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We present observations of the Martian atmosphere derived from two instruments:

the Thermal Emission Spectrometer (TES) on the Mars Global Surveyor space-

craft, and the visible light subsystem of the Thermal Emission Imaging System

(THEMIS-VIS) on the Mars Odyssey spacecraft.

For TES, we start with vertically resolved temperatures derived as described

by Conrath et al. (2000, JGR, 105), and from them we derive horizontal winds

and Ertel potential vorticity on a time series of regular three-dimensional grids.

The Ertel potential vorticity is used as a dynamical tracer and diagnostic tool to

study the behavior of the martian polar vortices. We find that, in contrast to

the terrestrial polar vortices, the martian polar vortices’ Ertel potential vorticity

typically has an annular maximum well away from the pole. We also find that

the martian northern winter vortex is better organized than the southern winter

vortex, and thus is likely to be a more effective barrier to mixing.

For THEMIS-VIS we develop a complete radiometric calibration pipeline. This

pipeline is used for standard data processing to convert Engineering Data Records

(EDRs) to the Reduced Data Records (RDRs) released by NASAs Planetary Data

System. We use THEMIS-VIS nadir-pointed images to detect clouds in the 40

km to 80 km altitude range, measuring altitude from parallax and velocity from



cross-track motion during the imaging sequence. We have observed 5 cases of

aphelion season equatorial high-altitude clouds during late afternoon, all located

in the eastern Tharsis / Valles Marineris region, and 30 cases of high-altitude cloud

features in the northern winter (perihelion season) mid-latitudes, all but one in the

Acidalia region. A simple radiative transfer model yields optical depths greater

than 0.2 for the equatorial clouds, as well as constraints on their composition. The

mid-latitude high-altitude features are visible only in twilight, a geometry for which

our simple plane parallel radiative transfer model is not valid. Comparing the zonal

velocity of the clouds with a radiative transfer model, we find good agreement in

the northern winter mid-latitudes, but poorer agreement for equatorial clouds.
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CHAPTER 1

INTRODUCTION

The modern understanding of the Martian atmosphere has been comprehen-

sively reviewed by Zurek [1992], and in companion papers by Owen [1992], James

et al. [1992], Zurek et al. [1992], Jakosky and Haberle [1992], and Kahn et al. [1992].

(See Encrenaz [2001] for a more recent but much briefer overview.) As Zurek [1992]

discusses, analogies between the terrestrial and martian atmospheres are an im-

portant tool in the study of both. Mars’s atmosphere is uniquely analogous to

Earth’s, because it is a thin (scale height << radius) layer on a rapidly rotating

planet with earth-like obliquity, and because its average temperature ( ∼ 200 K)

is, astronomically speaking, comparable. This work focusses on observations of

two terrestrial analogs in the martian atmosphere: the winter polar vortex, us-

ing temperature sounding data from the Mars Global Surveyor Thermal Emission

Spectrometer (MGS-TES) [Conrath et al., 2000]; and mesospheric clouds, using

data from the Mars Odyssey Thermal Emission Imaging System Visible Imag-

ing Subsystem (THEMIS-VIS). We also describe the radiometric calibration of

THEMIS-VIS.

Beginning in 1997, both MGS-TES [e.g., Conrath et al., 2000; Pearl et al., 2001;

Smith et al., 2000, 2001; Smith, 2004] and the Mars Orbiter Camera Wide-Angle

detrectors [e.g., Cantor et al., 2002; Wang and Ingersoll, 2002; Benson et al., 2003;

Wang et al., 2005] (also on MGS) have contributed to a comprehensive record

of the seasonal behavior of the martian atmosphere, one which is still broadly

consistent with the Zurek [1992] overview. Key factors which influence Mars’s

seasonal behavior in the present epoch include:

1
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1. Typical surface pressures are ∼ 6 mb, with the consequence that the clear

atmosphere has limited influence on the surface temperature.

2. Mars has an orbital eccentricity of 0.09, with perihelion occurring near north-

ern winter solstice. Thus Mars receives ∼45% more solar flux in northern

winter than in southern winter.

3. Polar night surface temperatures fall to the saturation point of CO2, which

makes up 95% of the atmosphere by volume, leading to a highly repeat-

able pattern of global pressure variations in which ∼30% of the mass of the

atmosphere cycles into and out of the seasonal CO2 polar caps.

4. Water ice in the southern polar cap is mostly covered by a veneer of CO2

ice all year round, but in the northern polar cap it is exposed during the

summer.

The large seasonal difference in flux makes it intuitive to describe the two ex-

tremes of the martian year as the “perihelion season” and the “aphelion season”.

The aphelion season is cooler, and characterized by an equatorial belt of water ice

clouds [e.g., Wolff et al., 1999], and by a large pulse of water vapor into the atmo-

sphere which originates in the northern polar region as the H2O cap is exposed.

The mass of the atmosphere reaches its minimum late in the aphelion period due

to the accumulation of CO2 ice during the longer southern winter. [Zurek, 1992;

Smith, 2004]

The perihelion season is characterized by higher temperatures, steeper tem-

perature gradients, stronger winds, greatly decreased equatorial water ice aerosol

opacity, and major, sometimes planet encircling, dust storms. Since the silicate

dust absorbs a significant amount of longwave radiation, the perihelion period tem-
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peratures and circulation are highly responsive to dust loading, creating a positive

feedback which is presumably important in the development of major storms, and

making perihelion period conditions highly variable [Smith, 2004] from year to

year.

Even though the southern polar cap mostly retains its veneer of CO2 ice, there

is still a pulse of water vapor from the perihelion summer (southern) pole, but

this pulse contains a much smaller amount of water vapor than does its aphelion

period counterpart. Just as the perihelion summer pole releases less water vapor,

the perihelion winter pole accumulates less CO2. A secondary minimum in the

mass of the atmosphere, caused by condensation and accumulation of CO2 ice

at the north pole, occurs late in the perihelion period, near the end of northern

hemisphere winter, but based on the Viking Lander pressure record the mass in

the atmosphere at this time is ∼20% greater than during the southern winter /

aphelion period pressure minimum. [Zurek, 1992, and references therein]

Although equatorial condensate clouds are greatly diminished during the per-

ihelion season, orographic clouds associated with the major shield volcanoes are

present all year round. The other important group of condensate clouds is the

polar hood, present at both poles during winter, but most visible in the north be-

cause its fringes extend beyond the boundary of polar night. The visible portions

of the polar hood are water ice [James et al., 1992, and references therein], and

the behavior of the north polar hood cloud as seen by MOC-WA is described by

Wang and Ingersoll [2002]. However, the Mars Orbiter Laser Altimeter (MOLA)

on MGS records clouds deep inside polar night which have been interpreted as

CO2 [Colaprete and Toon, 2002; Colaprete et al., 2003].

Important features of the Martian circulation that are evident from MGS-
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TES and common to both seasons include a strong westerly winter polar jet (the

polar vortex, which is the focus of Chapter 2), easterlies in the equatorial meso-

sphere, and maximum mesospheric temperatures that occur in the winter polar

region. [Smith et al., 2001]. General circulation models [e.g., Pollack et al., 1981;

Haberle et al., 1993] indicate that heat transport at low to mid- latitudes is dom-

inated by a single cross-equatorial Hadley cell during the solistices, and by a pair

of Hadley cells at the equinoxes. The models also suggest that “condensation

flow” [Pollack et al., 1981] dominates heat transport in winter high latitudes.

Both the winter polar vortex (Chapter 2) and mesospheric clouds (Chapter

3) are key indicators, and potentially drivers, of the martian climate. The polar

vortex, as will be discussed, tends to isolate the winter pole, where the the crucial

CO2 condensation is taking place, from the rest of the atmosphere. Thus the

extent of this isolation has implications for the amount of CO2 sequestered at the

poles, and so understanding the mechanism of the isolation might be important for

understanding how the mass of the martian atmosphere is evolving and has evolved.

Since water and possibly dust are also sequestered at the winter pole, the polar

vortex is potentially important for the distribution of these constituents as well.

The comparable dynamical structure on Earth, the stratospheric polar vortex,

enables stratospheric ozone depletion by means of the isolation it causes [e.g.,

Schoeberl and Hartmann, 1991], and it has been shown to respond to global climate

trends [Thompson et al., 2000].

Mesospheric clouds are potentially indicators of gravity wave breaking and

hence the wave drag which, as discussed by, e.g., Joshi et al. [1995], is a crucial

boundary condition for the martian general circulation. The aerosols themselves

might also be important for the chemistry of the mesosphere: Atreya and Bla-
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mont [1990] for example suggest that these aerosols could help recycle CO back

to CO2 in the martian mesosphere, thereby reducing the long term loss of CO2

to space, with obvious implications for long term climate change. Martian meso-

spheric clouds and their terrestrial counterparts, noctilucent clouds, share similar

problems in models of their formation mechanisms. For example, in both cases,

heterogeneous nucleation is apparently required, but the source of the condensa-

tion nuclei is unclear. If studies of martian mesospheric clouds lead to insights into

terrestrial noctilucent cloud formation, they may help to explain the interesting

and potentially important terrestrial climate change phenomenon that reports of

terrestrial noctilucent clouds have shown an upward secular trend [Klostermeyer,

2002] throughout the industrial era.



CHAPTER 2

OBSERVATIONS OF THE MARS POLAR VORTEX WITH THE

MARS GLOBAL SURVEYOR THERMAL EMISSION

SPECTROMETER

2.1 Introduction

The winter season, westerly circumpolar flow of the martian atmosphere, like that

of the terrestrial stratosphere, is concentrated into a jet which lies near 60 degrees

latitude. This jet is known as the polar vortex. Similar dynamical structures have

been observed on Jupiter [Orton et al., 2002] and Venus [Taylor, 2002]. Polar

vortices are of interest because they act as a barrier, inhibiting energy transport

and potentially preventing the mixing of aerosols and chemical species. Thus, they

control the response of winter polar processes to climatic forcings, both short term

and long term.

The terrestrial polar vortex has been understood to be the dynamical con-

trolling mechanism for ozone depletion in the polar stratosphere [e.g., Schoeberl

and Hartmann, 1991] for more than a decade. An example of the importance of

dynamical control is that on Earth the southern hemisphere experiences greater

ozone depletion than the north, because the southern winter polar vortex is a

more effective barrier to mixing [Schoeberl et al., 1992; Andrews et al., 1987].

More recently, the Earth’s stratospheric annular modes, which are essentially a

weakening/strengthening oscillation of the polar vortex jet, have been shown to

be coupled to, and possibly even a driving mechanism for, the tropospheric Arctic

Oscillation (AO) / North Atlantic Oscillation (NAO) phenomenon [Baldwin and

Dunkerton, 2001]. The AO / NAO is a key player in northern temperate zone win-

6
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ter weather patterns [Thompson and Wallace, 2000] and an increasing bias towards

the positive (stronger polar vortex) phase in the past 30 years has been shown to

be correlated with global warming trends [Thompson et al., 2000].

The terrestrial polar vortex exhibits a dramatic phenomenon known as a “sud-

den stratospheric warming.” A typical sudden stratospheric warming is character-

ized by an increase of 40 - 60 K in average polar temperatures within a one week

period. In major midwinter stratospheric warming events, which are observed pri-

marily in the northern hemisphere and with frequencies of about once every two

years, the circumpolar flow actually reverses, becoming easterly [Andrews et al.,

1987]. Early interest in the properties of the Mars polar vortex was triggered by

Viking Orbiter observations of a similarly abrupt 60 K warming in polar tempera-

tures during the northern hemisphere winter of 1977. The warming event occurred

during the second of two global dust storms that occurred that season [Martin and

Kieffer, 1979; Jakosky and Martin, 1987].

Barnes and Hollingsworth [1987] suggested that this warming event on Mars

was in fact analogous to the terrestrial stratospheric warmings. However, GCM

simulations by Wilson [1997] suggest that the martian polar warming could have

been basically symmetric about the pole, associated with an expanded Hadley

circulation. In Wilson’s simulations, the expanded Hadley cell was enabled by

momentum flux divergence attributed to dust-enhanced diurnal tides. In contrast,

terrestrial stratospheric warmings are caused by breaking planetary-scale Rossby

waves [e.g., McIntyre and Palmer, 1983], and hence are highly asymmetric about

the pole. Unfortunately, the Viking measurements include only one longitude

position per sol [Jakosky and Martin, 1987], making it difficult to measure vortex

asymmetries or evaluate the importance of planetary waves.



8

The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data

set [Christensen et al., 1998] provides over three martian years of consistently sam-

pled, vertically resolved temperature measurements [Conrath et al., 2000; Smith

et al., 2001], allowing us to take a comprehensive look at the range of behaviors

exhibited by the Mars polar vortex. Banfield et al. [2000, 2003, 2004] and Wilson

et al. [2002] have used these data to detect forced and traveling wave modes in

the martian atmosphere. Of particular relevance for the polar vortex, Banfield et

al. show that the polar jet supports stationary [Banfield et al., 2003] and travel-

ing [Banfield et al., 2004] waves of zonal wave numbers 1, 2 and 3, with most of

the amplitude in zonal wave number 1. They also show that there exists a zone

of symmetric instability on the equatorward flank of the polar jet, as well as re-

gions on both the equatorward and poleward flanks of the jet where the barotropic

instability criterion is satisfied [Banfield et al., 2004].

The analysis quantity of choice for studies of the terrestrial polar vortex is Ertel

potential vorticity,PV [e.g., Schoeberl and Hartmann, 1991; Nash et al., 1996; Lait,

1994; Waugh and Randel, 1999]. PV, in the absence of diabatic (friction and heat-

ing) effects, is a conserved tracer of atmospheric motion. On Earth, PV gradients

are correlated with gradients in the concentrations of chemical species [Schoeberl

et al., 1992], andPV provides a convenient diagnostic for events, such as planetary

wave breaking, that mix air across the vortex boundary [McIntyre and Palmer,

1983]. Since potential temperature, θ, is also conserved in the absence of diabatic

effects, contours of constantPV on a θ surface represent actual physical barriers to

mixing on dynamical timescales. Flow across PV contours will occur on radiative

timescales. For example, Nash et al. [1996] shows that the early winter increase of

PV in the polar stratosphere is accomplished by radiatively induced circulation. An
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additional advantage ofPV is its effect on planetary wave propogation . Vorticity is

essentially the working substance for Rossby waves, and therefore regions of steep

vorticity gradient, like the polar vortex edge, can act to refract and trap planetary

waves [Polvani and Saravanan, 2000]. PV maps also highlight regions of instability

with respect to wave motion, as discussed by Banfield et al. [2004].

In light of these advantages, and for the sake of direct planet-to-planet com-

parison, we have adopted PV as our primary analysis quantity for the Mars polar

vortex. We convert the MGS-TES temperature retrievals into a uniform longitude-

latitude-altitude-time grid, and then use this gridded data set to calculatePV. We

must, of course, be wary of the fact that radiative time scales on Mars are generally

shorter than on Earth, so that the time scale over which PV is conserved could

be much shorter in certain regions, depending on the degree of departure from

radiative equilibrium.

Another concern, unique to Mars, is that CO2 condensation is a dynamically

important process [Pollack et al., 1990]. Recent observations suggest that CO2

condensate clouds are pervasive inside the polar vortex [Ivanov and Muhleman,

2001; Colaprete and Toon, 2002; Colaprete et al., 2003]. For this reason, we also

consider gridded estimates of temperature, focusing in particular on the difference

between polar temperatures and the CO2 saturation point.

The objectives of this paper are primarily descriptive. We begin by presenting

the methods used to derive gridded temperatures, winds, andPV, and then present

a series of maps and cross sections to describe the spatial pattern, temporal evolu-

tion, and inter-annual variability of these quantities for both the north and south

polar vortices. We pay particular attention to two polar warming events — one

in southern winter, and one in northern winter. Our discussion addresses those
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polar vortex behaviors which we believe to be most in need of further investigation,

focussing on pole-to-mid-latitude mixing, the influence of dust, and the causes of

the polar warmings.

2.2 Methodology

2.2.1 TES temperature retrievals

We start with MGS-TES retrievals of temperature as a function of pressure. The

derivation of these temperature profiles from the 15 µm CO2 absorption profile

is discussed by Conrath et al. [2000]. In consideration of the intrinsically limited

resolution of these measurements, and in order to prevent our working data set

from becoming unmanageably large, we sample the derived temperature profiles

at intervals of one-half scale height. TES nadir-pointed observations have denser

sampling in the horizontal dimensions than TES limb-pointed observations. For

this reason, we have used only nadir-pointed observations for the work presented

here. As a result, our data set is limited to the lowest four scale heights of the

atmosphere.

For the mapping phase of its mission, MGS has maintained a sun synchronous

polar orbit such that nadir-pointed TES observations always occur at roughly 2 PM

local solar time on the day side of the orbit, and 2 AM local solar time on the night

the of the orbit. The precise solar time of TES observations is actually a function of

latitude, and at any given latitude, the local solar time of TES observations varies,

primarily as a function of season (see Fig. 2.1). MGS’s 2-hour orbital period causes

the ground tracks of individual orbits to be separated by approximately 30 degrees

of longitude. Temperature profiles are obtained along the MGS ground track at
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Figure 2.1: Local solar time for three years of TES mapping at selected latitudes.

typical intervals of 0.1◦ in latitude. Gaps in this sampling sequence are common.

The pattern of temperature measurement locations produced by a typical sol of

sampling is shown in Fig. 2.2. Banfield et al. [2003] provide further discussion of

the capabilities and limitations of this data set. The temperature retrievals and

vertical sampling thereof used here are identical to that of Banfield et al. [2003].

2.2.2 Temperature analysis grid

In order to support the calculation of dynamically important quantities such as

winds and potential vorticity, we interpolate the TES temperature retrievals onto

a time series of grids with uniform sampling in latitude, longitude, and altitude

in log-pressure coordinates. All of the temperatures in a given grid are for the

same instant in time, meaning that we additionally interpolate in the temporal

dimension. We generate one set of grids for the daytime temperatures, and another

set for the nighttime temperatures. Since all of the source measurements are for

∼2 PM local solar time (or ∼2 AM for the nighttime grids), each grid obviously

contains none of the diurnal variation that would exist in a true instantaneous

measurement of global temperatures. In other words, our analysis grids are maps
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Figure 2.2: Location of TES nadir-pointed temperature measurements for a
typical one-sol mapping period in the northern (top) and southern (bottom) polar
regions. Each measurement location is plotted as a single point, but these points
are generally so close together that they appear as a continuous line in this figure.
Gaps in this line indicate pauses in the normal sampling sequence.
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of instantaneous daytime (or nighttime) temperatures with the diurnal component

“removed.”

Table 2.1 summarizes the analysis grid parameters. The temperature analysis

grids are generated as follows:

1. Classify each TES retrieval as either “daytime” or “nighttime.” “Daytime”

retrievals are defined as those with local solar times of more than 6 and less

than 18 hours. “Daytime” retrievals are used to populate the daytime grids,

and “nighttime” retrievals are used to populate the nighttime grids.

2. Sample the TES temperature retrievals at intervals of one-half scale height,

starting from the 6.1 millibar pressure level. In the remaining steps, each

pressure level is handled separately.

3. For each orbit of data points, establish a uniform latitude grid by smoothing,

resampling, and filling in data gaps, as follows:

(a) At each grid latitude, φj, the temperature, Tj, longitude, λj, and time,

tj, are determined from a weighted average of neighboring data point

temperatures, Tn, longitudes, λn, and times, tn:

Tj =
P

n WnTnP
n Wn

λj =
P

n WnλnP
n Wn

tj =
P

n WntnP
n Wn

 if and only if
∑

n

Wn ≥ minWeight (2.1)

where minWeight is as given in Table 2.1, and the sum is over all data

points in an orbit. Grid points for which
∑

nWn < minWeight are

treated as missing. The weight Wn of the n-th data point at a given
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grid latitude is a function of the latitude of the data point, φn:

Wn =

 e
−

“
φj−φn

s

”2

if
∣∣∣φj−φn

s

∣∣∣ ≤ 3

0 otherwise
(2.2)

where s is given in Table 2.1.

(b) Gaps between valid grid points, i.e., clusters of grid points which are

“missing” because
∑

nWn is too small, are filled in if the the gap size,

φjhigh
− φjlow , where φjhigh

and φjlow are the latitudes of the valid grid

points on either side of the gaps, is less than the parameter maxLat-

Gap (see Table 2.1). Gap filling is accomplished with a simple linear

interpolation from the jhigh and jlow grid points. Explicity:

if (
∑

nWn)j < minWeight and
∣∣φjhigh

− φjlow

∣∣ ≤ maxLatGap

then


Tj =

|φjhigh
−φj|Tjhigh

+|φjlow
−φj|Tjlow

|φjhigh
−φjlow |

λj =
|φjhigh

−φj|λjhigh
+|φjlow

−φj|λjlow

|φjhigh
−φjlow |

tj =
|φjhigh

−φj|tjhigh
+|φjlow

−φj|tjlow
|φjhigh

−φjlow |

(2.3)

4. At each grid pressure level pk , and at each grid latitude φj, a bilinear in-

terpolation of the Tj temperatures in all of the available orbits is performed

to map them from the λj longitudes and tj times onto the grid longitudes

λi and grid times tl, yielding a time series of gridded temperatures, Tijkl. If

the gap in longitude or time between adjacent non-missing λj or tj points is

larger the maxLonGap or maxTimeGap parameters, respectively, then all of

the Tijkl values that fall between these points are considered to be missing.
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Table 2.1: Analysis parameters

Parameter Value Units Description

∆λ 10.0 ◦ longitude grid spacing in longitude

∆φ 1.0 ◦ latitude grid spacing in latitude

∆ln p 0.5 – vertical grid spacing, uniform in log-pressure co-
ordinates

∆t 1.0 sols grid spacing in time (1 sol = 88775 seconds)

p0 6.1 millibars lowest pressure level in the analysis grid

pmax 6.1× e−7∆ln p millibars highest pressure level in the analysis grid

minWeight 4.5 – minimum weight for temperature smoothing (sec-
tion 2.2.2)

s 1.0 ◦ latitude temperature retrieval smoothing parameter (sec-
tion 2.2.2)

maxLatGap 6.0 ◦ latitude maximum latitude gap that is filled by interpola-
tion (section 2.2.2)

maxLonGap 70.0 ◦ longitude maximum longitude gap that is filled by interpo-
lation (section 2.2.2)

maxTimeGap 1.5 sols maximum time gap that is filled by interpolation
(section 2.2.2)

kref 1 – vertical grid index of the reference pressure
level for geopotential height calculations (section
2.2.3)

p(kref) 3.7 millibars reference pressure level for geopotential height
calculations (section 2.2.3)

smoothLat 5.0 ◦ latitude wind solution latitude smoothing parameter (sec-
tion 2.2.4)

smoothLon 50.0 ◦ longitude wind solution longitude smoothing parameter
(section 2.2.4)

scaleFactor 0.25 – controls the rate at which the wind solution ad-
justs to the residuals at each iteration (section
2.2.4)

Table 2.2: Adopted Physical Constants

Parameter Value Units Description Reference

R 192. Joules kg−1 K−1 Specific gas constant for the mar-
tian atmosphere.

Zurek et al. [1992]

g0 3.72 m s−2 Surface gravity Zurek et al. [1992]

Ω 7.088× 10−5 s−1 angular velocity of Mars Zurek et al. [1992]

a 3394. km radius of Mars Zurek et al. [1992]

cp 734. Joules kg−1 K−1 specific heat at constant pressure
(assumed constant)

Magalhães et al. [1999]
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2.2.3 Geopotential Height

We assume hydrostatic equlibrium in order to calculate the geopotential height,

Zijkl, above some reference pressure level, p = p(kref), by vertical integration of

the temperature field.

Zijkl =
∆ln p

2

R

g0

k∑
k′=kref+1

(
Tijk′l + Tij(k′−1)l

)
(2.4)

R is the specific gas constant, and g0 is the surface gravity (see Table 2.2). ∆ln p

is the vertical grid spacing (which is a constant in log-pressure coordinates —

see Table 2.1). We treat the geopotential height as a constant at k = kref , and

arbitrarily define Zijkref l = 0. Since the main purpose of our geopotential height

calculations is to facilitate subsequent calculation of winds, this constant geopential

assumption is essentially equivalent to the usual assumption of zero wind at some

reference pressure level. We have chosen kref = 1. Given our grid specifications

(Table 2.1), p(kref) = 3.70 mb.

If, at a certain i, j, and l, a Tkref
is missing, then for purposes of calculating

Zk, Tkref
is found by linear extrapolation of T from the two lowest non-missing

Tk. This extrapolation is necessary to prevent persistent data gaps at or near the

locations of topographic highs. If there are fewer than 2 points at the given i, j,

and l with k ≥ kref , then all of the Zk at that i, j, and l are considered to be

“missing.”

2.2.4 Non-linear balance winds

We calculate horizontal winds from the geopential height data using a variation

of the non-linear balance wind method suggested by Randel [1987]. This method

seeks an approximate solution to the full primitive equations for zonal and merid-



17

ional momentum balance, neglecting only the local time derivatives ( ∂
∂t

) and the

vertical wind components. We generate wind estimates for latitudes poleward of

±35◦. The calculation is performed separately for each pole.

The balance equations are:

εu = u +
g0

af

∂Z

∂φ
+

1

af
v
∂v

∂φ
+

tanφ

af
u2 +

1

af cosφ
u
∂v

∂λ
(2.5)

εv = v − g0

af cosφ

∂Z

∂λ
− 1

af cosφ
u
∂u

∂λ
+

tanφ

af
uv − 1

af
v
∂u

∂φ
(2.6)

where f is the Coriolis parameter, f = 2Ω sinφ, a is the radius of Mars, Ω is the

angular velocity of Mars about its rotation axis, u is the eastward wind compo-

nent, and v is the northward wind component. An exact solution to the balance

equations would have εu = 0 and εv = 0. However, an exact solution does not in

general exist, and we therefore seek an approximate solution for the u and v fields

that minimizes the εu and εv fields in a root-mean-square sense.

To evaluate partial derivatives at each grid point, we use centered derivatives

wherever feasible. If either of the two neighboring grid points required for a cen-

tered derivative do not exist (= DNE), because of “missing” data or because it

is off the edge of the grid, then the partial derivative is calculated using the data

value at the grid point together with whichever neighboring value is available. If

the data value AT the grid point itself is “missing,” then the derivative at that

grid point will considered “missing” as well, regardless of the validity of the neigh-

boring points. To summarize, the partial derivatives for a certain quantity x along

the “i-axis” of the grid are calculated as follows: (The j, k, and l subscripts are

suppressed for clarity.)

if (xi = DNE) or [(xi−1 = DNE) and (xi+1 = DNE)] then

(
∂x

∂λ

)
i

= DNE

(2.7a)



18

otherwise

if (xi−1 = DNE) and (xi+1 6= DNE) then

(
∂x

∂λ

)
i

=
xi+1 − xi

∆λ

(2.7b)

if (xi−1 6= DNE) and (xi+1 = DNE) then

(
∂x

∂λ

)
i

=
xi − xi−1

∆λ

(2.7c)

if (xi−1 6= DNE) and (xi+1 6= DNE) then

(
∂x

∂λ

)
i

=
xi+1 − xi−1

2∆λ

(2.7d)

where ∆λ is longitudinal grid spacing. Partial derivatives in the other dimensions

are defined analogously. Note that this method of calculating derivatives makes it

unnecessary to explicitly specify boundary conditions for our wind solution.

In order to converge on a solution for u and v, we found it necessary to include

smoothing in the horizontal spatial dimensions as part of the algorithm. This is

accomplished by convolution with a gaussian kernel, S:

Si′j′ =

 e
−

„
i′2

2σi
2

«
· e

−
„

j′2

2σj
2

«
if−3σ ≤ i′ ≤ 3σ and−3σ ≤ j′ ≤ 3σ

0 otherwise

(2.8)

where σi and σj are chosen such that the full-width-half-max (FWHM) of the

gaussian in that dimension is equal to the smoothLon and smoothLat parame-

ters, respectively (see Table 2.1). Missing or out-of-grid data values are simply

ignored during the smoothing process. Any data point labeled “missing” before

the smoothing will still be considered “missing” afterwards.

Prior to the start of the wind-finding algorithm, the geopotential height grid at

each pressure level is smoothed according to Eq. 2.8, and the smoothed Z values are

used at all stages of the algorithm. All of the operations involved in the algorithm

are performed simultaneously on each pressure level, so that the final result at
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each level is based on the same number of iterations. The wind solution is derived

separately for each time step.

The initial guess for the wind solution is the gradient wind for the u component,

u = −Ωa cosφ+

√
(Ωa cosφ)2 − g0

tanφ

∂Z

∂φ
(2.9)

and geostrophic for the v component,

v =
g0

af cosφ

∂Z

∂λ
(2.10)

At each iteration, the (εu)m and (εv)m residuals are evaluated by applying Eqs. 2.5

and 2.6 to the current wind-field estimate, (um, vm). The halting criteria (described

below) are then checked, and if they are not satisfied, the new wind estimate is

calculated as follows:

um+1 = um − Smooth(scaleFactor · (εu)m)

vm+1 = vm − Smooth(scaleFactor · (εv)m)
(2.11)

The “Smooth” function indicates smoothing by convolution with a gaussian kernel

(Eq. 2.8) as previously described. We have used a scaleFactor of 0.25, because we

have found that this value leads to a final wind solution with lower root-mean-

squared (RMS) residuals.

We evaluate the quality of the wind solution at each iteration by measuring

the RMS εu and RMS εv for each row of the analysis grid. (A row contains all

of the grid points at a given latitude, pressure level, and time.) For purposes of

determining when to halt the algorithm, this quality information is distilled to a

single number, Q, which we define as the mean of the RMS εu for all rows at the

0.304 mb level with latitude between ±40◦ and ±85◦. Once the algorithm is halted,

the final wind solution is the solution with the lowest value of Q. The algorithm

halts whenever Qm+1 > Qm, or when the total number of iterations reaches 10.
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Figure 2.3: Geopotential height in km (left), eastward wind u in m/s (center),
and northward wind v in m/s (right) at the 0.83mb pressure level for a sol in early
northern winter. The map projection is polar stereographic, covering latitudes
north of 40 degrees.

Figure 2.4: εu (left) and εv (right) residuals for the wind solutions shown in
Fig. 2.3.

Figure 2.3 shows the geopotential height field, calculated u-component winds,

and calculated v-component winds for a sol on which one of the highest-amplitude

transient planetary waves was observed. Figure 2.4 shows εu and εv residuals for

the same sol. These figures show that, in this particularly extreme circumstance,

the balance residuals have an amplitude of about 25% of that of the calculated

winds for the v-component. The balance residuals for the u-component winds are

everywhere less than 10% of the calculated wind.

Figure 2.5, and Figs. 2.6 – 2.8 show the effect of other sources of uncertainty
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Figure 2.5: u (left) and v (right) winds as in Fig. 2.3, but calculated with a
9.50 mb lower boundary.

Figure 2.6: u (left) and v (right) winds as in Fig. 2.3, but calculated af-
ter the temperature data set has been perturbed by a global systematic error
of 1.2 Watt cm−2 sr−1 (cm−1)−1 as described in the text.

in our wind solution. For the calculated winds, the most significant source of

uncertainty is the choice of the lower boundary on which to assume zero wind.

Figure 2.5 shows the effect of moving this assumed lower boundary to 9.50 mb.

Doing so mainly affects the amplitude of the u-component winds, increasing them

by ∼50%.

The other sources of error involve uncertainties in the TES radiance. Figures 2.6

– 2.8 show experiments with three types of radiance errors. To estimate the effect of

a radiance error on the retrieved temperatures, we treat the nominal temperature
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Figure 2.7: u (left) and v (right) winds as in Fig. 2.3, but calculated after
individual measurements in the temperature data set have been perturbed by ex-
aggerated random errors (2.0 Watt cm−2 sr−1 (cm−1)−1 RMS) as described in the
text.

Figure 2.8: u (left) and v (right) winds as in Fig. 2.3, but calculated after each or-
bit of the temperature data set has been perturbed by 0.5 Watt cm−2 sr−1 (cm−1)−1

RMS random error (see text).
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as a 667cm−1 (15 µm) brightness temperature, convert it to radiance, apply the

radiance perturbation, and then convert back to temperature. Roughly speaking,

for a given radiance perturbation, the temperature perturbation scales as T−4. This

means that radiance errors affect the temperatures gradients as well as absolute

values, and so can influence the wind solution.

Fig. 2.6 shows wind results after adding 1.2 Watt cm−2 sr−1 (cm−1)−1 to all re-

trievals, simulating a global systematic radiance error. This radiance perturbation

is equivalent to +5 K at 145 K, and thus is similar to the systematic errors that

Conrath et al. [2000] suggested may exist in the TES calibration. The perturbed

wind results are only slightly (∼ 10%) less than the preferred solution shown in

Fig. 2.3.

Figure 2.7 shows wind results after adding random perturbations with an RMS

of 2 Watt cm−2 sr−1 (cm−1)−1 to the retrievals, simulating noise in the TES radi-

ance data set . This noise levels is equivalent to ±9 K at 145 K, much larger than

the 1 K RMS errors suggested by Conrath et al. [2000]. Nevertheless, the wind

solution is not noticeably altered, implying that random noise is not significant as

a source of error.

The TES calibration relies on a series of space-looks acquired once each orbit

to subtract instrumental background radiance. Noise in these space-look mea-

surements propagates into an error which is random from orbit to orbit, but

constant within an orbit (J. Bandfield, personal communication). In Fig. 2.8

we explore the effects of such errors by adding a random radiance perturbation

to the retrievals from each orbit. We have used perturbations with an RMS of

0.5 Watt cm−2 sr−1 (cm−1)−1 (equivalent to ±2.2 K at 145 K). As the figure shows,

the wind solution is not obviously altered by this perturbation, although we will
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see in 2.2.7 that the effect is evident in thePV field.

2.2.5 Potential Temperature, θ

We define θ relative to the 6.1mb pressure level on Mars. We assume that cp (see

Table 2.2) is approximately constant for the lower atmosphere of Mars, adopting

a value appropriate to the mean Mars atmospheric temperature of 200 K.

θ = T

(
6.1mb

p

) R
cp

(2.12)

2.2.6 Interpolation to θ vertical coordinate.

In order to showPV on θ coordinate surfaces, we simply apply a linear interpolation

from thePV on log-pressure surfaces, calculated as described below, onto the desired

θ coordinate surface using the θ values calculated for each grid point.

2.2.7 Ertel Potential Vorticity

Ertel potential vorticity,PV, is defined in an intertial frame as:

PV =
(~∇× ~v) · ~∇θ

ρ
(2.13)

where ~v is the velocity vector, and ρ is the density.

We calculatePV in the co-rotating, log-pressure coordinate system of our anal-

ysis grid as follows:

PV =
g0 cosφ

(
∂θ
∂φ

∂M
∂ẑ
− ∂θ

∂ẑ
∂M
∂φ

)
+ g0

(
∂θ
∂ẑ

∂N
∂λ
− ∂θ

∂λ
∂N
∂ẑ

)
pa2 cos2 φ

(2.14)

where

M = au cosφ+ Ωa2 cos2 φ (2.15)

N = av cosφ (2.16)
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ẑ is the log-pressure vertical coordinate.

Vertical derivatives are calculated as described in Eqs. 2.7a - 2.7d (with ẑ and k

replacing λ and i, respectively), except that all derivatives at a given grid pressure

level are always calculated by the same method, i.e., one and only one of Eqs. 2.7b

- 2.7d. If more than two-thirds of derivatives calculated according to Eq. 2.7d

would be “missing” (because one of the neighboring data points used to calculate

it is missing), then all derivatives are calculated according to whichever of Eq. 2.7b

or Eq. 2.7c would give the the largest number of non-missing values.

Figure 2.9a showsPV calculated for the same sol as in Figs. 2.3 – 2.8. In order

to estimate the impact of the wind residuals on the potential vorticity, we have

also plotted, in Fig. 2.9b, potential vorticity calculated using wind components

that have been perturbed by twice the residuals of the final wind solution. In

other words, Fig. 2.9b shows PV calculated using u + 2εu and v + 2εv for the

wind components. Since the PV shown in Fig. 2.9b is essentially the same as in

Fig. 2.9a, we conclude that errors in our wind solution are not a significant source

of uncertainty inPV.

Figure 2.9c shows PV calculated for the alternative 9.50 mb lower boundary.

Evidently, the choice of lower boundary has only a small effect on the magnitude

of PV near the winter pole. The lower boundary does become significant further

away from the pole, where the θ = 240K surface is very close to the lower boundary.

Next, although it is not the goal of this paper to assess diurnal variations in the

polar vortex, we do, in Fig. 2.9d, test the influence of time-of-day on thePV-field.

This test is complicated by the fact that the nighttime data for a given longitude

is acquired twelve hours earlier (and later) than the daytime data. Although our

interpolation procedure attempts to correct for this effect, it is not entirely obvious
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whether nighttime data from the same sol, or nighttime data from the following

sol is a more appropriate comparison. We have solved this problem empirically by

noting that the spiral structure of sol 281 daytime has not yet developed on sol 281

nighttime, but that the night of 282 is in fact quite similar to the day of 281. (Sol

numbers are defined in Section 2.3.) We have therefore chosen to plot the night of

282 as Fig. 2.9e to illustrate that time-of-day does not have a large effect on the

size, magnitude, and shape of the high-PV region.

Figures 2.9e–g illustrate the effects of TES radiance errors on thePV-field, just

as Figs. 2.6 – 2.8 did for the derived wind fields. Figures 2.9e, 2.9f, and 2.9g show

the results of global, random, and random-by-orbit errors, respectively, with the

same magnitudes as in Figs. 2.6, 2.7, and 2.8, respectively. In Fig. 2.9e we see

that the global perturbation leads to a substantial (about 25%) decrease in the

magnitude of the calculated PV, but this hypothetical correction has no qualita-

tive effect on the PV field — the overall shape, and the location of the maxima,

for example, are unchanged. In Fig. 2.9f we find that even exaggerated random

errors produce only minor changes in the shape of the PV field, indicating that

random noise does not significantly contaminate our results. However, as Fig. 2.9g

shows, our PV field is more sensitive to orbit-by-orbit random errors. For moder-

ate 0.5 Watt cm−2 sr−1 (cm−1)−1 orbit-by-orbit pertubations, we notice additional

longitudinal variations in thePV field, although the overall pattern remains intact.

This means that for any given PV map, we expect that some of the longitudinal

PV variations are the result of TES instrumental noise, but that major PV-field

features like the sol 281 spiral are robust.
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Figure 2.9: PV on the θ = 240K surface, for the same sol and using the same
map projection as in Fig. 2.3. The units on these and all subsequent PV plots
are 10−4 K kg−1 m2 s−1. (a) gives the preferred solution for potential vorticity,
while (b) through (g) represent tests of the sensitivity of the solution to various
assumptions and possible errors, as described in the text. (b) gives PV after the
winds have been perturbed by twice the wind-solution residuals; (c) gives PV for
the alternative 9.50 mb lower boundary; (d) gives the PV solution derived from
nighttime rather than daytime TES observations; (e) givesPV after the temperature
data set has been perturbed by a global systematic error of 1.2 Watt cm−2 sr−1

(cm−1)−1 as described in the text; (f) givesPV after the data set has been perturbed
by exaggerated random errors (2.0 Watt cm−2 sr−1 (cm−1)−1 RMS) as described
in the text; and (g) givesPV after each orbit of the temperature data set has been
perturbed by 0.5 Watt cm−2 sr−1 (cm−1)−1 RMS random errors as described in
the text. Note that, for reasons discussed in the text we show in (d) data from one
time-step later than the other maps in this figure.



28

2.2.8 Modified Ertel Potential Vorticity

When plotting PV in cross section, we use the modified Ertel potential vorticity

suggested by Lait [1994] in order to remove the inherently strong vertical variation

inPV. Modified ertel potential vorticity,PV ′, has the same conservation properties

asPV, and is defined as [Lait, 1994]

PV ′=PV

(
θ

θref

)−(1+
cp
R )

(2.17)

2.2.9 Trajectories

We plot trajectories by numerically integrating our derived horizontal wind field

on a θ-coordinate surface. The trajectory integration is accomplished by repeating

the following procedure:

1. For a given latitude φn and longitude λn, determine the un and vn wind

components by bilinear interpolation from the gridded wind components.

Also, calculate, again using bilinear interpolation, other desired quantities

such asPV or pressure at the given latitude and longitude.

2. Move a certain distance to find the next latitude - longitude point:

φn+1 = φn + vn · timeStepn

λn+1 = λn + un · timeStepn

(2.18)

where timeStepn is the largest value which satisfies:

vn · timeStepn < 0.25◦ ; un · timeStepn < 2.5◦ ; timeStepn <
1

24
sol .

(2.19)

The trajectories that result from this process are intended as a conceptual tool —

a qualitative representation of the paths that particles might follow. It is difficult
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to assess the quantitative accuracy of the trajectories, because we do not know

what processes might be occurring on time scales smaller than our one-sol time

step, and because of the large residuals in our v-component wind solution.

When plotting a time series of maps that include trajectories, we chose an

arbitrary starting point and starting time for each trajectory, and then perform

the above integration procedure both forwards and backwards in time to determine

the particle path for the entire time series. Occasionally, the trajectory enters a

large region of missing data, in which case no further integration is possible and

the “particle” is treated as being frozen in place. Thus, in our trajectory plots,

an arrowhead representing a particle will sometimes end up frozen in place within

one of the white regions that represents missing data.

2.2.10 Zonal-mean quantities

In order to plot zonal-mean quantities as a function of Ls, we sort our map grids

into 1◦ wide Ls bins, and then, for each latitude grid position, average all valid

data points within the bin. After the data for a particular quantity have been

binned in this manner, the results for each latitude are smoothed in the time (Ls)

dimension using a 7◦ boxcar window.

2.2.11 CO2 saturation temperature

We calculate the CO2 saturation temperature using:

Tsat =
3182.48

23.3493− ln (0.9532× patm)
(2.20)

where patm is the atmospheric pressure given in millibars, and T in Kelvin. The

coefficients 23.3493 and 3182.48 are taken from James et al. [1992]. 0.9523 is the



30

mole-fraction of CO2 in the martian atmosphere [Owen, 1992].

2.2.12 Aerosol optical depth

Column-integrated dust and water-ice aerosol optical depths are retrieved from

TES data as described by Smith et al. [2000] and by Pearl et al. [2001], respectively.

These optical depths are gridded in the same manner as the temperature data,

and also binned into zonal means in the same manner is the temperature data,

except that, of course, the column-integrated optical depth grids have no vertical

dimension.

2.3 Results

Figures 2.10– 2.20 represent a survey of Mars polar vortex characteristics over a

period of two-and-a-half martian years. After this survey, we illustrate polar vortex

dynamics with a set of sample time series in Figs. 2.21 – 2.31. In this paper, we

use the “Mars Year” (MY) designation that originated with Clancy et al. [2000].

This system arbitrarily defines MY 1 to begin with Ls 0◦ on April 11, 1955. MGS

mapping began in March 1999, MY 24 Ls ∼ 100◦. Our data cover MY 24, 25,

26, and 27, which began in July 1998, May 2000, April 2002, and March 2004,

respectively. In order to describe specific sols, we arbitrarily define sol 0.0 to be at

spacecraft clock time (“SCLK”) 600,000,000. Sol 1.0 is 88775 seconds (one Martian

solar day) later, and so on. Since SCLK counts seconds from January 1, 1980, sol

0.0 occurs on January 5, 1999. As previously discussed, all maps are calculated

for a specific instant in time. Since our time sampling interval is 1 sol, all maps

have an integer-valued sol number.
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2.3.1 Zonal-mean behavior

The gross features of the Mars polar vortex are evident from plots (Figs. 2.10 and

2.11) of zonal-mean quantities versus season (Ls). Most notably, and in striking

contrast to the terrestrial case, the martian PV field is almost always annular in

shape. PV reaches a maximum between 60◦ and 80◦ latitude (north or south), and

then decreases towards the pole. On Earth, PV generally increases monotonically

towards the pole (Hartmann [1983] discusses the implications of the exceptions

to this rule), and even when the PV field is highly distorted, it never achieves an

annular shape. The Mars southern hemisphere polar vortex in fact occasionally

achieves multiple maxima in zonal-meanPV, for example near 30◦ Ls in MY 26 and

27. Double-ring structures actually occur sporadically throughout the southern

hemisphere winter in all three years, as well as in late winter in the northern

hemisphere, but most of these events are too transient to show up in the zonal

mean.

Second, the seasonal evolution of the area encompassed by the northern hemi-

sphere polar vortex (considering the zonal-meanPV maximum to be the boundary)

is distinctively asymmetric, in contrast to the terrestrial polar vortices, whose area

steadily increases towards midwinter, and then shows a symmetric decrease into

spring [Waugh and Randel, 1999]. On Mars, the northern vortex area is at a min-

imum in early winter near Ls 230◦, and then begins to increase. It continues to

increase past the solstice until about 310◦ Ls, after which the three winter periods

show no particularly consistent behavior. Note that, since Mars’s radiative time

constant is short [∼ 2 sols; Zurek et al., 1992]), we consider the solstices to be

effectively the middle of the winter period on Mars.

In contrast to the Mars southern hemisphere polar vortex, the northern polar
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Figure 2.10: Zonal mean PV (colors) overlain with zonal mean temperature
(solid lines) and zonal winds (m s−1, dashed lines) for northern hemisphere winter
in (top to bottom) MY 24, 25, and 26. All plotted data is for the θ = 240K
surface. Temperatures are shown as the difference between the measured tem-
perature and the CO2 saturation point — we plot contours only where CO2 is
supersaturated (T − Tsat ≤ 0), in one K intervals starting from zero. PV has units
of 10−4 K kg−1 m2 s−1.
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Figure 2.11: Zonal-mean PV (colors) overlain with zonal mean temperature
(solid lines) and zonal wind (m s−1, dashed lines) for southern hemisphere winter
in (top to bottom) MY 25, 26, and 27. All plotted data is for the θ = 240K
surface. Temperatures are shown as the difference between the measured tem-
perature and the CO2 saturation point — we plot contours only where CO2 is
supersaturated (T − Tsat ≤ 0, in one K intervals starting from zero. PV has units
of 10−4 K kg−1 m2 s−1.
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vortex is generally more intense, in the sense that the PV field is stronger. The

high-PV region in the north is more compact, and the maximumPV is closer to the

pole. The position of thePV maximum at winter solstice seems to be consistent —

near 64◦ latitude in the south, and near 72◦ latitude in the north. The previously

described pattern in the north pole vortex area was also similar in each year.

Otherwise, thePV pattern is quite variable from year to year in each hemisphere.

In the south, for MY 25,PV evolution was roughly symmetric about the solstice

(Ls 90◦), but MY 26 had a completely different, and asymmetric, pattern. That

year exhibited the previously mentioned double-ring pattern, a fairly constant

boundary latitude from Ls 60◦ to Ls 120◦, and then a sudden drop inPV intensity

near Ls 130◦. ThisPV-field breakdown was followed by redevelopment of a weaker

polar vortex at Ls 140◦. MY 27 in the south, like MY 26, shows a period of

multiplePV maxima near Ls 30◦, but unlike the other years, thePV-field seems to

grow notably weaker during Ls 50◦–65◦ before strengthening again.

In the north, the most prominent inter-annual variations are the size and PV-

field intensity of the polar vortex in early winter, and the intensity of the PV-

field in late winter. The MY 25 vortex boundary at Ls 230◦ was near 79◦ north

latitude, versus 74◦ in the other years, and was followed by a brief apparentPV-field

breakdown. The compressed MY 25 vortex was also more intense than the other

two years until about Ls 230◦. The MY 26PV maximum at Ls 300◦ was about 40%

greater than in the other years. The excess-intensity period in MY 26 preceded

an extendedPV-field breakdown which began near Ls 310◦. This breakdown ended

shortly after Ls 320◦ with the re-emergence of an annular PV field that was also

much more intense than observed in the same season of the other years.

Northern winter PV variability shows some correlation with the low-latitude
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Figure 2.12: Zonal-mean dust opacity (as in Smith et al. [2000]) for the martian
years shown in the previous figures.

dust opacity (τdust, Fig. 2.12). The period of minimum vortex area near Ls 230◦

is associated with a high-dust period in all cases; the more compact early winter

vortex of MY 25 occurred during the planet-encircling dust-storm of 2001; and the

MY 26 breakdown coincides with yet another high-dust period. However, some

of the PV variability is apparently not connected to dust — all three years had

similar dust levels, but quite different PV levels, around Ls 300◦. In the southern

hemisphere, dust doesn’t seem to be a factor in PV variability. Dust opacity is

roughly the same and very low in this data set’s two southern winters.

In addition to PV, Figs. 2.10 and 2.11 show contours (dashed lines) of zonally

averaged eastward wind, and also highlight (with solid-line contours) regions where

the zonal mean retrieved temperatures reach the CO2 saturation point (T −Tsat ≤

0). The wind contours provide information about the strength and location of

the polar vortex that is similar to that provided byPV, so their value is primarily

as an aide to visualizing the relationship between the polar jet and the PV field.

Thus, these figures illustrate thatPV is closely associated with the wind shear, and
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demonstrate the mathematical requirement that the high-PV region must lie on the

poleward flank of the jet. Not surprisingly, the maximum speed in the jet is highly

correlated with the shear on its poleward flank and thus withPV.

The T − Tsat contours show that persistent zones of supersaturation occur in

the MY 24 and MY 26 northern winters, as well as in the MY 25 southern winter.

Given the small departure from the saturation point, and the possibility of periods

of systematic errors in the TES temperatures, the apparent supersaturation is not

a robust result, but it does suggest where and when atmospheric condensation

is most likely to be occurring. Note also that the the polar vortex high PV zone

appears to confine these cold regions, especially in northern winter of MY26.

In order to illustrate the more general connections between temperature and the

dynamical state of the vortex described by thePV field, we show zonally averaged

temperatures for several polar latitudes in Figs. 2.13 and 2.14. The low-latitude

temperature variations in northern winter are mainly, as expected, a reflection

of dust loading. In contrast, at 80◦ north, which is almost always within the

vortex’s high-PV ring, the zonal temperatures usually show no response to dust.

The one exception is a major warming in conjunction with the MY 26 Ls 300◦

PV-field breakdown. The brief breakdown in MY 25 is not associated with any

polar warming.

The southernPV-field breakdown in MY 26 is also associated with a significant

polar warming, relative both to temperatures immediately preceding the event, and

to the same season in the preceding year. Polar (80◦ south) temperatures are at

least 5 K warmer than the previous year for most of the winter, while lower (closer

to the equator) latitude temperatures are very similar to those in the preceding

year. The warming event in southern MY 26 differs from the northern MY 26 event
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Figure 2.13: Temperature at three different northern latitudes on the 0.83 mb
surface for MY 24, solid lines; MY 25, dotted lines; and MY 26, dashed lines. The
plot on the top shows year 24 and year 25. The plot on the bottom shows MY 24
and MY 26.
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Figure 2.14: Temperature at three southern different latitudes on the 0.83 mb
surface for MY 25, solid lines; MY 26, dotted lines; and MY 27, dashed lines. The
plot on the top shows MY 25 and MY 26. The plot on the bottom shows MY 25
and MY 27.



39

in that the warming is confined to the polar region, with temperatures actually

decreasing slightly at 50◦ south latitude.

For the southern MY 26 warming, the low-latitude decrease in temperature

rules out the possibility that it is caused by a systematic error in TES radiances,

because a systematic radiance error would produce a radiance offset in the same

direction at all latitudes. A systematic error can also be confidently ruled out for

the northern MY 26 warming, partly because of its correlation with dust opacity,

but also because the temperature offset of a radiance error is inversely (∼ T−4)

related to the true temperature, and the magnitude of this northern warming

is much greater at the warmer lower latitudes. However, the southern MY 27

warming is consistent with a radiance error. If we take the MY 25 temperatures

to be the “true” temperatures, we find the temperature offsets have the signature

T−4 scaling. Since the reality of this event is in doubt, we will not analyze it

further in this paper.

2.3.2 Spatial pattern

Figs. 2.15 – 2.20 present spatially resolved information about the polar vortex

structure for selected sols in early (top of figure), mid-, and late (bottom of figure)

winter, showing both modified potential vorticity, PV ′, and temperatures where T

is below the saturation point. The cross sections in these figures also show lines

representing surfaces of constant entropy (θ = constant), and the maps give PV ′

and temperatures below the saturation point for one of these surfaces. Note that,

by our definition (Eq. 2.17),PV ′ is just a constant multiple ofPV on any constant-θ

surface. Using PV ′ merely makes it easier to compare PV structure on different θ

surfaces. For the map views, we have chosen the theta surface on whichPV is equal
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toPV ′.

These figures show that thePV field is in fact commonly annular as inferred from

the zonal means, and that this annular character persists throughout the vertical

range of our data set. In the northern hemisphere midwinter period, the annulus

is remarkably organized and symmetric, although even in this period it is often

distorted by wave activity as seen in Fig. 2.17d–f and the time series of Fig. 2.22.

The early winter period in the north also tends to be relatively organized. This

organized behavior is a key contrast with the southern polar vortex. There, the

zonal mean annulus is made up of arcuate, sometimes spiral-like, high-PV clumps,

and, as the cross sections shows, there may be multiple maxima along any given

meridian. As an extreme example, Fig. 2.19c — early southern winter during the

previously mentioned zonal-mean double ring — shows four local maxima on most

θ-surfaces. But generally disorganized and asymmetric behavior with multiple

maxima persists throughout southern winter, even though a zonal-mean double

ring is not observed, and is also the rule in late northern winter. Ironically, the

one exception in the maps we present (Fig. 2.18a-c) occurs at the same Ls as the

double ring, but in the preceding year. At this time the PV increase was nearly

monotonic towards the winter pole.

Figures 2.15 – 2.20 also illustrate the zones of symmetric instability (PV < 0 in

the northern hemisphere, PV > 0 in the southern hemisphere) noted by Banfield

et al. [2004]. These zones are generally larger, and reach down to lower pres-

sure levels, in the northern hemisphere, especially near solstice. In the southern

hemisphere, there appear to be symmetrically unstable regions very near the pole,

although these could conceivably be instances of the wind solution breaking down

near the edge of the domain.
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Figure 2.15: Maps (θ = 240K surface), (a), (d), and (g) and cross sections for
selected sols in (top to bottom) early, mid-, and late northern hemisphere winter —
MY 24. Left cross-sections, (b), (e), and (h), show quantities averaged over 0◦–30◦

east, and right cross sections, (c), (f), and (i), show quantities averaged over 180◦–
210◦ east. The colors show modified potential vorticity, PV ′ (10−4 K kg−1 m2 s−1).
Dark grey colors indicates regions of symmetric instability,PV < 0 in the northern
hemisphere, PV > 0 in the southern hemisphere. The map projection is as estab-
lished in Fig. 2.3. Solid lines show temperatures where T − Tsat ≤ 0. Dashed lines
on the cross sections show potential temperature, θ.
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Figure 2.16: Same as Fig. 2.15, but for MY 25.



43

a
b c

d
e f

g
h i

Figure 2.17: Same as Fig. 2.15, but for MY 26.
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Figure 2.18: Same as Fig. 2.15, but for the south pole, southern winter, MY 25.
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Figure 2.19: Same as Fig. 2.15, but for the south pole, southern winter, MY 26.
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Figure 2.20: Same as Fig. 2.15, but for the south pole, southern winter, MY 27.
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Figures 2.17g–i and 2.19g–i give additional insight into the nature of thePV-field

breakdown events that we noted in the zonal mean. Both figures show conditions

just before the PV-field reforms. For the northern hemisphere MY 26 breakdown,

thePV annulus has been displaced and shrunken to the point where it is difficult to

recognize in the zonal mean, but in fact thePV field is more intense, especially at

high altitudes, and is better organized than at similar Ls in previous years in the

sense that it has only a singlePV maximum on each side of the pole. By contrast,

during the southern hemisphere breakdown, thePV-field is notably weaker than the

previous year at all altitudes, and shows what look like major spiral-like intrusions

into the polar region by low-PV air.

Finally, Figs. 2.15 – 2.20 provide more detail about the location of the appar-

ently supersaturated regions, and their relationship to thePV field. T −Tsat values

as low as −5 K are observed, which suggests that the retrieved temperatures are

too low in these regions. However, anecdotal reports by Colaprete et al. [2003]

of CO2 supersaturation in MGS radio occultation temperature profiles suggest

that supersaturation in the martian polar regions is a real phenomenon, and in

any case it is well established that not all of the CO2 condensation occurs at the

surface [Colaprete and Toon, 2002].

Regardless of the true T − Tsat, the observed values provide important infor-

mation about which regions and seasons are most likely to be affected by CO2

condensation. In the northern hemisphere, a particularly clear pattern of satura-

tion emerges. The lowest T − Tsat values occur in a narrow region between 60◦

and 70◦ and confined below the 3.7 mb pressure level. In other words, at the

bottom of our data domain, the low T −Tsat zone forms an annulus which is equa-

torward of the high-PV annulus. The other zone of usually low T − Tsat values
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is just inside (poleward of) the high-PV annulus, typically between the 2.2 and

0.5 mb pressure levels. These two zones are connected by a region of less intense

apparent saturation, so that overall the more saturated air forms a sort of dome

which arcs over a less saturated or unsaturated zone near the surface at the win-

ter pole. Figure 2.15e–f is the type example of this pattern, with all of the other

figures showing variations on it. When the PV field is weaker or less organized,

the bottom-of-domain annulus of low temperatures is weaker or absent. Similarly,

when thePV field is asymmetric on a given sol, the T−Tsat field is also asymmetric,

with the lowest bottom-of-domainT − Tsat levels occurring on the side of the pole

with the highestPV levels.

2.3.3 Time Series

Figures 2.21 – 2.24 show times series in order to provide a sampling of the dy-

namical behaviors of the Mars polar vortex at different times and different levels

of the atmosphere. In addition to PV, each time series frame shows the location

and path of a collection of test particles. Although these trajectories are only

approximate, given the lack of precision in the v-component wind estimates, they

provide a rough idea of how a tracer such asPV should be advected by the winds.

Also, since the paths plotted in each frame show one full sol worth of motion, the

length of the paths provide a direct indication of the Rossby number (provided

that the center of curvature of the path is not too far from the pole). For example,

a particle which covers 60◦ of longitude in one sol along a circle centered at the

pole would have a Rossby number of exactly 60
360

= 1
6
.

In the higher level (θ = 300) northern hemisphere time series (Figs. 2.22 and

2.24), the fastest trajectories have Rossby numbers between 1.0 and 1.3, whereas
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Figure 2.21: Time series ofPV maps, sols 278 – 286 in the northern hemisphere,
on the θ = 240K surface, with map projection and units as previously described.
Lines and arrows show calculated trajectories for several test particles, with a
distinct line style (solid, dotted, dashed, etc.) for each test particle. The arrowhead
marks the location of the test particle at the instant in time that corresponds to
the PV-field shown in the map. Each line traces the path of the particle for one
half sol before and one half sol after this instant.
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Figure 2.22: Time series ofPV maps, sols 359 – 364 in the northern hemisphere,
on the θ = 300K surface. Otherwise the same as Fig. 2.21.
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Figure 2.23: Time series ofPV maps, sols 1372 – 1377 in the southern hemisphere,
on the θ = 280K surface. Otherwise the same as Fig. 2.21.

a b c

Figure 2.24: Time series ofPV maps, sols 970 – 972 in the northern hemisphere,
on the θ = 300K surface. Otherwise the same as Fig. 2.21.
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the other times series (a lower level in the north, Fig. 2.21, and a southern hemi-

sphere series, Fig. 2.23, have Rossby numbers of 0.5 at the most. Rossby numbers

this large obviously have important implications for analyses of polar vortex dy-

namics, but the high wind speeds, in and of themselves, also mean that a great

deal of evolution takes places in thePV field in between the time steps of our anal-

ysis grid. Thus, it is very difficult to follow the path of any particular PV feature

in order to, for example, assess whether low-latitude air is being mixed into the

interior of the polar vortex.

The first time series we present (Fig. 2.21) shows an interesting spiral-like event

from early northern winter in MY 24. It is “spiral-like” in the sense that the zone

of maximumPV develops a spiral pattern which persists for about four sols before

dissipating. At the onset of this event, both thePV maximum and the particle paths

are displaced northward by about 10◦ near 270◦ East. Although the opening of

the “spiral” is a gap in the ring of high-PV that separates polar air from equatorial

air, the PV in that gap is higher than that of any pre-event air south of 65◦ N.

Thus, if we postulate strict conservation ofPV, no air from south of 65◦ could have

crossed the gap and been mixed into the vortex. However, it is important to note

that the size of the observed PV gap is close the effective resolution limit of the

smoothed data used in our wind-field solution, so the signature of a hypothetical

narrow filament of low-PV air penetrating the polar vortex would be blurred out

into the relatively minorPV gap that we observe.

The second times series (Fig. 2.22) presents typical northern midwinter behav-

ior. Here, the vortex shows minor distortions that vary from sol to sol and are

mirrored by the exterior particle paths. The next time series (Fig. 2.23), from

the“double-ring” period in the southern hemisphere, presents a much more con-
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fusing picture. The particle paths have a no regularPV pattern to follow, and it’s

not clear that they have any connection to the PV field at all. Arcs of low PV air

are present at all latitudes north of 75◦ south, and in no case is it clear how one

sol’sPV field deforms into the next.

Figure 2.24 shows the behavior of the northern polar vortex in its most com-

pressed state during the planet-encircling dust storm of 2001. During these sols the

center of the polar vortex is clearly offset by at least 5◦ latitude, and the direction

of offset rotates slowing around the pole. As in the the other northern hemisphere

time series, the particle paths andPV-field are offset together. Just as in (Fig. 2.21)

there is a gap (or two) in the high-PV ring, but thePV in these gaps is high enough

that no air from south of 70◦ N could have crossed it. Of course, the previously

discussed caveat about the resolution of our data set applies to this situation as

well.

2.3.4 PV-field breakdown events

In Figs. 2.25 – 2.31, we use time series ofPV and trajectories as well as time series

of temperature to explore the two majorPV-field breakdown events.

In Figs. 2.25 – 2.28 we find the the time series bear out our earlier observation

that the northern MY 26 breakdown actually involves a displacement, contraction,

and strengthening of the high-PV region. The displacement might also be thought

of as an asymmetric contraction, with the greatest contraction happening at 90◦

West. The longitude of greatest contraction remains fixed throughout the event,

and the low-temperature region as well as the trajectories are displaced together

with the PV field. For all three, the magnitude of the asymmetry is about 10◦ in

latitude, meaning the the trajectories and contours are all 10◦ closer to the pole
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Figure 2.25: Time series ofPV maps, sols 1755 – 1760 in the northern hemisphere,
on the θ = 300K surface, showing the onset of thePV-field breakdown discussed in
the text. Otherwise the same as Fig. 2.21.

at 90◦ West than at 90◦ East.

The asymmetry of the temperature field is particularly important for under-

standing the apparently dramatic zonal-mean warming in Fig. 2.13. Despite the

15 K zonal mean temperature rise that peaks just before Ls 320◦, the displaced

cold core of the vortex remains at or below the saturation point all the way to Ls

321◦ sol 1765. Thus, we can infer that up until this point, although some latitudes

and longitudes may be experiencing warming due to the dust storm distorting the

polar vortex, the polar vortex itself has not been breached. However, on the fol-

lowing two sols, the trajectories,PV, and temperatures all point to the occurrence

of a breach in the vortex. On sol 1766 a region of very lowPV (< 0) near 0◦ East,
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Figure 2.26: Maps of Temperature (K) expressed as T − Tsat, for the same sols
as in Fig. 2.25 (sols 1755 – 1760), at the 0.83 mb pressure level in the northern
hemisphere.
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Figure 2.27: Time series ofPV maps, sols 1761 – 1769 in the northern hemisphere,
on the θ = 300K surface, showing the decay of the PV-field breakdown event
discussed in the text. Otherwise the same as Fig. 2.21.
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Figure 2.28: Maps of Temperature (K) expressed as T − Tsat, for the same sols
as in Fig. 2.27 (sols 1761 – 1769), at the 0.83 mb pressure level in the northern
hemisphere.
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75◦ North appears to have penetrated the highPV region, and easterly flow is ob-

served in the same region. On this sol, cold temperatures (T − Tsat < 0) are still

observed inside the vortex at 90◦ East, but by the next, sol 1767, the entire vortex

has warmed, with the minimum temperatures near T − Tsat = 10. Immediately

following this mixing event, thePV field returns to a more symmetric configuration,

and polar temperatures start to drop.

In Figs. 2.29 – 2.31, we see that that southern MY 26 PV-field breakdown

appears to be a prolonged period of warm temperatures and probably enhanced

mixing, in contrast to the gradual distortion and sudden mixing of the northern

event. However, the onset of the warm period is obscured by several sols of missing

data, and so is not included in the time series that we present. Thus it is possible

that the onset is just as abrupt despite the fact that the duration is much longer

and the decay more gradual.

Since the southern PV-field is commonly highly disorganized, the PV field in

Figs. 2.29 and 2.30 is not particularly remarkable, except that many of the fea-

tures are readily traceable for several sols. The traceability of PV-field is likely a

consequence of the fact that the wind speeds are very small for much of this time

series. Other than the temperatures (polar warming with mid-latitude cooling as

discussed earlier), the best evidence for enhanced mixing is the frequency with

which trajectories at all latitudes reverse directions. In Fig. 2.29, one reverses

directions four times, essentially circling a point near 0◦ East, 60◦ South rather

than the pole. During the decay of the high-temperature period, the maximum

in the PV field does not generally increase, instead the area covered by higher

PV values gradually increases as the polar temperatures drop and the wind speeds

increase. Although the temperature field during the warm period is fairly symmet-
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Figure 2.29: Time series of PV maps, sols 1456 – 1461 in the southern hemi-
sphere, on the θ = 280K surface, showing the peak of the south-pole polar vortex
breakdown discussed in the text. Otherwise the same as Fig. 2.21.
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Figure 2.30: Time series of PV maps, sols 1462 – 1470 in the southern hemi-
sphere, on the θ = 280K surface, showing the decay of the south-pole polar vortex
breakdown discussed in the text. Otherwise the same as Fig. 2.21.
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Figure 2.31: Maps of Temperature (K) expressed as T − Tsat, for the same sols
as in Fig. 2.30 (sols 1462 – 1470), at the 0.83 mb pressure level in the southern
hemisphere.
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ric, the temperature decrease associated with the decay is not initially symmetric,

suggesting that some dynamical process is involved.

2.4 Discussion

2.4.1 PV generation

In order to understand thePV field, it is important to understand the rate at which

PV is created and destroyed by diabatic processes. The timescale forPV generation

will tell us over what length of timePV is useful as a tracer. More importantly, the

PV generation rate is also the maximum rate at which mixing can occur acrossPV

contours on a θ-surface. The time-rate-of-change of PV at a given grid point on a

θ-surface is given by [Andrews et al., 1987]:
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where

Q =
∂θ

∂t
, (2.22)

and

σ = −g0
∂p

∂θ
. (2.23)

A detailed calculation of the heating rate Q is beyond the scope of this work.

Therefore, in order to estimate the order of magnitude of the PV generation rate,

we turn to published general circulation model results by Haberle et al. [1993]. We

take Q from their Fig. 25b (northern winter solstice, dust optical depth 0.3), and all

other quantities from our gridded data for MY 24 northern winter solstice period

(sol 344). We then interpolate all quantities onto θ-surfaces and apply Eq. 2.21,
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Table 2.3: Diabatic Contributions toPV generation as fraction of totalPV

1
σ

1
a

∂Q
∂φ

∂u
∂θ
/PV PV ∂Q

∂θ
/PV −Q ∂PV

∂θ
/PV Total

0.00015 -0.047 0.129 0.082

Mean value of terms from Eq. 2.21 over the region 68◦–71◦ north, 110◦–
220◦ east. Units are sol−1.

evaluating derivatives according the conventions described in section 2. Note that

we do not attempt to include the effects of latent heat release and atmospheric

mass loss associated with CO2 condensation.

The second and third terms on the left-hand side of Eq. 2.21 merely represent

the adiabatic advection of PV on the θ-surface. Thus, in order to understand the

extent to which the convenient assumption of PV conservation following the flow

is valid, we need only to evaluate the diabatic terms on the right-hand side of

Eq. 2.21. Since the model results presented by Haberle et al. [1993] are zonal

averages, we neglect terms involving ∂/∂λ.

We find that the diabatic component of ∂PV/∂t
PV

is greatest wherePV is greatest.

Table 2.3 shows the mean values of the terms that make up the diabatic component

over a portion of the PV-maximum region. (Since our PV field is quite symmetric

at northern winter solstice, and since Haberle’s Q values are zonally averaged, our

estimates of these diabatic terms are nearly independent of longitude.) In this

region,PV is being diabatically generated at a rate of about 10% per sol; in other

words, PV is generated with a time constant of about 10 sols. It is important to

realize that this time scale may or may not be longer when the absolute values of

PV are larger, since largerPV might well be associated with larger Q.

The dominant contribution to PV generation is the advection of PV across θ-

surfaces by (in this case, radiative) cooling, Q. In other words,PV increases rapidly
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with height, since it depends on ρ−1, and so downward motion in the θ coordinate

system carries high-PV air to lower levels. The vertical gradient in Q acts to some-

what counteract this effect, and horizontal gradients in Q are essentially irrelevant.

Q ∂PV
∂θ

as the dominantPV generation mechanism is interesting in part because the

same mechanism is responsible for the build-up ofPV at the winter pole on Earth

[Nash et al., 1996]. It’s also interesting because the Hadley circulation is the likely

source of the diabatically descending air represented by Q, which means that the

intensity of the polar vortexPV-field is likely to be directly related to the strength

of the Hadley circulation.

2.4.2 Mixing

Since the PV-map time series clearly show that dynamical timescales are on the

order of one sol, it is reasonable to suppose that PV is to good approximation a

tracer of atmospheric motion, and that rapid changes in thePV configuration, such

as the spiral event of Fig. 2.21, are likely a result of dynamical processes rather

than a simple response to changes in heating. Furthermore, no disturbance with a

time scale of less than ten sols can mix air into the polar region without producing

a noticeable rearrangement of thePV field. Thus, when the vortex is well organized,

as in early–middle northern winter, it is clear that mixing is inhibited.

On time scales comparable to, or longer, than 10 sols, the same processes that

generatePV may in principle mix atmospheric constituents acrossPV contours and

thus into the high-PV region. Thus, for example, dust could be transported into the

high-PV region via the radiative cooling branch of the Hadley circulation, but not

by a primarily adiabatic process like a stationary wave. Our simple estimate of how

Q affectsPV does not, however, give any indication of howPV might be destroyed.
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So once the aforementioned dust-bearing air reaches the high-PV region, it is not

at all clear how, or how rapidly, or by what process, it could then lose PV so as to

move into the low-PV core of the polar vortex. The ten sol timescale is therefore a

lower limit on the timescale for mixing under organized-vortex conditions.

Applying a detailed radiative transfer calculation to our data set would help

answer the PV-loss question. Even in the time period when the polar vortex is

in its most organized phase, the inner edge of the high-PV region sometimes (cf.

Figs. 2.21, 2.24, 2.27) penetrates all the way to the pole, and so dynamical mixing

might also be important. Latent heat is, of course, another potential mixing driver,

since the atmosphere is generally close to or past the condensation point just

interior to the high-PV region.

When the vortex is poorly organized, as is common in southern winter and in

late northern winter, our data set is consistent with, but does prove, that dynamical

mixing is occurring. We are limited by the fact that our spatial and temporal reso-

lution are probably too poor to resolve the processes involved. Since thePV field is

annular, the mere existence of low-PV air at a high latitude does not in general pro-

vide evidence of mixing as it would in the terrestrial stratosphere. To conclusively

demonstrate mixing from thePV field alone, we would therefore need to be able to

follow the migration of a low-PV feature from the mid-latitudes towards the pole,

but the usually rapid evolution of PV features makes this impossible. An event

in which the high-PV boundary between mid-latitude and polar air was breached

would also imply mixing, but since our wind solution has a resolution of no better

than 50◦ in longitude and 5◦ in latitude, only a very large breach would be clearly

observable. Smaller breaches would appear smoothed out into the suggestive but

not conclusive low spots that we commonly observe in the “disorganized” periods.
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However, since there is a clear contrast between the organized and disorganized

time periods, we can still draw the general conclusion that dynamical mixing pro-

cesses such as wave-breaking are much more likely to be important, i.e., operate

at a higher rate, in southern polar winter than in early – middle northern polar

winter. If the dynamical mixing time scale in the southern hemisphere turns out

to be shorter or comparable to the time scale for diabatically driven mixing, then

the southern winter will have a much higher mixing rate overall.

In addition to these periods of enhanced but not clearly resolved dynamical

mixing, we have identified two large-scale mixing events that, as previously dis-

cussed, are discernible in temperature and trajectories as well as in PV. For the

southern winter event, the very rapid temperature rise implies that some dynam-

ical process was the cause, but due to a gap in the TES data set, we cannot say

anything more about what triggered it. For the northern winter warming event,

however, the apparent penetration of the vortex by a lowPV airmass just prior to

the warming of the vortex core strongly suggests a planetary wave breaking event

similar to a terrestrial sudden stratospheric warming.

2.4.3 Connection between the polar vortex and dust opac-

ity

Some of the correlation between northern polar vortex behavior and low-latitude

dust opacity may be explainable in light of, 1) the previously discussed dominant

role of radiative cooling in generating potential vorticity, and 2) simulations by

Wilson [1997] that indicate an expanded Hadley circulation in response to dust.

If we suppose that the zone of radiative cooling that generates PV is in fact the

descending branch of the Hadley circulation, then, as the expansion of the Hadley
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circulation pushes the descending branch northward, the high-PV zone must move

northward along with it, just as we observe. In order to verify this hypothesis, it

will be necessary to, 1) evaluate Q directly from our data set in order to understand

the precise nature ofPV generation, and 2) calculatePV from modeling results that

show expansion of the Hadley circulation.

However, the behavior of the polar vortex during the three high-dust periods

that we have studied indicates that the response of the polar vortex to dust events

is more complicated than a simple Hadley cell expansion. First of all, all three

(Figs. 2.21, 2.24, 2.25) are associated with large (∼ 10◦ latitude) asymmetric per-

turbations to the PV maximum. The asymmetry may simply be a reflection of

asymmetric dust loading. Nevertheless, since these perturbations occur on two-sol

timescales, they are too rapid to be explained by diabatic PV generation, and so

must be associated with some dynamical phenomenon, even if dust opacity was the

root cause. Furthermore, the response of the vortex to to a dust storm is not simply

related to the intensity of the storm. The MY 25 (August 2001) dust storm pro-

duced substantially higher dust opacity than the MY 26 (December 2003) storm,

but the MY 26 storm produced a much more significant disturbance in the polar

vortex PV field. Finally, although the MY 26 storm’s warming event is initially

consistent with a Wilson [1997]-style Hadley cell expansion, the core of the polar

vortex ultimately warms only in response to a planetary-wave-breaking event.

2.4.4 Polar vortex behaviors unrelated to dust

None of the differences between the two southern winter seasons appear to have

any connection with dust opacity. The TES data set does not point to any ex-

planation for these differences. Modeling work to reproduce these interannual
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differences could lead to understanding of an important interannual variability in

mixing rates. Bridger et al. [2003] have conducted multi-year GCM simulations

that show significant interannual variability in poleward eddy heat transport, but

they do not discuss PV, and report only a small amount of interannual variability

in the southern hemisphere.

Although we can’t explain why the south pole warming event of MY 26 occured,

we can say that this event is fundamentally different from the northern MY 26 event

because it involves no Hadley cell expansion, as evidenced by the fact that thePV

field simply diminishes instead of migrating poleward, and because the the vortex

core remains warm for much longer. However, the reversal in wind direction shown

by one trajectory in Fig. 2.27 is reminiscent of a terrestrial stratospheric warming,

as is the large amount of low-PV air near the pole. Thus, there is a good chance that

this event was also caused by a terrestrial-like planetary-wave-breaking episode.

2.4.5 Instabilities

Both the symmetric (fPV < 0) and barotropic (PV has a local maximum or min-

imum) instability criteria are frequently satisfied in this data set. Most of the

symmetric instability is found in a broad mid-latitude swath above the 1 mb level

in northern winter. The only examples of significant symmetric instability in the

polar region occur during the two major mixing events.

Many of the barotropically unstable PV features are transient. However, the

basic state of the winter polar atmosphere on Mars appears to be annular inPV, and

so inherently satisfies the barotropic instability criterion over the entire vertical

range of our data set. However, a local PV maximum or minimum is merely a

necessary condition for instability. More importantly, this instability criterion
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is derived by linearization about a quasi-geostrophic basic state [Andrews et al.,

1987]. Since the Mars polar vortex generally has a Rossby number (R) on the

order of unity, it is far from the quasi-geostrophic regime, and so the standard

barotropic instability theory may not apply. Clearly an analytical treatment of

Rossby waves for the R ∼ 1 case will be necessary to understand Mars polar

vortex dynamics. Note that barotropically unstable zonal mean flow is observed

on Earth, in small regions just inside and just outside of the southern winter polar

vortex [Hartmann, 1983; Andrews et al., 1987], but the wind speeds there fall well

within the small R regime. Barnes et al. [1993] note in passing that the meridional

potential vorticity gradient changes sign on the flanks of the polar vortex jet in

their Mars GCM simulations. However, their model exhibits these sign changes

only at high altitudes and only in the northern hemisphere, and they do not discuss

the stability implications of this phenomenon.

2.4.6 CO2 saturation

The coverage of MGS radio occultation profiles (see, for example, http://nova.

stanford.edu/projects/mgs/coverage.html and Hinson et al. [1999]) is very

sparse compared with the TES temperature measurements that we rely on, and

winter pole measurements turn out to be extremely rare. However, it may be

possible to use the few winter polar observations that do exist to check our super-

saturation results. The MGS radio occultation temperature-pressure profile data

set is described by Hinson et al. [1999].

The equatorward boundary of the region where we measure saturated temper-

atures does coincide, at both poles, with the equatorward boundary of the region

where the Mars Orbiter Laser Altimeter (MOLA) detects high-opacity clouds [Co-
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laprete et al., 2003]. Furthermore, Colaprete et al.’s maps of MOLA cloud returns

show a higher incidence of clouds within a ring roughly coincident with the zone of

highest saturation that we measure just inside thePV maximum. Thus, regardless

of the accuracy of the temperature measurements, the regions of saturation that

we identify interior to the polar vortex are probably correct in the sense that they

reflect zones of active CO2 condensation. If the temperature measurements are in

error, then high-opacity CO2 cloud should be considered as a possible cause of that

error, which would mean that spuriously low temperatures are indirectly valuable

as an indicator of opacity.

Assuming that the saturated regions are correctly identified, we can draw two

important conclusions. First, since the high-PV zone and the saturation zone move

together, with the saturation zone staying just inside the high-PV zone, the high-

PV zone may be controlling the location of the saturation zone by acting as the

poleward boundary of heat transport. The converse — that latent heat release

in the saturated zone would block the diabatic cooling that generates PV, and so

define the poleward boundary of the high-PV region — seems less likely given that

the annular PV field persists even at altitudes above where the saturation takes

place. Second, the MY 26 southern winter polar vortex probably had fewer clouds

and less atmospheric CO2 condensation than the preceding year. Less CO2 “snow”

has implications for the surface properties of the polar cap when it is revealed in

spring.

2.5 Conclusions

1. The Mars polar vortex has a Rossby number of order unity and an annular

PV field. The stability of this configuration needs to be investigated.
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2. The PV field of the polar vortex approximately defines the boundary of the

CO2 saturation zone.

3. The northern hemisphere polar vortex is more organized and therefore prob-

ably a stronger barrier to mixing and heat transport than the southern hemi-

sphere polar vortex. Radiative heating/cooling estimates from the TES data

set, as well as numerical models, are needed to verify and quantify this result.

4. Radiative cooling associated with the Hadley circulation is probably the main

generator ofPV. Radiative heating/cooling estimates from the TES data set,

as well as numerical models, are needed to verify and quantify this result.

5. Increased low-latitude dust loading leads to contraction of the polar vortex,

but in general has no impact on temperatures in the core of the vortex. The

onset of the contraction in response to dust storms is too fast to be explained

by a purely diabatic process.

6. The southern polar vortex shows substantial interannual variability that is

not related to dust loading.

7. The MY 26 southern polar vortex experienced a 10 K warming event that is

associated with a breakdown of thePV field.

8. The MY 26 northern polar vortex, during the December 2003 dust storm,

experienced a planetary-wave-breaking event that was followed immediately

by a 10 K warming in the core of the vortex.



CHAPTER 3

THEMIS-VIS OBSERVATIONS OF CLOUDS IN THE MARTIAN

MESOSPHERE

3.1 Introduction

The Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System

(THEMIS) [Christensen et al., 2004] has been conducting mapping operations from

Mars orbit since February 2002. Although the THEMIS investigation is directed

primarily towards surface geology, [e.g., Christensen et al., 2005; Bandfield et al.,

2004; Christensen et al., 2003; Titus et al., 2003] it routinely monitors aerosol

opacities [Smith et al., 2003] with its multispectral infrared detector (THEMIS-

IR) and images clouds [Richardson et al., 2006] with its visible band subsystem

(THEMIS-VIS).

For a subset of the THEMIS-VIS cloud images, it is possible to discern move-

ment of the cloud features relative to the surface. This apparent motion yields

information about the altitude of the cloud, via parallax, as well information about

the actual velocity of the cloud. This chapter focuses on those cloud features with

the largest apparent motion, which are those at mesopheric [as defined by Zurek,

1992] altitudes. At these altitudes, the apparent motion is dominated by parallax,

but zonal velocities are also measurable.

Mesospheric clouds, and their advection by mesospheric winds, are key indi-

cators of mesospheric dynamics, are an important test for models of cloud micro-

physics and the martian general circulation, and may provide insights into the pos-

sibly analogous terrestrial phenomenon of noctilucent clouds. They might also be

important for the radiative budget and chemistry of the mesosphere. The prevail-

72
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ing explanation for the observed reversal in the mesosphere of the pole-to-equator

temperature gradient [e.g., Smith et al., 2001] on both Mars and Earth is that

upward propagating gravity waves break in the mesosphere, thereby transporting

momentum from the surface and exerting a drag on mesospheric winds. [Holton,

1983; Jaquin, 1989; Joshi et al., 1995] Condensate cloud morphology may provide

direct evidence of gravity waves, and the wind field traced by cloud motion is of

course sensitive to the amount of drag. Wave drag is a crucial boundary condition

for general circulation models. [e.g., Joshi et al., 1995]

In order for clouds to form, aerosol particles must be supported by updrafts

or eddy diffusion, or condensation must be rapid. Models of mesospheric cloud

formation [Glandorf et al., 2002; Colaprete and Toon, 2003] require heterogeneous

nucleation, unless the mesosphere is much colder than expected, and so dust grains

of sufficient size must be transported upward from the surface, imposing require-

ments on eddy diffusion and/or vertical velocities for the entire atmosphere. Sim-

ilar problems exist in the study of terrestrial noctilucent clouds (most recently

reviewed by Kokhanovsky [2005]), which are observed in twilight and found in the

summer polar mesosphere. Hunten et al. [1980] suggested meteors and microm-

eteors as a possible solution to the terrestrial nuclei source problem. The most

significant mystery surrounding terrestrial mesospheric clouds, however, is that re-

ports of noctilucent clouds seem to begin in the industrial era, and their frequency

and latitudinal extent have shown a secular upward trend [Klostermeyer, 2002].

Jaquin [1989] suggests that even the small vertical optical depth of the meso-

spheric haze might be significant for the radiation budget of the poles, once the

slant-path optical depth is taken into account. Clearly, however, mesospheric

clouds have substantial impact on the optical depth of the mesosphere itself, and
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thus may significantly influence the mesosphere’s ability to absorb and emit ra-

diation. Mesospheric clouds may also impact the chemistry of the mesosphere.

Atreya and Blamont [1990] invoke heterogeneous chemical reactions, permitted by

the presence of the aerosols, to explain an observed enhancement in the rate of CO

recycling back to CO2. They suggest that a persistent depletion of CO relative to

CO2 might decrease the long term loss of CO2 to space.

Jaquin et al. [Jaquin et al., 1986; Jaquin, 1988, 1989] and Clancy et al. [2006]

present surveys of mesospheric aerosols observed on the limb by the Viking orbiters

and by Mars Global Surveyor, respectively. These aerosols are observed in the

form of a “detatched haze,” for which profiles of brightness above the martian

limb show at least one distinct peak at an altitude of 50 – 90 km. The detached

hazes have been detected only in visible wavelengths — by the Viking Orbiter,

the Mars Orbiter Wide-Angle Camera, and the TES solar-band bolometer — and

have vertical optical depths on the order of 0.01. Some images reveal multiple

peaks in the brightness profiles, which could be either multiple vertical layers or

horizontally discrete clouds in the foreground or background. The mesospheric

hazes are not detected by the TES infrared channels, which Clancy et al. [2006]

suggest implies an effective particle radius of less than 0.5 µm.

Neither survey detects any detached haze above 50 km during the aphelion

period, Ls 60◦ – 100◦. Jaquin [1989] reports that the maximum elevation of limb

aerosols oscillates in phase with the annual variation of solar insolation, with the

minimum below 50km during the aphelion period. Clancy et al. [2006] report that

the detached hazes are most prevalent immediately before and immediately after

the aphelion period, and are concentrated within two longitude bands: 240◦ – 310◦

east and 340◦ – 20◦ east. These two surveys do not provide a clear answer about
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the prevalence of high-latitude mesospheric detached hazes. While Clancy et al.

[2006] describe the detached hazes as largely confined to within 15◦ of the equator,

Jaquin [1988, 1989] report a few examples in the 50◦ – 60◦ south range near Ls

300◦, as well as in the 40◦ – 50◦ north range near Ls 330◦.

Spectroscopic solar occultation measurements performed by the Phobos 2 space-

craft [Chassefière et al., 1992] provide a much smaller data set and more limited

temporal coverage, but offer more detailed information about the limb aerosols.

All of the Phobos 2 detached hazes were between 45 and 60 km altitude, have a

vertical thickness of 3 - 6 km, and a vertical optical depth of less then 0.03. Chas-

sefière et al. [1992] report a diversity of particle sizes, ranging from an effective

particle radius of 0.15±0.1 µm in one measurement to 0.9±0.2 µm in another.

Horizontally resolved cloud features (as opposed to limb hazes) at mesospheric

altitude have been previously reported on only one occasion, and the altitude

of those clouds is in dispute. On sol 39 of Mars Pathfinder lander operations,

”discrete blue clouds” [Smith et al., 1997] were observed by the Imager for Mars

Pathfinder (IMP) during a period from 100 to 35 minutes prior to sunrise. The

visibility of these clouds before sunrise could in principle yield information about

their altitude, but the IMP science team [Smith et al., 1997] explicitly ruled out

the possibility that these were directly illuminated mesospheric clouds, arguing

instead that they were indirectly illuminated clouds at lower altitudes, and thus

most likely composed of water ice. Clancy and Sandor [1998] describe the same

features as ”discrete linear clouds” with ”wave-like structure,” and argue that they

were directly illuminated mesospheric clouds at 80 – 100 km altitude and composed

of carbon dioxide ice. Their preferred model for the aerosol is 0.1–0.3 µm effective

radius dust particles with number densities of 20–1000 cm−3 and a vertical optical
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depth of 0.1, an order of magnitude greater than the detached limb hazes.

The composition of mesospheric aerosols has been controversial, in part because

the behavior of martian mesospheric temperatures is not well understood. Earlier

authors [Chassefière et al., 1992; Jaquin, 1988] ruled out the possibility of CO2 ice

on the basis of temperature measurements, and conclude that the aerosols must

be composed of water ice. Clancy and Sandor [1998], however, review a larger

set of historical data, including the Pathfinder Lander descent profile and ground-

based submillimeter measurements, and argue that the martian mesosphere is cold

enough in some seasons to allow for CO2 condensation. In their view, the mean

mesospheric profiles are at times within 10 K of the CO2 frost point, which allows

gravity waves to transiently drive the temperature below saturation as was seen

in the Pathfinder descent ([Magalhães et al., 1999]). Modeling by Colaprete and

Toon [2003] presents a complication. Colaprete and Toon [2003] calculate that CO2

nucleation at the level of supersaturation seen in the Pathfinder profile requires

dust particles of at least 0.5 µm in radius, which is obviously too large to form the

0.1–0.3 µm ice particles suggested by Clancy and Sandor [1998].

Previous estimates of mesospheric zonal (east-west) winds have been made

either by applying a gradient-winds methodology to temperature soundings [e.g.,

Smith et al., 2001], or by earth-based doppler techniques [Lellouch et al., 1991;

Sonnabend et al., 2005]. The gradient method is not applicable near the equator,

and it requires an assumption about the surface winds as a boundary condition.

The resolution of the prerequisite temperature field is also typically fairly low —

30 degrees sampling interval in longitude and 1 scale height in altitude in the

case of MGS-TES [Smith et al., 2001] — and so the wind estimate is inherently an

average over large vertical and horizontal scales. The TES gradient wind estimates
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are available only below 0.01 millibars (about 60 km altitude), but they have a

key advantage in that they are available planet-wide in a continuous time series

over a period of several martian years. The two earth-based doppler measurements

provide a more direct estimate of mesospheric wind, but with FWHM beam sizes of

50% and 15% of the planet’s diameter (Lellouch et al. [1991] and Sonnabend et al.

[2005] respectively), they represent averages over a broad swath of the mesosphere.

(The altitude resolution is much better, because both groups select spectral lines

confined to 60 – 80 km altitude.) Lellouch et al. [1991] use a millimeter-wave

carbon monoxide absorption band and assume a functional form for the shape of

the expected easterly equatorial jet in order to compensate for their poor horizontal

resolution. For their single measurement near northern winter solstice, they derive

an easterly speed (i.e., westward flow) of 160 ± 80 m/s for the core of a jet assumed

to be centered at 20◦ south. Sonnabend et al. [2005] find a westward (easterly)

zonal flow of 74 ± 22 m/s near 20◦ north in mid- northern winter using a mid-

infrared carbon dioxide emission line.

In this chapter we describe ∼ 50 measurements of altitude and velocity for

mesospheric clouds that are horizontally resolved with a sampling interval of 70

meters per pixel or better. In order to place the measurements in context, we

compare the images with daily global maps from Mars Global Surveyor’s Mars

Orbiter Wide Angle Camera (MOC-WA), and we compare measured winds results

from a baseline general circulation model. Finally, we apply a radiative transfer

model to a subset of these images in order to investigate the extent to which

THEMIS-VIS can place constraints on the cloud aerosol properties.
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3.2 Altitude-velocity measurement: theory

Apparent motion is detected as a side-effect of the THEMIS-VIS multi-spectral

imaging scheme — the same location is imaged through different filters at dif-

ferent times, so that map-projecting the frames acquired by different filters onto

the local surface will effectively co-align stationary surface features, but create a

misalignment for any feature with apparent motion caused either by parallax or

velocity. A very good approximation of this parallax motion is obtained by ne-

glecting the curvature of the planet and taking the spacecraft trajectory to be

parallel to the surface. The geometry of this situation is shown in Fig. 3.1. Sup-

pose that THEMIS-VIS images a cloud feature through a certain filter while the

ODY spacecraft is at position (1), and then images the cloud feature one second

later through another filter while the spacecraft is at position (2). The apparent

position of the cloud feature relative to the surface is the intersection with the

surface of a line drawn from the spacecraft through the cloud feature, and the

parallax motion is the distance between the intersections of the two lines from the

two different spacecraft positions. Using similar triangles we find that the parallax

motion,vapp , is:

vapp = −vODY
zcloud

zODY − zcloud

, (3.1)

and

dvapp

dzcloud

= −vODY
zODY

(zODY − zcloud)
2 . (3.2)

With the ODY orbit altitude, zODY, and ground-track velocity, vODY, of approxi-

mately 400 km and 3000 m/s, a cloud at, for example, zcloud = 50km altitude has

an apparent motion due to parallax of 430 m/s, and the derivative of the apparent

motion is 10 m/s per km of altitude.
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Figure 3.1: Schematic (not to scale) of parallax motion. When the spacecraft
moves from position 1 to position 2 between exposures, the apparent position of
the cloud feature relative to the surface moves from 1* to 2*.

The THEMIS-VIS pixel sampling interval is 0.045 milliradians [Christensen

et al., 2004], which amounts to 18, 36, and 72 meters per pixel at the martian sur-

face for the available 1x1, 2x2, and 4x4 binning modes, respectively. The narrow-

band (∼ 50 nm FWHM) THEMIS-VIS filters are bonded directly to the surface

of the detector. Each filter has a field of view of 1024 (1x1 binned) pixels perpen-

dicular to the ground-track of the spacecraft (“cross-track”) by 192 (1x1 binned)

pixels parallel to the ground-track of the spacecraft (“down-track”). The orbital

motion of the spacecraft causes their fields of view to pass over surface features

in the following order: 869 nm, 425 nm, 654 nm, 749 nm, 540 nm (the filters are

labeled by their center wavelength). It takes slightly longer than 1 second for a

surface feature to cross the down-track width of a filter, and so the delay between

individual images in a THEMIS-VIS imaging sequence is set to a value close to 1
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second. The interframe delay is exactly 1 second for all of the imaging sequences

used in this chapter. See chapter 4 for a more detailed discussion of THEMIS-VIS

operations.

We measure apparent motion using the 425 nm (“blue”) and 540 nm (“green”)

filters, because these filters offer the largest change in apparent pixel position for

any given apparent motion. (The 869 nm band is not usable due to severe stray

light, see chapter 4.) The blue and green filters also offer the highest contrast for

cloud features. Given the 1 second interframe delay, and the three filter widths

between the blue and the green filters, most features observed in the blue filter are

observed 3 seconds later in the green filter, and thus the 10 m/s per km of altitude

of parallax motion translates to a 1.7, 0.83, or 0.42 pixels per km apparent motion

in 1x1, 2x2, or 4x4 binned THEMIS-VIS images. Actual cloud velocity produces,

of course, 0.17, 0.083, or 0.042 pixels per m/s of apparent motion. Thus, we expect

that the precision of our measurements will not be much narrower than 20 m/s in

velocity and 2 km in altitude for the 4x4 binned THEMIS-VIS sequences in which

most of the high altitude clouds are detected. We also expect that, at mesospheric

altitudes, the velocity motion will be much smaller than the parallax motion.

Since the parallax apparent motion is parallel to the ground track of the space-

craft (and in the opposite direction), the component of velocity parallel to the

spacecraft ground track can not be distinguished from parallax motion. Since the

parallax motion is the dominant effect, this means that the ground-track-parallel

velocity component is essentially undetectable, and that the presence of a ground-

track parallel velocity component introduces a small error in altitude which is given

by equation 3.2. The Odyssey spacecraft is in a polar orbit, moving southward

on the afternoon side of the orbit where all observations discussed in this chapter
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were acquired. Thus, a 50 km high cloud feature moving southward at 50 m/s

would have a measured altitude of 45 km. Meridional (north-south) winds in the

martian mesosphere have never been measured, but the Joshi et al. [1995] model

of gravity wave drag in the martian mesosphere leads to time-averaged meridional

winds of less than 50 m/s for the regions probed by our measurements. This model

calculation was for perihelion, the time of greatest meridional flow, and so a 50

m/s meridional wind can be considered an extreme case. Due to the rotation of

Mars and the small inclination of the Odyssey orbit plane, the ground track is

not actually due south — its heading is near 190◦ at mid- to low altitudes — but

this introduces only a trivial (less than 2%) correction to the relationship between

meridional velocity and altitude implied by equation 3.2.

3.2.1 Altitude-velocity measurement: method

In principle, we could solve for any one velocity component that is not parallel or

nearly parallel to the ground track. We choose the zonal velocity simple because

meridional and zonal velocities are the standard basis for describing horizontal

atmospheric winds, and the meridional velocity component is unresolvable as pre-

viously discussed. Fortunately, the zonal velocity is normally the dominant wind

component in the atmosphere (except near the planet surface).

Figures 3.2 – 3.5 illustrate our method using a particular measurement from

THEMIS-VIS image sequence V04573003 as an example. Figure 3.2 shows a con-

tour plot of the correlation of the blue filter image with the green filter image as a

function of zonal (eastward) velocity and altitude above the Mars reference ellip-

soid. Figure 3.3 shows the region of the V04573003 Reduced Data Record (RDR)

used to calculate the correlation (described below), which we will henceforth refer
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Figure 3.2: Correlation as a function of altitude and zonal velocity. The shaded
contours show the difference between the correlation and the peak correlation
(indicated by “X”), with contours at intervals of 0.25 in units of the standard error
of the correlation. The black lines show a test of the hypothesis that the correlation
at a given grid point is not less than the maximum correlation. The thick black
line shows the 5% level for this hypothesis, which defines our confidence intervals.
The outer and inner thin black lines show the 1% and 10% levels, respectively.

to as the correlation region of interest (“correlation-ROI”). Figure 3.4 shows the

blue filter projected onto the green filter correlation-ROI at the best fit (maximum

correlation) altitude and velocity, and Figure 3.5 shows the same projection using

the altitude and velocity (zero by definition) of the local surface.

All of our measurements are performed using THEMIS-VIS RDRs, which are

available from NASA’s Planetary Data System. Each RDR contains all of the

filter images from all of the exposures in a THEMIS-VIS imaging sequence. Each

plane of the RDR stores all the individual filter images for a given filter, arranged

in temporal order. We refer to these individual filter images as “framelets”. Each

framelet is a 1024 by 192 (or 512 by 96 or 256 by 48 for 2x2 or 4x4 binning) array

of radiance values for a single filter in a single exposure. (See chapter 4 for the
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Figure 3.3: The V04573003c ROI, which was used to generate the correlation
map shown in Figure 3.2.
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Figure 3.4: Co-alignment of the green and blue filters at the best-fit altitude and
velocity solution for the V04573003c ROI. The blue filter has been projected onto
the green filter RDR as described in the text. In this figure, regions of the ROI
that are invalid for calculating the correlation according to the criteria described
in the text are left blank. The red and green channels of this RGB figure are
controlled by the green filter ROI image, and the blue channel by the projected
blue filter image. Each filter is stretched individually to maximize contrast.



85

Figure 3.5: Co-alignment (i.e., lack thereof) of the green and blue filters at
the altitude of the local surface for the V04573003c ROI. Otherwise the same as
Figure 3.4

details of RDR layout and radiance calibration.) The correlation-ROI is defined

as a rectangular region within the green filter plane of the RDR. Normally, this re-

gion encompasses multiple framelets, and so when the correlation-ROI is displayed

without map projection there are discontinuities at the framelet boundaries, as

seen in Fig. 3.4.

To calculate the correlation, we first classify each RDR pixel as either valid

or “null” (invalid). Valid pixels are used for calculating the correlation, and null

pixels are excluded. The valid region of the framelets is defined so as to exclude

the regions which commonly contain stray light artifacts (which are discussed in

chapter 4). In framelet coordinates, the valid region is samples 160 – 840, lines 0

– 176 for 1x1 binning (divide these coordinates by 2 or 4 for 2x2 or 4x4 binning,

respectively). Framelet line-sample coordinates are the same as the line and sample

numbers in the RDR, except for a translation setting the lowest line number in a
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framelet equal to 0. All pixels outside the valid region in a framelet are set to null.

Pixels that are null in the original RDR are also classified as null.

Next, we project the blue filter data onto the green filter correlation-ROI with

the given assumed altitude and velocity. To do so, we handle each green filter

framelet within the correlation-ROI separately, and perform the following steps:

1. Calculate the latitude and longitude of each pixel in all blue filter framelets

near to the green filter correlation-ROI. We do so following the method of the

Unites States Geological Survey’s ISIS software package [Torson and Becker,

1997; Gaddis et al., 1997, http://isis.astrogeology.usgs.gov/], which we have

adapted to apply to targets of arbitrary altitude. This method consists of:

(a) use the NASA Navigation and Ancillary Information Facility’s SPICE

data kernels and toolkit [Acton, 1996] to determine the exact position

and attitude of ODY with respect to Mars, and from that the boresight

vector of the THEMIS-VIS instrument;

(b) use the ISIS package’s THEMIS-VIS camera model, which includes a

correction for optical distortion, to derive the pointing vector for each

pixel from the boresight vector;

(c) identify latitude and longitude of each pixel as the intersection of its

pointing vector with an ellipsoid parallel to the Mars reference ellipsoid

and at a given altitude above it.

To verify this latitude and longitude calculation method, we have used it to

map project THEMIS-VIS framelets from all filters onto the local surface

elevation. These map projection tests show that we obtain results identical

to the ISIS software. They also show occasional misalignment of surface
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features by up to two 1x1 binning pixels. This means that inaccuracies in

the ISIS camera model, or, less likely, the SPICE data kernels, may cause

systematic errors in our altitude and velocity measurements of up to 1 km

in altitude or 10 m/s in velocity. These potential errors are small compared

to other uncertainties, and so we have not pursued this issue further.

2. Adjust the longitude of each blue filter pixel to compensate for the assumed

zonal velocity. The necessary translation for the given velocity depends

on the time elapsed between the green filter framelet and each blue filter

framelet, and the result of the translation is that locations in the blue filter

framelet are labeled with longitudes projected forward to the time that the

green filter framelet was exposed.

3. Convert the latitude and velocity compensated longitude for each blue filter

framelet pixel into a line and sample number in the reference frame of the

green filter framelet’s framelet coordinates. Our method in this step is also

based on the ISIS software package:

(a) calculate the vector from ODY to a pixel’s latitude and compensated

longitude on the ellipsoid at the given altitude;

(b) apply the inverse of the ISIS package’s THEMIS-VIS camera model to

determine the sample and line number referenced to the green filter

framelet’s origin.

4. Interpolate the blue filter framelet image from the non-integer line and sample

coordinates calculated for the blue filter pixels in the preceding step to the

integer line-sample coordinates of the green filter framelet. We perform a

separate linear interpolation for each blue filter framelet onto the green filter
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framelet. Interpolated values are only created in the interior of each region

covered by valid blue filter framelet pixels. Any pixels of the interpolated

blue filter image which are interior to none of these regions are classified as

null.

The above procedure results in a blue filter image that has been projected

onto the green filter image for each framelet in the correlation-ROI. We then as-

semble these projected blue filter framelets into the blue filter projected image

of the correlation-ROI. Any pixel which is null in either the projected blue filter

correlation-ROI or the original green filter correlation-ROI is now set to null in

both. Figures 3.4 and 3.5 are examples of the green filter correlation-ROI over-

lain with the projected blue filter correlation-ROI. Null pixels are blank (white) in

these figures.

Electron counting noise in the image pixels leads to noise at a characterstic

frequency in maps of correlation versus altitude and velocity. To address this, we

apply a gaussian smoothing function, with a FWHM of 3 pixels in both the line and

sample direction, to both the green filter and projected blue filter correlation-ROI

images prior to calculating the correlation. We observe, e.g., Figure 3.2, that this

smoothing eliminates the noise in the correlation map and improves the overall

precision of the measurement.

The altitude and velocity for the correlation-ROI are those that give the highest

correlation between the projected blue filter and the green filter correlation-ROI.

To find the maximum correlation, we first apply a downhill simplex non-linear

optimization routine based on the “amoeba” routine from Press et al. [1992]. Our

modified amoeba search halts when the change in altitude and velocity with subse-

quent iterations is less 0.5 km in altitude and 5 m/s in velocity. We then perform



89

an adaptive grid search on the altitude-velocity space surrounding the best fit

produced by the amoeba search. The adaptive grid search allows us to map the

probability density function of the altitude and velocity fit and acts as a consis-

tency check for the amoeba search results. Our reported “best-fit” altitude and

velocity estimate is the grid point with maximum correlation.

For the grid search, all grid points on the boundary of the grid must have a

correlation more than three standard errors below that of the grid point with the

best correlation. If this criterion is not satisfied for a particular boundary, the

grid is expanded in that direction until it is satisfied. This adaptive grid search is

performed up to three times with the grid sampling intervals decreased by a factor

of two after each iteration. The initial grid sampling intervals are 2 km in altitude

and 20 m/s in velocity. If the size of the adapted grid at the end of an iteration

is larger than 10 grid points in either dimension, the grid search is halted in order

to conserve computational resources.

One problem inherent in this correlation search method, as in all real-world

localization problems, is that the movement of significant image features into or

out of the region of interest as the altitude or velocity is changed leads to spurious

changes in the correlation. For example, surface features are often visible beneath

the high altitude cloud features that we are correlating. As the altitude and velocity

are adjusted, a surface could move out of the region of valid pixels, artificially

improving the calculated correlation. We mitigate this problem in two ways.

1. When performing the grid search, we require the correlation calculation at

every grid point in an iteration to use the same set of correlation-ROI pixels.

Effectively, we set all pixels that are null at any grid point to be null at all

grid points. For the wider range of velocities and altitudes considered by the
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amoeba search, this strict pixel validity requirement is infeasible, because it

would lead to the majority of pixels being labeled null. The amoeba search

therefore begins to use the strict pixel validity requirement only after it has

narrowed down the altitude and velocity range. Once the amoeba search is

altering the altitude and velocity estimates by less than 4 km and 40 m/s per

iteration, it switches to the strict pixel validity requirement. For the amoeba

search the validity requirement is cumulative once the strict requirement is

invoked. Pixels that were invalid in one correlation calculation remain invalid

for all future correlation calculations.

2. We project, as previously discussed, the blue filter framelets onto the green

filter, instead of the the other way around. The above strict pixel validity

requirement prevents any change in the features of the unprojected filter

that are used in the correlation. However, it does not prevent features in

the projected filter from moving into and out of the correlation-ROI. Surface

features visible though the high-altitude cloud are much more prominent

in the green filter than the blue filter. Thus, by using the blue filter as

the projected filter, we minimize the significance of surface features causing

spurious changes in the correlation by moving into or out of the correlation-

ROI.

To calculate the standard error of the correlation coefficients at each grid point,

we apply the bootstrap method [Efron and Tibshirani, 1993] at the grid point

with the highest correlation. This bootstrap calculation generates 1000 simulated

data sets by randomly sampling, with replacement, from the valid points in the

correlation-ROI. The number of points in each simulated data set is equal to the

number of points in the correlation-ROI. It then calculates the correlation for each
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simulated data set, generating a set of correlation measurements that simulates

repeating the correlation measurement 1000 times. The bootstrap standard error

is the standard deviation of this simulated correlation data set. To identify the

confidence intervals for the altitude and velocity estimates, we construct a test

of the hypothesis that the correlation at a given grid point is not less than the

maximum correlation, using the bootstrap standard error as the standard error

for both the maximum correlation and the grid points. Our reported confidence

intervals contain all points for which the probability of this hypothesis is greater

than 5%. In Figure 3.2, the boundaries of this confidence interval are illustrated

by a bold black line.

3.2.2 Altitude-velocity measurement: candidate selection

We have found that the most efficient and reliable method of identifying candidate

mesospheric clouds in the THEMIS-VIS data set is to visually inspect each multi-

spectral THEMIS-VIS image. Important obstacles to doing this automatically are

1) false positives caused by calibration artifacts and/or very low contrast image

features; and 2) false negatives caused by the proximity of surface features to

mesospheric cloud features.

We perform the search for candidates by map-projecting all multi-spectral

THEMIS-VIS images onto the local surface and assembling the filters into en-

hanced color renderings such as those in Fig. 3.6. The enhanced color rendering

simply assigns the blue, green, and “red” (654 nm) filter images to the blue, green

and red channels of the standard RGB color space, stretching each filter image

individually so that ± α standard deviations from its mean fills the full dynamic

range of the corresponding channel. If the “red” (654 nm) filter is not present in
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Figure 3.6: Example discovery images, showing the appearance of mesospheric
clouds when map projected using the altitude of the local surface. These images
use enhanced color rendering defined in the text, the grid lines give degrees east
longitude and degrees north latitude, and the projection is sinusoidal.

a given image sequence, the 749 nm filter is used in its place. We chose α on a

case by case basis, but typically use α = 2. Any apparent motion relative to the

surface shows up as a misalignment between the color channels. We rely on this

misalignment to identify the mesospheric cloud candidates.

THEMIS-VIS sequence V04573003 (see Figure 3.6) was the first misalignment

identified in the data set. Prior to its discovery, there was no expectation that

mesospheric clouds would be observable by THEMIS-VIS. To date we have exam-

ined all multi-spectral THEMIS-VIS image sequences up to and including sequence

V18086011 (acquired Jan. 11, 2006). Whenever an apparent color misalignment is
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Table 3.1: Correlation-ROIs: equatorial mesospheric cloud candidates
ID1 Ls N. lat2 E. lon2 ◦ Inc.2 samples3 lines3

V04573003a 113.7 -16.661 261.136 80.2 59 – 421 1164 – 1398
V04573003b 113.7 -16.410 261.172 80.1 94 – 433 687 – 936
V04573003c 113.7 -16.240 261.196 80.0 84 – 420 322 – 655
V10324001a 18.3 -5.003 356.963 67.9 117 – 440 1263 – 1644
V10526009a 26.1 0.523 261.881 68.9 86 – 429 713 – 1126
V11100003a 47.5 -14.359 290.794 78.0 76 – 217 4685 – 4894
V11100003b 47.5 -14.071 290.818 77.9 44 – 203 4393 – 4639
V11100003c 47.5 -13.562 290.891 77.8 53 – 220 3918 – 4151
V12922001a 113.8 -6.201 292.486 83.0 101 – 334 268 – 658
V13072001a 119.6 -5.308 285.542 82.9 80 – 257 1194 – 1333
V13072001b 119.6 -5.208 285.576 82.9 67 – 341 802 – 1354

1THEMIS-VIS sequence number, with a lower case letter appended to
distinguish individual ROIs

2At the center of the ROI
3Line/sample numbers as stored in RDR; first sample, line labeled 0, 0.

identified, we then select one or more correlation-ROIs from the RDR of that imag-

ing sequence. The rectangular correlation-ROIs are selected to enclose a region of

morphologically similar misaligned features while avoiding, as much as possible,

high contrast surface features. When the misaligned features cover a large portion

of the sequence, or when there are multiple morphologically distinct groups of ap-

parent high altitude clouds, we select multiple correlation-ROIs in that sequence.

We have also selected a few cloud features with no apparent misalignment to serve

as a control for our identification method. Tables 3.1 – 3.4 list all of the candidate

correlation-ROIs, including the controls.

The selected candidate correlation-ROIs range from cases of obvious cloud fea-

tures with dramatic misalignment, to cases with barely visible features and ques-

tionable misalignment. Even though we take care to include marginal cases as

candidates, this detection method is obviously biased towards the highest altitude

clouds. This is one reason why we have chosen to limit this work to mesospheric

clouds. Even though our measurement technique is precise enough to detect the
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Table 3.2: Correlation-ROIs: mesospheric cloud candidates Ls 200◦ – 250◦

ID Ls N. lat E. lon ◦ Inc. samples lines
V06705017a 206.1 49.723 318.187 94.9 41 – 217 1067 – 1621
V06717019a 206.7 51.174 332.432 95.4 22 – 226 67 – 418
V06768014a 209.3 44.059 300.252 94.1 30 – 223 536 – 894
V06768014b 209.3 44.369 300.311 94.2 29 – 230 311 – 523
V06768014c 209.3 44.622 300.359 94.2 26 – 232 51 – 299
V06793016a 210.5 40.500 298.631 93.3 41 – 228 2296 – 2891
V06793016b 210.5 42.161 298.929 93.8 25 – 224 691 – 1305
V06905017a 216.2 45.794 309.566 96.1 24 – 224 3000 – 3338
V06905017b 216.2 46.597 309.723 96.4 26 – 224 2216 – 2574
V06917014a 216.8 44.586 323.246 95.8 47 – 211 678 – 935
V06930045a 217.4 44.660 308.360 96.0 40 – 218 4148 – 4599
V06930045b 217.4 45.830 308.585 96.4 42 – 221 2921 – 3574
V06930045c 217.4 47.637 308.944 97.0 36 – 222 1354 – 1666
V07005019a 221.3 43.785 305.275 96.4 31 – 230 527 – 974
V07005019b 221.3 44.324 305.377 96.6 35 – 222 34 – 424
V07029045a 222.5 46.433 333.637 97.5 38 – 215 3040 – 3438
V07029045b 222.5 48.225 333.997 98.2 36 – 214 1380 – 1650
V07067015a 224.4 44.425 317.417 97.1 41 – 213 2616 – 2867
V07079012a 225.0 42.557 330.996 96.5 32 – 209 4287 – 4671
V07079012b 225.0 42.986 331.075 96.7 31 – 217 3865 – 4259
V07079012c 225.0 43.848 331.234 97.0 34 – 223 3042 – 3430
V07079012d 225.0 44.416 331.342 97.2 33 – 224 2433 – 2942
V07080012a 225.1 42.730 302.198 96.6 39 – 212 2671 – 2969
V07080012b 225.1 44.117 302.479 97.1 36 – 219 1273 – 1704
V07105019a 226.4 41.141 300.979 96.2 50 – 209 3150 – 3376
V07105019b 226.4 41.700 301.072 96.4 48 – 201 2553 – 2900
V07166022a 229.5 39.663 341.549 95.9 47 – 202 3779 – 4009
V07166022b 229.5 40.575 341.708 96.3 48 – 202 2891 – 3144
V07166022c 229.5 41.855 341.928 96.8 54 – 194 1638 – 1939
V07166022d 229.5 43.457 342.231 97.4 41 – 214 79 – 411
V07467019a 245.2 48.212 302.699 100.5 39 – 213 730 – 1138
V07504020a 247.1 46.357 315.269 99.7 44 – 208 1160 – 1385
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Table 3.3: Correlation-ROIs: mesospheric cloud candidates Ls 250◦ – 300◦

ID Ls N. lat E. lon ◦ Inc. samples lines
V07804021a 262.8 40.115 302.462 95.6 36 – 206 2573 – 2901
V07804021b 262.8 38.696 302.218 94.9 34 – 220 3856 – 4343
V07829020a 264.1 47.187 302.854 99.3 43 – 206 3011 – 3608
V07829020b 264.1 48.250 303.066 99.8 41 – 210 2166 – 2411
V07890023a 267.2 41.708 342.524 95.8 33 – 212 2326 – 2701
V07941020a 269.9 44.094 312.117 96.7 37 – 216 2662 – 2989
V07941020b 269.9 45.354 312.350 97.4 38 – 218 1462 – 1764
V07954018a 270.6 40.326 296.543 94.5 40 – 214 2986 – 3474
V08028019a 274.4 43.697 322.877 95.6 47 – 203 3090 – 3563
V08028019b 274.4 44.219 322.975 95.9 43 – 208 2556 – 3090
V08057021a 275.9 38.986 205.726 92.7 40 – 209 529 – 855
V08140022a 280.1 42.678 332.560 93.9 46 – 202 2123 – 2484
V08140022b 280.1 44.092 332.820 94.7 43 – 211 695 – 1190
V08141026a 280.2 41.550 303.553 93.2 18 – 232 1140 – 1418
V08141026b 280.2 42.297 303.684 93.7 51 – 221 437 – 685
V08165025a 281.4 44.069 331.810 94.4 42 – 208 830 – 1528
V08165025b 281.4 45.069 331.999 95.0 43 – 211 69 – 362
V08166020a 281.5 42.530 302.725 93.5 38 – 207 215 – 568
V08178017a 282.1 53.987 318.934 99.9 38 – 216 683 – 989
V08266019a 286.5 45.988 299.321 94.3 42 – 212 2503 – 2769
V08266019b 286.5 46.449 299.402 94.6 44 – 202 2020 – 2366
V08266019c 286.5 46.922 299.494 94.9 40 – 204 1595 – 1881
V08266019d 286.5 47.454 299.604 95.2 36 – 217 934 – 1516
V08266019e 286.5 48.116 299.733 95.5 36 – 209 372 – 800
V08278020a 287.2 48.334 313.667 95.5 23 – 225 1168 – 1508
V08278020b 287.2 49.130 313.828 96.0 23 – 221 351 – 791
V08290017a 287.8 44.911 326.900 93.4 40 – 212 492 – 992
V08302017a 288.4 46.826 341.161 94.3 46 – 210 645 – 1131
V08302017b 288.4 47.426 341.275 94.7 48 – 207 28 – 591
V08303022a 288.4 49.074 312.783 95.6 24 – 226 2800 – 3328
V08303022b 288.4 51.293 313.244 96.9 28 – 221 576 – 1276
V08428013a 294.7 50.802 308.871 95.0 33 – 215 4101 – 5054
V08428013b 294.7 52.979 309.343 96.3 36 – 218 2176 – 2773
V08503016a 298.4 48.700 305.923 92.8 49 – 211 2935 – 3375
V08503016b 298.4 49.495 306.085 93.3 50 – 212 2119 – 2658

Table 3.4: Correlation-ROIs: controls
ID Ls N. lat E. lon ◦ Inc. samples lines

V08806011a 313.1 29.804 203.173 78.0 41 – 213 2628 – 3104
V09543022a 346.5 32.091 182.502 71.7 29 – 213 1069 – 1465
V09550015a 346.8 43.752 342.489 76.5 39 – 211 1247 – 1509
V09575016a 347.8 48.573 342.225 78.3 37 – 220 852 – 1189
V09912021a 1.9 52.484 341.718 76.2 40 – 211 809 – 1184
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altitude of lower atmosphere clouds, the misalignment is too small to be noted by

visual inspection. In fact, some of the control correlation-ROIs yield altitudes in

the ∼10 km range (none exceeded 13 km). It may ultimately be feasible to define

correlation-ROIs for all cloud features in the THEMIS-VIS data set, but reliably

distinguishing low-altitude clouds from surface features will be problematic, espe-

cially when the signal is very low as it often is in winter mid-latitudes. Since such

an effort would be expensive in terms of both human time and computer time, we

have decided that it is beyond the scope of this work. Thus we restrict ourselves

to 40+ km altitudes in order to ensure that we have a nearly complete census.

In order to decide whether our correlation algorithm has successfully identified

a cloud’s altitude and velocity we look at the width of the confidence interval for the

altitude solution. In some cases, the algorithm will give a non-zero altitude-velocity

solution for which visual inspection shows no improvement in the co-alignment of

what were believed to be the cloud features. These algorithm failures appear to

be caused by calibration artifacts in the THEMIS-VIS images (see Chapter 4),

which will dominate scene cross-correlation if the cloud contrast is very low or

nonexistent. However, we invariably find these apparent algorithm failures to have

confidence intervals wider than 10 km in altitude, and so we chose at 10 km as our

cutoff in order to eliminate false positives.

3.3 Altitude-velocity results

In Table 3.5 – 3.8 we show results from all correlation-ROIs that yield altitudes

greater than 40 km and have confidence intervals less than 10 km wide. Each result

is given an ID which consists of the THEMIS-VIS sequence number followed by

a lower case letter specifying the ROI. All of the observed mesospheric clouds fall
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Table 3.5: Altitude and velocity measurements: equatorial
ID Ls N. E. ◦ Measured WRF GCM

Lat Lon Inc. Altitude Zonal Velocity Zonal Velocity
km m/s m/s

Best Conf. Best Conf.
fit interval fit interval Mean ±2σ

V04573003a 113 −16 261 80.2 79.5 79.0 – 80.0 −15 −20 – −10 2 −18 – 22
V04573003b 113 −16 261 80.1 80.0 79.0 – 81.0 −5 −15 – 0 2 −18 – 22
V04573003c 113 −16 261 80.0 80.0 79.5 – 80.5 −5 −5 – 0 2 −18 – 22
V10526009a 26 0 261 68.9 74.0 71.5 – 76.0 −90 −110 – −70 0 −19 – 18
V11100003a 47 −14 290 78.0 61.0 59.5 – 62.0 −65 −80 – −50 10 −4 – 24
V11100003b 47 −14 290 77.9 61.5 61.0 – 62.5 −50 −60 – −35 10 −4 – 24
V11100003c 47 −13 290 77.8 62.0 61.0 – 63.5 −65 −80 – −45 10 −4 – 24
V12922001a 113 −6 292 83.0 57.0 56.5 – 57.5 −45 −50 – −40 31 9 – 53
V13072001a 119 −5 285 82.9 60.0 58.5 – 61.0 −45 −60 – −30 0 −26 – 27
V13072001b 119 −5 285 82.9 59.0 57.5 – 60.5 −70 −85 – −55 13 −13 – 39

into one of two distinct classes: equatorial clouds observed in the solar longitude

(Ls) range 0◦ – 180◦, listed in Table 3.5, and northern mid-latitude clouds observed

in Ls 200◦ – 300◦, listed in Tables 3.6 – 3.8. The northern mid-latitude clouds are

organized into sub-classes by our assessment of their morphology. Table 3.6 shows

the “clumpy” subclass, which consists of any cloud that shows extensive small scale

structure but no obvious larger scale organization. In Table 3.7 we list “linear”

clouds, those that are organized into one or more southwest-to-northeast trend-

ing linear features. The final northern mid-latitude subclass, listed in Table 3.8,

consists of “linear periodic” clouds, those whose multiple linear features show reg-

ular spacing. The equatorial mesospheric clouds also show some morphological

diversity. Three of them, V04573003, V10526009, and V11100003 show long nar-

row filamentary structures, while the other two do not. Example map projected

images from both classes and each subclass are shown in Figs. 3.7 – 3.10.

3.3.1 Comparisons with an atmospheric global circulation

model (GCM)

In order to put our equatorial velocity measurements into context, we compare

them with an atmospheric general circulation model (GCM). We have chosen the
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Table 3.6: Altitude and velocity measurements: mid-latitude, “clumpy” class
ID Ls N. E. ◦ Measured WRF GCM

Lat Lon Inc. Altitude Zonal Velocity Zonal Velocity
km m/s m/s

Best Conf. Best Conf.
fit interval fit interval Mean ±2σ

V06768014a 209 44 300 94.1 52.5 50.5 – 54.5 85 65 – 100 75 49 – 101
V06793016b 210 42 298 93.8 48.5 47.0 – 49.5 75 65 – 90 55 35 – 76
V06905017a 216 45 309 96.1 62.0 60.0 – 63.5 60 45 – 80 57 21 – 92
V06905017b 216 46 309 96.4 61.0 59.5 – 62.0 65 50 – 80 57 21 – 92
V06930045b 217 45 308 96.4 70.0 68.5 – 72.0 65 50 – 75 51 27 – 74
V06930045c 217 47 308 97.0 73.5 71.5 – 75.0 75 60 – 90 88 25 – 150
V07005019a 221 43 305 96.4 64.0 62.5 – 65.5 25 10 – 35 47 9 – 86
V07005019b 221 44 305 96.6 65.0 63.5 – 67.0 35 25 – 50 47 9 – 86
V07029045a 222 46 333 97.5 63.0 60.5 – 65.5 40 20 – 55 60 31 – 89
V07079012a 225 42 330 96.5 70.5 69.0 – 72.0 0 −10 – 10 40 −7 – 87
V07079012b 225 42 331 96.7 69.5 68.5 – 70.5 0 −10 – 5 46 −5 – 97
V07079012c 225 43 331 97.0 68.0 67.0 – 69.0 −10 −20 – −5 46 −5 – 97
V07079012d 225 44 331 97.2 69.5 68.5 – 70.5 25 20 – 30 46 −5 – 97
V07105019b 226 41 301 96.4 70.0 65.0 – 74.0 −30 −70 – 5 38 5 – 71
V07166022c 229 41 341 96.8 60.0 55.0 – 64.0 50 20 – 80 28 −20 – 75
V07166022d 229 43 342 97.4 59.0 57.0 – 61.5 55 35 – 70 53 9 – 97
V07804021a 262 40 302 95.6 51.5 51.0 – 52.0 30 25 – 35 43 0 – 85
V07804021b 262 38 302 94.9 54.0 53.0 – 54.5 15 10 – 25 40 1 – 79
V07941020a 269 44 312 96.7 49.0 47.5 – 50.0 35 25 – 45 68 35 – 101
V07941020b 269 45 312 97.4 49.5 47.0 – 51.5 30 15 – 45 80 50 – 110
V07954018a 270 40 296 94.5 52.5 51.0 – 53.0 0 −10 – 10 45 16 – 75
V08140022a 280 42 332 93.9 49.5 48.0 – 51.5 60 45 – 75 89 57 – 121
V08140022b 280 44 332 94.7 48.0 46.0 – 50.0 60 50 – 75 89 57 – 121
V08266019a 286 45 299 94.3 49.5 46.5 – 52.0 50 30 – 75 77 43 – 111
V08266019b 286 46 299 94.6 50.5 49.0 – 52.0 35 20 – 50 77 43 – 111
V08266019c 286 46 299 94.9 51.5 49.5 – 53.0 40 20 – 60 85 58 – 111
V08266019d 286 47 299 95.2 47.0 45.0 – 49.0 45 25 – 60 88 61 – 115
V08278020a 287 48 313 95.5 47.0 45.5 – 48.5 120 105 – 130 99 59 – 139
V08278020b 287 49 313 96.0 47.0 46.0 – 48.5 120 105 – 130 109 65 – 154

Table 3.7: Altitude and velocity measurements: mid-latitude, “linear” class
ID Ls N. E. ◦ Measured WRF GCM

Lat Lon Inc. Altitude Zonal Velocity Zonal Velocity
km m/s m/s

Best Conf. Best Conf.
fit interval fit interval Mean ±2σ

V06705017a 206 49 318 94.9 50.0 48.0 – 52.0 85 60 – 105 105 82 – 128
V06793016a 210 40 298 93.3 47.5 46.0 – 49.5 55 35 – 75 55 35 – 75
V07467019a 245 48 302 100.5 44.5 43.5 – 46.0 95 80 – 105 97 49 – 146
V07829020b 264 48 303 99.8 41.0 38.0 – 43.5 50 15 – 90 105 59 – 152
V08028019a 274 43 322 95.6 60.0 56.5 – 61.0 25 −10 – 55 54 16 – 93
V08028019b 274 44 322 95.9 50.5 47.5 – 51.5 50 25 – 75 75 38 – 112
V08057021a 275 38 205 92.7 46.5 43.5 – 51.0 35 10 – 75 46 9 – 82
V08302017a 288 46 341 94.3 50.5 47.5 – 54.0 55 20 – 80 88 62 – 113
V08302017b 288 47 341 94.7 46.5 43.5 – 48.0 85 65 – 110 95 70 – 121
V08303022a 288 49 312 95.6 46.0 45.0 – 47.5 110 100 – 120 101 61 – 141
V08503016b 298 49 306 93.3 45.0 44.5 – 46.0 60 45 – 70 106 71 – 141

Table 3.8: Altitude and velocity measurements: mid-latitude, “linear periodic”
class

ID Ls N. E. ◦ Measured WRF GCM
Lat Lon Inc. Altitude Zonal Velocity Zonal Velocity

km m/s m/s
Best Conf. Best Conf.
fit interval fit interval Mean ±2σ

V07890023a 267 42 343 95.8 54.0 51.0 – 56.0 30 10 – 50 36 −14 – 87
V08141026a 280 42 304 93.2 51.5 48.5 – 53.0 70 50 – 85 60 41 – 79
V08141026b 280 42 304 93.7 52.5 50.5 – 54.5 55 40 – 70 60 41 – 79
V08165025b 281 45 332 95.0 49.0 45.0 – 53.0 50 10 – 90 88 55 – 122
V08290017a 288 45 327 93.4 48.0 44.5 – 52.0 95 60 – 125 85 51 – 119
V08303022b 288 51 313 96.9 56.5 53.5 – 59.0 60 30 – 85 97 55 – 138
V08503016a 298 49 306 92.8 44.5 44.0 – 45.0 45 25 – 70 99 62 – 136
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Figure 3.7: Examples of equatorial mesospheric clouds, using enhanced color as
defined in the text. Each image is map projected (the projection is sinusoidal)
using the best fit altitude and velocity. The grid lines give degrees east longitude
and degrees north latitude. The large ROIs indicated by letters A – D are the
correlation-ROIs, and their letters correspond to those in the first column of ta-
bles 3.1 – 3.8. The smaller ROIs are cloud / cloud-free radiance pairs. Their labels
correspond to the columns in Tables 3.9 – 3.11.
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Figure 3.8: Examples of the “clumpy” class of mid-latitude mesospheric clouds.
For V06930045 and V07079012 we have filled in narrow gaps between framelets by
extrapolating from neighboring pixels. Otherwise the same as Figure 3.7.
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Figure 3.9: Examples of the “linear” class of mid-latitude mesospheric clouds.
In V08503016, there are some gaps in the image caused by saturated pixels in the
green filter image. We have extrapolated to fill the narrower gaps. Otherwise the
same as Figure 3.7.
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Figure 3.10: Examples of the “linear-periodic” class of mid-latitude mesospheric
clouds. Otherwise the same as Figure 3.7.
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Planetary WRF, described by Toigo et al. [2005]. The WRF model uses a terrain-

following, pressure-based vertical coordinate, with the top layer of the model lo-

cated at about 80 km above the reference geoid. All Mars GCMs include some

form of damping near their model tops to parameterize gravity wave drag. The

Toigo et al. [2005] WRF model uses Rayleigh drag, the most common form of sim-

ple momentum and temperature damping. Specifically, they spread the damping

over the three uppermost model layers, with the shortest time constant (largest

drag coefficient) in the topmost layer. The time constant grows by a factor of

three for each of the two underlying layers. This form of gravity wave drag pa-

rameterization is not optimized for accuracy in the upper GCM layers; its main

purpose is to prevent gravity waves from reflecting off the top of the model and in-

fluencing the lower layers that have historically been most readily compared with

observations. Since direct measurements of winds are scarce at any altitude on

Mars, it is difficult to match a GCM to the wind field. Our chosen model does

a good job of representing the observed mean zonal temperature structure, and

so it produces mean zonal flows consistent with the thermal winds that can be

inferred from these temperature observations. Thus, our chosen model represents

a reasonable point of comparison with our wind measurements, but we must keep

in mind the limitations of the model, especially the lack of relevant wind data to

validate itself against.

To make the wind velocity comparisons, we choose the final year of a 10 year

model run and select the vertical level closest to the measured altitude of the

given mesospheric cloud. (The closest model level is always within 5 km of the

mesospheric cloud altitude.) We then select the four model grid points closest to

the latitude-longitude coordinates of the mesospheric cloud from each of the two
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local times nearest to the that of the cloud image, and from each of four days

surrounding the the Ls of the cloud image. We use all of these points to generate

the mean and standard deviation of the model winds shown in Tables 3.5 – 3.8.

3.3.2 Equatorial mesospheric clouds

The equatorial mesospheric clouds were discovered by pure chance in images tar-

geted at surface features. Figure 3.11 shows the spatial distribution of these equa-

torial clouds, comparing it with the distribution of all THEMIS-VIS image se-

quences that “could have detected” mesospheric clouds had they been present.

To detect mesospheric clouds, a THEMIS-VIS image sequence must obviously be

multispectral. In addition, for purposes of Figure 3.11, we have also excluded

types of image sequences which we believe are substantially less likely to detect

mesospheric clouds. These are: 1) images that do not have both the green and

blue filters, since these filters provide much better contrast for cloud features; 2)

1x1 binning sequences, since the spatial coverage of an individual 1x1 sequence

is very small; 3) short exposure times (< 1 msec for 2x2 binning or 0.5 msec for

4x4 binning), since such sequences have serious stray light problems that tend to

obscure subtle features; 4) incidence angles > 90 ◦, since these tend to have low

signal levels.

Out of the 2048 could-have-detected sequences plotted in the lower panel of

Figure 3.11, we have found 5 with equatorial mesospheric clouds — a detection rate

of 0.24% (0.48% considering only images within 20 degrees of the equator). There

appears to be an association with the eastern Tharsis high altitude terrain and with

Valles Marineris. With only a slight overabundance of the could-have-detected

sequences in the 260 - 295 longitude range of the detections, these five detections



105

Figure 3.11: (a) Map of the locations where we have observed equatorial meso-
spheric clouds. Clouds in the “filamentary” subclass are marked with a +, and
non-filamentary clouds are marked with an asterisk. In cases where there are mul-
tiple mesospheric cloud ROIs in a single THEMIS-VIS image sequence, we have
plotted only one from each subclass. (b) and (c) Location of all of the THEMIS-
VIS images that could have detected mesospheric clouds. (c) shows the entire
planet. (b) shows the same region of the planet as in panel (a). The background
for each map is grayscale-coded topography as measured by the Mars Orbiter Laser
Altimeter.
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represent a significant clustering. All of these detections fall within one of the

longitude bands where Clancy et al. [2006] report detached hazes are prevalent. It

is also intriguing that none of our equatorial mesospheric cloud detections fall in

the Ls 60◦ – 100◦ season where both Jaquin [1989] and Clancy et al. [2006] note

an absence of high altitude hazes, but given our small number of detections the

absence of one in any particular period cannot be considered a significant result.

The morphology of the equatorial mesospheric clouds is reminiscent of the

Pathfinder “discrete linear clouds” discussed by Clancy and Sandor [1998] (see

their Figure 3), in that they are composed of “filaments” or “lineations.” How-

ever, this is a highly subjective comparison, especially given the radically different

viewing geometries of Pathfinder and THEMIS-VIS. Thus the THEMIS-VIS mea-

surements cannot not confirm the hypothesis that the particular clouds observed

by Pathfinder were at mesospheric altitudes. They do however confirm the more

general hypothesis that mesospheric aerosols form not just detached hazes but also

discrete, highly structured clouds.

Comparison with GCM

Figure 3.12 shows a comparison of the model winds and observed mesospheric cloud

velocities for both the equatorial clouds and the mid-northern latitude clouds (fur-

ther described in section 3.3.3). While the agreement is generally quite good for the

mid-northern latitude data, the agreement is not as good with the sparser equato-

rial data. The GCM generally predicts a near absence of winds at these altitudes

(and season and time of day). The lack of significant wind at these altitudes and

location is also predicted by other Martian GCMs, and is not merely a product

of the GCM we have chosen here. Four out of the five measurements indicate the
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presence of an easterly zonal wind. We can think of at least two possible sources

of this disagreement with this and other models. One possible reason for this dis-

agreement is inaccuracies in the model, or, more specifically, the parameterization

of gravity wave drag at high altitudes. As previously discussed, the lack of sys-

tematic direct wind measurements, at any altitude, make it difficult to improve

models in this direction. The measurements presented here will hopefully help

with progress in this area. Another possible cause of the disagreement is that the

equatorial wind measurements come from a very localized region, with dramatic

changes in topography over relatively short distances. Considering the inherently

low horizontal resolution of a typical GCM, the the model may not be capturing

higher-resolution wind flows being generated by topography and/or eddies.

3.3.3 Mid-latitude mesospheric clouds

All of the mid-latitude mesospheric clouds were discovered serendipitously in im-

ages targeted as part of a “Frontal Storm Survey” [Richardson et al., 2006] which

had the intended goal of capturing high-resolution views of the major storm sys-

tems that are occasionally observed by MOC-WA [Wang and Ingersoll, 2002; Wang

et al., 2005] in northern mid-latitudes in the fall and winter. THEMIS-VIS did

not succeed in capturing any usable images of the intended storm systems, due in

part perhaps to the late afternoon solar time of the THEMIS-VIS observations.

(THEMIS has to date been constrained to a nadir-pointing configuration, and the

ODY orbit is sun-synchronous with a local solar time allowed to drift between 4

and 5:30 pm.) This late local time meant that all THEMIS-VIS images acquired of

the two targeted storm track regions in Acidalia and Amazonis Planitiae between

Ls 200◦ and Ls 300◦ were of surfaces with incidence angles greater than 90◦. All
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Figure 3.12: Comparison of THEMIS-VIS zonal velocity measurements with
GCM values. Asterisks and solid lines show THEMIS-VIS measurements, dia-
monds and dashed lines show GCM values. The error bars correspond to our
reported confidence intervals for the measurements, and to ± 2σ for the GCM
values.(the standard error σ of the GCM values is defined in the text). We have
suppressed the altitude error bars for the measurements, because they are quite
small on this scale. For any given THEMIS-VIS image sequence, we show only one
measurement and its corresponding GCM value. We chose the measurement with
the narrowest confidence interval.
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of the mesospheric clouds were detected in this Ls range. Once the typical inci-

dence angles fell below 90◦, no further mesospheric clouds were detected. All of

the detected mid-latitude mesospheric clouds had 92◦ – 100◦ incidence, and none

of the observations past Ls 300◦ had incidence angles in this range. Thus, the >

90◦ incidence angles may have been crucial to the detection of the mesospheric

cloud features, but this is impossible to prove because of the correlation between

seasons and incidence angle.

The distribution of mesospheric detections, as compared with all Ls 200◦ – 300◦

northern mid-latitude frontal storm survey image sequences having both blue and

green filters, is shown in Figure 3.13. Each mid-latitude subclass is plotted with

a different symbol. The distribution of mesospheric detections appears similar to

the distribution of all sequences in the Acidalia region, with detections in 17% ,

29 of 174 sequences. Only one out of 36 Amazonis sequences yielded a detection.

This weakly suggest that either some intrinsic feature of the Acidalia region leads

to more high altitude clouds, or that the slight difference in the latitude of the

two survey regions has an impact on the presence or detectability of high altitude

clouds.

Figure 3.14 shows several trends in the altitude of the mid-latitude mesospheric

clouds. All of the clouds above 60 km altitude are found in Ls 200◦ – 240◦, have

incidence angles greater than 96◦, and are in the “clumpy” morphology sub-class.

Thus, it appears that later season, low-incidence, and linear or linear-periodic

clouds are confined to lower mesospheric altitudes. However, since approximately

three times as many incidence > 96◦ detections occur in Ls 200◦ – 240◦ as in Ls

240◦ – 300◦, it is not clear whether the trends are related to the seasonal prevalence

of certain types of clouds, or to their detectability as a function of incidence angle.
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Figure 3.13: (a) Map of the locations where we have observed mid-latitude
mesospheric clouds. Clouds in the “clumpy” subclass are marked with an “X”,
clouds in the “linear” subclass with a triangle, and clouds in the “linear-periodic”
subclass with a square. In case where there are multiple mesospheric cloud ROIs
in a single THEMIS-VIS image sequence, we have plotted only one from each
subclass. (b) and (c) Location of all of the mid-latitude THEMIS-VIS images in
the Ls 200◦ – 300◦ period that could have detected mesospheric clouds. (c) shows
the entire planet. (b) shows the same region of the planet as in panel (a). The
background for each map is grayscale-coded topography as measured by the Mars
Orbiter Laser Altimeter.
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Figure 3.14: Altitude as a function of (a) season and (b) incidence angle for mid-
latitude mesospheric clouds. (c) Altitude and velocity for the various subclasses
of mid-latitude mesospheric clouds. Clouds in the “clumpy” subclass are marked
with an “X”, clouds in the “linear” subclass with a square, and clouds in the
“linear-periodic” subclass with a triangle. For any given THEMIS-VIS sequence,
we show only one measurement from each subclass. We chose the measurement
with the narrowest confidence interval.
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The incidence angles we report are for the planet’s surface at the location of

the mesospheric cloud correlation-ROIs, and of course high altitude clouds are still

directly illuminated for surface incidence angles in the 90◦ – 100◦ range. Since we

still see surface features at incidence angles greater than 95◦, multiple scattering is

obviously very important, and so we can’t make simple assumptions about what

altitude a feature must have to be detected. However, directly illuminated cloud

features have a detectability advantage over lower altitude clouds, and given the

observed correlations between incidence angle and cloud altitude, and the fact that

we have not positively identified any low altitude clouds with incidence > 92◦,

our preferred hypothesis is that cloud aerosols are present at a range of altitudes

during much of the northern fall-winter period, and the altitude of the aerosols

that dominate the spatial contrast is selected by the geometry of the observation.

Thus, when the incidence angle is low, the more diffuse high altitude features are

overwhelmed by the lower altitude cloud, but at higher incidence angle the lower

altitude aerosols contribute much less to the radiance reaching THEMIS-VIS, and

so the higher altitude features become visible.

Comparison with Daily Global maps

In daily global maps (DGMs) of Mars assembled by Wang and Ingersoll [2002]

from MOC-WA images, clouds are ubiquitous over northern mid-latitudes in the

Ls 240◦ – 300◦ period. We have therefore compared our images of mesospheric

clouds with the DGMs in an attempt to place them in context with the global

cloud field. Although the “polar streak” clouds and polar lee waves described by

Wang and Ingersoll [2002] are certainly prevalent in the general vicinity of the

mesospheric cloud images, in almost all cases we cannot match any of the features
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in the DGMs with features in the THEMIS-VIS images acquired on the same day.

Since the wind speeds in this winter mid-latitude region of the mesosphere are

high and the MOC-WA images are not concurrent with the THEMIS-VIS images,

since THEMIS-VIS and MOC-WA observe at difference local times, and since the

THEMIS-VIS field of view is very narrow compared to the MOC DGMs, it is not

at all surprising that feature matching between the two instruments is difficult. It

is also of course possible that some types of mesospheric clouds have no connection

at all with the cloud field normally observed by MOC. However, we have identified

two examples where an overlay of the THEMIS-VIS mesospheric image onto the

MOC DGM seems to show a pattern similar to nearby MOC cloud features. These

two examples are shown in Figures 3.15– 3.16. We don’t expect an exact match

because the two images are not concurrent, and so the feature match represents a

subjective judgement. Accepting for the sake of argument that the match is real,

we have a possible identification of the the linear mesospheric features with the

“polar streak” clouds that are the dominant feature of the polar hood as described

by Wang and Ingersoll [2002], implying that some of the familiar polar hood cloud

extends up to 55 km in altitude.

Comparison with GCM

Both Tables 3.6 – 3.8 and Figure 3.12 compare our velocity measurements with

WRF GCM results generated as previously described. Unlike the equatorial case,

our mid-latitude velocities are entirely consistent with the GCM model predic-

tions at all altitudes. Both the data and model output show a generally westerly

(eastward) wind of the order tens, up to hundred, of m/s, and somewhat lower

velocities above 55 km. Both the model and our measurements also show wide
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Figure 3.15: Comparison of a THEMIS-VIS high altitude cloud image with a
portion of a MOC-WA DGM from the same day. The projection and labeling of
the THEMIS-VIS image are the same as in Figure 3.7.
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Figure 3.16: Comparison of a THEMIS-VIS high altitude cloud image with a
portion of a MOC-WA DGM from the same day. The projection and labeling of
the THEMIS-VIS image are the same as in Figure 3.7.
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variability in the zonal wind at all levels, even to the point of occasional transient

easterlies. This is consistent with the expected intense wave activity in the win-

ter mid-latitudes. It also demonstrates that this eddy activity extends into the

mesosphere where it might be important for the processes that form the observed

clouds and cloud features.

3.4 Radiative transfer model

In order to compare our cloud measurements with previous work, and to provide

insight into their physical significance, we apply a simple radiative transfer model

to a subset of our data. We have chosen the standard, public domain, plain-parallel

discrete ordinates model DISORT [Stamnes et al., 1988]. Prior uses of DISORT

for martian clouds include Wolff et al. [1999] and Benson et al. [2003]. The choice

of a plane parallel model immediately limits us to considering only the equatorial

clouds, which are observed at incidence angles significantly less than 90 degrees.

Investigation of the properties of the mid-latitude twilight clouds will have to wait

for a more sophisticated 3-dimensional modeling approach, which is beyond the

scope of this work.

We apply our DISORT model to portions of three equatorial mesospheric cloud

images, We begin by drawing a pair of regions of interest on the image; one region

with minimal blue filter brightness and thus apparently minimal cloud opacity;

and one region with maximal blue filter brightness and thus maximal cloud. These

regions are shown in Fig. 3.7. For V04573003 and V11100003, we have selected

two such pairs, in order to check the consistency of our model results in different

portions of the image. V10526009 has only a small area of mesospheric cloud,

and so we have defined only one region of interest pair. For each filter, we take
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the mean radiance in the selected regions, labeling them the “cloud radiance” and

the “cloud-free radiance.” The radiance calibration standard errors, reported in

chapter 4, are much larger than the standard deviations of the radiance in our

selected regions, and so we adopt the chapter 4 standard errors.

The models include a lambertian surface as the lower boundary, rayleigh scat-

tering by gaseous atmospheric constituents, a lower-atmosphere aerosol component

with properties consistent with previous work, and a mesospheric aerosol compo-

nent. Our DISORT models use 64 streams and 8 vertical layers, each 10 km thick,

with the bottom of the lowest layer being at the surface and the top of the top

layer at 80km. For each layer we specify that layer’s optical depth, single-scatter

albedo (SSA), and phase function. The optical depth of a layer is a sum of the

optical depths of whichever of the three components are present in the layer. The

SSA and phase functions are weighted averages of the component values, where the

weights are the component optical depths in that layer. The rayleigh scattering is

determined by a density profile that we derive via the hydrostatic equation from a

typical low latitude MGS-TES temperature profile [e.g., Conrath et al., 2000]. We

adjust the surface pressure to account for the altitude of the local surface in each

model.

3.4.1 Lower atmosphere and surface

MGS-TES [e.g., Smith et al., 2001] measurements show very low dust optical

depths at the time and place of all of the observations we model, and so the

lower aerosol component is defined to be consistent with Clancy et al. [2003] “type

1” water-ice aerosols. Thus, we use the Clancy et al. [2003] measured phase func-

tion; adopt a particle size distribution with 1.5 µm effective radius (reff) and an
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effective variance (veff) of 0.1 for purposes of scaling the opacity as a function of

wavelength; and assume zero water ice aerosol below 20 km altitude. Above 20

km, we assume that the water ice aerosol opacity in any given layer scales with

the gas density, up to an arbitrary upper boundary of 60 km. We have found that

the choice of this upper boundary has no effect on our results.

The normal albedo of the surface and the optical depth of the lower aerosol

layer are constrained using our cloud-free radiance measurement and “nearby”

MGS-TES aerosol optical depth measurements. We presume that, since the meso-

spheric aerosols are invisible to THEMIS-IR, they are also invisible to MGS-TES.

For the case of V10526009, we defined “nearby” as within 3 sols of time, 5◦ of

longitude and 0.5◦ of latitude, and adopted the mean of TES aerosol retrievals

in this region. For V11100003, we instead used 1 sol and 1.5◦ of latitude as the

limits. THEMIS-IR aerosol retrievals [Smith et al., 2003] are available concurrent

with V11100003, and these measurements are consistent, within the uncertainties

reported by Smith et al. [2003], with our adopted MGS-TES values. In the vicinity

of V04573003, no TES or THEMIS-IR aerosol retrievals are available, due to low

surface temperatures.

Since the TES retrievals consider only absorption, they need to be adjusted to

provide an estimate of the full extinction optical depth. According to Smith [2004],

the appropriate adjustment is to multiply the TES optical depth by 1.5. We also

of course must adjust the TES optical depth to compensate for the difference in

extinction cross section between the wavelength where it is defined (12.1 µm), and

the wavelengths of the THEMIS-VIS filters. We calculate the cross sections as a

function of wavelength using standard Mie theory [e.g. Bohren and Huffman, 1983]

as implemented in the publicly available code, DMiLay (ftp://climate.gsfc.
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nasa.gov/pub/wiscombe/Single Scatt/Coated Sphere). The water ice indices

of refraction (real and imaginary) are from Warren [1984].

Where the TES retrievals are available, we use the TES derived optical depth

together with the above described assumptions about the aerosol properties, and

iteratively adjust the surface albedo until the DISORT model matches the cloud-

free radiance. We perform this procedure independently for each THEMIS-VIS

filter, and, for simplicity and efficiency, we model only the single discrete wave-

length at the center of the bandpass for each filter. Since the assumption that

the surface is a lambertian scatterer is probably a poor one, we do not expect to

obtain a normal albedo that is consistent with previous work or even represen-

tative of the real normal albedo of the surface. Rather, we obtain an effective

albedo that happens to be appropriate for the high incidence angle geometry of

the THEMIS-VIS measurements. Estimates of the true photometric properties of

the surface at high incidence angle are not available, and so solving for an effective

albedo represents a best guess. More importantly, the function of the albedo in

our model is merely to allow the surface / lower atmosphere components of our

model to match the observed cloud-free radiance. Since we always achieve such a

match, the primary effect of trading off albedo for lower-atmosphere optical depth

is to alter the angular distribution of radiation reaching the mesospheric region

from below. This angular distribution has only a secondary effect on our model.

We have experimented with decreasing the lower-atmosphere opacity by a factor of

two, which leads to unrealistically high surface albedos, but has negligible impact

on our derived mesospheric optical depths and the perturbation to our derived

particles sizes is small compared with other sources of uncertainty.

Since V04573003 lacks TES or THEMIS-IR measured optical depths, we follow
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a slightly more complicated procedure for that case. We start with the blue filter

normal albedo derived for V10526009, then iterate the blue filter optical depth to

match the blue cloud-free radiance. Since the blue filter albedo of the martian

surface is very low, its influence on the observed radiance is small when the optical

depth is high, as it is for V04573003. Having derived the blue filter optical depth,

we simply scale it to the other filters using the Mie-derived cross sections, and then

iterate for the albedo in these filters as previously described.

For each pair of radiance measurements, we crucially assume that both the

surface albedo and the lower-atmosphere aerosol component are the same in the

(mesospheric) cloud-free region and the mesospheric cloud region. The mesospheric

clouds in V12922001 and V13072001 are in regions of prominent surface features,

which is why we have not attempted to apply our model to them. For the image

sequences that we do model, the cloud and cloud-free regions are drawn to minimize

the possibility of such surface variations, and it is clear from Fig. 3.7 that the

mesospheric aerosols are the dominant source of contrast in their vicinity. Since

Fig. 3.7 is projected at the measured aerosol altitude, significant surface contrasts

lead to obvious color mis-alignments, as would low-altitude aerosol variations if

they were present.

The other crucial assumption that we make about the relationship between the

cloud-free radiance and the cloud radiance is that the cloud-free region actually

contains zero mesospheric aerosol, rather than simply less mesospheric aerosol

than the cloud features themselves. We have no way to verify this assumption,

but it is necessary, because without it we have no way to constrain the effective

surface albedo. If there is a mesospheric aerosol contribution to the radiance

that we have labeled cloud-free, it would mean that we have overstated the lower
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atmosphere / surface contribution to the observed radiance in the cloudy areas,

and understated the mesospheric contribution to the radiance in these areas. Since

we are working in a regime with a positive relationship between optical depth and

observed radiance, any mesospheric aerosol contamination of the “cloud-free” areas

leads us to underestimate the mesospheric aerosol optical depth.

3.4.2 Mesospheric aerosols

Having used the above assumptions to establish the contributions of the surface

and lower atmosphere, we explore a range of possibilities for properties of the

mesospheric clouds. We must first specify the upper and lower altitude boundaries

of the mesospheric (we choose 70 – 80 km), but we have found these boundaries

have no effect on the modeled radiances, and so they are extraneous to the modeling

problem. The factors that do influence the radiance we observe, as modeled by

DISORT, are the vertical extinction optical depth, the single scatter albedo (SSA),

and the single-scatter phase function of the aerosols, all of which themselves are

functions of wavelength. Since this modeling problem is highly under-determined,

we first simplify by adopting a Henyey-Greenstein phase function [Henyey and

Greenstein, 1941] for the mesospheric aerosols, which can be described by a single

parameter, g (the asymmetry parameter), at each wavelength. Next, we impose

a physical description of the aerosol particles, which gives us, via Mie theory, gλ,

SSAλ, and the mean particle extinction cross section 〈σ〉λ, at the wavelengths λ of

all of the THEMIS-VIS filters. Now, the problem is overdetermined for any given

physical description — specifying the optical depth in any one filter yields the

optical depth in the rest, via their relative values of 〈σ〉λ, and so a single optical

depth yields radiance in all three or four filters. We arbitrarily choose the blue
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filter as the wavelength at which to specify optical depth. Treating the observed

cloud radiances as random variables with standard errors equal to the THEMIS-

VIS calibration standard errors, we have a χ2, and so we find the blue filter optical

depth by iteratively adjusting it until the χ2 is minimized. The probability of

observing a χ2 as large as the minimized χ2 can be interpreted as a likelihood for

the best fit with a particular physical description of the aerosols. Thus, we can

reject any physical description that yields a best-fit likelihood lower than some

arbitrary cutoff.

The aerosols that we have chosen to consider for the mesospheric clouds are:

1. CO2 ice [indices of refraction from Hansen, 1997]

2. Water ice [indices of refraction from Warren, 1984]

3. Dust [indices of refraction from Wolff and 11 co-authors, 2006]

4. Dust core with CO2 ice shell: core radii 20%, 40%, 60%, and 80% of the total

particle radius

5. Dust core with water ice shell: core radii 20%, 40%, 60%, and 80% of the

total particle radius

For each aerosol type, we consider particle sizes ranging from reff = 0.05 µm

to reff = 5 µm. We have chosen these limits because in most cases they appear to

bound the region where significant model likelihood is observed. We test particle

size with sampling intervals of 0.01 µm between 0.05 and 0.2, 0.1 between 0.2 and

2.0, and 0.5 from 2.0 to 5.0. For all cases, we use a simple shape for the mesospheric

particle size distribution: a gamma distribution with veff of 0.2, consistent with

Chassefière et al. [1992]. An experiment with veff = 0.1 showed negligible changes

in our results.
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The radiances, geometric parameters, and assumed surface and lower-atmosphere

properties used for our models are shown in Table 3.9. All models of a given ROI

pair use the same assumptions for the surface and lower atmosphere. We construct

separate models with optimized optical depth for each particle composition and

particle size. In the results tables (Tables 3.10–3.11) we show the particle size, op-

tical depth, and, where applicable, the core radius for the model with the highest

likelihood. We also show confidence intervals for these parameters that include all

models with likelihood greater than our chosen threshold of 1%. Particle compo-

sitions that yield no model likelihoods greater than this threshold are indicated

with a ’–’ in the table.

For V04573003 and V11100003, we have included in the results tables only the

ROI pair with the highest model likelihood from each image sequence. In both of

the sequences with two ROI pairs, both ROI pairs yielded similar likelihood max-

ima with similar particle properties. The confidence intervals are listed as “any”

for V10526009 because for this image sequence all the models yielded likelihoods

greater than the cutoff. The lack of precision with this image is a result of its short

exposure time, which leads to high uncertainty in the radiance calibration, and of

the low contrast of its aerosol features.

Since 4.0µm particle size was the upper bound of the searched parameter space,

a value of 4.0µm for the upper limit means that no upper bound of the particle

size was found. When the particle size confidence interval is listed as “any,” or

has an upper limit of 4.0µm, the τ confidence interval simply reflects the range of

values observed in the searched parameter space, and so is not a true constraint

on the optical depth. However, in our model the largest particle sizes yield the

largest optical depths, so when there is a valid lower bound on the particle size, the
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Table 3.9: Radiative Transfer ROIs: mean properties of each cloud / cloud-free
pair

Property ROI pair
V04573003 V10526009 V11100003

J, K X, Y J, K J, K X, Y
Cloud-free ROI viewing geometry

E. lon. 261.172 261.207 261.929 290.91 290.842
N. lat. −16.264 −16.623 0.536 −13.98 −14.283
◦ Inc. 80.02 80.24 68.96 77.89 77.96

Cloud ROI viewing geometry
E. lon. 261.209 261.235 261.966 290.95 290.95
N. lat. −16.266 −16.619 0.522 −14.05 −14.306
◦ Inc. 80.06 80.26 69.00 77.95 78.06

Cloud-free radiance ((I/F )× 10−2)
at 0.425 µm 2.86 2.67 3.73 2.00 2.16
at 0.540 µm 5.11 4.61 7.30 3.34 3.39
at 0.654 µm 8.27 7.49 14.8 – –
at 0.749 µm 9.90 8.97 18.4 6.03 5.96

Cloud radiance ((I/F )× 10−2)
at 0.425 µm 3.40 3.19 4.93 2.95 3.22
at 0.540 µm 5.59 5.15 7.75 4.29 4.47
at 0.654 µm 8.72 8.15 15.1 – –
at 0.749 µm 10.4 9.71 18.6 7.18 7.45

Lower-atmosphere aerosol component optical depth, τlow
at 0.425 µm 0.54 0.49 0.44 0.23 0.23
at 12.1 µm 0.28 0.25 0.23 0.12 0.12

Effective surface albedo, Aeff
at 0.425 µm 0.023 0.023 0.020 0.023 0.034
at 0.540 µm 0.271 0.237 0.16 0.12 0.12
at 0.654 µm 0.579 0.522 0.43 – –
at 0.749 µm 0.727 0.661 0.55 0.29 0.284
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Table 3.10: Radiative Transfer model results: homogeneous mesospheric cloud
aerosols

V04573003b V10526009 V11100003 V11100003
749 nm excluded

ROI pair J, K J, K X, Y X, Y

CO2 ice
reff (µm) 0.10 [0.08 – 0.11] 0.05 [any] – 1.5 [0.8 – 1.8]
τ at 0.425 µm 0.22 [0.14 – 0.37] 0.074 [0.074 – 0.31] – 0.50 [0.38 – 0.57]
τ at 9.3 µm 0.00 0.00 – 0.05
τ at 12.1 µm 0.00001 0.00001 – 0.02
n (cm−3) 1 2080 19400 – 6.42
Mass fraction 2 0.07% 0.08% – 0.07%
Precipitable µm 3 0.04 0.05 – 0.44

H2O ice
reff (µm) 0.10 [0.08 – 0.12] 0.05 [any] – –
τ at 0.425 µm 0.22 [0.13 – 0.38] 0.073 [0.073 – 0.44] – –
τ at 9.3 µm 0.004 0.005 – –
τ at 12.1 µm 0.03 0.03 – –
n (cm−3) 1 3710 34700 – –
Relative mass 4 6.5 7.6 – –
Precipitable µm 3 0.07 0.09 – –

Dust
reff (µm) 0.08 [0.07 – 0.09] 0.10 [0.05 – 0.4] 0.5 [0.5 – 0.5] 0.4 [0.4 – 0.5]
τ at 0.425 µm 0.30 [0.23 – 0.40] 0.20 [0.13 – 0.94] 1.6 [1.6 – 1.6] 1.0 [1.0 – 1.6]
τ at 9.3 µm 0.04 0.02 0.29 0.13
τ at 12.1 µm 0.004 0.002 0.03 0.013
n (cm−3) 1 5350 1380 153 141

1Number density, assuming that the physical depth of the cloud is 10 km.
2Mass of CO2 condensate as a fraction of the mass of the atmosphere between

70 and 80 km (for V04573003 and V10526009), or between 50 and 60 km (for
V11100003).

3Depth of condensate if spread uniformly in solid phase on a horizontal surface.
4Ratio of the mass of H2O condensate to the mass of H2O vapor in a 10 km,

saturated column, at 160 K.
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Table 3.11: Radiative Transfer model results: heterogeneous mesospheric cloud
aerosols

V04573003b V10526009 V11100003 V11100003
749 nm excluded

ROI pair J, K J, K X, Y X, Y

Dust core, CO2 ice shell
reff (µm) 0.09 [0.08 – 0.11] 0.05 [any] 1.4 [0.7 – 4.0] 0.7 [0.5 – 4.0]
Core radius fraction 0.8 [0.2 – 0.8] 0.2 [any] 0.6 [0.4 – 0.8] 0.8 [0.2 – 0.8]
τ at 0.425 µm 0.25 [0.14 – 0.41] 0.075 [0.075 – 23] 1.3 [0.75 – 2.8] 1.1 [0.38 – 23]
τ at 9.3 µm 0.016 0.0003 0.30 0.17
τ at 12.1 µm 0.015 0.00004 0.08 0.02
τdust at 9.3 µm 1 0.014 0.0003 0.15 0.15

n (cm−3) 2 3040 19600 18.4 55.5
Mass fraction 3 0.04% 0.08% 0.1% 0.03%
Precipitable µm 4 0.02 0.08 0.8 0.2

Dust core, H2O ice shell
reff (µm) 0.10 [0.08 – 0.12] 0.05 [any] 0.8 [0.8 – 3.5] 0.7 [0.6 – 4.5]
Core radius fraction 0.6 [0.2 – 0.8] 0.2 [any] 0.8 [0.4 – 0.8] 0.8 [0.4 – 0.8]
τ at 0.425 µm 0.25 [0.13 – 0.41] 0.073 [0.073 –1.8] 1.4 [1.4 – 2.7] 0.97 [0.79 – 61]
τ at 9.3 µm 0.013 0.005 0.29 0.17
τ at 12.1 µm 0.019 0.03 0.15 0.09
τdust at 9.3 µm 1 0.009 0.0003 0.25 0.14

n (cm−3) 2 3080 34100 59.3 53.1
Relative mass 5 4.2 7.4 26 15
Precipitable µm 4 0.05 0.09 0.3 0.2

1The vertical optical depth that the dust cores would have if not coated by
condensate.

2Number density, assuming that the physical depth of the cloud is 10 km.
3Mass of CO2 condensate coatings as a fraction of the mass of the atmosphere

between 70 and 80 km (for V04573003 and V10526009), or between 50 and 60 km
(for V11100003).

4Depth of condensate if spread uniformly in solid phase on a horizontal surface.
5Ratio of the mass of the H2O condensate coatings to the mass of H2O vapor

in a 10 km, saturated column, at 160 K.
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lower bound on the optical depth can also be considered valid. Once the optical

depth is larger than ∼5, changing it has very little effect on the modeled radiance,

and so optical depth limit values greater than 5 are numerical artifacts and can be

interpreted simply as “very large.”

For the best fit particle size, optical depth, and core radius, we present various

other quantities intended both as reality checks and as indicators of the physical

significance of the results. In order to calculate number density we have assumed

a physical depth for the clouds of 10 km. For the mass fraction of CO2, we must

chose a portion of the atmospheric column to which to compare the column mass

of condensate; we have chosen a 10 km vertical column immediately below the

measured cloud altitude, determining its mass from the same MGS-TES-derived

density profile used to calculate Rayleigh scattering. For the relative mass of

H2O, we compare the mass of H2O in the aerosols with the maximum mass of

H2O vapor (i.e., mass at saturation) that could be contained in a 10 km vertical

column at a reasonable upper bound [see Clancy and Sandor, 1998] temperature

for the mesosphere of 160 K. With τdust we suppose that the refractory cores of the

heterogeneous aerosols must have been present before the condensate shells formed,

and calculate the optical depth that they would have had before the condensation

occurred.

3.4.3 Constraints imposed by THEMIS-IR and MGS-TES

Both V04573003 and V11100003 were accompanied by simultaneously acquired

THEMIS-IR images. Neither IR image shows any evidence for cloud features,

which provides a powerful constraint on the aerosol composition. Also, if we sup-

pose that the dust cores of the heterogeneous aerosols must be present over a
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somewhat wider region than the locus of condensation itself, the very low dust op-

tical depths measured by MGS-TES also provide a constraint. Since THEMIS-IR

and MGS-TES routinely measure dust and water-ice optical depth using absorp-

tion bands centered at 9.3 and 12.1 µm, respectively, [Smith et al., 2001; Smith,

2004] we calculate optical depths at these wavelengths to see if either instrument

would have detected the aerosol in question.

Our models for V04573003 and V10526009 (considering the best fit) yielded

particle sizes and optical depths small enough to be invisible to the infrared in-

struments. However, both THEMIS-IR and MGS-TES arguments rule out the

dust and the heterogeneous aerosols for V11100003. THEMIS-IR measures dust

optical depth with an uncertainty of about 0.04 [Smith, 2004], and all of these cases

in V11100003 yield 9.3 µm optical depths greater than 0.17. Smith et al. [2001]

give 0.05 as the uncertainty for MGS-TES optical depths, and the mean MGS-TES

dust optical depth in the vicinity of V11100003 was 0.03, so the the τ =0.14 of

dust optical depth required as condensation nucleii for the aerosols in our model

are unlikely to be present, even if we supposed that all of the dust aerosol was

(improbably) in the mesosphere.

3.4.4 Models with the 749 nm filter excluded

Ruling out the heterogeneous aerosols obviously poses a problem for the first

V11100003 column in the results table in that it eliminates all of the models that

exceed our likelihood threshold. This motivates us to consider models that ignore

the 749 nm filter radiances, which are shown in the final column tables Tables 3.10–

3.11. Since the martian surface albedo is highest in the 749 nm filter, its influence

on the models is also greatest in the 749 nm filter. Thus the assumption of constant
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surface albedo between the cloud and cloud-free radiance ROIs is most critical at

this wavelength. Although we strove to minimize the chance of albedo contrasts,

V11100003 has more prominent surface features than the other images, and so

albedo variations are a plausible explanation for lack of tenable results when the

749 filter is included. For the sake of consistency, we have experimented with ne-

glecting the 749 nm filter in the V04573003 cases and found no change in the best

fits or the confidence intervals. In fact, neglecting both the 654 nm filter and the

749 nm filters also yields no change in the V04573003 best fits, and causes only a

slight widening of the confidence intervals.

3.4.5 Interpretation

Given the simplifications and assumptions we have made, our model is hardly

unique, but we believe that it includes as much detail as can be supported by our

observations. Within the framework of our assumptions, two main conclusions can

be drawn:

1. The V04573003 cloud has 0.1±0.02 µm aerosols, in good agreement with

Clancy and Sandor [1998], and optical depth much larger than that of pre-

viously reported mesospheric hazes and twice as large as that proposed by

Clancy and Sandor [1998] for their Pathfinder clouds. The complex cloud

morphology tends to imply that a condensate is involved. Furthermore,

since the mass of condensate is at least four time greater than the maxi-

mum amount of water vapor that can be contained in a mesospheric column,

most of the condensate is likely to be CO2.

2. The V11100003 cloud has large ∼1.5 µm particles and a very substantial
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optical depth of ∼0.5. Both these values are comparable to lower atmosphere

water ice clouds. Our radiative transfer models weakly prefer CO2 over

water ice as the composition of these clouds. Even if our models did admit

water condensate, the mass of water required would be much higher than the

carrying capacity of the mesosphere, and so we have a strong argument for

most of the condensate being CO2. Any condensation nuclei present in these

clouds must be a small fraction, 20% or less, of the particle radii, otherwise

it would have been detected by one of the infrared instruments.

The diversity in particle size is consistent with the diversity observed by Chas-

sefière et al. [1992]. Despite this diversity, both clouds, perhaps coincidently, con-

tain condensate equal to 0.07% of the mass of the atmosphere in the 10 km layer

below the altitude of the observed features. This means that the V11100003 cloud

has about ten times as much mass per unit area because it is 2 scale heights below

V04573003. Both clouds have a 0.1 µm upper limit on the size of the condensation

nuclei, which means that, according to Colaprete and Toon [2003] (their Figure 3),

mesospheric temperatures must have transiently reached as low as 90 K near 80 km

altitude in order to initiate condensation. This is 5 K below the coldest tempera-

tures observed by Pathfinder, and substantially colder than any other mesospheric

temperature measurements [Clancy and Sandor, 1998].

3.5 Conclusions

THEMIS-VIS was not designed for stereo capability, nor intended to study meso-

spheric clouds, but nevertheless it can be used to measure mesospheric cloud alti-

tude and zonal velocity. Additionally, the THEMIS-VIS multispectral capability

and radiance calibration allows it to additionally place constraints on the aerosol
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properties of the observed cloud. The altitude and velocity measurements have

precisions as good as ± 1 km and ± 10 m/s, respectively. Systematic errors in

the THEMIS-VIS camera model add an additional ± 1 km and ± 10 m/s to the

uncertainties, and any meridional velocity will produce an error of about 1 km in

altitude for every 10 m/s.

Using this capability, we have presented the first horizontally resolved images of

verifiably mesospheric clouds, and find that they fall into two distinct classes in the

THEMIS-VIS data set: equatorial mesospheric clouds, and northern mid-latitude

winter mesospheric clouds. The existence of the equatorial mesospheric clouds

was suggested by Clancy and Sandor [1998]. We have confirmed the mesospheric

altitude of such clouds, and identified one example that has an altitude, particle

size, and optical depth all consistent with the Clancy and Sandor [1998] explanation

for the Pathfinder blue wave clouds. The optical depths of these discrete clouds

are an order of magnitude higher than that of the limb hazes observed by Viking

and MOC, and so the prevalence of these clouds becomes an important question

for both the chemistry and radiative balance of the mesosphere. The low detection

rate in the THEMIS-VIS data set perhaps implies that they are rare and thus

unimportant, but other factors besides scarcity of clouds, such as the time of day

of the ODY orbit and the sensitivity of THEMIS-VIS will need to be considered as

part of a careful statistical analysis in order for their true impact to be understood.

We are aware of no previous predictions of discrete mesospheric cloud features

in winter mid-latitudes. Their existence places an important new constraint on

the cloud formation mechanism or mechanisms that operate in the vicinity of

the polar hood, in that they must be operating at altitudes up to 70 km. The

observed horizontal, vertical, and temporal distribution of the clouds is most likely
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controlled by the peculiar pattern of the observations that led to their serendipitous

discovery, and thus we have almost no information about the real distribution of

this type of cloud, other than that they appear to be visible only in twilight, and,

with a detection rate of 17% in Acidalia, fairly common. We do, however, see

some evidence that identifies the lineated mesospheric clouds that have 40 - 55km

altitudes with the polar streak clouds that are ubiquitous in the polar hood.

There is no reason to believe that the mid-latitude mesopheric clouds and

the equatorial mesospheric clouds have anything in common besides the manner in

which they were detected. For the equatorial clouds, the Clancy and Sandor [1998]

proposal of gravity wave induced supersaturation leading to CO2 cloud formation

is quite consistent with our observations. The mass of aerosol is too large to be

water. Furthermore, the wave-like morphology of the clouds and the observed size

of the aerosols points to a coherent story for CO2 aerosol formation that requires

gravity wave amplitudes only modestly greater than those observed during the

Pathfinder descent.

We have little information on the composition of the mid-latitude mesospheric

clouds. The cloud morphologies that we show here may or may not provide insight

into their mechanism of formation, and we must of course consider that the clouds

at 70 km in altitude may be different in nature than those at 45 km. Given that the

mid-latitude winter mesospheric temperatures are probably warmer than those of

the tropical mesosphere [Smith et al., 2001; Joshi et al., 1995], these clouds are less

likely to be CO2. Since our modeling of THEMIS-VIS images yielded meaningful

constraints on the nature of the equatorial clouds, it seems likely that a radiative

transfer model suitable for twilight will ultimately yield similar constraints on the

mid-latitude clouds.
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The poor match between our equatorial mesospheric velocities and our GCM

results provides an important challenge for future modeling work. Ideally, these

models would provide a description of gravity wave drag which produces both

the correct wind speeds and gravity wave amplitudes sufficient to produce the

necessary supersaturation at the altitudes that we observe clouds. We might also

hope that such a model would explain the apparent longitudinal asymmetry in the

cloud observations. A still more ambitious theoretical or modeling question is the

relationship between gravity wave breaking and mesospheric clouds morphology.

What would wave-breaking turbulence in mesopheric clouds look like, and is it

consistent with our observed morphologies?

A crucial future direction for observational study of these mesospheric clouds is

a detailed examination of MOC-WA limb observations with the goal of identifying

the relationship between the limb hazes and the mesospheric clouds. Similar com-

parisons will be possible with MARCI [Malin et al., 2001] on Mars Reconaissance

Orbiter. MARCI, a wide-angle (180◦) multi-spectral imager with 2 UV channels

plus visible coverage similar to THEMIS-VIS, may also be able to provide con-

straints on the limb-haze composition and particle size.

As long as THEMIS-VIS continues routine imaging of martian surface fea-

tures using the green and blue filters, it is likely to continue to discover equatorial

mesospheric clouds. The relative allocation of THEMIS-VIS imaging between mul-

tispectral and monochromatic sequences will obviously greatly affect the rate of

detection. Future THEMIS-VIS observations of mid-latitude mesospheric clouds

depends on the details of the ODY orbit during the next northern fall-winter

period. If the orbit puts ODY over twilight surfaces in northern fall-winter mid-

latitudes, we recommend regular twilight imaging with uniform sampling in lon-
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gitude in order to determine the true spatial distribution of the clouds. We also

recommend using four filters instead of three to provide more robust constraints

on radiative transfer models, and 4x4 binning to maximize coverage and thus the

odds of a detection. If spacecraft engineering constraints allow for off-nadir point-

ing of THEMIS-VIS, then a mixture of twilight and pre-sunset images should be

acquired at any given latitude in order to clarify the effect of incidence angle on

the clouds or on their detectability.

The THEMIS-VIS altitude-velocity measurement capability is not in principle

limited to mesospheric clouds. At lower altitudes, however, identification of cloud

features becomes more problematic, and the confounding effect of nearby surface

features on our cross-correlation method becomes more significant. Thus, future

work in this direction will involve the development of more sophisticate techniques

for feature localization.



CHAPTER 4

CALIBRATION AND IN-FLIGHT PERFORMANCE OF THE

MARS ODYSSEY THEMIS VISIBLE IMAGING SUBSYSTEM

(VIS) INSTRUMENT

4.1 Introduction

The Mars Odyssey spacecraft’s Thermal Emission Imaging System (THEMIS)

consists of two independent multispectral imagers sharing a single telescope —

a nine-band mid-infrared microbolometer arrary (THEMIS-IR), and a five-band

visible/near-infrared interline-transfer CCD (THEMIS-VIS). THEMIS has been

acquiring visible and infrared images from Odyssey’s 400 km circular polar orbit

since February 2002, and has already provided important new insights about the

geology and evolution of the martian surface. [e.g., Christensen et al., 2003; Titus

et al., 2003; Pelkey et al., 2003, 2004; Milam et al., 2003; Bell, 2003] Details of

the THEMIS design, including THEMIS-IR, and the optics shared by both sub-

systems, can be found in Christensen et al. [2004]. The purpose of this chapter is

to describe and evaluate the calibration of THEMIS-VIS, and to describe aspects

of the instrument design and on-orbit performance which are directly related to

the calibration.

THEMIS-VIS is one of several visible light instruments currently in operation

in Mars orbit. Of these, the Mars Orbiter Camera (MOC) on the Mars Global Sur-

veyor (MGS) orbiter [Malin et al., 1992], and the High-Resolution Stereo Camera

(HRSC) on the Mars Express orbiter [Neukum and Jaumann, 2004] are most simi-

lar to THEMIS-VIS. The OMEGA imaging spectrometer on Mars Express [Bonello

et al., 2004], the visible-band bolometer detectors of the Thermal Emission Spec-

135
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trometer (TES) on MGS [Christensen et al., 1992], and the Wide-Field Planetary

Camera 2 (WFPC2), Advanced Camera for Surveys (ACS), and Space Telescope

Imaging Spectrometer (STIS) [e. g. Bell, 2003] on the Hubble Space Telescope

(HST) are also currently providing (or have recently provided) visible-light cover-

age of Mars, but at significantly lower resolutions than MOC and HRSC.

MOC acquires monochrome images at scales as small as ∼1.5 m and two-color

imagery at regional and global scales from a circular, 400 km altitude, 2:00 p.m.

local solar time Sun-synchronous orbit [Malin et al., 1992]. HRSC provides stereo

imagery and 4-channel color from a highly elliptical orbit with a best resolution

of 50 meters per pixel [Neukum and Jaumann, 2004]. Both MOC and HRSC are

line-scan cameras, which use linear Charge-Coupled Device (CCD) arrays to obtain

information along one axis, and spacecraft ground track motion perpendicular to

the CCD array direction to obtain the other spatial axis. THEMIS-VIS acquires

monochrome or color images in any combination of its five bands with resolution

modes of 18, 36, and 72 meters per pixel from its circular, 400 km, approximately

Sun-synchronous orbit at typical local solar times of 4:00 p.m. to 5:00 p.m. The

filter bandpasses have a FWHM of roughly 50 nm and are centered at 423, 540,

654, 749, and 860 nm. Fig. 4.1a shows the THEMIS-VIS bandpass profiles. Unlike

MOC and HRSC, THEMIS-VIS is a 2-D array framing camera — all 1024 x 1032

CCD pixels are exposed simultaneously. However, spacecraft ground track motion

is also used to expand the spatial coverage of acquired imaging sequences. While

THEMIS-VIS is not designed to provide stereo capability, a limited amount of

information on the altitude and cross-track velocity of high clouds can be derived by

co-registering overlapping frames acquired at slightly changing viewing geometries

over the course of a color imaging sequence (see Chapter 3).
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THEMIS-VIS was found to have a serious problem from stray light contami-

nating the detector signal both during integration and during the CCD readout.

Stray light accumulation during integration affects the entire array, but is most

noticeable as broad and brighter stripes of additional signal near the edges of un-

calibrated images. Stray light accumulation during the readout process creates an

additive offset, and an effect similar to the “electronic shutter smear” seen in some

shutterless CCD imaging systems, both of which are proportional to scene bright-

ness but independent of the exposure time. Most of this chapter is focused on the

removal of both forms of stray light contamination from THEMIS-VIS images.

This chapter describes and evaluates the process by which the radiance-cali-

brated data stored in the NASA Planetary Data System (PDS) THEMIS-VIS Re-

duced Data Records (RDRs; accessible via the internet at http://themis-data.

asu.edu/) is generated from the raw PDS Engineering Data Records (EDRs).

(Note that THEMIS-VIS RDRs are not geometrically calibrated. This chapter

does not address geometric calibration.) We begin by describing the relevant op-

erational details of THEMIS-VIS, as well as our preferred model for the stray-light

contamination mechanisms. We then discuss each step of the EDR-to-RDR cal-

ibration process. Finally, we evaluate the calibration by comparing the derived

THEMIS-VIS radiances to HST results, as well as to the surface-based multispec-

tral measurements provided by the Mars Exploration Rovers’ Panoramic Cameras

(Pancams).

4.2 Operational Details and Labeling Conventions

VIS uses a Kodak interline-transfer CCD. For each column of photosites, there is a

masked vertical register (v-register) adjacent to it. At the start of a THEMIS-VIS
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exposure, any charge accumulated on the detector is flushed. Charge accumu-

lated in the photosites is transferred to the adjacent v-registers twice during the

commanded exposure period — once at the midpoint and once at the end. The

v-registers are masked to minimize accumulation of photo-electrons during read-

out. During the readout process, beginning immediately after the second photosite

charge transfer, the charge is shifted “downstream,” i.e., down the v-registers and

transferred to the CCD’s horizontal register (h-register) one row at a time. The

h-register will be considered to be at the “bottom” of the detector array in this

chapter, so that “down” and “downstream“ are in the same direction. That is, if

one row of pixels is said to be below or downstream of another row of pixels, then

the row that is “below” or “downstream” is closer to the h-register. With this

convention, the direction of spacecraft motion (south on the afternoon side of the

orbit) is always “down.” We number rows starting from zero at the bottom. Note,

however, that the opposite row ordering convention is used in PDS EDR and RDR

products.

Physically, the THEMIS-VIS CCD detector has 1032 columns and 1024 rows.

The 5 THEMIS-VIS filters are strips that are 1032 columns wide and approximately

200 rows tall and are bonded directly to the detector. The front of the CCD

housing is covered by a window, which therefore falls between the filter strips

and the telescope optics, and which influences the overall spectral response in

each THEMIS-VIS band. Figure 4.1a gives the spectral response through each

THEMIS-VIS filter with the spectral throughput of the CCD window included. The

spectral response of each filter by itself turns out to be important, as we will show,

for predicting the magnitude of stray light contamination, and is therefore plotted

in Figure 4.1b.
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Figure 4.1: Relative response function (a), and filter transmissivity (b) for each
band of the THEMIS-VIS system. Each response function curve is normalized so
that the area under the curve equals one. The transmissivity curves represent the
absolute transmission of each band’s filter. The response functions and transmis-
sivities are color coded, with blue, green, red, brown, and purple corresponding to
the 425, 540, 654, 749, and 860 nm bands, respectively.
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Figure 4.2: Photograph of the THEMIS-VIS detector and color filter array prior
to THEMIS instrument assembly. Band (k) and filter (f) numbers are shown.

In this document, as in the EDR and RDR labels on the PDS files, the filters are

labeled “filter 1”, “filter 2”, . . . “filter 5” in order of their position on the detector

array, with filter 1 at the bottom, closest to the h-register. In this naming scheme,

“filter 1” is 860 nm, “filter 2” is 425 nm, “filter 3” is 654 nm, “filter 4” is 749 nm

and “filter 5” is 540 nm. An alternate filter designation exists, using the labels

“band 1”, “band 2”, . . . “band 5” to refer to the filters in order of increasing center

wavelength [425, 540, 654, 749, 860 nm]. Figure 4.2 shows the THEMIS-VIS focal

plane with filters f and bands k labeled.

The groundtrack of the Odyssey spacecraft runs approximately parallel to the

detector columns. This allows multispectral images to be acquired using a timed

sequence of THEMIS-VIS exposures. Any combination of one or more filters can be

acquired by selectively reading out only those rows that correspond to the desired

filters. Thus, a single THEMIS-VIS exposure can contain any or all of the five
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filters. We refer to the portion of an exposure that contains data for a single filter

as a “framelet.” All exposures in a sequence have the same exposure duration,

and all filters in an exposure must have the same exposure duration, and so all

framelets in a given THEMIS-VIS sequence have identical exposure durations.

The different filter framelets in a full-frame THEMIS-VIS exposure cover dif-

ferent regions of the Martian surface (nominally about 3.6 km apart for adjacent

filters), hence the need for a sequence of multiple exposures to build up a multi-

spectral image using spacecraft downtrack motion to image the same parts of the

surface through different filters (and thus at slightly different times). The expo-

sure sequences are designed so that all filters end up with the same number of

framelets, and so that when a filter moves past the targeted region of the surface,

it is no longer read out, meaning that the first and last several exposures of an

imaging sequence will have a smaller number of filters read out than exposures in

the middle of a sequence. Figure 4.3 illustrates the way that the framelets of a

series of exposures map onto the Martian surface and can be arranged to form a

continuous image strip for each filter.

The delay between exposures within a THEMIS-VIS imaging sequence is set

so as to maximize the areal coverage of an imaging sequence while allowing for

adequate overlap between adjacent framelets of the same band. A 1 second de-

lay leads to a typical overlap of between 10 and 20 detector pixels (depending on

the surface elevation and the angle of the planet’s rotation relative to the ground-

track) when projected onto the martian surface. One side effect of this overlap is

that framelets of different bands are not exactly spatially coincident when map pro-

jected, meaning that framelet boundaries (and calibration artifacts associated with

those boundaries) for different bands are in different positions in mapped data, and
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Figure 4.3: The individual exposures (a) that are used to construct THEMIS-
VIS images for each band (b). Both the individual exposures and the assembled
images for each band are THEMIS-VIS RDR framelets map projected onto a simple
cylindrical coordinate surface, with north at the top and east at right. Each
exposure in the time sequence is labeled with its exposure number, a. Each band
is labeled with its band number, k. In the time sequence, each framelet is labeled
with its framelet number, m, and its band number, k; and in the assembled images,
each framelet is labeled with its framelet number, m, and its exposure number,
a. For the individual exposures, the area shown for a = 1 to 5 corresponds to
the top portion of the assembled images, and the area shown for a = 14 and up
corresponds to the bottom portion of the assembled images. The a = 0 exposure
is not shown because, as is often the case, a = 0 contains no valid data.
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that the total area covered by lower-numbered filters within a sequence is offset

relative to that covered by higher-numbered filters by a number of pixels equal to

the framelet-to-framelet overlap multiplied by the difference in filter number. The

delay between exposures is given by the “INTERFRAME_DELAY” keyword in

the THEMIS-VIS PDS headers. A standard interframe delay of 1.00 seconds was

for used image numbers up through V14885012. The standard interframe delay

was changed to 0.90 seconds beginning with V14886001.

Rows and columns near the edges of the filters are always cropped during

readout. The result is that each framelet has dimensions of 1024 by 192 detector

pixels. The rows that are cropped are referred to henceforth as inter-framelet

rows. When THEMIS-VIS EDR “cubes” are generated (3-dimensional data sets

containing both spatial and spectral information, in PDS “QUB” file format),

the THEMIS-VIS exposures in a sequence are broken up into their constituent

framelets and re-assembled so that each framelet’s position in the cube corresponds

roughly to its spatial location on the surface of the planet. Thus, for a given

filter, the corresponding plane of the EDR QUB is generated by concatenating the

framelets from top to bottom in the order in which they were acquired. Assuming

no spatial summing (spatial summing is discussed below), and using the PDS row

ordering convention (opposite that used elsewhere in this chapter), the first (top)

framelet goes in EDR rows 0 – 191, the second in EDR rows 192 – 383, etc.. Within

a given EDR QUB plane, we assign the framelets a number, m, starting from the

top, with the first framelet acquired in a given filter being m = 0.

The procedure for removing stray light accumulated during readout requires

that all of the framelets from a given exposure be grouped together. Consider a

framelet at position m0 taken through filter number f0. The position m1 of the



144

framelet taken through filter number f1 that was acquired in the same exposure

as framelet (m0, f0) can be found by the following equation:

m1 = m0 + (f0 − f1) . (4.1)

If m1 < 0 or m1 ≥ n, where n is the number of framelets in each filter in the

EDR cube, then there was no framelet of filter f1 acquired in the same exposure

as framelet (m0, f0). Note that equation 4.1 is written in terms of filter numbers,

which are, as mentioned previously, not the same as band numbers. Note also,

however, that the EDR and RDR QUB planes are stored in band order, not in

filter order, and the location of each filter within the EDR and RDR cubes is given

by the BAND_BIN_FILTER keyword in the PDS labels. Figure 4.4 shows all five

planes of the EDR from a five-band THEMIS-VIS imaging sequence with each

framelet labeled according to its band number k, filter number f , framelet number

m, and exposure number a. Exposure number a is defined so that it is equal to m

for the lowest numbered filter in a given EDR or RDR; thus:

a = m+
(
f − fmin

)
. (4.2)

THEMIS-VIS can operate in any of three spatial summing modes. The preced-

ing discussion has assumed summing mode 1, i.e., no spatial summing, for clarity.

In summing modes (i.e., for spatial summing factors of) 2 and 4, the THEMIS-VIS

pixels are binned 2 x 2 and 4 x 4, respectively. This creates framelets with 512

columns by 96 rows, or 256 columns by 48 rows, respectively. Summing mode 1 has

a typical pixel scale of 18 meters on the martian surface for a nadir-pointed viewing

geometry. Thus, summing modes 2 and 4 have nadir-pointed pixel scales of 36 and

72 meters per pixel. To date, the martian surface has been targeted solely in the

nadir-pointed configuration, so actual pixel scales will vary only slightly from the
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Figure 4.4: A THEMIS-VIS EDR for the same image as in Figure 4.3, with the
five planes of the EDR layed out from left to right. To display this EDR data, we
have performed the 8-bit to 11-bit conversion as described in the text and then
applied a linear stretch to the DN values with the limits shown. We indicate filter
number f and band number k for each band, and the colored boxes and labels
indicate the exposure number a from which particular framelets were extracted.
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values quoted here.

The amount of time required to read out a single THEMIS-VIS exposure de-

pends both on the spatial summing mode and on the number of filters being read

out. Each framelet of an exposure requires 141, 76, or 39 msec to read out, for

summing modes 1, 2, and 4, respectively. A small amount of time (∼4 msec) is also

required to “dump” the charge from each filter that is not being read out. About

0.2 msec is required to dump each group of the inter-framelet rows, which are never

read out. So, for example, it takes 703 msec to complete the readout process when

summing mode 1 data from all five filters is being acquired. Since this readout

time is long compared to the ∼5 – 10 msec typical exposure time, the opacity of

the masks that protect the v-registers from photo-electrons, as well as the amount

of time that each row of data spends in the v-registers during readout, are crucial

factors for the THEMIS-VIS calibration process. And since THEMIS-VIS quickly

dumps the charge in filters not being read out, the amount of time a given row

spends in the v-registers depends not only on its distance from the h-register, but

also on which of the filters that are below it on the array are being read out.

Correcting for stray light and dark current accumulation during readout re-

quires knowledge of the timing for each data pixel as it is clocked down the v-

registers to the h-register during readout. For pixels in a given filter, this timing

depends on which of the lower-numbered (closer to h-register) filters are being read

out in a particular exposure, and which are being dumped and not read out. Pixels

in filter number f have 2((f−1) possible timing “paths” during readout (e.g., for

filter 3, these are the read out filter combinations [3,2,1], [3,2], [3,1], and [3]). The
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total number of possible paths is therefore

5∑
f=1

2(f−1) = 31. (4.3)

These 31 possible paths will henceforth be referred to as “filter paths.” Each

path is given a filter path code, F . For a given filter with filter number f0, F is

determined by:

F =

f0∑
f=1

η(f) · 2(f−1)

η(f) = 1 IF filter f is included in the exposure (4.4)

η(f) = 0 IF filter f is not included in the exposure.

A filter is included in an exposure if both of the following are true: (1) the filter

is present in the EDR; and (2) the framelet position m of the filter (as calculated

from equation 4.1) satisfies m1 < n and m1 ≥ 0, where n is the number of framelets

of each filter in the EDR cube.

The calibration process is also influenced by the manner in which the THEMIS-

VIS electronics perform spatial summing and store the data. The number of pixels

summed in the “horizontal” direction (along rows) is always equal to the number of

pixels summed in the “vertical” direction (along columns), but the spatial summing

in each direction is performed in a different manner. Vertical summing, if any, is

performed in the h-register. The charge from the appropriate number of v-register

pixels is simply added together into each h-register site, and the h-register sites are

then passed to the analog-to-digital (A-to-D) converter and represented as digital

(“data number” or “DN”) values with a gain measured at 25.4 electrons per DN.

An additive bias equal to 104 DNs is removed at this stage, after which DN values

can range from 0 to 2047 (i.e., 11 available bits) regardless of the spatial summing

mode. At this point, summing has only been performed along the vertical axis,
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and the DN values represent charge from a number of pixels equal to the spatial

summing factor. That is, for a given exposure time and scene brightness, 2x2

summing gives, neglecting charge accumulation during readout, twice as much

h-register charge, and thus a DN value which is larger by a factor of two.

Next, horizontal summing is performed on these DN values by THEMIS-VIS

onboard software, but now the appropriate number of pixels are averaged rather

than summed, so that DN values in the 0 – 2047 range remain in the 0 – 2047

range. Thus, considering the total effect of the two disparate steps of the spatial

summing process, the values returned by THEMIS-VIS with spatial summing are,

with a given scene brightness and exposure time, still only larger by a factor equal

to the spatial summing factor (rather than to the spatial summing factor squared)

once readout-accumulated charge has been removed, and the amount of exposure

time required to reach saturation of the available 0 – 2047 DN representation range

is correspondingly less by a factor equal to the spatial summing factor.

Before the THEMIS-VIS data are sent to the Odyssey spacecraft flight com-

puter for storage and eventual downlink, the 0 – 2047 11-bit DN values are com-

pressed into a 0 – 255 8-bit range using a square-root encoding algorithm. It

is important to note that 0 – 255 square-root encoded data is preserved in the

EDR, that the encoding is non-linear, and that therefore the encoding must be

reversed before the THEMIS-VIS EDR data is used in any quantitative way. (See

Table 4.5.)

The number of framelets in any THEMIS-VIS imaging sequence is limited by

the 3.8 megabyte capacity of the THEMIS-VIS instrument’s data storage buffer,

since THEMIS-VIS can transfer data to the spacecraft flight computer only after

the completion of an imaging sequence. This maximum capacity corresponds to
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19, 78, and 318 framelets for summing modes 1, 2, and 4 respectively, which means

maxima of 3, 15, and 63 framelets per band for five-band imaging sequences, or,

for example, 6, 26, and 106 framelets per band for three-band imaging sequences.

In addition to the normal operating mode described above, THEMIS-VIS has

a “test” mode in which the entire 1024x1032 array is read out and stored, only a

single exposure is acquired, and only spatial summing mode 1 is available. The in-

flight test mode is otherwise identical to the normal operations. However, much of

the calibration data used for this chapter was acquired using a pre-flight test mode

with several additional differences from in-flight operations: 1) only one photosite

transfer, at the end of the commanded exposure time, is performed; 2) no bias

subtraction is applied prior to data storage; and 3) the data are never compressed

to an 8-bit representation.

In order to compare pre-flight (or in-flight) test mode results with normal oper-

ating mode data, the test mode images are separated into framelets, with the test

mode image yielding one framelet for each filter. These framelets are 1024x192,

just like a normal framelet, and are obtained by extracting rows 2 – 193, 202 –

393, 403 – 594 , 611 – 802, and 813 – 1004, for filters 1 – 5, respectively, so as to

cover the same region of the detector as the operating-mode framelets. Rows are

numbered starting with zero at the bottom of the detector.

4.3 Stray Light Model

Our calibration method is based on the hypothesis that the source of the stray

light signals is a light leak under the edges of the filters (Fig. 4.4). Since the edges

of the filters are not masked, and since light reaches the focal plane at fairly high

incidence angles (the THEMIS optics are an f/1.7 system), a significant portion
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Figure 4.5: The hypothesized path followed by the stray light that reaches both
the photosites and registers. The dashed line indicates one of many similar paths
in which light reaching the edges of the detector is scattered under the edges of
the filters. The diagram is not to scale.

of the light that strikes the focal plane near the edges of the filters is scattered or

reflected towards the gap between the filter and detector (this gap is filled with

a transparent adhesive used to bond the filters to the array; see Fig. 4.5). Since

the interference filters strongly reflect broadband light, light that is scattered or

reflected into the gap can be directed back down to the detector.

Light directed back towards the detector will obviously contaminate the pho-

tosites of the detector array, and we will refer to this effect as photosite stray

light. Photosite stray light is illustrated in Fig. 4.6, which shows a pre-flight test

mode image of a uniform integrating-sphere light source. Within the region cov-

ered by each filter the signal level is nearly uniform, and the brightness differences

between the filters are the result of the calibration lamp spectrum and the wave-

length dependence of the THEMIS-VIS system’s responsivity. Superimposed on

this expected pattern are broad brighter stripes at the bottom and on either side of

the array. These brighter stripes are the result of the photosite stray light. Notice

that the signal in most of the area of the 860 nm filter, located at the “bottom”

of the array, is dominated by the photosite stray light. It is not known why there

is no similar bright stripe in the 540 nm filter at the “top” of the array. Also note
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that, as shown by Fig. 4.7, the amplitude of this stray light pattern is similar in

each of the filters, despite the fact that the center-field, mostly uncontaminated

photosite signal varies widely from filter to filter.

Light propagating in the filter-detector gap also contaminates the v-registers

and h-register, since the narrow masks that protect the v-registers and h-register

are less effective at high incidence angles. The v-register and h-register contamina-

tion is readily observed in the pre-flight calibration data by extrapolating DN vs.

time to an exposure time of zero, thereby eliminating the photosite contribution to

the signal. Fig. 4.8 shows a column profile of this register contamination signal for

several different calibration-lamp brightnesses, with a 3-msec integration photosite

signal shown for comparison. Fig. 4.9 shows an image of the register contamina-

tion signal for a particular pre-flight calibration lamp brightness. The ramp-up of

the register contamination signal towards high row numbers seen in Figs. 4.8 and

4.9 is superficially similar to an electronic shutter smear effect, but it differs in

that it depends on the brightness of the scene just outside of the detector field of

view, rather than on the portion of the scene imaged by the detector, and so its

magnitude and behavior are not directly related to the information contained in

the image.

Although details of the scattering/reflection processes and the properties of the

register masks are not well known and so must be derived as part of the calibration

procedure, the general features of our model yield several key assumptions for that

procedure:

1. The source for both types of stray light is just outside the field of view of

the detector. Therefore, the calibration procedure can never exactly remove

stray light effects because the scene radiance in the region just outside the
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Figure 4.6: Pre-flight test-mode image showing the photosite signal from the in-
tegrating sphere calibration source (using nine 8 W lamps), with each filter labeled
with its filter (f) and band (k) number. The large boxes outline the regions of the
detector from which the 1024 × 192 framelets for each filter are extracted. The
smaller boxes show the boundaries of the “calibration region of interest” (C-ROI)
for each filter. The inter-filter differences in brightness are due to the spectrum of
the light source and the transmissivities of the filters. However, all of the obvious
intra-filter non-uniformity in this image is attributable to photosite stray light.
This photosite stray light forms the broad stripes on the left and right side of all
of the filters as seen in this image. It also forms the bright stripe that covers the
bottom half of the f = 1 filter.
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Figure 4.7: Photosite signal as a function of column in the pre-flight test mode
image in Figure 4.6. The signal for each band is color coded, with blue, green,
red, brown, and purple corresponding to k = 1, 2, 3, 4, and 5 (425, 540, 654, 749,
and 860 nm), respectively. The column signal is averaged over the rows included
in each band’s C-ROI, and is shown as the difference between the column signal
and the given band’s C-ROI mean. The vertical lines indicate the boundaries of
the C-ROIs (which are identical in the column dimension for all 5 bands).
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Figure 4.8: Register signal (solid lines) and photosite signal (dashed lines) as
a function of row number, for a 3 msec exposure using pre-flight test-mode and
nine 8 W lamps. The signal is averaged over all columns included in the C-ROIs.
The shaded regions indicate the rows from which the framelets are extracted, and
the darker shaded regions indicate the rows included in each C-ROI. Each shaded
region is labeled with its filter (f) and band (k) numbers.
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Figure 4.9: Pre-flight test-mode image showing the register signal from the inte-
grating sphere calibration source (using nine 8 W lamps), with each filter labeled
with its filter (f) and band (k) number. The large boxes outline the regions of the
detector from which the 1024 × 192 framelets for each filter are extracted. The
smaller boxes show the boundaries of the C-ROI for each filter.
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field of view can by definition only be estimated. For low-contrast scenes,

this “guess” can be fairly accurate, but for high-contrast scenes, the error

inherent in estimating out-of-field stray light can be significant.

2. The register stray light is proportional to the scene radiance, and to the

amount of time that each row spends in the v-registers during the readout

process, but it does not depend on the exposure time (since the readout time

depends only on the spatial summing mode and filter combination).

3. The photosite stray light is proportional to both the scene radiance and the

exposure time.

4. Both stray light signals are proportional to the “broadband” scene radiance,

rather than the narrow-band radiance in any of the five filters, since the stray

light bypasses the filters in our model of the effect. Thus, just as the “direct”

(i.e., stray-light free) signal in each filter is proportional to the scene radiance

spectrum weighted by that particular filter’s response function (shown in

Fig. 4.1a), the stray light signal in each filter is proportional to the scene

radiance weighted by a different response function — one which includes all

of the same factors as those for the filters, except for the transmissivity of

the filters themselves. This response function is shown in Fig. 4.10. The

dominant factors in this broadband response function are the CCD window

and the detector quantum efficiency.

4.4 Calibration Procedure

The THEMIS-VIS flight-data calibration process, (henceforth, the “calibration

pipeline”) consists of seven steps: (1) 8-bit to 11-bit decoding; (2) identification of
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Figure 4.10: Relative response function of the THEMIS-VIS system excluding
the filter transmissivities, i.e., the broadband response function. The response
function is normalized so that the area under the curve equals one.
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bad pixels; (3) bias subtraction; (4) register stray light subtraction; (5) correction

for pixel response variations (i.e., “flatfielding”); (6) photosite stray light subtrac-

tion; and (7) conversion to radiance. Derivation of the calibration frames and

calibration coefficients necessary for this pipeline proceeds in a somewhat different

order, however. The first step of the calibration derivation is to use the pre-flight

data set to determine the photosite stray-light response and the direct response

for the central region of each filter. The next step is to develop a model, which

we will call the “broadband radiance model” that predicts the broadband scene

radiance from the narrow-band scene radiances in each of the five THEMIS-VIS

bandpasses. The response coefficients and broadband radiance model are neces-

sary for deriving the calibration frames of pipeline steps 4, 6, and 7. Once the

response coefficients and broadband radiance model are in hand, the calibration

frames are derived in the same order as the pipeline steps using only on-orbit data,

and so we will conclude this section by describing each pipeline step together with

the derivation of any required calibration frames.

Many of the calibration coefficients, and in particular the response coefficients,

apply to the entire area of a filter, and so they are calculated using mean values

from a representative sub-region of that filter’s framelets. This sub-region should

also contain a minimal amount of stray light, so that the calibration coefficients

based on it are influenced as little possible by any uncertainties in the stray light

estimates. We have identified one such representative-yet-minimal-stray-light re-

gion, which will be referred to as the “calibration region of interest” (C-ROI), for

each filter. The C-ROI boundaries are shown in Fig. 4.6.
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4.4.1 Derivation of response coefficients from pre-flight da-

ta

Given the differences between the pre-flight and on-orbit operating modes, and

considering the possibility of launch or post-launch changes in instrument behav-

ior, we have derived the THEMIS-VIS calibration using on-orbit data wherever

possible. However, in order to accurately determine the photosite radiometric

responses, we require a source with known spectral radiance. In principle, this re-

quirement could be met on-orbit using radiance measurements acquired by another

instrument, but this other instrument would need to observe the same region of

Mars at the same time as a THEMIS-VIS imaging sequence, with the same view-

ing geometry, and have a well validated calibration, high spectral resolution, and

sub-kilometer scale spatial resolution. We have acquired concurrent THEMIS-VIS

– WFPC2 and THEMIS-VIS – ACS measurements that come closest to satisfying

these criteria, but given the spatial resolution discrepancy, and since the difference

in phase angle between the HST measurements and the THEMIS-VIS measure-

ments is very large, and the high-phase photometric properties of the martian

surface-atmosphere system are potentially variable and not well known, we deem

our ground based spectral radiance source to be the most reliable means for deter-

mining the radiometric response. The HST data sets will be used to validate the

results.

The pre-flight data set we have used was acquired with the THEMIS instrument

in a temperature-controlled vacuum chamber viewing an integrating-sphere light

source through a window in the chamber wall. The integrating-sphere exit port

filled the THEMIS-VIS field of view and extended well beyond it in all directions.

We verified that changing the distance between the integrating sphere exit port
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and the THEMIS-VIS window had no effect on the observed signal pattern or

signal magnitude.

The integrating sphere output spectral radiance is varied by changing the num-

ber of 8, 45, and 200 Watt lamps, and for many of the possible lamp combina-

tions the integrating sphere output is traceable to National Institute of Standards

and Technology (NIST) standards. For the THEMIS-VIS calibration activities,

we used from one to nine 8W lamps, and also settings with one 45W lamp and

two 45W lamps. The lamp settings with the 8W lamps are all directly NIST-

traceable with ±2% precision. The one 45 W and two 45 W settings are not

directly NIST-traceable. We have estimated the spectral radiance for these set-

tings by subtracting the NIST-traceable ten 8W setting spectral radiance from the

NIST-traceable ten 8 W, one 45 W setting and ten 8 W, two 45 W setting spectral

radiances. This subtraction is of course only valid under the assumption that the

lamp settings are linear combinations of each other. We have tested the linearity

assumption by differencing the NIST-traceable radiance measurements of sets of

8W lamp settings; for example, nine 8 W − six 8 W − three 8 W should give zero

radiance with a precision degraded by a factor of roughly
√

3. We find that the

linearity assumption is valid under such tests, and we therefore conclude that our

differencing-based spectral radiance values for the 45 W lamps will have a preci-

sion of roughly
√

2 × ±2%, i.e., better than ±3%, and will not be systematically

biased. In any case, the 45 W lamps provide a different spectral shape from the

8 W lamps, and this different spectral shape is crucial for separating the direct

response from the stray-light response, so we have no choice but to use the 45 W

lamps in the calibration process.

The spectral radiance presented to THEMIS-VIS is also of course affected by
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Figure 4.11: Spectral radiance of the integrating sphere calibration source for
(bottom to top) six 8 W lamps, seven 8 W lamps, eight 8 W lamps, nine 8 W
lamps, one 45 W lamp, and two 45 W lamps. Solid lines are used for the 45 W
lamps, and dashed lines for the 8 W lamps.

the transmissivity of the vacuum chamber window. Fig. 4.11 shows the integrating

sphere radiance for each lamp setting after correction for the window transmissivity.

For each lamp setting, we calculate a weighted mean broadband radiance, as well

as a weighted mean narrow-band radiance for each filter, by weighting the window-

corrected sphere radiances with the response functions of Fig. 4.11 and Fig. 4.11,

respectively. These weighted mean radiance values are listed in Table 4.1.

A set of THEMIS-VIS integrating-sphere tests was performed in a thermally

controlled vacuum chamber temperature with the THEMIS-VIS focal plane tem-

perature maintained at each of six different settings. For each temperature setting,

measurements were taken with the following twelve lamp settings: all lamps turned
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Table 4.1: Radiance Calibration Data Set
Band

425 nm 540 nm 654 nm 749 nm 860 nm

Lamp
config-
uration In-band radiance (W m−2 µm−1 sr−1)

Broadband
radiance
(W m−2

µm−1 sr−1 )
6 8W 0.517 2.947 6.57 9.595 11.706 4.845
7 8W 0.599 3.434 7.777 11.212 13.692 5.650
8 8W 0.690 3.941 8.926 12.885 15.779 6.492
9 8W 0.770 4.411 9.985 14.424 17.544 7.258
1 45W 1.624 7.008 12.996 16.833 18.468 9.559
2 45W 3.259 13.917 26.087 33.486 36.958 19.088

Signal (DNmsec−1); 250 K thermal-vac test
6 8W 3.612 19.436 37.551 20.782 10.757
7 8W 4.236 22.645 43.740 24.152 12.585
8 8W 4.799 25.646 49.273 27.258 14.204
9 8W 5.267 28.437 55.645 30.277 15.761
1 45W 9.626 44.638 73.635 36.276 19.444
2 45W 19.150 89.408 146.314 72.193 38.787

Signal (DNmsec−1); 268 K thermal-vac test
6 8W 3.779 19.919 39.090 22.010 11.486
7 8W - - - - -
8 8W 4.863 25.960 50.684 28.649 15.013
9 8W - - - - -
1 45W 9.683 44.913 75.706 37.823 20.344
2 45W 19.406 90.219 150.652 75.583 40.937

Signal (DNmsec−1); 279 K thermal-vac test
6 8W 3.652 19.664 39.113 22.399 11.637
7 8W 4.246 22.958 45.592 26.042 13.556
8 8W 4.778 25.901 50.949 29.456 15.384
9 8W 5.365 28.855 58.287 32.719 17.084
1 45W 9.663 45.316 77.247 39.327 21.024
2 45W 19.340 90.951 153.461 78.483 42.327

Signal (DNmsec−1); 295 K thermal-vac test
6 8W 3.634 19.649 39.728 23.084 12.076
7 8W 4.367 23.423 46.920 27.351 14.372
8 8W 4.940 26.518 51.224 30.959 16.252
9 8W - - - - -
1 45W 9.728 45.605 79.233 41.058 22.101
2 45W 19.375 98.835 157.206 81.664 44.265
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off, one through nine 8W lamps, one 45W lamp, and two 45W lamps. Exposure

times of 3, 6, 12, and 24 milliseconds were used at each lamp setting, and ten

images were acquired at each exposure time. All ten images are averaged together

to produce a single low-noise image at each exposure time. We use this data set

to estimate the photosite stray-light response and the direct response as follows:

1. Fit a line to the set of exposure times for each pixel of each lamp level in

order to determine S∗, the total photosite (stray-light plus direct) signal, in

DN per msec.

D(t)ijk,l = Zijk,l + S∗ijk,l · t+ εijk,l , (4.5)

where D(t)ijk,l is the observed raw DN value for pixel i, j of band k at lamp

level l, t is exposure time, and the residuals of the fit are represented by

ε. Z gives the register stray-light signal. Z is useful for understanding

the behavior of the register stray light, but since the pre-flight test-mode

readout pattern and timing is different from the flight operating mode, Z is

not directly applicable to the flight data calibration.

Since the pre-flight test mode performs only one photosite-to-register trans-

fer in the course of an exposure, detector full-well was reached well before

the A-to-D conversion saturation value of 2047. We observed non-linear re-

sponse associated with full-well at DN levels greater than 1250. Therefore,

we inspected the D(t)ij images for each filter and lamp level and excluded

any with substantial regions of > 1250 DN. Additionally, in the linear fitting

process, we exclude all individual pixels that are either greater than 1250

DN, or which have more than 5% of pixels > 1250 in the surrounding 11x11

region.
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2. Determine the background-subtracted total photosite signal, S:

Sijk,l = S∗ijk,l − S∗ijk,0 , (4.6)

where S∗ijk,0 refers to the lamp setting with all lamps turned off. The zero

lamp signal is clearly not dark current, as the zero lamp images show a

stray light pattern similar to the directly illuminated images, and their peak

center-filter values of 2.5 DN per msec at 262 K are too high for plausible

dark current and shows no temperature dependence. The zero lamp signal

is also spectrally distinct from the integrating-sphere signal, which implies

that its source may be background light in the testing room. In addition

to subtracting this background light, we have also attempted to mitigate its

impact by excluding the lower lamp settings from the model fits described

below. Thus, in deriving the response coefficients, we use only those settings

with the 45W lamps or at least six 8W lamps. With this restriction, the

largest background signal contribution is to the 423 nm filter signal at six 8W

lamps, where it makes up ∼15% of the total signal. Although the background

subtraction should remove most of this contribution, without knowing the

source of the background signal we have no way to assess its variability aside

from the residuals of the model fits described below.

3. For each band k, extract the C-ROI mean values of the background sub-

tracted photosite signal, Sk,l (“Signal” in Table 4.1). Then fit them to a

linear model, with weighted-mean broadband radiance
_

I l (in Table 4.1), and

weighted-mean band k narrow-band radiance Ik,l (also in Table 4.1) as the

independent variables:

Sk,j = xk

_

I l +ykIk,l + εk,l , (4.7)
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where xk and yk are the photosite stray light response coefficient and direct

response coefficient, respectively. The straight bar in the symbols
_

I l and Ik,l

indicates that these radiances should be interpreted as spatial means over

the region sampled by a framelet.

Since
_

I l and Ik,l are highly correlated, we have taken the precaution of

solving for xk and yk using a grid-search algorithm, which allows us to

map the solution set and visualize the extent to which xk and yk can be

simultaneously constrained. We perform the grid-search with a grid spac-

ing of 0.005 DN msec−1/ (W m−2 µm−1 sr−1) in both xk and yk, calculating

the χ2 probability at each point. The search range was 0 – 3 DN msec−1/

(W m−2 µm−1 sr−1) in xk and 0 – 7 DN msec−1/ (W m−2 µm−1 sr−1) in yk. In

order to calculate the χ2 probability, each data point is assigned a standard

error equal to the root-mean-squared residual of the best fit. Fig. 4.12 shows

the resulting normalized probability density function (PDF) for 4 different

vacuum chamber temperatures. Note that the model fits do a poor job of

constraining the photosite stray-light response for bands 2 and 4, and that

they provide no constraint at all on the photosite stray light response of

band 3. Also note the small upward trend of direct response with increasing

temperature for bands 2 through 5. Since the 268 K and 279 K tests bracket

the observed on-orbit focal plane temperatures of 268 – 278 K, we will use

these tests to determine our response coefficients and associated confidence

intervals.

4. Identify the band 1 direct and stray light response coefficients directly from

the 279 K PDFs. Since band 1 shows no temperature trend for either co-

efficient, we are free to choose the most precise estimate, which is the one
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Figure 4.12: Two-dimensional probability density functions for the response co-
efficient fits at four thermal-vac temperatures. The PDFs are color coded, with
blue, green, red, brown, and purple corresponding to k = 1, 2, 3, 4, and 5 (425, 540,
654, 749, and 860 nm), respectively. The contour lines represent χ2 probabilities
of 0.05, 0.30, 0.60, and 0.90.
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Figure 4.13: One-dimensional probability density functions for yk, the direct
response coefficients. The PDFs are color coded, with blue, green, red, brown,
and purple corresponding to k = 1, 2, 3, 4, and 5 (425, 540, 654, 749, and 860
nm), respectively. Dashed lines show the adopted y values, which correspond to
the mean of each PDF. The adopted confidence intervals for y encompass 95% of
the total probability and are centered on the PDF mean. The filled regions of each
PDF represent regions outside of the adopted confidence intervals.

calculated at 279 K. The normalized 1-D PDF for direct response is shown in

Fig. 4.13, and the normalized 1-D PDF for stray light response in Fig. 4.14.

The adopted values for the coefficients, and their confidence intervals, are

given in Table 4.2. The adopted values are the mean of the population de-

scribed by the 1-D PDF. The confidence intervals are ranges centered on

the adopted value and encompassing 95% of the total probability in the 1-D

PDF.

5. Identify the band 5 response coefficients by combining the 1-D PDFs for the

268 K and 279 K tests. This is necessary because the band 5 coefficients

exhibit a temperature trend. The adopted values and confidence intervals

are derived as previously described, but using the sum of the normalized

1-D PDFs for the two tests. However, as will be described later, the band 5
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Figure 4.14: One-dimensional probability density functions for x, the stray light
response coefficients. The PDFs are color coded, with blue corresponding to k =
1, and purple corresponding to k = 5. Dashed lines show the adopted x values,
which correspond to the mean of each PDF. The adopted confidence intervals for
x encompass 95% of the total probability and are centered on the PDF mean.
The filled regions of each PDF represent regions outside of the adopted confidence
intervals.
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direct response coefficient derived in this manner was found to conflict with

on-orbit validation measurements. We have therefore chosen to adopt the

band 5 direct response coefficient implied by the validation measurements.

6. Assume that band 2 – 4 have the same stray light response as band 1. Some

kind of assumption about the band 2 –4 stray light response is obviously

required, since it is poorly constrained by the integrating sphere data set,

and we have chosen the simplest possible assumption that is consistent with

the 2-D PDFs. The row profiles of bands 1 – 4 shown in Fig. 4.7 indicate that

these four bands show similar stray light patterns with similar amplitudes,

which suggests that similar amounts of light are reaching the central area of

each filter, and that our assumption is therefore reasonable.

7. Identify the direct response coefficients for bands 2 – 4 by combining the

1-D PDFs for the 268 K and 279 K tests. For these bands, the 1-D PDF is

generated by summing over the region of the 2-D PDF that falls within the

band 1 stray light response coefficient confidence interval.

Table 4.2: Adopted Response Coefficients
Band

425 nm 540 nm 654 nm 749 nm 860 nm
x 4.180±0.145 1 6.085±0.075 5.605±0.090 2.125±0.060 0.6±0.2
y 0.300±0.025 0.300±0.025 0.300±0.025 0.300±0.025 1.475±0.225

units:
(
DN msec−1

)
/
(
W m−2 µm−1 sr−1

)
Summing Mode

1 2 4
z 5.50±0.48 6.70±0.44 8.40±0.99

units: DN/
(
W m−2 µm−1 sr−1

)
1The given ranges represent 95% confidence intervals.
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4.4.2 Derivation of broadband radiance model from HST

data

Since the broadband radiance,
_

I , is not generally known during on-orbit opera-

tions, it must be estimated from the narrow band radiances, Ik. We do this by

finding a set of coefficients αk such that

_

I q=
∑

k

αkIk,q + εq . (4.8)

Alternatively, we can estimate
_

I directly from the photosite signal, S:

_

I q=
∑

k

ωkSk,q + εq . (4.9)

The ωk coefficients are related to the αk coefficients by

ωk =
(αk/yk)

1 +
∑

k xk (αk/yk)
, (4.10)

which can be shown by combining Equations (4.7), (4.8), and (4.9).

The αk or ωk can be estimated from a data set of Ik and
_

I that is representative

of the radiance of Mars during on-orbit operations. We have chosen a set of HST

WFPC2 and ACS observations of Mars performed in 2003 during the Odyssey

mission [Bell et al., 2004b], the details of which are given in Table 4.3. These HST

observations use narrow-band filters to sample the Mars radiance spectrum, and so

we must interpolate from these samples to form a complete spectrum suitable for

convolution with the THEMIS-VIS narrow-band and broadband spectral response

functions. We do this by performing a cubic spline interpolation of the HST I/F

samples and then multiplying by the solar radiance spectrum.

The HST measurements are calibrated using the methods described in Bell

et al. [1997]. The images are projected onto a 2 pixel-per-degree simple cylindrical
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grid, and the Mars radiance spectrum at each grid point is used to generate Ik and
_

I for each grid point. All grid points from all of the HST observation sequences

described in Table 4.3 form the
_

I q and Ik,q for the multiple linear regression model

indicated by Equations (4.8) or (4.9). We have used this regression model approach

to find αk and ωk in two ways: 1) using Eq. (4.7) to calculate Sk,q from
_

I q and

Ik,q, then Eq. (4.9) to solve for ωk, and then Eq. (4.10) to give αk from ωk; and

2) using Eq. (4.8) to solve for αk and then Eq. (4.10) to give ωk. Both methods

produce essentially identical results.

Our adopted ωk coefficients are shown in Table 4.4. In order to produce the

best possible estimate of
_

I for a particular image sequence, the calibration pipeline

needs to be able to use whatever Sk values are available, and so we need a different

set of ωk for each of the 31 possible band combinations. The calibration pipeline

will choose the set of coefficients for the band combination that includes only those

bands that are being used to estimate
_

I , regardless of which bands happen to be

present in an EDR or an exposure. Since the ωk are regression coefficients and

not response coefficients, negative values are in principle allowed. However, all of

the negative coefficients in Table 4.4 are very small relative to the others for their

band combination, and so can be interpreted as zero, meaning that a particular

band when part of a particular band combination does not contribute significantly

to the
_

I estimate.

4.4.3 Flight data calibration procedure

In this subsection, we describe the calibration pipeline procedures in the order that

they are performed.
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Table 4.3: 1997 and 2003 HST WFPC2/PC and ACS/HRC Observations of Mars
Used in this Study

UT
Date1

UT
Time2

Camera
Filter

Wavelengths
nm

Diam.
arc-
sec.

SE
Lat.
(◦)

SE
Lon.
(◦)

Phase
Angle
(◦)

Ls

(◦)
Res.3

km/pix
PROG
ID4

970310 6:43 WFPC2
255, 336, 433,
467, 554, 763,
835, 893, 953

14.0 22.75 134.54 6.23 88.6 22.4 6852

970310 11:28 WFPC2
255, 336, 433,
467, 554, 763,
835, 893, 953

14.0 22.75 204.07 6.08 88.7 22.4 6852

970310 17:55 WFPC2
255, 336, 433,
467, 554, 763,
835, 893, 953

14.0 22.76 298.48 5.87 88.8 22.4 6852

030308 13:54 ACS
226, 271, 336,
343, 431, 477,
502, 658, 891

6.4 -4.09 9.13 38.53 148.7 48.7 9384

030821 11:15 WFPC2

255, 334, 409,
501, 589, 628,
673, 750, 855,

953, 1042

25.0 -18.96 195.99 8.13 245.3 12.5 9738

030822 4:51 WFPC2

255, 334, 409,
501, 589, 628,
673, 750, 855,

953, 1042

25.0 -18.94 93.50 7.63 245.8 12.5 9738

030826 22:32 WFPC2

255, 334, 409,
501, 589, 628,
673, 750, 855,

953, 1042

25.1 -18.81 316.91 5.13 248.8 12.4 10065

030827 9:45 WFPC2

255, 334, 409,
501, 589, 673,
750, 855, 953,

1042

25.1 -18.81 121.03 5.00 249.1 12.4 10065

030828 3:23 WFPC2

255, 334, 409,
501, 589, 628,
673, 750, 855,

953, 1042

25.1 -18.79 19.05 4.88 249.5 12.4 9738

1Read 970310 as March 10, 1997
2Time given as the start of the ∼25 to 50 minute observing sequence
3Resolution is the best spatial resolution at the sub-Earth point for images

obtained on the PC1 chip for WFPC2 or the HRC chip for ACS
4Space Telescope Science Institute Program Identification number, for HST

data archive access
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Table 4.4: Adopted Broadband Radiance Estimation Coefficients, ω
Band
Code1

Band
Combination

Coefficients, ωk

k = 1
(425 nm)

k = 2
(540 nm)

k = 3
(654 nm)

k = 4
(749 nm)

k = 5
(860 nm)

1 5 0.511
2 1 0.424
3 1, 5 0.045 0.460
4 3 0.134
5 3, 5 -0.003 0.524
6 1, 3 0.090 0.107
7 1, 3, 5 0.073 0.070 0.157
8 4 0.364
9 4, 5 -0.015 0.532
10 1, 4 0.160 0.235
11 1, 4, 5 0.056 0.035 0.398
12 3, 4 0.138 -0.011
13 3, 4, 5 0.002 -0.016 0.526
14 1, 3, 4 0.096 0.089 0.043
15 1, 3, 4, 5 0.086 0.071 0.036 0.092
16 2 0.154
17 2, 5 0.047 0.355
18 1, 2 -0.037 0.167
19 1, 2, 5 0.010 0.042 0.361
20 2, 3 0.067 0.076
21 2, 3, 5 0.049 0.016 0.288
22 1, 2, 3 0.058 0.031 0.090
23 1, 2, 3, 5 0.037 0.033 0.047 0.182
24 2, 4 0.102 0.127
25 2, 4, 5 0.059 0.045 0.255
26 1, 2, 4 0.033 0.086 0.137
27 1, 2, 4, 5 0.024 0.049 0.056 0.244
28 2, 3, 4 0.076 0.045 0.062
29 2, 3, 4, 5 0.059 0.006 0.043 0.236
30 1, 2, 3, 4 0.057 0.041 0.060 0.060
31 1, 2, 3, 4, 5 0.046 0.041 0.042 0.053 0.090
1For an exposure in which all of the bands in an image are being read out, the

filter path code (described in the text) of the band furthest from readout is equal
to the “band code.”
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1. 8-bit to 11-bit decoding

The 8-bit-per-pixel square-root encoded EDR data is decoded to its full 11-bit-per-

pixel linear range using the inverse look-up table shown in Table 4.5. The decoded

values can range from 0 to 2040.

2. “Bad” pixel identification

Bad pixels, also known as null pixels, are assigned the value specified by the

CORE_NULL keyword in the PDS RDR label, and are ignored in all subsequent

THEMIS-VIS processing. Bad pixels are identified in the decoded (11-bit-per-

pixel) EDR data as follows:

a. Threshold values All pixels with a DN level of 2040 (the highest possible

value) or 0 are flagged as null pixels because they are likely saturated.

b. Bad rows and columns Some rows and columns near the edge of each

framelet are always filled with unusable (noisy or saturated or zero) data. The

pixels in these rows and columns (Table 4.6) are therefore flagged as null.

c. Saturated regions In exposures where all or part of the detector is saturated,

the DN value of some saturated pixels is “wrapped” by the instrument firmware

to a value which is invariably small compared to the rest of the pixels in the array.

These “wrapped” pixels are identified by considering each THEMIS-VIS framelet

separately. Any pixel whose value is less than the framelet median by at least 1200

DN has probably been “wrapped” and is therefore flagged as null. The median is

calculated using all pixels not flagged as null in a. or b..
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d. Neighboring pixels Pixels near to saturated regions are often observed to

be anomalously high even if they themselves do not meet the criteria of a. or c..

Therefore, if too many of the pixels near a given pixel are flagged as null in a. or

c., that pixel is also flagged as null. A 5 by 5 pixel region centered on each pixel is

considered. This region is truncated if it would extend pass the edge of the array.

Pixels that lie in the “bad rows and columns” identified in b. are always treated

as valid for this procedure. If more than 30% of the pixels in the 5x5 (truncated if

necessary) region for a given pixel are null, then that pixel is also flagged as null.

3. Bias subtraction

a. Nighttime VIS images The bias subtraction procedure uses THEMIS-VIS

images acquired at night with nominal exposure times of zero. The bias is de-

termined independently for each of the three available spatial summing modes.

In practice there is no detectable difference between night images acquired with

typical VIS exposure times (up to thirty milliseconds) and night images with zero

exposure time, so non-zero exposure time night images are also included in the

averaging process that is used to determine the bias. This also means that the

dark current for typical THEMIS-VIS exposure times is effectively zero. (Typi-

cal on-orbit focal plane temperatures are ±5◦C). However, because the readout

time is much longer than the exposure times, some of the signal for zero millisec-

ond nighttime exposures may be attributable to dark current accumulated during

readout. The evidence for this is a slight ramp-up in the zero-millisecond signal

towards the top of the detector. Fortunately, since the amount of dark current that

accumulates during readout is not a function of exposure time, and since we have

detected no temporal variability in the zero exposure night-time images, there is
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Table 4.5: 8-bit to 11-bit Lookup Table
8
bit

11
bit

8
bit

11
bit

8
bit

11
bit

8
bit

11
bit

8
bit

11
bit

8
bit

11
bit

8
bit

11
bit

8
bit

11
bit

0 0 32 45 64 150 96 315 128 542 160 829 192 1177 224 1586
1 1 33 47 65 154 97 321 129 550 161 839 193 1189 225 1599
2 2 34 50 66 158 98 328 130 558 162 849 194 1201 226 1613
3 3 35 52 67 163 99 334 131 566 163 859 195 1212 227 1627
4 3 36 55 68 167 100 340 132 574 164 869 196 1225 228 1641
5 4 37 57 69 171 101 346 133 582 165 879 197 1237 229 1655
6 5 38 60 70 176 102 353 134 591 166 889 198 1249 230 1669
7 5 39 63 71 181 103 359 135 599 167 900 199 1261 231 1683
8 6 40 65 72 185 104 366 136 608 168 910 200 1273 232 1697
9 7 41 68 73 190 105 373 137 616 169 920 201 1286 233 1712
10 8 42 71 74 195 106 379 138 625 170 931 202 1298 234 1726
11 9 43 74 75 200 107 386 139 633 171 941 203 1310 235 1740
12 10 44 77 76 205 108 393 140 642 172 952 204 1323 236 1755
13 11 45 80 77 210 109 400 141 651 173 963 205 1336 237 1769
14 13 46 83 78 215 110 407 142 660 174 973 206 1348 238 1784
15 14 47 86 79 220 111 414 143 669 175 984 207 1361 239 1798
16 15 48 90 80 225 112 421 144 678 176 995 208 1374 240 1813
17 17 49 93 81 230 113 428 145 687 177 1006 209 1386 241 1828
18 18 50 96 82 235 114 435 146 696 178 1017 210 1399 242 1842
19 20 51 100 83 241 115 442 147 705 179 1028 211 1412 243 1857
20 21 52 103 84 246 116 449 148 714 180 1039 212 1425 244 1872
21 23 53 107 85 251 117 457 149 723 181 1050 213 1438 245 1887
22 25 54 110 86 257 118 464 150 732 182 1061 214 1451 246 1902
23 26 55 114 87 262 119 472 151 742 183 1073 215 1464 247 1917
24 28 56 118 88 268 120 479 152 751 184 1084 216 1478 248 1932
25 30 57 121 89 274 121 487 153 761 185 1095 217 1491 249 1947
26 32 58 125 90 279 122 494 154 770 186 1107 218 1504 250 1963
27 34 59 129 91 285 123 502 155 780 187 1118 219 1518 251 1978
28 36 60 133 92 291 124 510 156 789 188 1130 220 1531 252 1993
29 38 61 137 93 297 125 518 157 799 189 1142 221 1545 253 2009
30 40 62 141 94 303 126 526 158 809 190 1153 222 1558 254 2024
31 43 63 145 95 309 127 534 159 819 191 1165 223 1572 255 2040

Table 4.6: Bad rows and columns
Summing Mode Bad Columns Bad Rows

1 0 – 9, 1000 – 1023 0 - 1
2 0 – 4, 500 – 511 0
4 0 – 1, 250 – 255 0
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Table 4.7: THEMIS-VIS images used for Fig. 4.17 comparison with concurrent
HST images

Image Parameters Image Center Coords.

Image
number

Start time
(UT)

Exposure
duration
(msec)

Summing
Mode

Number
of

framelets

East
Lon.
(◦)

Lat.
(◦)

Incidence
Angle
(◦)

V05454015 2003-03-08 13:39:00.640 2.8 4 63 43.11 71.34 76.73
V05454017 2003-03-08 13:44:27.441 5.2 2 15 37.26 56.35 74.80
V05454018 2003-03-08 13:46:29.941 5.2 2 15 35.82 50.25 74.31
V05454019 2003-03-08 13:48:19.038 2.7 4 63 34.49 43.62 73.99
V05454021 2003-03-08 13:53:08.639 3.5 2 15 32.26 30.34 74.01
V05454022 2003-03-08 13:56:54.338 7.3 1 3 30.63 19.32 74.70
V05454023 2003-03-08 13:58:25.639 3.0 2 15 29.94 14.43 75.20
V05454024 2003-03-08 14:00:17.838 3.7 2 15 29.17 8.79 75.90
V05454026 2003-03-08 14:02:14.837 3.2 2 15 28.37 2.89 76.78
V05455001 2003-03-08 14:04:29.439 2.2 4 63 27.28 -5.12 78.20
V05455003 2003-03-08 14:06:52.837 4.8 2 15 26.46 -11.16 79.42
V05455005 2003-03-08 14:07:52.138 5.2 2 15 26.05 -14.16 80.07
V05455006 2003-03-08 14:09:45.036 6.2 2 15 25.25 -19.89 81.39
V05455007 2003-03-08 14:12:56.836 8.8 2 15 23.82 -29.64 83.80
V05455008 2003-03-08 14:15:27.137 7.9 4 63 22.40 -38.51 86.15
V05455023 2003-03-08 15:37:43.430 3.1 4 63 13.92 70.92 76.65
V05455025 2003-03-08 15:41:35.726 3.0 4 63 9.22 59.44 75.10
V05455026 2003-03-08 15:44:15.327 5.2 2 15 7.48 52.70 74.48
V05455027 2003-03-08 15:46:33.429 4.7 2 15 6.04 45.83 74.07
V05455028 2003-03-08 15:48:44.725 4.8 2 15 4.84 39.28 73.90
V05455029 2003-03-08 15:50:36.526 5.2 2 15 3.92 33.69 73.92
V05455030 2003-03-08 15:52:35.127 4.8 2 15 3.00 27.76 74.12
V05455031 2003-03-08 15:54:38.428 8.2 1 3 2.14 21.88 74.49
V05455032 2003-03-08 15:56:40.928 2.0 4 63 1.06 14.23 75.22
V05455033 2003-03-08 15:59:41.025 3.5 2 15 359.99 6.37 76.25
V05455034 2003-03-08 16:01:26.724 3.8 2 15 359.27 1.04 77.10
V05456001 2003-03-08 16:03:35.927 4.4 2 15 358.39 -5.48 78.28
V05456002 2003-03-08 16:06:09.126 5.3 2 15 357.34 -13.23 79.88
V05456003 2003-03-08 16:09:29.626 7.4 2 15 355.91 -23.40 82.25
V05456004 2003-03-08 16:13:12.125 6.9 4 63 354.01 -35.94 85.47
V07470002 2003-08-21 10:55:57.821 1.6 2 15 236.59 -7.51 74.40
V07470005 2003-08-21 11:00:51.618 3.2 1 3 234.55 -22.12 68.75
V07470007 2003-08-21 11:02:48.418 1.5 2 15 233.62 -28.37 66.71
V07470008 2003-08-21 11:03:50.320 1.5 2 15 233.14 -31.52 65.77
V07470009 2003-08-21 11:04:59.719 2.0 2 15 232.57 -35.06 64.81
V07470010 2003-08-21 11:05:57.117 0.9 4 63 231.88 -39.22 63.80
V07470011 2003-08-21 11:07:50.019 1.9 2 15 231.07 -43.76 62.86
V07470012 2003-08-21 11:08:49.718 2.0 2 15 230.48 -46.81 62.33
V07470013 2003-08-21 11:09:51.320 2.1 2 15 229.83 -49.96 61.87
V07470014 2003-08-21 11:11:04.417 4.2 1 3 229.06 -53.39 61.47
V07470015 2003-08-21 11:11:45.320 2.1 2 15 228.47 -55.79 61.26
V07470016 2003-08-21 11:12:46.019 2.1 2 15 227.63 -58.89 61.07
V07470017 2003-08-21 11:13:49.718 2.2 2 15 226.62 -62.15 60.96
V07470018 2003-08-21 11:14:53.417 1.9 2 15 225.42 -65.40 60.97
V07470019 2003-08-21 11:15:58.417 1.4 4 63 223.28 -69.94 61.14
V07479007 2003-08-22 04:48:09.321 3.1 2 15 334.78 -23.70 68.13
V07479008 2003-08-22 04:49:09.723 5.5 1 3 334.38 -26.47 67.22
V07479009 2003-08-22 04:49:46.622 2.9 2 15 334.05 -28.65 66.54
V07479010 2003-08-22 04:50:47.223 2.8 2 15 333.58 -31.73 65.63
V07479011 2003-08-22 04:51:46.821 2.6 2 15 333.10 -34.77 64.80
V07479012 2003-08-22 04:52:56.223 2.3 2 15 332.52 -38.31 63.93
V07479013 2003-08-22 04:53:57.223 2.5 2 15 331.99 -41.43 63.24
V07479014 2003-08-22 04:54:57.820 2.5 2 15 331.43 -44.52 62.65
V07479015 2003-08-22 04:55:59.020 1.4 4 63 330.58 -48.87 61.94
V07479016 2003-08-22 04:57:49.019 2.5 2 15 329.62 -53.27 61.41
V07479017 2003-08-22 04:58:49.422 2.5 2 15 328.86 -56.36 61.15
V07479018 2003-08-22 05:00:34.722 2.5 2 15 327.32 -61.74 60.91
V07479019 2003-08-22 05:01:37.222 1.4 4 63 325.71 -66.15 60.93
V07479020 2003-08-22 05:03:24.120 1.2 4 63 322.93 -71.59 61.21
V07479021 2003-08-22 05:05:10.320 1.0 4 63 318.34 -76.95 61.78
V07479022 2003-08-22 05:06:54.120 1.5 2 15 311.77 -80.89 62.39
V07479023 2003-08-22 05:07:53.421 1.0 4 63 295.25 -84.71 63.19
V07536016 2003-08-26 23:11:13.388 3.8 4 63 106.98 11.58 82.56
V07536017 2003-08-26 23:13:04.790 4.4 2 15 106.37 7.18 80.44
V07536018 2003-08-26 23:13:59.188 3.9 2 15 106.00 4.44 79.14
V07542009 2003-08-27 09:36:06.631 6.0 4 63 267.19 -85.73 62.85
V07551003 2003-08-28 03:10:12.835 0.9 4 63 54.27 -47.97 61.04
V07551007 2003-08-28 03:16:36.635 1.5 2 15 49.02 -66.35 59.95
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no need to distinguish between bias and readout dark current for the purpose of

calibration. We will therefore henceforth lump both effects together and refer to

the combination of the two simply as “bias.”

b. Averaging to create bias frames To properly account for the small ramp

in the bias level, bias frames are created for each of the 31 filter paths and for each

of the 3 spatial summing modes. Where possible, each bias frame is generated

from a simple average of all available nighttime exposure framelets with the same

summing mode and filter path.

c. Modeling to handle paths for which no empirical data is available

For many of the less common filter paths, nighttime exposure framelets have not

yet been acquired. In these cases, we apply the following simple model of the

detector readout process in order to approximate the expected bias signal:

Consider what happens to the charge from all upstream filters while a down-

stream filter is being read out. As our first simplifying assumption, we ignore the

inter-framelet rows (there are 7 ± 2 inter-framelet rows at each filter boundary)

and pretend that the top row of one framelet is always adjacent to the bottom row

of the next. As each row of the downstream filter is shifted into the h-register,

the upstream filter rows are shifted one row closer to the h-register, so that by the

time the entire downstream filter has been read out, the rows of each upstream

filter f have shifted so that they now lie under the filter f − 1. The charge that

these rows accumulate in that time is characteristic of filter f . When the next

downstream filter is read out, these same rows are shifted from lying under filter

f − 1 to lying under filter f − 2, with the charge accumulated during the shift

being characteristic of the starting filter for that shift. When the rows of filter f
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are finally in the position where filter f rows are being transferred directly to the

h-register, the charge that they accumulate is characteristic of filter 1. Thus, if

all of the filters downstream from f are read out in an exposure, then the rows in

filter f accumulate charge from filters f , f − 1, f − 2, . . . 1.

If any of the filters downstream from f is not being read out, then the process

of dumping that filter shifts f downstream very rapidly, so if the rows in filter f

were under filter f−∆ at the start of the dump, very little of the characteristic bias

charge of filter f −∆ is accumulated. Thus, our second simplifying assumption is

that the charge accumulated during such a dump is negligible.

The bias charge built up during readout for a certain filter following a given

filter path with filter path code F can therefore be calculated simply by summing

the characteristic bias charges, Eij,f , of each downstream filter. The bias frame

Bij,F is:

Bij,F =

f0∑
f=1

η(f) · Eij,f0−f+1 . (4.11)

The values of f0 and η(f) are properties of the filter path denoted by F and

are defined by Eq. (4.4), i.e., f0 is the starting filter of the filter path and η(f)

indicates whether the filter f is one of those being read out for that filter path.

Eij,f and Bij,F are elements of arrays with the same dimensions as the framelets of

the spatial summing mode for which the Bij,F are being derived. Note that η(f) is

always equal to 1 when f = f0, so the characteristic bias of the first filter, Eij,f=1,

is always present in the bias frame.

Eij,f can be derived by using empirically known (via the averaging method

described above in item b.) Bij, F . We perform this derivation by using Bij,F

values for those filter paths for which all downstream filters are read out. These are

Bij,F=31, Bij,F=15, Bij,F=7, Bij,F=3, and Bij,F=1. Writing out Eq. (4.11) explicitly
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for these five Bij,F leads to the following trivial system of equations:

Bij,F=31 = Eij,f=1 + Eij,f=2 + Eij,f=3 + Eij,f=4 + Eij,f=5

Bij,F=15 = Eij,f=1 + Eij,f=2 + Eij,f=3 + Eij,f=4

Bij,F=7 = Eij,f=1 + Eij,f=2 + Eij,f=3 (4.12)

Bij,F=3 = Eij,f=1 + Eij,f=2

Bij,F=1 = Eij,f=1

d. Bias subtraction algorithm Bias frames for each summing mode are stored

in FITS files each with 31 planes corresponding to the 31 filter paths. The bias

is removed by determining the filter path for each framelet of each filter and then

subtracting from it the stored bias frame for that filter path and summing mode.

The bias frames are stored in the FITS files in order of the F code, i.e., the bias

frame for a given filter path is found at plane number F − 1 for a zero-based cube

plane counting system.

4. Register stray light subtraction

The strategy for removing register stray light is to first identify the spatial pattern

using zero duration exposures, and then determine the way that the intensity of

that pattern scales with C-ROI mean broadband scene radiance
_

I .

a. Zero duration daytime THEMIS-VIS images On-orbit images acquired

during daylight with a commanded exposure time of zero msec show the same spa-

tial pattern as the ground-calibration-derived zero exposure images. (cf., Fig. 4.9

and Fig. 4.15) Of course, a commanded exposure time of zero does not really pro-

duce an exposure time of exactly zero. However, in the majority of zero exposure
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Figure 4.15: A THEMIS-VIS EDR, as in Figure 4.4, but of a zero-exposure-time
in-flight image.

flight data, there is no evidence of surface features visible through the register stray

light pattern. The spatial variation of the small amount of scene derived DN that

is probably present in the zero exposure images will be washed out by averaging

a sufficient number of images. Furthermore, the level of scene-derived contamina-

tion of the zero exposure images will be a negligible fraction of the signal of any

given THEMIS-VIS image as long as the effective exposure time for a commanded

exposure time of zero is a negligible fraction of the effective exposure time for the

THEMIS-VIS image in question.

The register stray light frames are generated using zero duration daytime

THEMIS-VIS images that have been calibrated through stage 3 (bias subtraction)
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of the pipeline. The zero exposure daytime images are first averaged according

to filter path and spatial summing mode in the same manner as the nighttime

images are averaged to create bias frames. Next, the register stray light frames are

normalized by, first, setting the mean of a given spatial summing mode’s F = 1

register stray light frame equal to unity. Then, the register stray light frame for

every other filter path for that spatial summing mode is normalized so that its

values, relative to the F = 1 frame, reflect the relative intensity of the register

stray light for that filter path in the data set. Normalization to reflect relative

intensities in the data set is crucial, because the only means that we have available

for determining the scaling factor between the broadband radiance
_

I and register

stray light is to measure the changes in mean DN from framelet to framelet within

an image sequence as a result of changes in filter path, and then find a single scal-

ing factor for all of the register stray light frames that eliminates these changes in

mean DN.

For each filter path, the necessary normalization factor is determined as follows:

1) Find all of the exposures that are in the set of images used to generate the

register stray light frames, and contain both the given filter path and the F = 1

filter path. 2) For each of these exposures, calculate the ratio of the mean value

of the framelet from the given filter path to the mean value of the F = 1 framelet.

3) The normalization factor is a single number by which the filter path’s register

stray light frame is scaled so that its mean equals the mean of the ratios from

the previous step. Note that the means used to normalize the register stray light

frames are calculated from the all non-null pixels in the framelets, rather than from

the C-ROI used elsewhere in the calibration procedures.

A complication for this ratio-based normalization is that there are many filter
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paths that cannot occur in the same exposure as the F = 1 path. However, every

filter path does occur in the same exposure as one of F = 16, F = 8, F = 4,

F = 2, or F = 1 paths, which we will refer to as “clear” paths (these are the paths

that apply to filters 5, 4, 3, 2, and 1, respectively, when there are no other filters

downstream). The normalization factors of the “clear” filter paths are established

using ratios with respect to the F = 1 path, according to the previously described

procedure. Then the ratios of all other filter paths are measured with respect to

whichever “clear” path they occur with, and then rescaled using the ratio of that

“clear” path to the F = 1 path, which gives us the ratios of these paths with

respect to the F = 1 path and hence the normalization factor.

The “clear”-to-F = 1 ratios are established as follows: In THEMIS-VIS images

that use all five filters, an exposure containing F = 2 always occurs immediately

following an F = 1 exposure, an exposure containing F = 4 always occurs immedi-

ately following an F = 2 exposure, etc. So the F = 2 ratio is calculated relative to

the F = 1 from the previous exposure in the same image, the F = 4 is calculated

relative to the previous exposure F = 2, F = 8 relative to the previous F = 4, and

F = 16 relative to the previous F = 8. These ratios are then rescaled in sequence

so that they are expressed relative to F = 1.

This normalization scheme assumes that the register stray light signals from

the various filter paths are related to each other by a constant proportionality

factor. We have examined the register stray light signal ratios, and have found

that they are consistent with the constant proportionality hypothesis. Obviously,

the normalized register stray light frames are generated as described above only

for the filter paths that are represented in our data set of zero exposure daylight

images. Register stray light frames for filter paths that are not represented in
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the data set of zero exposure daylight images are generated by starting from the

normalized frames and then applying the same method used for the bias frames in

step 3c.

b. Deriving the register stray light response coefficient In order to solve

for the register stray light response coefficient, we postulate that, on average, once

the register stray light is removed, the framelet means will be independent of the

filter path, provided that we consider framelets from the same filter. To take

advantage of this postulate, we first determine, for each 5-filter image of a given

summing mode, the factor ψ that we need to multiply the normalized register

stray light frames by so that when they are subtracted from the image framelets,

the differences between adjacent framelet C-ROI means are minimized in a least-

squares sense. More explicitly, for each 5-filter image, we: 1) Identify the set of

framelet pairs that satisfy: a) both members of the pair are from the same filter;

b) the members of the pair come from adjacent (in the time sequence) exposures;

and c) the members of the pair have different filter paths. Let the elements of this

set be indexed by u. 2) Calculate the difference in the mean (bias subtracted) DN

for each pair, du, and the difference in the mean normalized register stray light

frame for the filters paths of the members of each pair, gu. 3) Find the value of ψ

that minimizes ∑
u

(
ψgu − du

)2
. (4.13)

4) Record ψ, and each band’s mean photosite signal Sk , for the image. If Gu′ is

the C-ROI-mean of the normalized register stray light frame for a framelet pair

member’s filter path, and Du′ is the C-ROI-mean uncorrected DN for that pair
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member, and t is the exposure time, then

tSk = mean
k′=k

(
Du′ − ψGu′

)
. (4.14)

The mean is over all elements of the u′ set of filter pair members for which the

filter number is equal to the k in the Sk we are calculating.

The register stray light response coefficient z is the factor that relates the mean

broadband scene radiance
_

I to ψ:

ψ = z
_

I . (4.15)

Solving for ψ by minimizing Eq. (4.13) would of course be sufficient to remove

register stray light in a THEMIS-VIS sequence of a uniform scene, but in order

to be able to calibrate any arbitrary sequence, we need to know z. To estimate z

we select a sample of 5-band images with low scene variance and determine ψ and

the Sk as described above. Let the elements of this sample be indexed by v, so we

have a set of ψv and Sk,v.

The Sk,v yield
_

I v by applying Eq. (4.9), and we use the resulting set of ψv and
_

I v

with Eq. (4.15) to give a least squares solution for z. In finding the
_

I v, we are free

to chose which of the bands k of the Sk,v, and thus which set of, ωk to use. Naively,

we might expect that using all five bands would give the best estimates and thus

the smallest residuals on the z solution, because it provides the most information

about the scene radiance spectrum. However, ψG is an imperfect solution for the

register stray light, and so in general the Sk estimates will be contaminated by

some register stray light, reducing the accuracy of the
_

I v. This contamination is

least significant in the bands with the highest photosite signal, and thus we find

that using only the k = 3 (650 nm) band gives the fit for z with the highest R2.

The k = 3 solution is our adopted z value, and is reported in Table 4.2. Excluding
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the k = 3, 4 band combination, which gives solutions and R2 identical to that of

k = 3, the band combination with the next highest R2 is k = 2, 3. Since the

difference in the z solutions of these two best fits is much higher than their formal

errors, we use this difference to form our confidence interval, with the half-width of

the confidence interval being set equal to the magnitude of z(k = 1)− z(k = 2, 3).

c. Subtraction of scaled register stray light frames Register stray light

frames for each summing mode are stored in FITS files each with 31 planes corre-

sponding to the 31 filter paths. These frames are stored in order of the F code, i.e.,

the frame for a given filter path is found at plane number F − 1 for a zero-based

cube plane counting system.

Let Dijfa be the bias-subtracted (i.e., calibrated through stage 3) DN for col-

umn i, row j, filter f , and exposure a of a THEMIS-VIS imaging sequence with

exposure duration t, and let Gij,F (f,a) be the i, j elements of the normalized reg-

ister stray light frame with the appropriate filter path F . (F is determined from

Eq. (4.4).) Then the photosite signal Sijfa is

Sijfa =
Dijfa − z

_

I a Gij,F (f,a)

t
. (4.16)

The means of determining broadband C-ROI mean radiance
_

I a is apparent if

we take the C-ROI means of S, D, and G, in Eq. (4.16) and then substitute into

Eq. (4.9), eliminating S:

_

I a=

∑
f ωf

Df,a′(a,f)

t

1 +
∑

f ωf

zGF (f,a′(a,f))

t

. (4.17)

The sums are over whatever subset of filters we chose to use, and the ωf are

those appropriate to that subset. The exposure number a′ used to calculate the
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broadband radiance estimate for exposure number a is not in general equal to a,

because the source region for an exposure’s register stray light may not be within

its field of view. Since 50% or more of the register stray light is contributed by

the h-register, and since the h-register is at the bottom of the array where it is

most likely contaminated by scene radiance near the bottom of an exposure’s field

of view, we chose a′ to select a filter from a different exposure (a later exposure

in the sequence) that covers the region just below the field of view of exposure a.

We select that later exposure as follows:

a′(a, f) =



a if f = 1

a+ 1 if f = 2

a+ f if g ≥ 3

. (4.18)

Although in principle we might wish to use as many of the THEMIS-VIS filters

as possible when calculating
_

I a from Eq. (4.17), in practice we have found that

using choosing a single filter produces better results, in the sense that when the

results of single-filter-
_

I a register stray light removal and multi-filter-
_

I a register

stray light removal are visually inspected and compared, the multi-filter-
_

I a image

is more likely to be the one with more prominent register stray light artifacts.

Therefore, we calculate
_

I a using D and G from filter 3 (band 3) whenever it is

present in the image. If filter 3 is not present, we use filter 4, and if not 4, then the

next most preferable filter, with the full preference order being 3, 4, 5, 2, 1. Less

preferable filters are those that have higher residuals when we fit for z in Eq. (4.15)

using single-filter-derived values for
_

I .

The series of
_

I a derived using Eq. (4.17) for an image will have missing elements

on the edges due to the beginning and end of the exposure sequence, and sometimes

in the middle due to invalid image data. Interior gaps are always filled by linear
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interpolation. Extrapolation is allowed for only one element past the edge of the

valid
_

I a elements, and
_

I a is treated as constant from this edge point and outwards.

5. Correction for pixel response variation (“flatfielding”)

The response of framelet pixels to scene radiance is variable, due both to variations

in the sensitivity of detector pixels, and to variations in optical throughput. In the

absence of stray light, an image of a uniform scene is a “flatfield,” i.e., a map of

these response variations.

Unfortunately, the variability in THEMIS-VIS signal in uniform-scene images

is dominated by stray light. The crucial distinction between response variations

and stray light is that response variations are a multiplicative effect, while stray

light is additive, so that regions of the detector that are brighter due to greater

response will have proportionally enhanced contrast, while regions that are brighter

due to more stray light will have not have enhanced contrast. This means that

if we incorrectly attribute all of the non-uniform signal in a uniform scene image

(after removal of register stray light) to photosite stray light, then regions of high

response will have spuriously high contrast. We must therefore remove response

variations prior to deriving and removing photosite stray light light. However, if

we incorrectly attribute all of the non-uniform signal in a uniform-scene image to

response variations, our calibration process will have the converse effect of creating

spuriously decreased contrast in regions of high stray light. We have therefore

adopted a method for generating flatfields that relies on the scene contrast directly

by using framelet to framelet signal differences rather than averages as in the usual

flatfielding approach.

A flatfield is derived independently for each of the five filters using data cali-
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brated through stage 4 (register stray light subtraction). Let S ′ij,n and S ′′ij,n be the

stage 4 signal for, respectively, the early and later members of framelet pair n. Let

σ′ij,n and σ′′ij,n be the standard errors for the DN values of the members of the pair.

These standard errors are based on Poisson counting noise statistics, i.e., they are

simply the square root of the numbers of electrons detected at each pixel, so:

σ =

√
(electrons per DN) · (raw DN level)

(electrons per DN)
. (4.19)

The “raw DN level” refers to the DN level measured prior to bias subtraction, i.e.,

calibrated through stage 2. The gain is 25.4 electrons per DN for spatial summing

mode 1, 25.4/2 for spatial summing mode 2, and 25.4/4 for spatial summing mode

4. A framelet pair consists of any two adjacent framelets from the same filter and

same THEMIS-VIS data cube. Let the total number of such framelet pairs in the

data set for a given filter be labeled N . We assume that the photosite stray light

signal is slowly varying from framelet to framelet, so that the difference between

framelets depends only on the changes in the scene and on counting noise. Since

the magnitude of the differences caused by scene changes (as a fraction of the mean

signal) is proportional to responsivity, we estimate the responsivity R by starting

with the variance of the framelet-to-framelet differences:

1

N

N∑
n=1

(
S ′′ij,n − S ′ij,n

mean
(
S ′ij,n

))2

, (4.20)

and then subtracting the contribution of counting noise to those differences:

1

N

N∑
n=1

(
σ′′ij,n

mean
(
S ′ij,n

))2

+

(
σ′ij,n

mean
(
S ′ij,n

))2

. (4.21)

The responsivity R is the square-root of the counting-noise corrected variances:

Rij =

√√√√ 1

N

N∑
n=1

(
S ′′ij,n − S ′ij,n

)2 − (σ′′ij,n)2 − (σ′ij,n)2
mean

(
S ′ij,n

)2 . (4.22)
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Unfortunately, the assumption of slowly varying photosite stray light is not

always valid, leading to some contamination of our responsivity estimate by stray

light effects. This contamination is most severe where the stray light is most severe,

on the right and left edges of all filters, and across the entire filter 1 (band 5, 860

nm). Given the strong column dependence of the stray light, the weak variation of

derived responsivity with column in less contaminated regions, and the tendency

of the variation with column to mimic that of the stray light, we are not confident

that any of the column variation in derived responsivity is real. However, the row

dependence of responsivity is much stronger, and not correlated with the stray light

patterns. We therefore treat the responsivity as being a function only of detector

row, allowing us to derive it by averaging across the central, least contaminated

columns. Figure 4.16 (dashed lines) shows a family of profiles along columns of Rij,

to illustrate the dominance of variation with row. The strong drop in responsivity

below row 15 is due to vignetting by the edge of the filter.

We derived the column-averaged flatfield using summing mode 2 Rij values,

because the summing mode 2 data set is much larger than that in the other modes,

and so produces a higher quality flatfield. The resulting profile is normalized so

that it has unit mean within the C-ROI bounds. This normalization ensures that

flatfielding does not on average alter S. Thus, the flatfield as a function of row,

Rj, is:

Rj =

( ∑
i∈CROI

Rij

)
(

1

number of elements of j ∈ CROI

)[ ∑
j ∈CROI

( ∑
i∈CROI

Rij

)] . (4.23)

Each column of each framelet is corrected by dividing it by Rj. Since Rj is orig-

inally generated using only summing mode 2 data and is thus a 96 element vector,
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Figure 4.16: Responsivity, Rij, as a function of row for filter f = 3 (band
k = 3), summing mode 2. The dashed lines are generated by averaging groups of
10 columns. These groups of columns are 210–219, 240–249, 270–279, . . . 390–399.
The bold solid line is the adopted solution for Rj. All lines have been scaled by a
common normalization factor, such that Rj, has a mean value of 1 over the rows
of the C-ROI.
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it is resampled to 192 elements via linear interpolation for use with summing mode

1 data, and resampled to 48 elements via pixel averaging for use with summing

mode 4 data. The solid line in Fig. 4.16 shows Rj for filter 3, summing mode 2.

Rj for filters 2, 4, and 5 is similar. For filter 1, the stray light contamination is

so severe that we do not attempt to derive a flatfield, and so Rj for filter 1 is set

equal to one for all rows.

6. Photosite stray light subtraction

We model the photosite stray light signal in each framelet as the sum of a spatially

variable component Xijk

_

I and a spatially uniform component sk

_

I . So Sijk,p, the

total flatfielded signal (i.e., the signal calibrated through stage 5) for column i,

row j, of the p-th band k framelet in the THEMIS-VIS data set, is modeled as:

Sijk,p = (Xijk + xk)
_

I p +yk

(
I ijk,p + I ′ijk,p

)
. (4.24)

The parameters xk and yk are derived from pre-flight data as previously described

and as used in Eq. (4.7). Ik,p is the mean scene radiance for band k framelet p, also

as used in Eq. (4.7), and I ′ijk,p represents deviations from that mean scene radiance.

All spatial means, denoted by over-bars, are taken over the C-ROI region of each

framelet. By combining Eq. (4.24) with Eq. (4.7), we get:

Sijk,p − Sk,p = Xijk

_

I p +yk I
′
ijk,p + εk,p . (4.25)

Assuming a sufficiently large sample of framelets, the pattern of radiance in those

scenes, I ′ijk,p, will be essentially random, and so we can combine the I ′ijk,p term

with the εk,p error term. Using S ′ijk,p to denote deviations from the framelet mean

signal, this yields:

S ′ijk,p = Xijk

_

I p +εijk,p . (4.26)
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Thus, we solve for Xijk using a least-squares fit of Eq. (4.26). The framelet groups

indexed by p are sets of framelets from different bands that come from the same

imaging sequence and share the same framelet number m. Each framelet group has

a set of Sk from which
_

I is calculated using Eq. (4.9). Xijk is derived independently

for each summing mode using all framelet groups in the THEMIS-VIS data set that

contain all five bands. For the fitting process, S5 , the mean band 5 (860 nm) signal

is not used in the calculation of
_

I .

Using the derived Xijk, determining the corrected photosite DN signal, Qijk,p,

Qijk,p = Sijk,p − (Xijk + xk)
_

I p= ykIijk,p , (4.27)

for any arbitrary framelet group is simply a matter of determining
_

I for that group.

We do so using Eq. (4.9) with the Sk from that group. All valid Sk values from a

group are used to calculate
_

I , except that band 5 is excluded, unless band 5 has

the only valid value in that framelet group. We exclude band 5 because, by visual

inspection of the calibration results, we have found that excluding band 5 leads to

a decrease in the prominence of residual photosite stray light artifacts. An Sk is

valid if at least 50% of the pixels in its C-ROI are non-null. If all Sk for a framelet

group are invalid, then all pixels in that framelet group will be set to null.

7. Conversion to radiance

Given Qijk from stage 6, and since yk is derived from pre-flight measurements, Iijk,

the calibrated radiance in a THEMIS-VIS framelet, is simply:

Iijk =
Qijk

yk

. (4.28)
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4.5 Validation

In order to verify the accuracy of the THEMIS-VIS calibration, we use concurrent

observations with HST from 5 different dates in August, 2003, and one date in

March, 2003. (We have also made comparisons, which we will described in the

next section, with historical HST observations from March, 1997.) For each set of

HST observations in 2003 (see Table 4.3 for details), we targeted 5-band THEMIS-

VIS images within two hours of the first or last HST image. These THEMIS-VIS

images (Table 4.7) were acquired with all three of the available spatial summing

modes, and they sample incidence angles of 60◦ and higher (all THEMIS-VIS

emission angles were near zero), and terrains with the full range of martian albedo

values.

Figure 4.17 compares radiances derived from the HST image sets with C-ROI

mean radiances from the concurrently targeted THEMIS-VIS framelets. This com-

parison uses only framelets from THEMIS-VIS images with an effective exposure

time greater than three milliseconds. (The effective exposure time is the actual

exposure time multiplied by the spatial summing mode.) In order to perform the

comparison, the HST images are first projected onto a simple cylindrical grid with

a 5 pixel-per-degree sampling interval, so that each HST grid box covers 0.2◦ ×

0.2◦ of latitude and longitude, starting from 90◦ South, 180◦ West at the bottom-

left corner of the bottom-left grid box. (We use a 3 pixel-per-degree grid for the

lower resolution March, 2003 HST images.) We define usable HST grid boxes to be

those with both incidence and emission angles of less than 80◦. Similarly, we define

THEMIS-VIS pixels to be usable if they contain valid data and have incidence and

emission angles of less than 80◦. If less than 75% of the C-ROI pixels are usable

in any band of a framelet, we do not use that framelet.



195

Figure 4.17: The C-ROI mean radiance in THEMIS-VIS framelets, plotted
against the photometrically corrected radiance measured in concurrent HST im-
ages. The data points are color coded, with blue, green, red, brown, and purple
corresponding to bands k = 1, 2, 3, 4, and 5 (425, 540, 654, 749, and 860 nm),
respectively. A solid line with zero intercept and a slope of one has been drawn
in order to highlight the location of points for which the HST and THEMIS-VIS
radiances are exactly equal. The left and right-hand plots are identical, except for
the range of the axes. None of the k = 1 data points fall within the range of the
right-hand plot’s axes.
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To generate HST radiances for the comparison, we do the following separately

for each band of each framelet:

1. Find the set of usable C-ROI pixels.

2. Identify the THEMIS-VIS radiance as the mean radiance of the usable C-ROI

pixels.

3. Identify the THEMIS-VIS incidence, emission, and phase angles as the mean

values of these quantities over the C-ROI pixels.

4. For each narrow-band HST image, identify the HST I/F, incidence angle,

and emission angle as the weighted mean of the quantities over the HST grid

boxes into which the usable THEMIS-VIS C-ROI pixels fall. The weights

are the fraction of usable THEMIS-VIS C-ROI pixels in each grid box. (The

HST phase angle is, of course, a constant within each HST image.)

5. Apply a photometric correction to the HST I/F values, using a Minnaert

photometric model to adjust them to values appropriate for the THEMIS-

VIS observations. The correction factor is:

βhTHEMIS
[µ0,THEMIS]

κhTHEMIS [µTHEMIS]
κhTHEMIS

−1

βhHST
[µ0,HST]κhHST [µHST]κhHST

−1 , (4.29)

where µ0 is the incidence angle, µ is the emission angle, h is the phase angle.

The Minnaert coefficients, β and κ (both are functions of the phase angle

h) are given in Table 4.8, and were derived using the HST data set and

methods described in Soderblom et al. [2005]. The coefficients were derived

using narrow-band filters at the wavelengths listed in the table. To correct

HST radiances at other wavelengths, we interpolate the coefficients linearly in

wavelength, unless the target wavelength is outside of the wavelength range of



197

tabulated coefficients, in which case we use the coefficients from the nearest-

neighbor wavelength. Although separate Minnaert coefficients are used for

each phase angle bin, correcting for phase effects is still problematic, because

the HST data used to derive the correction do not exceed 40◦ phase and all of

the THEMIS-VIS data used for the radiance comparison have phase angles

greater than 60◦. No earth-based instruments can observe at phase angles

as large as those of THEMIS-VIS in its current nadir-viewing configuration

and 5pm orbit.

6. Estimate the spectral radiance by fitting a cubic spline in wavelength space to

the HST narrow-band I/F values and then multiplying by the solar spectral

radiance.

7. Identify the HST radiance by weighting the HST-estimated spectral radiance

by the spectral response function (Fig. 4.1) of the given THEMIS-VIS band.

For bands 1 – 4, the comparison in Fig. 4.17 provides satisfactory validation of

our calibration results. There are clearly systematic differences between the HST

and THEMIS-VIS radiances, as well as substantial scatter, but because we are

extrapolating the photometric behavior of Mars out to phase angles at which it is

not adequately measured by our concurrent HST study, and because of the large

difference in resolution between HST and THEMIS-VIS, the typical mismatches of

15% cannot be construed as evidence of a calibration inaccuracy. In fact, it may

be possible in the future to constrain the photometric properties of Mars using this

kind of comparison.

For band 5, the pre-flight-calibration-based y coefficient produced radiance val-

ues that were much too high relative to the HST radiance estimates. We have no
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explanation for this, but given the very high level of stray light in band 5, it is

not entirely surprising that our pre-flight calibration strategy did not produce a

useful result. Table 4.2 lists our arbitrarily adopted band 5 y coefficient of 0.6

± 0.2 DN msec−1/ (W m−2 µm−1 sr−1), which was selected because it produces the

reasonable agreement with HST shown in Fig. 4.17.

4.6 Error Analysis

Figures 4.18 and 4.19 illustrate the significance of the two stray light contributions

to the C-ROI signal in a THEMIS-VIS EDR, while Figs. 4.20 and 4.21 illustrate

the way that these contributions are distributed over the area of an EDR framelet.

Together with the confidence intervals on the x, y, and z calibration coefficients

given in Table 4.2, these figures allow estimation of the uncertainty in any given

RDR framelet’s radiance values. The x and y confidence intervals enclose 95%

of the one-dimensional probability density, and so can be regarded as 2σ error

estimates. The z confidence interval is more problematic, since it is simply based

on the difference between the two most plausible models, but in the following

discussion we will treat it too as a 2σ error estimate.

For Figs. 4.18 and 4.19 we have extracted the register stray light and photosite

stray light C-ROI signals, respectively, from the calibration pipeline, and compared

them to the direct C-ROI signal derived by the calibration pipeline. The contribu-

tion of each type of stray light to the fractional uncertainty for a particular C-ROI

radiance can be estimated by multiplying the expected fractional contribution of

that type of stray light to the total signal by the fractional uncertainty in the

relevant calibration coefficient. Consider, for example, a spatial summing 2, band

1 (423 nm) image with a typical perihelion-period exposure time of 2.5 millisec-
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Table 4.8: Minnaert Photometric Model Coefficients
Phase angle, h, range Wavelength

502 nm 672 nm 952 nm

κ
0◦ – 10◦ 0.727 0.778 0.859
10◦ – 20◦ 0.760 0.869 0.951
20◦ – 30◦ 0.627 0.788 0.849

30◦ + 0.763 0.929 1.005

β
0◦ – 10◦ 0.115 0.289 0.330
10◦ – 20◦ 0.103 0.283 0.345
20◦ – 30◦ 0.081 0.243 0.263

30◦ + 0.081 0.249 0.276

Figure 4.18: C-ROI register stray light signal as determined by the calibration
pipeline for the HST-concurrent data set. The left hand panel shows the relative
register signal as a function of effective exposure time for all five bands, using the
same color coding as in Fig. 4.17 (blue, green, red, brown, and purple correspond
to the 425, 540, 654, 749, and 860 nm bands, respectively). The right hand panel
shows histograms of the same data points after the 1 / effective exposure time
scaling factor has been removed. The effective exposure time is the actual exposure
time multiplied by the spatial summing mode. The histograms are normalized so
that the area under the histogram curve is equal to one. (Note that the histogram
for the 860 nm band falls entirely beyond the range selected for the histogram
plot).
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Figure 4.19: Histogram of the C-ROI photosite stray light signal as determined
by the calibration pipeline, presented as a fraction of the direct C-ROI signal
determined by the calibration pipeline, for the HST-concurrent data set. Color
coding is the same as in Fig. 4.17 (blue, green, red, brown, and purple correspond
to the 425, 540, 654, 749, and 860 nm bands, respectively). The two panels are
identical, except for differing x-axis ranges. The histograms are normalized so that
the area under the histogram curve is equal to one.

onds. This is an effective exposure time of 5 milliseconds (“effective” exposure

time = spatial summing mode × actual exposure time), and so according to the

histogram in Fig. 4.18, the register stray light signal is typically equal to the direct

signal. The z calibration coefficient for summing mode 2 has an uncertainty of

6.4%, and so 6.4% × 1.0 gives a register stray light contribution to the uncertainty

of 6.4%. For the same band and summing mode, the photosite stray light signal

is typically 19%, and the x coefficient uncertainty is 8.3%, so 8.3% × 0.19 give a

photosite stray light contribution to the uncertainty of 1.6%. For comparison, the

uncertainty in y contributes 3.5%, and the overall 2σ uncertainty can be regarded

as
√

6.42 + 1.62 + 3.52 = 7.5%, meaning that register stray light is the dominant

source of error for band 1 at this particular exposure time. Table 4.9 shows similar

calculations for all bands and summing modes at various exposure times.

It is important to note that since the stray light signals are additive, the residual
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Figure 4.20: Contour plots of the pixel-dependent component of register stray
light, for use in estimating errors in the calibrated C-ROI radiance based on the
magnitude of visible artifacts, as discussed in the text. We show this pixel de-
pendent component for a subset of the 31 summing mode 2 register stray light
calibration frames. The values plotted are the difference between the register stray
light frame and its C-ROI mean, as a fraction of it’s C-ROI mean.
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Figure 4.21: Contour plots of the pixel-dependent component of photosite stray
light, for use in estimating errors in the calibrated C-ROI radiance based on the
magnitude of visible artifacts, as discussed in the text. We show all 5 summing
mode 2 photosite stray light frames. The values plotted are the photosite stray
light frame as a fraction of the photosite stray light response coefficient, x.
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Table 4.9: 2σ uncertainty as a function of band, summing mode, and effective
exposure time

Band
y coefficient
contribution

Photosite
stray light

contribution

425 nm 3.5% 1.6%
540 nm 1.2% 0.5%
654 nm 1.6% 0.3%
749 nm 2.8% 0.9%
860 nm 33.3% 53.2%

Summing Mode Summing Mode Summing Mode
1 2 4

Effective
Expo-
sure
Time

Band Register
stray
light
con-

tribu-
tion

Total
uncer-
tainty

Register
stray
light
con-

tribu-
tion

Total
uncer-
tainty

Register
stray
light
con-

tribu-
tion

Total
uncer-
tainty

425 nm 17.6% 18.0% 16.1% 16.5% 36.2% 36.4%
540 nm 7.5% 7.6% 6.9% 7.0% 15.5% 15.6%

2 msec 654 nm 4.3% 4.6% 3.9% 4.3% 8.9% 9.0%
749 nm 12.5% 12.9% 11.5% 11.9% 25.9% 26.0%
860 nm 61.6% 88.0% 56.5% 84.5% 127.1% 141.8%
425 nm 7.0% 8.0% 6.4% 7.5% 14.5% 15.0%
540 nm 3.0% 3.3% 2.8% 3.1% 6.2% 6.3%

5 msec 654 nm 1.7% 2.4% 1.6% 2.3% 3.5% 3.9%
749 nm 5.0% 5.8% 4.6% 5.5% 10.3% 10.8%
860 nm 24.6% 67.5% 22.6% 66.8% 50.8% 80.8%
425 nm 3.5% 5.2% 3.2% 5.0% 7.2% 8.2%
540 nm 1.5% 2.0% 1.4% 1.9% 3.1% 3.4%

10 msec 654 nm 0.9% 1.9% 0.8% 1.8% 1.8% 2.4%
749 nm 2.5% 3.9% 2.3% 3.8% 5.2% 6.0%
860 nm 12.3% 64.0% 11.3% 63.8% 25.4% 67.8%
425 nm 0.7% 3.9% 0.6% 3.9% 1.4% 4.1%
540 nm 0.3% 1.4% 0.3% 1.3% 0.6% 1.5%

50 msec 654 nm 0.2% 1.6% 0.2% 1.6% 0.4% 1.7%
749 nm 0.5% 3.0% 0.5% 3.0% 1.0% 3.1%
860 nm 2.5% 62.9% 2.3% 62.9% 5.1% 63.0%
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(i.e., uncorrected portion) stray light signal included in our error estimates is also

additive. Thus, uncertainty introduced by residual stray light will affect the signal

ratio between two regions of an image, but, in instances where we are prepared to

regard residual stray light as uniform over a framelet, its uncertainty does not affect

the signal difference between two regions of a framelet. Of course, uncertainty in

the direct response coefficient y will affect differences, but not ratios.

Strictly speaking, all three of the sources of uncertainty (photosite stray light,

register stray light, direct response coefficients) discussed thus far represent the

possibility of global (i.e., over the whole data set) biases. However, the success of

the stray light removal for any given THEMIS-VIS image is inherently stochastic

because the stray light signal depends on the brightness of the scene in regions

outside of the detector field of view. The uncertainties in the global stray light

calibration coefficients reflect the extent to which the stray light is unpredictable.

Thus the fractional uncertainties derived from the uncertainties in the calibration

coefficients can be construed as applicable to individual images as well as to the

data set as a whole. Any future quantitative work with the THEMIS-VIS data

set must consider stray light errors that may be both correlated and uncorrelated

across the data set.

When considering regions of a framelet other than the C-ROI, the contour plots

of Figs. 4.20 and 4.21 provide a scaling factor for the amount of stray light uncer-

tainty in a calibrated RDR. These contour plots are derived from the register stray

light and photosite stray light (respectively) calibration frames and coefficients.

For each filter path, or each band, they are constructed by subtracting the C-ROI

mean stray light signal from the calibration frames, and then dividing by the C-

ROI mean stray light signal. Thus, the contour plots show the amount of stray
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light contamination in a region over and above that in the C-ROI, as a fraction

of the C-ROI contamination. For example, when the contour plot shows a value

of 6, the amount of stray light is 6 + 1 = 7 times as great as in the C-ROI, and

the uncertainty introduced in that region by that type of stray light is 7 times as

large as it is for the C-ROI. Clearly, the amount of photosite stray light increases

dramatically at the edges of the framelets, whereas the increase in register stray

light towards the edges of the framelets is still significant, but much less.

For brevity, we have shown these contour plots for summing mode 2 only, and

for only a representative selection of filter paths. At the level of precision necessary

for error estimation, these plots can nevertheless be used for any summing mode,

with appropriate scaling of the axes. Similarly, they can be used for any filter path,

in which case the panel of Fig. 4.20 with the same number of filters in the path as

the framelet under consideration should be used. For example, the register stray

light in a framelet with filters 2, 4, and 5 in its path is most similar to the values

in the panel for filter 1, 2, and 3.

When calibrated (RDR) framelets can be inspected individually, and residual

stray light artifacts are recognizable, Figs. 4.20 and 4.21 can also be used to provide

additional information about stray light residuals. If, for example, we observe a

stray light artifact in a band 1 framelet with a shape similar to the stray light

lobes on the edges of the band 1 contour plot in Fig. 4.21, and we estimate the

amplitude of the artifact to be 100 in some arbitrary radiance units, then since

the peak of these lobes is about 7 in Fig. 4.21, the residual photosite stray light

in the C-ROI is likely no more than 100/7 = 14 of the same radiance units. Since

estimating the “amplitude” of the artifact is inherently imprecise, and since stray

light artifacts frequently vary dramatically in magnitude and sign across a framelet
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and between neighboring framelets, this type of calculation should normally be

treated as a constraint on the error rather than as a correction to the RDR radiance.

It may ultimately be possible to derive corrections to RDR radiances by iteratively

adjusting, scaling, and subtracting calibration frames until stray light artifacts are

no longer visible, but that work is beyond the scope of this chapter.

Most calibrated THEMIS-VIS images show stray light artifacts to some degree,

although, as Table 4.9 makes clear, these artifacts are more significant in band

1, and least significant in band 3. In band 5, the residual stray light artifacts

normally dominate the direct signal, so that band 5 only very rarely provides usable

data. In Figs. 4.22 and 4.23 we present two examples of THEMIS-VIS RDRs with

very prominent stray light artifacts. Figure 4.22 is dominated by register stray

light residuals, whereas Fig. 4.23 shows a combination of both effects. The most

diagnostic characteristic of register stray light is the pattern of narrow stripes that

it produces at the edges of each framelet. As is often the case, because it is far from

the readout register, and its direct signal is relatively low, band 4 shows the most

prominent pattern of narrow stripes. However, as is apparent from Fig. 4.9 and

Fig. 4.20, the narrow stripes only become a significant part of the register stray

light pattern for rows far from the h-register, and so given that band 4 also shows

a uniformly positive register stray light residual, it is probable that band 1 also

has a significant register stray light residual even though band 1 shows no obvious

pattern. Another symptom of register stray light is a “roll-off” (or “roll-up”) near

the top or bottom of each framelet caused by the interaction of the flatfield with

the register stray light subtraction. This roll-off often appears as a bright or dark

stripe. When such a roll-off is present, it is most likely caused by register stray

light, simply because it is the most important source of error. Photosite stray light
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Figure 4.22: An example RDR with severe register stray light residuals. (Image
number V12386007)

residuals may also lead to a roll-off, however.

Unlike Fig. 4.22, where the residuals are clearly one particular kind of stray

light, and are quite uniform throughout the image, Fig. 4.23 shows highly vari-

able residuals and a combination of register and photosite stray light. The abrupt

changes in brightness between framelets could be caused by changes in either pho-

tosite stray light or register stray light residuals, but register stray light is always

the most likely culprit for ambiguous artifacts. However, some features in the
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Figure 4.23: An example RDR with severe photosite stray light and register
stray light residuals. (Image number V02699003)
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Fig. 4.23 RDR are readily distinguishable as photosite stray light, because resid-

ual photosite stray light produces a broad swath or lobe at the framelet edges for

bands 1 – 4 rather than a narrow stripe. Of course, these lobes can be either bright

or dark depending on the sign of the residual. The bottom six framelets of band

k = 1 show the clearest example of these lobes, with a broad swath of high positive

residual on the right hand side accompanied by negative residuals on the left hand

side. Presumably this asymmetry is caused by bright and dark scene elements

just outside the detector’s field of view. In band 5 the broad curving photosite

stray light stripe is almost always clearly visible as a residual, which appears to be

modulated by the brightness of the scene just below the framelet’s field of view.

4.7 Comparison with other data sets

We conclude by evaluating the extent to which I/F values based on our calibrated

radiances are comparable with historical HST measurements of Mars, and with

Mars Exploration Rover Pancam measurements from the Martian surface. The

solar irradiance used to calculate I/F for a given THEMIS VIS band is obtained

by taking a weighted average of the solar irradiance spectrum, where the weights

are that band’s relative response function (Figure 4.1a). Since the historical HST

data and the Pancam data were acquired at different times and with different

viewing geometries from any THEMIS-VIS images we might compare them to,

we do not expect them to match in terms of absolute radiances. Instead, we will

compare normalized I/F spectra in order to demonstrate that the relative spectral

calibration of THEMIS-VIS is reasonable, and to demonstrate some of THEMIS-

VIS’s scientific potential.

To minimize the impact of atmospheric variability on the HST comparison, we
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Figure 4.24: Simple cylindrical, 1 pixel-per-degree projection of HST 763 nm
imaging from March 3, 1997 (see Table 4.3 for details), showing the location of
HST pixels used for comparison with THEMIS-VIS spectra in Figs. 4.26, 4.28,
and reffig30. The HST data used for these comparisons are not photometrically
corrected, which leaves visible seams when the images are mosaiced together.

have selected a set of HST observations from northern summer (March 10, 1997,

Ls 89◦, see Table 4.3 for details), and chosen our THEMIS-VIS images from mid-

northern latitudes in the 90◦ - 120◦ Ls period. Consulting Smith (2004), we note

that this is Mars’s most consistently aerosol-free region and season. Figure 4.24

shows the March 1997 HST data and the locations of the HST data points which

we compare to the THEMIS-VIS data. Each location is labeled with the number

of its corresponding THEMIS-VIS image.

For the first comparison, Fig. 4.25 and 4.26, we have selected two HST data

points in the vicinity of Elysium Mons, one inside of (at 25◦ N) and one outside

of (at 29◦ N) the cloud feature on the volcano’s flank. The THEMIS-VIS image

(Fig. 4.25) also shows a clear region to the north and water-ice cloud in the south,

and so we plot spectra (Fig. 4.26) from both areas. Since the THEMIS-VIS and

HST spectra are from different times of day (∼ 5pm local solar time for THEMIS

and near the sub-solar point for HST), slightly different locations relative to a vari-

able cloud feature, and two martian years apart in time, it is not surprising that

the spectral match is not exact. However, the difference in normalized I/F caused
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by the cloud is very similar in the HST and the THEMIS-VIS data, suggesting

THEMIS-VIS is correctly measuring cloud-induced spectral contrasts. This val-

idative evidence is important, because THEMIS-VIS spectral data is frequently

notable for its lack of spectral contrast see, for example, Figs. 4.29 and 4.30 or

Figs. 4.31 and 4.32. By showing the correct degree of spectral contrast in Fig. 4.26,

we demonstrate that the spectral uniformity on THEMIS-VIS scales is in many

locations a real characteristic of the martian surface.

Figures 4.27 and 4.28 show that without the confounding influence of aerosols,

the THEMIS-VIS data very closely match the historical HST results. For the

brighter, redder terrain unit, which predominates in this region of northern Arabia

Terra and thus controls the much lower resolution HST spectrum, the THEMIS-

VIS spectrum is a very close match. In Figure 4.30, however, we don’t have a

good match between the HST and THEMIS-VIS spectra. We do not have an

explanation for this mismatch, but the combination of variable atmospheric hazes

with high atmospheric path length in the HST data (emission angle of 49◦), and

changes in surface dust cover, are both possibilities.

Figures 4.31 – 4.34 compare THEMIS-VIS spectra with published Pancam

data [Bell et al., 2004a,c]. In Figs. 4.31 – 4.32 we select examples of the two

main surface albedo units in the vicinity of the Spirit Rover landing site, avoiding

the region of excess residual stray light at the bottom of the THEMIS-VIS image

(Fig. 4.31), and find that these surface units have a distinct but very small color

contrast when viewed from orbit. The THEMIS-VIS spectra are slightly bluer than

the Pancam soil measurement, which could be explained by the extra atmospheric

path length in the THEMIS-VIS observations, or by areal mixing with the sparse

population of exposed rock.
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Figure 4.25: Sinusoidal projection of THEMIS-VIS image V04289003 with ex-
aggerated colors. North is at the top, and east is at right. The band 1, 2, and
3 images are used for the blue, green, and red channels, respectively, with each
channel stretched arbitrarily to maximize contrast. Spectra from regions A and
B are shown in Fig. 4.26. These regions are centered at: A: 29.54◦ N, 148.48◦ E,
incidence angle 64◦; B: 31.69◦ N, 148.80◦ E, incidence angle 64◦.
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Figure 4.26: HST WFPC2 and THEMIS-VIS (thick lines) I/F normalized to
1 at ∼750nm. The THEMIS-VIS spectra are from V04289003, and their labels
correspond to the A and B regions in Fig. 4.25. The HST spectra, labeled by their
latitudes 29 N and 25 N, correspond to the two points labeled with “V04289003”
in Fig. 4.24. The THEMIS-VIS error bars show the standard deviation of I/F in
the region from which the spectra were derived.
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Figure 4.27: Portion of THEMIS-VIS image V12518004, with sinusoidal projec-
tion and exaggerated colors (using bands 1, 2, and 3) as in Fig. 4.25. Spectra from
regions A and B are shown in Fig. 4.28. These regions are centered at: A: 41.44◦

N, 44.66◦ E, incidence angle 68◦; B: 41.78◦ N, 44.70◦ E, incidence angle 68◦.
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Figure 4.28: HST WFPC2 and THEMIS-VIS (thick lines) I/F normalized to
1 at ∼750nm. The THEMIS-VIS spectra are from V12518004, and their labels
correspond to the A and B regions in Fig. 4.27. The HST spectrum is taken from
the point labeled “V12518004” in Fig. 4.24. The THEMIS-VIS error bars show
the standard deviation of I/F in the region from which the spectra were derived.

THEMIS-VIS V03671001 in Fig. 4.33 does not quite cover the Opportunity

Rover landing site, but it is the only multi-band image of the landing site vicinity

without severe atmospheric aerosol contamination. As in Figs. 4.31 – 4.32, our

spectra sample two distinct albedo/color units, and avoid the residual stray light.

Pancam clearly shows much greater spectral diversity than THEMIS-VIS, but the

THEMIS-VIS spectra fall well within the range of the Pancam samples. The dark

terrain THEMIS-VIS spectrum (“A”) is a good match to the dark Eagle Crater

soil (“5”), and the lighter THEMIS-VIS terrain (“B”) is redder just as the bright

Pancam outcrop (“1”) is, but to a much lesser degree.
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Figure 4.29: Portion of THEMIS-VIS image V04984007, with sinusoidal projec-
tion and exaggerated colors (using bands 1, 2, and 3) as in Fig.4.25. Spectra from
regions A and B are shown in Fig. 4.30. These regions are centered at: A: 60.02◦

N, 272.73◦ E, incidence angle 69◦; B: 60.07◦ N, 272.72◦ E, incidence angle 69◦.
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Figure 4.30: HST WFPC2 and THEMIS-VIS (thick lines) I/F normalized to
1 at ∼750nm. The THEMIS-VIS spectra are from V04984007, and their labels
correspond to the A and B regions in Fig. 4.29. The HST spectrum is taken from
the point labeled “V04984007” in Fig. 4.24. The THEMIS-VIS error bars show
the standard deviation of I/F in the region from which the spectra were derived.

Figure 4.31: Portion of THEMIS-VIS image V10792003, with sinusoidal projec-
tion and exaggerated colors (using bands 1, 2, and 3) as in Fig. 4.25. Spectra from
regions A and B are shown in Fig. 4.32. These regions are centered at: A: 14.548◦

S, 175.514◦ E, incidence angle 75◦; B: 14.520◦ S, 175.571◦ E, incidence angle 75◦.
The cross marks the MER-Spirit landing site at 14.5692◦ S, 175.4729◦ E [Squyres
et al., 2004a].
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Figure 4.32: MER-Pancam and THEMIS-VIS (thick lines) I/F normalized to
1 at ∼750 nm. The THEMIS-VIS spectra are from V10792003, and their labels
correspond to the A and B regions in Fig. 4.31. The Pancam spectra show a soil
and a rock surface near the Spirit landing site, and are taken from Fig. 6C in Bell
et al. [2004a]. For both data sets, the error bars show the standard deviation of
I/F in the region of the image from which that spectrum was derived.



219

Figure 4.33: Portion of THEMIS-VIS image V03671001, with sinusoidal projec-
tion and exaggerated colors (using bands 1, 2, and 3) as in Fig. 4.25. Spectra from
regions A and B are shown in Fig. 4.34. These regions are centered at: A: 1.888◦ S,
354.405◦ E, incidence angle 71◦; B: 2.040◦ S, 354.370◦ E, incidence angle 71◦. The
cross marks the MER-Opportunity landing site at 1.9462◦ S, 354.4734◦ E [Squyres
et al., 2004b].

4.8 Conclusions

Despite significant stray light contamination, we have obtained an absolute cali-

bration for THEMIS-VIS 654 nm bandpass images with an uncertainty that we

estimate to be better than 5% (2σ) in most situations. The calibration uncertainty

is greater for the 425 nm, 540 nm, and 749 nm bands, but even for these bands the

uncertainty (Table 4.9) can be better than 5% (2σ) in low-light conditions where

long exposure times are possible. For the 860 nm band, however, the uncertain-

ties in the radiances are so high that they are effectively un-usable. For all of

the THEMIS-VIS bands, relative radiance comparisons are no more precise than

absolute measurements, because the additive and variable residual stray light is

responsible for most of the uncertainty.

Generally speaking, the exposure duration for an imaging sequence is limited
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Figure 4.34: MER-Pancam and THEMIS-VIS (thick lines) I/F normalized to
1 at ∼750 nm. The THEMIS-VIS spectra are from V03671001, and their labels
correspond to the A and B regions in Fig. 4.33. The Pancam spectra labeled 1,
4, and 5 correspond to the labels in Fig. 8A of Bell et al. [2004c]. These Pancam
spectra show a bright outcrop (1), dark plains (4), and the Eagle crater soil (5).
For both data sets, the error bars show the standard deviation of I/F in the region
of the image from which that spectrum was derived.
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by saturation in the most sensitive bands (654 nm and 540 nm, in that order).

Thus, since all bands in a sequence have the same exposure duration, leaving the

most sensitive bands out of a sequence can reduce the contribution of register stray

light in the remaining bands, significantly improving their uncertainty over bright

surfaces. Of course, sacrificing the more sensitive bands for this purpose is only

rarely desirable.

THEMIS-VIS spectra are consistent with Pancam measurements, and are most-

ly consistent with historical HST measurements. Furthermore, our concurrent-

imaging calibration validation strategy indicates that THEMIS-VIS absolute radi-

ances and HST absolute radiances are broadly consistent. However, the concurrent

imaging does not in and of itself provide a strong constraint on the accuracy of

THEMIS-VIS absolute radiances because of the limitations in the ability of the

photometric models to “correct” the observations to the same standard viewing

geometry. The comparison does suggest, however, that THEMIS-VIS could in the

future play a role in constraining Mars’s photometric properties.

Residual stray light artifacts can frequently be quite prominent in RDR images

that have be stretched to maximize contrast, but because photosite stray light is so

much more intense near the framelet edges, the presence of visible photosite stray

light artifacts does not normally indicate a significant problem with center-field

radiances. Obvious register stray light artifacts are more rare, but they are a more

serious concern for the accuracy of center-field radiances. When quantitative ra-

diance values are important, THEMIS-VIS data users should check their accuracy

by comparing any prominent artifacts with Figs. 4.20 and 4.21 of this chapter.
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Notation

a exposure number (0 – . . . )

B bias frame, i.e., bias charge for a framelet (DN)

C-ROI region of interest for which calibration coefficients are defined

d difference in mean raw DN values for a pair of framelets

D raw (bias subtracted, for cases where it matters) 11-bit DN value

D C-ROI mean raw 11-bit DN value

E characteristic ’bias’ charge from the portion of the chip under a certain
filter (DN)

f filter number (1 – 5)

F filter path code (1 – 31)

g difference in the mean normalized register stray light frames of a pair of
framelets

G normalized register stray light frame, i.e., spatial pattern of register stray
light for a framelet (unitless)

G C-ROI mean of a normalized register stray light frame

h phase angle

i column number (0 – . . . )

Ik radiance in a particular band

Ik C-ROI mean radiance in a particular band

I
′
k deviations from the mean radiance

_

I C-ROI mean broadband radiance

j row number (0 – . . . )

k band number (1 – 5)

l ground calibration lamp level index

m framelet number (0 – . . . )

n number of framelets in an EDR or RDR
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N number of elements in the set of framelets used to estimate R

p an index for the set of all framelets in the data set

q an index for a set of framelets or data points used in various contexts

Q calibrated THEMIS-VIS signal (DN/msec)

R responsivity (i.e., the flatfield) (unitless)

S C-ROI mean photosite signal (DN/msec)

S photosite signal (DN/msec)

S∗ ground calibration photosite signal prior to background subtraction
(DN/msec)

t exposure duration

u index for the set of framelet pairs used to generate the register stray light
response coefficient

u′ index for the set of framelet pair members

v elements of the sample of framelets used to estimate ψ

xk photosite stray light response coefficient

X photosite stray light calibration frame, i.e., the spatial pattern of photosite
stray light for a framelet

yk direct response coefficient

z register stray light response coefficient

Z register stray light (DN) frame in ground calibration

αk coefficients for predicting
_

I from Ik

β Minnaert photometric model coefficient



CHAPTER 5

SUMMARY AND FUTURE WORK

In this work we have described the behavior of the martian polar vortices over a

period of three martian years, using MGS-TES derived Ertel potential vorticity

(PV) on isentropic surfaces as our primary analysis quantity; we have confirmed

that the martian equatorial mesosphere produces discrete clouds; and we have pre-

sented the first evidence for discrete clouds in the winter mid-latitude mesosphere.

We have also presented and evaluated the standard calibration pipeline for the

THEMIS-VIS imager that we use to detect and measure the mesospheric clouds.

On Mars, as on Earth, the buildup ofPV in the winter polar region is dominated

by radiative cooling. However, whereas the terrestrial stratospheric polar vortices

are most of the time defined by a single high-PV airmass with a PV field that,

although highly asymmetric, increases monotonically towards the pole, we find

that the martian polar vortices are characterized by an annular PV field, which is

relatively symmetric but reaches a maximum between 60◦ and 80◦ latitude and

then decreases towards the pole. This change in sign of the vorticity gradient

raises the possibility of barotropic instability on the poleward flank of the winter

polar jet. However, the applicability of the standard quasi-geostrophic barotropic

instability criterion to the Rossby number ∼ 1 flows of the martian polar vortices

will have to be investigated.

The northern polar vortex is substantially more intense and better organized

than the southern polar vortex, suggesting that the northern vortex is a stronger

barrier to mixing and heat transport. The northern vortexPV maximum is observed

to move poleward in response to dust loading in the low-latitude atmosphere, and

the onset of dust storms is associated with large transient wave perturbations of

224
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the vortex. In one case a dust storm appears to trigger a wave-breaking event that

is connected with an abrupt warming in the core of the vortex.

The southern vortex exhibits a great deal of variability that is not associated

with any obvious external factors. The most dramatic event we observe in the

southern vortex is a 10 K warming event associated with a partial breakdown of

thePV field and a reversal in wind direction.

The polar vortex study that we have presented is primarily descriptive, with

the intent of providing a basis for theoretical and modeling studies that will help

clarify the role ofPV and the polar vortex in isolating the winter polar atmosphere.

The most basic need is a scheme for estimating radiative heating/cooling rates

from the TES data set, which will enable us to evaluate Q at all of our grid

points and therefore understand in detail where and how PV is being created and

destroyed, and to improve on our order-of-magnitude estimates of the rates at

which this occurs. A complete picture of Q would also require an estimate of CO2

condensation rates.

Equally important are comparisons with GCMs. We need to evaluate the ex-

tend to which GCMs match the annularPV configuration, and the rapid response

to dust loading, and whether their scenarios for sudden polar warmings rearrange

thePV field in ways consistent with our observations.

Another way to evaluate the isolating properties of the polar vortex is to use

dust aerosol as a tracer, observing whether or not dust injected into the atmosphere

by dust storms penetrates to the pole. To do so, we must develop techniques

to derive dust opacities from limb-pointed TES measurements. Standard nadir-

pointed TES dust measurements are not valid over the winter poles because low

surface temperatures lead to poor contrast in dust absorption features.
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In order to perform our PV analysis of the polar vortices, we have developed

techniques to interpolate MGS-TES temperature retrievals onto a regular grid,

and to solve for a horizontal wind field with much greater detail than previous

work. This data set has a wide range of potential applications. One obvious

example is comparisons with imaging studies of cloud motions such as those of

Wang and Ingersoll [2002] and Wang et al. [2005]. A more ambitious application

of our regularly gridded temperatures is principal components analysis to elucidate

the normal modes of variability in the polar atmosphere, a technique which has

been used to study the terrestrial stratospheric annular modes. [e. g. Thompson

et al., 2000]

Although our gridded winds fields are presently limited by the MGS-TES nadir-

pointed retrievals to the lower 3.5 pressure scale heights of the atmosphere, incor-

porating the limb-sounding MGS-TES temperatures will allow us to extend it to

mesospheric altitudes and allow comparison with the direct wind measurements

from THEMIS-VIS. The THEMIS-VIS velocities might also be incorporated as a

boundary condition for the balance wind solution, which may be preferable to the

arbitrary zero-wind level that we currently enforce. Another, speculative, point of

comparison between our gridded fields and the THEMIS-VIS mesospheric clouds is

the presence of symmetric instability at the top of our grid at latitudes comparable

to those of the mid-latitude winter clouds. We might explore the hypothesis that

some mid-latitude mesospheric clouds are associated with symmetric instability,

just as the equatorial mesospheric clouds are hypothesized to be associated with

breaking gravity waves.

The study of mesospheric clouds presented here is, like the polar vortex study,

primarily descriptive. Confirmation of their existence is a significant result in and
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of itself. The 5 examples of equatorial mesospheric clouds are concentrated in the

eastern Tharsis / Valles Marineris region, and the northern mid-latitude clouds

are seen only after sunset and are concentrated in the Acidalia region. Equatorial

mesospheric clouds with detectable optical depth are thus probably rare, and their

occurrence is probably biased towards eastern Tharsis / Valles Marineris, but firm

conclusions about the distribution of these clouds will require discovery of more

examples. The northern mid-latitude mesospheric clouds are much more common

(∼ 15% detection rate), and may be biased towards the Acidalia region, or perhaps

simply biased toward higher latitudes. Invisibility until after sunset at the local

surface is probably a real feature of these clouds, but a bias towards the fall and

early winter over mid- to late winter cannot be ruled out as an explanation for the

observed pattern of detections.

One example of the value of mesospheric cloud detections is as tracers of meso-

spheric winds. We have demonstrated this by comparing our measured cloud

velocities with GCM winds. We find good agreement with the model for the

mid-latitude winter clouds, and poorer agreement for the equatorial clouds. The

measured winds provide a new constraint on GCMs, which will hopefully lead to

model refinements such as improved parameterizations of gravity-wave drag.

Martian mesospheric clouds can also yield insights into mesospheric temper-

atures, cloud microphysics, and chemistry, but all of these applications require

information about the nature and number of aerosol particles. We have applied

a simple radiative transfer model to demonstrate that THEMIS-VIS is capable of

yielding constraints on the particle properties. The fact that this is possible serves

as justification for developing more complicated radiative transfer models that will

enable some assumptions to be relaxed, and allow the twilight geometry of the



228

mid-latitude clouds to be addressed.

The mesospheric cloud study relies crucially on the THEMIS-VIS radiomet-

ric calibration which we present in the final chapter. The altitude and velocity

measurements require minimal spatially variable stray light artifacts to avoid false

positives and biases in the cross-correlations. The radiative transfer models re-

quire accurate radiance measurements in as many filters as possible. As shown in

Table 4.9, we have achieved an adequate radiometric calibration for four of the

five THEMIS-VIS filters, despite the presence of serious stray light contamination.

For long exposure times, the 2σ calibration uncertainty is better than 5% for all

four usable filters.

Despite the successful radiometric calibration, the spatial signature of calibra-

tion artifacts is still commonly visible in THEMIS-VIS RDRs. These calibration

residuals represent one avenue for future improvement of the THEMIS-VIS cali-

bration. Since we know the magnitude of the spatial stray light patterns relative

to the center field stray light components (Figures 4.21 and 4.22), if we interac-

tively remove the spatial calibration residual by applying linear combinations of

the stray light patterns, we can calculate the corresponding correction to the cen-

ter field stray light and thus correct the absolute radiance for the entire framelet.

Unless the human judgement required to separate calibration artifacts from real

image features can somehow be automated, this interactive correction would be

applied only to a small number of “high value” THEMIS-VIS images, such as those

in which mesospheric clouds are found.

Another direction for improvement in the THEMIS-VIS calibration is to apply

the simple radiative transfer models that we used on the mesospheric aerosols to

the task of “removing” the atmosphere, i. e., solving for the true surface albedo
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using external information about the intervening aerosols. Without atmospheric

removal, comparison of surface spectral information in images acquired in different

seasons or regions is confounded by variations in the contribution of atmospheric

aerosols to the observed radiances. For example, typical optical depths of water

ice aerosol can contribute 30% of the total observed radiance at the wavelength of

the THEMIS-VIS blue filter [Clancy et al., 2003]. This problem can be solved with

an application of the DISORT model that is much simpler than the one described

in Chapter 3: the dust and water ice aerosol optical depths are taken from MGS-

TES or THEMIS-IR measurements, standard assumptions are made about the

aerosol scattering properties, and the surface albedo is iteratively adjusted until

the observed radiance is matched. To make this process computationally efficient, a

lookup table can be developed for surface albedo as a function of radiance, viewing

geometry, and optical depth.
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