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The dependence between subjects in clustered survival data is commonly modeled

by means of a frailty, a multiplicative random effect with a distribution that is

usually specified in advance. Misspecification of the frailty distribution can lead

to error when estimating parameters of interest.

This dissertation contains two distinct approaches to frailty models for the

analysis of clustered survival data that do not require the frailty distribution to be

known a priori.

The first is a Bayesian method, in which the distribution of both the baseline

hazard and frailty are modeled nonparametrically as mixtures of B-splines, and

estimated by Markov Chain Monte Carlo. Smooth curve estimates are attained

by adaptive selection of the spline knots, or by means of an explicit smoothness

penalty. The method is illustrated with data sets from studies of congestive heart

failure and diabetic retinopathy.

The second is a method for clustered bivariate recurrent event data, in which the

hierarchical bivariate frailty need only be specified through its first two moments.

Estimation relies on a correspondence between the modulated renewal process

likelihood and an auxiliary Poisson model likelihood, which allows the frailties to be

estimated by their best linear unbiased predictors in an iterative algorithm. Data

on recurrent basal and squamous cell carcinomas collected during the Nutritional

Prevention of Cancer trial serves to illustrate the method.
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CHAPTER 1

CLUSTERED SURVIVAL AND RECURRENT EVENT DATA

Survival analysis is concerned with the study of time-to-event data. A data set

consists of covariate information describing a number of subjects, each of which

is monitored until an event of interest occurs, or the subject is removed from

the sample for an unrelated reason. The objective is to quantify the possibly

time-varying risk that a subject experiences such an event, taking into account

all available information. In typical model formulations, this takes the form of

estimating a baseline risk shared by all subjects, and quantifying the effect of

subject-level covariates on this risk. It is common that several subjects do not

experience an event during the period of observation. This phenomenon is known

as censoring, and methods for survival analysis must be designed to yield valid

results regardless of its presence.

For example, Chapter 2 considers a data set of diabetic retinopathy patients

enrolled in a six-year clinical trial of the effectiveness of laser photocoagulation

treatment in preventing blindness. In this study, each one of the patients’ eyes

may be treated as a “subject”, the event of interest is the onset of blindness, and

covariates indicate whether the eye has received treatment or a placebo, as well as

the type of diabetes and other patient data. A researcher may wish to quantify the

risk of blindness at different times for treated and untreated eyes, and determine

whether any difference is statistically significant, while properly accounting for

other distinctions between the patients, and correctly including patients who did

not become blind during the study in the analysis.

Applications outside of the medical arena are plentiful as well, for example

the analysis of corporate bankruptcy risk, or reliability studies for manufactured
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components.

The proportional hazards model introduced by Cox (1972a) remains by far

the most widely used method for survival analysis in the statistical and medical

literature. The model assumes that at-risk subjects in a sample of size J experience

events at times Tj , j = 1 . . . J , which are independent realizations of single-jump

counting processes with intensity (often also called hazard rate):

λj(t|Zj) = λ0(t)e
βT Zj , j = 1 . . . J . (1.1)

Here, λ0(t) is known as the baseline hazard shared among all subjects, Zj is a

vector of covariates for subject j, and β is a vector of regression coefficients. In

the proportional hazards formulation, the coefficients β capture the effect of the

covariates on the event risk, and are therefore the objects of ultimate interest

in most analyses. The proportional hazards model is named thus because the

ratio of hazards for two subjects does not depend on the baseline hazard, that is,

λ1(t|Z1)/λ2(t|Z2) = exp(βT (Z1−Z2)), allowing the intuitive interpretation of the

estimated regression parameters β as the effect of a change in covariate Z on the

log-hazard rate.

Thanks to an ingenious partial likelihood approach, proposed in Cox (1972a)

and formalized in Cox (1975), the coefficients β can be estimated separately from

the baseline hazard λ0(t), resulting in a quick and accurate method for simple

survival data sets. The methodology can be extended to data with tied event

times, time-dependent covariates, strata and different censoring mechanisms with

relative ease. Andersen et al. (1993) present the Cox model and its extensions

in detail, and Kalbfleisch and Prentice (2002) give a thorough discussion of the

procedure’s theoretical underpinnings. Therneau and Grambsch (2000) present

current software implementations in R and SAS and discuss their proper use.
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For many survival data sets, the assumption that events occur independently

of each other is a reasonable one, particularly if nothing is known about the re-

lationship between subjects. Notable exceptions are clustered data and recurrent

event data. These two cases are the focus of this dissertation, and will be briefly

presented in the sections that follow.

1.1 Clustered survival data

In real-world data sets, subjects are often grouped into “clusters” that share po-

tentially unmeasurable similarities. For instance, clinical trials may involve large

numbers of clinics or physicians; subjects treated by the same physician generally

live in geographical proximity, may come from a similar socioeconomic background

and ideally receive the same quality of care. Such forms of dependence between

subjects cannot be reliably captured by means of covariates, yet ignoring it entirely

can lead to unacceptable errors.

In the aforementioned diabetic retinopathy study for example, treating each eye

as an independent subject would be inappropriate, as every patients’ two eyes share

the same genetic makeup and life-history. Such factors cannot be well-captured by

covariates, but may have even greater influence on the risk of blindness than the

treatment itself. If the effectiveness of treatment is to be accurately assessed, the

unmeasured similarity between a patients’ eyes must be addressed.

Frailty models are an extension of the Cox model that allows such dependence

to be captured in an intuitive way. In the shared frailty approach, a multiplicative

random effect is common to all members of a cluster. That is, for a sample of m

clusters of size Ji, i = 1 . . .m, the event times Tij are independent conditionally
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on a set of frailties Ui, i = 1 . . .m, so that the intensity of eq. (1.1) is replaced by:

λij(t|Zij, Ui) = Uiλ0(t)e
βT Zij , i = 1 . . .m, j = 1 . . . Ji , (1.2)

for at-risk subjects, where the frailties Ui, i = 1 . . .m are independent and identi-

cally distributed from some predetermined distribution with mean 1. Intuitively

then, the hazard rate for subject (i, j) is composed of (1) the baseline hazard shared

by all subjects, (2) the frailty multiplier shared by subjects in cluster i, and (3) the

adjustment for the covariates of subject (i, j). Each of these components must be

estimated in order to quantify the risk for subject (i, j). Fixing the frailty mean

at 1 ensures that the baseline hazard can be identified.

Even though the hazard specifications of eqns. (1.1) and (1.2) are similar, the

partial likelihood approach of Cox (1975) is no longer feasible for frailty mod-

els, because the proportional hazards assumption does not hold for the marginal

hazards—that is, unconditionally on the frailties. It is therefore necessary to es-

timate the regression parameters β, the baseline hazard λ0(t), the frailties U and

any additional parameters required by one’s model specification simultaneously.

In the frailty model originally proposed by Clayton and Cuzick (1985), the

frailties Ui are assumed to arise from a gamma distribution, and the baseline hazard

λ0(t) is parametrically specified as either an exponential or Weibull hazard. Under

these strong assumptions, one can compute and maximize the marginal likelihood

of the unknown parameters, including the regression coefficients β. The NPMLE

(nonparametric maximum likelihood estimation) approach of Nielsen et al. (1992)

allows the baseline hazard to be specified nonparametrically, as a Breslow-type

stepfunction estimator, but retains the gamma frailty assumption; the model is

fit by an iterative Expectation-Maximization (EM) algorithm, which alternates

between estimating the frailties by their best unbiased predictors (BUPs) and
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maximizing the joint likelihood of the regression parameters and baseline hazard.

Assuming gamma frailties allows the BUPs to be computed in closed form, reducing

computational cost and making the asymptotics tractable (Parner, 1998).

Other parametrized distributions for the frailties have been proposed, with cor-

responding variations on the gamma NPMLE, including lognormal (McGilchrist

and Aisbett, 1991) and stable distributions (Hougaard, 1986). Models with gamma

frailties are equivalent to penalized Cox models (Ripatti and Palmgren, 2000; Th-

erneau and Grambsch, 2000), and can be more easily estimated in this way, as

implemented by the coxph procedure in R. Similarly, lognormal frailty models can

be well-approximated by penalized models.

The aforementioned frailty methods suffer from the need to specify the distri-

bution of the frailty parametrically. When conducting data analysis, there is in

fact rarely an a priori reason to choose one frailty distribution over another; rather,

the choice is often dictated by the availability and capability of model-fitting soft-

ware. When the chosen frailty distribution poorly approximates the distribution

of unobservable random effects in the data, misspecification can lead to error in

the estimation.

Chapter 2 proposes a model in which both the hazard and the frailty distribu-

tion are nonparametrically specified as mixtures of B-splines. The B-spline basis

is parametrized in such a way that any smooth hazard and frailty density can in

principle be estimated, and even non-smooth functions can be approximated very

well. Nonparametric modeling of the frailty density substantially decreases the

risk of model misspecification, but comes at the cost of additional computational

expense. Because of the large number of nuisance parameters involved in fully

nonparametric estimation, a maximum likelihood approach is infeasible. Instead,
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the proposed model is approached from a Bayesian perspective, and estimation

proceeds via Markov Chain Monte Carlo (MCMC). The Bayesian approach has

further advantages, notably the ability to estimate any posterior quantity of in-

terest, including the posterior distributions of each of the individual frailties, and

posterior hazard quantiles that incorporate uncertainty from all estimated param-

eters.

Chapter 2 contains a detailed presentation of the model specification, and dis-

cusses its relationship to existing frequentist and Bayesian methods for the analysis

of clustered survival data. Thorough simulation results expose the advantages and

pitfalls of the method. The flexibility of the approach is illustrated using data

on rehospitalization due to congestive heart failure, as well as using the diabetic

retinopathy data discussed above.

The associated R package splinesurv implements the methodology and pro-

vides a useful tool for statisticians. The package provides sensible default settings

that allow it to act as a plug-in replacement for coxph, and includes many help-

ful tools to effectively explore the posterior distributions of commonly interesting

quantities. At the time of this writing, the package and documentation are avail-

able for download at http://splinesurv.r-forge.r-project.org.

1.2 Recurrent event data

In the preceding sections, the event of interest has been implicitly treated as ter-

minal; that is, it was assumed that a subject would be removed from the sample

upon experiencing an event. This need not be the case, however.
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Processes that generate more than one event per subject are common in appli-

cations. For example, Chapter 3 considers a skin cancer study in which multiple

lesions may appear on each subject during the course of a study. Other examples

of recurrent events include studies of credit defaults, vehicular insurance claims,

and assembly line breakdowns.

In the analysis of recurrent event data, the primary objective is to quantify

the effect of subject-level covariate information on the risk of event recurrence.

As with clustered data, accurate inference must take the structure of the process

into account, particularly the dependence between events experienced by a single

subject, and the temporal nature of recurrent events. If subjects are additionally

clustered, then within-cluster dependence must be considered as well.

An analysis of the skin cancer data should thus estimate the effect of risk

factors on the hazard of receiving a lesion, while incorporating possible dependence

between the lesions on each subject, and between subjects in the same cluster, while

also considering the fact that higher-risk subjects can suffer more lesions during

the fixed time-period of the study, and that experiencing some lesions may affect

the subsequent appearance of others.

Recurrent event data can be placed into the survival analysis framework dis-

cussed above. Cox (1972b) extends the proportional hazards framework to treat

recurrent event data as a modulated renewal process, in which the interevent (gap)

times are treated as independent conditional on the covariates, which can capture

time-varying information such as a count of previous events. Prentice et al. (1981)

and Andersen and Gill (1982) extend this approach to allow episode-dependent

baseline hazards, time-dependent covariates and strata.

7



As in the case of clustered data, it is reasonable to suppose that the interevent

times experienced by a single subject may have dependence beyond that captured

by the measured covariates. Frailty models following the approaches for clustered

data can be naturally extended to the recurrent event gap time setting (Aalen

and Husebye, 1991; Clayton, 1994; Therneau and Grambsch, 2000). Under certain

conditions on the calendar-time dependence structure of the gap times, and with

appropriate assumptions on the censoring process, methodology for clustered data

can be applied to recurrent event gap time data without modification, although

asymptotic justifications differ. A thorough review of existing methodology for

recurrent events is provided in Cook and Lawless (2007).

With the inclusion of a frailty, it becomes possible to analyze bivariate or

multivariate recurrent event processes, in which subjects experience multiple events

of different types. Skin cancer lesions, for example, can be broadly classified into

basal cell and squamous cell carcinomas. Risk factors may have different effects

on each type of lesion, and the processes for the two types of lesions may depend

on each other directly as well as through a frailty. Bivariate models in which both

the hazard and frailty distribution are parametrically specified are considered in

Abu-Libdeh et al. (1990) and Cook et al. (1999).

Frailty models for recurrent event data face challenges similar to those for

clustered data: First, parametric models for the hazard and frailty distribution

may not adequately capture the event risk and dependence structure, and are

subject to model misspecification risk. Second, the attractive theoretical properties

of gamma frailty methods cannot be naturally extended to the common case of

clustered recurrent event data, in which subjects experiencing recurrent events are

additionally grouped into clusters, thus adding a higher-order layer of dependence.
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Lastly, parametric frailty models can require computationally expensive numerical

integrations when applied to bivariate or multivariate recurrent event data.

Although a nonparametric approach similar to that of Chapter 2 might also be

effective for recurrent event data, this thesis presents a very different method in

Chapter 3. Rather than attempting to estimate the frailty distribution nonpara-

metrically, the method avoids specification of the frailty distribution altogether,

instead requiring only its first two moments. In this, it follows the approaches of

Xue and Brookmeyer (1996) and especially Ma (1999), neither of which require

the frailty distribution to be known.

The method proposed in Chapter 3 is an extension of the work of Ma (1999) and

Ma et al. (2003) to the setting of bivariate clustered recurrent event data. That is,

in addition to accommodating the aforementioned clustered recurrent event case,

it allows the events of interest to be of two distinct types, and captures dependence

within clusters, within subjects, and between event types by a hierarchical frailty

structure that need only be specified through its first two moments. In addition, it

incorporates a discretization scheme that reduces the computational effort required

for model-fitting, while increasing the stability of the algorithm.

The aforementioned skin cancer data, gathered during the course of the Nutri-

tional Prevention of Cancer study, is used to illustrate the use of the methodology.

A second data set, of pulmonary exacerbations experienced by cystic fibrosis pa-

tients, serves to demonstrate the applicability of the method to episodic data. All

estimation is conducted by means of the associated blupsurv package, which at

the time of this writing is hosted at http://blupsurv.r-forge.r-project.org.
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CHAPTER 2

B-SPLINE FRAILTY MODELS FOR CLUSTERED SURVIVAL

DATA

Joint work with David Ruppert and Robert L. Strawderman1

The effects of clustering in survival data are commonly addressed by means of

frailty models, a generalization of the Cox proportional hazards model (Cox, 1972)

in which an unobserved random effect is shared by all members of a cluster (Clayton

and Cuzick, 1985), inducing dependence. Frailty models require joint estimation

of the regression coefficients, baseline hazard and variance components, because

the proportional hazards property required by the partial likelihood method of

Cox (1975) does not hold. Under the assumption that frailties follow a gamma or

other parametrized distribution, frailty models can be estimated by either choos-

ing a parametric form for the baseline hazard and obtaining a maximum likelihood

estimate of all parameters (e.g. Andersen et al., 1993), or by fitting a nonpara-

metric Breslow hazard estimate using an expectation-maximization–type (EM)

algorithm (e.g. Murphy, 1995; Parner, 1998; Li et al., 2003).

Extending and building upon the frequentist maximum-likelihood methods,

Bayesian approaches to survival analysis have also emerged. Sinha and Dey (1998)

propose modeling the baseline hazard by a discrete Lévy process, and Aslanidou

et al. (1998) extend this method to a gamma frailty model with hierarchical priors

on the gamma dispersion. Parameter estimates can be obtained by Markov Chain

Monte Carlo (MCMC), since all conditional posterior distributions can be com-

puted. Related methods include Muliere and Walker (1997); Kim and Lee (2003)

1For submission to Journal of Computational & Graphical Statistics. Thanks to Mark Cowen
and Lakshmi Halasyamani for use of the congestive heart failure data.
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and Kottas (2006), which allow different forms of censoring and baseline hazard

processes. Such Bayesian approaches, while generally more computationally ex-

pensive than their frequentist counterparts, are often more able to accommodate

unusual data features, and contain a wealth of information in the form of joint pos-

terior distributions for all parameters of interest. Under the Bayesian paradigm,

it is easy to compute any desired posterior quantities from the joint posterior.

All aforementioned traditional and Bayesian methods suffer from the need to

specify the distribution of the frailties a priori, and are therefore subject to model

error for clustered data problems. Nonparametric Bayesian frailty models have

typically avoided modeling the density of the frailties, instead modeling the frailty

directly under a Dirichlet process prior (Müller and Quintana, 2004; Pennell and

Dunson, 2006), and have retained nonsmooth stepfunction formulations for the

baseline hazard that recall the Breslow estimator. The Dirichlet process prior re-

sults in discrete posterior frailty distributions, but a frailty with a density may

be preferable in many circumstances. Furthermore, simulation results by Barker

and Henderson (2005) suggest that Breslow-type baseline hazards may lead to sys-

tematic underestimation of the frailty variance and regression parameters, because

they depend only on the rank ordering of event times, rather than the actual times.

It is therefore desirable to use a method that allows flexible frailty distributions,

and nonparametric baseline hazard estimates that incorporate the event times.

In his Ph.D. thesis, Komárek (2006) presents a Bayesian nonparametric ap-

proach to clustered survival, based on the accelerated failure time model formula-

tion of Pan (2001) and the random effect density estimation methodology of Ghidey

et al. (2004). Both the random effects density and the event time distribution are

modeled as smooth mixtures of G-splines and estimated using an MCMC Gibbs
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sampler. The resulting error and frailty distributions are smooth, and allow easy

visualization and interpretation.

In this chapter, we propose a related model that remains within the propor-

tional hazards framework while implementing the desirable features of the formula-

tion in Komárek and Lesaffre (2006). We model the baseline hazard as a penalized

mixture of B-splines, and the frailty density as a penalized mixture of normalized

B-splines. Our model formulation and the deconvolution approach bear some re-

semblance to those of Staudenmayer et al. (2008) and Ruppert et al. (2007), and

estimation is similarly carried out using Markov Chain Monte Carlo and a Gibbs

sampler for the various model components. The resulting posterior estimates of

the baseline hazard and frailty density are smooth and accurate, and can correctly

identify unusual frailty densities and baseline hazard forms given sufficiently large

samples.

We allow for additional flexibility by proposing two natural extensions: first, we

allow the inclusion of a parametric component that may incorporate prior knowl-

edge about the form of the frailty density or baseline hazard. Second, we allow the

number and position of knots for the B-spline bases to be chosen adaptively, by a

reversible jump MCMC procedure similar to that of Denison et al. (1998) and Biller

(2000). Such free-knot spline methods are popular in Bayesian curve-fitting and

nonlinear regression (see Smith and Kohn (1996); DiMatteo et al. (2001); Lind-

strom (2002) for related work), but have to our knowledge not been adapted to

the survival setting. These two extensions respectively improve the performance

of the method in situations when the hazard or frailty density can be well-modeled

by standard parametric forms, or are distinctly non-smooth.

This chapter is organized as follows: In Section 2.1, we introduce the necessary
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notation, present the basic model structure and the aforementioned extensions, and

compute the log-posterior parameter density. We give details on the estimation and

computer implementation in Section 2.2, including the various conditional posteri-

ors used by each step of the Gibbs sampler, as well as the reversible-jump adaptive

knot selection procedure. Section 2.3 contains illustrative simulation results, and

discusses the relative merits of our approach and existing ones. In Section 2.4, we

apply our methodology to data from studies of congestive heart failure and dia-

betic retinopathy, and demonstrate the flexibility of the approach. We conclude

with a brief discussion in Section 2.5. The appendices contain examples of possible

parametric forms and penalties, and the associated computational detail.

2.1 Model structure

We first propose the basic model in Section 2.1.1, which consists of B-spline mixture

formulations for the hazard and frailty density curves, with optional penalties

to encourage smoothness. In Section 2.1.2 we propose extending the model, by

specifying the curves as convex combinations of the aforementioned B-splines and

of a parametric component, as a way of incorporating prior knowledge about the

hazard or frailty. The extension to adaptive selection of the number and placement

of the B-spline knots is presented in Section 2.1.3. Each of the baseline hazard and

frailty density curves can then be specified as some combination of a basic model

and its optional extensions, each of which can accommodate a variety of priors

and options. The result is a flexible family of models that allows prior knowledge

about the form and smoothness of either curve to be incorporated into the model

fit to the desired extent.
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2.1.1 Basic model structure

Suppose that the observed data consists of outcome and covariate information

on m independent clusters of size Ji ≥ 1. We assume that each subject (i, j),

i = 1 . . .m, j = 1 . . . Ji experiences an event at time Xij, and may have available

p-dimensional fixed covariates Zij.

Correlations between subjects within the same cluster are captured by a set of

m cluster-level frailties Ui, i = 1 . . .m, which are positive, and independent and

identically distributed with a density f , whose mean is 1. When the variance of

f is zero, all frailties are fixed at 1, and the problem reduces to the setting of

unclustered survival analysis.

Each subject’s event time may be censored at a time Cij, which is assumed to

be noninformative in the sense of Nielsen et al. (1992). Denote the followup time

as Tij = Xij ∧ Cij and the status indicator as δij = I(Xij < Cij).

Denote the baseline hazard by λ0(t) with corresponding cumulative hazard

Λ0(t) =
∫ t

0
λ(s)ds. Following the proportional hazards framework, the hazard and

cumulative hazard for Tij conditional on the frailties and regression coefficients are

λij(t|U ,Z) = Uiλ0(t)e
ZT

ijβ and Λij(t|U ,Z) = UiΛ0(t)e
ZT

ijβ ,

where β is a p-dimensional vector of regression coefficients. The relevant likelihood

conditional on the frailties (see Andersen et al., 1993) can then be written as

L(β, λ|T , δ, U ,Z) =
m∏

i=1

Ji∏
j=1

(
Uiλ0(Tij)e

ZT
ijβ

)δij

exp
(
UiΛ0(Tij)e

ZT
ijβ

) . (2.1)

Specifically, we initially model the baseline hazard as a non-negative linear

combination of Kλ B-spline basis functions Bλk(x) of order Qλ, defined on Nλ =
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Kλ−Qλ interior knots ξλ distributed over the range of the event times. The splines

are indexed by parameters θλ, with the weight of each spline basis function given

by wλk = eθλk . That is, the hazard and cumulative hazard can be written as

λ0(t|θλ) =

Kλ∑
k=1

Bλk(t)wλk , Λ0(t|θλ) =

Kλ∑
k=1

wλk

∫ t

0

Bλk(s)ds . (2.2)

Similarly, we initially model the frailty density f as a convex combination of

normalized B-spline basis functions B̃uk(x) of order Qu, defined on knots ξu over

a sufficiently large range. The splines are indexed by parameters θu, and both

the B-splines and weights are normalized to ensure that the density integrates to

1. That is, we assume the frailties are independent and identically distributed as

Ui|θu ∼ f(x|θu), with

f(x|θu) =
Ku∑
k=1

B̃uk(x)wuk , (2.3)

where

wuk =
exp(θuk)∑Ku

ℓ=1 exp(θuℓ)
, and B̃uk(x) = Buk(x) ·

(∫ ∞

−∞
Buk(s)ds

)−1

.

As in Staudenmayer et al. (2008), we place a multivariate Normal prior on the

regression parameters β. Priors on the parameters θ = (θλ,θu) have a Gaussian

structure, but may incorporate a penalty to induce smoothness in the B-spline

coefficients and avoid overfitting. Denoting the penalty functions as pλ(θλ) and

pu(θu), the priors can then be written as:

π(β|σ2
β) = (2πσ2

β)−
p
2 exp

(
− 1

2σ2
β

βT β

)
, (2.4)

π(θλ|σ2
λ) ∝ (2πσ2

λ)
−Kλ

2 exp

(
− 1

2σ2
λ

pλ(θλ)

)
, (2.5)

π(θu|σ2
u) ∝ (2πσ2

u)
−Ku

2 exp

(
− 1

2σ2
u

pu(θu)

)
. (2.6)
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Depending on the choice of penalty functions pu, pλ, the priors for θλ and θu

may be improper. They may be chosen to follow a simple Gaussian form similar

to eq. (2.4), or to penalize second differences in the parameters θu,θλ, or the

integrated squared second derivative of the spline, or other smoothness criteria.

Examples of such penalty functions are presented in appendix 2.A.

Lastly, assume inverse-gamma priors for the error variance parameters

σ2
β, σ2

λ, σ
2
u, with parameters αβ = (αβ1, αβ2) (and analogously for the others), so

that

π(σ2
β|αβ) ∝ (σ2

β)−(αβ1+1) exp

(
−αβ2

σ2
β

)
, (2.7)

and analogously for σ2
λ and σ2

u. These may be quite diffuse.

Then, the log-posterior (up to a constant) can be written as

ℓ(U , θ,σ, α|T , δ,Z) =∑
i,j

δij

(
ln Ui + ln λ0(Tij|θλ) + ZT

ijβ
)
−

∑
i,j

UiΛ0(Tij|θλ)e
ZT

ijβ +
∑

i

ln f(Ui|θu)

+

(
−p

2
ln σ2

β − βT β

2σ2
β

)
+

(
−Kλ

2
ln σ2

λ −
pλ(θλ)

2σ2
λ

)
+

(
−Ku

2
ln σ2

u −
pu(θu)

2σ2
u

)
−(αβ1 + 1) ln σ2

β − αβ2

σ2
β

− (αλ1 + 1) ln σ2
λ −

αλ2

σ2
λ

− (αu1 + 1) ln σ2
u −

αu2

σ2
u

In this expression, the terms respectively correspond to the point process like-

lihood in eq. (2.1) and the frailty density in eq. (2.3), the spline parameter priors

eq. (2.4)–(2.6), and eq. (2.7) and its analogues.

2.1.2 Addition of a parametric component

For smaller samples, the dimensionality of the B-spline parametrization of the

baseline hazard and frailty density may be a liability. When the data itself contains
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relatively little information about the shape of the curve, the Bayesian approach

makes it possible to supplement the data with prior knowledge. It is, however, not

intuitive to define an informative prior on the spline parameters θ.

We thus propose a modification to the methodology of Section 2.1.1 that ex-

tends the aforementioned spline model by including a parametrically specified basis

function. For the baseline hazard, the parametric component might take the form

of a Weibull or lognormal family, and for the frailty density one might consider a

gamma or lognormal component. Specifically, the form of the baseline hazard in

eq. (2.2) is replaced by a convex combination of the spline component and a new

parametric component,

λ0(t|θλ, ηλ, ϕλ) = ϕλ

Kλ∑
k=1

Bλk(t)wλk + (1 − ϕλ)λ0p(t|ηλ)

Λ0(t|θλ, ηλ, ϕλ) = ϕλ

Kλ∑
k=1

wλk

∫ t

0

Bλk(s)ds + (1 − ϕλ)Λ0p(t|ηλ) ,

(2.8)

and the specification for the frailty density in eq. (2.3) is replaced by

f(x|θu, ηu, ϕu) = ϕu

Ku∑
k=1

B̃uk(x)wuk + (1 − ϕu)fp(x|ηu) , (2.9)

where ϕλ, ϕu represent the weights of the nonparametric components, λ0p, Λ0p and

fp are respectively the parametric baseline hazard, cumulative hazard and frailty

density components, and ηλ,ηu are the parameters indexing these components.

Intuitively then, the formulation in eq. 2.8 may be viewed as a parametric base-

line hazard, with deviations captured by a spline component. The prior on the

weight ϕλ specifies the degree of confidence in the parametric component, increas-

ing with smaller values of ϕλ. A prior favoring the parametric component ensures

that in data-poor circumstances, the fit shrinks towards a parametric specification.
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This can be accomplished by placing Beta priors on the weights ϕ = (ϕλ, ϕu),

with fixed hyperparameters αϕλ
,αϕu . A Beta(1, 1) (uniform) prior is inadequate,

because, the weights ϕ may not be identifiable when the spline and parametric

components have similar forms. However, a nonuniform prior such as Beta(1, 2)

(triangular) ensures that the weight of the nonparametric component shrinks if

it does not capture information beyond that captured by the parametric portion.

Alternatively, a Beta(2, 1) prior can place additional weight on the nonparametric

component if an unusual structure is suspected, while still allowing the possibility

of very low frailty variance. Fixing the weights at 1 reduces the model to that of

Section 2.1.1, whereas fixing the weights at 0 leads to a purely parametric Bayesian

survival model.

Priors for the parametric terms ηλ and ηu necessarily depend on the desired

parametric form. Denote the priors by πλ(ηλ|σ2
ηλ

) and πu(ηu|σ2
ηu

), where σ2
ηλ

, σ2
ηu

themselves may have priors depending on hyperparameters αη = (αηλ
, αηu). In

practice, we have found it effective to parametrize the distributions λ0p, fp in a way

that permits Gaussian priors. A few reasonable choices for common parametric

forms are presented in appendix 2.B.

The posterior loglikelihood is then given by:

ℓ(U , θ,η,ϕ,σ,α|T , δ,Z) = ℓ(U ,θ, σ,α|η, ϕ,T , δ, Z) (2.10)

+ log
[
ϕ

(αϕλ1−1)

λ (1 − ϕλ)
(αϕλ2−1)

]
+ log

[
ϕ

(αϕu1−1)
u (1 − ϕu)

(αϕu2−1)
]

(2.11)

+ log πλ(ηλ|σ2
ηλ

) + log πu(ηu|σ2
ηu

) + log πη(σ
2
ηλ

, σ2
ηu
|αη) (2.12)

where ℓ(U ,θ,σ,α|η,ϕ, T , δ, Z) is analogous to eq. (2.8)–(2.8), with eqs. (2.8)

and (2.9) substituted for the hazard and frailty curves. The terms in (2.11) con-

tain the Beta priors on the weights, and terms (2.12) contain the priors for the

parametric components.
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2.1.3 Adaptive knot selection

Thus far, little has been said about the choice of the number of spline knots Nλ, Nu

and their positions ξλ, ξu. The number and placement of knots has a profound

effect on the smoothness of the estimated hazard curve or frailty density: including

only few widely-spaced knots generally leads to very smooth curves, whereas for

multiple knots in close proximity, smoothness has to be enforced by a penalty so

as to avoid the risk of overfitting.

In the work of Staudenmayer et al. (2008) and Komárek and Lesaffre (2006), as

in the development of the preceding sections, the number of knots is fixed, and their

positions are distributed evenly over the range of the data. If the underlying curve

is smooth, this approach yields excellent results in conjunction with smoothing

penalties in the priors of eq. (2.5) and (2.6), provided that the knots and smoothing

penalties are well-chosen. In the survival setting however, such specification can

be particularly challenging, since the hazard is observable only through the event

times, and its smoothness may be difficult to judge. Furthermore, most penalized

smoothing acts globally over the range of the data, but there is often no a priori

reason to suspect that all regions of the hazard or frailty curve need to be similarly

smooth.

An advantage of the Bayesian approach is that the number and positions of

knots may be treated as additional parameters to be estimated. In that case, the

likelihood in eq. (2.8)–(2.8) should be treated as the conditional likelihood given

the number of knots N = (Nλ, Nu) and their positions ξ = (ξλ, ξu).

Biller (2000) introduced an approach for automatic knot selection for general-

ized linear models using natural cubic splines, in which the number of knots and
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spline weights were chosen by reversible-jump MCMC methods (Green, 1995), sim-

ilar to the curve-fitting procedure of Denison et al. (1998). The procedure makes

it possible to sample from the posterior of the model set consisting of different

numbers and placements of knots, and corresponding different dimensionality of

the spline parameters.

A similar approach can be used in this case to extend the spline formulation

presented in Section 2.1.1, with the added complexities of the survival model speci-

fication and frailty deconvolution. In addition to the Gibbs sampling steps required

to sample from the posterior of the parameters introduced in the preceding sec-

tions, the adaptive knot selection procedure consists of three possible moves that

affect the hazard and frailty density curves by changing their B-spline basis: the

addition of a knot, the removal of a knot, and the change in position of a knot.

When selecting the knots adaptively, the smoothness of the curve can be dic-

tated simply by the number of knots and their positions, with no need for an

additional smoothing penalty. In this case, the prior on the number of knots N

plays a key role in specifying the smoothness. Denison et al. (1998), suggests plac-

ing Poisson priors on the number of knots, and simulation experiments conducted

by Biller (2000) indicate that this gives good results in the context of nonlinear

regression. The Poisson prior is strongly informative, and allows great control over

the smoothness of the resulting curve, at the risk of overfitting. In contrast, less

informative priors such as a Geometric or Negative Binomial can be used to pe-

nalize large numbers of knots and give preference to smoother curves. We consider

these and other priors as well.

Given the number of knots N , they may then take positions uniformly

on a much larger set of Mλ,Mu predetermined candidate knot positions ξc
λ =
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{ξc
λ1, . . . , ξ

c
λMλ

}, ξc
u = {ξc

u1, . . . , ξ
c
uMu

}. The choice of candidate knots represents a

prior on the knot positions: for instance, for the baseline hazard, candidate knots

might be selected as quantiles of the observed event times, to make data-rich re-

gions more likely to contain knots.

The joint log-posterior likelihood up to a constant may then be written as:

ℓ(U ,θ,σ,α, ξ,N |T , δ, Z) = ℓ(U ,θ,σ, α|T , δ,Z, ξ, N )+log π(ξ|N )+log π(N ) ,

(2.13)

where ℓ(U , θ,σ, α|T , δ,Z, ξ, N ) is as in eq. (2.8)–(2.8), and the remaining terms

represent the aforementioned priors on knot position and parameter dimension

respectively. Parametric components may be included as well, in the same way as

discussed in Section 2.1.2.

We will discuss the details of this reversible-jump MCMC step in Section 2.2.4.

2.2 Estimation procedure

The estimation procedure is a multi-step algorithm consisting of three types

of steps: Initialization, parameter updates via Gibbs sampling and Metropolis-

Hastings MCMC, and, if desired, adaptive knot selection via reversible-jump

MCMC. After initialization, posterior samples of all parameter can be drawn by

ordinary and reversible-jump MCMC steps, repeated as long as needed to ensure

convergence of the chain and a sufficient number samples from the posterior. Fig-

ure 2.1 shows the structure of the algorithm. We propose additional notation in

Section 2.2.1, and discuss initialization in Section 2.2.2. Each of the Metropolis-

Hastings parameter update steps is presented in Section 2.2.3, and the reversible-

jump method used for knot selection is discussed in Section 2.2.4.
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Initialize

❄
1. Update the frailties U

2. Update the regression coefficients β

3. Update the baseline hazard curve

(a) If including a spline component, update coefficients θλ

(b) If including a parametric component, update
parametric component parameters ηλ

(c) If including both components, update weight ϕλ

(d) If including a spline component, and using adaptive
knot selection, choose one:

i. Add a new knot (birth)
ii. Remove an existing knot (death)
iii. Move an existing knot

4. Update the frailty density curve analogously to step 3.

5. Generate the variance parameters σ2

✲

Repeat

Figure 2.1: Structure of the estimation procedure.

2.2.1 Additional notation

In the following, denote by β(h) the estimated regression parameters at iteration

h, with initial values corresponding to h = 0, and analogously for the frailties and

other estimated parameters U (h),θλ
(h),θu

(h),η
(h)
λ ,η

(h)
u , ϕ(h), σ2(h)

. Also, denote the

spline parameter weight vectors w
(h)
λ = eθ

(h)
λ and w

(h)
u = eθ

(h)
u /1T

meθ
(h)
u .

If adaptive knot selection is used, the number and placement of knots may also

vary with each iteration. Denote the number of knots N
(h)
λ , N

(h)
u and corresponding

spline parameter dimensions K
(h)
λ , K

(h)
u . Knots are located at ξ

(h)
λ , ξ

(h)
u , and corre-

spond to B-spline bases B
(h)
λk (t) and B̃

(h)
uk (x) for the hazard and frailty respectively.
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Without adaptive knot selection, B
(h)
λk (t) = B

(0)
λk (t), and analogous for the frailty

splines.

Further, define basis function vectors B̃
(h)
u (x) =

(
B̃

(h)
u1 (x), . . . , B̃

(h)

uK
(h)
u

(x)
)

and

analogously for B
(h)
λ (t). Additionally, denote

C
(h)
λk (t) =

∫ t

0

B
(h)
λk (s)ds , and E

(h)
uk = 1 −

∫ ∞

−∞
xB̃

(h)
uk (x)dx , (2.14)

with corresponding vectors C
(h)
λ (t) and E

(h)
u . The vector E

(h)
u is used in the course

of parameter estimation to ensure that the frailty mean is 1, for identifiability. We

give simple recursive formulas for these integrals in appendix 2.C.

To make possible full matrix notation, we define the following vectors and

matrices:

Ũ (h) =
[
U

(h)
11 . . . U

(h)
mJm

]T

δ = [δ11 . . . δmJm ]T Z = [Z11 . . . ZmJm ]T

B̃(h)
u =


B̃u(U

(h)
1 )

...

B̃u(U
(h)
m )

 B
(h)
λ =


B

(h)
λ (T11)

...

B
(h)
λ (TmJm)

 C
(h)
λ =


C

(h)
λ (T11)

...

C
(h)
λ (TmJm)



λ(h)
p =


λp(T11|η(h)

λ )

...

λp(TmJm|η
(h)
λ )

 Λ(h)
p =


Λp(T11|η(h)

λ )

...

Λp(TmJm |η
(h)
λ )

 f (h)
p =


fp(U1|η(h)

u )

...

fp(Um|η(h)
u )

 .

Note that in Ũ (h), we use U
(h)
ij = U

(h)
i , giving a vector of length

∑
i Ji (in constrast,

U (h) is of length m). The matrix Z has dimensions
∑

i Ji × p, B̃
(h)
u has dimension

m × K
(h)
u , and matrices B

(h)
λ ,C

(h)
λ are

∑
Ji × K

(h)
λ . We will also denote by D(x)

a diagonal matrix with x on the diagonal.

This allows us to construct at each iteration vectors of the estimated baseline

hazard at each observed event time, and of the frailty density at each estimated
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frailty, corresponding to evaluations of equations (2.8) and (2.9):

λ
(h)
0 = ϕ

(h)
λ B

(h)
λ w

(h)
λ + (1 − ϕ

(h)
λ )λ

(h)
0p

Λ
(h)
0 = ϕ

(h)
λ C

(h)
λ w

(h)
λ + (1 − ϕ

(h)
λ )Λ

(h)
0p

f (h) = ϕ(h)
u B̃(h)

u w(h)
u + (1 − ϕ(h)

u )f (h)
p ,

The dependence of these estimates on other parameters will be used implicitly in

the construction of conditional likelihoods for the Metropolis-Hastings steps.

Lastly, define tuning parameters γν , γλ, γβ, γu chosen to make acceptance prob-

abilities in the Metropolis-Hastings algorithm close to 25%. These may be set

manually or can be selected by an adaptive procedure during the burn-in phase

of the chain. We present a simplistic but effective adaptive procedure to choose

MCMC tuning parameters during the burn-in phase in Section 2.2.3.9.

2.2.2 Obtaining initial values

Even though the chain can in principle be initialized at any value, we find that

good starting values hasten the convergence of the chain, and reduce the risk of

numerical problems. This section contains initial values that we have found to

yield good results. They are in part found by using computationally inexpensive

frequentist methods, and by maximizing conditional likelihoods.

For the the B-spline Bλ(t) specifying the baseline hazard, with events occurring

at times Tij, we set the initial number of interior knots to

N
(0)
λ = min

(∑
i Ji

4
, 35

)
,

distributed evenly or by quantiles along the range of observed event times. In

addition, if the spline order Qλ > 1, we define repeated exterior knots located at
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the boundaries, to ensure that B
(h)
λ (t) is supported exactly on the range of event

times.

Analogously, for the (unnormalized) B-spline B
(h)
u (x) of order Qu defining the

frailty density, we choose a support range (Umin, Umax), and distribute N
(0)
u =

min(m/4, 35) knots evenly across the range. The range may be chosen a priori,

or it may be allowed to depend on the initial estimates of the frailties from a

parametric frailty model.

We set the initial values for all parameters as follows:

• Hyperparameters α = (αβ, αλ,αu) are fixed as

αβ1 = αβ2 = αλ1 = αλ2 = αu1 = αu2 = 0.01 ,

indicating diffuse priors on the regression and spline parameters. Hyperpa-

rameters αη may depend on the parametric form chosen, but for the pa-

rameterizations given in Section 2.B, analogous diffuse Gaussian priors are

appropriate. The hyperparameters αϕλ
,αϕu determine the form of the Beta

prior on the weights ϕλ, ϕu.

• Initial values for the frailty estimates U (0) and for the parameter estimates

β(0) can be obtained by fitting a frequentist proportional hazards frailty

model to the data (e.g. via coxph in R). The frailty distribution should match

the parametric component, if available.

• Parametric baseline hazard parameters ηλ can be initialized by fitting a para-

metric proportional hazards model to the data (e.g. via survreg in R). Initial

values for the parametric frailty density parameters ηu can be obtained from

the frailty model fit previously.
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• Initial values for the variance parameters σ2(0)
are set as

σ2
β

(0)
= σ2

λ
(0)

= σ2
λ
(0)

= σ2
ηλ

(0)
= σ2

ηu

(0)
= 0.1 .

• Initial values for the spline coefficients θλ
(0),θu

(0) can be found by max-

imizing the conditional log-likelihoods ℓ(θλ|U (0),β(0),η(0),ϕ(0),σ2(0)
) and

ℓ(θu|U (0),β(0),η(0),ϕ(0),σ2(0)
) (see Section 2.2.3.3 and Section 2.2.3.4 for

the likelihoods. Formulas for the gradients are given in appendix 2.D.

2.2.3 Metropolis-Hastings MCMC steps

Once initial values have been obtained, the algorithm begins running the MCMC

sampling loop for a specified number of iterations. The first stage consists of

successive Gibbs sampling steps, in which, given iteration h parameter estimates,

each set of parameters is updated in turn by Metropolis-Hastings. The following

subsections detail the likelihoods for each of these parameters conditional on the

remainder, which for brevity are denoted by an ellipsis.

2.2.3.1 Updating the frailties Ui

The loglikelihood for the frailty parameters U conditional on the remaining pa-

rameters is given by portions of component (2.8) in the full likelihood, that is:

ℓ (U | . . .) =
m∑

i=1

[
Ji∑

j=1

(
δij log Ui − UiΛ

(h)
0 eZT

ijβ(h)
)

+ log f
(h)
i

]

Clearly, conditional on the remaining parameters, the frailties Ui are independent.

We thus generate candidates individually for the h + 1-st iteration from a Gamma
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transition kernel with mean U
(h)
i and variance γν , that is,

Ũ
(h+1)
i ∼ Gamma

{
γ−1

ν

(
U

(h)
i

)2

, γν

(
U

(h)
i

)−1
}

,

where γν is a tuning parameter. Each candidate is accepted with probability

ρu = min

{
1,

L(Ũ
(h+1)
i | . . .)T (Ũ

(h+1)
i , U

(h)
i )

L(U
(h)
i | . . .)T (U

(h)
i , Ũ

(h+1)
i )

}
,

where L is the posterior likelihood, T (x, x′) is a gamma transition kernel with

mean x and variance γν evaluated at x′.

2.2.3.2 Updating regression coefficients β

The loglikelihood for the regression coefficients conditional on the remaining pa-

rameters can be written as

ℓ (β| . . .) = δT Zβ − Ũ (h)T D(Λ
(h)
0 )eZβ − βT β

2σ2
β

. (2.15)

Candidates for the h+1-st iteration can be generated from N
(
β(h), γβΣβ

)
, where

Σβ is the inverse Hessian of the likelihood in eq. (2.15) evaluated at the initial

values (see eq. (2.24)).

2.2.3.3 Updating baseline hazard spline coefficients θλ

The nonparametric estimate of the baseline hazard depends on parameters θλ as

detailed in eq. (2.8). The loglikelihood for these coefficients conditional on the

remaining parameters is given by

ℓ (θλ| . . .) = δT log λ
(h)
0 − Ũ (h)T D(Λ

(h)
0 )eZβ(h) − pλ(θλ)

2σ2
λ

(2.16)

Candidates for the h + 1-st iteration can be generated one by one from

N
(
θ

(h)
λk , γλ

)
, where γλ is a tuning parameter.
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2.2.3.4 Updating frailty density spline coefficients θu

The loglikelihood for the frailty density spline coefficients θu conditional on the

remaining parameters is given by

ℓ (θu|U ,β,θλ) = 1T
m log f (h) − pu(θu)

2σ2
u

(2.17)

In generating candidates for the h + 1-st iteration, it is important for identifi-

ability to ensure that the mean of the frailty density is fixed at 1. This condition

can be expressed as the constraint

E(h)
u eθ

(h)
u = 0 .

where E
(h)
u is defined in eq. (2.14). We therefore generate candidates in pairs, in

such a way that the constraint is always satisfied: for each k, we first generate a

candidate θ̃
(h+1)
uk ∼ N

(
θ

(h)
uk , γu

)
, where γu is a tuning parameter. We then choose

a random index m among the remainder, and adjust the candidate θ̃
(h+1)
um as

θ̃(h+1)
um = log

{
1

E
(h)
um

(
E

(h)
uk (eθ

(h)
uk − eθ̃

(h+1)
uk ) + E(h)

umeθ
(h)
um

)}
,

which ensures that the pair (θ
(h+1)
uk , θ

(h+1)
um ) continues to satisfy the constraint. Since

this corresponds to a symmetric transition kernel, each pair is accepted with a

standard Metropolis probability.

2.2.3.5 Updating baseline hazard parametric component parameters ηλ

The parametric component λ0p of the baseline hazard λ0 depends on parameters

ηλ. The loglikelihood for these parameters is given by

ℓ (ηλ| . . .) = δT log λ
(h)
0 − Ũ (h)T D(Λ

(h)
0 )eZβ(h)

+ πλ(ηλ|σ2
ηλ

(h)
) .
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Candidate generation may depend on the parametric form, but we have found that

if the distributions are parametrized in such a way that their parameters are un-

constrained, multivariate Gaussian transition kernels yield good results. Effective

parametrizations are discussed in appendix 2.B.

2.2.3.6 Updating frailty density parametric component parameters ηu

The loglikelihood for the parameters corresponding to the parametric component

of the baseline hazard is given by

ℓ (ηu| . . .) = 1T
m log f (h) + πu(ηu|σ2

ηu

(h)
)

Again, candidate generation is discussed in appendix 2.B.

2.2.3.7 Updating the weights ϕλ and ϕu

The relative weights of the parametric and nonparametric components for the

baseline hazard and frailty curves have the following likelihoods:

ℓ (ϕλ| . . .) = δT log λ
(h)
0 − Ũ (h)T D(Λ

(h)
0 )eZβ(h)

+(αϕλ1 − 1) log ϕ
(h)
λ + (αϕλ2 − 1) log(1 − ϕ

(h)
λ )

ℓ (ϕu| . . .) = 1T
m log f (h) + (αϕu1 − 1) log ϕ(h)

u + (αϕu2 − 1) log(1 − ϕ(h)
u )

We generate candidates for ϕ̃
(h+1)
λ using a Beta transition kernel with mean

ϕ
(h)
λ and variance γϕλ, where the latter is a tuning parameter, and analogously for

ϕ̃
(h+1)
u .
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2.2.3.8 Generate the error variance parameters σ2

Parameters (σ2
β, σ2

λ, σ
2
u) are sampled from the following inverse-gamma distribu-

tions:

σ2
β ∼ IG

(
p

2
+ αβ1,

β(h)T β(h)

2
+ αβ2

)

σ2
λ ∼ IG

(
K

(h)
λ

2
+ αλ1,

pλ(θ
(h)
λ )

2
+ αλ2

)

σ2
u ∼ IG

(
K

(h)
u

2
+ αu1,

pu(θ
(h)
u )

2
+ αu2

)

For the remaining parameters corresponding to the parametric components, other

priors may be appropriate depending on the parametric form and parametrization

chosen. We discuss these in appendix 2.B.

2.2.3.9 Setting Metropolis-Hastings tuning parameters

The preceding steps in Section 2.2.3.1–2.2.3.8 depend on tuning parameters

γν , γβ, γλ, γu, γηλ, γηu , γϕλ, γϕu , which must be set in such a way that the acceptance

rate of each of the Metropolis-Hastings steps is approximately 25%. It is infeasible

to calibrate so many parameters by hand, so we offer the following heuristic:

During the burn-in phase of length B iterations, the MCMC loop of Sec-

tion 2.2.3.1–2.2.3.8 and possibly Section 2.2.4 may be interrupted every b iter-

ations, b < B. The tuning parameters and acceptance rates used during each

previous interval of length b can then be used to predict the values of the tuning

parameters for which the acceptance rates are 25%, e.g. using linear regression,

and the results can be used as tuning parameter values for the next b iterations.
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The value of b should be chosen so that B/b is sufficient to yield a large number

of evaluations. After the end of the burn-in, the tuning parameters are held fixed.

Although simplistic, we have found that this method works very well, and yields

acceptance rates that are very close to 25%.

2.2.4 Reversible-Jump MCMC for adaptive knot selection

In all the steps discussed in Section 2.2.3, the number of knots in the model, and

hence the dimension of the spline parameters θλ,θu, has remained fixed. In order

to enable adaptive knot selection, we not only allow knots to move, but also permit

changes in dimension, such as adding a knot (birth step) or deleting a knot (death

step).

We discuss the procedure in general terms only, since it is identical for the

hazard spline and the frailty density spline, and we omit subscripts that identify

the parameters as referring to either curve. As before, let N (h) denote the number

of interior spline knots ξ(h), and θ(h) the spline parameter vector of length K(h) =

N (h) + Q, at iteration h. Let πN(n) denote the prior on the number of knots.

As detailed in Green (1995), changes in model dimension in reversible-jump

MCMC are subject to a “dimension–matching” constraint. Typically, transitions

between a model indexed by a parameter set θ of dimension k and a candidate

model indexed by parameters θ̃ of dimension k̃ are accomplished by generating

m uniform random numbers u and computing the candidate by a deterministic

function θ̃ = θ̃(θ, u). For the reverse move, one generates m̃ random numbers ũ

and computes the candidate as θ = θ(θ̃, ũ). To ensure reversibility, the mapping
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between (θ,u) and (θ̃, ũ) must be bijective, and in particular, the dimension–

matching constraint m + k = m̃ + k̃ must hold.

In our context, adaptive knot selection requires three types of steps: the “move”

step, in which the position of a single knot is changed to some new point between

its neighbor knots, the “birth” step, in which a new knot is added after a ran-

domly chosen knot and the dimension of the spline parameter θ increases, and

the “death” step, in which a randomly chosen knot is removed and the dimension

of the parameter decreases. The move step requires no dimension change, and

Metropolis-Hastings methods are sufficient. The death and birth steps however

are subject to the reversibility and dimension-matching constraints.

Following Denison et al. (1998), at each iteration we choose randomly whether

to execute a birth, death, or move step. Given that N
(h)
λ = n, and the probabilites

bn, dn,mn of birth, death and move steps respectively are set to:

bn = c min

{
1,

πN(n + 1)

πN(n)

}
, dn = c min

{
1,

πN(n − 1)

πN(n)

}
, mn = 1 − bn − dn ,

where the constant c controls the rate of dimension-changing steps, and is set to

c = 0.4 as in Denison et al. (1998). These parameters are chosen so that

bnπN(n) = dn+1πN(n + 1) . (2.18)

We give details on the move step in Section 2.2.4.1, the birth step in Section 2.2.4.2,

and the death step in Section 2.2.4.3.

2.2.4.1 Knot position change (move step)

In the move step, a single knot position ξ
(h)
k to be moved is chosen uniformly from

the set of interior knots, and changed to a random new candidate position located
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between its neighboring knots. That is, the candidate knot position ξ̃
(h)
k is selected

uniformly from the set of candidate locations ξc ∈ ξc such that ξ
(h)
k−1 < ξc < ξ

(h)
k+1.

The spline parameters θ remain unchanged.

Since the prior on the knot positions is uniform over the set of candidate knots,

the priors for knots ξ(h) and the candidate ξ̃(h+1) are identical. Since no dimension

change is required, the new knot positions are accepted with probability

ρ = min

{
1,

L(θ|ξ̃(h+1), . . .)

L(θ|ξ(h), . . .)

}
,

where L is posterior spline parameter likelihood given in eq. (2.16) or eq. (2.17)

for the hazard and frailty spline respectively. Note that these likelihoods depend

on the knot positions through λ
(h)
0 and f (h).

2.2.4.2 Knot addition (birth step)

In the birth move, a random unoccupied candidate knot ξc ∈ ξc is chosen to be

added to the current set of knots ξ(h), of length N (h). Denote by k the interval of

the current knot set containing ξc, so that ξ
(h)
k < ξc < ξ

(h)
k+1. The new candidate

knot set is then given by

ξ̃(h+1) =
{

ξ
(h)
1 , . . . , ξ

(h)
k , ξc, ξ

(h)
k+1, . . . , ξ

(h)

N(h)

}
,

of length Ñ (h+1) = N (h) + 1.

The set of spline coefficients θ(h) of length K(h) must be updated to a candidate

set θ̃(h+1) of length K̃(h+1) = K(h) +1. There are simple rules for non-destructively

inserting a new knot into a B-spline function (de Boor, 2001), but using these

directly would violate the reversibility and dimension-matching constraint between

the birth and death moves mentioned earlier. Since the birth move begins in a
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model of dimension K(h) and its reverse begins at dimension K(h) + 1, we need

to generate an additional random number for the birth move. Intuitively, since

removing a knot is a destructive procedure and may cause the shape of the curve

to change, we must during the birth move be able to generate the set of curves

that would reduce to the original curve upon removal of the new knot.

To do this, we compute the candidate spline parameters θ̃(h+1) for inserting a

knot ξc ∈ (ξ
(h)
k , ξ

(h)
k+1) as follows:

θ̃
(h+1)
j =



θ
(h)
j if j ≤ k + 1

θ
(h)
j−1 if j > k + Q

log
(
rje

θ
(h)
j + (1 − rj)e

θ
(h)
j−1

)
if k + 1 < j < k + Q

log
(
ueθ

(h)
j + (1 − u)eθ

(h)
j−1

)
if j = k + Q

(2.19)

where rj = (ξc − ξ
(h)
j−Q)/(ξ

(h)
j−1 − ξ

(h)
j−Q), and u ∼ U(0, 1). These rules correspond

to the deterministic rules in de Boor (2001), except that the parameter θ̃
(h+1)
k+Q is

perturbed by a random amount, rather than by the knot ratio rk+Q.

The prior ratio for the birth move is given by product of the ratio of the priors

on the number of knots, the priors on the knot positions, and the priors on the

spline parameters:

RP =
πN(N (h) + 1)

πN(N (h))
· N (h) + 1

M − N (h)
· π(θ̃(h+1)|σ2)

π(θ(h)|σ2)
,

since the prior on the knot positions is that they are randomly chosen among the

candidate knots, so that π(ξ(h)) =
[(

M
N(h)

)]−1
. The transition ratio is given by

RT =
dN(h)+1/(N

(h) + 1)

bN(h)/(M − N (h))
.

Note that together with eq. (2.18), this implies that

RP · RT =
π(θ̃(h+1)|σ2)

π(θ(h)|σ2)
= (2πσ)−

1
2 exp

(
p(θ̃(h+1)) − p(θ(h))

2σ2

)
.
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The likelihood ratio RL is given by the ratios of the likelihoods for the spline

parameters θ(h), whose logarithms are given by either eq. (2.16) or eq. (2.17),

without the prior penalty terms. Lastly, the Jacobian for the transformation from

(θ(h), u) to (θ̃(h+1)) in eq. (2.19) is

|J | =

∣∣∣∣∣∣
(
exp(θ

(h)
k+Q) − exp(θ

(h)
k+Q−1)

)
exp(θ̃

(h+1)
k+Q )

k+Q−1∏
j=k+2

rj · exp(θ
(h)
j )

exp(θ̃
(h+1)
j )

∣∣∣∣∣∣
The candidate number of knots Ñ (h+1) and spline parameters θ̃(h+1) are then

accepted with probability

ρ = min {1, RL · RP · RT · |J |} . (2.20)

2.2.4.3 Knot deletion (death step)

In the death step, a single knot ξ
(h)
k is chosen uniformly from the set of knots

ξ(h) to be removed. The candidate knot set for the next iteration is then

ξ̃(h+1) =
{

ξ
(h)
1 , . . . , ξ

(h)
k−1, ξ

(h)
k+1, . . . , ξ

(h)

N(h)

}
. The spline parameters are correspond-

ingly adjusted by the inverse of the transformation in eq. (2.19), that is, by deleting

the parameter θ
(h)
k+Q−1 and adjusting the remaining parameters as

θ̃
(h+1)
j =


θ

(h)
j if j < k + 1

θ
(h)
j+1 if j ≥ k + Q − 1

log
(

1
rj

eθ
(h)
j − 1−rj

rj
eθ

(h)
j−1

)
if k + 1 ≤ j < k + Q − 1

(2.21)

Because the birth and death moves are symmetrically defined, the likelihood

ratio, prior ratio, transition ratio and Jacobian determinant are the inverses of

those in eq. (2.20).
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2.3 Simulation Studies

We implemented the methodology described in Section 2.2 in the R package

splinesurv. In order to establish the performance and flexibility of the method,

we conducted simulation studies under a variety of settings.

Our simulations investigate the capacity of the method to correctly identify

the form of the underlying baseline hazard and frailty density, as a function of

the number of clusters and cluster size. Furthermore, we wish to show that the

method can be used to accurately estimate the regression coefficients β and the

frailty variance, which we will henceforth denote by σ2.

We consider three scenarios within which to test the method, differing in the

form of the “true” baseline hazard and frailty density used to generate simulated

data. The first, referred to as the “Parametric” scenario, is characterized by a

Weibull hazard of scale 1 and shape 1.8, and lognormal frailty density with vari-

ance .25, both of which are standard forms typically well-modeled by parametric

methods. In the second scenario, referred to as the “Smooth” scenario, the base-

line hazard is a smooth curve that cannot be well-described by typical parametric

forms, and the frailty density is a mixture of two lognormal distributions. In third

and final scenario, referred to as the “Stepfunction” scenario, the baseline hazard is

a discontinuous step function, and the frailty distribution is a mixture of uniforms.

Figure 2.2 contains plots of the hazard and frailty in each of the three scenarios.

For purposes of the simulation, a replication consists of first generating frailties

Ui, i = 1 . . .m from the scenario’s frailty density. A single covariate is generated

for each subject as Z ∼ N(0, 1). The single regression coefficient is fixed at β =

1. Given the frailty and covariate, event times can then be generated using the
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Figure 2.2: “True” baseline hazard curves and frailty densities used for generating
simulated data in each of the three simulation scenarios

baseline hazard for the scenario. Censoring times are independently generated

from a Weibull hazard with shape γC = 1.8 and scale λC chosen for each scenario

to yield approximately a 20% censoring rate (λC = .15 in the Parametric scenario,

and λC = .1 in the Smooth and Stepfunction scenarios). The sample generated in

this way can then be fit using the splinesurv package.

2.3.1 Curve fitting performance

To explore the effects of sample size on the quality of the curve fits, we first conduct

a single replication for various sample sizes, under each scenario, and explore the

effect of different model specifications. We limit ourselves to four sample sizes for

each scenario, setting the number of clusters to either m = 10 or m = 500, and

the cluster size to either Ji = 10 or Ji = 500, i = 1 . . .m.

The methodology is very flexible, and offers a range of choices of penalty func-

tions, parametric distributions, prior parameters, and the option of adaptive knot

selection, but for brevity, we only select one model specification for purposes of

40



Ji
 =

 1
0

m = 10

Ji
 =

 5
00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m = 500

0
1

2
3

4 m = 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m = 500

0.
0

0.
5

1.
0

1.
5

Scenario:  Parametric

Ji
 =

 1
0

m = 10

Ji
 =

 5
00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m = 500

0
1

2
3

4 m = 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m = 500

0.
0

0.
5

1.
0

1.
5

Scenario:  Smooth

Ji
 =

 1
0

m = 10

Ji
 =

 5
00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m = 500

0
1

2
3

4

Baseline HazardBaseline Hazard

m = 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m = 500

0.
0

0.
5

1.
0

1.
5

Frailty DensityFrailty Density

Scenario:  Stepfunction

Curve posterior mean
Pointwise 95% intervals

True curve (hazard / frailty density)
Density of uncensored event times
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demonstrating curve-fitting here. For both the hazard and frailty, we include a

spline component only, using a simple Gaussian prior on the spline parameters

(corresponding to the penalty function in Section 2.A.1). We allow for adaptive

knot selection with a truncated Poisson prior on the number of knots, with means

µλ = µu = 10 and a maximum of 35 knots, and 100 candidate knots distributed

uniformly over the range of the data. Each fit was run for a 2000-iteration burn-in,

during which tuning parameters were chosen adaptively to ensure approximately

a 25% parameter acceptance rate, followed by 3000 iterations used to construct

posterior estimates.

The results are shown in Figure 2.3, and indicate that the methodology func-

tions as intended: In all three scenarios, the fitted models capture the features

of the underlying hazard and frailty curves with sufficiently large samples. The

number of clusters appears to have a more immediate effect on the quality of the

fit than the cluster size, especially for the frailty density. In order to obtain an

accurate estimate of the frailty density, a large number of clusters is required, but

these clusters need not be large. With few, large clusters, the form of the hazard

can be identified, although that of the frailty cannot. Hazard estimates in the

Stepfunction scenario display sharp spikes at the points of discontinuity—this is

an artifact caused by the use of cubic splines in a scenario where linear splines

would have been better able to capture the discontinuity.

Further such simulation results (not shown here) indicate that fixed-knot pe-

nalized splines perform well in the Parametric and Smooth scenarios, but do quite

poorly in the Stepfunction scenario, as the sharp trough cannot be captured with-

out significant smoothing error. Further, the inclusion of a correctly specified
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parametric component improves curve-fitting performance in the Parametric sce-

nario, and does not significantly affect the other scenarios.

2.3.2 Parameter estimation performance

In order to establish the ability of the procedure to estimate the regression param-

eter and frailty variance, we conduct a simulation study at smaller sample sizes.

Sample sizes under all three scenarios are limited to 10, 50 and 500 clusters of size

10 or 50, excluding the largest combination. The model and scenarios are specified

as before.

We consider four model specifications: The first is a fourth order spline-only

model with adaptively chosen knots and a Poisson(10) prior on the number of

knots, as described for Figure 2.3. The second includes additionally parametric

components, consisting of a Weibull baseline and a lognormal frailty curve, with

a Beta(1, 2) prior on the weight, thus giving slight preference to the parametric

component. The third is a fixed-knot penalized spline model specified according

to Section 2.1.1, with equally spaced knots, and penalties on the squared second

differences between the parameters, following Section 2.A.2. The fourth is similar,

but penalizes the integrated squared second derivative, as per Section 2.A.3. Pe-

nalized spline fits are fairly sensitive to the choice of hyperparameters, so they were

chosen here so as to give reasonably smooth curves in several test scenarios; we

intentionally did not choose the “best” settings, but instead selected parameters

as one might do if the curve were unknown.

In Bayesian estimation by MCMC, the collection of posterior samples contains

far more information than the point estimates and intervals generally available in
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frequentist methods. For purposes of the simulation study, and to enable com-

parison with frequentist methodology, we construct point estimators based on the

posterior samples. A natural estimator for the regression coefficient β is the poste-

rior mean of its distribution, estimated by the sample average of MCMC samples.

For the frailty variance σ2, one natural estimator is the sample variance of the

density functions constructed from the MCMC samples of the spline parameters

θu. A second estimator is variance of the frailty samples Ui, averaged over all

iterations. In practice, we found that the latter performs slightly better than the

former, since it is less directly affected by smoothing bias.

Table 2.1 contains estimates of the biases of these point estimators, based on

1000 simulations, with the four model specifications, and an extended Cox model

with gamma frailties as described in Therneau and Grambsch (2000), fitted using

the routine coxph for comparison.

Results show that the model yields good estimates of the regression coefficient,

particularly for larger samples. In the Parametric and Smooth scenarios, the Pe-

nalized (2nd diff.) model has the lowest regression parameter bias for large samples.

Due to the sensitivity of penalized model fits to hyperparameters, the quality of

these results cannot be accurately judged, as the choice of hyperparameters may

have been particularly fortuitous. The Penalized (2nd deriv.) model often under-

estimates the regression coefficient and frailty variance. These results suggest that

if enough prior information about the process exists to make reasonable choices

about the hyperparameters, a penalized spline model can be a good choice.

An advantage of the adaptive knot selection method is significantly lower sen-

sitivity to hyperparameters. Since the adaptive method allows the smoothness of

the spline to be controlled through the prior on the number of knots rather than
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through an explicit penalty, there are fewer settings that need to be manually ad-

justed. The spline-only method performs well, particularly with larger clusters.

When clusters are small, the method tends to overestimate the frailty variance,

because smoothing error and uncertainty affect the variance estimates. This ef-

fect is particularly severe in the Smooth and Stepfunction scenarios—this agrees

with the oversmoothing observable in Figure 2.3 for smaller samples. Including a

parametric component has a beneficial effect on the estimates in the Parametric

scenario, improving both regression coefficient and frailty estimates, but does not

have significant detriment in other scenarios.

2.4 Data Examples

We illustrate the use of the proposed methodology with two example data sets.

The first is a set of observations of congestive heart failure patients gathered in the

course of a randomized clinical trial, which we reanalyze in Section 2.4.1 with the

secondary goal of identifying the effect of various factors on the risk of rehospital-

ization or death. The second is a study of diabetic retinopathy analyzed multiple

times in the statistical literature, including by Huster et al. (1989) and Therneau

and Grambsch (2000), used to illustrate the effects of adaptive knot selection and

penalized smoothing in Section 2.4.2.

2.4.1 Congestive heart failure data

The study was conducted in a 487-bed, not-for-profit community hospital located

in southeast Michigan. The study population consisted of patients with either sys-

tolic or diastolic heart failure assembled for the original purpose of a randomized,
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controlled trial comparing a pro-active case management strategy versus usual care

on all-cause re-hospitalizations. A planned secondary analysis was to determine

prognostic factors for readmission or mortality.

Patients were eligible for the study if they were hospitalized on an internal

or family medicine service between October 29, 2002 and September 20, 2003

and received intravenous diuretics to treat possible heart failure. Intervention

patients were assessed by a cardiology nurse practitioner who developed a protocol-

driven discharge plan that could include telemanagement, an outpatient nurse-run

heart failure clinic, or usual care. All control patients were managed by the usual

discharge planning activities of hospital staff.

Computations based on pilot data adjusted for the impact of clustering sug-

gested a sample size of 440 patients for the study. Of these, 17 died during the

index hospitalization and were removed from the sample, resulting in a cohort of

423 patients. Unfortunately, half the patients assigned to the intervention arm

were discharged prior to receiving the complete intervention, and the study could

not be completed as planned.

Using the intention-to-treat approach, no difference between the intervention or

control groups was found for the outcome of all-cause subsequent hospitalizations

or emergency department encounters.

We here proceed to re-analyze the data, defining the event of interest as a

patient’s rehospitalization or death during the 180 day period following the index

hospitalization. 257 such events were observed, of which 233 are rehospitalizations

and the remainder are deaths. The remaining 39.2% of patients are treated as

censored observations at the end of followup.
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Table 2.2: Covariates and basic descriptive statistics for the congestive heart fail-
ure data

Name Description Mean Median SD
hxsumINPTorER Prior hospitalizations and ED visits (count) 0.88 0.00 1.31
minHb Minimum hemoglobin 10.79 10.80 2.07
LN lastCREAT Last creatinine log 0.26 0.22 0.45
LN maxGLU Maximum glucose log 5.12 5.04 0.41
minPLTSlt50k Indicator: minimum platelet count ¡105 0.02 0.00 0.13
lastPOTASgt5 Indicator: last potassium >5 0.04 0.00 0.19
itoECF Indicator: discharged to nursing home 0.19 0.00 0.39
ejectionpctcon Cardiac ejection fraction 43.66 45.00 16.47
dcbeta Indicator: beta-blockers 0.54 1.00 0.50
dcaceiorarb Indicator: ACE Inhibitors 0.61 1.00 0.49

Patients are clustered into 31 groups by their attending physician, ranging in

size between 1 and 80 patients, with mean and median cluster size of 14 and 5.5

respectively.

A wide range of explanatory variable data are available for each patient. For

purposes of the analysis, covariates with more than 5% missing values were re-

moved from the data set, and the remaining missing values were imputed with the

median. Prior to analysis, all covariates were centered and standardized. We found

experimentally that doing so improved the mixing properties of the MCMC proce-

dure. A subset of covariates was selected by a combination of stepwise automated

procedures and consultations with the study clinicians, and is shown together with

basic descriptive statistics in Table 2.2. Since the treatment could not be admin-

istered to to half of the intervention group patients, treatment group membership

was excluded from the set of covariates.

We first fit a Spline-Only model by specifying the hazard and frailty following

Sections 2.1.1 and 2.1.3, as fourth-order (cubic) splines with truncated Poisson

priors on the number of knots with mean 20 and a maximum of 35 knots, and
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Figure 2.4: Trace plots, autocorrelation functions, and posterior density estimates
for a Spline-Only fit to the regression coefficients of the congestive heart
failure data. Plots are shown for three of the regression coefficients,
the frailty variance, and the number of spline knots for the hazard and
frailty.

run the chain for 50,000 iterations, discarding the first 20,000 as burn-in and

thinning the chain to every 10th sample. Table 2.3 shows the posterior mean and

95% posterior intervals for the covariate effects and the variance of the random

effect in the first three columns. There is substantial agreement on the signs and

magnitudes of the coefficients with gamma and lognormal frailty models fitted by

coxph, although notably, the gamma frailty model estimates the frailty variance

as zero, and the lognormal model’s frailty variance estimate is very small.

We monitor the mixing of chain parameters by examining trace plots and au-

tocorrelation functions of the posterior samples. The trace plots for coefficients in

Figure 2.4 indicate that the regression coefficient estimates have converged, and

that the degree of thinning is adequate, and kernel density estimates based on the

posterior samples suggest approximately normal posterior distributions. Estimates

of the frailty variance and number of spline knots mix at a considerably lower rate.

The top panel of Figure 2.5 shows the posterior mean estimate of the hazard,

survival and frailty density curves, as well as pointwise 95% credible bands for
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Table 2.3: Posterior means and 95% credible intervals of regression coefficients
and frailty variance, for a Spline-Only model, and a model additionally
including a Weibull/Lognormal parametric component, fitted to the
congestive heart failure data, with gamma and lognormal frailty model
estimates from coxph for comparison.

Spline Only Spline + Parametric
Covariate PM 2.5% 97.5% PM 2.5% 97.5%

hxsumINPTorER 0.242 0.128 0.365 0.251 0.137 0.364
minHb −0.196 −0.329 −0.067 −0.197 −0.334 −0.066
LN lastCREAT 0.156 0.014 0.305 0.168 0.029 0.309
LN maxGLU 0.112 −0.009 0.235 0.115 −0.013 0.241
minPLTSlt50k 0.120 0.007 0.223 0.120 0.006 0.223
lastPOTASgt5 0.078 −0.045 0.186 0.083 −0.040 0.191
itoECF 0.101 −0.020 0.222 0.106 −0.010 0.222
ejectionpctcon −0.102 −0.231 0.029 −0.111 −0.245 0.019
dcbeta −0.039 −0.159 0.086 −0.040 −0.163 0.085
dcaceiorarb −0.037 −0.167 0.088 −0.034 −0.162 0.090
minHb:LN lastCREAT 0.165 0.031 0.305 0.165 0.037 0.312
Frailty Variance 0.697 0.131 1.443 0.439 0.038 1.395

Cox: gamma Cox: lognormal
Covariate Est SD Pval Est SD Pval

hxsumINPTorER 0.248 0.056 0.000 0.249 0.056 0.000
minHb −0.193 0.069 0.005 −0.195 0.070 0.005
LN lastCREAT 0.236 0.074 0.001 0.235 0.074 0.002
LN maxGLU 0.122 0.067 0.068 0.123 0.067 0.066
minPLTSlt50k 0.138 0.051 0.007 0.138 0.051 0.007
lastPOTASgt5 0.122 0.055 0.026 0.120 0.055 0.028
itoECF 0.129 0.060 0.033 0.129 0.060 0.033
ejectionpctcon −0.117 0.071 0.098 −0.119 0.071 0.094
dcbeta −0.055 0.065 0.398 −0.055 0.065 0.400
dcaceiorarb −0.045 0.066 0.502 −0.043 0.066 0.517
minHb:LN lastCREAT 0.189 0.073 0.010 0.190 0.073 0.009
dcaceiorarb −0.037 −0.167 0.088 −0.034 −0.162 0.090
Frailty Variance 0.000 0.001

each. The shape of the hazard may inform the timing and duration of future inter-

ventions to reduce readmissions and mortality from heart failure. In this dataset,

the risk for readmission or death was greatest shortly after discharge from the

index hospitalization. The hazard declined rapidly during the first few weeks post-

discharge then declined more slowly before reaching a plateau at approximately

120 days. This suggests interventions to postpone mortality or readmissions need
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Figure 2.5: Upper panel: Hazard, survival and frailty density estimates, and
95% pointwise posterior intervals for the congestive heart failure
data. Spline-Only specification, with adaptive knot selection and a
Poisson(20) prior on the number of knots. The baseline represents
a patient with average covariates. Lower panel: Boxplots of posterior
frailty estimates for each of the 31 clusters, sorted in order of increasing
posterior means. Box width indicates the cluster size.

to be targeted at the care transition from the hospital to home or to another facil-

ity. Although determining the optimal duration and intensity of the intervention

would require formal cost-effectiveness analyses, the hazard curve suggests most

of the benefit would be realized within the first few months after the index event.

The Bayesian approach allows the full posterior distributions of the frailties

to be examined. The lower panel of Figure 2.5 shows boxplots of the posterior

frailty estimates for each of the clusters, to give some indication of the marginal

posterior frailty distributions. The difference between the smallest and largest

cluster frailties suggests that the large estimated frailty variance is a significant

effect, and not merely a product of smoothing error. Frailty estimates for larger
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Figure 2.6: Upper panel: Hazard, survival and frailty density estimates, and 95%
pointwise posterior intervals for the congestive heart failure data.
Spline+Parametric model specification, with the spline component
specified as in Figure 2.5 and the Weibull and lognormal parametric
components for the hazard and frailty density respectively. Compo-
nent weight prior is Beta(1, 2), which favors the parametric compo-
nent. The baseline represents a patient with average covariates. Lower
panel: Boxplots of posterior frailty estimates for each of the 31 clusters,
sorted in order of increasing posterior means. Box width indicates the
cluster size.

clusters are more precise, and small frailty values are estimated more precisely

than large ones. The size of the errors relative to the frailties nevertheless suggests

that estimation error contributes to the frailty variance in Table 2.3, and it has

likely been overestimated.

Since the frailty density appears similar to a Lognormal density, and the haz-

ard may be well-modeled by a Weibull hazard function, we construct a second

fit, including parametric components in both curves, following Section 2.1.2. The

weights ϕ of the spline component are given Beta(1, 2) priors, which are triangular
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priors giving more weight to the parametric component. The posterior means and

quantiles in the second set of three columns of Table 2.3 contain similar results for

the regression coefficients, but a much smaller posterior mean frailty variance esti-

mate. The curves in Figure. 2.6 show that including a parametric component has

a smoothing effect on the hazard and frailty density estimates. In particular, the

parametric component dominates for the frailty density, but has a smaller effect on

the estimated hazard curve. The lower panel in Figure 2.6 shows that including a

parametric component slightly increases the precision with which frailties are esti-

mated, relative to the estimates of Figure 2.5. The effect is particularly noticeable

with smaller clusters.

We next use the congestive heart failure data to illustrate the effect of choosing

different priors on the number of knots. Figures 2.5 used a Poisson(20) prior on the

number of knots. The top panel of Figure 2.7 compares this fit to those resulting

from different Poisson prior choices. As expected, setting the prior to Poisson(1)

leads to excessively smooth fits, whereas the Poisson(50) curve is considerably

more variable and shows potentially undesirable detail. The effect on the survival

curve is relatively small, however, as local bumps in the hazard are smoothed out

by the integration.

The second and third panels show the effect of using geometric and negative

binomial priors for the number of knots. As noted by Biller (2000), these priors

universally encourage smoother fits, and are relatively insensitive to the choice of

parameters. This is a desirable property if a more robust fit is preferred, but if

control over the smoothness of the curve is desired, the Poisson prior is preferable.

The relative prominence of the parametric and spline components can be con-

trolled through the prior on the weights ϕ. The bottom panel of Figure 2.7 shows
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Figure 2.7: Illustrating the effect of choosing different priors on the number of
knots, and different prior parameters for the spline weight. Credible
intervals shown are for the black line in each plot.
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the effects of changing the prior to Beta(1, 10) and Beta(10, 1), which respectively

place more and less emphasis on the parametric component. The frailty density is

more sensitive to changes in the prior weight than the hazard curve, because with

only 31 clusters, the data contains relatively little information about the frailty

density.

2.4.2 Diabetic retinopathy data

The data (described in detail in Huster et al. (1989), and in Therneau and Gramb-

sch (2000)) consists of 197 patients with diabetic retinopathy in both eyes, observed

during a six-year period to study the effectiveness of a laser photocoagulation treat-

ment in reducing the incidence of blindness. For each patient, one eye was treated,

while the other remained untreated as a control, and the time to blindness was

measured for each eye. We therefore treat the data as 394 observations in 197

clusters of size 2, allowing the frailty to capture the dependence between the two

measurements on each patient.

In addition to the treatment effect, the study also distinguishes between

juvenile- and adult-onset diabetes, with 42% of subjects falling into the latter

class. We include the treatment effect and onset category as covariates, as well as

an interaction term between the two, which was shown to be significant by Huster

et al. (1989). We initially fit a cubic spline model with the same settings as the

Spline-Only model of Section 2.4.1.

Figure 2.8 shows the estimated hazard and survival probability for each of

the four groups in the sample. The adaptive knot selection identifies a spike in

the hazard at 13 months, accompanied by a sharp decline in survival, caused by
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Figure 2.8: Hazard and survival estimates for the four groups in the diabetic
retinopathy data for a model with adaptive knot selection and a Pois-
son(20) prior for the number of knots, and survival curves from a fitted
Cox model with gamma frailties for comparison.

a particularly large number of events near that time. This effect is also clearly

noticeable in Kaplan-Meier survival function estimates of the data (Huster et al.,

1989), and in the fitted Cox model estimates in the rightmost panel of Figure 2.8.

In practice, in the absence of a medical explanation for this spike, one might

consider the spike to be noise, and wish to smooth the hazard. This can be

accomplished within the adaptive knot selection framework by using a different

prior on the number of knots, or including a smooth parametric component with a

favorable prior, as illustrated for the congestive heart failure data in Figure 2.7 and

Figure 2.6. Alternatively, the smoothness of the spline can be controlled explicitly,

by disabling adaptive knot selection and relying entirely on penalized smoothing

instead: as noted in Section 2.1.1, the prior on the spline parameters in eq. (2.5)

and (2.6) may contain a penalty term that produces a smoothing effect.

Table 2.4 shows regression coefficient and frailty variance point estimates for

four spline fits: the first is the adaptive fit shown in 2.8, which uses a Poisson(20)

prior for the number of knots. For the second, the number of knots is given a

Geometric(0.1) prior. The third has 20 fixed knots, spaced equally, and uses a
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Table 2.4: Posterior means and 95% credible intervals for fits to the diabetic
retinopathy data, (1) using splines with adaptive knot selection, and
a Poisson(20) prior for the number of knots, (2) with a Geometric(0.1)
prior on the number of knots, (3) with fixed knots and a penalty on the
squared second differences on spline parameters, (4) with fixed knots
and a penalty on the integrated squared second derivative, (5) a Cox
model with gamma frailties, and (6) a Cox model with lognormal frail-
ties.

Adaptive: Poisson(20) Adaptive: Geometric(0.1)
Covariate PM 2.5% 97.5% PM 2.5% 97.5%

Adult Onset 0.221 −0.256 0.722 0.247 −0.485 0.822
Treatment −0.619 −1.024 −0.189 −0.622 −1.171 −0.155
Interaction −0.805 −1.503 −0.172 −0.803 −1.533 −0.086
Frailty Variance 1.285 0.842 1.772 1.126 0.672 1.748

Penalized: 2nd diff. Penalized: 2nd deriv.
Covariate PM 2.5% 97.5% PM 2.5% 97.5%

Adult Onset 0.303 −0.170 0.774 0.365 −0.130 0.893
Treatment −0.549 −0.968 −0.133 −0.515 −0.948 −0.085
Interaction −0.785 −1.434 −0.157 −0.846 −1.583 −0.162
Frailty Variance 0.986 0.164 2.076 0.938 0.364 1.429

Cox: gamma frailty Cox: lognormal frailty
Covariate Est SD Pval Est SD Pval

Adult Onset 0.397 0.259 0.126 0.399 0.245 0.104
Treatment −0.506 0.225 0.025 −0.500 0.225 0.027
Interaction −0.985 0.362 0.006 −0.966 0.361 0.008
Frailty Variance 0.927 0.832

penalty on the sum of squared second differences between the spline parameters

following Section 2.A.2, with hyperparameters tuned to result in smooth hazard

and frailty curves. The fourth is similar, but penalizes the integrated squared

second derivative of each curve, as described in Section 2.A.3. In addition, two

Cox model fits are shown for comparison, with gamma and lognormal frailties

respectively. The resulting regression coefficient and frailty variance posterior mean

estimates are close, generally falling well each others’ posterior credible intervals.

This suggests that unless one wishes to capture unusual features of the hazard
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Figure 2.9: Baseline hazard function estimates for the diabetic retinopathy data,
under various forms of smoothing: adaptive knot selection with Poisson
and Geometric priors on the number of knots, and penalized smoothers
with penalties on the sum of squared second differences and integrated
squared second derivative, respectively. The baseline is an untreated
patient with juvenile-onset diabetes.

or frailty curve, such as the peak shown in Figure 2.8, the choice of smoothing

mechanism may not be important in practice. Estimated baseline hazard curves

for each of the four fits are shown in Figure 2.9.

For the fit penalized by the sum of squared second differences, we show the

hazard, survivor function and frailty density in Figure 2.10. The survivor curve is

smoother than the one in Figure 2.8, a result of the control offered by the penalized

smoother. There is a strong frailty effect, with the frailty density showing hints of

bimodality, possibly suggesting that there may be an additional important binary

factor not captured by the covariates. The posterior distributions of the individual

frailties also show that the frailty plays a significant role in each patient’s overall

risk, and additional risk factors beyond treatment and age of onset affect the risk

of blindness.
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Figure 2.10: Upper panel: Hazard, survival and frailty density estimates, and 95%
pointwise posterior intervals for the diabetic retinopathy data. Spline-
only specification, with fixed equally spaced knots and smoothness
controlled by a penalty on the sum of squared second differences of
the spline parameters. Lower panel: Median, interquartile range, and
full range of posterior frailty estimates for each of the patients, sorted
by posterior median.

2.5 Discussion

The proposed approach permits the analysis of clustered survival data when the

underlying frailty distribution is unknown, without being subject to model error.

The nonparametric Bayesian approach allows even unusual baseline hazards and

frailty distributions to be correctly identified, and, with properly chosen priors,

gives accurate posterior means and credible intervals for all parameters involved.

The adaptive knot selection approach allows a simpler model specification than

the penalized spline approach. Rather than having to construct an exotic penalty

function, with appropriate priors and hyperparameters, the smoothness of the
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curve is controlled through the prior on the number of knots. Results show that for

data sets that can be well-modeled with a parametric hazard or frailty distribution,

the inclusion of a parametric component results in smoother and more accurate

fits.

Extensions of the method to stratified data, or data with time-dependent co-

variates are conceptually simple, but this is not currently supported by the accom-

panying software.

Unlike existing frequentist methods, the Bayesian approach results in a wealth

of information about the joint posterior distribution of all parameters of interest.

Posterior estimates of the hazard and survival, and predictions for different risk

groups can incorporate the dependence between all parameters, allowing a more

thorough understanding of the sources of risk. Furthermore, through deliberate

specification of priors, the Bayesian approach allows practitioners to obtain the

desired degree of smoothness in the hazard functions and frailty densities, without

obscuring important effects.

The method’s flexibility comes at the cost of being very computation-intensive.

The computational effort involved in evaluating B-splines, computing conditional

likelihoods, and calculating penalties over thousands of MCMC iterations is consid-

erable, and fitting a large sample can take several hours on consumer workstations.

Simulation results indicate that the method performs well, especially when the

data contain many clusters of reasonable size, a common situation in multicenter

clinical studies. In such settings, the gain in flexibility from a fully nonparametric

approach may offset the increased computational cost.
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APPENDIX

Appendix 2.A Choice of penalty functions

2.A.1 Gaussian penalty

The penalty function may be chosen to yield a Gaussian prior on the parameter

set, that is,

pλ(θλ) = θT
λ θλ ,

and analogously for pu(θu). The gradients and Hessians are then

∇pλ(θλ) = 2θλ , ∇2pλ(θλ) = 2D(1Ku) ,

and analogously for pu(θu). This penalty function is recommended when adaptive

knot selection is used, since in that case, the smoothness of the curve is controlled

through the prior on the number of knots, and does not need to be explicitly

penalized.

2.A.2 Penalty on second differences

Let D be a matrix so that Dy computes the second difference in y, and let

P = DT D. Then, for analogously defined matrices Pλ,Pu of the appropriate

dimensions, the following functions penalize the second differences in the spline

parameters:

pλ(θλ) = θT
λ Pλθλ , pu(θu) = θT

u Puθu ,

with gradients

∇pλ(θλ) = 2Pλθλ , ∇pu(θu) = 2Puθu ,
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and hessians

∇2pλ(θλ) = 2Pλ, ∇2pu(θu) = 2Pu .

While this choice of penalty function is appropriate when the knots are equally

spaced, it does not result in smooth behavior otherwise.

2.A.3 Penalty on the second derivative

In order to ensure smoothness even when knots are not equally spaced, we can

construct a penalty on the second derivative of the spline. In the case of the

baseline hazard spline, that is

pλ(θλ) =

∫ ∞

0

(
λ

(2)
0 (t,θλ)

)2

dt

=

∫ ∞

0

(
Kλ∑
k=1

B
(2)
λk (t) exp(θλk)

)2

dt

= eθλ
T
Pλe

θλ ,

where Pλ is a matrix whose (j, k) entry is

Pλ,jk =

∫ ∞

0

B
(2)
λj (t)B

(2)
λk (t) dt . (2.22)

This penalty matrix can be computed using a recurrence relation given later in

appendix 2.C. The gradient and hessian of the penalty function are then given by

∇pλ(θλ) = 2D(eθλ)Pλe
θλ

∇2pλ(θλ) = 2D(eθλ)PλD(eθλ) + 2D(Pλe
θλ)D(eθλ)

We can construct an analogous penalty matrix for the frailty density, keeping

in mind that the frailty density uses normalized splines, that is,

pu(θu) =
eθu

T
P̃ue

θu

(1T
Ku

eθu)2
,
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where P̃u is defined analogously, with the addition of a normalizing factor:

P̃u,jk =

∫ ∞

0

B̃
(2)
uj (t)B̃

(2)
uk (t) dt

Appendix 2.B Choice of parametric components

Both the baseline hazard and frailty density may have optional parametric com-

ponents. In this section, we present some of the possible choices of distributions,

along with appropriate priors, initial values and estimation procedures.

2.B.1 Exponential baseline hazard

The exponential baseline hazard can be parametrized by a constant log-hazard

ηλ = ηλ, so that the hazard function is

λ0p(t, ηλ) = exp(ηλ) , Λ0p(t,ηλ) = t exp(ηλ) .

A reasonable prior for ηλ is Gaussian with variance σ2
λ:

log πλ(ηλ|σ2
λ) = −1

2
log σ2

λ −
η2

λ

2σ2
λ

,

with an inverse-Gamma prior for σ2
λ:

log πσ2
λ
(σ2

λ|ασ2
λ
) = −(ασ2

λ1 + 1) log σ2
λ −

ασ2
λ2

σ2
λ

depending on hyperparameters ασ2
λ1, ασ2

λ2 fixed at 0.01.

Candidates for the k+1-st iteration ηλ may be generated as N(η
(h)
λ , γηλ

), where

γηλ
is a tuning parameter chosen to make the acceptance probability close to 25%.
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2.B.2 Weibull baseline hazard

The Weibull baseline hazard is parametrized by a log-hazard ηλ1 and log scale

parameter ηλ2, so the hazard function is

λ0p(t,ηλ) = exp(ηλ1 + ηλ2 + (eηλ2 − 1) log t) , Λ0p(t,ηλ) = exp(ηλ1)t
exp(ηλ2)

Similar to the exponential case, assume the priors for ηλ are independent Gaussian

with variances σ2
λ = (σ2

λ1, σ
2
λ2):

log πλ(ηλi|σ2
λ) = −

∑
i

log σ2
λi −

η2
λi

2σ2
λi

,

with inverse-Gamma priors for σ2
λi:

log πσ2λi(σ
2
λi|ασ2

λi) = −(ασ2
λi1 + 1) log σ2

λ −
ασ2

λi2

σ2
λ

depending on hyperparameters ασ2
λi1, ασ2

λi2 fixed at 0.01.

Candidates for the k + 1-st iteration ηλ may be generated independently as

N(η
(h)
λi , γηλi), where γηλi are tuning parameters chosen to make the acceptance

probability close to 25%. It is possible to simplify the prior structure somewhat

by assuming that σ2
λ1 = σ2

λ2 = σ2
λ, and we have found this to be equally effective.

2.B.3 Gamma frailty density

The gamma frailty distribution parametrized by its log-variance ηu results in the

following parametric density component:

fp(x, ηu) = xexp(−ηu)−1 exp(−ηu)
exp(−ηu)e− exp(−ηu)x

Γ(exp(−ηu))

Similar to the Exponential baseline hazard case case, let the the prior for ηu be

univariate Gaussian with variance σ2
u, in which case the hierarchical structure and

candidate generation is identical.
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2.B.4 Lognormal frailty density

The lognormal frailty density parametrized by a log-variance parameter ηu results

in the following parametric density component:

fp(x, ηu) =
exp

(
− (log x+ 1

2
exp(ηu))2

2 exp(ηu)

)
x
√

2π exp(ηu)

This is a lognormal distribution with mean 1 and variance eexp(ηu) − 1. Choosing

a Gaussian prior for the log-variance allows a parametrization identical to the

Gamma case above.

Appendix 2.C Computing integrals over the B-splines

Consider first the B-spline Bλ(t) specifying the baseline hazard. Recall that events

occur at times Tij, and the number of interior knots is set to

Nλ = min

(∑
i Ji

4
, 35

)
,

and the knots will be positioned at ξλk = min(Tij) + k∆λ, for k = 0, . . . , Nλ + 1,

where

∆λ =
max(Tij) − min(Tij)

Nλ + 1
.

In addition, if the spline order Qλ > 1, define repeated exterior knots located at the

boundaries, so that ξλ(−1), . . . , ξλ (−Qλ+1) = ξλ0 and ξλ(Nλ+1), . . . , ξλ(Nλ+Qλ) = ξλNλ
.

Note that Bλk is supported on the range (ξλ(k−Qλ), ξλk).

For the (unnormalized) B-spline Bu(x) of order Qu defining the frailty density,

the number and placement of knots ξuk are determined analogously.
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In this section we give formulas for the integrals Cλ(Tij) (the cumulative base-

line hazard), Euk (the mean of each normalized spline component), the normaliza-

tion factor to produce normalized B-splines B̃u(x), and the integrals for a penalty

over the second derivative.

2.C.1 Cumulative hazard and normalization factor

A formula for the indefinite integral of a B-spline is given in Cox (1982), allowing

us to compute

Cλk(x) =

∫ x

0

Bλk(t)dt =


ξλk−ξλ(k−Qλ)

Qλ

∑k+Qλ

k′=k+1 B′
λk′(t) if ξλ(k−Qλ) ≤ t < ξλk

ξλk−ξλ(k−Qλ)

Qλ
if t ≥ ξλk

0 otherwise.

where B′
λk′ are splines of order Qλ + 1 defined on the same set of knots. It follows

from an analogue of this formula that the normalized B-splines for the frailty

density are defined as

B̃uk(x) =
Qu

ξuk − ξu(k−Qu)

Buk(x) .

2.C.2 Moments of a normalized B-spline

In order to compute Euk denote

Mn,q,k =

∫ ∞

−∞
xnB̃q,k(x) dx

where B̃q,k is a normalized B-spline of order q with knots ξ−q+1, . . . , ξK+q. This

quantity can be thought of as the n-th moment of a random variable whose density

is given by a single normalized B-spline. It is easy to show (using integration by
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parts and a recurrence relation for the derivative of a B-spline), that Mn,q,k satisfies

the recurrence relation

Mn,q,k =


q

ξk−ξk−q
· 1

n+1

[
− Mn+1,q−1,k−1 + Mn+1,q−1,k

]
if ξk − ξk−q > 0

ξn
k otherwise.

Given this, the terms Euk can be computed as

Euk = 1 − M1,Qu,k ,

using the knots ξuk corresponding to the normalized B-splines B̃uk.

2.C.3 Construction of the penalty matrix on the integrated squared

second derivative

The penalty matrix in eq. (2.22) can be computed by two recurrence relations.

These relations follow from recurrence relations on B-splines and their derivatives,

and integration by parts.

Let

f(q1, k1, ℓ1, q2, k2, ℓ2) =

∫ ∞

−∞
B

(ℓ1)
q1,k1

(x)B
(ℓ2)
q2,k2

(x)dx

g(n, q1, k1, q2, k2) =

∫ ∞

−∞
xnBq1,k1(x)Bq2,k2(x)dx

where B
(ℓ)
q,k is the ℓ-th derivative of a spline of order q supported on knots (ξk−q, ξk).

Then, the following recurrence relation hold (assume without loss of generality that

ℓ1 ≥ ℓ2, q1 ≥ q2, k1 ≥ k2):

f(q1, k1, ℓ1, q2, k2, ℓ2) =
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0 if k1 − q1 ≥ k2

g(0, q1, k1, q2, k2) if ℓ1 = ℓ2 = 0

q1−1
ξk1−1−ξk1−q1

f(q1 − 1, k1 − 1, ℓ1 − 1, q2, k2, ℓ2) otherwise

− q1−1
ξk1

−ξk1−q1+1
f(q1 − 1, k1, ℓ1 − 1, q2, k2, ℓ2)

g(n, q1, k1, q2, k2) =

0 if k1 − q1 ≥ k2

1
n+1

(
ξn+1
k1

− ξn+1
k1−1

)
if q1 = q2 = 1

1
ξk1−1−ξk1−q1

g(n + 1, q1 − 1, k1 − 1, q2, k2) otherwise.

− ξk1−q1

ξk1−1−ξk1−q1
g(n, q1 − 1, k1 − 1, q2, k2)

+
ξk1

ξk1
−ξk1−q1+1

g(n, q1 − 1, k1, q2, k2)

− 1
ξk1

−ξk1−q1+1
g(n + 1, q1 − 1, k1, q2, k2)

Each entry in the penalty matrix of eq. (2.22), can be separately computed by

these recurrence relations.

Appendix 2.D Gradients and Hessians

This section includes several gradients and Hessians of the loglikelihoods in Sec-

tion 2.2 needed to generate candidates for the MCMC steps. Many of these pa-

rameters vary with the iteration h – this dependence is implicit.

The gradient and Hessian of the loglikelihood for the regression coefficients β

in eq. (2.15) are given by:

∇ℓ(β| . . .) = ZT
[
δ − D(Λ0)D(eZβ)Ũ

]
− 1

σ2
β

β (2.23)
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∇2ℓ(β| . . .) = −ZT D(Λ0)D(eZβ)D(Ũ)Z − 1

σ2
β

Ip (2.24)

The gradient and Hessian of the loglikelihood for the baseline hazard spline

parameters θλ in eq. (2.16) are given by:

∇ℓ(θλ| . . .) = ϕλD(eθλ)
[
BT

λ D(λ0)
−1δ − CT

λ D(eZβ)Ũ
]
− 1

2σ2
λ

∇pλ(θλ)

∇2ℓ(θλ| . . .) = ϕD(eθλ)
[
D

(
BT

λ D(λ0)
−1δ

)
− ϕBT

λ D(δ)D(λ0)
−2BλD(eθλ)

−D
(
CT

λ D(eZβ)Ũ
)]

− 1

2σ2
λ

∇2pλ(θλ)

The gradient and Hessian of the loglikelihood for the frailty density spline

parameters θu in eq. (2.17)are given by:

∇ℓ(θu| . . .) = ϕD(eθu)B̃T
u D(fu)

−11m − 2MET
u eθuD(Eu)e

θu − 1

2σ2
u

∇pu(θu)

∇2ℓ(θu| . . .) = ϕD(eθu)
[
D

(
B̃T

u D(fu)
−11m

)
− ϕB̃u

T
D(fu)

−2B̃uD(eθu)
]

− 1

2σ2
u

∇2pu(θu)
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Komárek, A. and Lesaffre, E. (2006). Bayesian accelerated failure time model

with multivariate doubly-interval-censored data and flexible distributional as-

sumptions. Technical report, Katholieke Universiteit Leuven.

71



Kottas, A. (2006). Nonparametric bayesian survival analysis using mixtures of

weibull distributions. Journal of Statistical Planning and Inference 136, 578–

596.

Li, Y., Ryan, L., Bellamy, S., and Satten, G. (2003). Inference on clustered survival

data using imputed frailties. Journal of Computational and Graphical Statistics

12, 640–662.

Lindstrom, M. J. (2002). Bayesian estimation of free-knot splines using reversible

jumps. Computational Statistics & Data Analysis 41, 255–269.

Muliere, P. and Walker, S. (1997). A bayesian non-parametric approach to survival

analysis using polya trees. Scandinavian Journal of Statistics 24, 331–340.

Müller, P. and Quintana, F. A. (2004). Nonparametric bayesian data analysis.

Statist. Sci. 19, 95–110.

Murphy, S. A. (1995). Asymptotic theory for the frailty model. The Annals of

Statistics 23, 182–198.

Nielsen, G. G., Sørensen, T. I. A., Gill, R. D., and Andersen, P. K. (1992). A

counting process approach to maximum likelihood estimation in frailty models.

Scandinavian Journal of Statistics 19, 25–43.

Pan, W. (2001). Using frailties in the accelerated failure time model. Lifetime

Data Analysis 7, 55–64.

Parner, E. (1998). Asymptotic theory for the correlated gamma-frailty model. The

Annals of Statistics 26, 183–214.

Pennell, M. L. and Dunson, D. B. (2006). Bayesian semiparametric dynamic frailty

models for multiple event time data. Biometrics 62, 1044—1052.

72



Ruppert, D., Nettleton, D., and Hwang, J. T. G. (2007). Exploring the information

in p-values for the analysis and planning of multiple-test experiments. Biometrics

63, 483–495. 2007.

Sinha, D. (1993). Semiparametric bayesian analysis of multiple event time data.

Journal of the American Statistical Association 88, 979–983.

Sinha, D. and Dey, D. (1998). Survival analysis using semiparametric bayesian

methods. In Dey, D., editor, Practical Nonparametric and Semiparametric

Bayesian Statistics, volume 133 of Lecture Notes in Statistics, chapter 10, pages

195–211. Springer.

Sinha, D. and Dey, D. K. (1997). Semiparametric bayesian analysis of survival

data. Journal of the American Statistical Association 92, 1195–1212.

Smith, M. and Kohn, R. (1996). Nonparametric regression using bayesian variable

selection. Journal of Econometrics 75, 317–343.

Staudenmayer, J., Ruppert, D., and Buonaccorsi, J. P. (2008). Density estimation

in the presence of heteroskedastic measurement error. Accepted by JASA.

Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending

the Cox Model. Springer.

Therneau, T. M., Grambsch, P. M., and Pankratz, V. S. (2003). Penalized survival

models and frailty. Journal of Computational and Graphical Statistics 12, 156–

175.

73



CHAPTER 3

A NESTED FRAILTY MODEL FOR CLUSTERED BIVARIATE

RECURRENT EVENTS

Joint work with Robert L. Strawderman1

Recurrent events are frequently encountered in longitudinal biomedical and

public health studies. The processes of interest may consist of events considered

to be of a single type, such as might occur in a study of bladder tumor recurrences

(e.g. Byar, 1980), migratory motor complex periods (e.g. Aalen and Husebye,

1991), or hospitalization rates among renal failure patients (e.g. Schaubel and

Cai, 2005). Alternatively, more than one type of event may be encountered, such

as in a skin cancer study involving two distinct types of lesions (e.g. Abu-Libdeh

et al., 1990) or in a study involving preschool children with asthma where both hos-

pitalizations and physician office visits are tracked (e.g. Cai and Schaubel, 2004).

Recurrent episode data, in which subjects may alternate between two states (e.g.,

symptomatic vs. asymptotic disease states), may also be viewed as a special case

of bivariate recurrent event data; see, for example, Cook et al. (1999).

Regression models appropriate for single-type recurrent outcome data have

been well-studied in the survival analysis literature. Broadly speaking, important

objectives here may include characterizing the relationship between subject-level

characteristics and event occurrences, understanding the dynamics of individual

event processes, and describing both within- and between-subject variability. Im-

portant early work on this problem began with the suggestion of Cox (1972b) to

extend the proportional hazards regression model of Cox (1972a) to the case of a

modulated renewal process and the subsequent extensions introduced by Prentice

1Submitted to Computational Statistics & Data Analysis
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et al. (1981) and especially Andersen and Gill (1982) for modeling multivariate

counting process data. The literature on this topic has grown rapidly over the

past 30 years and is now expansive; a contemporary review of existing parametric

and semiparametric models is available in Cook and Lawless (2007).

In regression analyses for event processes consisting of multiple types, the anal-

ysis objectives are generally similar. However, one may also be interested in char-

acterizing aspects of the relationship between event processes observed on the same

subject. The literature on this problem is considerably less extensive than that

for single-type recurrent events. For example, conditional on a multivariate multi-

plicative random effect, Abu-Libdeh et al. (1990) assume that each of type-specific

event processes follow an Andersen-Gill model (Andersen and Gill, 1982). In their

model, the baseline intensities are parametrically specified, as is the multivari-

ate frailty distribution. Estimation and inference is based on the corresponding

marginal likelihood function. Cook et al. (1999) proposes a similar model for the

case of bivariate recurrent event processes, the primary differences being the al-

lowances for stratification and a semi-Markov, rather than Markov, specification

of the baseline intensities; see also Ng and Cook (1997) for related work. Though

analytically tractable, these intensity-based approaches require the correct spec-

ification of the frailty distribution and, in the case of Cook et al. (1999), the

parametric baseline hazards for each event type.

Semiparametric models for the analysis of multivariate survival data and recur-

rent event processes have also been considered. With few exceptions, the proposed

methods take a marginal perspective, focusing on the estimation of univariate rate

and mean functions rather than modeling the full multivariate intensity function,

hence dependence between processes. For example, Ng and Cook (1997, 1999)
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propose semiparametric estimators for the marginal rate functions of a bivariate

point process, assuming the marginal rates each follow a proportional mean model.

Efficiency is improved by introducing a working covariance structure derived un-

der the assumption that the processes follow a bivariate mixed nonhomogeneous

Poisson process. Cai and Schaubel (2004) consider the related problem of mod-

eling clustered recurrent processes, instead treating the cluster-level association

structure as a nuisance parameter.

Xue (1998), extending earlier work of Xue and Brookmeyer (1996), proposes an

interesting alternative for analyzing bivariate survival data. Specifically, under a

conditionally specified proportional hazards model, Xue (1998) uses a parametric

specification of the baseline hazards but avoids the need to specify the frailty

distribution. The latter is achieved by making use of the connections between the

likelihood under the resulting hazard model and a certain Poisson regression model

in order to derive marginal quasilikehood estimators for both the regression and

dependence parameters.

In a related paper, Ma et al. (2003) propose an interesting approach for deal-

ing with clustered univariate survival data based on earlier work in Ma’s Ph.D.

thesis for fitting certain classes of generalized linear mixed models. Specifically,

Ma (1999) considers the use of the best linear unbiased predictor (BLUP) of the

random effects in fitting Tweedie exponential dispersion models with multiplica-

tive random effects. Optimal estimating equations in the sense of Godambe (1976)

are derived for the regression parameters and consistent estimators are derived for

the random effect parameters; see Ma and Jørgensen (2007) for details. A Poisson

regression model having a multiplicative random effects structure is one example of

such a model. Ma et al. (2003) shows how to make use of the connections between
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the partial likelihood under the Cox proportional hazards model and Poisson re-

gression models in deriving estimators for the regression parameters, assuming two

levels of nested random effects. In an earlier conference paper, Ma et al. (2001)

proposes to use this same idea for modeling gap times in a recurrent event setting,

in essence proposing an extension suitable for modeling clustered modulated re-

newal processes. In estimating the frailties by their best linear unbiased predictors

(BLUP), the proposed methodology achieves an advantage over existing methods

by only requiring one to specify the first two moments of the underlying frailty

distribution. Since the models and methodology proposed in Ma et al. (2001) and

Ma et al. (2003) are essentially identical, we refer only to the latter in the following

unless a distinction is useful.

In this article, we extend the model and methodology introduced in Ma et al.

(2003) to the setting of clustered, paired point processes. Specifically, we assume

that two event processes are observed on each subject. The processes, each of which

follows a modulated renewal process with a possibly stratum-dependent baseline

hazard, are assumed to be independent conditionally on a pair of nested correlated

frailties. This multivariate, nested dependence structure permits one to model

stratified, clustered, paired point processes of dependent recurrent events by spec-

ifying the mean and covariance structure of the random effects, thereby avoiding

full parametric specification of the frailty distribution. Estimates for regression

and frailty dispersion parameters are obtained by introducing an alternative and

useful extension of the auxiliary Poisson modeling framework considered in Ma

et al. (2003).

This paper is organized as follows: Section 3.1 introduces the relevant notation

and model specification. The estimation procedure is summarized in Section 3.2,
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with the associated derivations given in Section 3.3, and related computational

concerns discussed in Section 3.4. We propose a few natural extensions and mod-

ifications to the methodology in Section 3.5. A simulation study is described and

summarized in Section 3.6 and serves to demonstrate the excellent performance

of the proposed methods. In Section 3.7, we consider the analyses of two differ-

ent data sets: a study of the effect of selenium supplementation on the risk of

developing two types of skin cancer tumors, and a study of the effect of rhDNase

on pulmonary exacerbation episodes of cystic fibrosis patients. We conclude the

paper with a brief discussion in Section 3.8. Appendix 3.A contains full simulation

results on a number of scenarios.

3.1 Notation and Model

Let the observed data consist of recurrent event outcome and covariate information

on m independent clusters of Ji ≥ 1 subjects, i = 1 . . .m. Specifically, it is

assumed that subject (i, j) experiences N
(d)
ij ≥ 0 recurrent events of type d ∈ {0, 1},

occurring at times 0 = S
(d)
ij0 < S

(d)
ij1 < . . . < S

(d)

ijN
(d)
ij

, prior to some censoring time Cij.

Denote the recurrent event counting process for each subject as {N (d)
ij (t), t ≥ 0},

so that N
(d)
ij = N

(d)
ij (Cij); ties are not permitted. It is assumed that each subject

has available a set of covariates {Zij(t), t ∈ [0, Cij]} that may depend on time. In

addition, we allow for the possibility that subjects are additionally stratified into

p levels; we denote the stratum indicator by {Lij(t), t ∈ [0, Cij]}, allowing for the

possibility that this may too depend on time. The processes {Zij(t), t ∈ [0, Cij]}

and {Lij(t), t ∈ [0, Cij]} are assumed to have left-continuous sample paths and

censoring is assumed to be noninformative in the same sense required in Nielsen

et al. (1992).
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The correlation between subjects within the same cluster, between event pro-

cesses on the same subject, and between successive event times for a given event

type are captured by correlated pairs of nested frailties. More precisely, the cluster-

level frailties for each event type are assumed to be positive and independent, with

E
[
U

(d)
i

]
= 1 , Var (U

(d)
i ) = σ2

(d) (3.1)

and σ2
(d) ≥ 0, d = 0, 1 for i = 1 . . .m. Subject-level frailties are also assumed to

be positive and independent conditional on the cluster-level frailties. Specifically,

for i = 1 . . .m, j = 1 . . . Ji, it is assumed that

E
[
U

(d)
ij |U (0)

i = u
(0)
i , U

(1)
i = u

(1)
i

]
= u

(d)
i (3.2)

Var (U
(d)
ij |U (0)

i = u
(0)
i , U

(1)
i = u

(1)
i ) = uiν

2
(d) (3.3)

Cov (U
(0)
ij , U

(1)
ij |U (0)

i = u
(0)
i , U

(1)
i = u

(1)
i ) = θ , (3.4)

where ν2
(d) ≥ 0, d = 0, 1 and θ ∈ R. The dependence structure induced by

(3.1)–(3.4) further implies that the marginal correlation between the subject-level

frailties for the two recurrent event types is given by

ρ = Cor(U
(0)
ij , U

(1)
ij ) = θ

∏
d∈{0,1}

(
σ2

(d) + ν2
(d)

)− 1
2 ,

allowing for the possibility of either positive or negative correlation.

Let U
(∗)
∗ =

(
U

(0)
∗ , U

(1)
∗

)
, where U

(d)
∗ =

(
U

(d)
i , U

(d)
ij ; j = 1 . . . Ji, i = 1 . . .m

)
de-

notes the set of frailties associated with the dth process, d = 0, 1. Conditionally

upon the full set of frailties U
(∗)
∗ , the recurrent event counting processes are as-

sumed to form a multivariate counting process with intensities

λ
(d)
ij (t) = λ

(d)
0Lij(t)

(
t − S

(d)

ijN
(d)
ij (t−)

)
· U (d)

ij eβ(d)Zij(t) I{t ≤ Cij},

for j = 1 . . . Ji, i = 1 . . .m, where β(d) are regression coefficients and λ
(d)
0r (·) is

the unspecified stratum-specific baseline hazard for stratum r, r = 1 . . . p. This
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conditional intensity formulation is evidently semi-Markov (i.e., given U
(∗)
∗ ); related

examples of semi-Markov intensity models may be found in Oakes and Cui (1994);

Ng and Cook (1997); Cook et al. (1999); Chang and Wang (1999); Duchateau et al.

(2003) and Strawderman (2005, 2006).

3.2 Estimation

Maximum likelihood estimation of the regression, hazard and dispersion param-

eters under the proposed intensity model involves maximizing the corresponding

marginal likelihood function. Typically, some variant of the EM algorithm would

be used for this purpose, requiring computation of the frailty BUPs. However, this

can be a challenging task unless the probability distribution of U
(∗)
∗ has been both

parametrically specified and exhibits a rather special structure.

Over the next several subsections and similarly to Ma et al. (2003), an Expec-

tation-Maximization-type (EM) algorithm will instead be developed for estimating

all model parameters. The “E” step of the algorithm, given the current values of

all model parameters, proceeds by approximating the unobserved frailties using

BLUPs, derived in a manner similar to Ma et al. (2003) using a certain pair of

auxiliary Poisson regression models. The “M” step of the algorithm has two com-

ponents. First, updated dispersion parameters are computed using bias-corrected

Pearson-type estimators derived from frailty BLUPs. Then, conditionally on the

set of estimated (or predicted) frailties, the regression and baseline intensity param-

eter estimates are obtained by maximizing an appropriate conditional likelihood

function. The entire iterative estimation procedure is summarized in Figure 3.1.

Broadly speaking, the proposed algorithm mimics the structure of the EM
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noyes

Estimate standard errors
via Godambe matrix

Compute initial values for
all parameters (e.g. via coxph)

Check for
algorithm convergence

“E”-step

“M”-step

Update frailty BLUPs using
current estimates of

regression parameters and variance components

Update variance components using
current estimates of

frailty BLUPs and regression parameters

Update regression parameters using
current estimates of

frailty BLUPs











Figure 3.1: An overview of the computational algorithm. Formulas for each of the
steps are given in Section 3.2.

algorithm that would be used under a given parametric specification of the frailty

distribution. However, it is not a true EM algorithm, for (i) BLUPs shall be used

in place of the best unbiased predictors (BUPs) of the random effects that would

normally be used in an EM algorithm; and, (ii) Pearson-type estimators will be

used in place of the maximum likelihood estimates of the dispersion parameters.

The theoretical convergence properties of this algorithm are unknown; however,

our practical experience has been that the proposed algorithm is very stable.

The motivation for the proposed “E” and “M” steps requires some further de-

velopment. In Section 3.2.1, we obtain the conditional likelihood that forms the

basis for estimating the regression and baseline intensity parameters. The auxil-
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iary Poisson model that we will use for the purpose of deriving the BLUPs of the

frailties is introduced in Section 3.2.2. The major components of the estimation

scheme summarized in Figure 3.1 are developed in Sections 3.2.3. Specifically, the

proposed BLUPs and dispersion parameter estimates are respectively summarized

in Sections 3.2.3.1 and 3.2.3.2 and estimation of the regression and baseline in-

tensity parameters is then summarized in 3.2.3.3. The problem of standard error

estimation is considered in 3.2.4.

In order to prevent obscuring key ideas, estimation for the proposed model will

initially be considered for the case of time-fixed covariates and time-fixed strata;

that is, assuming Zij(t) = Zij and Lij(t) = Lij for t ≥ 0, j = 1 . . . Ji, i = 1 . . .m.

The generalization to both time-dependent covariates and strata is largely a matter

of changing notation; these extensions will be considered briefly in Section 3.2.5.

3.2.1 The Conditional Point Process Likelihood

For d ∈ {0, 1}, let Λ
(d)
ij (t) =

∫ t

0
λ

(d)
ij (u)du and denote the interevent (i.e., gap) times

by T
(d)
ijk = S

(d)
ijk − S

(d)
ij,k−1, k = 1 . . .M

(d)
ij . Given U

(∗)
∗ and assuming Zij(t) = Zij

and Lij(t) = Lij for t ≥ 0, the contribution of subject (i, j) to Jacod’s point

process likelihood (c.f. Andersen et al., 1993) can be written L(0)
ij (λ

(0)
0 , β(0)|U (0)

∗ )×

L(1)
ij (λ

(1)
0 , β(1)|U (1)

∗ ), where

L(d)
ij (λ

(d)
0 , β(d)|U (d)

∗ ) =

p∏
r=1

M
(d)
ij∏

k=1


(
U

(d)
ij λ

(d)
0r (T

(d)
ijk )eβ(d)Zij

)I(k≤N
(d)
ij )

exp
(
U

(d)
ij Λ

(d)
0r (T

(d)
ijk )eβ(d)Zij

)


Y
(d)
rijk(S

(d)
ijk)

(3.5)

and Y
(d)
rijk(t) = I(Lij = r)I

(
S

(d)
ij,k−1 < t ≤ S

(d)
ijk

)
is an at-risk indicator function that

takes on value 1 if subject (i, j) is at risk for the k-th event of type d at time t,

while in stratum r. With a single process (i.e., d = 0), the likelihood function (3.5)
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is equivalent to that considered in Ma et al. (2001); in addition, if M
(0)
ij = N

(0)
ij +1

can be at most one for every (i, j) (i.e., at most one event per subject), the resulting

likelihood is equivalent to that considered in Ma et al. (2003).

Ma et al. (2003) consider a semiparametric model specification, imposing no

assumptions on the baseline functions λr0(·), r = 1 . . . p. Such a model specifi-

cation can lead to an explosion in the total number of parameters, particularly

for large sample sizes. The total parameter dimension has a signficant impact on

the time required to fit models and may also result in severe numerical instability;

see, for example, Ha and Lee (2005). Such problems are compounded by the use

of the Newton scoring estimation procedure recommended in Ma et al. (2003),

potentially requiring the repeated computation and inversion of high dimensional

matrices.

The need to deal with such challenges only increases in the current bivariate

setting. A simple method for controlling the dimension of the parameter vector

is to employ piecewise constant baseline intensity functions. Suppose that the

baseline intensity λ
(d)
0r (·) for a given d and stratum r is finite and piecewise constant

on K
(d)
r time intervals. Denote the (stratum,process)-specific breakpoints as 0 <

a
(d)
r1 < . . . < a

(d)

rK
(d)
r

; in practice, each interval must contain at least one event,

hence selection of these break points will always depend on the observed data.

The problem of selecting the number and placement of breakpoints is discussed in

Section 3.4. For t ≥ 0, it is assumed that

λ
(d)
0r (t) =

K
(d)
r∑

s=1

α(d)
rs I(t ∈ [a

(d)
r,s−1, a

(d)
rs )) (3.6)

with corresponding cumulative hazards

Λ
(d)
0r (t) =

K
(d)
r∑

s=1

α(d)
rs A(d)

rs (t) (3.7)
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where A
(d)
rs (t) = I{a(d)

r,s−1 ≤ t}
(
min{t, a(d)

rs } − a
(d)
r,s−1

)
. The baseline functions are

then fully parameterized through the parameters α
(d)
rs for each combination of

(r, s, d), a number determined by the total number of strata and interval break-

points. Under a sufficiently fine discretization, the proposed approach reduces to

assigning a unique parameter to each unique event time. This is equivalent to

specifying semiparametric models for the baseline intensities, thereby generalizing

the approach of Ma et al. (2003). As shown in the simulation study, the use of

piecewise constant baseline functions has a minimal effect on estimation, provided

the discretization level is not too coarse.

Let the discretized at-risk indicators corresponding to the stratum-specific

break times be denoted as Y
(d)
rijks = Y

(d)
rijk(a

(d)
rs ), where Y

(d)
rijk(t) is defined above.

Then, using (3.6) and (3.7), the conditional likelihood (3.5) reduces to

L(d)
ij (α(d), β(d)|U (d)

∗ ) =

p∏
r=1

M
(d)
ij∏

k=1

K
(d)
r∏

s=1

(
U

(d)
ij α

(d)
rs eβ(d)Zij

)Y
(d)
rijksδ

(d)
rijks

exp
(
Y

(d)
rijksU

(d)
ij eβ(d)Zijα

(d)
rs A

(d)
rs (T

(d)
ijk )

) , (3.8)

where

δ
(d)
rijks = I(k ≤ N

(d)
ij )I(Lij = r)I(a

(d)
r,s−1 ≤ T

(d)
ijk < a(d)

rs ). (3.9)

The indicator variable δ
(d)
rijks = 1 may be interpreted as “Subject j in cluster i

suffered the k-th event of type d during interval [a
(d)
r,s−1, a

(d)
rs ) while belonging to

stratum r.” Using (3.8), the full conditional loglikelihood function (i.e., over all

subjects) may now be written

ℓ(α, β|U (∗)
∗ ) =

∑
d,r,i,j,k,s

Y
(d)
rijks

[
δ
(d)
rijks

(
log U

(d)
ij + log α(d)

rs + β(d)Zij

)
− U

(d)
ij eβ(d)Zijα(d)

rs A(d)
rs (T

(d)
ijk )

]
, (3.10)

where α and β respectively denote ([α(0)]T , [α(1)]T )T and ([β(0)]T , [β(1)]T )T , U
(∗)
∗

denotes the entire collection of frailty variables, and the summation appearing out
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in front runs over all possible values of (d, r, i, j, k, s), that is,

∑
d,r,i,j,k,s

x =
∑

d∈{0,1}

p∑
r=1

m∑
i=1

Ji∑
j=1

M
(d)
ij∑

k=1

K
(d)
r∑

s=1

x .

3.2.2 An Auxiliary Poisson Model Construction

As indicated in the introduction to Section 3.2, the proposed EM-type algorithm

intends to avoid the need to specify the full bivariate frailty distribution by replac-

ing the frailty BUPs with BLUPs derived under an appropriate auxiliary Poisson

regression model. One obvious route towards achieving this goal is to propose a

direct extension of the methodology in Ma et al. (2003) to the bivariate setting.

Specifically, one would begin by noting that the conditional likelihood function

m∏
i=1

Ji∏
j=1

L(0)
ij (λ

(0)
0 , β(0)|U (0)

∗ ) × L(1)
ij (λ

(1)
0 , β(1)|U (1)

∗ ).

generates a corresponding conditional partial likelihood for β. It is then possible

to construct an auxiliary Poisson model, consisting of Poisson regression models

specified conditionally on U∗ for both d = 0 and d = 1, that generates a conditional

profile likelihood for β equivalent to this conditional partial likelihood. This corre-

spondence is useful because the marginal moment structure of the event indicators

under the Poisson model follows directly from the moment structure imposed on

the frailties. As a result, one can devise closed-form BLUP expressions without

imposing restrictive parametric assumptions on the frailty distribution.

Our initial attempts to implement the above extension to the bivariate set-

ting created numerical problems of the sort described in Section 3.2.1, eventually

leading us to consider the discretization (3.6). The use of discretization creates

minimal difficulties for the estimation of the regression and hazard parameters;

85



for example, as shown in Section 3.2.3.3, it is easy to maximize the loglikelihood

(3.10) given a set of frailties U
(∗)
∗ . However, unless the level of discretization is

chosen to be sufficiently fine, it proved to be impossible to construct an auxiliary

Poisson model that either generates the loglikelihood (3.10) or the corresponding

profile loglikelihood for β given in (3.21) below.

Fortunately, an exact correspondence turns out to be unnecessary. The practi-

cal importance of the auxiliary Poisson model is limited to its utility in developing

BLUP-type approximations to the frailties. We therefore propose to use an auxil-

iary model that approximates (3.10) under a sufficiently fine level of discretization,

restricting the use of this model to the derivation of frailty BLUPs as described

below in Section 3.2.3.1. Similarly to Ma et al. (2003), estimates for the dispersion

parameters σ2
(d), ν

2
(d) and θ are then derived in Section 3.2.3.2 using Pearson-type

estimators, with bias corrections computed under the proposed auxiliary Poisson

model.

Specifically, for d ∈ {0, 1} and F
(d)
rijks = {Y (d)

rijks = 1, Zij, Lij = r}, suppose

δ
(d)
rijks|U

(∗)
∗ , F

(d)
rijks ∼ Poisson

{
U

(d)
ij

[
1 − exp

(
−eβ(d)Zijα(d)

rs h(d)
rs

)]}
, (3.11)

where h
(d)
rs = a

(d)
rs − a

(d)
r,s−1. Assume that these event indicators are mutually inde-

pendent across all possible combinations of d, r, i, j, k, s indices, conditionally on

U
(∗)
∗ and all covariate, strata, and at-risk information. The corresponding random

effects Poisson loglikelihood function may then be written

ℓA(α, β|U (∗)
∗ ) =∑

d,r,i,j,k,s

Y
(d)
rijks

[
δ
(d)
rijks

(
log U

(d)
ij + log

[
1 − exp

(
−eβ(d)Zijα(d)

rs h(d)
rs

)])
− U

(d)
ij

[
1 − exp

(
−eβ(d)Zijα(d)

rs h(d)
rs

)] ]
.
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As h
(d)
rs → 0, we have ℓA(α, β|U (∗)

∗ ) ≈ ℓ̃A(α, β|U (∗)
∗ ), where

ℓ̃A(α, β|U (∗)
∗ ) ∝

∑
d,r,i,j,k,s

Y
(d)
rijks

[
δ
(d)
rijks

(
log U

(d)
ij + log α(d)

rs + β(d)Zij

)
−U

(d)
ij eβ(d)Zijα(d)

rs h(d)
rs

]
. (3.12)

Assuming that h
(d)
rs is small enough to ensure that exactly one event occurs in

each interval, it is additionally true that K
(d)
r =

∑
i,j,k,s δ

(d)
rijks and Y

(d)
rijksh

(d)
rs =

Y
(d)
rijksA

(r)
rs (T

(d)
ijk ), implying the equivalence of (3.12) and (3.10) under sufficiently

fine levels of discretization.

Remark: To better understand the motivation behind (3.11), suppose there

were no censoring. Then, it follows from (3.9) that δ
(d)
rijks = δ̃

(d)
rijks, where

δ̃
(d)
rijks = I(Lij = r)I(a

(d)
r,s−1 ≤ T

(d)
ijk < a(d)

rs ).

Under the proposed intensity model and with F
(d)
rijks as defined earlier,

E
[
δ̃
(d)
rijks

∣∣∣U (∗)
∗ , F

(d)
rijks

]
= P

{
a

(d)
r,s−1 ≤ T

(d)
ijk < a(d)

rs

∣∣∣U (d)
ij , Frij, T

(d)
ijk > a

(d)
r,s−1

}
= 1 − exp

(
−

∫ a
(d)
rs

a
(d)
r,s−1

λ
(d)
0r (t)U

(d)
ij eβ(d)Zij

)
= 1 − exp

(
−U

(d)
ij eβ(d)Zijα(d)

rs h(d)
rs

)
. (3.13)

Observe that (3.13) is a nonlinear function of U
(d)
ij . However, letting h

(d)
rs → 0 as

before, we obtain the approximation

E
[
δ̃
(d)
rijks

∣∣∣U (∗)
∗ , F

(d)
rijks

]
≈ U

(d)
ij

[
1 − exp

(
−eβ(d)Zijα(d)

rs h(d)
rs

)]
,

completing the motivation for (3.11).

Remark: The marginal Poisson mean E
[
δ
(d)
rijks|F

(d)
rijks

]
computed under as-

sumption (3.11) is restricted to lie in the interval (0, 1). Empirically, such a re-

striction led to substantial improvements in the level of agreement between the
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observed and expected numbers of events in comparison to alternative formula-

tions that failed to impose this same restriction. For example, this was observed

to be true in comparison with the formulation

δ
(d)
rijks|U

(∗)
∗ , F

(d)
rijks ∼ Poisson

{
U

(d)
ij eβ(d)Zijα(d)

rs h(d)
rs

}
,

a choice that corresponds to the Poisson model used in Ma et al. (2003).

3.2.3 Parameter estimation

The main iterative algorithm has already been summarized in Figure 3.1. Each

iteration of the algorithm consists of 3 steps, the details of which are now summa-

rized in Sections 3.2.3.1–3.2.3.3.

3.2.3.1 Best linear unbiased predictors for frailties

Under the auxiliary Poisson model introduced in Section 3.2.2, one may construct

BLUPs for the U
(d)
i s and U

(d)
ij s given only the moment assumptions summarized in

(3.1)-(3.4). Specifically, given the current set of baseline, regression, and dispersion

parameters and extending the results in Ma et al. (2003), these BLUPs may be

computed via

Û
(d)
i = E

[
U

(d)
i

]
+ Cov (U

(d)
i , δ)(Var (δ))−1(δ − E [δ]) ,

Û
(d)
ij = E

[
U

(d)
ij

]
+ Cov (U

(d)
ij , δ)(Var (δ))−1(δ − E [δ]) ,

(3.14)

where δ denotes the vector of all recurrent event indicators δ
(d)
rijks for which

Y
(d)
rijks = 1 and the various moments appearing in (3.14) are assumed to be con-

ditional on all covariate and strata information. The results of these calculations
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are summmarized below; detailed derivations are provided in Section 3.3.1. Let

µ
(d)
rijks = E

[
δ
(d)
rijks|F

(d)
rijks

]
and define

µ
(d)
ij. =

∑
r,k,s

Y
(d)
rijksµ

(d)
rijks , δ

(d)
ij. =

∑
r,k,s

Y
(d)
rijksδ

(d)
rijks

where, under the auxiliary model (3.11), µ
(d)
rijks = 1 − exp

(
−eβ(d)Zijα

(d)
rs h

(d)
rs

)
. For

d ∈ {0, 1}, the desired BLUPs may then be written as follows:

Û
(d)
i = 1 + σ2

(d)wi

[ (
1 + σ2

(1−d)p
(1−d)
i

)(
P

(d)
i − p

(d)
i + Q

(1−d)
i − q

(1−d)
i

)
−σ2

(1−d)q
(d)
i

(
P

(1−d)
i − p

(1−d)
i + Q

(d)
i − q

(d)
i

) ]
(3.15)

and

Û
(d)
ij = Û

(d)
i · wij

(
1 + ν2

(1−d)µ
(1−d)
ij.

)
− Û

(1−d)
i

(
ν2

(d)q
(1−d)
ij + θp

(1−d)
ij

)
+ν2

(d)

(
P

(d)
ij + Q

(1−d)
ij

)
+ θ

(
P

(1−d)
ij + Q

(d)
ij

)
, (3.16)

where

wi =

 ∏
d∈{0,1}

(1 + σ2
(d)p

(d)
i ) −

∏
d∈{0,1}

σ2
(d)q

(d)
i

−1

,

wij =

 ∏
d∈{0,1}

(1 + ν2
(d)µ

(d)
ij. ) −

∏
d∈{0,1}

θµ
(d)
ij.

−1

, (3.17)

P
(d)
ij = δ

(d)
ij. · wij(1 + ν2

(1−d)µ
(1−d)
ij. ), Q

(d)
ij = −θwij · δ(d)

ij. µ
(1−d)
ij. ,

p
(d)
ij = µ

(d)
ij. · wij(1 + ν2

(1−d)µ
(1−d)
ij. ) , q

(d)
ij = −θwij · µ(d)

ij. µ
(1−d)
ij. , (3.18)

and

P
(d)
i =

Ji∑
j=1

P
(d)
ij , Q

(d)
i =

Ji∑
j=1

Q
(d)
ij , p

(d)
i =

Ji∑
j=1

p
(d)
ij , q

(d)
i =

Ji∑
j=1

q
(d)
ij .

Remark: For a fixed d and when θ = 0 (i.e., the processes for d = 0 and d = 1

are assumed uncorrelated), the BLUPs (3.15) and (3.16) are structurally identical

to those in Ma et al. (2003, eqns. (11) and (12)).
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3.2.3.2 Pearson estimators for frailty dispersion parameters

Assuming U
(∗)
∗ were observed, easy computations show

˜̃σ
2

(d) =
1

m

m∑
i=1

(U
(d)
i − 1)2 , ˜̃ν

2

(d) =
1

m

m∑
i=1

1

Ji

Ji∑
j=1

(U
(d)
ij − U

(d)
i )2 ,

and

˜̃θ =
1

m

m∑
i=1

1

Ji

Ji∑
j=1

(U
(0)
ij − U

(0)
i )(U

(1)
ij − U

(1)
i )

are respectively unbiased estimators for σ2
(d), ν2

(d), d ∈ {0, 1} and θ under the

moment assumptions (3.1)-(3.4). Näıve Pearson estimators for the dispersion pa-

rameters can thus be obtained directly by respectively replacing U
(d)
i and U

(d)
ij with

the BLUPs in (3.15) and (3.16). However, such estimates are generally biased due

to the variance shrinkage that occurs as a result of using BLUPs. Using the auxil-

iary Poisson model, one may derive bias-corrected Pearson estimators; the general

form of each estimator is given below:

σ̂2
(d) =

1

m

m∑
i=1

{
(Û

(d)
i − 1)2 + b

(d)
i

}
,

ν̂2
(d) =

1

m

m∑
i=1

1

Ji

Ji∑
j=1

{
(Û

(d)
ij − Û

(d)
i )2 + b

(d)
ij

}
,

θ̂ =
1

m

m∑
i=1

1

Ji

Ji∑
j=1

{
(Û

(0)
ij − Û

(0)
i )(Û

(1)
ij − Û

(1)
i ) + b

(∗)
ij

}
,

(3.19)

where the bias corrections b
(d)
i , b

(d)
ij and b

(∗)
ij are given by:

b
(d)
i = E

[
(Û

(d)
i − U

(d)
i )2

]
,

b
(d)
ij = E

[
(Û

(d)
i − U

(d)
i )2

]
+ E

[
(Û

(d)
ij − U

(d)
ij )2

]
− 2

{
σ2

(d) − Cov (Û
(d)
i , U

(d)
ij )

}
,

b
(∗)
ij = E

[
(Û

(0)
ij − U

(0)
ij )(Û

(1)
ij − U

(1)
ij )

]
− Cov (Û

(0)
i , Û

(1)
i )

+ Cov (Û
(0)
ij , U

(1)
ij ) + Cov (Û

(1)
ij , U

(0)
ij ) .
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A complicated, though closed-form, expression for each estimator is available; these

explicit formulas, as well as the lengthy computations required to justify them, are

provided in Section 3.3.2.

3.2.3.3 Conditional maximum likelihood estimators for regression coefficients

Given the current predictions of the U
(∗)
∗ , one can maximize the loglikeli-

hood (3.10) separately with respect to the parameter sets ([α(0)]T , [β(0)]T )T and

([α(1)]T , [β(1)]T )T . Specfically, given d and fixing β(d), the corresponding maximum

likelihood estimate for α
(d)
rs is

α̂(d)
rs =

∑
i,j,k δ

(d)
rijks∑

i,j,k Y
(d)
rijksU

(d)
ij eβ(d)ZijA

(d)
rs (T

(d)
ijk )

=
n

(d)
rs

m
(d)
rs (β(d))

. (3.20)

Substituting (3.20) into (3.10) leads to a profile likelihood for β(d), or

ℓP (β(d)|U (d)
∗ ) ∝

∑
r,i,j,k,s

Y
(d)
rijks

[
δ
(d)
rijks(log U

(d)
ij − log mrs(β

(d)) + β(d)Zij)
]
. (3.21)

The estimate β̂(d) can then be obtained as the solution of the score equation

∑
r,i,j,k,s

Y
(d)
rijks

[
δ
(d)
rijks

(
Zij −

(
m(d)

rs (β(d))
)−1 ∂m

(d)
rs (β(d))

∂β(d)

)]
= 0, (3.22)

where

∂m
(d)
rs (β(d))

∂β(d)
=

∑
i,j,k

Y
(d)
rijksZijU

(d)
ij eβ(d)ZijA(d)

rs (T
(d)
ijk ) .

The estimates for α(d) and β(d) derived from (3.20) and (3.22) depend only on

linear functions of the U
(d)
ij s. Therefore, computation of the conditional maximum

likelihood estimators of α(d) and β(d) is possible given the BLUPs derived in Section

3.2.3.1.
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3.2.4 Standard errors for the regression coefficients and baseline pa-

rameters

Assuming the dispersion parameters are known, an estimate for the asymptotic co-

variance of the regression coefficients and estimated baseline hazard parameters can

be obtained analogously to Ma et al. (2003, Sec. 4.2). Denote the vector of regres-

sion parameters and baseline parameters for process (d) by γ(d) = [log α(d), β(d)].

Define x
(d)
rijks = (0, . . . , 0, 1, 0, . . . , ZT

ij)
T for Y

(d)
rijks = 1, where the 1 is in the posi-

tion corresponding to α
(d)
rs . Let X denote a block diagonal matrix whose diagonal

blocks contain all vectors x
(0)
rijks and x

(1)
rijks respectively. Finally, let γ = [γ(0), γ(1)]T

and denote by Ûµ the vector with entries U
(d)
ij µ

(d)
rijks for all i, j, k, s, r, d; note that

Ûµ depends on γ.

The aforedescribed procedure for obtaining the estimated regression coefficients

and baseline hazard parameters can be shown to be equivalent to computing the

solution γ̂ to ψ(γ) = 0, where

ψ(γ) = XT (δ − Ûµ) (3.23)

=
m∑

i=1

XT
i D(E [δi])Var (δi)

−1(δi − µi) (3.24)

The estimating equation (3.23) is obtained by differentiating (3.10) and then re-

placing all unknown frailties U
(d)
i and U

(d)
ij by the corresponding BLUPs in (3.14).

The equivalence between (3.23) and (3.24) relies on arguments similar to those of

Ma (1999) and is given in Section 3.3.3.

Suppose that (3.23) has mean zero. Then, under suitable conditions, γ̂ is

asymptotically normal with a covariance matrix that can be estimated by [G(γ̂)]−1 ,

where

G(γ) = S(γ)V (γ)−1S(γ), (3.25)
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S(γ) = E
[

∂ψ(γ)
∂γT

]
and V (γ) = E [ψ(γ)⊗2], with x⊗2 denoting the vector outer

product xxT . The matrix (3.25) is referred to as the Godambe information matrix

(Godambe, 1991; Jorgensen and Knudsen, 2004) and plays a role analogous to the

Fisher information. The matrices S(γ) and V (γ) are respectively referred to as

the sensitivity and variability matrices; similarly to Ma et al. (2003, Sec. 4.2), it

can be shown that S(γ) = −V (γ), allowing explicit computation of G(γ).

Specifically, define the notation

S
(d,d)
i1 =

∑
j,k,s,r

µ
(d)
rijksx

(d)
rijks(x

(d)
rijks)

T

−
∑

j

wij

[
ν2

(d)(1 + ν2
(1−d)µ

(1−d)
ij. ) − θ2µ

(1−d)
ij.

] (∑
k,s

µ
(d)
rijksx

(d)
rijks

)⊗2

S
(d,1−d)
i1 = −

∑
j

θwij

(∑
k,s,r

µ
(d)
rijksx

(d)
rijks

)(∑
k,s,r

µ
(1−d)
rijks x

(1−d)
rijks

)T

S
(0)
i2 =

 ∑
j,k,s,r wij(1 + ν2

(1)µ
(1)
ij. )µ

(0)
rijksx

(0)
rijks

−
∑

j,k,s,r θwijµ
(1)
rijksx

(1)
rijks


S

(1)
i2 =

 ∑
j,k,s,r θwijµ

(0)
rijksx

(0)
rijks

−
∑

j,k,s,r wij(1 + ν2
(0)µ

(0)
ij. )µ

(1)
rijksx

(1)
rijks

 ,

Hi =

 S
(0,0)
i1 S

(0,1)
i1

S
(1,0)
i1 S

(1,1)
i1

 ,

and where all remaining notation not defined here is defined as in Section 3.2.3.1.

Then, G(γ) =
∑m

i=1 Gi(γ), where

Gi(γ) = Hi − wi

{
σ2

(0)(1 + σ2
(1)p

(1)
i )S

(0)
i2

⊗2

−σ2
(0)σ

2
(1)q

(0)
i S

(0)
i2 ∇S

(1)
i2 + σ2

(1)(1 + σ(0)p
(0)
i )S

(1)
i2

⊗2
}

,

with x∇y = xyT + yxT denoting the symmetric vector outer product, A detailed

derivation of the equivalence S(γ) = −V (γ) and the above explicit expression for

G(γ) may be found in Section 3.3.3.
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The simulations of Section 3.6 demonstrate evidence of consistency for all model

regression and variance component parameters; plots (not shown) also show evi-

dence of asymptotic normality. The asymptotic covariance matrix [G(γ̂)]−1 gen-

erally provides a reasonable but negatively biased approximation to the empirical

standard errors, with improvement being observed with increases in both m and

especially J1 . . . Jm. We suspect that this variance underestimation occurs because

the estimating equation (3.23) is not exactly unbiased. More precisely, it possi-

ble to show that (3.23) is indeed unbiased under the assumptions that define the

auxiliary Poisson model and that the asymptotic variance of the resulting estima-

tor is insensitive to the estimation of the variance components. However, if one

merely places data generated under the bivariate point process model of this pa-

per in notational correspondence with the auxiliary Poisson model, neither of these

conditions is necessarily guaranteed to hold. As a consequence, and in contrast

to Ma (1999, Sec. 5.5.2), the standard errors of the regression coefficients and

baseline hazard parameters likely depend on whether the variance components are

estimated or assumed known. The estimation procedures considered in Ma et al.

(2003) suffer from a similar, if unacknowledged, deficiency.

3.2.5 Time-dependent covariates and strata

The methods presented thus far have assumed that the covariates Zij(t) = Zij for

t ≥ 0. However, the proposed methodology really only requires that the covari-

ates are piecewise constant on each discretization interval. Thus, an extension of

our methods to the case of time-varying covariates is immediate, provided that

the path of each time-varying covariate is assumed left-continuous and piecewise

constant. Specifically, denoting Z
(d)
rijks = Zij(a

(d)
r,s−1) when Y

(d)
rijks = 1, the likelihood
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construction (3.8) can be replicated for such time-dependent covariates as follows:

L(d)
ij (α, β|U (d)

∗ ) =

p∏
r=1

M
(d)
ij∏

k=1

K
(d)
r∏

s=1

(
U

(d)
ij α

(d)
rs eβ(d)Z

(d)
rijks

)Y
(d)
rijksδ

(d)
rijks

exp
(
Y

(d)
rijksU

(d)
ij eβ(d)Z

(d)
rijksα

(d)
rs A

(d)
rs (T

(d)
ijk )

) ,

The auxiliary Poisson model can be constructed analogously, defining

µ
(d)
rijks = 1 − exp

(
−eβ(d)Z

(d)
rijksα(d)

rs (a(d)
rs − a

(d)
r,s−1)

)
.

Computations are then carried out exactly as described earlier. Simulation results

included in Section 3.A indicate that for large samples with fine discretization,

this method performs nearly as well as in the fixed covariate case, though with

slightly larger biases. An increased bias can arise in cases where the discretization

intervals do not match the times at which the time-dependent covariate changes

values. The case of time-dependent stratum membership is handled in exactly the

same fashion.

3.3 Derivations

This section gives details on the construction of the estimators summarized in

Section 3.2. Section 3.3.1 gives the computation of the frailty BLUPs, and Section

3.3.2 shows how the bias-corrected Pearson estimators are derived. Lastly, Section

3.3.3 details the construction of the sensitivity matrix used to obtain standard

error estimates for the regression parameters. The approach extends that used

by Ma (1999) to the bivariate case, and accounts for the discretization adjustment

of eq. (3.11). Many of the computations in this section are carried out under the

auxiliary Poisson model.
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3.3.1 Derivation of the frailty best linear unbiased predictors

Recall that the orthodox BLUPs may be computed as

Û
(d)
i = E

[
U

(d)
i

]
+ Cov (U

(d)
i , δ)(Var (δ))−1(δ − E [δ]) ,

Û
(d)
ij = E

[
U

(d)
ij

]
+ Cov (U

(d)
ij , δ)(Var (δ))−1(δ − E [δ]) ,

where δ denotes a vector of all recurrent event indicators δ
(d)
rijks for which Y

(d)
rijks = 1.

Due to independence between the clusters, these expressions can be simplified to

Û
(d)
i = E

[
U

(d)
i

]
+ Cov (U

(d)
i , δi)(Var (δi))

−1(δi − E [δi]) ,

Û
(d)
ij = E

[
U

(d)
ij

]
+ Cov (U

(d)
ij , δi)(Var (δi))

−1(δi − E [δi]) ,

(3.26)

where δi is a vector only of the event indicators δ
(d)
rijks in cluster i for which Y

(d)
rijks =

1.

In the following, denote

µ
(d)
rijks = 1 − exp

(
−eβ(d)Zijα(d)

rs h(d)
rs

)
,

where h
(d)
rs = a

(d)
rs − a

(d)
r,s−1, and recall that under the auxiliary Poisson model,

δ
(d)
rijks|U

(d)
ij ∼ Poisson

(
U

(d)
ij µ

(d)
rijks

)
. The following sections will show how to com-

pute closed-form expressions for the BLUPs. We will first compute the necessary

moments, then show how the covariance matrix inverse can be computed, and

finally show how the computation simplifies into the expressions of section 3.2.3.1.

3.3.1.1 Frailty and event indicator moments

In order to compute closed-form expressions for the BLUPs of (3.26), it is necessary

to compute the form of the covariance matrices Cov (U
(d)
ij , δi) and Var (δi) under
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the auxiliary Poisson model. Denote by 1(a,b) the Kronecker delta, taking on value

1 if a = b and 0 otherwise. Then,

E
[
U

(d)
i

]
= 1

E
[
U

(d)
ij

]
= E

[
E

[
U

(d)
ij

∣∣∣U (d)
i

]]
= E

[
U

(d)
i

]
= 1

Cov
(
U (d)

a , U
(d)
ij

)
= Cov

(
E

[
U

(d)
ij

∣∣∣Ui

]
, E

[
U (d)

a

∣∣∣Ua

])
= 1(a,i)σ

2
(d)

Cov
(
U

(d)
ab , U

(d)
ij

)
= 1(a,i)Cov

(
U

(d)
ib , U

(d)
ij

)

=


E

[
(U

(d)
i )2

]
− 1 = σ2

(d) if i = a, j ̸= b

Var (U
(d)
ij ) = σ2

(d) + ν2
(d) if i = a, j = b

0 otherwise

= 1(a,i)(σ
2
(d) + 1(b,j)ν

2
(d))

E
[
δ
(d)
rijks

]
= E

[
E

[
δ
(d)
rijks

∣∣Uij

]]
= E

[
U

(d)
ij

]
µ

(d)
rijks = µ

(d)
rijks

Cov
(
U

(d)
ab , U

(1−d)
ij

)
= 1(a,i)Cov

(
U

(d)
ib , U

(1−d)
ij

)
= 1(a,i)1(b,j)θ

Cov
(
U (d)

a , δ
(d)
rijks

)
= Cov (U (d)

a , U
(d)
ij )µ

(d)
rijks = 1(a,i)σ

2
(d)µ

(d)
rijks

Cov
(
U

(d)
ab , δ

(d)
rijks

)
= Cov (U

(d)
ab , U

(d)
ij )µ

(d)
rijks = 1(a,i)(σ

2
(d) + 1(b,j)ν

2
(d))µ

(d)
rijks

Cov
(
U (d)

a , δ
(1−d)
rijks

)
= Cov (U (d)

a , U
(1−d)
ij )µ

(1−d)
rijks = 0

Cov
(
U

(d)
ab , δ

(1−d)
rijks

)
= Cov (U

(d)
ab , U

(1−d)
ij )µ

(1−d)
rijks = 1(a,i)1(b,j)θµ

(1−d)
rijks

Cov
(
δ
(d)
qabce, δ

(d)
rijks

)
= E

[
Cov

(
δ
(d)
qabce, δ

(d)
rijks

∣∣U (d)
ij , U

(d)
ab

)]
+Cov

(
E

[
δ
(d)
qabce

∣∣U (d)
ab

]
, E

[
δ
(d)
rijks

∣∣U (d)
ij

])
= 1(qabce,rijks)E

[
U

(d)
ij µ

(d)
rijks

]
+ Cov

(
U

(d)
ab µ

(d)
qabce, U

(d)
ij µ

(d)
rijks

)
= 1(qabce,rijks)µ

(d)
rijks + 1(a,i)(σ

2
(d) + 1(b,j)ν

2
(d))µ

(d)
qabceµ

(d)
rijks

Cov
(
δ
(d)
qabce, δ

(1−d)
rijks

)
= 0 + Cov

(
U

(d)
ab µ

(d)
qabce, U

(1−d)
ij µ

(1−d)
rijks

)
= 1(a,i)1(b,j)θµ

(d)
qabceµ

(1−d)
rijks
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All other covariances are zero. Thus, the covariance matrices relevant to expres-

sion (3.26) can be expressed as:

Cov (U
(d)
i , δ

(e)
i ) = 1(d,e)σ

2
(d)µ

(d)
i

Cov (U
(d)
ij , δ

(e)
i ) = 1(d,e)σ

2
(d)µ

(d)
i + ν2

(d)f
(d)
ij

(3.27)

where

f
(d)
ij =

[
0T

µ
(d)
i1

, . . . , 0T

µ
(d)
i(j−1)

,µ(d)T

ij,0
T

µ
(d)
i(j+1)

, . . . , 0T
µiJi

]T

and 0x denotes a vector of zeros of the same length as x. That is, f
(d)
ij is a vector

of zeros of the same length as µ
(d)
i , except for µ

(d)
ij in the correct position. The

variance of event indicators has a block form:

Vi = Var (δi) =

 V
(0,0)
i V

(0,1)
i

V
(1,0)
i V

(1,1)
i


=

 σ2
(0)µ

(0)
i µ

(0)
i

T
0

0 σ2
(1)µ

(1)
i µ

(1)
i

T

 +

 Ṽ
(0,0)
i Ṽ

(0,1)
i

Ṽ
(1,0)
i Ṽ

(1,1)
i


︸ ︷︷ ︸

Ṽi

. (3.28)

where

Ṽ
(d,d)
i = ν2

(d)


µ

(d)
i1 µ

(d)
i1

T
. . . 0

...
. . .

...

0 . . . µ
(d)
iJi

µ
(d)
iJi

T

 + D(µ
(d)
i )

Ṽ
(d,1−d)
i = θ


µ

(d)
i1 µ

(1−d)
i1

T
. . . 0

...
. . .

...

0 . . . µ
(d)
iJi

µ
(1−d)
iJi

T


(3.29)

where D(x) is a diagonal matrix with x on the diagonal.
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3.3.1.2 Inverting the covariance matrix

For simplicity, this section will use generic notation that avoids unnecessary sub-

scripts. The results of this section will be applied to the matrices of Section 3.3.1.1

in the later subsections. Suppose we wish to compute the inverse W of a symmetric

matrix V of the form

V =

 axxT 0

0 byyT

 +

 V00 V01

V T
01 V11


︸ ︷︷ ︸

Ṽ

,

and suppose that the inverse of Ṽ is known and can be written as

W̃ = Ṽ −1 =

 A B

BT D

 ,

then denoting x̃ = [x,0y]
T and ỹ = [0x, y]T and writing V as

V = ax̃x̃T + bỹỹT + Ṽ︸ ︷︷ ︸
V̄

allows the inverse to be computed by two applications of the Sherman-Morrison

formula. First, V̄ −1 is given by

V̄ −1 = W̃ − bW̃ ỹỹT W̃

1 + bỹT W̃ ỹ
= W̃ −

b
[

By
Dy

]⊗2

1 + byT Dy
. (3.30)

and W = V −1 is given by

W = V̄ −1 − aV̄ −1x̃x̃T Ṽ −1

1 + ax̃T Ṽ −1x̃
(3.31)

In order to simplify equation (3.31), note that

V̄ −1x̃ = W̃ x̃ −
b
[

By
Dy

]⊗2

x̃

1 + byT Dy
=

[
Ax

BT x

]
− bxT By

1 + byT Dy

[
By

Dy

]
. (3.32)
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Substituting equations (3.30) and (3.32) into (3.31) and simplifying gives an ex-

pression for W :

W = W̃ −
b
[

By
Dy

]⊗2

1 + byT Dy
−

a
([

Ax
BT x

]
− bxT By

1+byT Dy

[
By
Dy

])⊗2

1 + axT Ax − ab(xT By)2

1+byT Dy

= W̃ −
b
[

By
Dy

]⊗2

1 + byT Dy

−
a(1 + byT Dy)

([
Ax

BT x

]⊗2 − bxT By
1+byT Dy

([
Ax

BT x

]
∇

[
By
Dy

])
+ b2(xT By)2

(1+byT Dy)2

[
By
Dy

]⊗2
)

(1 + axT Ax)(1 + byT Dy) − ab(xT By)2

= W̃ −
a(1 + byT Dy)

[
Ax

BT x

]⊗2 − abxT By
([

Ax
BT x

]
∇

[
By
Dy

])
+ b(1 + axT Ax)

[
By
Dy

]⊗2

(1 + axT Ax)(1 + byT Dy) − ab(xT By)2

(3.33)

Note in particular that denoting w = ((1 + axT Ax)(1 + byT Dy) − ab(xT By)2)−1

allows the easy computation of

[x

0

]T

W
[z1

0

]
= xT Az1 − w

[
a(1 + byT Dy) xT AxxT Az1

−ab xT By(xT AxyT BT z1 + xT By xT Az1)

+b(1 + axT Ax)xT By yT BT z1

]
= w

[
(1 + byT Dy)xT Az1 − bxT By yT BT z1

]
(3.34)[x

0

]T

W

[
0

z2

]
= xT BT z2 − w

[
a(1 + byT Dy)xT AxxT Bz2

−abxT By(xT AxyT Dz2 + xT By xT BT z2)

+b(1 + axT Ax)xT By xT Dz2

= w
[
(1 + byT Dy)xT BT z2 − bxT By yT Dz2

]
. (3.35)

The sum of eqns (3.34) and (3.35) leads naturally to the cluster-level BLUPs in

(3.15) once the appropriate values are substituted in the next section.
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3.3.1.3 Computation of cluster-level frailty BLUPs

For purposes of computing the cluster-level BLUPs, denote by W̃
(d,e)
i the (d, e)-

quarter-block of the inverse of the matrix Ṽi in (3.28). Then the inverse of the

covariance matrix Wi takes the form of (3.33) for A = W̃
(0,0)
i , B = W̃

(0,1)
i , D =

W̃
(1,1)
i , x = µ

(0)
i , y = µ

(1)
i , a = σ2

(0) and b = σ2
(1). To compute the cluster BLUPs

for d = 0, using the covariances from (3.27) gives:

Û
(0)
i = 1 + σ2

(0)

[
µ

(0)
i

0

]T

Wi

[
δ

(0)
i − µ

(0)
i

δ
(1)
i − µ

(1)
i

]
(3.36)

= 1 + σ2
(0)wi

[ (
1 + σ2

(1)µ
(1)
i W̃

(1,1)
i µ

(1)
i

)
·
(
µ

(0)
i W̃

(0,0)
i (δ

(0)
i − µ

(0)
i ) + µ

(0)
i W̃

(0,1)
i (δ

(1)
i − µ

(1)
i )

)
−σ2

(1)µ
(0)
i W̃

(0,1)
i µ

(1)
i

(
µ

(1)
i W̃

(1,0)
i (δ

(0)
i − µ

(0)
i ) + µ

(1)
i W̃

(1,1)
i (δ

(1)
i − µ

(1)
i )

)
,

which is the same as (3.15) for p
(d)
i = µ

(d)
i W̃

(d,d)
i µ

(d)
i , P

(d)
i = µ

(d)
i W̃

(d,d)
i δ

(d)
i , q

(d)
i =

µ
(1−d)
i W̃

(1−d,d)
i µ

(d)
i and Q

(d)
i = µ

(1−d)
i W̃

(1−d,d)
i δ

(d)
i . The general expression given in

(3.15) follows from symmetry. The values of p
(d)
i , P

(d)
i , q

(d)
i and Q

(d)
i will be shown

to match (3.18) in Section 3.3.1.5.

3.3.1.4 Computation of subject-level frailty BLUPs

Computations analogous to those in (3.34) can be used to show that[r

0

]T

W

[
z1 − x

0

]
= −rAx

(
1 + a

[x

0

]T

W

[
z1 − x

0

])
−rBy

(
b

[
0

y

]T

W

[
z1 − x

0

])
+ rAz

[r

0

]T

W

[
0

z2 − y

]
= −rAx

(
a

[x

0

]T

W

[
0

z2 − y

])
−rBy

(
1 + b

[
0

y

]T

W

[
0

z2 − y

])
+ rBz2
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Therefore, noting that by (3.27),

Cov (U
(0)
ij , δi) =

[
σ2

(0)µ
(0)
i + ν2

(0)f
(0)
ij

θf
(1)
ij

]
,

applying the symmetries and simplifying gives:

Û
(0)
ij = 1 + Û

(0)
i −

(
ν2

(0)f
(0)
ij W̃

(0,0)
i µ

(0)
i + θf

(1)
ij W̃

(1,0)
i µ

(0)
i

)
Û

(0)
i

−
(
ν2

(0)f
(0)
ij W̃

(0,1)
i µ

(1)
i + θf

(1)
ij W̃

(1,1)
i µ

(1)
i

)
U

(1)
i

+ν2
(0)

(
f

(0)
ij W̃

(0,0)
i δ

(0)
i + f

(0)
ij W̃

(0,1)
i δ

(1)
i

)
+θ

(
f

(1)
ij W̃

(1,0)
i δ

(0)
i + f

(1)
ij W̃

(1,1)
i δ

(1)
i

)
,

which matches the expression in (3.16) for p
(d)
ij = f

(d)
ij W̃

(d,d)
i µ

(d)
i , P

(d)
ij =

f
(d)
ij W̃

(d,d)
i δ

(d)
i , q

(d)
ij = f

(1−d)
ij W̃

(1−d,d)
i µ

(d)
i and Q

(d)
ij = f

(1−d)
ij W̃

(1−d,d)
i δ

(d)
i .

3.3.1.5 Completing the computation

Previous subsections showed that the forms of the cluster- and subject-level frailty

BLUPs match those given in Section 3.2.3.1, however, it remains to be shown that

the given expressions for p
(d)
ij , q

(d)
ij , etc. are correct. To that purpose, this section will

give the form of W̃
(d,d)
i and W̃

(d,1−d)
i and show how the expressions are computed.

The matrices Ṽ
(d,e)
i have block-diagonal forms as given in (3.29), and thus their

inverses W̃
(d,e)
i are also block-diagonal. Let

Ṽ
(d,d)
ij = ν2

(d)µ
(d)
ij µ

(d)
ij

T
+ D(µ

(d)
ij )

Ṽ
(d,1−d)
ij = θµ

(d)
ij µ

(1−d)
ij

T

be the j-th blocks of the matrices Ṽ
(d,d)
i and Ṽ

(d,1−d)
i respectively. Note that by

the Sherman-Morrison formula,

(
Ṽ

(d,d)
ij

)−1

= D

(
1

µ
(d)
ij

)
−

ν2
(d)D

(
1

µ
(d)
ij

)
µ

(d)
ij µ

(d)
ij

T
D

(
1

µ
(d)
ij

)
µ

(d)
ij

T
D

(
1

µ
(d)
ij

)
µ

(d)
ij
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= D

(
1

µ
(d)
ij

)
−

ν2
(d)

1 + ν2
(d)µ

(d)
ij.

Then, the j-th block of W̃
(d,d)
i is given by

W̃
(d,d)
ij =

(
Ṽ

(d,d)
ij − Ṽ

(d,1−d)
ij

(
Ṽ

(1−d,1−d)
ij

)−1

Ṽ
(1−d,d)
ij

)−1

=

[
ν2

(d)µ
(d)
ij µ

(d)
ij

T
+ D(µ

(d)
ij ) − θ2µ

(d)
ij µ

(1−d)
ij

T

·

(
D

(
1

µ
(1−d)
ij

)
−

ν2
(1−d)

1 + ν2
(1−d)µ

(1−d)
ij.

)
µ

(1−d)
ij µ

(d)
ij

T

]−1

=

[
D(µ

(d)
ij ) +

(
ν2

(d) − θ2
µ

(1−d)
ij.

1 + ν2
(1−d)µ

(1−d)
ij.

)
µ

(d)
ij µ

(d)
ij

T

]−1

= D

(
1

µ
(d)
ij

)
−

ν2
(d) − θ2 µ

(1−d)
ij.

1+ν2
(1−d)

µ
(1−d)
ij.

1 +

(
ν2

(d) − θ2
µ

(1−d)
ij.

1+ν2
(1−d)

µ
(1−d)
ij.

)
µ

(d)
ij.

1
µ

(d)
ij

1T

µ
(d)
ij

= D

(
1

µ
(d)
ij

)
− wij

(
ν2

(d) + ν2
(d)ν

2
(1−d)µ

(1−d)
ij. − θµ

(1−d)
ij.

)
1

µ
(d)
ij

1T

µ
(d)
ij

,(3.37)

and the j-th block of W̃
(d,1−d)
i is given by

W̃
(d,1−d)
ij = −

(
Ṽ

(d,d)
ij

)−1

Ṽ
(d,1−d)
ij W̃

(1−d,1−d)
ij

= −

(
D

(
1

µ
(d)
ij

)
−

ν2
(d)

1 + ν2
(d)µ

(d)
ij.

)
θµ

(d)
ij µ

(1−d)
ij

·

(
D

(
1

µ
(1−d)
ij

)
− wij

(
1 + ν2

(1−d)ν
2
(d)µ

(d)
ij. − θµ

(d)
ij.

))
= −θwij1µ

(d)
ij

1T

µ
(1−d)
ij

(3.38)

Given this, it’s possible to compute the values of p
(d)
ij and q

(d)
ij :

p
(d)
ij = f

(d)
ij W̃

(d,d)
i µ

(d)
i

= µ
(d)
ij W̃

(d,d)
ij µ

(d)
ij

= µ
(d)
ij. − wij

(
ν2

(d) + ν2
(d)ν

2
(1−d)µ

(1−d)
ij. − θµ

(1−d)
ij.

)(
µ

(d)
ij.

)2
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= µ
(d)
ij. wij(1 + ν2

(1−d)µ
(1−d)
ij. ) ,

which is the same as given in (3.18). The computations for q
(d)
ij , P

(d)
ij and Q

(d)
ij are

analogous. Furthermore, it follows naturally that

p
(d)
i = µ

(d)
i W̃

(d,d)
i µ

(d)
i =

Ji∑
j=1

f
(d)
ij W̃

(d,d)
i µ

(d)
i =

Ji∑
j=1

p
(d)
ij ,

and similary for P
(d)
i , q

(d)
i , Q

(d)
i . This completes the derivation of the BLUP results

given in Section 3.2.3.1.

3.3.2 Derivation of the bias-adjusted Pearson estimators

As noted in Section 3.2.3.2, the näıve dispersion parameters are biased due to

variance shrinkage introduced by the BLUPs. This section uses general properties

of the orthodox BLUP as well as the BLUP formulations computed in Section 3.3.1

to estimate the bias and show that, for fixed regression and baseline parameters,

the corrections given in Section 3.2.3.2 are appropriate. The approach is similar

to Ma (1999).

The computations make use of the following orthogonality properties of the

BLUP:

Cov (Û − U, Û) = 0 , Cov (Û − U, δ) = 0

that is, the difference between the frailty and its BLUP is orthogonal to both the

predictor and the data.
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3.3.2.1 Cluster-level dispersion parameters

The cluster-level dispersion parameter estimator is given by

σ̂2
(d) =

1

m

m∑
i=1

{
(Û

(d)
i − 1)2 + b

(d)
i

}
,

where

b
(d)
i = E

[
(Û

(d)
i − U

(d)
i )2

]
= σ2

(d)wi(1 + σ2
(1−d)p

(1−d)
i ) (3.39)

We will show that the bias correction b
(d)
i leads to an unbiased estimator. Note

that

E
[
(U

(d)
i − 1)2

]
= Var (U

(d)
i )

= Var (U
(d)
i − Û

(d)
i + Û

(d)
i )

= Var (U
(d)
i − Û

(d)
i ) + Var (Û

(d)
i ) − 2 Cov (U

(d)
i − Û

(d)
i , Û

(d)
i )︸ ︷︷ ︸

=0

= E
[
(Û

(d)
i − U

(d)
i )2

]
+ Var (Û

(d)
i )

= b
(d)
i + E

[
(Û

(d)
i − 1)2

]
.

Reorganizing this expression shows that

E
[
(Û

(d)
i − 1)2

]
= σ2

(d) + b
(d)
i , (3.40)

so b
(d)
i is the appropriate bias correction. To compute its value, we first use the

form of the cluster-level BLUP given in (3.36) and the general result of (3.34), to

compute

Var (Û
(d)
i ) = σ4wi

[
(1 + σ2

(1−d)p
(1−d)
i )p

(d)
i − σ2(1 − d)q

(d)
i

2
]

Reorganizing (3.40) and substituting this result allows b
(d)
i to be written as

b
(d)
i = Var (U

(d)
i ) − Var (Û

(d)
i )
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= σ2
(d) − σ4wi

[
(1 + σ2

(1−d)p
(1−d)
i )p

(d)
i − σ2(1 − d)q

(d)
i

2
]

= σ2
(d)wi

(
1 + σ2

(1−d)p
(1−d)
i

)
,

which matches (3.39). It follows that the given estimator σ̂2
(d) is unbiased for

σ2
(d), assuming correct regression and baseline hazard parameter estimates. In

implementation, this must be considered an update equation, since b
(d)
i depends

on the dispersion parameters as well. Thus, the previous iteration’s dispersion

parameter estimates may be used to compute the bias correction for the next

iteration’s estimators.

3.3.2.2 Subject-level dispersion parameters

The estimator for ν2
(d) is derived analogously, though the computations are some-

what more involved. The proposed estimator is given by

ν̂2
(d) =

1

m

m∑
i=1

1

Ji

Ji∑
j=1

{
(Û

(d)
ij − Û

(d)
i )2 + b

(d)
ij

}
,

where

b
(d)
ij = E

[
(Û

(d)
i − U

(d)
i )2

]
+ E

[
(Û

(d)
ij − U

(d)
ij )2

]
− 2

{
σ2

(d) − Cov (Û
(d)
i , U

(d)
ij )

}
= b

(d)
i + c

(d)
ij − 2(σ2

(d) − z
(d)
ij ) , (3.41)

where we denote c
(d)
ij = E

[
(Û

(d)
ij − U

(d)
ij )2

]
and z

(d)
ij = Cov (Û

(d)
i , U

(d)
ij ).

To justify this correction, compute the expectation of the Pearson-type estima-

tor directly:

E
[
(Û

(d)
ij − Û

(d)
i )2

]
= Var (Û

(d)
ij )︸ ︷︷ ︸

[1]

+ Var (Û
(d)
i )︸ ︷︷ ︸

[2]

−2 Cov(Û
(d)
ij , Û

(d)
i )︸ ︷︷ ︸

[3]

. (3.42)

To compute component [1], note that

Var (U
(d)
ij ) = Var (U

(d)
ij − Û

(d)
ij + Û

(d)
ij )
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= Var (U
(d)
ij − Û

(d)
ij ) + Var (Û

(d)
ij ) + 2 Cov(U

(d)
ij − Û

(d)
ij , Û

(d)
ij )︸ ︷︷ ︸

=0

= c
(d)
ij + Var (Û

(d)
ij ) ,

and therefore

Var (Û
(d)
ij ) = Var (U

(d)
ij ) − c

(d)
ij = σ2

(d) + ν2(d) − c
(d)
ij . (3.43)

Component [2] follows from equation (3.40):

Var (Û
(d)
i ) = σ2

(d) − b
(d)
i .

Component [3] can be simplified as

Cov (Û
(d)
ij , Û

(d)
i ) = Cov (Û

(d)
ij − U

(d)
ij , Ûi)︸ ︷︷ ︸

=0

+Cov (Û
(d)
i , U

(d)
ij ) ,

and recall that we denoted Cov (Û
(d)
ij , Û

(d)
i ) = z

(d)
ij . Therefore, substituting these

results back into (3.42) gives

E
[
(Û

(d)
ij − Û

(d)
i )2

]
= Var (Û

(d)
ij ) + Var (Û

(d)
i ) − 2Cov(Û

(d)
ij , Û

(d)
i )

= (σ2
(d) + ν2

(d) − c
(d)
ij ) + (σ2

(d) − b
(d)
i ) − 2z

(d)
ij

= ν2
(d) − b

(d)
ij .

where b
(d)
ij matches eq. (3.41).

It remains to compute the values of c
(d)
ij and z

(d)
ij . In order to compute the value

of c
(d)
ij , rearrange eq. (3.40), to yield

c
(d)
ij = Var (U

(d)
ij ) − Var (Û

(d)
ij )

= σ2
(d) + ν2

(d) −
[
Cov (Û

(d)
ij − U

(d)
ij , Û

(d)
ij )︸ ︷︷ ︸

=0

+Cov (Û
(d)
ij , U

(d)
ij )

]
= σ2

(d) + ν2
(d) − Cov (Û

(d)
ij , U

(d)
ij ) . (3.44)
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Substituting the formula for Û
(d)
ij in (3.16), the covariance term in this equation

may be computed as

Cov
(
Û

(d)
ij , U

(d)
ij

)
= wij

(
1 + ν2

(1−d)µ
(1−d)
ij.

)
Cov

(
Û

(d)
i , U

(d)
ij

)
−

(
ν2

(d)q
(1−d)
ij + θp

(1−d)
ij

)
Cov

(
Û

(1−d)
i , U

(d)
ij

)
+ ν2

(d)Cov
(
P

(d)
ij + Q

(1−d)
ij , U

(d)
ij

)
+ θCov

(
P

(1−d)
ij + Q

(d)
ij , U

(d)
ij

)
(3.45)

Further simplification of this expression relies on the following results:

Cov (P
(d)
it , U

(d)
ij ) = (σ2

(d) + 1(t,j)ν
2
(d))p

(d)
it Cov (P

(d)
it , U

(1−d)
ij ) = 1(t,j)θp

(d)
it

Cov (Q
(d)
it , U

(d)
ij ) = (σ2

(d) + 1(t,j)ν
2
(d))q

(d)
it Cov (Q

(d)
it , U

(1−d)
ij ) = 1(t,j)θq

(d)
it

(3.46)

This allows computation of required covariance terms as

z
(d)
ij = Cov

(
Û

(d)
i , U

(d)
ij

)
= σ2

(d)wi

[
(1 + σ2

(1−d)p
(1−d)
i )Cov (P

(d)
i + Q

(1−d)
i , U

(d)
ij )

− σ2
(1−d)q

(d)
i Cov (P

(1−d)
i + Q

(d)
i , U

(d)
ij )

]
,

y
(d)
ij = Cov

(
Û

(d)
i , U

(1−d)
ij

)
= σ2

(d)wi

[
(1 + σ2

(1−d)p
(1−d)
i )Cov (P

(d)
i + Q

(1−d)
i , U

(1−d)
ij )

− σ2
(1−d)q

(d)
i Cov (P

(1−d)
i + Q

(d)
i , U

(1−d)
ij )

]
,

and substituting the results of (3.46) gives

z
(d)
ij = σ2

(d)wi

[
(1 + σ2

(1−d)p
(1−d)
i )(σ2

(d)p
(d)
i + ν2

(d)p
(d)
ij + θq

(d)
ij )

− σ2
(1−d)q

(d)
i (σ2

(d)q
(d)
i + ν2

(d)q
(d)
ij + θp

(1−d)
ij )

]
,

y
(d)
ij = σ2

(d)wi

[
(1 + σ2

(1−d)p
(1−d)
i )(θp

(d)
ij + ν2

(1−d)q
(d)
ij )

− σ2
(1−d)q

(d)
i (θq

(d)
ij + ν2

(1−d)p
(1−d)
ij − 1)

]
.
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Substituting this back into (3.45) gives the desired covariance expression as

Cov
(
Û

(d)
ij , U

(d)
ij

)
= wij

(
1 + ν2

(1−d)µ
(1−d)
ij.

)
z

(d)
ij −

(
ν2

(d)q
(1−d)
ij + θp

(1−d)
ij

)
y

(1−d)
ij

− (σ2
(d) + ν2

(d))
(
ν2

(d)p
(d)
ij − θq

(d)
ij

)
+ θ

(
ν2

(d)q
(1−d)
ij + θp

(1−d)
ij

)
.

(3.47)

Substituting this into (3.44) and simplifying further gives

c
(d)
ij = (ν2

(d)p
(d)
ij + θq

(1−d)
ij − 1)(z

(d)
ij − σ2

(d) − ν2
(d)) + (ν2

(d)q
(1−d)
ij + θp

(1−d)
ij )(y

(1−d)
ij − θ) .

The bias correction again depends on the parameters themselves. At each itera-

tion, estimates from the previous iteration can be used to update the parameter

estimates.

3.3.2.3 Frailty covariance parameter

The proposed estimator for the frailty covariance is:

θ̂ =
1

m

m∑
i=1

1

Ji

Ji∑
j=1

{
(Û

(0)
ij − Û

(0)
i )(Û

(1)
ij − Û

(1)
i ) + b

(∗)
ij

}
,

where

b
(∗)
ij = E

[
(Û

(0)
ij − U

(0)
ij )(Û

(1)
ij − U

(1)
ij )

]
+Cov (Û

(0)
ij , U

(1)
ij ) + Cov (Û

(1)
ij , U

(0)
ij ) − Cov (Û

(0)
i , Û

(1)
i )

= c′ij + y
(0)
ij + y

(1)
ij − σ2

(0)σ
2
(1)wiq

(0)
i ,

where we denote c′ij = E
[
(Û

(0)
ij − U

(0)
ij )(Û

(1)
ij − U

(1)
ij )

]
. To justify this, note that the

expectation of the näıve Pearson-type estimator can be computed as:

E
[
(Û

(0)
ij − Û

(0)
i )(Û

(1)
ij − Û

(1)
i )

]
= Cov (Û

(0)
ij , Û

(1)
ij )︸ ︷︷ ︸

[1]

−Cov (Û
(0)
ij , Û

(1)
i )︸ ︷︷ ︸

[2]
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−Cov (Û
(1)
ij , Û

(0)
i )︸ ︷︷ ︸

[3]

+ Cov (Û
(0)
i , Û

(1)
i )︸ ︷︷ ︸

[4]

.(3.48)

To compute component [1], note that

Cov (U
(d)
ij , U

(1−d)
ij ) = Cov (U

(d)
ij − Û

(d)
ij + Û

(d)
ij , U

(1−d)
ij )

= Cov (U
(d)
ij − Û

(d)
ij , U

(1−d)
ij + Cov (Û

(d)
ij , U

(1−d)
ij )

= Cov (Û
(d)
ij − U

(d)
ij , Û

(1−d)
ij − U

(1−d)
ij )

+ Cov (U
(d)
ij − Û

(d)
ij , Û

(1−d)
ij )︸ ︷︷ ︸

=0

+Cov (Û
(d)
ij , Û

(1−d)
ij )

+ Cov (Û
(d)
ij , U

(1−d)
ij − Û

(1−d)
ij )︸ ︷︷ ︸

=0

= c′ij + Cov (Û
(d)
ij , Û

(1−d)
ij ) ,

and therefore, component [1] is given by θ − c′ij.

The second and third components are given by y
(0)
ij and y

(1)
ij respectively. For

component [4], one can compute

Cov (Û
(1)
i , Û

(0)
i ) = Cov (Û

(1)
i , U

(0)
i )

= σ2
(1)wi

[
(1 + σ2

(0)p
(0)
i )Cov (Q

(1)
i + P

(1)
i , U

(0)
i )

−σ2
(0)q

(0)
i Cov (P

(0)
i + Q

(0)
i , U

(0)
i )

]
= σ2

(1)wi

[
(1 + σ2

(0)p
(0)
i )σ2

(0)q
(0)
i − σ2

(0)q
(0)
i (σ2

(0)p
(0)
i )

]
= σ2

(0)σ
2
(1)wiq

(0)
i

Substituting these results into eq. (3.48) shows that

E
[
(Û

(0)
ij − Û

(0)
i )(Û

(1)
ij − Û

(1)
i )

]
= θ − b

(∗)
ij ,

and therefore b
(∗)
ij is the required bias correction.
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It remains to compute the value of c′ij. Rearranging eq. (3.49) gives

c′ij = θ − Cov (Û
(d)
ij , Û

(1−d)
ij ) .

The covariance term in this expression can be computed by arbitrarily breaking

the symmetry, as

c′ij = θ − Cov (Û
(0)
ij , U

(1)
ij )

= θ − (1 − ν2
(0)p

(0)
ij − θq

(0)
ij )y

(0)
ij − (ν2

(0)q
(0)
ij + θp

(1)
ij )z

(1)
ij

+(σ2
(1) + ν2

(1))(ν
2
(0)q

(0)
ij + θp

(1)
ij ) + θ(ν2

(0)p
(0)
ij + θq

(0)
ij ) ,

where we used the result of eq. (3.47).

We have thus shown that all estimators proposed in the summary are unbiased

for their respective parameters, given accurate regression parameter and frailty

estimates.

3.3.3 Construction of the Godambe matrix

This section details the construction of the Godambe matrix, whose form was given

in Section 3.2.4 for purposes of obtaining standard errors. We follow to a large

extent the methods presented in Ma (1999).

3.3.3.1 Additional notation

As before, denote the vector of regression parameters and baseline parameters for

process (d) by γ(d) = [log α(d), β(d)], and correspondingly, denote

x
(d)
rijks = (0, . . . , 0, 1, 0, . . . , ZT

ij)
T ,
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for Y
(d)
rijks = 1, where the 1 is in the position corresponding to α

(d)
rs . In this notation,

µ
(d)
rijks = eγ(d)x

(d)
rijksA(d)

rs (T
(d)
ijk ) ,

subject to the accuracy of the auxiliary Poisson model. This allows the conditional

likelihood of (3.10) to be written as

ℓ(γ|U (∗)
∗ ) =

∑
d,r,i,j,k,s

Y
(d)
rijks

[
δ
(d)
rijks

(
log U

(d)
ij + γ(d)x

(d)
rijks

)
− U

(d)
ij eγ(d)x

(d)
rijksA(d)

rs (T
(d)
ijk )

]
, (3.49)

In addition, for purposes of the proofs in Section 3.3.3.2, denote vectors of the

products U
(d)
ij µ

(d)
rijks as

Uµ
(d)
i =

(
U

(d)
i1 µ

(d)
1i111, . . . U

(d)
i1 µ

(d)
pi1Mi1Kp

, . . . , U
(d)
iJi

µ
(d)
1iJi11

, . . . U
(d)
iJi

µ
(d)
piJiMi1Kp

)
Ûµ

(d)
i =

(
Û

(d)
i1 µ

(d)
1i111, . . . Û

(d)
i1 µ

(d)
pi1Mi1Kp

, . . . , Û
(d)
iJi

µ
(d)
1iJi11

, . . . Û
(d)
iJi

µ
(d)
piJiMi1Kp

)
,

and vectors of related variables by boldfaced symbols,

µi =

 µ
(0)
i

µ
(1)
i

 Uµi =

 Uµ
(0)
i

Uµ
(1)
i


δi =

 δ
(0)
i

δ
(1)
i

 Ûµi =

 Ûµ
(0)
i

Ûµ
(1)
i

 ,

(3.50)

and the data matrix for each cluster i as

Xi =

 X
(0)
i 0

0 X
(1)
i

 . (3.51)

3.3.3.2 Structure of the Godambe matrix

This notation allows the Godambe matrix to more easily be expressed in terms

of the sensitivity and variability matrices. In this section, we will show that the

Godambe matrix is in fact simply the negative of the sensitivity matrix.
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The gradient of the likelihood in (3.49) represents a set of estimating equations

ψ(γ(0), γ(1)) =
m∑

i=1

ψi(γ
(0), γ(1)) = 0

where

ψi(γ
(0), γ(1)) =

 ∑
r,j,k,s Y

(0)
rijksx

(0)
rijks

(
δ
(0)
rijks − Û

(0)
ij eγ(0)x

(0)
rijksA

(0)
rs (T

(0)
ijk )

)
∑

r,j,k,s Y
(1)
rijksx

(1)
rijks

(
δ
(1)
rijks − Û

(1)
ij eγ(1)x

(1)
rijksA

(1)
rs (T

(1)
ijk )

)
 .

Using the notation of (3.50) and (3.51), it can also be written as

ψi(γ
(0), γ(1)) = XT

i (δi − Ûµi) . (3.52)

The Godambe matrix can be expressed in terms of the sensitivity and variability

matrices

G(γ(0), γ(1)) = S(γ(0), γ(1))V (γ(0), γ(1))−1S(γ(0), γ(1)) ,

where the sensitivity and variability matrices are defined as

S(γ(0), γ(1)) =
m∑

i=1

Si(γ
(0), γ(1)) =

m∑
i=1

E

[
∂ψi(γ

(0), γ(1))

∂[γ(0)T , γ(1)T ]

]
,

V (γ(0), γ(1)) =
m∑

i=1

Vi(γ
(0), γ(1)) =

m∑
i=1

E
[
ψi(γ

(0), γ(1))ψT
i (γ(0), γ(1))

]
.

In analogy to Ma (1999), we will show in the following that the estimating equation,

sensitivity and variability can be written as

ψi(γ
(0), γ(1)) = XT

i D(E [δi])Var (δi)
−1(δi − µi) (3.53)

Si(γ
(0), γ(1)) = −XT

i D(E [δi])Var (δi)
−1D(E [δi])Xi (3.54)

Vi(γ
(0), γ(1)) = −Si(γ

(0), γ(1)) . (3.55)

In order to prove (3.53), we can rewrite (3.52) by noting that by (3.14)

Ûµi = E [δi] + Cov (Uµi, δi)Var (δi)
−1(δi − E [δi]) ,
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and also,

Var (δ
(d)
i ) = Cov (Uµ

(d)
i , δ

(d)
i ) + D(µ

(d)
i )

Cov (δ
(0)
i , δ

(1)
i ) = Cov (Uµ

(0)
i , δ

(1)
i )

so the overall covariance matrix can be written as

Var (δi) = Cov (Uµi, δi) + D(µi) .

Therefore, the last term of the estimating equation matrix form of (3.52) can be

written as

(δi − Ûµi) = δi − E [δi] − Cov (Uµi, δi)Var (δi)
−1(δi − E [δi])

=
(
Var (δi)

−1 − Cov (Uµi, δi)
)
Var (δi)

−1(δi − E [δi])

= D(µi)Var (δi)
−1(δi − E [δi]) .

Substituting this into (3.52) yields (3.53).

The proofs of (3.54) and (3.55) follow immediately from the results of Ma

(1999), but the arguments are repeated here for completeness. Given the form of

ψi(γ
(0), γ(1)) from (3.53), the variability can be computed explicitly as

Vi(γ
(0), γ(1)) = Var

(
ψi(γ

(0), γ(1))
)

= Var
(
XT

i D(µi)Var (δi)
−1(δi − E [δi])

)
= XT

i D(µi)Var (δi)
−1Var (δi)Var (δi)

−1D(µi)Xi

= XT
i D(µi)Var (δi)

−1D(µi)Xi ,

proving (3.54). The sensitivity matrix can be computed explicitly as well,

Si(γ
(0), γ(1)) = E

[
∂ψi(γ

(0), γ(1))

∂[γ(0)T , γ(1)T ]

]

= E

[
∂

∂[γ(0)T , γ(1)T ]
XT

i D(µi)Var (δi)
−1(δi − E [δi])

]
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= E

[(
∂

∂[γ(0)T , γ(1)T ]
XT

i D(µi)Var (δi)
−1

)
(δi − E [δi])

]

+E

[(
XT

i D(µi)Var (δi)
−1

) (
∂

∂[γ(0)T , γ(1)T ]
(δi − E [δi])

)]

=

(
∂

∂[γ(0)T , γ(1)T ]
XT

i D(µi)Var (δi)
−1

)
E [(δi − E [δi])]

+
(
XT

i D(µi)Var (δi)
−1

) (
∂

∂[γ(0)T , γ(1)T ]
µi

)
= 0 − XT

i D(µi)Var (δi)
−1D(µi)Xi

= −Vi(γ
(0), γ(1)) ,

proving (3.55).

This implies that the Godambe matrix of (3.3.3.2) is simply given by the sen-

sitivity matrix, so that

G(γ(0), γ(1)) = −S(γ(0), γ(1)) = −
m∑

i=1

Si(γ
(0), γ(1)) .

3.3.3.3 Computation of standard errors

The sensitivity matrix is computed by substituting (3.33) for the inverse variance

matrix in (3.54). That is,

Si(γ
(0), γ(1)) = −XT

i D(µi)W
−1
i D(µi)Xi

= −Si1 + wi

{
σ2

(0)(1 + σ2
(1)p

(1)
i )S

(0)
i2

⊗2

−σ2
(0)σ

2
(1)q

(0)
i S

(0)
i2 ∇S

(1)
i2 + σ2

(1)(1 + σ(0)p
(0)
i )S

(1)
i2

⊗2
}

,

where

Si1 = XT
i D(µi)W̃

−1
i D(µi)Xi

S
(d)
i2 = XT

i D(µi)

[
W̃

(0,d)
i µ

(d)
i

W̃
(1,d)
i µ

(d)
i

]
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Component Si1 can be computed by separating W̃i into quadrants, so that

Si1 =

 S
(0,0)
i1 S

(0,1)
i1

S
(1,0)
i1 S

(1,1)
i1

 , where S
(d,e)
i1 = X

(d)
i

T
D(µ

(d)
i )W̃

(d,e)
i D(µ

(e)
i )X

(e)
i .

Moreover, each of the quadrants of W̃i has a block form given by eq (3.37) and

(3.38) for diagonal and off-diagonal quadrants respectively. Substituting these

expressions leads directly to the results in Section 3.2.4.

Standard errors for γ(0), γ(1) can be found from the sensitivity matrix as

σγ(0),γ(1) = diag
[(
−S(γ(0), γ(1))

)1/2
]

.

3.4 Computational considerations

In this section, we discuss the implementation of the method and present the

relevant computational considerations. Section 3.4.1 discusses the problem of find-

ing adequate initial values for the algorithm, Section 3.4.2 suggests a method for

choosing the number of discretization intervals K(d), and Section 3.4.3 shows how

to select the interval boundary points a
(d)
rs . Section 3.4.4 gives examples of the com-

puter time required to fit models with different sample sizes and discretizations in

order to present the relative computational effort.

3.4.1 Obtaining initial values

This section discusses the problem of obtaining initial values for all the parameters

that need to be estimated by the algorithm. Initial values need to be found for

the regression parameter estimates β̂(d), the baseline hazard parameters α̂
(d)
rs for
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r = 1 . . . p and s = 1 . . . K
(d)
r , the set of cluster- and subject-level frailties Û

(d)
i , Û

(d)
ij ,

and the dispersion parameters σ̂2
(d), ν̂

2
(d), θ̂.

Many statistical software packages offer facilities for fitting random effects sur-

vival models, such as the coxph function in R (see Therneau and Grambsch, 2000).

Fitting four distinct frailty survival models to the data allows reasonable initial

values to be obtained: Fitting a model to only the recurrent event data for event

d with cluster-level frailties gives estimates for the cluster-level frailties Û
(d)
i , as

well as the frailty variance σ̂2
(d). Fitting a model to recurrent event data for event

type d with subject-level frailties gives estimates for Û
(d)
ij and the marginal frailty

variance σ̂2
(d) + ν̂2

(d). Thus an estimate for ν̂2
(d) can be obtained by subtracting the

previous estimate for σ̂2
(d) from the frailty variance returned by the fitted model.

An estimate for θ̂ is given by the empirical covariance between the estimated values

of Û
(0)
ij and Û

(1)
ij .

Initial values for the regression parameters β̂(d) can be obtained from the fitted

survival models with subject-level frailties. The baseline hazard parameters can

subsequently be estimated via (3.20).

Note that it is not guaranteed that these initial values satisfy the covariance

structure in (3.1) through (3.4). In particular, the estimated ν̂2
(0), ν̂

2
(1), θ̂ may not

form a proper covariance matrix – in these cases, the estimate of θ̂ may need to be

trimmed. Furthermore, it is necessary for computational purposes that the initial

values for the dispersion parameters be nonzero, and it is therefore necessary to

place a lower cap on the initial dispersion parameter estimates.
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3.4.2 Choosing the number of discretization intervals

Prior to estimation, the number of breakpoints K
(d)
r and their positions a

(d)
rs in

the discrete baseline hazard of (3.6) must be chosen for each d, r, s. The choice

of K
(d)
r represents a tradeoff between precision and numerical stability and speed

– more accurate estimation of the baseline hazard may improve estimates of the

regression coefficients and other parameters, but the addition of these nuisance

parameters increases the computational complexity and may lead to instability in

the estimation algorithm. The simulation results of Section 3.6.2 suggest that for

very large samples, a relatively coarse level of discretization can yield good results

with relatively little computational effort. Setting the number of breakpoints equal

to the number of observed events in each stratum amounts to not discretizing the

baseline hazard, similar to the methods employed by Ma et al. (2001).

Denote by ϕ
(d)
r ∈ [0, 1] the degree of discretization in stratum r relative to the

maximum allowable by the observed data, that is,

ϕ(d)
r =

K
(d)
r∑(d)

i,j,k,s δ
(d)
rijks

,

For large samples, it is very computationally inefficient to use ϕ(d) = 1, as evidenced

in the results of Section 3.4.4, so for practical applications, where model selection

and bootstrapped standard errors may be desired, a good choice of discretization

level is critical. For simplicity, suppose that ϕ
(d)
r = ϕ for d ∈ {0, 1} , r = 1 . . . p,

although this not need to be the case: if there are many more events of one type,

a fine level of discretization may be required for the rare process, while a coarse

discretization may capture sufficient information about the frequent process.

For large samples, parameter estimates often do not change much beyond a

sufficient discretization threshold. If multiple fits need to be computed for model
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Figure 3.2: Parameter estimates and standard errors for covariates, for a simulated
data set, plotted against the discretization parameter ϕ.

selection or bootstrapped standard errors, a discretization level close to the thresh-

old may provide sufficiently accurate results while minimizing computation times.

As an example, consider a single data set generated following the simulation

approach outlined in the print publication, with m = 25 clusters of Ji = 25 subjects

each, according to setting (I). The resulting example set consists of 2273 events

of type 0 and 1910 events of type 1. Parameter estimates for fitting the model at

different discretization levels ϕ are plotted in fig. 3.2. The figures show a definite

“elbow”, and beyond ϕ = .4, the parameter estimates do not change up to two

significant digits.

The data analysis in Section 3.7 gives a practical application where coarser

discretization allowed for time savings during model selection.
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3.4.3 Setting discretization interval boundaries

For fixed K
(d)
r , breakpoints a

(d)
rs must be chosen in a way that ensures that each

interval contains at least one event. As before, denote ϕ
(d)
r = K

(d)
r /

∑(d)
i,j,k,s δ

(d)
rijks,

the level of discretization.

The simplest way to choose breakpoints automatically is as quantiles of the

ordered event times in each stratum. That is, for ϕ = 1, each event time constitutes

a breakpoint, for ϕ = 0.5, each interval contains two events, and for interim values

of ϕ, quantiles can be interpolated in such a way that every interval contains either

one or two events.

If events of equal length are desired, the following simple recursive procedure

yields intervals of approximately equal length while satisfying the condition that

each interval should contain an event. Suppose events of type d in cluster r occur-

ring at sorted times t1 . . . tn, set K = K
(d)
r a

(d)
r0 = 0 and arK = tn. Then,

1. If K = 1, terminate.

2. Propose a breakpoint a = tn · K−1
K

3. If
∑

i I(ti ≥ a) ≥ 1 and
∑

i I(ti < a) ≥ K − 1, accept a
(d)
r(K−1) = a and repeat

the procedure for K − 1 breakpoints with only the times ti such that ti < a.

4. Otherwise, set a
(d)
r(K−1) to the point nearest to a that satisfies the conditions

in (3) and repeat.

For ϕ = 1, this method simply yields the sample quantiles, but for very small

values of ϕ the results can be quite different.
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For the simulations in Section 3.A, quantiles of the ordered event times were

used to define the breakpoints. Other simulation results indicate that using equal-

length intervals does not significantly affect performance. For practical applica-

tions, either quantile or equal-length discretization intervals may be chosen de-

pending on the shape of the baseline hazard.

3.4.4 Effect of discretization on computer time

For purposes of illustrating the effect of discretization on the computation time

needed to fit the model, we generated simulated data sets of various sample sizes

and fit them at different levels of discretization. Table 3.1 shows the time in

rounded seconds it took to initialize, fit, and compute standard errors as a function

of the number of clusters, cluster size, and discretization level. Computations were

done on a 3.2GHz Pentium 4 processor with 1GB of memory, running R 2.6.0 on

Ubuntu Linux 7.4. For certain large samples at fine discretization, the Godambe

matrix was too large due to the large number of nuisance parameters, and it could

not be inverted within a reasonable time. These cases are indicated in the table

by a dash.

The table shows the advantages of using discretization for fitting large data

sets using the proposed method. Firstly, the time to fit the model increases ap-

proximately linearly with the discretization parameter ϕ. In situations where a

large number of models need to be fit, such as model selection or bootstrapping,

this difference can be critical. Perhaps still more importantly, the time to com-

pute standard errors involves the inversion of the Godambe matrix, and therefore

grows at O(n3), where n is the total number of parameters, including the nuisance

parameters α
(d)
rs . For very large samples, time and computer memory limits may
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Table 3.1: Computer time to fit simulated data generated under setting (I), for
different sample sizes and discretization levels. For each cluster number
m and cluster size Ji, the table contains the number of events in the
generated data set (M (0),M (1)). For each discretization level ϕ, three
times are given: initialization time, EM algorithm fitting time, and
standard error computation time. All times are in seconds. Dashes in
the table indicate cases when the Godambe matrix was too large to
invert numerically and standard errors could not be computed.

m Ji M (0) M (1) ϕ
0.1 0.25 0.5 1.0

10 10 322 357 0 0 0 0
3 4 5 7
0 0 0 1

25 809 808 1 1 1 1
4 6 8 14
0 1 2 8

50 1540 1739 3 3 3 3
27 58 78 52
1 7 18 106

100 3458 3305 10 10 11 12
45 91 146 283
5 31 124 498

25 10 725 722 1 1 1 1
9 12 16 25
0 0 2 7

25 2081 2072 5 5 5 5
29 53 84 154
2 8 32 128

50 4532 4465 18 19 19 21
123 141 212 456
13 76 296 –

100 7991 7068 57 58 60 65
430 496 821 1825
77 469 1269 –

50 10 1634 1733 3 3 3 4
16 28 47 81
1 5 21 81

25 4420 4200 18 18 19 20
141 209 301 617
11 67 261 –

50 8466 8617 65 67 70 76
469 608 1074 2026
86 520 – –

100 15953 15813 229 236 246 269
735 1810 3400 6844
523 – – –

100 10 3058 2903 11 11 12 12
51 95 156 278
5 27 104 590

25 8663 8098 67 69 71 78
244 530 925 1861
78 474 – –

50 17351 15881 243 248 260 283
779 1890 3450 6835
557 – – –

100 31222 32551 867 884 929 1011
2724 7396 14025 28852
7817 – – –
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make it infeasible to compute standard errors if a fine level of discretization is

used.

3.5 Extensions and modifications

In this section we consider several modifications and extensions to the model def-

inition and fitting procedure described in Section 3.2. Specifically, Section 3.5.1

suggests a bias correction for the dispersion parameter estimates, Section 3.5.2

presents alternative marginal estimators for the dispersion parameters, and Sec-

tion 3.5.3 discusses how the model would change if a different covariance structure

were postulated for the frailties.

3.5.1 Bias corrections for frailty estimators

While the BLUP estimators in Section 3.2.3.1 are computationally straightforward,

the estimators for the variance components of Section 3.2.3.2 are less so. The Pear-

son estimators on their own have a strong downward bias, and the bias-correction

terms must be computed based on the previous estimates of the dispersion pa-

rameters. Therefore, the dispersion parameter estimates are prone to multiple

sources of errors, most notably errors in the previous iteration’s dispersion param-

eter estimates, which propagate into the frailty BLUP estimates and thence to the

regression parameter estimates.

In order to correct for the downward bias in the dispersion parameter estimates,

Ma (1999) suggested a degree-of-freedom correction, in which the estimators of
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(3.19) are replaced by

σ̂2
(d) =

1

m − r

m∑
i=1

{
(Û

(d)
i − 1)2 + b

(d)
i

}
,

ν̂2
(d) =

1

m − r

m∑
i=1

1

Ji

Ji∑
j=1

{
(Û

(d)
ij − Û

(d)
i )2 + b

(d)
ij

}
,

θ̂ =
1

m − r

m∑
i=1

1

Ji

Ji∑
j=1

{
(Û

(0)
ij − Û

(0)
i )(Û

(1)
ij − Û

(1)
i ) + b

(∗)
ij

}
,

(3.56)

where r is the number of regression parameters that need to be estimated, that is,

the length of [β(0), β(1)]. Such a correction may be effective in reducing the down-

ward bias of the dispersion parameter estimates for small samples, as suggested by

the simulations in table 3.21.

3.5.2 Marginal dispersion parameter estimators

Under the auxiliary Poisson model, the marginal moments of the event indicators

δ
(d)
rijks are known, as given in Section 3.3.1.1. This makes it possible to construct

method of moments estimators for the dispersion parameters based on the known

moments, conditional on the regression and baseline parameters, similar to those

presented in Xue (1998). Given β(d), α
(d)
rs , the following estimators for the variance

components are unbiased:
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σ̂2
(d) =

∑m
i=1

∑
(rjks,qbce):j ̸=b Y

(d)
rijksY

(d)
qibce

(
δ
(d)
rijks − µ

(d)
rijks

)(
δ
(d)
qibce − µ

(d)
qibce

)
∑m

i=1

∑
(rjks,qbce):j ̸=b Y

(d)
rijksY

(d)
qibceµ

(d)
rijksµ

(d)
ribce

ν̂2
(d) =

∑m
i=1

∑Ji

j=1

∑
(rks,qce) Y

(d)
rijksY

(d)
qijce

(
δ
(d)
rijks − µ

(d)
rijks

)(
δ
(d)
qijce − µ

(d)
qijce

)
− µ(d)

.∑m
i=1

∑Ji

j=1

∑
(rks,qce) Y

(d)
rijksY

(d)
qijceµ

(d)
rijksµ

(d)
qijce

− σ̂2
(d)

θ̂ =

∑m
i=1

∑Ji

j=1

∑
(rks,qce) Y

(0)
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(1)
qijce

(
δ
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rijks − µ

(0)
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)(
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(1)
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i=1

∑Ji

j=1

∑
(rks,qce) Y

(0)
rijksY

(1)
qijceµ

(0)
rijksµ

(1)
qijce

These moment estimators are based on the covariance structure of Section

3.3.1.1. For j ̸= b, the covariance structure implies that

E
[(

δ
(d)
rijks − µ

(d)
rijks

)(
δ
(d)
qibce − µ

(d)
qibce

)]
= Cov

(
δ
(d)
rijks, δ

(d)
qibce

)
= σ2

(d)µ
(d)
rijksµ

(d)
qibce ,

which justifies the estimator σ̂2
(d). Similarly,

E
[(

δ
(d)
rijks − µ

(d)
rijks

)(
δ
(d)
qijce − µ

(d)
qijce

)]
= Cov

(
δ
(d)
rijks, δ

(d)
qijce

)
(σ2

(d) + ν2
(d))µ

(d)
rijksµ

(d)
qijce + 1(rks,qce)µ

(d)
rijks ,

which means that the estimator

ν̂2
(d) =

∑m
i=1

∑Ji

j=1

∑
(rks,qce) Y

(d)
rijksY

(d)
qijce

(
δ
(d)
rijks − µ

(d)
rijks

)(
δ
(d)
qijce − µ

(d)
qijce

)
− µ(d)

.∑m
i=1

∑Ji

j=1

∑
(rks,qce) Y

(d)
rijksY

(d)
qijceµ

(d)
rijksµ

(d)
qijce

is unbiased for σ2
(d) + ν2

(d), so that the estimator for ν2
(d) is justified.

Simulations in table 3.18 show that replacing the Pearson-type estimators of

Section 3.2.3.2 by the marginal estimators also results in parameter estimates that

are slightly downward biased, but appear to be asymptotically consistent. The

marginal estimators appear to perform slightly worse than the Pearson estimators,

although the difference may be due to the simulation methodology.
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3.5.3 Other frailty moment structures

The conditional moment structure for the subject-level frailties proposed in

eqs. (3.1)–(3.4) is not the only possible reasonable covariance structure. If there

is a compelling reason to require a frailty model in which the subject-level frailty

covariance depends on cluster frailties, or a shared frailty model, minor changes to

the BLUP estimators can easily accommodate these scenarios.

3.5.3.1 Subject covariance depending on cluster frailties

Suppose that in addition to (3.1), the subject-level frailties have moments

E
[
U

(d)
ij |U (d)

∗ = u(d)
∗

]
= u

(d)
i

Var (U
(d)
ij |U (d)

∗ = u(d)
∗ ) = uiν

2
(d)

Cov (U
(0)
ij , U

(1)
ij |U (∗)

∗ = u(∗)
∗ ) = ρν(0)ν(1)u

(0)
i u

(1)
i ,

so that ρ denotes the conditional correlation of the frailties. Computations analo-

gous to Section 3.3.1 give BLUPs as in (3.15) and (3.16), but with

wij =

 ∏
d∈{0,1}

(1 + ν2
(d)(σ

2
(d) + 1)µ

(d)
ij. ) − ρ2

∏
d∈{0,1}

ν2
(d)µ

(d)
ij.

−1

,

and

P
(d)
ij = δ

(d)
ij. · wij

(
1 + ν2

(1−d)(σ
2
(1−d) + 1)µ

(1−d)
ij.

)
Q

(d)
ij = −δ

(d)
ij. · wijρν(d)ν(1−d)µ

(1−d)
ij.

p
(d)
ij = µ

(d)
ij. · wij

(
1 + ν2

(1−d)(σ
2
(1−d) + 1)µ

(1−d)
ij.

)
q
(d)
ij = −µ

(d)
ij. · wijρν(d)ν(1−d)µ

(1−d)
ij.

replacing (3.17) and (3.18) respectively.

Bias corrections and standard error estimators can be constructed analogously.
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3.5.3.2 Shared frailties

Supposing that U
(0)
i = U

(1)
i = Ui and U

(0)
ij = U

(1)
ij = Uij, with Var (Ui) = σ2 and

Var (Uij|Ui) = ν2 leads to a shared frailty model structurally similar to that of Ma

(1999). The BLUPs are then given by

Ûi =
1 + σ2Pi

1 + σ2pi

, Ûij = (1 − ν2pij)Ûi + ν2Pij

where pi =
∑m

i=1 pij and Pi =
∑m

i=1 Pij, and

Pij =
δ
(.)
ij.

1 + ν2µ
(.)
ij.

, pij =
µ

(.)
ij.

1 + ν2µ
(.)
ij.

.

Bias correction terms and standard error estimators are analogous to those

of Ma (1999).

3.6 Simulation studies

We have implemented the methodology described in Section 3.2 in the R package

blupsurv. Because the asymptotic properties of the proposed methodology are

not rigorously established, several simulation studies were conducted in order to

demonstrate its performance in a variety of settings. We present results for typical

settings here, including simulations covering alternative settings and extensions in

Section 3.A. Section 3.6.1 presents the simulation methodology, and Section 3.6.2

summarizes the results.
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Table 3.2: True regression and dispersion parameter values used to generate sim-
ulated samples.

Setting β(0) β(1) σ2
(0) σ2

(1) ν2
(0) ν2

(1) θ

(I) 1 1 0.25 0.25 0.25 0.25 0.125
(II) 1 2 0.25 0.25 0.25 0.25 0.125
(III) 1 1 0.25 0.5 0.25 0.5 0.125

3.6.1 Simulation methodology

Simulations were conducted to investigate performance as a function of the number

of clusters, the number of subjects per cluster, and the degree of discretization.

Each simulation consisted of generating many simulated datasets from a specified

parametrized distribution and using the blupsurv package to estimate regression

and dispersion parameters.

Three settings are considered, differing in the “true” regression and dispersion

parameters used to generate the samples. Parameter values for all simulations re-

ported in this paper are summarized in Table 3.2. In setting (I), both processes are

generated using the same regression and dispersion parameters, with settings (II)

and (III) respectively allowing the regression parameters and dispersion parameters

to be different.

Within each setting, we considered four sample sizes, setting the number of

clusters set to either m = 10 or m = 25, and the cluster size to either Ji = 5 or

Ji = 25. For each setting and sample size, we conducted 1000 replications.

Each replication consisted of generating simulated frailties (U
(d)
i , U

(d)
ij ; i =

1 . . .m, j = 1 . . . Ji, d ∈ {0, 1}) from a hierarchical log-Normal distribution with

the moment structure specified in (3.1) through (3.4), with the appropriate dis-

persion parameters for that setting. A single covariate was generated for each
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subject via Z ∼ N(0, .5). Recurrent event gap times were generated using single-

stratum Weibull baseline hazards with scale parameters λ
(0)
0 = λ

(1)
0 = 10 and

shape parameters η
(0)
0 = η(1) = 1.8, so that the baseline hazards were given by

λ
(d)
01 (t) = λ

(d)
0 η

(d)
0 tη

(d)
0 −1. Censoring times were independently generated from a

Weibull hazard with parameters λc = 1, ηc = 1.8. These parameters were chosen

so that a subject under setting (I) experienced four events of each type (i.e., on

average).

Each dataset was fit at four levels of discretization, parametrized by a parameter

ϕ = (0.1, 0.25, 0.5, 1.0) specifying the ratio of the number of discretization intervals

used to the maximum permissible by the data, that is,

K(d)
r = ϕ ·

∑
i,j,k,s

δ
(d)
rijks .

For simplicity, the level of discretization was applied in equal proportion to both

event types for the simulation; however, this is not necessary in applications.

3.6.2 Simulation results

Tables 3.3, 3.4 and 3.5 respectively contain the results of simulations conducted

under settings (I)-(III). In each table, Panel A contains the bias of the parame-

ter estimates for various sample sizes and discretization levels and Panel B gives

the estimated standard errors and 95% confidence interval coverage rates for the

regression parameter estimates. The corresponding variances and mean squared

errors are provided in Section 3.A.

Panel A of Table 3.3 shows that under setting (I), regression parameters are

well-estimated for large sample sizes and sufficiently fine discretization, and dis-

persion parameter estimates have small negative biases. In general, the biases
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Table 3.3: Bias and standard error of parameter estimates from 1000 simulations of
two recurrent event processes under setting (I). CSE is mean computed
standard error, ESE is empirical standard error, 95%CP is the coverage
rate of 95% confidence intervals derived from CSE.

Panel A: Bias of regression coefficients and dispersion parameters (Setting I)
m Ji ϕ β̂(0) β̂(1) σ̂2

(0) σ̂2
(1) ν̂2

(0) ν̂2
(1) θ̂ ρ̂

10 5 .1 −0.076 −0.077 −0.130 −0.135 −0.146 −0.148 −0.073 0.001
.25 −0.033 −0.024 −0.076 −0.084 −0.089 −0.099 −0.047 0.008
.5 −0.022 −0.007 −0.079 −0.064 −0.069 −0.050 −0.032 0.029
1 −0.000 −0.010 −0.072 −0.061 −0.062 −0.065 −0.028 0.027

25 .1 −0.024 −0.024 −0.056 −0.057 −0.065 −0.066 −0.022 0.046
.25 −0.005 −0.007 −0.043 −0.044 −0.037 −0.039 −0.008 0.050
.5 −0.005 0.001 −0.054 −0.056 −0.043 −0.038 −0.010 0.051
1 −0.001 0.001 −0.051 −0.063 −0.056 −0.057 −0.017 0.044

25 5 .1 −0.046 −0.046 −0.066 −0.069 −0.102 −0.111 −0.046 0.002
.25 −0.023 −0.023 −0.039 −0.045 −0.071 −0.070 −0.031 0.005
.5 −0.014 −0.008 −0.051 −0.050 −0.062 −0.057 −0.022 0.024
1 −0.001 −0.010 −0.042 −0.044 −0.057 −0.058 −0.024 0.012

25 .1 −0.008 −0.013 −0.024 −0.024 −0.047 −0.051 −0.015 0.019
.25 −0.001 −0.006 −0.021 −0.022 −0.040 −0.045 −0.010 0.023
.5 −0.002 0.000 −0.030 −0.025 −0.047 −0.051 −0.014 0.021
1 −0.003 −0.000 −0.032 −0.033 −0.061 −0.061 −0.020 0.017

Panel B: Standard error of regression coefficients (Setting I)
β̂(0) β̂(1)

m Ji ϕ CSE ESE 95%CP CSE ESE 95%CP
10 5 .1 0.211 0.243 0.889 0.210 0.248 0.888

.25 0.227 0.263 0.909 0.226 0.252 0.922

.5 0.233 0.265 0.908 0.236 0.273 0.903
1 0.231 0.280 0.901 0.231 0.269 0.910

25 .1 0.098 0.105 0.923 0.098 0.108 0.914
.25 0.100 0.108 0.931 0.100 0.104 0.928
.5 0.100 0.107 0.934 0.101 0.103 0.941
1 0.098 0.114 0.899 0.098 0.110 0.912

25 5 .1 0.140 0.159 0.892 0.139 0.151 0.909
.25 0.146 0.167 0.910 0.146 0.160 0.918
.5 0.146 0.164 0.931 0.147 0.162 0.923
1 0.147 0.165 0.920 0.147 0.165 0.918

25 .1 0.063 0.069 0.925 0.063 0.068 0.932
.25 0.063 0.068 0.936 0.063 0.071 0.924
.5 0.062 0.069 0.924 0.062 0.070 0.917
1 0.061 0.064 0.935 0.061 0.066 0.932
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Table 3.4: Bias and standard error of parameter estimates from 1000 simulations
of two recurrent event processes under setting (II), which differs from
setting (I) only in that β(1) = 2. CSE is mean computed standard
error, ESE is empirical standard error, 95%CP is the coverage rate of
95% confidence intervals derived from CSE.

Panel A: Bias of regression coefficients and dispersion parameters (Setting II)
m Ji ϕ β̂(0) β̂(1) σ̂2

(0) σ̂2
(1) ν̂2

(0) ν̂2
(1) θ̂ ρ̂

10 5 .1 −0.069 −0.140 −0.127 −0.136 −0.146 −0.149 −0.072 0.000
.25 −0.034 −0.065 −0.089 −0.087 −0.081 −0.089 −0.039 0.036
.5 −0.011 −0.033 −0.080 −0.074 −0.062 −0.060 −0.029 0.038
1 0.007 −0.004 −0.074 −0.070 −0.068 −0.058 −0.035 0.018

25 .1 −0.029 −0.045 −0.059 −0.067 −0.070 −0.075 −0.024 0.050
.25 −0.002 −0.018 −0.048 −0.051 −0.038 −0.049 −0.012 0.049
.5 −0.010 −0.005 −0.056 −0.055 −0.045 −0.046 −0.011 0.050
1 −0.004 −0.007 −0.052 −0.070 −0.062 −0.062 −0.020 0.043

25 5 .1 −0.052 −0.089 −0.073 −0.080 −0.102 −0.097 −0.042 0.016
.25 −0.016 −0.032 −0.053 −0.045 −0.069 −0.074 −0.029 0.014
.5 −0.013 −0.022 −0.043 −0.049 −0.056 −0.058 −0.022 0.020
1 −0.005 −0.002 −0.045 −0.049 −0.056 −0.062 −0.025 0.013

25 .1 −0.010 −0.022 −0.017 −0.031 −0.043 −0.057 −0.015 0.019
.25 −0.003 −0.004 −0.025 −0.025 −0.043 −0.046 −0.012 0.023
.5 −0.004 −0.007 −0.024 −0.025 −0.049 −0.050 −0.014 0.018
1 −0.002 −0.003 −0.039 −0.037 −0.063 −0.060 −0.020 0.020

Panel B: Standard error of regression coefficients (Setting II)
β̂(0) β̂(1)

m Ji ϕ CSE ESE 95%CP CSE ESE 95%CP
10 5 .1 0.212 0.250 0.879 0.233 0.289 0.837

.25 0.227 0.257 0.908 0.249 0.290 0.896

.5 0.233 0.269 0.906 0.256 0.287 0.902
1 0.232 0.265 0.926 0.256 0.304 0.902

25 .1 0.097 0.106 0.915 0.106 0.118 0.886
.25 0.101 0.111 0.927 0.109 0.125 0.908
.5 0.100 0.111 0.918 0.109 0.123 0.909
1 0.097 0.113 0.897 0.106 0.124 0.906

25 5 .1 0.141 0.153 0.901 0.155 0.170 0.869
.25 0.146 0.162 0.924 0.159 0.180 0.913
.5 0.148 0.163 0.924 0.161 0.176 0.936
1 0.147 0.161 0.916 0.160 0.190 0.895

25 .1 0.063 0.070 0.926 0.068 0.075 0.902
.25 0.063 0.066 0.932 0.069 0.079 0.917
.5 0.062 0.068 0.937 0.068 0.079 0.905
1 0.061 0.069 0.907 0.067 0.077 0.907
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Table 3.5: Bias and standard error of parameter estimates from 1000 simulations
of two recurrent event processes under setting (III), which differs from
setting (I) only in that σ2

(1) = ν2
(1) = .5. CSE is mean computed standard

error, ESE is empirical standard error, 95%CP is the coverage rate of
95% confidence intervals derived from CSE.

Panel A: Bias of regression coefficients and dispersion parameters (Setting III)
m Ji ϕ β̂(0) β̂(1) σ̂2

(0) σ̂2
(1) ν̂2

(0) ν̂2
(1) θ̂ ρ̂

10 5 .1 −0.082 −0.125 −0.124 −0.287 −0.151 −0.325 −0.065 0.036
.25 −0.014 −0.068 −0.080 −0.164 −0.084 −0.147 −0.025 0.057
.5 −0.027 −0.035 −0.066 −0.138 −0.069 −0.136 −0.024 0.046
1 0.011 −0.028 −0.060 −0.153 −0.065 −0.129 −0.015 0.057

25 .1 −0.035 −0.032 −0.046 −0.068 −0.070 −0.029 −0.001 0.062
.25 −0.014 −0.007 −0.041 −0.172 −0.043 −0.042 0.007 0.074
.5 −0.010 −0.007 −0.046 −0.178 −0.043 −0.040 0.004 0.067
1 −0.006 −0.006 −0.052 −0.180 −0.063 −0.076 −0.004 0.061

25 5 .1 −0.044 −0.066 −0.065 −0.129 −0.108 −0.194 −0.032 0.034
.25 −0.028 −0.034 −0.028 −0.064 −0.065 −0.121 −0.012 0.033
.5 −0.015 −0.018 −0.033 −0.057 −0.062 −0.095 −0.014 0.026
1 −0.018 −0.019 −0.035 −0.076 −0.060 −0.111 −0.012 0.033

25 .1 −0.012 −0.005 −0.015 −0.056 −0.042 0.035 0.012 0.041
.25 −0.005 0.009 −0.009 −0.086 −0.045 0.012 0.007 0.037
.5 −0.007 0.006 −0.016 −0.084 −0.049 −0.022 0.002 0.035
1 −0.004 0.004 −0.025 −0.082 −0.063 −0.083 −0.006 0.031

Panel B: Standard error of regression coefficients (Setting III)
β̂(0) β̂(1)

m Ji ϕ CSE ESE 95%CP CSE ESE 95%CP
10 5 .1 0.211 0.252 0.875 0.231 0.285 0.829

.25 0.231 0.273 0.898 0.268 0.299 0.900

.5 0.234 0.268 0.905 0.272 0.316 0.893
1 0.234 0.262 0.920 0.271 0.314 0.906

25 .1 0.098 0.108 0.899 0.124 0.132 0.919
.25 0.101 0.107 0.925 0.124 0.130 0.929
.5 0.101 0.107 0.913 0.123 0.133 0.930
1 0.098 0.109 0.924 0.119 0.133 0.925

25 5 .1 0.140 0.162 0.894 0.164 0.187 0.886
.25 0.147 0.162 0.912 0.174 0.185 0.912
.5 0.147 0.169 0.908 0.176 0.192 0.911
1 0.147 0.164 0.918 0.173 0.197 0.915

25 .1 0.063 0.068 0.920 0.082 0.086 0.941
.25 0.063 0.070 0.911 0.080 0.082 0.953
.5 0.062 0.068 0.917 0.078 0.083 0.937
1 0.061 0.067 0.924 0.074 0.081 0.934
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reported here compare favorably to those reported in Ma and Jørgensen (2007)

and Ha and Lee (2005) for the univariate case. Increasing either (or both) the

number of clusters or the cluster size leads to improved dispersion parameter esti-

mates; as might be expected, the bias of σ2
(d) is primarily affected by the number

of clusters, whereas cluster size tends to be of greater importance when estimating

the subject-level dispersion parameters (i.e., ν2
(d), θ).

Of some interest in these tables is the effect of discretization: for small samples,

successively finer discretization produces much improved results. However, with

larger sample sizes, the results additionally suggest that such fine discretization is

not necessary. For the largest samples with m = 25, Ji = 25, the estimation bias

does not decrease appreciably beyond ϕ = .25, and for samples of intermediate

size, the performance gain with increased discretization is quite modest. The

benefit of proper discretization is readily apparent: for large samples, good results

can be obtained with relatively little computational effort by a judicious choice of

discretization.

In order to investigate the finite-sample performance of the covariance ma-

trix estimate proposed in Section 3.2.4, Panel B of Table 3.3 provides standard

errors and 95% confidence interval coverage rates for the regression parameter es-

timates in setting (I). As commented earlier, we observe a slight underestimation

of standard error, the degree of which appears similar to that reported in Ma and

Jørgensen (2007). We additionally observe that the extent of underestimation is

more severe in small samples with coarse discretization, improving with finer dis-

cretization and both increasing m and J1 . . . Jm. The fact that the standard error

estimates degrade as the level of discretization increases is consistent with our ear-

lier conjecture that the basic score equation (3.23) may not be exactly unbiased
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in finite samples. In any event, this systematic underestimation of standard errors

should be taken into account when interpreting the magnitudes of p-values.

Tables 3.4 and 3.5 respectively contain analogous results for settings (II) and

(III). Results indicate that while varying regression and dispersion parameters

does affect the absolute bias, the percentage bias remains approximately constant.

There is also no clear indication that varying either the regression or dispersion

parameters signficantly impacts the relative performance of the covariance and

correlation parameter estimates. Further simulation results for time-dependent

covariates, alternative dispersion parameter estimators, and other methods of bias

corrections may be found in Appendix 3.A.

3.7 Data Examples

In this section, we apply the proposed methodology to data collected from two

randomized clinical trials. In Section 3.7.1, we reanalyze data originally collected

as part of the Nutritional Prevention of Cancer Trial conducted by the Arizona

Cancer Center between 1985 and 1996 (Clark et al., 1996; Duffield-Lillico et al.,

2002). This study was designed to evaluate the effectiveness of selenium supple-

mentation on prevention of nonmelanoma skin cancer, defined by the occurrence

of basal or squamous cell carcinomas of the skin. In Section 3.7.2, we reanalyze

data from a randomized double-blind study of pulmonary exacerbations in cystic

fibrosis patients (Fuchs et al., 1994), where patients were treated with aerosolized

recombinant human deoxyribonuclease (rhDNase) in the hope of reducing the fre-

quency and length of exacerbation episodes. The bivariate process of interest here

is created by the alternating sequence of times “between” and “within” exacer-
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bation episodes. In both sections, our data analyses utilize ϕ = 1 (i.e., no time

discretization).

3.7.1 Effects of selenium supplementation on skin cancer

We summarize the study’s methods and findings in Section 3.7.1.1, provide details

on the application of our methods in Section 3.7.1.2, and summarize the results in

Section 3.7.1.3.

3.7.1.1 Study methods and findings

The design and methods of the Nutritional Prevention of Cancer (NPC) trial are

described in detail by Clark et al. (1996) and Duffield-Lillico et al. (2002); a brief

summary is provided here for completeness. The NPC trial was a double-blind

controlled study that followed a cohort of 1312 patients in seven dermatology clinics

throughout the United States. Treatment consisted of a 0.5g tablet containing

200µg of selenium for the treatment group. Patients were initially evaluated on

sun exposure and sensitivity, as well as prior BCC (Basal Cell Carcinoma) and

SCC (Squamous Cell Carcinoma) history, and scheduled to return to the clinic

in six month intervals. New BCC and SCC occurrences could be diagnosed by

the patients’ own dermatologists, but were also confirmed by biopsy at each clinic

visit. At every visit, plasma selenium levels were measured in the laboratory for

each patient.

Patient data gathered consisted of plasma selenium level (baseline level and

laboratory measurements at each clinic visit), age, gender, height, weight, BMI,

smoking status (current or ex-smoker, number of daily cigarettes, number of years
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Table 3.6: Number of observed events, number of subjects affected by events, and
incidence, by cancer type and treatment group. Total affected subjects
do not sum because multiple types of cancer are counted only once.

Placebo Treatment Total
Events Subj. Inc. Events Subj. Inc. Events Subj. Inc.

BCC 1263 370 0.256 1503 399 0.301 2766 769 0.279
SCC 479 192 0.097 568 246 0.114 1047 438 0.106
Total 1742 413 0.354 2071 462 0.415 3813 875 0.385

of smoking), alcohol consumption (number of weekly drinking days, number of

drinks per day), a sun damage index, fasting status, use of vitamin supplements,

use of sunscreen (always, sometimes, never), number of years spent on a farm, hair

and eye color, and number of BCC, SCC and AK (Actinic Keratosis) events prior

to randomization. Of these variables, only plasma selenium varies with time (i.e.,

a time-dependent covariate). Descriptive statistics for the outcomes and covariates

are given in Table 3.6 and Table 3.7, respectively.

Clark et al. (1996) analyzed the data using Kaplan-Meier estimates and log-

rank tests for the effect of treatment on BCC and SCC incidence. These analyses,

done separately by cancer type, used the time to the first post-randomization can-

cer as the primary outcome variable and found a nonsignificant increase in the

incidence of both cancer types as a result of treatment. Using the fully paramet-

ric mixed nonhomogenous Poisson process model described in Abu-Libdeh et al.

(1990), Clark et al. (1996) also found a statistically insignificant increased risk due

to treatment for the recurrent BCC and SCC outcomes.

3.7.1.2 Data analysis methodology

Plasma selenium levels were measured at baseline (i.e., study entry) and also post-

randomization. However, because post-randomization levels of plasma selenium
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are directly influenced by treatment and this variable represents the hypothesized

mechanism by which treatment affects skin cancer incidence, it is inappropriate

to include both the treatment group indicator and post-randomization plasma

selenium levels as possible covariates when evaluating the treatment effect.

Treating the seven clinics as a cluster-level random effect, an analysis of the

treatment effect using the proposed model continues to suggest a detrimental im-

pact of treatment on both BCC recurrence (p = 0.0265) and SCC recurrence

(p = 0.0566). We therefore consider two distinct post-hoc analyses. In the first

analysis, we utilize only the baseline covariates available for each patient, includ-

ing baseline selenium levels; we do not include plasma selenium levels measured

post-randomization as a predictor variable. In the second analysis, we include the

time-dependent plasma selenium level, but not the treatment indicator, thereby

intending to evaluate the effect of changes in the longitudinal plasma selenium

level on the recurrent event processes.

Extensive exploratory data analysis and conversations with the lead study

physicians at the Roswell Park Cancer Institute led us to consider a particular

subset of the baseline covariates in Table 3.7 for subsequent analysis. Missing

values (< 1%) were imputed with the corresponding median value. As indicated

earlier, the seven clinics were treated as cluster-level random effects; no strati-

fication was used. Patients whose blood was drawn more than four days after

randomization were also excluded from the analysis, leaving a cohort of 1250 pa-

tients; see Duffield-Lillico et al. (2002) for further discussion. Further details on

the variables selected for this analysis and the resulting model fit may be found in

Section 3.7.1.3.

For the analysis of post-randomization plasma selenium levels, we considered
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Table 3.8: Regression and dispersion parameter estimates for the bivariate clus-
tered frailty model fit to the Nutritional Prevention of Cancer trial
data, with baseline covariates only.

Regression parameter estimates
BCC SCC

Coeff Std Pval Coeff Std Pval
Treatment 0.1586 0.0707 0.0125 0.2148 0.1145 0.0304

Baseline Se < Median −0.1597 0.0724 0.0137 0.0435 0.1155 0.3531
History: No BCC or SCC −0.9776 0.1578 <1e-04 0.0807 0.2535 0.3751
History: SCC only −1.1037 0.0929 <1e-04 0.9109 0.1388 <1e-04
History: Both BCC and SCC 0.0958 0.0967 0.1609 1.0171 0.1623 <1e-04
AK History: AK > 2 0.2644 0.0991 0.0038 0.6474 0.1443 <1e-04
Age/Gender: Young Male 0.3532 0.1166 0.0012 0.8977 0.2204 <1e-04
Age/Gender: Older Female −0.1484 0.1519 0.1643 0.7119 0.2634 0.0034
Age/Gender: Older Male 0.4178 0.1181 0.0002 1.3192 0.2177 <1e-04

Drink Days > 2 0.1637 0.0863 0.0288 0.1038 0.1405 0.2300
Sundamage > 5 0.0726 0.0804 0.1835 0.5844 0.1202 <1e-04

Dispersion parameter Estimates
Cluster frailty dispersion (BCC) 0.0087
Cluster frailty dispersion (SCC) 0.0014
Subject frailty dispersion (BCC) 0.9332
Subject frailty dispersion (SCC) 2.3163

Subject frailty covariance 0.3438
Subject frailty correlation 0.2327

a modified version of the model used to conduct our baseline analysis. The time-

dependent covariate capturing selenium was created by subtracting and scaling by

each patient’s initial selenium level; thus, it represents the percentage above or

below the patient’s baseline selenium level at each time. The resulting model was

fit as described in Section 3.2.5.

3.7.1.3 Data analysis results

The baseline covariates utilized in our first analysis are defined as follows:

• Treatment: Takes value 1 if the patient was a member of the treatment

group.
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Figure 3.3: Estimated baseline survivor functions for BCC and SCC gap times,

and survivor functions adjusted for the treatment effect.

• Baseline Se < Median: Takes value 1 if the patient’s baseline selenium

level was below the median baseline level.

• History: Nearly 70% of patients in the trial presented with either: a prior

history of BCCs but no SCC; or, a prior history of SCCs but no BCC. A

patient’s BCC and SCC history before randomization is described by three

indicator variables. Patients who have suffered at least one BCC, but no

SCCs (the most common case) serve as the baseline group. The remaining

indicators correspond to patients with no history of either skin cancer type;

a history of both cancer types; or a history of SCC only.

• AK History: Takes value 1 if a patient has experienced more than two AK

events prior to randomization.

• Age/Gender: Patients are grouped by age and gender indicators. A patient

is considered “older” if their age is above the global median (65). Young

females serve as the baseline group.
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• Drink Days > 2: Takes value 1 if the patient drinks more than two days

per week (i.e., above the 75th percentile)

• Sundamage > 5 Takes value 1 if the patient’s sun damage index is above

the modal value of 5 (higher values indicate greater damage).

The estimated model coefficients and frailty dispersion parameters are sum-

marized in Table 3.8. The results indicate that treatment is associated with an

increase in both BCC and SCC incidence. There are matching adverse effects of

high baseline selenium on both BCC and SCC, the latter being statistically in-

significant. The estimated effects of skin cancer history suggest that patients who

have experienced a given type of skin cancer are at particularly high risk for fur-

ther events of the same type. A history of AK occurrences is highly predictive for

SCC risk, but less so for BCC. Regular drinking is related to increased risk of BCC

but not SCC, whereas sun damage significantly affects SCC risk only. It should

be noted that standard errors were underestimated slightly in simulation, so these

results may overstate statistical significance.

The estimated dispersion parameters indicate a strong subject-level frailty ef-

fect, but very small cluster-level variability for both BCC and SCC processes. In

other words, the heterogeneity unaccounted for by the covariates may be sub-

stantially larger within clusters than between clusters. The covariance estimate

indicates positive correlation between the frailties for the two processes; that is,

higher event rates of one skin cancer type tend to occur with higher events rates

of the other.

Figure 3.3 shows the estimated baseline survivor functions for the gap times

between BCC and SCC events. The baseline refers to a female subject under 65
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who has above-median baseline selenium, has suffered at least one BCC event but

no SCC or AKs, drinks less than twice weekly and has low sun damage.

Remark: In Abu-Libdeh et al. (1990), an interim analysis of the NPC trial

data is presented for the purposes of illustration. In that analysis, the treatment

indicator was intentionally randomized in order to avoid influencing the study

outcome; consequently, the results of analyses summarized there are not directly

comparable to those summarized in this paper. In addition, the model employed

by Abu-Libdeh et al. (1990) is quite different; in addition to being fully parametric,

for example, covariate effects are also assumed to have a common impact on the

intensity of both skin cancer types. The proposed model does not enforce such

requirements and, as suggested by the results in Table 7, the latter assumption

does not appear to be reasonable for certain covariates.

Next, we consider the effect of time-varying plasma selenium on the BCC and

SCC processes. Because plasma selenium is the mechanism by which treatment

is expected to affect the processes, the treatment group indicator was left out of

the analysis. The covariate labeled “Selenium (% over baseline)” is defined as the

time-varying percentage by which a patient’s current selenium level exceeds the

patient’s selenium level at study entry. All other covariates included in the prior

analysis were also included here; however, the dichotomized baseline selenium vari-

able was replaced by its continuous counterpart. The results of this analysis are

summarized in Table 3.9. The estimated effect of the continuous baseline selenim

variable is consistent with that suggested in Table 3.8. It is also observed that

the impact of rising selenium continues to be detrimental to both BCC and SCC

recurrence; however, neither effect is statistically significant. The remaining co-

variate effects (parameter estimates, standard errors, p-values) are qualitatively
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Table 3.9: Regression and dispersion parameter estimates for the bivariate clus-
tered frailty model fit to the Nutritional Prevention of Cancer trial
data, with time-dependent plasma selenium.

Regression parameter estimates
BCC SCC

Coeff Std Pval Coeff Std Pval
Selenium (% over baseline) 0.0006 0.0006 0.1359 0.0011 0.0009 0.1188

Baseline Selenium 0.0036 0.0016 0.0109 −0.0035 0.0026 0.0863
History: No BCC or SCC −0.9639 0.1486 <1e-04 0.0801 0.2409 0.3697
History: SCC only −1.0921 0.0880 <1e-04 0.8630 0.1316 <1e-04
History: Both BCC and SCC 0.0913 0.0898 0.1546 0.9536 0.1534 <1e-04
AK History: AK > 2 0.2743 0.0932 0.0016 0.6529 0.1357 <1e-04
Age/Gender: Young Male 0.3415 0.1094 0.0009 0.9236 0.2116 <1e-04
Age/Gender: Older Female −0.1564 0.1422 0.1356 0.6498 0.2523 0.0050
Age/Gender: Older Male 0.4072 0.1109 0.0001 1.2936 0.2087 <1e-04

Drink Days > 2 0.1705 0.0802 0.0168 0.1193 0.1324 0.1838
Sundamage > 5 0.0576 0.0756 0.2230 0.5869 0.1134 <1e-04

Dispersion parameter Estimates
Cluster frailty dispersion (BCC) 0.0126
Cluster frailty dispersion (SCC) 0.0016
Subject frailty dispersion (BCC) 0.7713
Subject frailty dispersion (SCC) 1.9495

Subject frailty covariance 0.3162
Subject frailty correlation 0.2557

(and largely quantitatively) unchanged. The subject-level frailty dispersion esti-

mates are observed to decrease, indicating that the inclusion of this time-dependent

covariate captures some of the subject-level heterogeneity.

Table 3.6 shows that during the course of the study, the average plasma se-

lenium level in the treatment group was 48% higher than in the placebo group.

Because treatment causes plasma selenium to rise considerably, the mean level

of this covariate depends strongly on the treatment indicator. This may help to

explain the strong similarity between the results summarized in Tables 3.8 and 3.9.
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3.7.2 Effect of rhDNAse treatment on recurrent pulmonary exacerba-

tions

In this section, we demonstrate the applicability of the proposed methodology to a

bivariate process having a complex at-risk structure. The study consists of cystic

fibrosis patients who experience numerous lengthy episodes of pulmonary exacer-

bation. The two recurrent event processes under consideration are the beginnings

and endings of such episodes, or “alternating episode” data. At any point in time,

a patient is considered to be at risk for exactly one of these event types, so the

associated at-risk indicators alternate with each other. We discuss the findings

of past analyses of these data in Section 3.7.2.1, discuss the methodology for our

analysis in Section 3.7.2.2 and summarize the results in Section 3.7.2.3.

3.7.2.1 Study methods and findings

In a randomized double-blind study conducted by Genentech Inc. in 1992, a total

of 968 cystic fibrosis patients in 51 institutions were followed for 24 weeks. Patients

were eligible for the study if they were at least five years of age and had a confirmed

diagnosis of cystic fibrosis. Randomization assigned 324 patients to placebo, 321

to be treated with 2.5mg of rhDNase once daily, and 343 to be treated with rhD-

Nase twice daily (Fuchs et al., 1994). During exacerbation episodes, patients were

treated with intravenous antibiotics and were not considered at risk for another

episode until 7 days after the end of therapy. Observation periods for 17 patients

terminated prematurely, that is, were censored prior to the end of the study.

Data on the placebo and once-daily treatment groups were made publicly avail-

able by Therneau and Grambsch (2000), and have been analyzed several times in
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Table 3.10: Frequency distribution of the number of pulmonary exacerbation
episodes observed.

Number of episodes: 0 1 2 3 4 5
Placebo 185 97 24 13 4 1

Treatment 217 65 30 6 3 0

Table 3.11: Average lengths of uncensored gap times, by episode and treatment
group. Gap times considered are the at-risk time prior to each exac-
erbation starting, and the duration of the exacerbation itself.

Exacerbation Start Exacerbation End
Episode Plc Trt All Plc Trt All

1 72.3 76.1 73.9 15.1 13.7 14.5
2 42.0 51.1 46.5 19.0 17.3 18.1
3 38.1 28.7 35.0 12.4 16.1 13.6
4 37.2 22.0 31.5 13.8 16.0 14.6
5 20.0 − 20.0 3.0 − 3.0

All 61.8 65.9 63.6 15.6 14.8 15.2

previous papers. For example, Lin et al. (2001) treated the arrival times of ex-

acerbations as a recurrent event process, modeling the mean count as a known

semiparametric transformation of a proportional means model; Cook and Lawless

(2002) considered intensity models for the exacerbation lengths; and, Yan and

Fine (2005) analyzed the number of exacerbations, the number of days in exacer-

bation, and the proportion of days in exacerbation using a novel temporal process

regression approach.

Table 3.10 shows the frequency distribution of the number of exacerbations

observed during the study. A total of 360 exacerbation episodes were observed,

205 and 155 in the placebo and treatment groups respectively. In the placebo

group, 139 patients (42.9%) suffered at least one episode, versus 104 (32.4%) in

the treatment group. Table 3.11 shows the average lengths of the uncensored

intervals between exacerbations and the durations of the exacerbations themselves.

For the first two exacerbations, the placebo group has shorter gap times between
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exacerbations, and longer-lasting exacerbation episodes than the treatment group.

This trend is reversed for the third and fourth episode; however, this may be an

artifact of censoring, as relatively few patients experienced a third or fourth episode

during the study period.

In addition to treatment information, the publicly available data set contains a

single time-independent covariate. Forced expiratory volume (FEV) is a measure

of a patient’s lung capacity and often treated as a surrogate for the patient’s overall

health (Yan and Fine, 2005). The baseline FEV at study entry given in the data

set ranges from 16 to 140.8 ml, with a mean of 61.1 ml and a standard deviation of

26.1. Patients who did not suffer any episodes had a mean FEV of 67.1 ml, whereas

patients who suffered at least one had a mean FEV of 51.1 ml, indicating that FEV

may have a strong effect on the risk of experiencing exacerbation episodes.

The original study of Fuchs et al. (1994) fits a Cox proportional hazards model

to the time of first exacerbation only, with patient age as the sole covariate, and

finds a statistically significant reduction of risk. Increase in FEV is treated as

secondary endpoint. A more contemporary analysis by Therneau and Hamilton

(1997) considers a proportional hazards model which treats the first and second

episodes as distinct strata, and compares the results to an independent-increments

model for exacerbation start times. Neither of the two approaches captures the

dependence between multiple events for a single subject.

A later reanalysis of the data by Yan and Fine (2005) considers all exacerbation

episodes, while allowing for time-dependent covariate effects and accounting for the

discontinuous at-risk intervals. The “temporal process regression” methodology

used in this paper fits GLMs to “snapshot” cross-sections of the data at each

time, with responses given by either the number of exacerbations prior to that

146



time, or the cumulative or average time spent in exacerbation prior to that time.

Their analyses detected significant time-dependent covariate effects: treatment in

particular had a different effect on the first episode than on later ones. Because of

the very different model structure, it is difficult to compare the results of their study

to our own results presented in Section 3.7.2.3, however the finding of different

covariate effects for each episode is very valuable.

3.7.2.2 Data analysis methodology

In their analysis, Yan and Fine (2005) expressed concern that previous approaches

to episodic data using intensity models were unable to account properly for the

unusual form of the at-risk function, and were unable to capture different effects

of covariates on the alternating gap times. Our proposed methodology is capable

of addressing both concerns.

We analyze episodic data as a bivariate recurrent event process, where the two

events of interest are the beginning and end of an exacerbation. However, unlike the

analysis for the data described in Section 3.7.1, patients are never simultaneously

at risk for both types of event. Rather, the two at-risk processes alternate; hence,

while exacerbated, patients are considered “at risk” for ending their exacerbation,

but not for entering an exacerbation. Similarly, patients are only considered to

be at risk for starting an exacerbation seven days after the end of their previous

exacerbation episode.

For purposes of the data analysis, FEV was centered by its mean. Although

the patients are clustered into 51 institutions, this information is not contained in

the public data set; hence, we treat these data as if there were no clustering. Of
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Table 3.12: Regression and dispersion parameter estimates for a basic bivariate
frailty model fit to the Pulmonary Exacerbation data.

Regression parameter estimates
Exacerbation Start Exacerbation End

Coeff Std Pval Coeff Std Pval
Treatment −0.3308 0.1396 0.0089 0.0645 0.1078 0.2750

FEV −0.0203 0.0029 <1e-04 0.0105 0.0023 <1e-04

Dispersion parameter Estimates
Subject frailty dispersion (Exacerbation Start) 1.4558
Subject frailty dispersion (Exacerbation End) 0.0652

Subject frailty covariance -0.1302
Subject frailty correlation -0.4229

the 645 patients in the placebo and once-daily treatment groups, 628 were followed

until the end of the study; hence, it appears reasonable to assume that censoring

is noninformative. Three models are considered. First, we include only treatment

and FEV as covariates, assuming neither time- nor episode-dependence. Next, we

add an indicator of whether the patient has suffered two or more previous episodes,

as a means of accounting for effects specific to the first episodes. Lastly, we allow

for episode-dependent effects of the two covariates, analogously to Yan and Fine

(2005).

3.7.2.3 Data analysis results

Table 3.12 summarizes the results from fitting the data to the bivariate frailty

model using Treatment and FEV as the only covariates. The panel labeled “Ex-

acerbation Start” refers to the gap times in between exacerbations (i.e., “exacer-

bation free” periods); the panel labeled “Exacerbation End” refers to the lengths

of exacerbations. The results indicate that patients in the treatment group and

patients with higher FEV have a lower rate of starting a new exacerbation and,
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Table 3.13: Regression and dispersion parameter estimates for a bivariate frailty
model fit to the Pulmonary Exacerbation data, including the number
of previous exacerbations as a covariate.

Regression parameter estimates
Exacerbation Start Exacerbation End

Coeff Std Pval Coeff Std Pval
Treatment −0.3171 0.1367 0.0102 0.0693 0.1069 0.2586

FEV −0.0197 0.0028 <1e-04 0.0105 0.0023 <1e-04
Past Ex. (2+) 0.2555 0.3080 0.2034 0.3877 0.1535 0.0058

Dispersion parameter Estimates
Subject frailty dispersion (Exacerbation Start) 1.2779
Subject frailty dispersion (Exacerbation End) 0.0654

Subject frailty covariance -0.1432
Subject frailty correlation -0.4952

having started one, tend to end the current exacerbation more quickly. The ef-

fect of treatment on the exacerbation length (i.e., ending a current exacerbation)

is statistically insignificant. This is consistent with Table 3.11, where it is ob-

served that patients in the treatment group had shorter exacerbation episodes

(and longer exacerbation-free periods) for the first two episodes, the pattern re-

versing itself for later episodes. The estimated dispersion parameters indicate a

substantially higher level of heterogeneity in the rate at which exacerbations begin

(i.e., in exacerbation-free periods) in comparison to the rate at which the current

exacerbation ends. This may indicate that the covariates better explain the patient

heterogeneity in the rate at which exacerbation end but not in exacerbation-free

periods. The negative frailty covariance and correlation suggest that exacerbation

and exacerbation-free periods are negatively correlated with each other even after

accounting for covariate effects, a result that is not unexpected.

In order to allow for an episode-dependent effect, we next include an indicator

for whether the patient has suffered two or more exacerbations during the course

of the study. That is, the covariate takes value 0 before and during the first two
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Table 3.14: Regression and dispersion parameter estimates for a bivariate frailty
model fit to the Pulmonary Exacerbation data, with episode-
dependent coefficients

Regression parameter estimates
Exacerbation Start Exacerbation End

Coeff Std Pval Coeff Std Pval
Treatment (Ep 1) −0.4899 0.1433 0.0003 0.1313 0.1219 0.1406
Treatment (Ep 2) −0.0303 0.2497 0.4517 −0.1292 0.1686 0.2217

Treatment (Ep 3-5) 0.0216 0.5244 0.4836 0.0088 0.2717 0.4871
FEV (Ep 1) −0.0267 0.0031 <1e-04 0.0112 0.0030 <1e-04
FEV (Ep 2) −0.0022 0.0070 0.3752 0.0087 0.0040 0.0137

FEV (Ep 3-5) −0.0019 0.0146 0.4485 −0.0014 0.0060 0.4090

Dispersion parameter Estimates
Subject frailty dispersion (Exacerbation Start) 1.1997
Subject frailty dispersion (Exacerbation End) 0.0649

Subject frailty covariance -0.1150
Subject frailty correlation -0.4123

exacerbation episodes, and takes value 1 thereafter. This choice of covariate was

prompted by the evidence in Table 3.11 that the first and second episodes may

have different characteristics from later episodes. Results of the fit are shown in

Table 3.13. The estimated positive coefficient suggests that both later exacerba-

tions and exacerbation-free periods tend to be shorter than earlier ones, perhaps

suggesting an overall rise in the event frequency however, there is only a statisti-

cally significant effect on exacerbation periods. Also, adding in this covariate does

not have a significant impact on any of the other parameter estimates summarized

in Table 3.12.

Lastly, we consider a model in which the effects of Treatment and FEV are

allowed to be different for each episode. Because of the rarity of third, fourth and

fifth episodes, these events are grouped together into a single category. The results

in Table 3.14 suggest that there is a need to consider episode-dependent covariate

effects for these data. Treatment only has a statistically significant beneficial

effect on the rate at which patients experience the first episode; it does not appear
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to significantly impact later episodes or the length of exacerbation-free periods.

Higher baseline FEV is observed to increase the length of the first exacerbation-

free and subsequently decrease the length of the first exacerbation period, with

these same effects persisting but less pronounced in the second pair of episodes.

Covariate effects that are considerably stronger for earlier episodes are consistent

with the time-dependent effects reported by Yan and Fine (2005). The dispersion

parameters in Table 3.14, particularly the frailty covariance and correlation, are

observed to have decreased slightly in comparison with previous fits, suggesting

that the episode-dependent covariate helps to capture some of the subject-level

heterogeneity in the event processes.

3.8 Discussion

The proposed methodology improves on existing methods for analyzing bivari-

ate recurrent event data by not requiring a parametric specification of the frailty

distribution. The resulting model is able to accommodate many features of real-

world data, including clustering, stratification, unusual at-risk processes and time-

dependent covariates. The accompanying R package blupsurv provides a useful

new tool for statisticians for the analysis of both bivariate and univariate recur-

rent event data; we are not currently aware of another software package with the

capability to fit such models.

Much like existing approaches, the proposed methodology requires significant

computational resources. The computationally expensive numerical integrations

required for likelihood-based estimation under a specified frailty distribution are

avoided, but only at the cost of having to estimate a potentially large number of
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nuisance parameters. The use discretization offsets these computational costs and,

at the expense of some bias, leads to a relatively fast method of estimation for all

model parameters and tractable computation of standard errors. Nevertheless, the

method’s complexity remains such that model selection with large datasets may

require many hours on the average personal computer or workstation.

Our simulation results suggest that the methodology leads to consistent esti-

mates of regression and frailty dispersion parameters, including the frailty covari-

ance. The general similarity of the model to that considered in Ma and Jørgensen

(2007) suggests that the desired large-sample properties may hold under a suitable

asymptotic framework. However, a proof of this fact has proved to be elusive and

no asymptotic justification for the proposed approach is currently available.
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APPENDIX

Appendix 3.A Additional Simulation Results

The following tables contain simulation results that accompany or extend those

given in Sec. 3.6. Tables 3.A–3.A contain biases, means and variances for the

three simulation settings considered.

Table 3.A contains simulation results using the marginal estimators in

eq. (3.5.2), under setting (I). The results indicate that the marginal estimators

perform nearly as well as the Pearson estimators, although very fine discretization

sometimes causes the correlation coefficient to be overestimated.

Table 3.A demonstrates the performance of the method with time-dependent

covariates. Simulated data are generated using a single time-dependent covariate

that changes at random intervals, and the model is fit using the approximation

presented in the paper. Results indicate that the model performs well with time-

dependent covariates: biases are only slightly higher than with fixed covariates,

and the error can be accounted for inexactness in the discretization.

Lastly, Table 3.21 shows the effect of the degree-of-freedom adjustment sug-

gested by Ma (1999). The adjustment tends to lead to overestimation of the

subject-level dispersion parameters, especially at fine levels of discretization, how-

ever estimates of the cluster-level dispersion parameters are much improved.
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Table 3.15: Full parameter estimation results from 1000 simulations under setting
(I), matching table 3.3.

m Ji K β̂1 β̂2 σ̂2
1 σ̂2

2 ν̂2
1 ν̂2

2 θ̂ ρ̂
Bias 10 5 .1 −0.076 −0.077 −0.130 −0.135 −0.146 −0.148 −0.073 0.001

.25 −0.033 −0.024 −0.076 −0.084 −0.089 −0.099 −0.047 0.008

.5 −0.022 −0.007 −0.079 −0.064 −0.069 −0.050 −0.032 0.029
1 −0.000 −0.010 −0.072 −0.061 −0.062 −0.065 −0.028 0.027

25 .1 −0.024 −0.024 −0.056 −0.057 −0.065 −0.066 −0.022 0.046
.25 −0.005 −0.007 −0.043 −0.044 −0.037 −0.039 −0.008 0.050
.5 −0.005 0.001 −0.054 −0.056 −0.043 −0.038 −0.010 0.051
1 −0.001 0.001 −0.051 −0.063 −0.056 −0.057 −0.017 0.044

25 5 .1 −0.046 −0.046 −0.066 −0.069 −0.102 −0.111 −0.046 0.002
.25 −0.023 −0.023 −0.039 −0.045 −0.071 −0.070 −0.031 0.005
.5 −0.014 −0.008 −0.051 −0.050 −0.062 −0.057 −0.022 0.024
1 −0.001 −0.010 −0.042 −0.044 −0.057 −0.058 −0.024 0.012

25 .1 −0.008 −0.013 −0.024 −0.024 −0.047 −0.051 −0.015 0.019
.25 −0.001 −0.006 −0.021 −0.022 −0.040 −0.045 −0.010 0.023
.5 −0.002 0.000 −0.030 −0.025 −0.047 −0.051 −0.014 0.021
1 −0.003 −0.000 −0.032 −0.033 −0.061 −0.061 −0.020 0.017

Var 10 5 .1 0.059 0.061 0.016 0.012 0.006 0.007 0.003 0.053
.25 0.069 0.063 0.084 0.034 0.043 0.013 0.006 0.054
.5 0.070 0.074 0.032 0.050 0.019 0.043 0.008 0.058
1 0.078 0.072 0.028 0.046 0.026 0.020 0.008 0.050

25 .1 0.011 0.011 0.027 0.023 0.007 0.007 0.002 0.014
.25 0.011 0.011 0.021 0.021 0.009 0.009 0.002 0.014
.5 0.011 0.010 0.018 0.019 0.007 0.007 0.002 0.014
1 0.013 0.012 0.019 0.016 0.005 0.005 0.002 0.014

25 5 .1 0.025 0.023 0.016 0.010 0.006 0.004 0.002 0.020
.25 0.028 0.025 0.020 0.036 0.009 0.009 0.003 0.019
.5 0.027 0.026 0.013 0.015 0.008 0.009 0.003 0.021
1 0.027 0.027 0.016 0.016 0.009 0.009 0.003 0.019

25 .1 0.004 0.004 0.012 0.013 0.003 0.003 0.000 0.005
.25 0.004 0.005 0.012 0.012 0.003 0.003 0.001 0.005
.5 0.004 0.005 0.011 0.011 0.003 0.002 0.000 0.005
1 0.004 0.004 0.012 0.009 0.002 0.002 0.000 0.005

MSE 10 5 .1 0.065 0.067 0.033 0.030 0.028 0.029 0.008 0.053
.25 0.070 0.064 0.090 0.042 0.050 0.023 0.009 0.054
.5 0.070 0.074 0.038 0.055 0.024 0.046 0.009 0.059
1 0.078 0.072 0.033 0.049 0.029 0.024 0.009 0.051

25 .1 0.011 0.012 0.030 0.026 0.012 0.012 0.002 0.016
.25 0.011 0.011 0.023 0.023 0.011 0.011 0.002 0.016
.5 0.011 0.010 0.021 0.022 0.009 0.009 0.002 0.017
1 0.013 0.012 0.022 0.020 0.009 0.009 0.002 0.016

25 5 .1 0.027 0.025 0.020 0.015 0.016 0.017 0.004 0.020
.25 0.028 0.026 0.021 0.038 0.014 0.014 0.004 0.019
.5 0.027 0.026 0.016 0.017 0.012 0.013 0.004 0.022
1 0.027 0.027 0.018 0.018 0.012 0.012 0.004 0.019

25 .1 0.004 0.004 0.012 0.014 0.005 0.005 0.001 0.005
.25 0.004 0.005 0.013 0.013 0.005 0.005 0.001 0.006
.5 0.004 0.005 0.012 0.012 0.005 0.005 0.001 0.005
1 0.004 0.004 0.013 0.010 0.006 0.005 0.001 0.006
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Table 3.16: Full parameter estimation results from 1000 simulations under setting
(II), matching table 3.4.

m Ji ϕ β̂(0) β̂(1) σ̂2
(0)

σ̂2
(1)

ν̂2
(0)

ν̂2
(1)

θ̂ ρ̂

Bias 10 5 .1 −0.069 −0.140 −0.127 −0.136 −0.146 −0.149 −0.072 0.000
.25 −0.034 −0.065 −0.089 −0.087 −0.081 −0.089 −0.039 0.036
.5 −0.011 −0.033 −0.080 −0.074 −0.062 −0.060 −0.029 0.038
1 0.007 −0.004 −0.074 −0.070 −0.068 −0.058 −0.035 0.018

25 .1 −0.029 −0.045 −0.059 −0.067 −0.070 −0.075 −0.024 0.050
.25 −0.002 −0.018 −0.048 −0.051 −0.038 −0.049 −0.012 0.049
.5 −0.010 −0.005 −0.056 −0.055 −0.045 −0.046 −0.011 0.050
1 −0.004 −0.007 −0.052 −0.070 −0.062 −0.062 −0.020 0.043

25 5 .1 −0.052 −0.089 −0.073 −0.080 −0.102 −0.097 −0.042 0.016
.25 −0.016 −0.032 −0.053 −0.045 −0.069 −0.074 −0.029 0.014
.5 −0.013 −0.022 −0.043 −0.049 −0.056 −0.058 −0.022 0.020
1 −0.005 −0.002 −0.045 −0.049 −0.056 −0.062 −0.025 0.013

25 .1 −0.010 −0.022 −0.017 −0.031 −0.043 −0.057 −0.015 0.019
.25 −0.003 −0.004 −0.025 −0.025 −0.043 −0.046 −0.012 0.023
.5 −0.004 −0.007 −0.024 −0.025 −0.049 −0.050 −0.014 0.018
1 −0.002 −0.003 −0.039 −0.037 −0.063 −0.060 −0.020 0.020

Var 10 5 .1 0.062 0.083 0.017 0.011 0.006 0.006 0.003 0.056
.25 0.066 0.084 0.031 0.038 0.109 0.022 0.006 0.054
.5 0.072 0.082 0.037 0.034 0.024 0.025 0.008 0.058
1 0.070 0.092 0.028 0.029 0.020 0.030 0.008 0.055

25 .1 0.011 0.014 0.023 0.023 0.005 0.005 0.001 0.014
.25 0.012 0.015 0.019 0.023 0.008 0.007 0.002 0.014
.5 0.012 0.015 0.016 0.016 0.007 0.006 0.002 0.013
1 0.012 0.015 0.020 0.014 0.005 0.005 0.002 0.014

25 5 .1 0.023 0.028 0.011 0.010 0.005 0.006 0.002 0.021
.25 0.026 0.032 0.017 0.017 0.009 0.008 0.003 0.019
.5 0.026 0.031 0.021 0.014 0.011 0.009 0.003 0.019
1 0.026 0.036 0.016 0.014 0.010 0.008 0.003 0.020

25 .1 0.004 0.005 0.014 0.011 0.003 0.002 0.000 0.005
.25 0.004 0.006 0.012 0.013 0.002 0.002 0.000 0.005
.5 0.004 0.006 0.012 0.012 0.003 0.002 0.000 0.005
1 0.004 0.006 0.008 0.008 0.002 0.002 0.000 0.005

MSE 10 5 .1 0.067 0.103 0.033 0.030 0.028 0.029 0.008 0.056
.25 0.067 0.088 0.039 0.045 0.116 0.030 0.008 0.055
.5 0.072 0.083 0.044 0.040 0.028 0.029 0.009 0.059
1 0.070 0.092 0.034 0.034 0.024 0.033 0.009 0.055

25 .1 0.012 0.016 0.026 0.028 0.010 0.011 0.002 0.017
.25 0.012 0.016 0.022 0.025 0.009 0.010 0.002 0.016
.5 0.012 0.015 0.019 0.019 0.009 0.008 0.002 0.015
1 0.012 0.015 0.023 0.019 0.009 0.009 0.002 0.015

25 5 .1 0.026 0.036 0.017 0.017 0.016 0.015 0.004 0.021
.25 0.026 0.033 0.020 0.019 0.014 0.014 0.003 0.019
.5 0.026 0.031 0.023 0.017 0.014 0.012 0.003 0.019
1 0.026 0.036 0.018 0.016 0.013 0.012 0.003 0.020

25 .1 0.005 0.006 0.015 0.012 0.005 0.005 0.001 0.006
.25 0.004 0.006 0.012 0.014 0.004 0.005 0.001 0.005
.5 0.004 0.006 0.012 0.013 0.005 0.004 0.001 0.005
1 0.004 0.006 0.009 0.010 0.006 0.005 0.001 0.006
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Table 3.17: Full parameter estimation results from 1000 simulations under setting
(III), matching table 3.5.

m Ji ϕ β̂(0) β̂(1) σ̂2
(0)

σ̂2
(1)

ν̂2
(0)

ν̂2
(1)

θ̂ ρ̂

Bias 10 5 .1 −0.082 −0.125 −0.124 −0.287 −0.151 −0.325 −0.065 0.036
.25 −0.014 −0.068 −0.080 −0.164 −0.084 −0.147 −0.025 0.057
.5 −0.027 −0.035 −0.066 −0.138 −0.069 −0.136 −0.024 0.046
1 0.011 −0.028 −0.060 −0.153 −0.065 −0.129 −0.015 0.057

25 .1 −0.035 −0.032 −0.046 −0.068 −0.070 −0.029 −0.001 0.062
.25 −0.014 −0.007 −0.041 −0.172 −0.043 −0.042 0.007 0.074
.5 −0.010 −0.007 −0.046 −0.178 −0.043 −0.040 0.004 0.067
1 −0.006 −0.006 −0.052 −0.180 −0.063 −0.076 −0.004 0.061

25 5 .1 −0.044 −0.066 −0.065 −0.129 −0.108 −0.194 −0.032 0.034
.25 −0.028 −0.034 −0.028 −0.064 −0.065 −0.121 −0.012 0.033
.5 −0.015 −0.018 −0.033 −0.057 −0.062 −0.095 −0.014 0.026
1 −0.018 −0.019 −0.035 −0.076 −0.060 −0.111 −0.012 0.033

25 .1 −0.012 −0.005 −0.015 −0.056 −0.042 0.035 0.012 0.041
.25 −0.005 0.009 −0.009 −0.086 −0.045 0.012 0.007 0.037
.5 −0.007 0.006 −0.016 −0.084 −0.049 −0.022 0.002 0.035
1 −0.004 0.004 −0.025 −0.082 −0.063 −0.083 −0.006 0.031

Var 10 5 .1 0.063 0.081 0.013 0.033 0.006 0.026 0.004 0.049
.25 0.074 0.089 0.033 0.203 0.030 0.334 0.020 0.055
.5 0.072 0.100 0.035 0.215 0.022 0.108 0.012 0.049
1 0.069 0.098 0.035 0.177 0.019 0.114 0.012 0.049

25 .1 0.011 0.017 0.023 0.137 0.007 0.072 0.003 0.013
.25 0.011 0.016 0.023 0.059 0.009 0.047 0.004 0.013
.5 0.011 0.017 0.018 0.039 0.007 0.051 0.004 0.013
1 0.011 0.017 0.021 0.037 0.006 0.043 0.003 0.011

25 5 .1 0.026 0.035 0.013 0.078 0.007 0.037 0.004 0.016
.25 0.026 0.034 0.023 0.109 0.012 0.050 0.006 0.017
.5 0.028 0.037 0.018 0.108 0.009 0.070 0.005 0.016
1 0.027 0.039 0.015 0.081 0.011 0.055 0.005 0.017

25 .1 0.004 0.007 0.014 0.035 0.004 0.038 0.001 0.004
.25 0.005 0.006 0.013 0.029 0.004 0.028 0.001 0.004
.5 0.004 0.007 0.012 0.030 0.002 0.024 0.001 0.004
1 0.004 0.006 0.010 0.031 0.002 0.014 0.001 0.004

MSE 10 5 .1 0.070 0.097 0.028 0.116 0.029 0.132 0.009 0.051
.25 0.074 0.094 0.039 0.230 0.037 0.355 0.020 0.058
.5 0.072 0.101 0.039 0.234 0.027 0.127 0.013 0.051
1 0.069 0.099 0.038 0.200 0.024 0.130 0.012 0.052

25 .1 0.013 0.018 0.025 0.142 0.012 0.073 0.003 0.017
.25 0.011 0.016 0.024 0.089 0.011 0.049 0.004 0.019
.5 0.011 0.017 0.020 0.070 0.008 0.053 0.004 0.017
1 0.011 0.017 0.024 0.069 0.010 0.049 0.003 0.015

25 5 .1 0.028 0.039 0.017 0.095 0.018 0.075 0.005 0.018
.25 0.027 0.035 0.024 0.113 0.016 0.064 0.006 0.018
.5 0.029 0.037 0.019 0.111 0.013 0.079 0.006 0.017
1 0.027 0.039 0.016 0.086 0.014 0.067 0.005 0.018

25 .1 0.004 0.007 0.014 0.038 0.006 0.039 0.002 0.006
.25 0.005 0.006 0.013 0.036 0.006 0.028 0.001 0.005
.5 0.004 0.007 0.012 0.038 0.005 0.025 0.001 0.005
1 0.004 0.006 0.011 0.038 0.006 0.021 0.001 0.005
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Table 3.18: Parameter estimation results from 1000 simulations for two recur-
rent event processes, with dispersion parameters estimated using the
marginal estimators in (3.5.2)

m Ji ϕ β̂(0) β̂(1) σ̂2
(0)

σ̂2
(1)

ν̂2
(0)

ν̂2
(1)

θ̂ ρ̂

Bias 10 5 .1 −0.084 −0.066 −0.140 −0.134 −0.153 −0.151 −0.086 −0.057
.25 −0.045 −0.039 −0.124 −0.125 −0.130 −0.131 −0.071 −0.026
.5 −0.027 −0.031 −0.107 −0.114 −0.121 −0.113 −0.063 −0.024
1 −0.001 −0.002 −0.096 −0.103 −0.107 −0.112 −0.055 −0.007

25 .1 −0.038 −0.039 −0.101 −0.105 −0.114 −0.110 −0.042 0.050
.25 −0.026 −0.028 −0.089 −0.091 −0.100 −0.098 −0.035 0.049
.5 −0.015 −0.014 −0.084 −0.081 −0.092 −0.092 −0.028 0.055
1 −0.017 −0.011 −0.083 −0.077 −0.082 −0.084 −0.019 0.073

25 5 .1 −0.061 −0.058 −0.106 −0.111 −0.128 −0.128 −0.056 0.014
.25 −0.029 −0.043 −0.091 −0.088 −0.114 −0.113 −0.050 0.008
.5 −0.026 −0.031 −0.083 −0.082 −0.103 −0.107 −0.043 0.014
1 −0.010 −0.023 −0.072 −0.075 −0.098 −0.097 −0.038 0.016

25 .1 −0.026 −0.029 −0.079 −0.079 −0.101 −0.102 −0.030 0.051
.25 −0.015 −0.018 −0.070 −0.072 −0.090 −0.091 −0.023 0.056
.5 −0.018 −0.016 −0.067 −0.064 −0.086 −0.083 −0.015 0.068
1 −0.013 −0.015 −0.059 −0.063 −0.077 −0.077 −0.012 0.067

Var 10 5 .1 0.058 0.064 0.007 0.008 0.006 0.006 0.003 0.072
.25 0.061 0.069 0.009 0.009 0.010 0.009 0.005 0.083
.5 0.070 0.076 0.012 0.010 0.010 0.011 0.007 0.085
1 0.069 0.074 0.012 0.013 0.011 0.010 0.006 0.073

25 .1 0.012 0.010 0.005 0.005 0.002 0.002 0.003 0.043
.25 0.011 0.012 0.006 0.006 0.002 0.003 0.003 0.038
.5 0.011 0.012 0.006 0.006 0.003 0.002 0.003 0.036
1 0.011 0.010 0.005 0.006 0.002 0.002 0.003 0.033

25 5 .1 0.025 0.022 0.004 0.004 0.004 0.004 0.002 0.038
.25 0.025 0.023 0.005 0.006 0.004 0.005 0.003 0.042
.5 0.025 0.024 0.005 0.006 0.005 0.005 0.004 0.040
1 0.025 0.026 0.006 0.006 0.005 0.005 0.004 0.035

25 .1 0.004 0.004 0.002 0.002 0.001 0.001 0.001 0.017
.25 0.004 0.004 0.002 0.002 0.001 0.001 0.002 0.018
.5 0.004 0.004 0.002 0.002 0.001 0.001 0.001 0.015
1 0.004 0.004 0.003 0.003 0.001 0.001 0.002 0.016

MSE 10 5 .1 0.065 0.069 0.027 0.026 0.030 0.029 0.010 0.075
.25 0.063 0.070 0.025 0.025 0.027 0.026 0.011 0.084
.5 0.071 0.076 0.023 0.024 0.025 0.024 0.011 0.086
1 0.069 0.074 0.021 0.023 0.022 0.023 0.010 0.073

25 .1 0.014 0.012 0.015 0.016 0.015 0.014 0.005 0.045
.25 0.012 0.013 0.014 0.014 0.012 0.012 0.005 0.040
.5 0.011 0.012 0.013 0.013 0.011 0.011 0.004 0.039
1 0.011 0.011 0.012 0.012 0.009 0.010 0.004 0.039

25 5 .1 0.028 0.026 0.016 0.017 0.020 0.020 0.006 0.038
.25 0.026 0.025 0.014 0.014 0.017 0.018 0.006 0.042
.5 0.026 0.025 0.012 0.013 0.016 0.017 0.006 0.040
1 0.025 0.026 0.011 0.012 0.014 0.014 0.005 0.035

25 .1 0.005 0.005 0.008 0.008 0.011 0.011 0.002 0.019
.25 0.004 0.005 0.007 0.007 0.009 0.009 0.002 0.021
.5 0.004 0.004 0.007 0.006 0.008 0.008 0.002 0.020
1 0.004 0.005 0.006 0.007 0.007 0.007 0.002 0.020
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Table 3.19: Parameter estimation results from 1000 simulations for two recurrent
event processes with time-dependent covariates changing at Weibull
intervals..

m Ji ϕ β̂(0) β̂(1) σ̂2
(0)

σ̂2
(1)

ν̂2
(0)

ν̂2
(1)

θ̂ ρ̂

Bias 10 5 .1 −0.119 −0.113 −0.153 −0.147 −0.173 −0.173 −0.085 −0.012
.25 −0.064 −0.059 −0.113 −0.111 −0.113 −0.124 −0.058 0.016
.5 −0.023 −0.023 −0.094 −0.096 −0.083 −0.092 −0.041 0.029
1 0.017 0.006 −0.088 −0.087 −0.063 −0.065 −0.031 0.032

25 .1 −0.051 −0.044 −0.105 −0.098 −0.129 −0.132 −0.052 0.032
.25 −0.030 −0.021 −0.073 −0.073 −0.090 −0.086 −0.031 0.042
.5 −0.010 −0.010 −0.071 −0.069 −0.065 −0.065 −0.019 0.057
1 −0.003 −0.003 −0.062 −0.065 −0.072 −0.076 −0.025 0.041

25 5 .1 −0.071 −0.077 −0.098 −0.099 −0.130 −0.133 −0.059 −0.001
.25 −0.035 −0.032 −0.070 −0.067 −0.093 −0.089 −0.040 0.008
.5 −0.012 −0.012 −0.054 −0.048 −0.075 −0.072 −0.032 0.007
1 0.003 0.010 −0.051 −0.052 −0.065 −0.068 −0.026 0.018

25 .1 −0.028 −0.027 −0.062 −0.057 −0.101 −0.097 −0.034 0.023
.25 −0.014 −0.012 −0.044 −0.034 −0.068 −0.070 −0.021 0.024
.5 −0.007 −0.007 −0.042 −0.034 −0.063 −0.061 −0.016 0.032
1 0.000 −0.005 −0.040 −0.038 −0.068 −0.066 −0.019 0.027

Var 10 5 .1 0.034 0.033 0.006 0.007 0.003 0.003 0.001 0.048
.25 0.037 0.035 0.018 0.019 0.011 0.009 0.003 0.049
.5 0.035 0.035 0.021 0.031 0.018 0.011 0.006 0.053
1 0.031 0.037 0.025 0.020 0.021 0.020 0.008 0.055

25 .1 0.006 0.007 0.008 0.009 0.002 0.002 0.001 0.014
.25 0.006 0.005 0.015 0.016 0.004 0.005 0.001 0.013
.5 0.006 0.006 0.014 0.015 0.007 0.006 0.001 0.013
1 0.007 0.006 0.018 0.016 0.005 0.005 0.001 0.013

25 5 .1 0.012 0.012 0.007 0.007 0.003 0.003 0.001 0.020
.25 0.014 0.012 0.014 0.013 0.006 0.007 0.002 0.020
.5 0.014 0.013 0.012 0.015 0.007 0.007 0.003 0.019
1 0.013 0.013 0.013 0.013 0.008 0.007 0.003 0.019

25 .1 0.002 0.002 0.006 0.008 0.001 0.001 0.000 0.005
.25 0.002 0.002 0.008 0.010 0.002 0.002 0.000 0.006
.5 0.002 0.002 0.008 0.010 0.002 0.002 0.000 0.005
1 0.002 0.002 0.009 0.009 0.001 0.002 0.000 0.005

MSE 10 5 .1 0.048 0.046 0.030 0.029 0.033 0.033 0.009 0.048
.25 0.041 0.039 0.031 0.031 0.024 0.024 0.007 0.049
.5 0.035 0.035 0.030 0.041 0.025 0.019 0.008 0.054
1 0.032 0.037 0.033 0.028 0.025 0.025 0.009 0.056

25 .1 0.009 0.008 0.019 0.019 0.019 0.020 0.003 0.015
.25 0.007 0.006 0.020 0.021 0.012 0.012 0.002 0.015
.5 0.006 0.006 0.019 0.020 0.011 0.010 0.002 0.017
1 0.007 0.006 0.022 0.020 0.010 0.011 0.002 0.015

5 .1 0.017 0.018 0.017 0.017 0.020 0.021 0.005 0.020
.25 0.015 0.013 0.019 0.017 0.015 0.015 0.004 0.020
.5 0.014 0.013 0.015 0.017 0.012 0.013 0.004 0.019
1 0.013 0.013 0.016 0.016 0.012 0.012 0.003 0.019

25 .1 0.003 0.003 0.009 0.011 0.011 0.011 0.001 0.006
.25 0.002 0.002 0.010 0.011 0.006 0.007 0.001 0.006
.5 0.002 0.002 0.010 0.011 0.006 0.006 0.001 0.006
1 0.002 0.002 0.011 0.010 0.006 0.006 0.001 0.006
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Table 3.20: Standard error estimation results of 1000 simulations for two recurrent
event processes with time-dependent covariates

β̂(0) β̂(1)

m Ji ϕ CSE ESE 95%CP CSE ESE 95%CP
10 5 .1 0.169 0.185 0.868 0.168 0.182 0.880

.25 0.169 0.192 0.899 0.169 0.188 0.905

.5 0.170 0.187 0.926 0.170 0.187 0.922
1 0.168 0.178 0.932 0.168 0.193 0.909

25 .1 0.071 0.079 0.861 0.071 0.083 0.856
.25 0.073 0.079 0.902 0.073 0.075 0.921
.5 0.073 0.081 0.931 0.073 0.079 0.926
1 0.072 0.084 0.903 0.072 0.081 0.915

25 5 .1 0.105 0.110 0.885 0.105 0.112 0.865
.25 0.106 0.118 0.909 0.106 0.111 0.918
.5 0.105 0.118 0.915 0.105 0.115 0.925
1 0.105 0.115 0.923 0.105 0.116 0.918

25 .1 0.045 0.049 0.883 0.045 0.049 0.891
.25 0.046 0.050 0.915 0.046 0.048 0.938
.5 0.046 0.050 0.929 0.046 0.051 0.909
1 0.046 0.049 0.924 0.046 0.051 0.926
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Table 3.21: Parameter estimation results from 1000 simulations for two recurrent
event processes with the small-sample bias correction proposed in Ma
(1999) and presented in Section 3.5.1

m Ji ϕ β̂(0) β̂(1) σ̂2
(0)

σ̂2
(1)

ν̂2
(0)

ν̂2
(1)

θ̂ ρ̂

Bias 10 5 .1 −0.047 −0.058 −0.088 −0.100 0.001 −0.001 −0.049 −0.057
.25 0.009 0.011 −0.015 −0.029 0.106 0.098 −0.016 −0.051
.5 0.017 0.019 −0.012 −0.016 0.143 0.138 −0.003 −0.044
1 0.054 0.055 −0.029 −0.023 0.144 0.140 0.001 −0.034

25 .1 0.020 0.019 0.015 0.030 0.168 0.161 0.015 −0.028
.25 0.028 0.038 −0.003 0.006 0.189 0.200 0.026 −0.020
.5 0.038 0.030 −0.016 −0.017 0.181 0.182 0.023 −0.017
1 0.040 0.039 −0.011 −0.019 0.146 0.138 0.008 −0.027

25 5 .1 −0.034 −0.034 −0.053 −0.057 −0.033 −0.030 −0.035 −0.024
.25 −0.003 0.007 −0.024 −0.034 0.011 0.014 −0.015 −0.016
.5 0.010 0.017 −0.023 −0.027 0.022 0.026 −0.017 −0.024
1 0.024 0.001 −0.029 −0.037 0.015 0.019 −0.018 −0.023

25 .1 0.013 0.014 0.015 0.020 0.051 0.053 0.004 −0.011
.25 0.021 0.022 0.007 0.003 0.047 0.043 −0.000 −0.014
.5 0.019 0.020 −0.010 −0.005 0.032 0.034 −0.002 −0.009
1 0.015 0.021 −0.017 −0.014 0.015 0.017 −0.009 −0.013

Var 10 5 .1 0.064 0.066 0.021 0.021 0.012 0.011 0.005 0.026
.25 0.072 0.066 0.079 0.056 0.050 0.045 0.011 0.026
.5 0.072 0.076 0.055 0.089 0.055 0.061 0.017 0.030
1 0.083 0.075 0.040 0.045 0.064 0.046 0.014 0.030

25 .1 0.013 0.011 0.061 0.074 0.022 0.021 0.003 0.007
.25 0.012 0.013 0.034 0.038 0.018 0.020 0.004 0.007
.5 0.014 0.013 0.025 0.024 0.016 0.015 0.003 0.008
1 0.013 0.012 0.029 0.025 0.013 0.011 0.003 0.007

25 5 .1 0.025 0.026 0.017 0.015 0.007 0.008 0.002 0.014
.25 0.029 0.025 0.025 0.017 0.011 0.012 0.003 0.015
.5 0.025 0.029 0.024 0.024 0.013 0.013 0.004 0.016
1 0.028 0.027 0.018 0.015 0.011 0.011 0.004 0.015

25 .1 0.004 0.005 0.024 0.022 0.005 0.006 0.001 0.004
.25 0.004 0.004 0.017 0.016 0.005 0.004 0.001 0.004
.5 0.004 0.004 0.014 0.014 0.003 0.004 0.001 0.004
1 0.005 0.004 0.011 0.010 0.002 0.003 0.001 0.004

MSE 10 5 .1 0.066 0.069 0.029 0.031 0.012 0.011 0.007 0.030
.25 0.072 0.066 0.079 0.056 0.061 0.055 0.012 0.028
.5 0.072 0.077 0.055 0.089 0.076 0.080 0.017 0.032
1 0.086 0.078 0.041 0.045 0.085 0.066 0.014 0.031

25 .1 0.013 0.012 0.061 0.075 0.050 0.048 0.004 0.008
.25 0.013 0.015 0.034 0.038 0.054 0.060 0.004 0.008
.5 0.015 0.014 0.025 0.024 0.049 0.048 0.004 0.008
1 0.014 0.014 0.029 0.025 0.034 0.030 0.003 0.008

25 5 .1 0.026 0.027 0.020 0.018 0.008 0.009 0.004 0.014
.25 0.029 0.025 0.026 0.019 0.011 0.012 0.004 0.015
.5 0.025 0.029 0.024 0.024 0.014 0.014 0.004 0.016
1 0.028 0.027 0.019 0.016 0.011 0.012 0.004 0.015

25 .1 0.005 0.005 0.024 0.022 0.008 0.009 0.001 0.004
.25 0.005 0.005 0.017 0.016 0.007 0.006 0.001 0.004
.5 0.005 0.005 0.014 0.014 0.004 0.005 0.001 0.004
1 0.005 0.005 0.011 0.010 0.002 0.003 0.001 0.004
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Table 3.22: Standard error estimation results from 1000 simulations for two recur-
rent event processes with the small-sample bias correction proposed in
Ma (1999) and presented in 3.5.1

β̂(0) β̂(1)

m Ji ϕ CSE ESE 95%CP CSE ESE 95%CP
10 5 .1 0.248 0.254 0.942 0.246 0.257 0.930

.25 0.271 0.269 0.957 0.270 0.258 0.956

.5 0.279 0.268 0.966 0.278 0.277 0.951
1 0.279 0.289 0.936 0.278 0.273 0.949

25 .1 0.120 0.114 0.955 0.119 0.109 0.962
.25 0.122 0.113 0.966 0.123 0.117 0.951
.5 0.121 0.118 0.956 0.121 0.115 0.957
1 0.117 0.114 0.934 0.116 0.112 0.948

25 5 .1 0.150 0.159 0.931 0.151 0.162 0.927
.25 0.158 0.171 0.922 0.159 0.159 0.948
.5 0.159 0.160 0.949 0.159 0.170 0.931
1 0.158 0.168 0.939 0.158 0.167 0.940

25 .1 0.069 0.069 0.949 0.069 0.071 0.946
.25 0.069 0.070 0.926 0.068 0.069 0.930
.5 0.068 0.070 0.934 0.068 0.069 0.933
1 0.066 0.070 0.937 0.066 0.067 0.932
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