The Weyl Computer Algebra Substrate*
Richard Zippel

TR 90-1077
January 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research Contract NO0014-88-K-0591,
ONR Grant NO0014-89-J-1946, and NSF Grant DMC-86-17355.






The Weyl Computer Algebra Substrate

Richard Zippel
Cornell University
Ithaca, NY 14853

October 25, 1989

1 Introduction

In the last twenty years the algorithms and techniques for manipulating symbolic mathemat-
ical quantities have improved dramatically. These techniques have been made available to
practitioners through a number of algebraic manipulation systems. Among the most widely
distributed systems are Macsyma [13], Reduce [6], Maple [8] and Mathematica [15]. These
systems are all quite similar—they are designed to be used as self-contained computational
systems and are not intended to be incorporated in larger, more specialized systems. Thus,
these systems are awkward to use on problems that require a mixture of computer algebra,
numerical techniques and sophisticated user interfaces and the leverage that can be applied by
computer algebra techniques is lost.

This situation seems somewhat odd when compared with what has occurred with linear
algebra. Most practitioners use linear algebra libraries like Linpack [5] and Eispack [10], which
can be incorporated in larger systems (like fluid dynamics simulators or circuit analyzers). Stand
alone linear algebra systems like Matlab [9] are used for research in linear algebra, but relatively
few applications are built with them. Furthermore, notice that Matlab was developed after the
field of computational linear algebra was mature and after a large number of applications that
used linear algebra packages existed. In contrast Reduce and Macsyma were among the first
symbolic mathematics packages created and they had a major impact on the creation of the
field of computer algebra.

Another limitation of current symbolic mathematics systems is that they deal with a rela-
tively limited and fixed set of algebraic types which the user is not expected to extend signif-
icantly. In most systems, the basic mathematical objects dealt with are rational functions in
several variables over either finite fields or algebraic extensions of the rational integers. Often
univariate power series are also added. To experiment with algorithms for dealing with math-
ematical objects that are not already provided, like polynomials with power series coefficients
or Poisson series, often requires a great deal of effort. This situation is exacerbated by the un-
availability of the code that implements the algebraic algorithms of the symbolic manipulation
systems.

Scratchpad (7] is a noticeable exception to this trend in that the developers plan to make the
algebra code for the system widely available and the internal data typing mechanisms provided



Computer Algebra

VLS| CAD System \ / System

\ User Interface
Management
Domain System
Specific
Knowledge

Linear Differential Algebraic :
Algebra Equation Mampulatlon Mgt;\teargzggal
Package Solvers Substrate

Figure 1: Organization of an application that uses symbolic mathematics

by Scratchpad are designed with the extension mechanisms just mentioned in mind. However,
Scratchpad is only available on some IBM equipment and, like the other systems, is designed
to be used as a stand alone system.

There do exist a few systems that use symbolic mathematics integrally in their computations
such as the VLSI design system Schema [2], the geometric modeling system Geometer [4] and
several systems for constructing differential equation solvers [12, 14].

As an example of how these systems integrate symbolic computation into their environment
consider how the Schema is used to analyze the transfer characteristics of a linear circuit. The
designer uses a schematic editor in Schema to draw a circuit and to indicate its input and out-
put ports. Schema can then be asked to compute the transfer function of the circuit, which it
does symbolically, but which it does not present to the designer. The general transfer function
of a circuit is often a very large expression, and the designer would not gain any information
by looking at it as a ratio of two poylnomials. Schema then asks the designer to specify differ-
ent numerical values for previously unspecified parameters and presents plots of the transfers
functions. This interaction allows the designer to better understand the relationship between
different device parameters and the transfer function of the circuit. Though not implemented
in Schema, questions like the sensitivity of the circuit to parameter values could easily be
answered. Notice that throughout the interaction the designer is oblivious to the underlying
symbolic computation.

This, I believe, is typical of how symbolic computation will be used in the future. Users
will view symbolic techniques as being as integral to their computational world as numerical
techniques and will demand they be as accessible as numerical techniques. We expect symbolic
techniques to be organized something like that shown in figure 1. In the bottom layer, there is
a algebraic manipulation package along with various numerical and user interface packages. In
addition there is a mathematical database that manages information about which functions are
analytic, which variables are greater than zero, etc. Above these packages lies the application
program that accepts user input and converts it to requests of the algebraic manipulation



substrate.

In figure 1, we have shown two different systems. On the right is a conventional system
like Macsyma. The algebraic manipulation substrate is exposed to the user and the user is
expected to reformulate his or her problems into algebraic terms. In our experience, this is the
source of a lot of the difficulty in using symbolic manipulation systems. Either the users have
trouble mapping their problems into algebraic terms, or system designer tries to build in some
“general domain specific” knowledge which gets in the way of users in different domains. An
example of this sort of problem is the confusion that arises in Macsyma between functions of a
real variable and functions of complex variable.

Weyl is an attempt to deal with some of these problems. Weyl is an extensible algebraic
manipulation substrate that has been implemented in Common Lisp [11] using the Common Lisp
Object Standard [1]. This substrate is designed to represent algebraic objects like polynomials,
algebraic numbers, matrices and differential forms and higher level objects like groups, rings,
ideals and vector spaces. Furthermore, to encourage the use of symbolic techniques within
other applications, Weyl is implemented as an extension of Common Lisp so that all of Common
Lisp’s user interface tools and software development facilities can be used in concert with Weyl’s
symbolic tools.

At the moment Weyl’s structure is appears to be pretty sound. There are tools for dealing
with finite fields, polynomials, rational functions, matrices and a few other basic algebraic struc-
ture. In addition, algebraic objects like polynomial rings, vector spaces and homomorphisms,
which are usually not part of an computer algebra system, have been implemented. However,
there are still a large number of computer algebra algorithms that need to be implemented to
flesh the system out and make it usable more widely.

2 An Example

This section gives a short example of how Weyl can be used to perform a simple algebraic
calculation, the coefficients of the “F and G series.” These coefficients are defined by the
following recurrences.

fo =0

_ 0 fn-1 5. 2y9fn1 0 fn-1
fo = —pgn-1 - o(p+2€6)=5=— + (e = 20°) = - 3uo o
go =1

— agn—l 2 agn—l agn—l
9n = fo-1-0(u+260=5=+ (e~ 20%)—=— —3uo o

The resulting sequences, f; and g; are all polynomials in u, € and o with integer coefficients.
Thus they lie in the domain Z[u, ¢, o).

One of the features that distinguishes Weyl from most other algebra systems is that domains,
like Z[u, €, 0], directly enter into the computation. Thus our first task is to generate the domain
Z[u,¢,0]. This done by first getting a copy of the rational integers, Z, using the function
get-rational-integers. We then construct a polynomial ring in the three variables u, € and
o over Z. This can be done by the following form:



(setf R (get-polynomial-ring (get-rational-integers) '(m e s)))

where we have used the symbols m, e and s to represent the greek letters u, € and o.

At this point we can create polynomials that are elements of the domain R. To do this it is
convenient to bind the Lisp variable mu to y, eps to € and sigma to ¢. This is done by coercing
the symbols m, e and s into polynomials in the domain R.

(setf mu (coerce ’m R))
(setf eps (coerce ’e R))
(setf sigma (coerce ’s R))

The coefficients of the first terms of the both recurrences are the same, so rather than
computing them afresh each time, we’ll store them in global variables

(setq x1 (- mu))

(setq x2 (* (- sigma) (+ mu (* 2 eps))))
(setq x3 (+ eps (* -2 (expt sigma 2))))
(setq x4 (* -3 mu sigma))

Notice that we used the usual Lisp functions for manipulating the elements of R. This is one
of the convenient features of Weyl. We have simply extended the basic Lisp functions to deal
with the algebraic objects of Weyl.

Finally, we can write out the recursions formulae.

(defun £ (n)
(if (= n 0) (coerce 0 R)
(+ (* x1 (g (1- n)))
(* x2 (partial-deriv (f (1- n)) eps))
(* x3 (partial-deriv (£ (i- n)) sigma))
(* x4 (partial-deriv (f (i- n)) mu)))))

Notice that the function partial-deriv is used to compute the partial derivative of a
polynomial. The recursion formula for g, is given below.

(defun g (n)
(if (= n 0) (coerce 1 R)
(+ (£ (1- n))

(* x2 (partial-deriv (g (1- n)) eps))
(+ x3 (partial-deriv (g (1- n)) sigma))
(+ x4 (partial-deriv (g (1- n)) mu)))))

This simple example illustrates that writing programs that use the Weyl substrate is not
much different from writing ordinary Lisp programs. We have extended some of the data types
and we have introduced the concept of domains, but the same control structures, abstractions
and programming tools will continue to work.

We have chosen Lisp as the substrate language for several reasons. First, it is one of the few
languages that provides a garbage collector, which greatly simplifies the algebraic algorithms.
Second, it is the only language we know of that provides a multiargument dispatching object
oriented programming mechanism. Finally, its flexible syntax, macros and package structure
makes it much easier to extend with symbolic manipulation facilities than other languages. In
principle we could have implemented Weyl in language like C, but this would have increased
the implementation difficulty significantly.



3 Weyl’s Type Structure

The objects manipulated by Weyl are either domains, domain elements or morphisms between
domains. Domain elements are the objects with which algebraic manipulations systems nor-
mally deal: integers, polynomials, algebraic numbers, etc. Examples of domains are the rational
integers (Z), polynomial rings (Q[z, y], Z,[t]) and vector spaces (R3, P3(Z)). The elements of
these domains are domain elements.! Each domain element is the element of a single domain
and this domain can be determined from the element. Morphisms are maps between domains.
There exist predicates to determine if a morphism is a homomorphism, automorphism, etc.

The “type” of a domain element consists of two components, the domain of which the object
is a member and the Lisp structure type that is used to represent the object. For instance, the
polynomial z + 2 might be implemented as a list but it is an element of the domain Z[z]. We
say that the structural type of z + 1is 1ist and that its domain type is Z[z]. Elements of Z[z]
could be represented as vectors or in other ways, and lists could be used to represent objects in
other domains besides Z[z]. Thus the structural type is truly orthogonal to the domain type of
an object.

Both domains and domain elements are implemented as instances of CLOS classes. These
classes are part of a conventional, multiple inheritance class hierarchy. The class hierarchy used
for domains is completely separate and orthogonal to the class hierarchy for domain elements.
The domain class hierarchy includes classes corresponding to groups, rings, fields and many
other familiar types of algebraic domains. A section of the domain class hierarchy is shown in
figure 2.

This approach allows us to provide information about domains that is often difficult to
indicate if we could only specify information about the type of the domain’s elements. For
instance, in addition to the class Ring we also provide classes like integral-domain. Whether
a domain is an integral domain or just a ring does not change how the domain’s elements
are represented or the operations that can be performed on them. What it may affect is the
algorithms that are used to implement the operations.

In addition, domains provide information about the permissible operations involving their
elements. For instance, an abelian-group must have a plus operation that can be applied to
pairs of its elements. The result will be an element of the abelian group. This parallels the
mathematical definition of a group where a group is a pair (G, x) consisting of a set of elements
(G) and a binary operation (x) that maps pairs of elements of G into G. Contrast this to the
typical definition of a type as a set of objects that obey a predicate.

Finally, the domains are objects that may be actively computed with. There are (construc-
tive) functors that takes an integral domain and produces its quotient field. take a ring and
produce its spectrum, take a field and produce a vector space. The characteristic of a ring
R is determined by applying the characteristic function to R. For implementing certain
algorithms, the presence of domains seems to be a big improvement over the organization of
systems like Macsyma.

!To be strictly correct here we are speaking of the Lisp objects that represent the different domains and
domain elements. Thus the Lisp object that represents Z or Q[z,y] are domains, and the Lisp object that
represents z2 + 2y + 1 is a domain element.



’——__,,——-Set--_§___-

Abelian- Temlgroup emlgroup
Abellaﬁ Monoid onold
AbellaT-Group\\\ roup

Module Slmple-Rlng

Algebra\\\\\

Ring

Figure 2: Section of Weyl’s Domain Hierarchy

3.1 Domain Hierarchy

The domain hierarchy of Weyl follows that of algebra fairly closely and is modeled on the
category hierarchy used in Scratchpad [7]. The root of the hierarchy is the class set. A section
of the hierarchy is shown in figure 2. As was done in Scratchpad, we have have duplicated the
definitions for semigroups, monoids and groups in the definitions for their abelian counterparts.
This allows us to be a bit more explicit about the operations they use. There is an implicit
assumption that the plus operation is always commutative.

Domains are defined using three forms. The CLOS defclass form is used to define the class
used for the domain. Thus the following code is used to define a semigroup and a simple-ring.

(defclass semigroup (set)

0))

(defclass simple-ring (rng monoid)
((characteristic :initarg :characteristic
:reader ring-characteristic)))

The semigroup definition is quite simple. It merely includes the root class set. The simple-
-ring definition is a bit more involved. It inherits from both the rng and monoid, and in
addition it includes a slot for the characteristic of the ring.

Once the classes have been defined additional information is provided about the operations
associated with the domain and the axioms those operations must obey. The first form below
indicates that the times operation is closed, and the second that times is associative.

(define-operations semigroup
(times (element self) (element self)) -> (element self))

(define-axioms semigroup
(associative times))

This information is used when new domains are created and when choosing certain algorithms.
A simple example arises for exponentiation to an integer power. Two algorithms that might



be used for exponentiation are repreated multiplication and repeated squaring. However, the
repeated squaring algorithm can only be used when the underlying multiplication algorithm is
associative. This information can be determined from the domain.

Weyl currently does not include any theorem proving mechanisms like that contained in
Nurpl [3]. Their inclusion would make the reasoning processes of the previous paragraph much
more powerful. Till now we have not needed anything more significant, but this will change as
more sophisticated techniques are added to the system.

None of the domains in figure 2 can actually be used. They are “abstract domains” that are
intended to be included in instantiable domains. For instance, the domain used for polynomial
rings inherits from the ring domain and the domain used for the rational integers includes the
unique-factorization-domain domain.

3.2 Morphisms

Morphisms are maps between domains.? Though we could just used regular Lisp functions
for this purpose, we have decided to encapsulate the mapping functions in an object so that
we can add some additional information to the map itself and also to take advantage of the
polymorphism and overloading mechanisms provided by CLOS. Morphisms are first class objects
in Weyl and can manipulated like domains and domain elements. In particular, two morphisms
can be composed using the operation compose. Morphisms currently have two user visible
components, the domain of the morphism and the range of the morphism.

A few classes have been provided to indicate that more is known about the map than that
is a simple morphism. In particular, a morphism can be a homomorphism, isomorphism or
automorphism. In addition, morphisms can injections, surjections or bijections.

Some morphisms are defined by giving just the domain, range and the function that maps
the domain to the range. Other morphisms, like those defined by dividing out ideals, have a
somewhat richer structure. For some of these richer morphisms it is possible to define some
additional operations besides composition. For instance, it is possible to compute the kernel and
image of some homomorphisms. This is an example where CLOS’s overloading and inheritance
mechanisms are useful.

3.3 Coercions

In most algebraic manipulation systems, when two objects from different domains are com-
bined, they are automatically coerced into a common domain. Which domain is used can be
ambiguous. For instance, if we were to add 1/2 € Q and z + 1 € Z[z] the answer could be

either
z+3

z+ -;- € Q[z] or € Z(z).

Because of this type of ambiguity we feel that algebraic algorithms should be coded in a way
that makes explicit the coercions take place. Weyl provides two mechanisms for dealing with
coercions. First, the programmer can explicitly coerce domain elements from one domain into
another using the function coerce. Coerce only performs canonical coercions of its arguments.

2This is a slight abuse of the usual mathematical meaning of the term morphism.



Q — Z(2)

I I

Z — Z[z]
Figure 3: A Sample Computational Context

Thus it will coerce an element of Q to an element of Q[z] since Q is the coefficient field of Q[z],
but it will not coerce an element of Q[z] into an element of Q[z, y].

Second, the programmer can create homomorphisms between domains and explicitly indi-
cate which homomorphisms should be in force for a given computation. These homomorphisms
will be used by coerce whenever appropriate.

The set of domains and homomorphisms which are in force at any point in time is called a
computational contezt. Recalling the previous problem of adding = + 1 and 1/2, if the user has
established the the computational context shown in figure 3 then the value of the sum will be
well defined. We expect that when application specific systems that use the Weyl substrate are
constructed, the particular computational contexts used will be a function of the application.

For convenience sake, we do assume that there is a canonical homomorphism of the ratio-
nal integers into every domain. If only one of arguments to one of the four basic arithmetic
operations is an element of Z, then it is automatically coerced into the domain of the other
argument. We will have to see if this particular coercion really is always preferable.

4 Polynomial Package

The two dimensional type structure used by Weyl does not naturally map into the one dimen-
sional type system used by CLOS. We have chosen to make the “CLOS type” of an object be
the structural type. The domain type of of a Weyl object is kept in the domain slot of the
object and is managed by code in Weyl.

The basic polynomial code provides a good vehicle for demonstrating how the Weyl structure
is mapped into the CLOS structure. Polynomials can be represented using either a recursive,
multivariate, sparse representation called mpolynomial or using a univariate dense represen-
tation called upolynomial. Mpolynomial and upolynomial are both CLOS classes and Weyl
structural types. In addition there is a CLOS class called polynomial from which both classes
inherit. At the root of the CLOS class hierarchy is the class domain-element, as shown in
figure 4.

Elements of a univariate polynomial ring can exist in either representation, and two upoly-
nomials or mpolynomials can be elements of different rings. Operations with domain elements
like polynomials are performed by generic functions. The generic function to add two domain
elements is plus. This generic function dispatches on the CLOS class of its two arguments, to
a method that examines the domain’s of its two arguments for compatibility. For instance, the
code to add two polynomials looks like this:



Domain-Element

Polynomial

UPolynomial MPolynomial

Figure 4: Structural type hierarchy for polynomials

(defmethod plus ((x mpolynomial) (y mpolynomial))
(let ((domain (domain-of x)))
(cond ((eql domain (domain-of y))
(make-mpolynomial domain
(mpoly-plus (poly-form x) (poly-form y))))
(t (error "Trying to add two polynomials from ~
different domains.”)))))

In addition methods are needed for the other three combinations of mpclynomials with
upolynomials.

The reall work of adding polynomials is performed by the function mpoly-plus. Notice that
this is a true Lisp function and not a CLOS generic function. This done for efficiency reasons.
When the one is building a new polynomial algorithm one writes the bulk of the code using
functions like mpoly-plus and then wrap it within a generic function like plus. One retains full
generality by using generic functions like plus for operations with the polynomial coefficients.

Not all algorithms are so simple. For instance, for polynomial GCD there are several
algorithms. The subresultant GCD algorithm is valid for polynomials over any ring, while the
sparse modular algorithm requires that the coefficient domain be sufficiently large and that
there be a function for producing a random element of the coefficient domain.

In this situation the gcd method needs to perform some additional analysis of the coefficient
domain of the polynomial ring before choosing an algorithm. The following code illustrates this.
Notice that we can determine the coefficient domain of the polynomial ring, from the domain
of x.

(defmethod gcd ((x mpolynomial) (y mpolynomial))
(let ((domain (domain-of x)))
(cond ((eql domain (domain-of y))
(make-mpolynomial domain
(let ((cdomain (coefficient-domain domain)))
(cond ((and (has-operation? cdomain ’random)



(zerop (characteristic cdomain)))
(spmodular-gecd (poly-form x) (poly-form y)))
(t (subresultant-gcd (poly-form x) (poly-form y)))))))
(t (error "Trying to take the GCD of polynomials from ~
different domains.")))))

The scheme given above is not completely satisfactory as it stands. First, the decision about
which algorithm should be used is made every time one compute the GCD of two polynomials.
This is a little silly, since the decision never changes (in this case). Thus we should cache
this decision in the polynomial domain itself. Second, this decision is only available if we go
through the method gcd, when just a moment ago we indicated that this should be avoided for
performance reasons. Thus the decision making code given above, and the caching code should
be moved into a function like mpoly-gcd. All of this, as well as the process of defining the
methods can be eliminated by the use of macros.

The most severe problem with this scheme is that when new algorithms are introduced
several pieces of code will need to be rewritten. This is the problem that the Capsules system
[16] tries to solve. We have not yet tried to integrate the Capsule ideas into Weyl.

5 Domain Creation

Domains are created in Weyl using special functions called functors. Examples of these functors
are get-polynomial-ring, which was used in section 2, and get-quotient-field, which
generates a domain that is the quotient field of its argument. Functors are coded as regular
CLOS methods. For instance, the following forms are used to define get-quotient-field.

(defmethod get-quotient-field ((ring field))
ring)

(defmethod get-quotient-field ((ring gcd-domain))
(let ((qf (make-instance ’quotient-field :ring ring)))
(with-slots (zero ome) qf
(setq zero (make-quotient-element qf (zero ring) (one ring)))
(setq one (make-quotient-element qf (one ring) (one ring))))
qf))

The first form indicates that the quotient field of a field is just the field itself. The second
form is used only if the argument is a GCD domain. It creates an instance of the class quotient-
field, which uses the underlying ring’s GCD operation to reduce the factions to lowest terms.
A different form and class could be used if we wanted to deal with quotient fields over rings
that are not GCD domains. In addition, we have decided to cache the values of zero and one
in the quotient field to speed later uses.

Algebraic extensions provide an interesting variant of the simple cases given above. In
this case, the creator needs to verify that the minimal polynomial of the extension is actually
provided, or perhaps to generate one automatically. The first case arises when we try to extend
Q[\/f] by the zeroes of z4 — 10z2 + 1, whose zeroes are +v/2++/3. The second case occurs when
we ask for a degree 5 extension of GF(p). Here we don’t care about the minimal polynomial,
just that the system find one for us.

10



The presence of domains in Weyl provides an interesting opportunity to develop some rel-
atively sophisticated computations on domains themselves such as computing the the Hilbert
class field of an algebraic number field, the cohomology groups of ring acted on by a group and
the topology of the spectrum of a commutative ring. Thus far we have not

Thus Weyl should be able to provide a sound computational environment for investigating
many questions in commutative algebra and algebraic geometry as well as in applied mathe-
matics.

6 Conclusions

In Weyl’s current implmentation types all objects at run time and some decisions that might be
performed at compile time are delayed until run time. Some of this is due to using the Common
Lisp Object System instead of building our own polymorphism and overloading scheme as is
done in Scratchpad, and some of this is due to the using Xerox’s portable implementation
of CLOS. This portable implementation of CLOS allows us to run Weyl on a wide variety
of platforms, but degrades performance enough that we cannot get an accurate idea of the
performance to expect with high performance implementations of CLOS that are integrated
into the Lisp compiler. Thus, though we know that some of our design decisions degrade
performance somewhat we cannot accurately quantify the degradation.

Though the type system used by Weyl is supported at run time, there is no reason why
it could not be supported by the compiler. This would provide all the advantages of strong
typing, and might improve performance somewhat. We have opted for the run time version
used here for convenience in development.

Much of this work is the direct result of discussions with members of the IBM Scratchpad
group, in particular Barry Trager and Dick Jenks, whose assistance I gratefully acknowledge.

This report describes research supported by the Advanced Research Projects Agency of
the Department of Defense under Office of Naval Research contract N00014-86-K-0591, the
National Science Foundation through contract DMC-86-17355 and the Office of Naval Research
through contract N00014-86-K-0281.

References

(1] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Kenneth Kahn, Sonya E.
Keene, Gregor Kiczales, Larry Masinter, David A. Moon, Mark Stefik, and Daniel L.
Weinreb. Common lisp object system specification. Technical Report 88-002, X3J13,
ANSI Common Lisp Standardization Committee, July 1988.

[2] George C. Clark and Richard Eliot Zippel. Schema: An architecture for VLSI CAD.
In Proceedings of the International Conference on Computer Aided Design, pages 50-52,
Santa Clara, CA, October 1985.

[3] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F.

11



Smith. Implementing Mathematics with the Nuprl Proof Development System. Prentice-
Hall. Englewood Cliffs, NJ. 1986.

[4] David A. Cyrluk. Richard M. Harris, and Deepak Kapur. GEOMETER: A theorem prover
for algebraic geometry. In Proceedings of the 9th International Conference on Automated
Deduction (CADE-9). Argonne, IL, May 1988.

(5] J. Dongarra, J. R. Bunch, Cleve B. Moler. and G. W. Stewart. LINPACK User’s Guide.
SIAM Publications. Philadelphia, PA, 1978.

[6] Anthony C. Hearn. Reduce 3 user’s manual. Technical report, The RAND Corp., Santa
Monica, CA, 1986.

[7] Richard D. Jenks and Barry Marshal Trager. 11 keys to new Scratchpad. In Proceedings
of EUROSAM ’84, pages 123-147, New York, NY, 1984. Springer-Verlag.

[8] Maple Group, Waterloo, Canada. Maple, 1987.

[9] Cleve B. Moler. Matlab user’s guide. Tech. Report CS81-1, Dept. of Computer Science,
University of New Mexico, Albuquerque, NM. 1980.

[10] B. T. Smith, James M. Boyle, Y. Ikebe, Virginia C. Klema, and Cleve B. Moler. Matriz
FEigensystem Routines: EISPACK Guide. Springer-Verlag, New York, NY, 2 edition, 1976.

[11] Guy Lewis Steele Jr. Common Lisp, The Language. Digital Press, Burlington, MA. 1984.

[12] Stanly Steinberg and Patrick J. Roache. Symbolic manipulation and computational fluid
dynamics. Journal of Computational Physics, 57:251-284, 1985.

(13] Symbolics, Inc., Burlington, MA. MACSYMA Reference Manual, 14 edition, 1989.

(14] Paul S. Wang, T. Y. P. Chang, and K. A. van Hulzen. Code generation and optimization
for finite element analysis. In John Fitch, editor, Lecture Notes in Computer Science 174,
EUROSAM ’84, pages 237-247. New York, NY, 1984. Springer-Verlag.

(15] Steven Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-
Wesley, Redwood City, CA, 1988.

[16] Richard Eliot Zippel. Capsules. SIGPLAN Notices. 18(6):166-169, June 1983. Proceeed-
ings of SIGPLAN ’83.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

