven 

new functions. 

41. One very important observation, i-rhich is still to be made, is that 

in making use of the third rule, which we have been able to dispense with in 

the preceding article about n; 7, since it would not have been of any help to 

us, one .could find another dozen new functions. This rule can be stated in the 

following way: 

Given for the proposed characteristic the index ; t and ~ entry which 

corresponds 1£ it .::._! 1~ can take, for the ~ function, the index T = 2t - 1 

and the ~ itself X = 2x ~· "ij-for which the reason is clear, 1st) because in 

taking t = 1 and x = 11 there results 

T ; 1 and X =. l j 

2nd) because if the x's .vary through all the values, also the 2x's and conse-

quently the 2x- l's will also pass through (satisfy) all the.different values; 

and 3rd) since, if x - t contains all the values from 1 to 91 lilceuise 

X - T = 2(x - t) 

will pass through (satisfy) all the proper variations. 

42. It will be well to clarify by an example this new rule, so fruitful 

in functions jointly with the two preceding ones; and for this res"Llit, vle are 

going to take the function chosen above; which will give us the following dozen: 
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( 

The function adopted furnishes l 6 5' 9 2 4 8 7 3 
by the 3rd rule fromwhich one l 7 ,2 6 ·9 4 8 5 3 

derives by the lst rule .:1 3 9 6 8 4 2 7 5 

by the 2nd rule )~ 5 2 8 6 3 9 4 7 

9 4 8 7 3 6 2 5 
;;....; 

''" 

by the 1st rule l 3 '6 8 2 5 9 4 7 
1 8 6· 3 9 T .· 5 .4 .2 

6-· '4 8 and then by the 2nd rule l 9 7 ·- 2 5 3 

1 4 7 2· 6 9 3 5 8 

by the 1st rule l 6 9 5 8 4 3 7 2 

l 4 7 ... 2 8 5 3 9 6 

by the 2nd rule 1 6 4 9 7 3 5 2 8 

1 8 6 3 7 2 5 9 4 

43. Let us apply again this third rule to the first of the new dozen 

functions which we have just found and we will obtain, with the help of the 

two preceding rules, the following new dozen: 



From the fUnction adopted one 

obtains by the 3rd rule and 

from that one by the 1st rule 

' by the-2nd rUle 

by the 1st rule 

which gives us by the 2nd rule 

by the 1st rule 

by the 2nd rule 

1 

1 
, 
.J.. 

{~ 
1 

1 

1 

1 

1~ 
~~ 

7 2 6 

7. -·~ ·-·- ~ 
.. -\J -~-

7 5 3 

5 9 8 

-5- ; ,-8 ·'2 

9 5 8 

4 6 9 

3 8 6 

8 7 5 

7 2 5 

9 7 5 

5 2 9 

3 6 9 
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9 4 ~,. 5 3 
? 9 2 5 8 j-C 

8 4 2 9 6 

3 7 6 4 2 

7 3 6 9 4 

2 7 6 4 3 

2 7 5 3 8 

4 9 2 5 7 
4 9 3 6 2 

8 4 9 3 6 

4 8 3 2 6 

7 3 8 6 4 

2 8 5 7 4 

Here, (as everywhere else) one has continued as far as the reproduction of the 

original functions, which has occurred until now at the sixth pair. 

44. If one wishes to apply the third rule to the first of these functions, 

that is 

1 7 4 6 3 9 2 5 8 

one would derive this one 

1 8 4 3 7 9 2 6 5 

which is already found in the first dozen; so that our th7ee rules have 

furnished us only three dozen functions, even though th~re certainly are'for 

this case a much larger number, considering that,- among all those 1ve have just 

found, there is none which is in accord with its reversal. Nevertheless, one 

should find several for this case, since in the preceding case, where n = 7, 

there were at least two similar functions. 
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45. To convince ourselves entirely; let us look for a function vThich has 

the property of reproducing itself by reversal. 

Such is this one - - - - 1 8 5 9 ::; 7 6 2 4 

which reproduces itself by the 1st rule 1 8 5 9 3 7 6 2 4 

we will have then by the 2nd rule 1 4 8 5 3 9 e 7 6 

by the 1st rule 1 7 5 2 4 9 8 3 6 

by the 2nd rule 1 5 8 3 2 7 9 6 4 

by the 1st rule 1 5 4 9 2 8 6 3 7 
f 

by the 2nd rule 1 7 9 5 4 8 2 6 3 

The first function adopted as reversible has thus brought us five other nevT 

functions; from which one sees that there are also functions not reversible which 

are found in a close union with those 1:~hich are revers~ble and >vhich are not 

found at all in the dozen preceding. 

46. In examining the first of the characteristics cited, we shall see . •. 
that they can give us another half-dozen altogether new functions. For this 

function of the preceding order 

1 8 5 9 3 7 6 2 4 

by rule 3 gives us this 

1 4 6 2 9 3 8 7 5 

which, being reversible, will give us the following characteristics 

The reversible function l 4 6 2 9 ~ 8 7 5 
furnished by the 2nd rule 1 8 7 3 6 4 9 2 5 

1st rule 1 8 4 6 9 5 3 2 7 

2nd rule l 4 9 8 6 2 5 7 3 
lst rule 1 6 9 2 7 5 8 4 3 

2nd rule 1 6 4 3 8 2 9 5 7 

where we have continued the processes, as before, as far as the reproduction of a 

reversible function. 
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47. In the same way, in applying the third rule to the first functicE rf the 
CJ ' 

preceding order, cne gets the following reversible function. 

l 5 7 6 2 4 3 9 8 

from which the following functions are derived by the alternate application of 

the first and second rule 

Reversible function 

2nd rule 

1st rule 

2nd rule 

1st rule 

2nd rule 

1 5 7 6 2 4 3 9 8 

1 7 6 8 4 3 5 9 2 

l 9 6 5 7 3 2 4 8 

1 3 7 9 8 4 6 5 2 

1 9 2 6 8 7 3 5 4 

l 3 2 8 7 9 5 4 6 

48. If we should wish to repeat these operations, by applying again the 

third rule to the first function of this new order, we will com~ again to the 

first half dozen and then later to the others, so that this source of character-

istics seems to have been used up by the three rules used. Having then found up 

till now three classes of twelve functions and three others of six functions, we 

have altogether 54 1 and with the first three >'lhich proceed in arithmetical 

progression, 57 different functions each one of which can give a complete square; 

and in mixing them together, as one can do in the manner shmm above (sections 35 

and 36) one easily understands that the number of all the possible solutions must 

become incomparably larger. 

49. The 57 functions that we have found do not even come close to including 

all the possible functions; granted that by using the fir_st direct method, which 

I have set forth above (sections 8, 91 and 10) 1 one can easily find the 8 follow

ing functions which are not included in any of the orders(?) cited: 
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1 3 5 6 2 9 6 4 7 

1 3 5 9 8 4 2 7 6 

l 3 6 8 2 4 9 7 5 

l 3 6 8 4 2 9 5 7 
,_. 

l 3 6 9 4 8 2 5 7 

l 3 6 2 9 8 4 7 5 

l 3 6 9 7 4 2 5 8 

l 3 7 6 2 9 5 4 8 

from which one can conclude that the total number of functions will be at least 

four times larger. 

SOiv'IE ODD MAGIC SQUARES OF WHICH THE DIAGONALS AND THEIR PARALL.3IB ARZ AI.SO 
EliiDOWED WITH THE PRESCRIBED CO}IDITIONS 

50. Let n be some odd number and d the difference bet·Heen tenns of a 

function which proceeds in arithmetical progression 

1, 1 + d, 1 + 2d, 1 + 3d etc. 

and of which the terms, if one subtracts the number n from all those which exceed 

this number, should produce all the different values from 1 to n, after having 

continued as far as the entry l + (n - l)d. 

That being granted, it is clear that the difference d should be a prime 

number to n and that consequently, when n is a prime number, one can give to d 

all the values below n; whereas, if n has a factor p, one must exclude all the 

progressions where the difference d is p, 2p, 3p, 4p, etc. This essential 

condition is not even sufficient to give to this progression the property of a 

square-forming function; for since t'o the index t = 1 + A. there corresponds the 

term x ; 1 + A.d, as we have shown in another part (section 26) the function 
., 

x - t = A.(d - l) must also produce all the different numbers. From this, it is 
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evident that the number d -- 1 m~~t _be prirne ~ n; that CQB,fe~queptly one must alvmys 

exclude the value d = 1, and the _V:c;tlues d = p + ,1, d ::: 2p + 1, d = 3p + 1 etc., 

every time that n includes a factor P• 

51. l;Jo,>v, ~it is not difficult to determine in general, for eacb number n, 
-~ ' :' r. ~ _; 

the number,qf ~~lues that the differenced can receive. 
I '•• ~ • • 

For, if n is a prime 
. r-~~ . ' ~ . -

number, the number of -the values of d, w:hich one takes alivays smaJJ_er than n, 
,. -~ '• . .' 

will be n - 2, and the number of the functions in progression vrhich ·.vill occur 

will also be n - 2. If n is a pr.oduct of two factors different from each other, 

as n = pq, the number of all the values of d will be 

(p - 2)( q - 2) • 

And in general, if n is a product of several different factors, p q r s etc., 

the values of d will be to the number of 

(p - 2)(q- 2)(r - 2)(s - 2) etc. 

But when n has two or more factors equal to each other, the form of the equation 

for the number of values of d will be a little different. For if n = paq~rYs0 

etc. the number of values one can give to d vrill be 

a-1 ~-1 y-1 o-1 p q r s etc. (p- 2)(q- 2)(r- 2)(s - 2) etc. 

52. After these remarks, it will be easy to construct in general a magic 

square in such a way that not only the rows and columns, but even the two diagonals 

and all their parallels (each completed by its corresponding one from the other 

side [section 23]) are made up of terms all o·f which are different from each other. 

For this purpose 1 I should first note that 1 whatever may be the form of such a 

square represented by Greek and Latin letters, as we did in the beginning, one 

can always reduce it to numbers and in such a way that the first (vertical) 

cOlumn contains all the entries in their natural ordec:i, as vre have assumed thus 

far; and the problem will come down to seeing in what way one must transpose the 
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;1' ,· • } ~ ...., 

other (vertical) columns of the complete squares, so that the required property 

extends to the diagonals and to all their parallels. 

53. Since we will consider here only the functions ,.,hich go in arithmetic 

progression, it is evident that, in the (horizontal) rov1s, the Latin as well as 

the Greek numbers or superscripts will appear in arithmetical progression, and 

by using d for the difference in the progression of the Latin numbers and o for 

that in the progression of Greek numbers, the first horizontal rov1 will be 

11 (1 + d)l+o (1 + 2d)1+2o etc. 

Thus here, since for the following rows one has only to add one to the Latin as 

well as the Greek numbers, the complete square will have the following form: 

11 (1 + d)l+O (1 + 2d)l+20 (1 + 3d)l+3o etc.; 

22 (2 + d)2+0 (2 + 2d)2+2o (2 + 3d)2+3o etc. 

33 (3 + d)~+O (3 + 2d)3+2o (3 + 3d)3+3o etc. 

44 (4 + d)4+0 (4 + 2d)4+2o (4 + 3d)4+3o etc. 
etc. 

54. Novr1 since the Latin numbers of each (horizontal) row should include 

all the possible numbers, it follows that the difference d should be valued as 

we have shown above, that is to say in such a way that neither d nor d - 1 has 

any common divisor with the number n; and this particular condition extends also 

to the difference in the progression of the exponents o and requires that both 

o and o - 1 be prime to the number n. Then, it is evident that the two differ-

ences d and o must not be equal, for if they were equal, all the entries would 

already have been found in the first (vertical) column; and this second condi~ion 

suffices when the number n is prime; but if it is not prime, in addition to that 

the number d - o must be prime to n. 
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55· These three conditions'fulr'J:1led1 one will have satisi'ied tht;; first oi 

the principal conditions preseribed 'fbr the construction of the s~uares with 

different diagonals and parallels, that is t0 say.one will obtain a s~uare where 

the (horizontal) rows and (vertical) colmans .contain all the different numbers, 

such as we have constructed in the lst. part of thi~. section. There remains only 

to see in what way one will be able to fulfill the other condition, of the diagonals 

and their parallels. 

56. Let us consider for this p1irpose the first diagonal, 'v'rhich descends 

from left to right, and since the Latin numbers which form it make this progression 

1, 2 + d, 3 + 2d1 4 +.3d, 5 + 4d, 6 + 5d etc. 

where the difference is d + 1, one sees that this diagonal -vrill include all the 

different numbers every time that d + 1 is a number prime to n; and since all the 

parallels of this diagonal cross with the same difference d + 1, the required 

property (?) will extend itself also to the parallels. It is the same for the 

Greek numbers or exponents, which also receive all the values possible, proviqed 

the difference of their progressions, 5 + 1, is prime to the number n. 

57· Let us consider also the-second diagonal, which goes from left to right; 

and we see first that the Latin and Greek numbers of this diagonal as weJ:l.· as: of 

their parallels form the arithmetical progressions where the difference of some 

is d - 1 and of the others o - 1. Then provided that both d - 1 and o - 1 are 

numbers prime to n, all the entries .. which are found in this diagonal and in all 

these parallels will also be different from each other. Besides, this last 

condition is already included in the nature of square-forming functions. 

58. Here then are all the conditions required for the construction of the 

squares >'l'hich are the object of this 2nd part. They are reduded. to the three 

following; 1st that the numbers d, d + 1 and d - 1 be prime to the number n; 
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2nd) that the numbers o 1 o + 1 an-d 5 · ... 1 also .. be-: pr.imeJ.to,:the number n and. 3rd) 

that the number d - 5 likewise not have any common: divisor with n. 

59· Let us suppose then that p is a divisor or any factor of the number n; 

and it will be necessary to exclude fram the values of'd these 

d = ~p, d = ~p + 1, d = ~p - 1, 

and from the values of the letter 0 the following 

5 = API 0 = ~p - 1, 5 = ~p + 1 • 

Let p = 3; and it will be necessary to exclude from the values of d and of 

5 all the numbers possible; from which one sees that, in·every case where the 

number n is divisible by 3, it will be impossible to construct a square where 

the diagonals and the parallels satisfy the required conditions. 

60. Now, when the number n is prime, the number of all the different values 

which can be given to the differences d and 5 will be 

"" n - 3 

Then, if n is a product of two prime numbers unequal to each· other, as n = pq, 
l 

the number of the values of d and 5 will be 

(p- 3)(q- 3) • 

And in general, if n = pa~rY etc. 1 ·the same number will be expressed by this 

formula 

pa-l~-lry-l etc. (p-3)(q-3)(r-3) etc. 

61. After these general remarks} let us develop some particular cases, and 

since we have just excluded·fram the values of n the multiples of 3, let us take 

n = 5, where the suitable' values for d and 0 will be 2 and 3, one of which can 

be taken for d and the other for . 5. : ; Then let d = 2 and 5 "" 3; and the square 

which results from them will have this form: 
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11 34 
,... 

5 .-43 5c. ,~· 

22 45 13 31 54 

33 51 24 42 15 

44 12 35 53 21 

55 23 41 14 32 

and it is evident that in changing the values of d and of o, that is to say in 

putting d = 3 and 5 = 2 1 one can form another square; but it is not worth the 

trouble to distinguish it from this one. 

62. Let n = 7: and the proper values of d and o will be 2, 3, 4, 5,· which, 

including two values which are unequal, give six di~ferent combinations, namely 

d = 2 and o = 3, d = 3 and o = 4, 

d ::o: 2 and o = 4, d = 3 and o = 5, 

d = 2 and o = 5, d::;4 and o = 5, 

and the squares which result are the following: 

I. If d = 2 and o = 3 II. Ii d = 2 and 5 = 4 

11 34 57 73 26 42 65 11 35 52 76 23 47 64 

22 45 61 14 37 53 76 22 46 63 17 34 51 75 

33 ·6 
5 72 25 41 64 17 33 57 74 21 45 62 16 

44 61 13 36 52 75 21 44 61 15 32 56 73 27 

55 71 24 4 7 63 16 32 55 72 26 43 67 14 31 

66 12 3 5 1 . ·. 4· .: . 7. 
5 7 2 43 66 13 37 54 71 25 42 

77 23 46 62 15 31 54 77 24 41 65 12 36 53 
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III. If ;i = 2 anJ. 6 = 5 DJ.H j_ :::: 3 and. o ;:: 4 

ll 36 54 72 27 45 63 11 45 '72 36 ,.-) 27 54 r 0 

22 47 65 13 31 56 74 22 56 13 47 74 31 65 

33 51 76 24 42 67 15 33 67 24 51 15 42 76 

44 62 17 35 53 71 26 44 71 35 62 26 53 17 

55 73 21 46 64 l 37 55 12 46 73 37 64 21 

66 14 32 57 75 23 41 ,.6 
0 '·"23 57 ; 14 41 75 32 

77 25 43 61 16 34 52 77 ,,4 
3 61 25 52 16 43 

v. I1 a 7 3 and o = 5 VI. If d = 4 and o = 5 

11 46 74 32 67 25 53 11 56 24 62 37 75 43 

22 57 15 43 71 36 64 22 67 35 73 41 16 54 

33 61 26 54 12 47 75 33 71 46 14 52 27 65 

44 72 :} 65 23 51 16 44 12 57 25 63 31 76 

55 13 41 76 34 62 27 55 2_3 61 36 74 42 17 

66 24 52 17 45 73 31 66 34 72 47 15 53 21 

77 35 63 21 56 14 42 77 45 13 51 26 64 32 

6). The nature of these squares gives us also this a..ivantage, that one 

can begin the inscription of his entries by any box of the square which one 

wishes. To show the multiplicity of the forms which are .ierived, let us take 

the first of the six squares which we have just constructed and let us fill 

the boxes in the following way: 



16 ! _:_ 2 ;::, 

.-...,, . ...:> 5-' 

I 
27 7.; /"6 4-" 0 

i 
0 I ! 

! ;-L~~ 73 26 42 65 .. 

14 37 53 
; 6 2 7 2 

25 I 41 64 17 33 

36 52 75 21 44 

71 
I 

12 

. i 

4 
3,. ··: 

·' .. 45 .. 

56 
I 

I 
I 67 
j 

I 
\ 
I 
I 
I .. 
i 

I 

6 4 

5~ 

6~ 

72. 

·3 l 
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I 

I 

J 

64. If one wishes to apply all this to ordinary magic squares ·' one has 

only to put in place of the I.a.tin numbers these values: 

o, 7, 14, 21, 28, 35, 42 

and in place of the Greek numbers the following: 

l, 2, 3, 4, 5, 6, 7, 

in some order, and then to put in place of each entry of the preceding 

the sum of the two Latin and Greek numbers changeJ. in this way. 

complete squc..re we have just found let us put 

in place of the Latin numbers 

the following value 

and in place of the Greek numbers 

substitute these 

l 2 3 4 5 6 7 

14 42 0 35 21 7 28 

l 2 3 4 5 6 7 

5 4 l 7 2 3 6 

anJ. we will obtain the following ordinary magic square: 

Thus, 

square 

in the 
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! j I_ -4 l i ... ····· 

23 
---

49 i 41 8 17 33 J 
·-

I 
- r 

26 35 48 36 10 18 2 

. 
11 16 5 28 34 43 38 

i 
29 45 39 9 19 7 27 

21 6 22 31 46 37 12 

-·-- .. ··-- I 
44 40 14 20 1 24 32 ' 

.. .. ·- .. ... ~- . _. 

3 ?5 30 47 42 13 
~ 

15 i 

In this square, not only all the (horizontal) rows and (vertical) columns, but 

also all the diagonals and their corresponding and completed parallels, as for 

example: 

8 26 38 7 46 20 30 ' 

will produce the same sum, namely 175. 

65. To give .still another iJea of cases where the number n is not prime, 

but indivisible by 3, let us consider that of 

n = 35 = 5"7 

in which the number of all the values which can be given to the letters d and o 

will be 8. Fbr since here, in putting n = pq, there is p = 5 and q = 7, the 

formula which expresses the number of the values is 

(p - 3)(q - 3) = 2"4 = 8, 

which fits very well; for the values which the letters d and o can receive are 

actually the 8 following: 

2, 3, 12, 17, 18, 23, 32, 33 • 
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Next, in excluding frolJl a and 5 the numbers whose difference d - 5 is divisible 

by 5 or by 7, the allowable combinations will be 

a = 2 and 5 = 3, d = 12 and 5 = 23, 

d = 2 and 5 = 18, a = 17 and 0 = 18, 

d = 2 and 5 = 33, d = 17 and 5 = 23, 

d = 3 and 5 = 12, d = 17 and 0 = 33, 

d = 3 and 5 = 32, d = 23 ana 0 = 32, 

d = 12 and 5 = 18, d = 32 ana 0 = 33, 

from which can be formed twelve different squares of 1225 divisions in which all 

the prescribed conditions would be fulfilled; but the reaaer will willingly 

excuse us from the actual construction of even one of them. 
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SECOND SECTION 

... 
lATIN SQUARE A DOUBLE MARCHE OF THE GZJITERA.L FORM 

.;:.: 

1 2 3 4 5 6 n-3 n-2 n ... l n 

2 1 4 3 6 5 ... n-2 n-3 n n-1 

3 4 5 6 7 8 n-1 n 1 2 

4 3 6 5 8 7 n n-1 2 1 

5 6 7 8 9 10 1 2 3 4 
etc. 

66. V.Te have already noted in the preceding section, while establishing the 

classes of regular squares, that this type excludes completely the odd numbers n; 

and 1<1e shall see below that the values of n must be not only even numbers, but in 

addition evenly even numbers, or rather that the number of entries in a square 

a double marche must be divisible by 4. But before coming to the demonstration 
-;. . 

of this truth, it ~<Till be necessary to determine in general the relationship 

existing between the various ·numbers of the square and their position. In order 

to do this, I observe first that because the terms of the first row are at the 

same time the indices of the columns which correspond to them, as those of the 

first column are the indices of the corresponding rows, each entry of the square 

will be determined by t..1o indices, one vertical and the other horizontal. Then 

let t in general be the vertical index of some term x, and u be its horizontal 

i~dex; the problem will be to find the relation between the three letters, t, u, 

and x. To do this it is necessary to distinguish carefully the case where one 

or the other of the two numbers t and u is odd from that in which both t and u 

are even; and we will see right away that the first case gives 

x=t+u-1 

and the second, 

x=t+u-3, 
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which shows at the same time that the two indices t and u can be exchanged with-

out the term x changing value, since it depends only on the s~. of these two 

letters. After this observation, we will be able to propose our above-mentioned 

theorem, stated in the following manner: 

No square a double marche can give rise to a square-forming function 

(formule directrice) unless the number of horizontal or vertical terms is 

divisible by 4. 

67. To demonstrate this theorem, let the series 

a b c d e etc. 

be a function of the arbitrary index a; let 

Ct v € etc. 

-~~ 
be the series of horizontal indices indicated by the letter u , those of the 

* vertical indices marked by t , which always follow the series of the natural 

numbers, being 

1, 2, 3, 4 etc.; 

and it will be necessary, by virtue of the nature of the functions, lvhich was 

shown in the preceding section, for both of these series to include all the 

numbers from 1 to n. Having the two indices, the vertical one t and the 

horizontal one u, >·le can by the preceding rules easily deduce from them the value 

of each term of our function. 

68. First, it is clear that for the first term one ;.Till alvrays have a == ex. 

For the second term, b, there are t = 2 and u = (3, fron which, by distinguishing 

between the two possible values of (3, which can be even or odd, we will have for 

the first b = f3 + 1, and for the other b = f3 ... 1. For the third tenn, c, because 

t = 3, which is odd and u = y, there 1vill always be c = v + 2. For the fourth 

* In the original edition, as the result of an error, the letters t and u are 
reversed here. We have made them consistent with subsequent notation. -Ed. 



-46-

terr:11 d, vThere t = 41 vlhich is even, and u =:= 5 1 it is necessary to disting}lish 

again between the two possible values of d; if it is odd, there uill be d = 5 + 3; 

and if it is even, d = 5 + 1; and thus >-lith the oth~rs. One uill then have for 

the function 
'· 

a b c d e f g etc. 

of a square whose horizontal indices are 

ex, f3, y, o, €1 ~~ 

and whose vertical indices are 

1, 

the following tenns: 

2, 3, 4, 5, 6, 

b = {: 

+ 1 (f3 odd) 

- 1 (f3 even) 

c = y: + 2 
( 

J.o + 3 (o odd) 

d = ~~ ~ 1 (5 even) 

e = E + 4 

J C + 5 (C odd) 

f = l' + 3 ((even) 

g=i)+6 

h = {e + 7 
e + 5 

i = l + 8 

(G odd) 

(9 even) 

etc. 

1l etc. 

7 etc., 
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69. We see, then, that the. ~ete:rm~ation of the letters, a, b, c, d etc. 

by the indices a, B, y 1 5 etc. would b~ absolutely regular if none of the 

alternate letters B, 5 1 t;;, etc. werE: even; and that w,e vTould then have a = a, 

b = B + 11 c = y + 2 1 d = 5 + 3, e = € + 4, f = t;; + 5, etc., the number of these 

terms being always equal ton. Let us suppose for amoment that all these 

alternate letters are odd. Let the sum of .the. series of horizontal ind;i.ces be 

a + B + y ::+- 5. + €. + etc. =I 1 

and the sum of the terms of the function be 

· a + b + c. + d: + e• -:- · etc . = S • , 
and by adding all these terms, we will have this equation: 

8=~+1+2+3+4+5+. \ 1 + (n-1) = ~ + 2 n(n-1) • 

Now since both of our series must ;include all the numbers from 1 to n, it follows 
\ . 

that the two sums S and L must equal each other,· or else that their difference 

must be a multiple of n, )..n 1 from which is gotten 

·s=L,+}.n 

and consequently, it will have to be in this case 

~ n(n-1) ='}.n. 

But we have already said above that squares a double marche completely exclude 

odd values of n; whence, supposing n (an even number) = 2k, k being some integer, 

we will have 

k(2k - 1) = 2}.k 

1 1 or rather A = k - 2 or k = A + 2 1 which is impossible. 

70. But this conclusion originates in the supposition that all the alternate 

letters B, 5 1 ~~ etc. are odd and it is only for this case that the functions 

become completely ~npossible, whatever value is assigned to n. In order that 
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there exist fUnctions which generate the square a double marche, it is absolutely 

necessary that at least one of the letters ~' 5 1 c, e etc. denote an even number; 

and to see what 'l'lill result from this, we uill suppose first that there is only 

one, which will decrease the sum of the series of horizontal indices by 2, and 

. . * 
I'Te w~ll have 

1 2 n(n-1) - 2 = ~n; 

or rather, putting n = 2k, it will have to be 

k(2k - 1) - 2 = 2Xk, 

whence it is evident that k must be an even number. Then let k = 2m and con-

sequently n = 4rn; and our equation >·1ill become 

rn(4rn - 1) - 1 = 2Am, 

or rather 

1 = m(4m - 1) - 2Nn = m(4m - 2A - 1) • 

Now since this equation could not occur unless m = 1 and ~ = 1, it is clear that 

this case can exist only when n = 4. 

7lo Let us suppose in general that ar1ong the alternate numbers ~' o, s1 e, 

etc. there are n even numbers; and since the total nm~ber of these letters is 

1 2 n, it is clear that n cannot be '1 greater than 2 n • Then, since each even value 

of these letters produces, in the 
1 

sum 2 n(n-1) a decrease of tvm, our equation 

will be 
1 .. 
2 n(n-1) - 2n = ~n 

or rather, taking n = 2k1 we will have the following: 

k(2k - 1) - 2n = 2}..k, 

which can occur only when k is an even number, = 2m, and consequently n = 4m. 

Then our equation I'Till be 

* The original edition has here, incorrectly, n(2n 
lines further, n in place of k. -Ed. 

1) ~ 2 = ~n, and four 
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m(4m - 1) - rr = 2~.1.:::. 

from which is obtained the numbers of the alternate letters '·rhich are even, 

namely 

rr = m(4m- 2\- 1), 

that is, equal to a product of two factors, one m and the other 4m - 2A - 1. 

1 Now since rr cannot be greater than 2 n = 2m, and since the coefficient of 

m, 4m - 2A. - 1, is an odd number, it is absolutely necessary that it be 

4m - 2A. - 1 = 1 

from which is obtained 

}.. = 2m - 1 

and 

rr = m. 

Then it is necessary for half of the letters ~~ o, s1 e etc. to be even and for . ' 

the nm~ber n to be divisible by 4; in consequence, oddly even nmnbers, 2, 6, 10, 

14, etc., will be c~lpletely excluded from this section, considering that they 

could never give rise to square-forming functions, which ·uas to be proved (Q.ED). 

72. Thus vre uill establish throughout this entire section that the number 

n be divisible by 4, by making n = 4m, and in all these cases, the preceding 

demonstration enables us to see the possibility of the functions being square-

forming. Let us then consider principally the functions >·Thich correspond to 

the first superscript, 11 and which,because of a= 1, will have in general this 

form: 

1 b c d e f g etc., 

to which corresponds this series of horizontal indices 

the series of vertical indices being that of the natural nm;1bers 

1, 2, 3 , 4 , · · 5, 6 etc • 
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Granting this, we have seen that if' t rr1arks the vertical index and u the 

horizontal index, the term of the function 1·rill be 

x=.::.U+u-1 

except for the single case where the ni.lmbers t and u are even, where it v1ill be 

X = t + U - 3; 

so that in both cases x is an odd nu~ber. 

73. He have shown that for the nunber n = 4r'l1 the case uhere t and u are 

even must always occur m times, from \'Thich it follov;s that there are also m 

cases where odd values for u correspond to the even numbers of t; and for the 

same reason, for the case of odd t there 11ill be m even nunbers and m odd numbers 

for u. Let us clarify this by the :follovling example, where ::1 = 2 and n = 8: 

Vertical indices t = 1, 2, 3, 4, 5, 6, 1, 8. 

Horizontal indices u = 1, 6, 2, 5, 7, 4, 8, 3· 

Here the even indices u = 6 and 4 correspond to the even indices t = 2 and 6. 

The odd indices t = 3 and 7 correspond to the even indices u = 2 and 8. Next, 

the odd indices u = 1 and 7 correspond to the odd indices t = 1 and 5, and the 

odd indices u = 3 and 5 correspond to the even indices t = 8 and 4. Now from 

these t1vo series can be formed, by the formulas x = t + u - 1 and x = t + u - 3, 

the following function, 

1 5 4 8 3 7 6 2 

in which all of the terms are different. 

74. It is as easy to examine each proposed function to see 'Hhether or not 

it is square-forming. For when one has the numbers x and the horizontal indices 

t, one has only to find the indices u, considering one or the ather of the 

formulas given for x, among vThich the last, x = t + u - 3 or u = x - t + 3, 

occurs only >vhen t is even and x is odd; and when all the nurrtbers found in this 
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way for u are different, the proposed function 1dll alv1ays be square-forming. 

Here are some examples: 

I. Indices t = 1 2 3 4 

Function X= 1 3 4 2 

Indices u = 1 4 2 3 

II. Indices t = 1 2 345678 

Functio!l X = 1 3 5 7 4 2 8 6 

Indices u = 143685 2 7 

III. Indices t = 1 2 3 4 5 6 7 8 9 10 11 12 

Function X = 1 4 6 8 10 12 2 3 5 7 9 11 

Indices u ; 1 3 4 5 6 7 8 10 9 12 11 2 

where it is observed that the series u include all the different values, so that 

the functions proposed for x are truly square-forming. 

75. Considering carefully the last h;o examples, one uill observe that it 

is easy to examine in general the functions for all numbers divisible by 4. 

To do this one need only divide them into tl1o equal parts, each of v1hich contains 

an terms, and one will see, by the prescribed rules, if the series found for u 

includes all the different values. Here is the example of two general square-

forming functions for all numbers n = 4m: 

First function. 

First half {tx :_ 11 42 o~ 4 
8 10 12 •• ,4r'1 

5 6 ••• 2m 

u = 1 3 4 5 6 7 .... 2m-l 



{
t = 2m+l 

Second half 
X= 2 

u = 2m+2 

2rl+2 

3 

2m+4 

-52 ... 

2rn+3 2rn+4 ••• 4rn 

5 7 ••• 4m-l 

2m+3 2m+6 ••• 2 

where it is easily verified that, in the t;ro parts found for u, all the different 

numbers actually appear. 

First 

Second function • 

. ~t=l 2 3 4 
half~ 

~X = 1 3 5 J 

5 6 ••• 2m 

9 llo u4M-l 

u = 1 4 3 6 5 8 ••• 2m+2 

2rn+2 2m+3 2rn1'4 •• ~4m ft ;:: 2m+l 
Second half~ 

'x = 4 2 8 6 ••• 4m-2 
'------------------------~------
u = 2m+4 2rn+l 2m+6 2m+3 ••• 4m-l 

In the last part the next-to-last term of u is 4m+2 or rather 21 from which it 

is seen that among the values of u are found all the numbers from 1 to 4m. 

76. Nm-1 1 having found a single square-forming funqti,().r, one can obtain 

from it several others by rules which are s~nilar to those which we used in the 

preceding section. To clarify this completely, we will consider an arbitrary 

function 

1 a b c d e f etc., 

in vThich the term which corresponds to the index t is =x, and we have seen that, 

taking u as the horizontal index, ti'lO cases r.1Ust be distinguished; one where t 

is even and x odd, which produces u = 3 + x - t; and the other where 

u ::: 1 + x - t, which includes all the other values. To make it a little easier, 

one may represent both of these cases by this ambiguous formula 

U = X - t + 2 ~ 1, 
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where the plus occurs when x is odd and t evenr in all other cases the minus 

must be used. · · · 

77. Now, the natUre of all square-fon.1ing functions includes the two 

following properties: 

1) that, while the letter t varies over all values from one to n ~ 4m, the 

letter x must also range over all these different values; 

2) that, while the tv~ letters t and x are varied over all the values, the 

formula u = x - t + 2 + 1 will also range over all the possible values. 

From these emerge naturally the following third property, that while the 

letters x and t vary from 1 to n; the formula t - x + 2 + 1 vTill likewise 

furnish all the different values, provided that one is aware of the 

ambiguity of the signs, the upper of which occurs only vThen the number t 

i~ odd and x even; above all, since these two l~tters are so closely linked 

that 1 while one varies over all ~he values, the other also shows the same 

variations, they can be considered interchangeable, at least in this respect. 

78. Let us now see how one can dedu~.~ the new square-forming function 

from the one which we have s~pposed_ to be: ~mown. For this purpo~e let 

1 A B C D etc. 

be such a fUnction, of whi~h the ten1 corresponding to the index T is X; and 

it will be necessary, while T varie~. over all.th,e ~~lues, for X also to undergo 

the same variati~ns, the same being true fpr X - ~: + 2 .:!: 1 and T - X + 2 ! 1, 

provided that the stated rules regarding the ambiguity of the,~igns are observed. 

Now since it has been noted on :t;he. other hand that the lettersr.t and u may be 

interchanged, it follows that a new square-forming function cop be found by 

fitting the same term x into the index u = x - t + 2 .:!: 1, that is by taking 

T=x-t+2+1 and X = x. 
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; 

Thus, having for the case n = 8 this function 

1 3 5 8 2 4 6 7, 

to vThich corresponds 1 for u, 

1 4 3 5 6 7 8 2, 

one will deduce a ne'\>r function by putting the second term, 31 in the fourth 

place, assigned by the number u written under it; the third term, 51 in the 

third place, and so on for the rest, which l·rill give the new function 

1 7 5 3 8 2 4 6 • 

79• Next, one will alvrays find a new square-forming function by inter-

changing the letters t and x and taking 

T =X and X = t.; 

in this way, the first property is already fUlfilled by itself, and the other, 

which concerns the formula X - T + 2 ! 1, will also be perfectly fulfilled; 

for this formula, at present t - x + 2 ! 1, will take on all the values, provided 
.. 

' that it is observed that the upper (plus) ·sigr} occurs only uhen t is even and x 

odd. It is easy to see that this rule agrees with the first of those ·~Tnich we 
• .. 

gave in Section 27 of the preceding section and which we characterized by.the 

term "reversal"; so that the same rule can always be used without any alteration 

in this section. The square-forming function of the preceding example, that is 

1 3 5 8 2 4 6 

will thus produce by reversal the following 

1 5 2 6 3 7 8 4 • 

80. Another rule may be deduced from the first case by taking 

T = t and X = t - X + 2 ! 11 

since from this results U ~ X - T + 2 ! 1, where the ambiguitr of the signs 

works in the opposite way from the preceding, so that one obtains, by sub-

stituting, in place of T and X, their values, 
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U=-x+4, 

a formula which, without runbiguity, will receive all the possible variations 

while t and therefore also x are taking on all the values. This r~le is 

analogous to the second one in the preceding section, >vhere 'tTe also had 

T = t and X = t - x + 1, 

which occurs in all cases except those where t is odd and x even, 1vhich obliges 

us to use the value 

X=t-x+3. 

If we let, for example, the 

t's = 1 2 3 4 5 6 7 8, 

and the 

x' s = 1 3 5 8 2 4 6 7, 

we vrill have 

X=l 8 7 5 6 3 4 
J,!o 

2 

81. By means of these two rules, one can deduce from each knmm function 

several others and almost always a dozen new ones 1 as happened in the preceding 

section (compare the example of section 42 and what follo11S it) 1 provided how-

ever, that the second rule is used w~~h the indicated rectification. 

To illuminate all this by an example, let us take once more the function 

which we have used up to this point, and write under it its reverse, applying 

then the second and first rules alternately; one will obtain a total of a dozen 

new functions, including the proposed one, as may be seen frODl the following. 

* The original edition erroneously has here 1 8 7 5 6 3 2 4. -Ed. 
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The proposed function l 3 5 8 2 \, 6 7 {r 'T 

gives by reversal l 5 2'~J6, 3 7 8 4 

* and then 

by the second rule 1 8 7 5 
,.. 

3 4 2 f' ,, 0 

t±r 
[applied to I] l 6 4 7 3 8 2 5 

by the first rule l 7 5 3 8 2 ' 6 {nr 4 

[applied to I] l 8 6 7 4 r:; 3 2 / 

by the second rule l 4 7 2 8 5 6 3 {IV 
[applied to III] 1 3 8 6 4 2 5 7 J... 

by the first rule 1 6 2 5 7 4 8 3 { v 
[applied to II] 1 4 8 2 6 7 3 5 

by the second rule l 5 4 8 7 3 2 6 [ 
VI 

[applied to V] l 7 6 3 2 8 5 4 ~ 

;.;here 'tTe have continued these ope!ations until the reproduction of the last 

functions 1 vThich occurs at the siJcth pair. 

82. Let us apply the same operations to a function of tv:relve terns, adopt-

ing one formed from those which proceed in arithmetic prQgxession, and the 

complet~ dozen \'lhich are obtained by these h1o rules will be: 

{~ In the original edition, the order of succession of the functions is inter
changed for groups III and IV. The nm~bering of the pairs of functions 
(Roman numerals) is not found in the original edition. 

The same remark about order of succession applies to section 82 as ivell as 
to each of the four dozens of section g4. -Ed. 



proposed 

Reversed 

by the second rule 

[applied to I] 

by the first rule 

[applied to I] 

by the second rule 

[applied to III] 

by the first rule 

[applied to II] 

by the second rule 

[applied to V] 

1 3 

1 8 

5 

2 

7 ) 

7-- 3 

1 12 11 10 

1 7 4 10 3 

1 12 5 3 9 

1 11 12 9 10 

1 

1 

1 

1 

1 

1 

3 

4 

7 

4 

8 

11 

11 

6 

8 

2 

10 

4 

2 

8 

2 

11 

3 

6 

9 

10 

12 

9 

8 

11 4 2 

10 4 9 5 12 

8 6 7 4 5 

9 6 1,2 5 11 

7 2 11 6 4 

7 8 6 5 4 

12 

12 

3 

9 

4 

10 

8 

2 

10 

10 

12 

12 

10 

3 

7 

5 

2 

6 

5 

11 

5 

11 

5 

7 

7 

5 

8 

6 

3 

of which the last pair are reproduced by the first rule. 

12 

6 

2 

8 

10 

3 

4 

9 

12 

3 

2 

9 
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10} I 
11 

3} II 
2 .. 

5}rv 
11 

83. Nov1 each of the square-fanning functions for the superscript 1 

furnishes, as 1·1e have shmm above, appropriate functions for all the other 

superscripts and even such that they present different terns for all the 

columns. For it is clear, by the construction of the Latin square, that by 

increasing by a value of 2 the terms of the function for the superscript 1, 

one will obtain another function for the superscript 3, and by increasing the 

terms of the latter by 21 another function for the superscript 5. And in 

general, for a function for the superscript a, letting it be 

a b c d e etc., 

a function ·Hill be deduced for the superscript a + 2 by adding 2 to each tenn 
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of the preceding function. Thus for the case of n = 8, each function for the 
l;: 

superscript 1, of which we 
', 

have set forth a dozen, will fUrnish appropriate 

functions for the odd superscripts; for example 

for the superscript 1 l 3 5 7 4 2 8 6 

for the superscript 3 3 5 7 1 6 4 2 8 

for the superscript 5 5 7 1 3 8 6 4 2 

for the superscript 7 7 1 3 5 2 8 6 4 

where each vert~cal column contains different numbers, even or odd, separately. 

84. The formation of functions for the superscript 2 and the other even 

numpers is not so obvious; nevertheless, as in the Latin square the se9o~~ ro>-T 

is deduced from the first by adding one to all the odd terms and subtracting one 

from the ~v~n ones, one can suppose that, in doing the same thing in regard to 

the p:rpposed function, one will get the function for the superscr~pt 2, because 

in effect all the odd terms produce in this way all the even ones, and reciprocally 

all the even terms, when one is subtracted from them, produce the odd ones. But 

it must again be demonstrated that the function which results from' this is· 

effectively a square-forming function. 

85. For this purpose, in the function for the superscript 1, let the term 

which corresponds to the index t = x, and let x' be the one which corresponds to 

the same index in the func.tion for the superscript 2. In the same way let u be 

the horizontal index of the same term x of the first function, and u' that of 

the term x' in the other; and one will have, by observing the prescribed rules 

about the ambiguity of the signs, 

U = X - t + 2 + 1 and u' = x' - t + 2 + 1. 
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Thus there will be four ~a~es to considerLaccord~~ to whether the two numbers 

t and x are even or odd; and th~ values of ,u and u'. will be for each case ex-

pressed in the following manner: ,·,· 

I II III rv 

t = 2i t = 2i t = 2i+l t = 2i+l 

X = 2k X = 2k+l X =2k X = 2k+l 

u = 2k-2i+l u= 2k-2i-+4 u = 2k-2i u = 2k-2i+l 

x'= 2k-l x'= 2k+2 x'= 2k-l x•=. 2k+2 

I u'= 2k-2i+2 u'=2k-2i+3 u'= 2k-2i+l u'= 2k-2i+2 
.. 

86. From t~is it is seen that the second and third cases give even values 

for u and that the values of u' are less than one, from which it is evident that 

all the even values of u produce for u' all the odd values. 

Next 1 the first and the fourth case 1 where the values of u are odd, furnish 

for u• values greater than one, and thus all the odd values of u produce for u' 

all the even values; so that all the values of u, different one from another, 

produce also for u' all the possible values, and the function is unquestionably 

square-forming, since it has all the necessary characteristics. 

87. Having thus found the function for the superscript 2 in the way which 

we have just taught, one will form from it, by the first rule, functions for all 

the other even superscripts, and by this means one will easily construct, from 

each function proposed for the superscript 1, a complete system of functions 

similar to the one which we give here for the function 

1 3 5 7 4 2 8 6. 
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For the superscript 1 1.: . 3 . 5 . 7 . ~4 2 8 6 

For the superscript 2 2 4 6 8 3 l 7 5 

For the superscript 3 3 5 7 1 6 4 2 8 

For the superscript 4 4 6 8 2 5 3 1 7 

For the superscript 5 5 7 l 3 8 6 4 2 

For the superscript 6 6 8 2 4 7 5 3 1 

For the superscript 7 7 1 3 5 2 8 6 4 

For the superscript 8 8 2 4 6 1 7 5 3 

where one sees that in each row the terms are all different one from another and 

' 
that consequently when the superscripts are joined in the manner i'lhich has been 

explained to all the numbers in the proposed Latin square, no term can appear 

more than once, and the square i'lill be complete. 

88. In considering more attentively the complete system of functions which 

we have formed one will see first that all the ro·ws fit in perfectly with those 

of the Latin square "a double marche" and that there is no difference except in 

their order, which is changed, that is to say the horizontal indices, which in 

the square appear in the natural order 1 2 3 4 5 6 7 8, are here 

1 3 5 7 4 2 8 6. In considering then in general any row, and 

"' letting its index be t and its highest (supreme) term be x expressed with the 

superscript 1, if ·we express the terms which follm.,r the x, in descending order, 

by 

x'' 
and give them the 

2, 

xl I' 

3, 

x' 'I 
' 

4, 

etc. 

etc. 

the term x(~) will have the exponent ~ + 1; and taking ~ so that it becomes 

)cp) = t, 
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which is the term which corresponds to the same .index in the first row of the latin e 
square, it will be necessary to give to that te~.the superscript ~+1. Or, whenever 

the values x, x; x'', x''', .•• x(~) take the same order as in the Latin square, one 

will always have t ::: x + cp - {~ or rather cp :;;: t '- x + {~, and therefore 

cp + 1 = t - X +{~ = t - X + 2 ~ 1 1 

where the ambiguity of the signs follows the same laws that ue have stated above. 

89. From this it is clear that the superscript~. of the first row of our 

Latin square also form a square-forming function, derived from the proposed 

function by the second rule, and that in order to construct a complete square 

one can begin with the first row, assigning to it superscripts according to any 

function and continuing to assign the others by descending according to that 

column of the square which begins with the same number. Thus, since one derives 

from the.proposed function, 

1 3 5 7 4 2 8 6, 

by the second rule the function 

1 8 7 6 4 5 2 3, 

one can begin with this function combining it with the first row of the original 

(simple) square, for whose terms it will serve as superscripts; and the others 

will be inserted in the way which we have just explained and which we will make 

clearer by the example of the following square: 

11 8 2 .. : 37 46 54 65 72 83 
22 17 48 35 63 56 81 74 

33 42 51 68 76 87 14 25 
44 31 62 57 85 78 23 16 

55 64 73 82 18 21 36 47 
66 53 84 71 27 12 45 38 

77 86 15 24 32 43 58 61 
88 75 26 13 41 34 67 52 
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But it must be noted that this beautiful pr~perty'of the superscripts of the 

first row can occur only when the system of functions is formed from a single 

proposed function. 

90. However, it is easy to combine several square-forming functions to-

gether to form such a complete system, as we have shown in section 35 of the 

preceding section. I add also, in regard to that section, that after having 

obtained the functions for the odd superscripts of some function of the super-

script 1, one can deduce the functions for the even superscripts of another 

function, provided that its terms follow the same order as far as even and odd are 

concerned. Thus for the preced~g example, after deducing the odd square-

forming functions of the function 1 3 5 7 4 2 8 6, one 1vill be 

able to obtain those which determine the formation of the even superscripts of 
·'-

that function: 1 5 7 3 8 4 6 21 which is also square-forming and 

whose terms, as concerns even and odd, follOiv the same .order. Here is the 

complete system: 

For the superscript 1 1 3 5 7 4 2 8 6 

For the superscript 2 2 6 8 4 7 3 5 1 

For the superscript 3 3 5 7 1 6 4 2 8 

For the superscript 4 4 8 2 615 7 3 

For the superscript 5 5 7 1 3 8 6 4 2 

For the superscript 6 6 2 4 8 3 715 

For the superscript 7 7 1 3 5 2 8 6 4 

For the superscript 8 8 4 6 2 5 1 3 7 
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which, used as instructed, >-Jill give the ·following ·complete ·:~ 
square 

ll 26 37 42 58 65 74 83 

22 17 46 35 63 54 81 78 

33 48 5 
l 64 72 87 16 25 

44 31 68 57 ·a5 76 23 12 

55 62 73 86 14 2 1 38 47 

66 53 82 71 
.7 
2 18 45 34 

77 84 15 28 3 
6' 43 52 61 

88 75 24 13 41 32 67 56 

where the superscripts of the first ro>-r have this order: 

l 6 7 2 8 5 4 3, 

which plainly is not square-fonning, since the values of u would be 

l 5 5 7 4 2 6 6, 

and therefore far from being different one from another. 

91. After these general thoughts, which can be applied to all Latin squares 

a double marche, no matter how large n is, as long as it is divisible by 41 we 

will develop some particular cases where n = 4 and n = 8, but omitting larger 

ones, which would lead us too far; and since, for the case of n = 8, we have 

already given several examples, vTe will limit ourselves to finding all its square-

forming functions; having shown that each of them can furnish a complete system 

and that two different square-forming fUnctions can also lead to a complete system, 

as long as the terms maintain the same order as far as even and odd are concerned. 

Once these systems have been formed, whose number obviously is much larger than 

that of the first square-forming functions, the construction of the squares 

offers not the slightest difficulty. 

* The original edition erroneously gives 82 instead of 86 and 76 instead of 
7l in the fourth column. -Ed. 
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TRE CASE OF n "" 4 

92. The Latin square a double marche is in this case 

1 2 3 4 

2 1 4 3 

3 4 1 2 

4 3 2 1 

which gives for the superscript 1 only the two following functions: 

1 4 2 3 and 1 3 4 2, 

of vThich one, if one applies the two prescribed rules, produces the other. From 

these two functions can be formed the two complete systems which follow. 
I II 

For the superscript 1 1 4 2 3 1 3 4 2 

For the superscript 2 2 3 1 4 2 4 3 1 

For the superscript 3 3 2 4 1 3 1 2 4 

For the superscript 4 4 1 3 2 4 2 1 3 

and by writing out the superscripts according to these functions 1 one obt.Q.ins 

the two complete squares below: 
I II 

11 23 34 42 11 24 32 43 

22 14 43 31 22 13 41 34 

33 41 12 24 33 42 14 21 

44 32 21 13 44 31 23 12 

One will easily be convinced that, whatever other Latin square one wants 

to construct, one will never be able to obtain from it other complete squares 

which satisfy the prescribed conditions. However, both of the squares which we 

have just formed also admit of transpositions of the columns such that the 

prescribed properties appear even in the diagonals. Here are t1vo examples: 
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I II 

11 34 42 23 11 43 24 3 
2 

22 43 31 4 ' 
1 

'2 
2 34 13 41 

33 12 24 41 

~~~ 
1 42 14 2. 

44 21 13 32 12 31 23 

CASE OF n = 8 

93· The fundamental Latin square is: 

1 2 3 4 5 6 7 8 

2 1 4 3 6 5 8 7 

3 4 5 6 7 8 1 2 

4 3 6 5 8 7 2 1 

5 6 7 8 1 2 3 4 

6 5 8 7 2 1 4 3 

7 8 1 2 3 4 5 6 

8 7 2 1 4 3 6 5 

for which the two general formulae furnish first the two following square-forming 

functions 

1 3 5 7 4 2 8 6 

1 4 8 6 2 3 5 7 

of which the first begins with the four odd numbers; and it is not hard to find 

all the functions whose even and odd terms preserve the s~ae order; they are the 

four which follmV": 

1 3 5 7 4 2 8 6 

1 5 7 3 4 8 2 6 

1 5 7 3 8 4 6 2 

1 7 5 3 8 2 4 6 
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5)4. Let us then apply sw;cessively the two rules presented and demonstrated 

above (section 78 ff.) to these four functions, which will give us the four 

following groups of twelve. 
~to 

First group of twelve 
'"'I 

fundamental 1 3 5 7 4 2 8 6l I 
reversed 1 6 2 5 3 8 4 7j 

second rule 

{~ 
8 7 6 4 5 2 ~} II 

(applied to I) 5 4 8 3 7 6 

first rule rl 8 5 3 2 7 6 4\ III 
(applied to I) 'L1 7 8 5 6 4 3 2J 

second rule rl 3 7 2 6 8 4 ~} IV 
(applied to III)Ll 4 6 8 2 3 5 

first rule e 5 6 2 7 3 8 ~} v 
(applied to II) 1 ), 2 7 8 5 3 .... 

second rule {1 6 8 3 7 4 2 ~} VI 
(applied to V) 1 7 4 6 8 2 5 

Second group of twelve 

fundamental l 5 7 3 4 8 2 :] I 
reversed 1 7 4 5 2 8 3 

second rule {~ 6 5 2 4 7 8 31 II 
(applied to I) 4 2 8 6 7 5 3j 
first rule t 3 8 2 7 5 6 ~} III 
(applied to I) 4 8 5 3 2 6 

second rule ~ 8 6 3 7 2 4 ~} IV 
(applied to III) 1 7 6 8 3 5 4 

first rule {1 8 5 7 6 3 2 ~} v 
(applied to II) 1 6 4 7 8 3 5 

second rule t 3 7 6 2 4 8 ~} VI 
(applied to v) T 5 2 6 8 4 3 

* In the original edition, the order of succession of the square-forming functions 
is reversed in groups III and IV of each group of twelve. See note 1, P• 340. 
- Ed. 



-67-

Third group of h1elve 

fundamental 1 5 7 ':l. 8 4 6 :} -' I 
reversed 1 8 4 6 2 7 3 

second rule 

r~ 
6 5 2 8 3 4 ~} II 

(applied to I) 3 2 7 6 8 5 

~} first rule G 3 2 8 7 5 4 III 
{applied to I) 4 6 7 3 2 8 

second rule {1 8 4 5 7 2 6 ~} IV 
(applied to III) 1 7 8 6 3 5 2 

first rule rl 7 5 8 6 4 2 ;} v 
(applied to II) ~1 6 8 3 4 7 5 

second rule 

G 
4 7 5 2 3 8 ~} VI 

(applied to V) 5 6 2 4 8 3 

Fourth group of twelve 

fundamental 1 7 5 3 8 2 4 D I 
reversed 1 6 4 7 3 8 2 

second rule {~ 
4 7 2 8 5 6 ~} II 

(applied to I) 5 2 6 3 7 8 

first rule 

~ 
..., 

5 8 2 4 6 ~} J III 
(applied to I) 4 8 2 6 7 3 

second rule {l 8 7 5 6 3 4 ~} IV 
{applied to III) 1 7 6 3 2 8 5 

first rule {l 5 4 8 7 3 2 :} v 
(applied to II) 1 8 6 7 4 5 3 

second rule {~ 6 2 5 7 4 8 ~} VI 
(applied to V) 3 8 6 4 2 5 

95· Thus here are forty-eight square-forming functions, which exhaust our 

whole Latin square; for all the functions i·lhich can be obtained from it by the 
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only one of these functions, one can construct from it a complete square and 

consequently forty-eight different solutions, without counting those which 

spring from the combination of several of these functions 1·rhose even and odd 

terms preserve the same order and whose number is probably very considerable. 

To facilitate such combinations and to be able at the same tine to judge of the 

number of all the different solutions, we are going to distribute these forty-

eight functions in different classes, according to the order that is observed 

as far as even and odd are concerned, and 1·Te 1vill designate even numbers by the 

letter e and odd ones by the letter o; we >vill obtain the following types: 

I. 0 0 0 0 e e e 

1 3 

1 5 
1 5 

1 7 

5 7 4 

7 3 4 

7 3 8 

5 3 8 

2 8 
8 2 

4 6 

2 4 

II. o o o e e 

1 3 

1 3 

1 3 

1 7 

5 8 

7 2 

7 6 

5 8 

2 4 6 

6 8 4 
2 4 8 

6 4 2 

e 

6 

6 

2 

6 

7 

5 

5 

3 
III. o o e e e e o o 

1 3 8 6 

l 5 2 6 

1 5 6 2 

1 7 4 6 

4 . 2 

8 4 
4 8 

8 2 

5 

3 

3 

5 

7 

7 

7 

J 
IV. o e e e e o o o 

1 4 
l 4 
1 4 

l 8 

2 8 
6 8 
8 2 

4 6 

6 

2 

6 

2 

7 

3 

7 

7 

5 

5 

3 

3 

3 

7 

5 

5 

v. 0 0 

1 

l 

l 

1 

3 

7 

7 

7 
VI. o e 

1 4 

l 6 
l 6 
1 8 

e o e 

2 

4 

6 

8 

7 

5 

3 

5 

6 

2 

2 

6 

e o 

8 

8 

8 

4 

5 

3 

5 

3 

e 

4 

6 

4 

2 

e o e o o e 

2 7 8 

4 7 8 
8 3 4 

6 7 4 

5 

3 

7 

5 

3 6 
5 .2 

5 2 

3 2 

VII. ~o---~e ___ o~~o~~e ___ o~·--~e~~e 

1 4 
1 8 
1 8 

1 8 

7· 5 

5 3 

5 7 

7 5 

2 

2 

6 

6 

3 

7 

3 

3 

8 

6 

2 

4 

VIII. ~o--~e ___ o~~e~~e __ ....;o~~e~_:::.o 

1 4 
l 6 

l 6 
l 8 

7 2 8 

5 2 4 

5 2 8 

7 6 4 

5 6 

7 8 

3 4 

5 2 

3 

3 

7 

3 

,~, The original edition has,erroneously, 1 8 7 5 6 3 2 4. -Ed. 
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IX. 0 0 e e 0 0 e e x. 0 e e 0 0 e e 0 

1 3 2 8 7 5 4 6 l 4 6 7 3 2 8 5 
1 3 8 2 7 5 6 4 1 4 8 5 3 2 6 7 
1 5 2 6 3 7 8 4 1 6 2 5 3 8 4 7 
1 5 4 8 3 7 6 2 l 6 2 5 7 4 8 3 
1 5 4 8 7 3 2 6 1 6 4 7 3 8 2 5 

1 5 6 2 7 3 8 4 l 6 8 3 7 4 2 5 
1 7 6 8 3 5 4 2 1 8 4 5 7 2 6 3 

1 7 8 6 3 5 2 4 l 8 6 3 7 2 4 5 

96. In considering some class of square-forming functions containing ~ 

functions, it is clear that, since one can combine each of them with each of the 

functions of another class, one will obtain A2 different solutions. Thus, since 

we have in all eight class·es each of which coritams four functions,·· of which each 
~} 

can be combined with one or the other of the same class , one can deduce sixteen 

solutions from each class and consequently 128 solutions from the eight classes; 

and by adding to them the two classes of eight functions, each of vlhich furnishes 

64 solutions, the number of all the possible solutions will be 256, all of which 

will equally satisfy the problem. But it must be noted that the Latin squares 

~ quadruple marche will give a still greater number of them, without counting 

those which can be obtained by several transformations which are_ ~xplained above 

and which will be even more clearly explained in what follovTs. This, added to 

the different solutions for the cases of n = 3, n = 4, n = 5, and n = 7, ought 

to increase our surprise in regard to the case of n = 6, the impossibility of 

which appears to be more and more confirmed. 

End of second section 

* The original edition erroneously has: " ••• combined with one or another of 
the other classes ••• ". -Ed. 



THIRD SECTION 

.. 
ON IATIN SQUARES A TRIPLE MARCHE OF THE GENERAL F'::RM 

1 2 3 4 5 6 7 8 9 etc. 

2 

3 

4 

3 1 

1 2 

5 6 

5 6 

6 4 

7 8 

4 8 9 7 

5 9 7 8 

9 10 11 12 

etc. 

etc. 

etc .. 

etc. 

* 96. [a] Here, it is evident that the number n must necessarily be 
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divisible by 3; we will thus establish throughout n = 3m, where m 1'lill indicate 

the number "members 11 (groups of 3) of 11hich each row and column is composed. 

Thus, the simplest case will be the one where m = 1 or rather n = 3, and the 
' ;_·~-

Latin square comin'ising a single member of the general square ~ triple maTche 

will be: 

1 2 3 

2 3 1 

3 1 2 

the construction of which has been sufficiently explained in section 18 of the 

first section. 

97• The first question which presents itself here is that of knowing 

whether or not all the cases of this square ~ triple marche allvays admit of 

square-forming functions. Now I should first take note of the fact that when 

the square is made up of two members, it can never admit of square-forming 

functions, so that the case of n = 6 must again be excluded from this type of 

simple squares. One can convince oneself of the truth of this by the ordinary 

* The original edition erroneously has section 96 twice. -Ed. 
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method of looking for functions, but this truth will acquire that much higher a 

degree of certainty since one can give a very rigorous demonstration of it, drawn 

from principles which are completely different from those by which we have proved 

the impossibility of the preceding cases, where the number n was oddly even, and 

which could not be applied in this section because of the multiplicity of differ-

ent cases which one would be obliged to consider. 

98. In order to make this demonstration clearer and easier, I will indicate 

the first member of the proposed square a triple marche, which is 

l 2 3 

2 3 1 

3 l 2 

by the letter A, which will thus include three rows and three colUQns; and the 

letter a will indicate each number contained in this small square, that is to 

say, 1, 2, or 3. In the same way, I will express the second member of the square, 

which is 

4 

5 

6 

5 

6 

4 

6 

4 

5 

by the letter B and each of the numbers which it contains by b. Granting this, 

we can represent the Latin square with two members, that is to say for the case 

where n = 6, in this way: 

A B 

B A 

. * where each row and column includes s~x terms. 

-l~ Original edition:" .... includes three terms." -Ed. 
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99· No'·' I observe that, if this square admitted of a square-forming function, 

it should contain three a's and three b' s, some of which ,.,ould be taken from the 

first column AB, and others of which \'Tould be taken from the second column BA. 

Now since all the terms of such a function should be taken from different rows 

and columns, each term which one puts in the function excludes one row and one 

column. Thus, when one wishes to take all three a's from the first column, since 

they woulq be taken from the letter A, the first row will at once be excluded, and 

so will the first column, and consequently the three b's should be taken from the 

second part of the second column, that is from the member A, the only one remain

ing which contains nob's at all. 

Let us suppose then, that one takes from the first column two a's and one b, 

that is, three terms; and it will be necessary for the other to provide as many, 

that is, one a and two b's. Now since the two a's are taken from the member A 

of the first row and the b from the member B of the second row, it is clear that 

the remaining term of the first row can be only b, and that of the second row 

a a,since the first column is excluded. Instead of the missing terms a b b, 

we obtain a a b. From this one already sees fairly clearly that while taking one 

a and two b's from the first column, it would be similarly impossible to derive 

from the second column the remaining terms a a b. Consequently, it is demon

strated that the case of n = 6 admits of no square-forming function. 

100. But if for the case of n = 9 or m = 3, we mark the third member of 

the general square, that is 

7 8 9 

8 9 7 

9 7 8 

by the letter C and the three numbers, 7, 8, 9 which it contains by the letter 

c, we shall have the square 



A B C 

B C A 

C A B 
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to exruaine, and the square-forming function, if there is one, will include three 

a's, three b's, and three c's. In taking the three a's from the first column, 

the first rmv '"ill be excluded and in consequence one Hill be able to take from 

the second column only the three c's, which will exclude the second row; and 

because there are still the three b's remaining in the third column, one easily 

sees that this case furnishes square-forming functions; one will even be able to 

deduce some in other ways. 

101. In examining in the same way the case of n = 12 or r:1 = 4 and designat

ing the fourth member of the general square 

by the letter D and the terms 

square to be examined is 

10 

11 

12 

which it 

A 

B 

c 

D 

B 

c 

D 

A 

11 

12 

10 

12 

10 

11 

contains, 

c D 

D A 

A B 

B c 

10, 11, 12 by d, so that the 

one will see that, no matter in what way one takes the small letters from the 

rows and columns of this square, it will never furnish square-forrning functions; 

and it seems that one can dare to draw the sru11e conclusion for all cases where 

n is an even number, so that this section applies only to odd rmltip1es of 3, 

like 3, 9, 15, 21 etc. 
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102. The beauty of the demonstration for the case 01' n = 6, presented in 

sections 98 and 991 leads me to digress to Latin squares a quintuple marche, 

or ~ septuple marche or that of any other odd number, for which one can 

demonstrate with the same ease that any of them which comprise only two members 

can never admit of square-forming functions. For designating, for the case of 

n = 10 = 2 X 5, the two members of which it is composed by A and B, and the five 

te1ms which they each contain by a and b, it will be a matter of deducing from 

the square 

or 

A B 

B A 

a a a a a b b b b b 

. . . . . . . . 
a a a a a b b b b b 

b b b b b a a a a a 

. . . . . . . . . . 
b·b b"b b a a a a a 

a function which contains, in some order, five a's and five b's. 

103. Thus, if we wanted to take all five a's from the first column, 

the first row l'lould be excluded and there would remain in the second column 

only the term A, which includes no b' s. If i·!e took from the first column four 

a's and one b, the second column could furnish only one b and four a's, vlhile 

1-1e 1muld need one a and four b' s in order to complete the function. The same 

problem occurs vthen three a's and two b' s are taken from the first column, for, 

instead of the two a's and three b' s that vTe still would need the second column 

vrould furnish only two b' s and three a's. From this one sees that there are 
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no square-forming functions to be expecteQ from it; and the reason is frankly 

the fact that the number of small letters is odd, and it seems that one can 

maintain that the same impossibility exists in all cases i·rhere the number of 

members A, B etc. is even. 

lo4. But in all cases where the number of small letters is even, this 

impossibility ceases completely. For let us suppose that it is a question of a 

square a quadruple marche which includes t-vm members, A and B, each of which 

contains its small letter, a or b1 four times, which would be the case for 

n = 8; it will be necessary to obtain from the square ~ a function which 

includes, in some order, four a's and four b' s, which presents not the slight-

est difficulty. One has only to take two a's and two b' s from the first column; 

and since in the second column the first member, B, provides two more b' s and the 

other member, A, provides two more a's, the square-forming function will be 

complete. From this one sees at the same time that in all these cases it is 

always necessary to take two a's and two b's from each column; and this reason-

ing holds good for all even numberso 

105. Let us return to our square a triple marche; and in order to find 

its square-fanning functions, let us consider some terms, x, 'i·lhich corresponds 

to the vertical index t and to the horizontal index u; and by comparing this 

term to the sum of its indices, t and u, one ·tvill soon observe that there is a 

double relation between them; one of \rhich is 

x=t+u-1 

and the other 

x=t+u-4 

the difference between them depending on the divisibility of the numbers t and 

u by 3· Nmv these numbers reduce to three types, which we can represent by 
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3~ + 1 1 3~ + 2, 3). + 3, or. ~.imply by 1 1 2, 3, \·1hi9,h can equally well designate 
.J ·' ' . '\ ~· ···' t 

the three types. Next, bec~~se of the ambiguity of the numbers 1 and 4 in the 

two expressions for x, we will put 

x.=t+u-w. 

Granting this, the following; table -vrill se1·ve to determine the relation between 

x and its indices and the values of w, for all types of values of t and u. 

If\. = 1 1 1 2 2 2 3 3 3 

= 1 2 3 1 2 3 1 2 3 

one will have {w = 1 1 1 1 1 4 1 4 4 

= 1 2 3 2 3 1 .3 lb X 

from which one sees that there is w = 4 when one or the other of the indices 

t and u is = 3 and neither one = 1. 

106. Having thus found x = t + u - w, one obtains reciprocally 
.. , 

u = x - t + vT1 

from which one can find the horizontal index u of each term x and the correspond

ing vertical index; and from tnere, one can assign the true value of w for all 

values t and x, as one can see from this table: 

If {X = 1 1 1 

t = 1 2 3 

2 2 2 

1 2 3 
3 3 3 

1 2 3 

one will have vl = 1 4 4 1 1 4 1 1 1 

There are consequently three cases where w = 4, which we will represent separately 

thus: 

w ~ 4, i~ ~ : ~1~1:1 
107. This last table will be a great help in examining if a proposed 

function is square-forming or not. For one need only write this formula or the 

series of x and that of t one __ tinder the other, and deduce from it, according to 
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this table, the values of u, and ;1hen one finds that they are. all different, it 

is a sure sign that the proposed function is in effect square-forming. To 

illustrate this with an example, let us take for the case of n = 9 

this progression for x: 1 3 5 7 9 2 4 6 8 

and writing under it the series of t: 1 2 3 4 56 7 8 9 

by means of the stated rule,one will have u = 1 2 6 4 5 9 7 8 3 

which, in including all the different values, shows that the arithmetic 

progression 

l 3 5 7 9 2 4 6 8 

is in effect square-forming. 

1o8. Nov1, having found one square-forming function, one can, by methods 

similar to those which we have used in the preceding sections, deduce from it 

many other functions which are also square-forming. For, granting that for a 

new function the term X corresponds to the vertical index T and the horizontal 

index u, since we had a while ago x = t + u - w, one sees that the two indices 

t and u are permutable, so that, taking 

T = u and U = t, 

one will have 

X = x. 

Thus in the preceding example, having before one's eyes the values of u, one 

has only to arrange them in their natural order and to write under each one its 

number x, in the following manner: 

T = 1 

X = 1 

2 

3 

3 

8 

4 

7 

5 

9 

6 

5 

7 

4 

8 

6 

9 

2 

and this function will surely be a new square-forming function, since all the 

U's, being the same as the t's, have different values. 



-78-

109. One will thus be able, as in the preceding sections, to exchange 

the two letters t and x, taking 

T = x and X = t, 

from which one will get, as above, a new function, the inverse. Thus, the 

functiSn proposed above 
; ' 

1 3 5 7 9 2 4 6 8 

will furnish by inversion this new function 

1 6 2 7.F. 3 8 4 9 5, 

and the function which we have gotten from the proposed one by the other r~le, 

1 3 8 7 9 5 4 6 2, 

leads, when inverted, to the followipg: 

1 9 2 7 6 8 4 3 5· 

110. Having for U by virtue of this rule, where T = x and X = t, the 

formula 

u = X - T + w = t - X + w, 

since these expressions range over all the values while t and x undergo the 

necessary variations, it follows that, taking 

one can put 

X = t - X + w, 

and that is the essence of the second rule vrhich differs from those of the 

preceding sections only ~rl,"t;h :r;~~pect to the meaning of w, vrhich here will al-
; . ~ . ' -~ ~ . ~ ; ' ' . 

ways be = 1, except for the three cases mentioned in section 106, that is* 

* The permutation of x and t with respect to the end of section 106 comes from 
the fact that one supposed, at the -beginning of section 110, T = x and 
X = t .. -Ed. 
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t = 1 1 2 

X= 2 3 3 

for which it is necessary to take w = 4. By means of these tno rules, as soon 

as one has .found some functions .. by the ordinary methods, one can deduce from 

them several others. 

111. But here, one will soon discover great variety in the functions 

which one wants to transform by these rules. There are some ,.rhich remain 

unalterable by both rules. Such a one is 

l 3 2' 7 9 8 4 6 5 

which is the diagonal of the proposed square; it is reproduced by both the first 

and the second of our rules. Next, there are also functions vrhich by the use 

of both of these rules produce only one new function. Such a one, for example, 

is the arithmetic progression decreasing by 11 

l 9 8 7 6 5 4 3 2, 

which reproduces itself by the first rule, while the second rule furnishes this 

function: 

1 6 5 7 3 2 4 9 8, 

which reproduces itself by reversal. 

112. Let us develop the proposed arithmetic progression 

1 3 5 7 9 2 4 6 8, 

which with the help of our bvo rules [secticns 109 and 110] furnishes, as one 

will see, four new functions. 

Proposed function 1 3 5 7 9 2 4 6 8 

Reversed function 1 
/' 2 7. 3 8 4 9 5 0 

t: 3 8 7 9 5 4 6 2 
Second rule 

9 2 7 6 8 4 3 5 
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There are, thus, with the preceding ones, seven squa~e-forming functions for 
_._,-, ._ .. :_ 

the case of n = 9, which all hav~ the exce:tlE:nt propertY, that their terms follow 

the same order with respect to their divisibility by three. Now it is easy to 

find still others Which in this regard follOW the same lai·TS 1 Which we >-Till Set 

forth all together. 

1 3 2 7 

1 3 5 7 

l 3 8 7 

l 6 2 7 

1 6 5 7 

1 6 8 7 

1 9 2 7 

l 9 5 7 

1 9 8 7 

9 8 4 6 5 

9 2 4 6 8 

9 5 4 6 2 

3 8 4 9 5 

3 2 4 9 3 

3 5 4 9 2 

6 8 4 3 5 

6 2 4 3 8* 

6 5 4 3 2 

all of which we have found, except the fo],.lowing two: 

1 6 8 7 

1 9 5 7 

3 

6 

'I 

5 4 

2 4 

9 2 

3 8~~ 

which reproduce each other by both the first and second rules. 
; ~ ; 

It is important to have set forth these 9 functions which keep the same 

order 1vith respect to the terms which are divisible by three. For we -vlil1 see 

in the following section that, in order to form a complete magic square, one can 

use 2 and even 3 similar functions for the different superscripts in regard to 

our three types of numbers; from this one sees that these nine functions are 

capable of producing a prodigious number of different squares. 

* The original edition erroneously has 1 9 5:. ''( 6 2 4 9 8 • .:Ed. 
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113· But there is also a quantity of square-for~ing functions \'7hich in 

this way furnish as many as a dozen new ones, as one can see from the following 

one, chosen at random. 

Proposed function 1 3 8 6 7 9 2 5 4 

Reversed function 1 7 2 9 8 4 5 3 6 

from which one gets by the 

second rule { 1 3 5 2 8 7 9 4 6 

1 5 2 8 7 3 6 9 4 

* { 4 2 8 3 6 first rule 1 9 5 7 

1 3 6 9 2 7 5 4 8 

second rule { 1 8 2 9 6 7 5 4 3 

1 3 7 8 4 9 6 5 2 

* { 8 6 2 4 first rule 1 3 9 7 5 

1 9 2 5 8 7 3 4 6 

second rule { 1 3 4 9 8 2 5 7 6 

1 6 2 3 7 9 8 5 4 

and consequently t>velve, none of which was known to us before. 

u4. After these rules for the invention of square-forming :f'unct ions for 

the superscript 1, it still remains to see what means are necessary to deduce 

functions for the other superscripts, or rather in what vJay it is necessary to 

construct the complete system. In order to do this, I observe in general that 

having found, for some superscript a, the function 

a b c d e etc., 

~:- Here, the first rule consists in forming the reversed function. In this table, 
a pair of functions is always deduced from the one which precedes it, which is 
not the case in sections 81 and 94. See the note on sections 81 and 82. -Ed. 
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one will derive from it, by virtue of the form of the Latin square, the function 
)i 

for the superscript a+ 3, by adding 3 to each.term of the first function. And 

considering attentively the form of the proposed square, one may even suspect 

that, if some term of the proposed function is of ~~e form 3a + 1, the term for 

the superscript 2 will be of the form ~ + 2 and the one for the superscript 3 

of the form 3CX + 3. Next, if a term of the proposed function for the superscript 

1 has the form 3CX + 21 the corresponding one for the function for the superscript 

2 will have the form 3a + 3 and the one for the superscript 3 will have the form 

3CX + 1. Finally, if the term of the proposed function is of the form 3CX + 3, 

the one for the superscript 2 will be of the form 3CX + l and the one for the 

superscript 3 will be of the form 3CX + 2. This conjecture, >vhich it will be 

well to set forth for greater clarity in the following table: 
. ' 

form of the for the superscripts 

term 2 3i 
3ai+ 1 3CX + 2 3a +:3 

?f:/.+ 2 . ?f:i + 3 )a+ l 

3a + 3 30: + l 3a + 2 

can even be demonstrated rigorously in the following v1ay. 

115. Let there be, in the proposed square-fo~ing function for the super-
'i' 

script l, some term x which corresponds to the verti0a~ index t and the horizontal 

index u, so that 

U = X - t + W 

Next let there be, in the function for the superscript 2, a term x which 

corresponds to the same vertical index t, but to the hori~ontal index u', so that 

u' = x' - t + w 

Finally, let there be, in the function for the superscript 3, a term x'' 



corresponding to the same vertical index t and to·the horizontal index 

u'' = x'' - t + w 

It should be noted that the horizontal indices u, u', u'' must be taken from 

the same function explained above·~ Granting this, it is necessary to show that, 

while the index u ranges through all the values (and that is the essence of the 

nature of square-forming functions), the two other indices u' and u'' also 

range through all the values. Now this will seem clear in the table below, 

which represents all the possible cases with respect to the two given values 

t and x, where we have put, in order to shorten this, a - i3 = y • 

t = 313 + 

X= 3a + 

u = 3y + 

x'= 3a + 

u'= 3y + 

x"= 3a + 

II 3 u = y + 

1 2 

1 2 

1 1 

3 

3 

1 

2 3· 1 

2 2 2 

3 1 2 

3 3 3 

1 2 

2 3 

2 2 

3 1 

3 3 

1 2 

1 1 

3 1 2 3 

1 3 1 2 

2 3 3 3 

2 1 

3 1 

3 2 

1 2 

2 3 

1 1 

3 1 

2 2 

From this table, it is evident that, every time that u = 3y + 1, one will have 

u' = 3y + 2 and u'' = 3y + 3 • 

Similarly, when u = 3y + 2, one will have 

u' = 3y + 3 and u'' : 3y + 1 

Finally, when u = 3y + 3, one will have 

u' = 3y + 1 and u'' = 3y + 2 • 

From this one sees that, since u varies through all the values, both the u' and 

the u' ' must also vary through all the values, and consequently the rule given 

above gives us for each function for the superscript 1 two other functions for 

the superscripts 2 and 3, from which one can form the functions for the 



-84-

superscripts 4, 5, 6, by adding 3 t~ each ter!~· of the first tl¥ee; and those 
J i. ; '~ + -.. ·· .. 

for the superscripts 7,·'s',r~9, by doing the same- thing t~ the preceding three. 

116. In this ·way, the formation of a comp:Lete systet·, of square-forming 
-:·: . 

functions fro~ a single proposed function for ~he superscript 1 of the fundamental 
; .J ··, .• ·-· ... ,~· ~. • -~~ -~·. ';. • 

Latin square will not present the slightes~ difficulty. Let u~ take once more, 

in order to give an example for the case of n = 91 the function<uhich proceeds 

in arithmetic progression 

1 -; 5 7 9 2 4 6 8; .., 

and the complete system will be 

1 3 5 7 9 2 4 6 8 

2 l 6 8 7 J 5 4 9 

3 2 4 9 8 1 6 5 7 

4 6 8 1 3 5 7 9 2 

5 4 9 2 l 6 8 7 3 

6 5 7 3 2 4 9 8 l 

7 9 2 4 6 8 1 3 c:; 
-' 

8 7 3 5 4 9 2 1 6 

9 8 1 6 5 7 3 2 4 

and the complete square which results from this systei:1 >V'ill have the follmTing 

form: * 
11 23 38 47 59 65 74 86 ') 

a'-
./ 

22 31 19 58 67 46 85 4 
9 7J 

33 12 27 69 48 54 96 75 d1 

4 56 62 71 83 98 17 29 
r: 

4 3.) 

55 c4 43 82 91 79 28 37 
') 

0 l~ 

66 45 51 93 2 87 39 
,-, 4 

7 10 2 

77 89 95 14 26 32 41 53 
' 60 

88 97 76 25 34 13 52 61 49 

99 78 84 36 15 21 63 0 .-7 4'- ') 

* The original edition has erroneously, in the third co1wnn, 49 instead of 19.-Ed. 



117. In this square, we have taken the first three square•forming functions, 

for the superscripts 11 2 1 3, from the smne function. But one might have used 

different functions, provided that their terms fo1lovred the same order with respect 

to their divisibility by 3. Having thus cited above nine different square-forming 

functions which all follow the same law, one can form from them 729 complete 

squares, all different. To illustrate this by an example, let us take once more 

for the superscript l the function l 3 5 7 9 2 4 6 8 

for the superscript 2 the function l 3 8 7 9 5 4 6 2 

for the superscript 3 the function 1 6 8 7 3 5 4 9 2 

and the complete system of square-forming functions will be: 

1 3 5 7 9 

2 l 9 8 7 

3 5 7 9 2 

4 6 8 l 3 

5 4 3 2 1 

6 8 1 3 5 

7 9 2 4 6 

8 7 6 5 4 

9 2 4 6 8 

2 4 6 

6 5 4 

4 6 8 

5 7 9 

9 8 7 

7 9 2 

8 l 3 

3 2 l 

l 3 5 

8 

3 

l 

2 

6 

4 

5 

9 

7 

from which one constructs the following complete square: 

11 29 3 5 4 7 56 62 74 8 3 

22 31 16 58 6 7 4 3 8 5 9 4 

33 12 27 69 48 54 96 75 

44 53 68 71 89 95 17 26 

55 64 49 82 91 76 28 37 

66 45 51 93 72 s7 39 18 

77 86 92 14 23 38 41 59 

88 97 73 25 34 19 52 61 

99 78 84 36 15 21 63 42 
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118. Here, we have profited fror~ the fine link vrhich exists arrtong the nine 

functions cited above; but even while using some other square-forming function, 

it is not difficult to discover all the other functions which have the same 

property with respect to their divisibility by 3· Let us tru~e for example the 

following function, chosen at random: 

1 3 8 6 7 9 2 5 4 

and let us write, for each term, in the form of a superscript, the value for 

U =X- t + w as well as the othe:rs of the same type, in this vmy: 

t = 1 2 -3 4 5 6 7 8 9 

X = 1 3 8 6 7 9 2 5 4 

u = 1 2 9 3 6 4 5 7 8 

'1 
1 32 89 63 7 

6 94 25 57' 48 

11 65 23 39 3 58 ~ 
4 7~ 

98 56 96 } 82 24 

and novl it comes dovm to taking from this simple function uhere not only all the 

terms themselves but also their superscripts are different: conditions fulfilled 

by: 

11 65 23 39 76 94 
_., 

57 
0. 8.::: 1-' 

'-r 

11 ,..-5 89 43 37 58 24 2 
0 7 

from which one can deduce new functions of the same type, v7hich, joined to the 

proposed function, can be used to construct 27 complete nev squares. 

119. Before finishing this section, I will add still one ~~lore proof of 

the first rule of reversal, supposed until now to be true vlithout having been 

proved. This proof is all the more necessary sL~ce there is a large number 

of Latin squares where this reversal is in reality unable to produce square-

forming functions. It is thus a matter of showing that, uhen the number u, 
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which is= x- t + w, varies through all the~values, while t and x undergo their 

appropriate variations, the formula t - x + w, which I will call v, will also 

receive all the different values. 

In order to do this, it is necessary to t~te into account all the different 

types which the two numbers t and x can include, as we have sho\m in the proof 

of the preceding theorem (sections 114 and 115), with regard to the functions 

which correspond to the superscripts 2 and 3 and as this table explains: 

t = 3~ + 1 2 1 3 1 2 3 1 2 3 

X = 3a+ 1 2 3 2 3 1 3 1 2 

u = 3y + 1 1 1 2 2 2 3 3 3 

v = 3 y + 1 1 1 3 3 3 2 2 2 

from which it is clear that, when u has the form 3'Y + 1, v will have the form 

- 3'Y + 1, and consequently the sum will be 2; that is, in the case of u = 3y + 1, 

the number v will be the difference between u and 2 or rather between u and n + 2, 

n being the root of the square in question. Now in the two other cases, u = 3y 

or u = 3'Y + 3, one will have v -- 3'Y + 3 or v = - 3'Y + 2, and consequently in 

either one u + v = 5 or rather :: n + 5; that is, in these two cases v is the 

difference between u and 5 or rather between u and n + 5. It is thus decided 

that when u is varied, the number v will also pass through all the values. 

For the case where n = 9, let us write the u's in their natural order, 

namely 

u = 1 2 3 4 5 6 7 8 9 

and the v's will be according to the rules 

v = 1 3 2 7 9 8 4 6 5 

from which one sees even more obviously hm·1 all the values of v vary according 

to the.variations of the letter u. 

End of third section. 

+ 2 
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FOURTH SEC'riON 

.. 
ON LATIN SQUARES A QUADRUPLE MARCHE OF THE GENERAL FORM 

1 2 3 4 5 6 7 8 etc. 

2 6 

3 7 

4 8 

5 6 7 8 9 10 11 12 etc. 

6 10 

7 11 

8 12 

etc. et;c. etc. 

120. Since, as it is evident by the general form, this section can pertain 

only to squares whose root n is divisible by 4, we will put n = 4m, and m will 

indicate the number of "members" of which the square is cor'lposed, which will 

contain four terms in each row and column or rather a total of 16 termso Then 

if we represent, in the manner introduced at the beginning of the preceding 

section, these members by the letters A, B, C etc., so that 

1 2 3 4 5 6 7 8 9 10 11 12 

2 6 10 
A = B = c = 

3 7 11 

8 12 

etc. 

the different cases which we vTill have to consider will be included in the 

follo\ving forms : 
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A B c D 

A B c 
B c A B 

D A 

A B c A c D 
B A 

A B 

c A B 
D A B c 

etc. 

121. If we ·Here to treat these squares on the same footing as in the 

preceding sections, we would fall into some very laborious calculations. It 

will thus be necessary to use another method, i'lhich will also be able to be 

used when the proposed squares are de tout autre marche au - dela de la 

~t-
quadruple. It is for this reason that I vrill propose here a method ·which will 

make these investigations considerably easier, and by which all the objects i·rill 

be represented in a manner which is as clear as it is easy: 

122. First, in considering some term of the proposed square, vrhich we 

will indicate by the letter x, it is a question af discovering the relation 

which this term has with the indices, the vertical = t and the horizontal = u; 

from which it is clear that one must take into account four tenns, for which 

the formulas will be 4A, + 1 1 4A, + 2 1 4). + 3, 4>-. + 4. In conforr.lity ¥rith these 

four types, we will always put 

t = 4p + f, u = 4q + g, x = 4s + h, 

v1here the numbers p, q, and s will always be smaller than m and the other 

letters, f, g1 and h, will always represent one of the four numbers 1, 2, 3, 4. 

Besides that, in considering the proposed square, it will be easily perceived 

that one will always have 

·s = P + q, 

-:~ That is to say, when the proposed squares permute their rows and columns by 
groups, or "members," larger than four terms. -M. L. Barr 
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by observing that,_ >vhen the number x becomes larger than n = 4m, one must sub-

tract from it the number n, and the remainder will indicate the correct value 

for the letter s. 

123. He have already noted above that 1 in this case of squares a quadruple 

marche, the first member A can be of four different forms (see section 16) which 

it 1·1ill be good to set forth here. 

I II TII IV 

l 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

2 3 41214 3 214 3 2 413 

3 4 l 2 3 412 3 4 213 l 4 2 

412 3 4 3 2 l 4 312 4 3 2 l 

From these forms for the first member, it will be easy to obtain those for the 

follmving members B1 c, and D, etc., by increasing all the terms; for the second, 

B, by 4; for the third, c, by 8; for the fourth, D, by 12; and so forth. 

124. Let us begin with the first form v7hose first rov7 1-1ill represent the 

values of f for the fonn t = 4p + f, while the first column gives the values of 

g for the forn1 u = 4q + g; and the terms of this form themselves lvill represent 

the values of tbe letter h for the form x = 4s + h, if it is observed that 

s = p + q. This can be represented in the following ivay: 

f 

,. ,......... .... 

l 1 2 3 '4 

2 2 3 4 1 
g 

3 3 4 1 2 

4 4 l 2 3 

where the terms of the square indicate the numbers h for all the values of f and 

g. 
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125. From that, one will be able easily· to construct another square 

which will represent the values of the letter g which correspond to the values 

of g and h. 
~r 

f g 

- -,.. 
' 

,. "" 
1 2 3 4 1 2 3 4 

1 4 3 2 1 4 3 2 

2 1 4 3 2 1 4 3 
h h·:< • 

3 2 l 4 3 2 1 4 

4 3 2 1 4 3 2 l 

These diagrams can very conveniently be applied to judge square-forming functions, 

whose nature requires that there correspond to all the values of t = 4p + f an 

equal number of different values for the letter x = 4s + h; and second, that the 

values of the index u = 4q + g also all differ. 

126. After expressing the values of the numbers t, u, x by t•ro members, 

it will be good to note, for the sake of convenience in the following explanation, 

that the first is so to speak the "characteristic," which indicates the closest 

smaller multiple of four, and the other is the "mantissa," which indicates the 

~:~~ 
remainder of a proposed number with respect to divisibility by 4. Thus for the 

numbers of the first member, A, which are 1, 2, 3, 4, the "characteristic" will 

be 0; for those of the second member, B, which are 5, 6, 7, 8, the "characteristic" 

will be 4; for those of the third, c, namely 9, 10, 11, 12, it will be 8; and so 

forth. Moreover, it is evident that the "characteristic" of x is ah1ays equal 

to the sum of the ,; characteristics" of t and u, so that, if one takes into account 

only the 11 characteristics 1 11 one will always have x = t + u and consequently 

U =X - te 

~~ In the original edition, the letters g and h are erroneously interchanged.-Ed. 

>H~In other uords, this "mantissa" is the residue modulo 4. N. L. B. 
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127. Then, since in all cases the "characteristics" are subject to no 

difficulty, we can dispense with them entirely, and consequently we need only 

look at the residues of f, g, h, which form the remainders of t, u, x, that is, 

what remains after division by four,; and because of this, ue can also dispense 

with the letters f, g, h, in place of which we will use only t, u, and x, as we 

have done in the preceding sections, vlhich 1-lill make our investigation consider

ably easier. 

However, l<e will add to these three letters t, u, x, a fourth, v, which is 

related in the same way to the letters x and t, as u is related to the letters 

t and x, so that looking only at the "characteristics," one >"rill have 

v = t - x, 

in the place where we had u = x - t, from which one sees that the "characteristic" 

of v will always be the negative of the "characteristic" of u or rather its 

difference from the number n = 4m,; and the sum of the "characteristics" of these 

two letters will always be either 0 or n. 

128. Nov11 it will be easy to represent by suitable diagram.s how each of 

these four letters is determined by two others. For first, if one regards the 

letters t and u as known, the fonn of the number x will be determined by the 

first diagram, from which one can easily form the second, for the values of u 

when t and x are known. 
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Diagram 1 Diagram 2 
for the values of x for the values· of u 

t t 
... -- -' ~ 

., 
1 2 3 4 1 2 3 4 

1 !1 2 3 4 r: 11 4 3 2 
! 

2 '2 3 4 1 2 1 4 3 
u xt 3 3 4 1 2 13 2 1 4 

I 
I 

4 j4 1 2 3 !4 3 2 1 
j ! 

From this diagrrun one next easily obtains the third, for the values of v by t 

and x; since one need only exchange the indices t and x; or rather, leaving them, 

one need only exchange the rows and columns, as one can see from this diagram: 

Diagram 3 
for the values of v 

t 
... -----------... 
1 2 3 4 

1 tl 2 3 4 
I 

2 !4 '1 2 3 
X 

!3 3 4 1 2 
I 
I 

4 12 3 4 1 

129. From the first of these three diagrams, it is immediately clear that 

ivhen the letters t and u are transposed, the figure stays the same. Thus, ivhen 

one has found some square-forming function, in which the term x corresponds to 

the vertical index t, one can ~nmediately deduce from it another in which, 

indicating by X the term which corresponds to the vertical index T, one has 

only to take T = u and X = x, and then, calling the horizontal index of this new 

function U, one will have U = t. For it is clear that, while the two letters 

T and X vary through all the values, the letter U will also range over the same 

variations. It thus is only a matter of arranging the different values of 

u = T according to their natural order. 
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130o Second, it will not be difficult to prove that having found a 

square~forming function from the letters t and x, one can always deduce another 

from T and X, by taking 

T =X and X = t. 

For one sees from the third diagram that the horizontal index u >-Till be in this 

case = v, and consequently it is a question only of showing that, while the 

values of u pass through all the numbers from 1 to 4, those of v also undergo 

the same changes. 

Let us take for this purpose a new diagram, which indicates to us the sum 

of the two letters u and v, t and x being given. 

t 
,. -- ... 
1 2 3 4 

2 6 6 6 

6 2 6 6 
X 

6 6 2 6 

6 6 6 2 

from 1'Thich it is clear that, since the 11 characteristics" of u and v cancel each 

other· out, one will al1'Tays have u + v = 2 or u + v = 6; the first 1'Till occur 

whenever u = 1 or u = 4A. + 1; in all the other cases, there vTill be u + v = 6 

or u + v = n + 6. 

131. Let us develop these different cases. First, taking u = 4h + 1, 

one '·till have v = - 4 A. + 1 or, after adding n to it, one will have v = 4 (m- A.) + 1,; 

from this it is seen that, while the letter u assumes all the values of type 1, 

the lette·r v will also take on all these values. Second, taldng u = 4A, + 2, 

one will have v = 4(m-A) + 4; or rather v will be the difference between u and 6 

or between u and n + 6; thus, while u varies over all the values of type 2, the 
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letter v uill range over those of type 4. And if u ranges over those of type 3, 

v will take on the values of the saae type. Finally, while u assumes all the 

values of type 41 v will take on those of type 2. From this it is clear that in 

general, if u ranges over all the variations, v = U undergoes them also; conse

quently 11 reversal" of the square-forming functions takes place in all cases 

without the least restriction. 

132. From this double transformation of each square-forming function, one 

can deduce several others. For having arrived at the values 

T = x, X = t, u = v, 

one will have, by exchanging the letters T and U by following the first trans

formation, this new transformed formula for a function 

T = v, X = t, u = X ' 

and from that, by exchanging the letters T and X by following the other trans

formation, one will have this new one 

T = t, X = v, U = u, 

which corresponds to the one which we have found in the preceding sections by 

our second rule. 

133. Although we have found still other transformations, it will suffice 

to use the two which correspond to those in the other sections, in view of the 

fact that by the combination of these two rules, one can deduce as many as twelve 

new functions from each proposed square-forming function. This is >vhy we will 

.set them forth here: 

If one has some square-forming function, in which the term x corresponds to 

the vertical index t, and one calls the vertical index for the new function T, 

and the term which corresponds to it X, one will always have 
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by the first rule T == x and X = t 7 

by the second rule T = t and X = v, 

where the number v must be determined by the third diagram given above, v1hich we 

will repeat here, since all the transformations which one ·Hill v1ish to perfornt 

depend on this form alone. 

Diagram 3 
for the values of v 

t 
,. --- " 
1 2 3 4 

1 2 3 4 

4 1 2 3 
X 

3 4 1 2 

2 3 4 1 

134. After finding all the functions for the superscript 1, or at least a 

large part of them, it is clear that by adding to each term of a given function 

either 4, 8, or 12, etc., one will have the functions for the superscripts 5, 

9, 13, etc.; and consequently, there remains only to show how one can find 

functions for the superscripts 2, 3, 4, 6, 71 etc., so that one can extract a 

complete system of functions; after which, as has been already seen, it is no 

longer difficult to construct the complete square. 

135· For the term x in the function for the superscript 1, let the 

horizontal index ; u. In the function for the superscript 2, let the horizontal 

index for the term x' = u'; in the function for the superscript 3, let the term 

be x'' and the index= u'', and thus for the others, x''' and u''', x'''' and u'' '' 

etc. This being granted, the first 11 member," A, shows us the following relation-

ships among these different values for x: 
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X = 1, 2 I 3, 4 

xl = 2, 3, 4, 1 

x'l = 3, 4, 1, 2 

xl'l = 4, 1, 2, 3 • 

It will then be necessary to prove that, while the letter u varies through all 

the values, the letters u', u11 , U111 will also undergo the same variations. 

136. For this purpose let us consider the diagrar:1s taken from the second 

one given above, which express the values of u by t and x; they vdll be repre-

sented in the following manner: i'· 
for u for I ' u 

t t 
r - ... ~ 

1 2 3 4 1 2 3 4 

1 11 4 3 2 1 2 1 4 3 

2 2 1 4 3 2 3 2 1 4 
X xl 

3 3 2 1 4 3 4 3 2 1 

4 4 3 2 1 4 1 4 3 2 

for u11 for u1 1 ' 

t t , - ... ~ 
1 2 3 4 1 2 3 4 

1 3 2 1 4 1 4 3 2 1 

2 4 3 2 1 2 1 4 3 2 
xl' x''l 

3 1 4 3 2 3 2 1 4 3 

4 2 1 4 3 4 13 2 1 4 

* In the diagram for u1 , the original edition h~ r '{~ xl 3 instead of 4 X 3 
1 4 -Ed. 
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Comparing the second of these diagrams uith the first, one sees that throughout 

there is u 1 = u + 1 or u1 = u - 3, the second of which occurs vrhen u = 4; in all 

the other cases, there is u1 = u + 1. Next, comparing the third diagram ivith the 

first, one ivill have either u' 1 = u + 2, or u1 ' = u - 21 where the second case 

occurs when u1 = 3 or = 4. Finally, the comparison of the fourth diagram asserts 

that one idll have u 1 ' 1 = u - 1 in all cases except that of u = 1 1 for which it 

becomes u11 ' = u + 3. It is thus decided that while u receives all the suit

able values, the letters u 1 1 u1 1 , u 1 ' 1 will pass through the same variations. 

137. Thus one clearly sees in ivhat way 1 from some sq_uare- fanning function 

for the superscript 1, one can form a complete system of functions and a complete 

sq_uare. But from what we have said in the preceding sections, one easily under

stands that, to forra the functions for the superscripts 2, 3, 4, one can use 

different functions for the superscript 1 1 provided that their terms follow the 

same order with respect to divisibility by 4, which is a very fertile source 

which multiplies considerably the number of all the complete sq_uares in comparison 

with all the different functions found for the superscript 1. 

138. After these general investigations for all sq_uares divisible by four, 

we will consider some particular cases. NOiv first, when the proposed sq_uare 

contains only one member, A, which is a sq_uare a simple marche, we have shown, 

in the first section, that it can have no sq_uare-forming functions. For this 

reason we will confine ourselves to citing the case of n = 8, where the sq_uare 

contains two members, A and B, whose form is: 
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1 2 3 4 t:: 6 7 8 / 

2 3 4 1 6 7 8 5 

3 4 1 2 7 8 5 6 

4 1 2 3 8 5 6 7 

5 6 7 8 1 2 3 4 

6 7 8 5 2 3 4 1 

7 8 5 6 3 4 1 2 

8 5 6 7 4 1 2 3 

This square apparently furnishes 48 functions for the superscript 1, when one 

examines it according to the rules given above; I will cite those of them '\vhich 

I have found by the first method, shmm in section 11 etc., which are: 

1 3 7 5 8 4 2 6 1 4 7 6 8 4 2 5 

1 3 7 5 4 8 6 2 1 4 7 6 2 5 8 3 

1 3 8 6 4 2 5 7 1 4 8 7 3 5 6 2 

1 3 8 6 7 5 2 4 1 4 8 7 3 2 6 5 

1 3 5 7 8 4 2 6 1 4 5 8 6 3 2 7 

1 3 5 7 2 8 6 4 1 4 5 8 2 7 6 3 

1 3 6 8 7 5 4 2 1 4 6 5 8 7 3 2 

1 3 6 8 2 4 5 7 1 4 6 5 3 2 8 3 

from which one can easily find the rest, by applying the rules >vhich have been 

so often repeated. 

139· We will not stop to develop the magic squares which this case can 

furnish since all the principles have been sufficiently explained and proved; 
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and since the three other cases of the form of the first t:-tember, A, give not 

the least difficulty 1-1hen treated in the same way as the first form, it would be 

superfluous to carry this investigation any further. We 1-Till thus end this 

section with the remark that the case which we have just examined can not occur 

when the number of members A, B, C etc. is 3 or 5 or perhaps any other odd number. 

End of fourth section. 
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FIFTH SEcTION 

-~ ·" ... . . 

OF THE TRA}TSFORMATIOH OF BOTH Sll>1PLE P.liJD COMPLETE SQUARES 

140. after seeing that all the methods which we have presented up to this 

point can not furnish any magic square for the case of n = 6 and that the same 

conclusion seems to hold true for all oddly even values of n, one might think 

that, if such squares are possible, the Latin squares which serve as their bases, 

since they do not follow any of the orders which we have just considered, v1ould 

be totally irregular. It would then be necessary to examine all the possible 

cases of such Latin squares for the case of n = 6, whose nurrrber is doubtless 

very large. And since besides that the formation of irregular squares is not so 

easy, I am going to state a method by means of which one can easiiy transform, in 

several different forms, all the regular squares and then examine whether they 

admit of square-forming functions or not. 

141. This method depends on this principle: that if, in a proposed Latin 

square, two numbers a and b are found in the corners of a rectangle, in the way 

shmm by the following diagram 

a ••••• b 

b.6 •• oa 

one can exchange these two letters, writing a in place of b and b in place of a; 

the reason for this is obvious, for it is easily seen that, notwithstanding this 

transposition, all the rows and columns will still include the same numbers. It 

is thus evident that by this principle one will be able to transform each proposed 

square into several other different forms which will have, vrith regard to the 
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square-forming functions, quite special properties. 

142. Let us consider for example the following Latin square a sirnJ2le marche 

of 36 entries 

1 2 3 4 5 6 

2 1 4 5 6 1 

3 4 5 6 1 2 

4 5 6 1 2 3 

5 6 1 2 3 4 

6 1 2 3 4 5 

which, as >ve have demonstrated in section I, section 20, admits of no square-

forming function. Let us transpose in the way which vTe have stated the two 

indicated numbers, 3 and 6, which are arranged in a rectangle, and we will 

obtain the following square 

1 2 3 4 5 6 

2 6 4 5 3 1 

3 4 5 6 1 2 

4 5 6 1 2 3 

5 3 1 2 6 4 

6 1 2 3 4 5 

which, despite its apparent likeness, differs so essentially from the proposed 

square that one can deduce from it a large nm~ber of square-forming functions 

for all six superscripts, although the other didn't furnish any at all. Here 

they are: 
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1 6 5 2 4 3 4 3 2 5 1 6 

1 6 5 3 2 4 4 3 2 6 5 1 

1 4 6 2 3 5 4 1 3 5 6 2 

1 4 2 5 6 3 4 1 5 2 3 6 

1 5 4 3 6 2 4 2 1 6 3 5 

l 5 2 3 6 4 4 2 5 3 6 1 

1 3 4 6 2 5 4 6 1 3 5 2 

l 3 6 5 4 2 4 6 3 2 1 5 
.. 

* 2 4 3 1 6 5 5 1 6 4 3 2 

2 3 5 1 4 6 5 6 2 4 l 3 

2 3 6 4 1 5 5 6 3 1 4 2 

2 1 5 
. ;4 6 3 5 4 2 1 3 6 

3 2 4 1 6 5 6 5 1 4 3 2 

3 6 2 1 5 4 6 3 5 4 2 l 

3 6 1 4 2 5 6 3 4 l 5 2 

3 5 2 4 6 1 6 2 5 1 3 4 

143. After finding all these functions, there remains only to examine if one 

can form a complete system from them, by means of which one can complete the 

simple square proposed. Now, considering carefully the functions for the super-

' ), 6, one scripts 2, 3, will see that, no matter in what vmy one wants to combine 

them, they furnish in the fourth column only the two numbers l and 4 so that 
I .-. 

these two numbers vlOuld necessarily be found twice in the same column of the 

complete system, whose absolute impossibility leaps to the eye. \•le can thus 

boldly assure that the simple square proposed cannot furnish a solution to the 

problem. 

*The Comm. Alg. here erroneously has 7• M. L. B. 
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144. I have examined by this method a large number of similar transformed 

squares without encountering a single one which didn't present the same difficulty 

of furnishing no system of functions in which some column didn't include one 

number twice, and I have not hesitated to conclude that one can not produce a 

complete square of 36 entries, and that the same impossibility extends to the 

cases of n = 10, n = 14, and in general to all oddly even numbers. For 1 once a 

method is found of transforming some magic square into several (as many as 24) 

different forms, if there existed a single complete square for the case of n = 6, 

there would certainly be several others whose fundamental Latin squares would 

all be different. Now since I have examined a very considerable number of such 

squares, it seems impossible to me that all the possible cases have eluded me. 

145. This reasoning can be carried to a much greater degree of certainty 

by the general transformation which we are going to present, by means of which 

each proposed Latin square can be transformed into several others which all have 

the same property with respect to the square-forming functions, so that, if the 

proposed square admits of no square-forming functions, all the transformed squares 

will also be of the same nature, and in the case where the proposed square admits 

of a complete system, all those which have been derived from it will also fur

nish complete magic squares. 

146. For this general transformation, one need only change the value of 

the numbers of which the Latin square is composed, by substituting in their place 

other numbers in some order and by then reducing the new square according to the 

order which we have observed up to this point, that is, that the numbers of the 

first row and the first column follow in their natural ordeT. In this way one 

will always obtain a new square "'vhich has the same properties with respect to the 

square-forming functions, because one has only to transfer the same changes to the 
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functions of the proposed square. By this one sees that this ··1ethod ought to be 

all the more fertile in the production of new squares in proportion as the 

number n is large. For, for the cases of n c 2, 3~ 4, no change can be expected. 

For the case of n = 5, the number of variations can go as high as 3 and for the 

case of n = 6 the number must be that much more considerable in that the order 

of six numbers can receive up to 720 variations, of which several, however, \'lill 

come down to the same fonn. 

147. In order better to clarify the manner and use of th~se transformations, 

we are going to take as an example the last square of 6, which was so fertile 

in functions; from this, by exchanging the numbers at Hill in some v1ay, for 

exarn.ple by writing 

4 6 1 3 2 5 

instead of 

1 2 3 4 5 6 , 
-.,,e '.vill obtain the folio wing square 

4 6 l ) 2 5 

6 5 3 
,-., 

1 4 c:. 

1 3 2 5 4 6 

3 2 5 4 6 l 

2 l 4 6 5 3 

5 4 6 l 3 2 

-..ihich, v1hen the rov1s and columns are reduced in order, >-rill receive this 

ordinary form: 
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l 2 3 4 5 [ 
0 

r, 4 1 5 6 3 .-. 

3 5 2 6 4 1 

4 l 6 2 3 5 

5 6 4 3 l 2 

6 3 5 1 2 4 

If we treated in the same way all the Latin squares of 36 entries, a simple, 

double or triple marche, which, as we have shovm, do not admit of any square-

forming function, we will obtain a great number of other sinilar squares which 

will not admit of such functions either; so that it will suffice to have examined 

a single one in order to pass judgment on all the others. 

148. From that it is clear that, if there existed a single complete magic 

square of 36 entries, one could deduce from it several others by means of these 

transformations, which would equally well satisfy the conditions of the problem. 

Now, having examined a large number of such squares without having encountered 

even one, I find it more than probable that there are none. For the number of 

Latin squares could not be so enormous that the quantity of those vrhich I have 

examined should not have furnished one l'ihich admits of square-fon-1ing functions, 

if any existed; in view of the fact that the cases of n = 2 and n = 3 furnish 

only one; the case of n = 4, four, the case of n = 5 fifty-six, by exact count, 

one can see that the number of variations for the case of n = 6 could not be so 

prodigious that the number of 50 or 60 which I might have examined would be only 

a small part of them. I observe again, on this occasion, that the exact count of 

all the possible cases of similar variations Hould be an object worthy of the 

attention of geometers, all the more since all the principles ·Hhich are knovm 

in the theory of combinations cannot lend the slightest help. 
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149. While examining several such squares formed at randon, I noticed an 

astounding difference -with respect to square-forming functions; I encountered 

some which didn't furnish any, some which gave none for two superscripts but 

two for each of the others. Among other things, I happened also upon a square 

which seems to me to deserve particular attention, since it gave me four functions 

for each superscript J and even some which seemed to give promise of a complete 

system; for this reason I am going to set down here the square which produced 

them 

1 4 6 5 3 2 

1 5 2 3 6 4 

1 6 5 2 4 3 

1 3 4 6 2 5 
: , .... · ~ 

2 4 6 3 5 l 

2 5 l 3 4 6 

2 6 3 1 4 5 

2 3 6 4 l 5 

Square 

l 2 3 4 5 6 

2 l 5 6 3 4 

3 4 1 2 6 5 

4 5 6 1 2 3 

5 6 4 3 l 2 

6 3 2 5 4 l 

Square-forming functions 

3 2 6 5 1 4 

3 l 4 5 2 6 

3 6 5 4 2 1 

3 6 2 1 5 4 

4 1 3 5 6 2 

4 3 1 6 5 2 

4 2 5 3 6 l 

4 3 5 2 1 6 

5 l 2 4 6 3 

5 2 1 6 4 3 

5 4 2 l 3 6 

5 4 3 6 2 l 

6 l 4 2 5 3 

6 5 l 4 3 2 

6 2 4 1 3 5 

6 5 3 2 l 4 
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All of these functions have the nice property that each of then; has its "reversal'; 

among the others. But in order to form a complete system, one could combine only 

four of them, and those in the two fo llo1'ling ways 

1 5 2 3 6 4 1 3 4 6 2 5 

2 6 3 1 4 5 2 5 1 3 4 6 

3 1 4 5 2 6 3 6 2 1 5 4 

4 3 1 6 5 2 4 1 3 5 6 2 

and it is clear that as far as functions for the superscripts 5 and 6 are con-

cerned, there are none which fit in to complete the system. 

150. One could apply similar transformations to true Gagic or complete 

squares; but it would be superfluous to construct others by exchanging numbers. 

There is, on the other hand, another type of transformation which is peculiar 

to them, since in any magic square the Latin and Greek numbers can be exchanged, 

and from this one always obtains a new square which is entirely different. Thus, 

taking as an example the following complete square of 25 entries 

11 25 34 43 52 

22 31 45 54 13 

33 42 51 15 24 

44 53 12 21 35 

55 14 23 32 41 

one will get, by the exchanging of numbers which we have mentioned, the following 

square 

11 52 43 34 25 

22 13 54 45 31 

33 24 15 51 42 

44 35 21 12 53 

55 41 32 23 14 
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which, being put, in order, 1'lill reassume its original fon1; but this change is 

thus only a very particular case of the general transformation 1-1hich we are going 

to propose. 

151. Let us note that, as_ each term of a complete square contains two 

nu~bers, one of which has been called the Latin number, and the other the Greek 

number, the position which this term occupies is also deternined by tv;o numbers, 

one of 1vbich is the horizontal index and the other the vertical index. Each 

term with the position that it occupies is thus determined by four numbers, a, b, 

c, d: the first of these, a, is the horizontal index; b, the vertical index; c, 

the Latin nmnber, and d, the Greek nmaber; and all of these four numbers, a, b, 

c, d will be permutableo In this way, the terms of the last square of 25 entries 

can be represented as follows: 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 1 4 4 

5 1 5 5 

1 2 2 5 

2 2 3 1 

3 2 4 2 

4 2 5 3 

5 2 1 4 

1 3 3 4 

2 3 4 5 

3 3 5 1 

4 3 1 2 

5 3 2 3 

1 4 

2 4 

3 4 

4 4 

5 4 

4 3 

5 4 

1 5 

2 1 

3 2 

1 

2 

3 

4 

5 

5 5 2 

5 1 3 

5 2 4 

5 3 5 

5 4 1 

If one thinks at all about these quaternaries, one "'ill easily perceive that all 

four numbers can be interchanged in all possible manners, and I need not add that 

the number of variations is 24, which in truth will not all produce new squares, 

but nonetheless a fair quantity, all the larger in proportion as n is large. 

152. I had observed above [section 148] that an exact count of all the 

possible variations of the Latin squares i•Tould be a very important question, but 

which appeared to me to be extremely difficult and almost impossible once the 

number n exceeded 5. To approach this count, it is necessalJ' to begin by this 

question: 
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In how many different ways, if the first rovr is given, can one ve.ry the 

second row for each proposed number n1 

The solution is contained in the following table: 

n number of variations 

1 0 

2 1 

3 1 = 1(1) + 0(0) 

4 3 = 2(1) + 1(1) 

5 11 = 3(3) + 2(1) 

6 53 = 4{11) + 3(3). 

7 309 = 5(53) + 4 (11) 

8 2119 = 6(309) + 5(53) 

9 16687 = 7(2119) + 6(309) 

10 148329 = 8(16687) + 7(2119) 

etc. etc. 

From that it is clear that these numbers make up a logical progression or a sort 

of recurrent series in which each term is determined by the two preceding ones, 

but whose scale of relation is variable. Thus if one calls P, Q, R, S the 

numbers of the variations which correspond to the numbers n1 n + 1, n + 2, n + 3, 

one will always have 

R = nQ + (n-1) P 

and 

s = (n-1) R + nQ • 

One can find from that an independent formula for n, by 'irhich each tenn S can be 

expressed by the three preceding ones, P, Q1 R. For, the next to the last equation ~ 

giving 



there will be 

R - Q = (n-1) (Q + P), 

n-1 R- Q 
=·p + Q ; 
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from which one sees that R - Q is always divisible by P + ~· In the same way 

one will have 

and consequently 

S - R = n (Q + R) 

S - R 
n=Q+R • 

Then subtracting the preceding equation from this "one, one >vill have 

from which one gets 

and consequently 

or rather 

PS - PR + QS - QR - RR = PQ + PR + QR 

S=PQ- 2PR+2QR+RR 
P+Q 

S =2R+Q+RR+PQ Q 
- p + Q 



Thus, taking 

p = 53, R = 2119 

one will have 

2R + Q = 4547 1 R - Q = 1810, R + ·~ = 2428, P + Q = 362; 

from that 

and consequently 

Or else, taking 

there will be 

R - Q = 5 
P+Q 

s = 4547 + 5 (2428) = 16687. 

p = 309, Q .= 2119, R = 16687, 

2R + Q = 354931 R - Q = 14568, R + Q = 18806., P + Q = 2428; 

from that 

and consequently 

s = 35493 + 6(18806)= 148329. 

-lJ2-

The series of the numbers of variations has again a very nice property, 

whose truth is nothing less than evident: it is that one can even determine each 

term by the one which precedes it. Thus, when the number of variations for the 

number of the terms of the second row, n, is = P and for the number n + 1 = Q, 

* there will always be 

Q. = nP + P.ot:.l 
n 

, 

*Original edition (three times): Q = ~~ • See the editor's preface. -Ed. 
n 
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where the + occurs if n i~ an odd number and the - if .. ~ is even. Bes ide_s that, 
·" . .r 

taking R as the number of variations for the case of n = 21 since we have found 

R = nQ + (n-1) P, 

if we put in place of Q the value which we have found, Q = nP + -P :!: 1, we will 
n 

have a formula which determines the term R by the term before the preceding one, 

P, alone, that is 

R = n2P - P + 1 + (n-1) P = (n-1) (n~2) P ± 1. 

Thus, taking 

n = 6 and P = 53, 

one will have 

R = 5(8)(53) -1 = 2119; 

and taking 

n = 7 where P = 309, 

there will be 

R = 6(9)(309) + 1 16687. 

But I must admit that I have not found the property of determining each 

number by the preceding number alone by anything except pure induction, and I 

don't see particularly w~ll how one could deduce it from the nature of the series. 

However, there is a means of deducing it immediately from the series, at 

least the following thoughts bring us closer still to the truth of the assertion 
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that Q = nP + -P ± 1 • For, if Q is the number of variations for some case n, 
n 

either odd or even, and R the number of variati~~ for the· follovring case, where 

the number of terms is n + 1, there would be 1 by virtue of the equation cited, 

and 

(n+l) R = (n2 + 2n) Q + 1, 

where the upper sign occurs if n is odd, the lower if n is even. Nov1 the sum 

of these two equations gives this equation 

from which one gets, by dividing by n + 11 the value 

R = nQ + (n-1) P, 

which agrees perfectly with the one which we deduced above from the nature of 

the series. 

That is what I have thought that I should add with respect to counting the 

variations which can occur in the simple fundamental squares, leaving to the 

Geometers to see if there are means of achieving the enumeration of all the 

possible cases, which appears to furnish a vast field for new and interesting 

investigations. I end mine here, on a question which, although it is in itself 

not very useful, has led us to rather important observations for both the theory 

of combinations and for the general theory of magic squares. 

End 
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