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Crossed-Plane Laser Tomography (CPLT) and similar laser imaging methods 

have been used to measure instantaneous flamelet surface normal vectors in premixed 

turbulent flames to study the wrinkling of flamelet surfaces and the internal structure 

of the flamelet.  CPLT was applied to measure flamelet orientations of premixed 

turbulent V-flames with increasing downstream distance from the stabilizing rod.  

Also, a combined CPLT and Stereo Particle Image Velocimetry (SPIV) technique was 

developed to measure flamelet orientation statistics, three dimensional reactant 

velocities, and flamelet displacement speeds in a turbulent V-flame.  This technique 

was also used to measure in-plane flamelet curvature in laboratory V-flames.  The 

distribution of flamelet orientations is found to have a simple universal form 

depending on a single parameter, ζ, for all flames studied to date.  ζ and AT/A, the 

mean flamelet area increase due to turbulence, grow linearly with distance from the 

stabilizer.  The observed growth rates in ζ and AT/A vary considerably from flame 

condition to flame condition, and the differences cannot be explained solely by 

changes in u’/SL
o, the ratio of the turbulence intensity to the unstretched laminar flame 

speed.   

 Combined CPLT and SPIV are applied to measure three-dimensional flamelet 

orientation, reactant velocity, and flamelet displacement data in premixed turbulent 



 

flames.  Three-dimensional flamelet orientation information is calculated from two 

simultaneous, orthogonal imaging measurements.  Using SPIV, three-dimensional 

seed particle velocity measurements are obtained using two cameras.  Each camera 

records an image pair separated by a short time interval and views the same region of 

the flame from a different perspective.  Based on these different views of particle 

displacements corrected for thermophoretic effects, all three components of reactant 

velocity are found.  The combined CPLT and SPIV technique measured instantaneous, 

three-dimensional flamelet orientation, flamelet surface curvature and the flamelet 

displacement speed, defined as the component of the relative velocity between the 

reactants and the flame surface that is normal to the surface.  Displacement speed data 

showed both a broad distribution of values and a significant probability of negative 

values.  The breadth of the distribution and the presence of negative displacement 

speeds are attributed to high values of curvature and extensive tangential strain.   
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CHAPTER 1 

INTRODUCTION 

Challenges of Energy and Combustion 

The problem of energy sufficiency and environmental quality is currently a 

worldwide issue with many ramifications: national security, global warming, and 

energy storage, production and price.  While new technologies for energy production 

are being developed and utilized - such as wind, geothermal and solar - the vast 

majority of the world’s energy is still provided by fossil fuel combustion.  

Furthermore, the United States government estimates that combustion of fossil fuels 

accounts for more than 85% of all energy consumed in the United States [1].  The 

burning of fossil fuels provides nearly two-thirds of the electricity consumed in the 

U.S. and nearly all of the nation’s transportation fuels.  Even with aggressive 

development and deployment of new renewable and nuclear technologies, it is likely 

that the nation’s reliance on fossil fuels will increase over the next two decades [2].   

Recently, the focus on energy utilization in the global economy has opened the 

field of research and development in the area of fossil fuel combustion [3].  There is 

an unresolved problem of rapidly increasing energy demands but decreasing 

availability of fossil fuels.  There is also a growing awareness of the negative effects 

of pollution which has resulted in the development and application of various types of 

emission controls.  Solutions are needed to reduce energy requirements by providing 

clean and efficient fossil fuel combustion to maintain a sustainable energy supply and 

to protect the environment.  The development of advanced combustion technologies 

that are highly efficient and produce low emissions is an important priority for 

national security as well as for the economy and the environment [3].  This must be 

accomplished by improvements in current energy conversion technologies in 
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efficiency and advanced control to increase their productivity and reduce overall fuel 

consumption.  Such developments could be achieved faster and cheaper if accurate, 

robust and truly predictive combustion models were available. 

 

Importance of Premixed Turbulent Combustion 

 In most energy producing processes, combustion takes place in turbulent rather 

than laminar conditions.  Turbulence increases mixing processes and thus enhances 

combustion.  Also, combustion releases heat which causes flow instability by 

buoyancy and gas expansion, which enhances the transition to turbulence.  There are 

several important practical applications of premixed turbulent combustion, such as 

spark-ignition engines, premixed prevaporized gas turbines, and industrial furnaces.   

There are still many unresolved problems in understanding premixed turbulent 

combustion.  Turbulence itself is far from being fully understood – it is agreed to be 

the most significant unresolved problem in classical physics [4].  The need to 

understand practical engineering problems has led to the development of non-reacting 

turbulent flow models.  The current helpfulness of using these models in industry has 

encouraged similar approaches in the area of premixed turbulent combustion.  Due to 

the complex nature of premixed turbulent combustion (the coupling of fluid dynamics 

with chemical reactions), realistic numerical models for premixed turbulent 

combustion are still being developed [4].   

 Currently, direct numerical simulation (DNS) of the coupled equations of fluid 

motion, molecular transport, and chemical reaction can only be applied to simple 

laboratory-scale turbulent flames [5-6].  These simulations for practical devices are 

prohibitively computationally expensive.  In turbulent combustion, molecular mixing 

occurs on the smallest scale of turbulence, so even the smaller scales of the thin 

reaction layers need to be resolved.  With the large difference in scales between the 
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thin reaction layers and the size of the combustion chamber, these simulations require 

hundreds of millions of computational cells and millions of processor hours [3].  To 

develop and analyze new practical combustion devices cheaply and quickly, simplified 

computational models are needed.  The development and validation of new and 

improved simplified models need experimental data.   

 Here, laser diagnostics techniques (crossed-plane laser tomography and stereo 

particle image velocimetry) in laboratory-scale experiments are designed to study 

premixed turbulent combustion phenomena at a fundamental level.  Laser diagnostic 

methods are desirable due to their non-intrusiveness, repeatability, and high spatial 

and temporal resolution.  These techniques are also intended to provide insights and 

data to promote the development and validation of advanced combustion models.   

 

The Flamelet Model 

In premixed turbulent combustion the fuel and oxidizer are mixed well before 

they are burned in a turbulent flow environment.  For a range of turbulence conditions 

chemical reactions and scalar quantitative variations can be assumed to be confined to 

thin sheets, what is known as the flamelet regime.  For flames fitting these conditions, 

flamelet models have been developed by Bray, Moss, and Libby (BML) and others [7-

11].  In these flamelet models, the location of the flame is defined by a thin wrinkled 

surface and the flame’s structure is that of a stretched laminar flame.  The reaction rate 

of a flame in the flamelet regime is related to the amount of flamelet surface area in a 

volume and the modification of the local laminar flame speed due to stretch and 

unsteadiness.  The local mean reaction rate of the flame, <w>, is thus proportional to 

the average flamelet surface area per unit volume, (the surface density Σ), and the 

mean reaction rate per unit flamelet surface area [12].  It is shown that a major effect 

of turbulence is to wrinkle the flamelet, increasing the surface density, Σ, and the local 
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mean reaction rate can be expressed as 

Σ= o
o
Lr ISw ρ ,        (1.1) 

where ρr is the density of the reactants, SL
o is the unstretched laminar flame speed, and 

Io is a factor that accounts for changes in the flamelet reaction rate due to turbulence, 

i.e. the stretch factor [13].  The first two terms of Eq. 1.1 are easily found, it is the last 

two terms that are of great interest.   

The BML model [8] introduces the scalar reaction progress variable c, where c 

describes the extent of chemical reaction and has the value of zero in reactants and one 

in products.  The mean reaction progress variable, <c>, is ensemble-averaged and 

varies continuously from zero on the reactants side of the flame brush to one on the 

products side.  For a planar turbulent flame, <c> constant surfaces are parallel planes.   

 Numerous model equations [eg.14-16] and DNS studies [eg. 17-18] have been 

performed to find Σ.  Bray, Moss, and Libby [19] have used flamelet crossing statistics 

to develop an algebraic model to find Σ.  Gouldin [20] has developed an expression for 

Σ in terms of flamelet crossings of an arbitrarily oriented line, η.   

         (1.2) 

 

where N is the flamelet surface normal vector, a unit vector oriented towards reactants, 

nη is a unit vector aligned with η and nc is the average number of flamelet crossings 

per unit length of η.  The direction of η is arbitrary [20]; however for reasons 

discussed in Reference [21] it is best to define it to be normal to <c>, mean progress 

variable, constant surfaces.  The c subscript indicates that the average is crossing-

weighted.  When performing a crossing weighted average, the contribution to the 

average associated with a given orientation N is weighted by the probability of a 

flamelet with that orientation crossing the reference line, η.  A consequence of this 

weighting is that the singularity in Eq. (1.2) associated with N perpendicular to η is 

c

c

n
nN η•

=Σ
1
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eliminated [21]. 

Many workers have investigated experimentally the distribution of N required 

to evaluate Σ [18, 22-24].  Most of these studies are examples of two-dimensional 

imaging, such as those obtained from planar laser induced fluorescence (PLIF), laser 

tomography, or Rayleigh imaging.  Only two-dimensional information on N can be 

found from these data.  To extract three-dimensional information from laser 

tomography images assumptions need to be made about the out-of-image plane 

component. 

At Cornell we have developed a dual plane imaging method, crossed-plane 

laser tomography, in order to measure N directly in three dimensions [21, 25-29].  The 

crossed-plane imaging technique used to find N involves simultaneous orthogonal, 

single plane imaging measurements.  Two orthogonal laser sheets define the two 

orthogonal imaging planes.  The laser sheets intersect along a line referred to as the 

measurement line.  Where the flamelet crosses the measurement line, three-

dimensional flamelet orientation data can be measured. Repeated measurements are 

made to build a set of N and crossing density, nc, data.   

With N specified in spherical coordinates by a polar angle, φ, and an azimuthal 

angle, θ, and the polar axis chosen to be normal to <c> constant surfaces (i.e. aligned 

with η), the crossing-weighted probability density function (pdf) of N has been found 

to be 

θϕϕζϕϕϕθϕθ ddCdPc sin)/(expcos),(),( 2−=Ω ,   (1.3) 

where the line crossed is the polar axis and dΩ(θ,φ) is the differential solid angle 

sinφdφdθ.  According to Eq. (1.3) the pdf of N is independent of θ, quasi-Gaussian in 

φ, and depends on a single fit parameter ζ; C is a normalization constant [21]. 

 This form for the crossing-weighted pdf of N leads to simple expressions for 

both Σ and the burning rate integral, BT [7].  The burning rate integral is defined as the 
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path integral of the mean reaction rate, <w>, across the flame brush 

             (1.4) 

 

where η again is a path normal to <c> surfaces.  From Eq. 1.3, it is seen that Σ is a 

function of ζ and nη alone.  BT is the line integral of <w> along η.  By substitution of 

Eq. 1.2 into 1.1 and integrating one obtains BT=ρrSL
o<Io<|1/N•nη|>c>fnc  where < >f 

denotes an average along η.  Eq. 1.3 can also be used in this expression so that BT 

becomes a function of ζ(η) and nc.   Since ζ and nη can be measured, Σ and BT can be 

calculated, where Io is estimated based on a priori knowledge. 

 The crossed-plane imaging method was first demonstrated at Cornell by 

Bingham in his thesis [25], which is the first three-dimensional N data published.  This 

method has since been applied to V-flames [26, 27] and engine flames [28, 29].  The 

results of these measurements suggest that the form of the probability density function 

(PDF), Eq. 1.3, of N is universal. 

 

Thesis Organization 

The simple universal form of the distribution of flamelet orientations N and its 

dependence on a single parameter, ζ, is demonstrated in the succeeding chapter.  It is 

shown that ζ can be determined from two-dimensional image data provided that the 

image plane is aligned perpendicular to <c> constant surfaces.  To further show the 

power of this technique, single plane measurements were made on seven methane-air, 

turbulent V-flames.  ζ and AT/A, the mean flamelet area increase due to turbulence, 

are found to grow linearly with distance from the V-flame stabilizing rod.  The 

observed growth rates in ζ and AT/A vary considerably from flame to flame, and the 

differences can not be explained solely by changes in u’/SL
o, the ratio of the turbulent 

intensity to the unstretched laminar flame speed.   

∫
∞

∞−

= ηdwBT
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 The third chapter is titled “The Combined Crossed-Plane Tomography and 

Stereo Particle Image Velocimetry Method.”  Here the combined crossed-plane laser 

tomography and stereo particle image velocimetry (SPIV) method is described in 

detail.  Three-dimensional flamelet orientation information is calculated from two 

simultaneous, orthogonal imaging measurements.  Using SPIV, three-dimensional 

reactant velocity measurements are obtained using two cameras. All three components 

of flamelet orientation, flamelet surface curvature and reactant velocity can be 

combined to find the flamelet displacement speed, which is defined here as the 

component of velocity relative and normal to the flame surface. 

The fourth chapter discusses the thermophoretic force and the importance of its 

consideration in SPIV measurements.  The accuracy of laser imaging techniques for 

measuring fluid velocities in seeded flows (such as laser-Doppler velocimetry and 

SPIV) depends on how closely the seeding particles follow the flow.  The 

thermophoretic force is the force that a particle feels as it travels through regions of 

high temperature gradients.  In these regions, the molecules on the hotter side of a seed 

particle have, on average, higher momenta than those on the cooler side of the seed 

particle, resulting in a net force on the particle in the direction of decreasing 

temperature.  This chapter describes the formulation of the thermophoretic force 

correction for seeded flow in regions of high temperature gradients. 

 In the fifth chapter the combined crossed-plane laser tomography and stereo 

particle image velocimetry (SPIV) method is applied to a turbulent V-flame to 

measure three-dimensional flamelet orientation, reactant velocity, and flamelet 

displacement data in premixed turbulent flames.  From these data, the velocity 

components of the seed particles perpendicular to the flamelet surface are determined 

and corrected for thermophoretic effects to find the reactant velocity.  The flamelet 

displacement speed is obtained from the measurements of flamelet displacement and 
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reactant velocity at the flamelet surface.  Displacement speed data show both a broad 

distribution of values and a significant probability of negative values.  The breadth of 

the distribution and the presence of negative displacement speeds are attributed to high 

values of curvature and extensive tangential strain.   

The sixth chapter analyzes the combined crossed-plane tomography method 

and discusses the calculated uncertainty in the flamelet displacement speed 

measurements.   Measurements made with the combined crossed-plane tomography 

and stereo PIV method are subject to four types of errors: (1) Those due to 

instrumentation, i.e.: system setup and image processing, (2) those due to uncertainty 

in the calibration of the crossed-plane tomography measurement technique, (3) those 

due to uncertainty in the calibration of the SPIV measurement technique, and (4) those 

due to the seed particles not faithfully following the flow, i.e.: thermophoretic effects.  

The individual sources of error and how these errors propagate to the calculated 

uncertainty in the flamelet displacement speed are discussed in this chapter. 

Also included in this dissertation is a general summary. 
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CHAPTER 2 

TOMOGRAPHY AND FLAMELET NORMAL MEASUREMENTS 

At Cornell we have developed a dual plane imaging method, crossed-plane 

laser tomography, in order to measure N directly in three dimensions.  Laser 

tomography (described by Boyer [30]) allows for the visualization of an instantaneous 

picture of a flamelet surface in a planar cross section of a flame. The reactant flow is 

seeded with an aerosol of oil droplets that are consumed within the flamelet.  The 

flame is illuminated with a laser beam that has been formed into a thin sheet.  The 

droplets in the reactants Mie scatter laser light; no scattering occurs in products where 

there are no droplets. A camera is oriented normal to the laser sheet and an image of 

the light scattering is recorded.  The image is an instantaneous visualization of the 

flamelet surface as the exposure time (either the laser pulse duration or the exposure 

time of the camera) is short compared to the characteristic time of flamelet motion. 

Within each image, the boundary between light reactants and dark products represents 

the intersection of the flamelet surface and the imaging plane, the flamelet curve.  The 

flamelet curve represents the instantaneous flamelet location within the flame cross-

section defined by the laser sheet. 

Single plane laser tomography yields flamelet surface geometry information 

only within the laser scattering plane. The crossed-plane laser tomography technique 

measures the instantaneous three-dimensional flamelet surface normal, N, and 

involves simultaneous orthogonal, single plane imaging measurements.  Two 

orthogonal laser sheets define the two orthogonal imaging planes.  The laser sheets 

intersect along a line referred to as the measurement line.  Where the flamelet crosses 

the measurement line within each of the two images, vectors tangent to the flamelet 

curve are measured.  The cross-product of the two tangent vectors yields the three-
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dimensional flamelet surface normal, N.  Repeated measurements are made to build a 

set of N and crossing density, nc, data.  An example of the crossed-plane laser 

tomography measurement method and a schematic of the orthogonal imaging planes 

are shown in Fig. 2.1.  Here crossed-plane laser tomography is applied to a perturbed 

laminar V-flame.   

 

Determination of Three-Dimensional Flamelet Orientation Distributions in 

Turbulent V-Flames from Two-Dimensional Image Data 

The crossed-plane imaging technique used to find N [18, 21, 26, 27] involves 

simultaneous orthogonal, single plane imaging measurements; three-dimensional 

flamelet orientation data are obtained only along the line of intersection of the two 

laser sheets. It is desirable to be able to extract three-dimensional N data from single 

plane, two-dimensional image measurements given the large amount of existing 

single-plane image data and the simplicity of such measurements.  Also a single plane 

technique allows measurements of flamelet orientation in any region of the image 

plane. 

Several workers have performed two-dimensional imaging measurements to 

determine the distribution of N to evaluate Eq. 1.2.  To extract three-dimensional 

information from laser tomography images Shepherd and Ashurst [18] made 

arguments based on symmetry and assumed a lack of correlation between in plane (the 

image plane) and out of plane components of N in a stagnation point flame.  

Alternately, Lee et al [22, 23] used planar laser induced fluorescence (PLIF) to study 

flamelet curvature and assumed that out of image plane curvature is approximately the 

same as in plane. 

Given the nature of the form of the distribution of N in Eq. 1.3, it is possible to  
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Measurement Line

 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
Figure 2.1:  Photograph of the crossed-plane laser tomography 
technique used on a perturbed laminar V-flame.  Laser light is Mie 
scattered off of an aerosol of oil droplets seeded into the reactants.  
Also shown is a schematic representation of the two orthogonal 
tomography imaging planes.  The line of intersection of the two planes 
is the measurement line, where flamelet orientation and crossing data is 
recorded. 
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Figure 2.2: The coordinate system used for single-plane imaging 
measurements.  One laser sheet is within the x’y’ plane.  The 
coordinate system is defined such that y’ is oriented perpendicular to 
<c>=constant surfaces.  Nxy is the three-dimensional flamelet surface 
normal N projected onto the x’y’ plane.   
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determine three-dimensional orientation information from two-dimensional image 

data.  The relationship between the pdf of the projection of N onto a two-dimensional 

plane, Nxy, (for a special orientation of x and y, see Fig. 2.2) and that of N as given in 

Eq. (1.3) is developed here.   

It is found that because of symmetry in the azimuthal direction, three-

dimensional information can be extracted from two-dimensional image data if the 

imaging plane contains the polar axis. Pc(α), the crossing-weighted PDF of the angle, 

α, between Nxy and η that is defined over the interval –180 to + 180 degrees, is 

generated from the crossing-weighted PDF of N through Monte-Carlo computations.  

The resulting PDF is found to depend on a single fit parameter, γ.  In addition, it is 

found to be symmetric about α= 0, and consequently in the results reported α is 

replaced by its magnitude. A plot of γ versus ζ is obtained by computation and fit to a 

polynomial giving a simple relationship between the two parameters. 

 The evolution of the ζ fit parameter with increasing downstream distance in 7 

different methane-air V-flames is studied to demonstrate the utility of the relationship 

developed between the PDFs.  Nxy is measured by imaging Mie scattering from a 

single, vertical plane perpendicular to the V-flame stabilizing rod.  From each 

recorded image data for α are collected along six different η lines that are locally 

perpendicular to <c> constant lines.  The location of each line is defined by the axial 

location where it crosses the <c>=0.5 line.  The PDF of α and the two-dimensional fit 

parameter γ are obtained from repeated measurements.  ζ is determined from each 

measured γ using the above relationship between γ and ζ. 

 A Monte- Carlo numerical procedure is used to establish the relationship 

between Pc(θ,φ), and Pc(α).  To do this, the universal form of the PDF of N, Eq. (1.3) 

is assumed to be valid.  A simple relationship between a given orientation N(φ,θ) and 

its projection onto the x-y plane Nxy(α) exists; 
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( )θφ=α − costantan 1 .       (2.1) 

For a large set of n flamelet normal vectors, {N}, distributed according to Eq. (1.3), 

the number of vectors in a differential solid angle dΩ that cross η is  

nC⎜cosφ⎜exp-(φ/ζ)2dΩ.  This relationship is used to generate Pc(α).  For each dΩ( φ,θ) 

a histogram of α is incremented by the fraction of n in dΩ(φ,θ) with a projection in the 

α value range corresponding to that particular dΩ(φ,θ)  Then the histogram is 

normalized and fit to a smooth curve to obtain an estimate of Pc(α).   

It should be noted that the flamelet polar angle is limited to a maximum value 

of 180°.  Previous experiments [26-28] measured relatively low values of ζ, so that the 

probability of finding φ ~180° was negligible.  To determine the relationship between 

the PDFs of α and of φ and θ a wide range of ζ values is used and at high ζ the 

probability of φ~180° is not negligible.  Consequently, for large values of ζ, (and of γ), 

the exponential term in Eq. 1.3 is clipped at φ = 180°.  While clipping seems 

reasonable, we do not have experimental data at high turbulence levels to confirm its 

validity.   

The Monte-Carlo procedure is applied for 20 evenly spaced values of ζ 

between 10° and 100° and 64800 equal size segments of 4π steradians; ∆Ω 

(φ,θ)=4π/64800 steradians.  The resulting α PDF is found to be fit well by 

Pc(α)= C’⎜cosα⎜exp-(α/γ)2,       (2.2) 

a form similar to that of Eq. 1.3 with a single fit parameter γ.  The c subscript indicates 

the distribution is crossing weighted.  γ values generated over the range of ζ values are 

plotted in Fig. 2.3 where it is seen that γ ~ ζ  for small ζ but deviates from the linear 

relationship for larger ζ.  This relationship between the two and three dimensional 

distributions and fit parameters is exploited in the following section to find ζ from 

single plane data.   
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Figure 2.3.  γ, the PDF fit parameter of Nxy, generated over a range of ζ, 
the PDF fit parameter of N.  The data are fit by  
ζ=-0.0011γ2+1.0097γ+0.0954.   
The ζ=γ line is plotted to demonstrate that γ~ζ for small ζ but deviates 
for larger ζ. 
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Description of Apparatus 

 Single plane laser tomography measurements were performed on the V-flame 

burner used in several previous studies in this laboratory [25-27, 31-32].  Two of these 

studies have shown that the form of the PDF of N in Eq. 1.3 is applicable to turbulent 

V-flames [26-27].   <c> surfaces contain the stabilizing rod of the V-flames, and to 

take advantage of the above results, the imaging plane is aligned perpendicular to the 

stabilizing rod so as to contain normals to <c> constant surfaces.  A frequency 

doubled Nd:YAG pulsed laser is used for tomographic visualization.  The beam is 

formed into a thin sheet defining the imaging plane (Fig. 2.4).   

The reactants are seeded with micron sized silicone oil droplets which are 

consumed within the flamelet such that Mie scattering of laser light occurs in the 

reactants but not the products.  Tomographic images are recorded with an ICCD 

camera having a 512 x 512 pixel CCD array. The field of view imaged is 40 mm x 40 

mm with an exposure time of 20 ns; the camera spatial resolution is better than 0.2 

mm.  A polarizing filter is used to block background light.  The timing sequence for 

the camera is initiated by a trigger pulse from the laser. 

 Fuel and air flow rates measured with mass flow meters are used to determine 

the bulk flow velocity, U, and the equivalence ratio φequiv.  To reduce interference 

from light scattered by room air dust, the premixed flame is sheathed by a co-axial 

flow having a velocity similar to the reactant flow.  Turbulence is generated by two 

different wire mesh grids positioned 50 mm upstream from the stabilizing rod. The 

first grid has approximately 4.5 squares/cm2, a 0.86 mm wire diameter and a mesh 

spacing, M, of 4.2 mm; the second grid has approximately 1.7 squares/cm2, a 1.59 mm 

x 1.59 bar, and M=6 mm.  u’, the turbulence intensity, was measured for a fixed value 

of the bulk velocity, U, at various downstream distances using hot wire anemometry, 

and the ratio u’/U is fit as a function of distance.  This function is then used to find u’  
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Figure 2.4: Schematic diagram of single-plane laser tomography 
experimental setup.  A single beam is formed into a thin sheet in a 
vertical plane over the V-flame burner.  Imaging data are collected by 
an ICCD camera and are stored for post-processing on a PC.  
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for the bulk flow velocities used in this study.   

Tomographic images were recorded and saved for post processing.  The 

recorded images are bright in the reactants due to Mie scattering and are dark in the 

products, Fig. 2.5.  The boundary between light and dark regions represents the 

intersection of the flamelet surface and the imaging plane, the flamelet curve. Image 

processing consists of a thresholding step, making the images binary, followed by a 

spatial averaging step to remove noise of scales smaller than the 0.2 mm camera 

resolution [33]. The flamelet curve is fit locally to a smooth curve to find its normal.  

Further details on image processing can be found in [25]. 

The <c> field is required to determine N<c>, the orientation of η.  The 

instantaneous c field is generated for each processed laser tomography image by 

assigning a c value of 0 to reactant pixels and of 1 to product pixels. The c fields from 

all images are averaged, yielding the <c> field, and the <c>=0.5 contour is used to 

define N<c>.  Nxy measurements were made at six η lines, beginning at 30 mm above 

the stabilizing rod and incrementing in 5 mm steps; except for flame 7 which had 

increments of 10 mm.  The η paths are shown in Fig. 2.5.  

Flamelet crossings are identified at points where the flamelet curve intersects 

η.  Polynomial curves are fit along the flamelet curve in regions adjacent to crossings, 

and the slope of the fit at the crossing is used to determine Nxy. α, the magnitude of the 

angle between Nxy and η, is obtained from the slope.  At each downstream 

measurement location a histogram of α values is generated and subsequent 

normalization gives its PDF, Pc(α). 

Results and Discussion 

Single plane measurements were performed on seven different methane-air V-

flames with three different equivalence ratios, three different mean velocities and two 
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Figure 2.5: Sample image of flame 7. The image is bright in the 
reactants where laser photons Mie scatter off of the silicone oil droplets 
and are dark in products.  <c>=0.5 is used to define N<c>.  η, the 
reference line for measuring α, is aligned with N<c>.  η paths for the six 
downstream distances studied are shown, spaced 10 mm apart.  
Flamelet crossings are identified at points where the flamelet curve 
intersects the different η paths.  The flamelet curve at the crossing is fit 
locally to a smooth curve, its slope is used to determine Nxy. 
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different turbulence-generating grids.  The flame conditions and results are 

summarized in Table 2.1.  Between 600 and 2000 vertical images were analyzed for 

each flame.  From each recorded image data for α and Nc, the average number of times 

the flamelet crosses an η line, were obtained for each of the η lines.  

From the angle data, PDFs were estimated and fit to a function of the expected 

form in order to find γ.  Sample results are shown in Figure 2.6, where it can be seen 

that the agreement between the data and fit is quite good.  The γ values obtained from 

these fits are used to find ζ, and the results are shown in Table 2.1 as well as in Figure 

2.7 as plots of ζ versus downstream distance from the flame stabilizing rod, x, scaled 

by M.  These plots show that the level of flamelet wrinkling increases with distance, 

and that the increase as measured by ζ is approximately linear over the region of 

measurement.  It is noted that for flame 2, ζ values at only four locations are reported.  

This is because in this flame, at large x values, the flamelet approached the boundary 

between the premixed and co- flows, and it was not possible for the image analysis  

algorithm to distinguish between the flamelet curve and the boundary curve separating 

the two flows. 

Because the flame is anchored by a rod and wrinkling is therefore suppressed 

near the rod, we expect ζ to tend to zero as x goes to zero.  Extrapolations of the lines 

in Figure 2.7 to x = 0 imply that the behavior of ζ near the rod is nonlinear.  

Furthermore, it is likely that this behavior depends on the rod wake as well as the flow 

turbulence properties.   The downstream behavior of ζ versus x/M is unknown.  In the 

present case, image data show that after approximately 80 mm downstream wrinkling 

is effected by the annular air co-flow. 

Eq. 1.3 can be integrated along ζ lines to obtain an expression for the mean 

flamelet surface area per unit flame brush area, AT/A; this is the area ratio term first
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Table 2.1: Summary of flame conditions and measurement results.  
Note that the turbulence conditions listed for flame 7 were measured at 
the location of the stabilizer rod.  ReM is the Reynolds number for grid 
turbulence, defined as u’M/νf where νf is the kinematic viscosity of the 
reactants.  ReM is comparable in magnitude to the turbulence Reynolds 
number based on the integral scale of the reactant flow.  

 
 
 

 
 

Flame V-flame Average

x 1/2 angle U u' Φ SL grid u'/SL of ReM γ ζ Nc

[mm] [°] [m/s] [m/s] [m/s] u'/SL [°] [°]
1 30 18 2 0.11 0.65 0.16 1 0.701 0.600 26.6 25.6 25.2 1

35 18 2 0.10 0.65 0.16 1 0.656 24.9 29.8 29.2 1
40 18 2 0.09 0.65 0.16 1 0.615 23.3 35.1 34.2 1
45 18 2 0.09 0.65 0.16 1 0.576 21.8 42.5 41.0 1.003
50 18 2 0.08 0.65 0.16 1 0.541 20.5 50.1 47.9 1.014
55 18 2 0.08 0.65 0.16 1 0.510 19.3 58.7 55.6 1.026

2 30 19 2 0.25 0.65 0.16 2 1.662 1.5013 90.0 48.6 46.6 1.045
35 19 2 0.23 0.65 0.16 2 1.544 83.6 55.5 52.7 1.044
40 19 2 0.22 0.65 0.16 2 1.442 78.1 65.4 61.4 1.102
45 19 2 0.20 0.65 0.16 2 1.357 73.5 71.4 66.6 1.086

3 30 11 4 0.19 0.65 0.16 1 1.292 1.172 49.0 30.2 29.6 1
35 11 4 0.19 0.65 0.16 1 1.235 46.8 32 31.3 1
40 11 4 0.18 0.65 0.16 1 1.185 44.9 37.5 36.4 1
45 11 4 0.17 0.65 0.16 1 1.142 43.3 40.6 39.3 1.001
50 11 4 0.17 0.65 0.16 1 1.105 41.9 44.9 43.2 1.010
55 11 4 0.16 0.65 0.16 1 1.075 40.8 49.6 47.5 1.023

4 30 15 4 0.49 0.65 0.16 2 3.243 2.689 175.6 46.9 45.0 1.005
35 15 4 0.45 0.65 0.16 2 2.982 161.5 47.6 45.7 1.006
40 15 4 0.41 0.65 0.16 2 2.750 148.9 54.1 51.5 1.012
45 15 4 0.38 0.65 0.16 2 2.548 138.0 55.8 53.0 1.018
50 15 4 0.36 0.65 0.16 2 2.377 128.7 70 65.4 1.033
55 15 4 0.34 0.65 0.16 2 2.235 121.0 77.2 71.5 1.048

5 30 18 4 0.19 0.8 0.28 1 0.692 0.6282 49.0 48.7 46.7 1.009
35 18 4 0.19 0.8 0.28 1 0.662 46.8 55.8 53.0 1.017
40 18 4 0.18 0.8 0.28 1 0.635 44.9 62.9 59.3 1.028
45 18 4 0.17 0.8 0.28 1 0.612 43.3 75.4 70.0 1.055
50 18 4 0.17 0.8 0.28 1 0.592 41.9 82.1 75.6 1.074
55 18 4 0.16 0.8 0.28 1 0.576 40.8 86 78.8 1.106

6 30 18 4 0.49 0.8 0.28 2 1.738 1.441 175.6 59.8 56.5 1.023
35 18 4 0.45 0.8 0.28 2 1.597 161.5 69.8 65.2 1.042
40 18 4 0.41 0.8 0.28 2 1.473 148.9 77.6 71.8 1.046
45 18 4 0.38 0.8 0.28 2 1.365 138.0 82.9 76.2 1.109
50 18 4 0.36 0.8 0.28 2 1.273 128.7 93.6 85.0 1.143
55 18 4 0.34 0.8 0.28 2 1.197 121.0 90.4 82.4 1.158

7 30 14 2.61 0.12 0.7 0.21 1 0.57 30.3 21.9 21.7 1
40 14 2.61 0.7 0.21 1 33 32.2 1
50 14 2.61 0.7 0.21 1 38.9 37.7 1.003
60 14 2.61 0.7 0.21 1 53.8 51.2 1.003
70 14 2.61 0.7 0.21 1 65 61.1 1.003
80 14 2.61 0.7 0.21 1 65.6 61.6 1.037



 

22 

 
 
 

proposed by Damkohler to account for the increase in burning rate due to turbulence 

in the flamelet regime.   

 

,      (2.3) 

 

Nc is the line integral of nη and has been measured, Table 2.1.  As would be expected 

Nc increases with distance from the rod but not linearly.  In Reference [21] it is shown 

that for flamelet normals distributed according to Eq. 1.3 the direction cosine term is a 

nearly monotonic but nonlinear function of ζ varying from 1 to 2.  This relationship 

has been used to find <<1/|N•nη|>c>f and hence AT/A.  The results are presented in Fig. 

2.8, where it is seen that AT/A increases linearly with distance for the region of 

observation. Since as noted, wrinkling is suppressed by the stabilizer rod, one expects 

AT/A to go to 1 near the rod.  In turn, both Nc and the direction cosine term are 

expected to go to one. 

The results for ζ, Nc and AT/A show that these quantities increase with distance 

from the stabilizer rod and that for ζ and AT/A the increase is linear.  There are 

considerable differences in growth rate between the different flames.  Burning velocity 

is widely considered to be a function of u’/So
L, and Gülder has suggested several 

correlations for burning velocity having u’/So
L as well as the turbulence Reynolds 

number as independent variables [34].  Based on this experience it seems reasonable 

to expect the slopes of the ζ versus x/M lines, the growth rates, to depend on u’/So
L 

and perhaps Reynolds number.  In Figure 2.9 growth rates are plotted against an 

average u’/So
L for each flame studied.  The vertical error flags are estimated 

uncertainties in finding the slopes of the lines in Figure 2.7, while the horizontal bars 
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Figure 2.6: Sample PDF of measured Nyz in α for x=40 mm for flame 
7. The data are fit to the form Pc(α)=C’⏐cosα⏐exp-(α/γ)2 using a least 
squares fit.  γ=33° and the uncertainty, χ2, is 0.0001.  The error bars 
shown indicate error due to statistical uncertainty in the data. 
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Figure 2.7: Plot of ζ versus x/M for the seven flames studied.  Linear 
curve, least-squares fits of the data are shown in the figure.  Their R2 
values range from 0.9144-0.9913.  χ2, the uncertainty associated with ζ, 
ranges from 0.00001-0.0001.  
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Figure 2.8: Plot of the area ratio, AT/A, versus x/M for the seven flames 
studied.  The dashed lines are straight line least squares fits of the data.  
The area ratio is the integral of the surface density along η and hence is 
a function of ζ and NC. 
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indicate the range of u’/So
L over which the growth rates are determined.  This plot 

shows considerable scattering indicating that while u’/So
L is an important factor 

determining growth there are other ones. 

Flame pairs 1 and 2, 3 and 4, and 5 and 6 each have the same equivalence ratio 

and bulk velocity but different turbulence generator.  For these pairs, growth rate 

increases with increasing turbulence.  Flame 2 has the largest growth rate but not the 

largest u’/So
L.  Images show that there is a large amount of lateral movement of the 

flamelet for flame 2 suggesting that this flame may be influenced by the co-flow.  

However velocity measurements with and without a co-flow show no effect of the co-

flow on velocity fluctuation levels [31] for certain regions of the flame.  It has been 

suggested that thermo-diffusive instabilities can enhance flamelet wrinkling.  However 

previous measurements on V-flames with different Markstein number show no effect 

[27].  In addition, the range of Markstein for the present measurements is small (Ma = 

- 0.41 to 0.56) based on results of Reference [35]. 

Following the work of Gülder cited above attempts were made to correlate 

growth rate with ReM and alternately with (u’/S0
L)1/2ReM

1/4 but to no avail.  Other 

factors can be suggested as possible influences on growth rate.  They include 

buoyancy that might explain the high rate of growth of flame 2 which has a low 

momentum flux and global flow characteristics that influence local values of Σ and 

thereby Σ formation rates.   Trouve and Poinsot [36] have proposed a model equation 

for Σ that contains a turbulent diffusion term of the form  ∇ • (Dt∇Σ) .  Arguing by 

analogy with laminar flames, one can suggest that mean flow stretch can influence Σ 

in a way analogous to flow stretch in laminar flames.  Such effects have not been 

considered important in the past, but we think merit consideration now. 

Summary 

Previous crossed-plane imaging measurements of flamelet normal distributions  
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Figure 2.9: Plot of the growth rate of wrinkling quantified by the 
derivative of ζ with respect to x/M.  The numbers in the plot identify 
the flames. The horizontal error bars indicate the range of u’/So

L over 
which the growth rates are determined.  The vertical error bars shown 
indicate the uncertainty associated with the linear fits of ζ with respect 
to x.  The general trend is for growth rate to increase with increasing 
u’/SL

o.   
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show that these distributions have a simple form with a single fit parameter, Eq. 1.3.  

This form has been used to obtain a relationship between the three-dimensional fit 

parameter ζ and its two-dimensional counter part γ describing the PDF of the 

projection of the surface normal onto a plane that is perpendicular to <c> constant 

surfaces.  The orientation of this projection is defined by its angle with respect to a 

line perpendicular to <c> constant surfaces. 

The relationship between ζ and γ is exploited in order to measure ζ and other 

important parameters from single plane data as a function of distance from the 

stabilizer rod in seven methane-air V-flames.  The data obtained are used to determine 

how ζ, Nc and the area ratio AT/A vary with downstream distance from the stabilizer 

rod.  Substantial, linear variations of ζ and AT/A are seen in all flames.  This result 

suggests that local burning rates in wake flames, e.g., bluff body-stabilized flames, 

vary with downstream distance and cannot be quantified by a single number.  Growth 

rates in ζ and AT/A vary considerably from flame to flame, and the differences cannot 

be correlated solely by changes in u’/So
L.  Thermo-diffusive instability is not a factor 

since Markstein numbers for the flames studies are similar and previous measurements 

in V-flames showed no such dependency on Markstein number [27].  It is suggested 

that some of the change is due to mean flow suppression of surface production, stretch 

effects.  The relationship between ζ and γ is applicable to any flame where Eq. 1.2 is 

satisfied, and it is hoped that the present work will stimulate others to apply single 

plane imaging to measure the ζ fit parameter in many different flame configurations. 
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CHAPTER 3 

THE COMBINED CROSSED-PLANE LASER TOMOGRAPHY AND SPIV 

METHOD 

Introduction 

The purpose of the work described in this chapter is to extend the crossed-

plane imaging technique to describe the simultaneous measurement of the 

instantaneous three-dimensional velocity field in reactants, flamelet surface normal 

vectors, and for the first time the instantaneous three dimensional flamelet 

displacement speed relative to reactants.  This technique involves combined 

measurements using stereo particle image velocimetry (SPIV) and crossed-plane 

imaging.    

The turbulent flame speed, or “displacement speed”, is a useful measure of the 

turbulent combustion rate in premixed flames and is analogous to the burning velocity 

or flame speed of laminar flames.  The displacement speed, SL
d, is defined as the 

component of the reactant velocity relative to and perpendicular to the flamelet.  In the 

case of a steady, unstretched premixed laminar flame, the flame structure is planar and 

the reactant flow is steady with zero divergence.  Consequently, the component of the 

reactant velocity perpendicular to the flame and the displacement speed are easily 

defined, and the displacement speed equals the unstretched laminar burning velocity, 

SL
o.  In a turbulent flame, the flow is unsteady and the flamelet is curved and strained 

rendering both the definition of the displacement speed and its relationship to the local 

stretched burning velocity1 ambiguous.  However, for the range of turbulence 

conditions in which chemical reactions and scalar quantities can be assumed to be 

confined to thin sheets, i.e. flamelets, the local displacement speed of a flamelet can be 
                                                 
1 In this case we define the stretched burning velocity as the burning rate integral [8] divided by the 
density of the reactants. 
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measured. 

The flamelet displacement speed is defined here as the component of the 

instantaneous reactant velocity relative to the flamelet (measured at the flamelet 

surface) and perpendicular to the instantaneous flamelet surface, as determined by 

crossed-plane tomography.  This chapter will describe the combined Crossed-Plane 

Laser Tomography and SPIV method that is used to measure the flamelet 

displacement speed.  The Crossed-Plane Laser Tomography method is used to find the 

flamelet normal vector N.  Reactant velocities are measured using SPIV.  These 

quantities are combined with the measurement of the flamelet displacement in the 

laboratory reference frame to determine the flamelet displacement speed relative to 

reactants.  This is an important quantity because differences between measured 

displacement speeds and the unstretched laminar burning velocity is an important 

measure of the impact of turbulence on the structure of of the flamelet. 

The displacement speed of steady and unsteady stretched laminar flames and 

of flamelets embedded in a turbulent flow has been the subject of much interest.  For 

example, Poinsot et al [37] have analyzed a stretched laminar flame and suggested an 

expression for SL
d in terms of the Markstein (Ma) and Karlovitz (Ka) numbers: SL

d/SL
o 

= (1-MaKa)-1.  Hirasawa et al [38] have measured displacement speeds in an unsteady 

stagnation flame to assess the combined effects of strain and unsteadiness.  Sinibaldi 

et el [39] report displacement speed measurements of a freely propagating laminar 

flame interacting with a vortex using shadowgraph cinematography and particle image 

velocimetry.  DNS studies have also been performed such as the two-dimensional 

simulations reported by Chen and Im [40].  As noted by Sinibaldi et al [75] 

displacement speed measurements in premixed turbulent flames are difficult and have 

not yet been done because they require the simultaneous measurement of reactant 

velocity, flamelet speed in the laboratory frame and the flamelet normal vector, N.  By 
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combining Crossed-Plane Laser Tomography (CPLT) and stereo particle image 

velocimetry (SPIV) and staggering in time the tomography and SPIV laser pulses we 

are able to measure all three of these quantities and for the first time report the 

instantaneous three dimensional flamelet displacement speed. 

 

Combined CPLT and SPIV measurement method 

At Cornell we have developed a dual plane imaging method, crossed-plane 

imaging, in order to measure N directly in three dimensions [21, 25-29].  The crossed-

plane imaging technique used to find N involves simultaneous orthogonal, single 

plane imaging measurements.  Two orthogonal laser sheets define the orthogonal 

imaging planes.  The laser sheets intersect along a line referred to as the measurement 

line.  Reactants are seeded with micron sized silicone oil droplets that are destroyed 

near the 650 K isotherm thereby marking a flamelet surface that is approximately this 

isotherm.  Where the flamelet crosses the measurement line, three-dimensional 

flamelet orientation data can be measured. Repeated measurements are made to build a 

set of N and crossing density, nc, data.   

With N specified in spherical coordinates by a polar angle, φ, and an azimuthal 

angle, θ, and the polar axis chosen to be normal to <c> constant surfaces (i.e. aligned 

with η), the crossing-weighted probability density function (PDF) of N is 

θφφζφφφθφθ ddCdPc sin)/(expcos),(),( 2−=Ω     (3.1) 

where the line crossed is the polar axis and dΩ(θ,φ) is the differential solid angle 

sinφdφdθ.  According to Eq. (3.1) the PDF of N is independent of θ, quasi-Gaussian in 

φ, and depends on a single fit parameter ζ; C is a normalization constant [21].  

With oil seed, PIV images can be used to obtain both velocity distributions in 

the reactants and images that can be used for measuring N via crossed-plane 

tomography.  Traditional PIV yields the in-illumination-plane components of the 
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velocity of seed particles [41].  Stereo PIV (SPIV), as used here, involves two cameras 

viewing the same illumination plane [42].  Each camera records an image pair 

separated by a short time interval and views the same region of the flame from a 

different perspective.  Based on these different views of particle displacements, all 

three components of particle velocity can be evaluated from the combined image pairs 

of the two cameras. 

Particle velocities are measured by SPIV, based on Mie scattering from the 

seed particles, so that, for the present case, velocity measurements are restricted to 

regions where the temperature is below approximately 650 K.  The seed particle 

velocities are measured within the SPIV illumination plane.  Particle velocities are 

measured near the flamelet surface as defined by seed particle evaporation in the 

preheat region of the flame, a region where temperature gradients are large 

(~10,000K/cm).  SPIV relies on tracking the seed particles over a fixed time interval 

to measure the flow velocity.  It is often assumed that the seed particles travel at the 

same velocity as the reactant flow.  However, seed particle velocities can lag behind 

the reactant flow because of inertia and because of thermophoretic forces.  Chapter 4 

describes the formulation of the thermophoretic force correction needed for seeded 

flow in regions of high temperature gradients to obtain the gas velocity. 

The flamelet displacement speed observed in the laboratory frame, SL, is also 

needed.  SL is defined such that it is positive for motion towards reactants.  SL is 

obtained from measurements of the flamelet displacement along the measurement line, 

∆x, during a time period ∆t, the time between the tomography laser pulse and the first 

SPIV laser pulse.  This displacement is determined by comparing the flamelet position 

on the measurement line in a tomography image with its position on the measurement 

line in the associated SPIV camera image obtained ∆t later.  To see how SL is obtained 

from ∆x consider the flame surface displacement perpendicular to itself, d, over time 
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∆t viewed in a plane containing the measurement line, defined by the unit vector NL 

pointed in the direction of laser propagation, and N in Figure 3.1.  SL is the flamelet 

speed perpendicular to itself and is given by d/∆t.  It follows from the geometry 

portrayed in Figure 3.1 that SL = ∆x (N•NL)/∆t.  For this measurement it is assumed 

that, over the time ∆t and within a volume swept out by the motion of the flamelet 

along the measurement lines during ∆t, the flamelet is planar, moves at a constant 

speed and does not rotate.   

Note that the sign of SL is physically significant.  If SL is positive the flame 

surface is moving relative to the laboratory in the direction of the normal.  If it is 

negative, the flame is moving in a direction opposite to that of the normal. Thus the 

sign of d is important; it is negative when x2 < x1 and (N•NL) is positive and when 

x2>x1 and (N•NL) is negative. 

 

Determination of the displacement speed, SL
d, from measured quantities 

In addition to the above measurements of reactant velocity, N, and SL, the 

flamelet displacement speed relative to the reactants, SL
d, can be measured using the 

crossed-plane tomography and SPIV images.  For this, the vertical SPIV plane is 

aligned perpendicular to the flame-stabilizing rod.  A laser is used to illuminate two 

tomography scattering planes oriented at 45° angles with respect to the SPIV 

measurement plane.  These two planes and the SPIV plane intersect along three 

horizontal lines, the measurement lines.  The tomography image set is separated by a 

short time interval from the SPIV image set, and the flamelet position along the 

measurement lines is measured in each image.  The flamelet surface displacement 

speed SL is observed along the measurement lines and is evaluated based on the 

flamelet displacement between the image sets and the time interval between laser 

pulses. 
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Figure 3.1: Displacement of the flamelet along the measurement line in 
a time t2 – t1 as seen in the plane defined by the unit vector NL, and the 
flamelet surface normal. 
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SL
d is defined as the relative velocity between the flamelet surface 

(approximately the 650 K isotherm) at the measurement point and the reactants next to 

that point.  The flamelet surface can only move perpendicular to itself.  If SL is defined 

such that it is positive for motion towards reactants, then the flame surface velocity 

vector in the laboratory frame is SLN.  Let Ur be the reactant velocity at the flamelet 

surface, it follows that SL
d = (Ur – SLN)•N. 

 

Next steps 

The next chapter discusses the thermophoretic force and the importance of its 

consideration on SPIV measurements.  The accuracy of laser imaging techniques for 

measuring fluid velocities in seeded flows (such as laser-Doppler velocimetry and 

SPIV) depends on how closely the seeding particles follow the flow.  The 

thermophoretic force is the force that a particle feels as it travels through regions of 

high temperature gradients.  In these regions, the molecules on the hotter side of a seed 

particle have on average higher momenta than those on the cooler side of the seed 

particle, resulting in a net force on the particle in the direction of decreasing 

temperature.  This chapter describes the formulation of the thermophoretic force 

correction for seeded flow in regions of high temperature gradients. 

Chapter 5 describes the results of using the combined CPLT and SPIV 

technique on a premixed turbulent methane-air V-flame.  The instantaneous flamelet 

surface normal vector (N), the three dimensional reactant velocity vector fields and the 

flamelet displacement speed obtained by a combination of crossed-plane tomography 

and SPIV are presented here for the first time.  SPIV is used to measure the reactant 

velocity field in the vertical plane. Flamelet normal vectors are obtained where the 

flamelet intersects the measurement lines.  Two measurement lines are in the SPIV 
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plane and where the flamelet intersects these lines we simultaneously measure N and 

the reactant velocity.  In addition, the flamelet displacement speed is measured in the 

laboratory frame and with respect to the reactants.  Data for these latter quantities are 

reported here for the first time.  As noted flamelet displacement speed data are 

important to quantifying and understanding the impact of the turbulent velocity field 

on the preheat zone of the flamelet.   

Chapter 6 analyzes the individual sources of uncertainty in the combined 

crossed-plane tomography method and discusses the calculated uncertainty in the 

flamelet displacement speed measurements.   The individual sources of error in the 

measurement method are identified and discussed.  The propagation of individual 

measurement error to the calculated uncertainty in the flamelet displacement speed is 

also discussed in this chapter. 
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CHAPTER 4 

SPIV AND THERMOPHORESIS 

The Thermophoretic Force 

 The accuracy of laser imaging techniques for measuring fluid velocities in 

seeded flows (e.g. laser-Doppler velocimetry and SPIV) depends on how closely the 

seeding particles follow the flow.  Doing a force balance on a seed particle, there is 

viscous drag (which causes the particle to follow the fluid motion), inertial, 

electrostatic, gravitational, centrifugal, acoustic, diffusiophoretic, photophoretic, and 

thermophoretic forces – all of which cause the motion of the seed particle to depart 

from the flow velocity [43].  Among these, only viscous drag, inertia and 

thermophoresis are significant in typical reacting flows, which have high temperature 

gradients.  Errors attributable to particle inertia effects have been widely studied.  

Haghgooie et al [44] and Melling [45] found that for LDV and PIV techniques in 

turbulent non-reacting flows (where viscous drag and inertial forces are important, but 

the thermophoretic force is small), particles of 1 or 2 microns in diameter should 

adequately follow velocity fluctuations in the flow.  However, in reacting flows it is 

found [46, 47] that for even small particles, the particle lag in the reaction zone is 

appreciable.   

The thermophoretic force is the force that a particle feels as it travels through 

regions of high temperature gradients.  In these regions, the molecules on the hotter 

side of a seed particle have, on average, higher momenta than those on the cooler side 

of the seed particle, resulting in a net force on the particle in the direction of 

decreasing temperature.  The following is the formulation of the thermophoretic force 

correction for seeded flow in regions of high temperature gradients. 

From Sung et al [48] the equation that describes particle motion is 
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         (4.1) 

 

where mp=ρpπdp
3/6 is the particle mass, ρp is the particle density, dp is the particle 

diameter, up is the particle velocity, t is time, FSD is the Stokes drag force, FTP is the 

thermophoretic force and FAT is the particle inertial force.  The particles are assumed 

to be spherical.  The Stokes drag force is the drag force exerted on a particle in low 

Reynolds number flow [49], 

 

),(3 fppSD uudF −−= πµ        (4.2) 

 

where µ is the fluid viscosity and uf is the local fluid velocity.  Sung et al [48] have 

introduced a slip-factor to account for Knudsen number effects, which are important 

for micron-sized particles: 

 

          (4.3) 

 

and  

[ ])/exp(1 KnKnCKW γβα −++=       (4.4) 

is the Knudsen-Weber form of the slip-correction factor.  Kn=2λ/dp where Kn is the 

Knudsen number and λ is the viscosity-based value for the mean free path of the gas 

molecules [50], 
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where ρf is the fluid density and 

 

          (4.6) 

 

where Rg is the specific gas constant and T is the fluid temperature.  The constants α, β 

and γ are found by fitting the Knudsen-Weber equation to the experimental data of 

Allen and Raabe [50], α=1.142, β=0.558 and γ=0.999. 

In the slip-flow (Kn<1) to the free molecular flow limit (Kn→∞), the 

thermophoretic force on a spherical particle due to a temperature gradient can be 

expressed as [50, 52] 

 

          (4.7) 

 

where νp is the droplet kinematic viscosity, κf and κp are the fluid and particle thermal 

conductivities, respectively, and Cs=1.17, Cm=1.14, and Ct=2.18 are the thermal slip, 

momentum exchange, and thermal exchange coefficients specified by the kinetic 

theory of gases [50].  For polyatomic gases, the translational component of thermal 

conductivity should be used, κf=κtr.  If κf=κtr is small compared to κp, FTP reduces to  

 

          (4.8) 

 

Correction for Thermophoresis – Analysis and assumptions 

A numerical calculation was used to find an estimate of FTP in the reaction 

zone of the turbulent premixed flame that was studied here using the combined 

crossed-plane laser tomography and SPIV method.  In a stationary, unstrained, planar, 

laminar, premixed, lean (φequiv=0.65) methane-air flame, we can consider a force 
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balance on the seed particles, neglecting particle-particle collisions.  Particles are 

micron sized silicone oil droplets that evaporate at 650 K.  For this flame the Knudsen 

number for the droplets was calculated at T=650 K such that µ=3.23e-5 Ns/m2 [31] 

and Kn=0.3.  For a first-order approximation, we assume that the particles are 

traveling at the reactant flow velocity as they enter the flame – an unstrained, planar 

steady flame – so the velocity component perpendicular to the flame is So
L.  No forces 

act on the particles in the tangential direction, and consequently the particles follow 

the direction of the flow perpendicular to the flame. The only forces to consider are 

those perpendicular to the flame – the viscous drag force, inertia and thermophoresis.  

The force balance becomes: 

          (4.10) 

 

where C represents A or A’ from the above expressions of FTP.  Eq. 4.10 can be non-

dimensionalized with velocity, length and time scales given by So
L, α/ So

L and α/ So
L

 2, 

where α is the thermal diffusivity: 
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          (4.12)  

a and b depend on gas property values and the flame structure (e.g. So
L, T and ∇T).  

So
L, T, ρ and uf versus x are determined from Reaction Design Chemkin 4.1 Premix 

[53] calculations of a lean methane-air flame (φequiv=0.65) using Chemkin’s reduced 

mechanism. The position in the flame where x=0 is at T=298K in the reactants away 

from the reaction zone.  The Chemkin calculation outputs contain only temperature, 

velocity, density, enthalpy, and species mole fractions as a function of x.  In 

conjunction with Chemkin, Cantera [54] was used to determine the thermal 

conductivity, k, and heat capacity, cp, in order to find the thermal diffusivity (α=k/ρcp) 

of the mixture.  Gas properties were calculated for the unreacted mixture in the 

temperature interval of 300<T<1000K, the temperature interval from the Chemkin 

calculation.   

A, A’ and B were calculated quantitatively by calculating A(T), A’(T) and 

B(T), mapping these functions onto the structure of the flame found using Chemkin, 

and numerically solving the differential equation, eq. 4.12. For this methane-air flame 

model, κf=κtr=0.05 W/mK is small compared to κp=0.3 W/mK, and FTP reduces to Eq. 

4.8.  Third order polynomial fits of A’ and B versus temperature were made over the 

temperature range around the 650 K isotherm (450<T< 900 K), Fig. 4.1.  These fits 

are used to map A’ and B as functions of T onto the structure of the Chemkin-

calculated methane-air flame.  a’ and b (the non-dimensionalized forms of A’ and B) 

were calculated and plotted against the non-dimensional spatial coordinate, χ.  To 

compute the particle velocity within the flame, polynomial fits of a’ and b versus χ 

were made for 1.05<χ<1.3 (450<T<900K), see Fig. 4.2.  For χ outside of this range, 

good polynomial fits are not possible; thus these calculations are good only in the 

preheat zone of the flame.  For this model, the thermophoretic force correction is  

aub
d
du

+−= )( ν
τ
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Table 4.1: Summary of parameters used in calculating the 
thermophoretic velocity correction for the modeled flame. 
 
 

Parameter Units Value 

mp kg 5.01e-16 

ρp kg/m3 957 

dp m 1e-6 

µ Ns/m2 3.23e-5 

Knparticle  0.3 

ρf kg/m3 0.5356 

Rg (m/s)2(1/K) 690 

λ m 1.79e-4 

φequiv  0.65 

α m2/s 8.65e-5 

Knparticle  0.3 

ν m2/s 6.021e-6 

SL
o m/s 0.126 

cp kJ/kgK 1.063 

CKW  1.41 

A’  
( )( )KnCKnC

KnCCd
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Cm  1.14 

Cs  1.17 

Ct  2.18 
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Figure 4.1: Plots and fits of A’ (circles) and B (diamonds) versus T in a 
lean (φequiv=0.65) methane-air flame. Third order polynomial fits of A’ 
and B versus temperature were made over the temperature range around 
the 650 K isotherm (450<T< 900 K).   
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Figure 4.2: Plots and fits of a’ (circles) and b (diamonds), the non-
dimensionalized forms of A’ and B, versus χ, the non-dimensional 
spatial coordinate, in the preheat zone of a lean (φequiv=0.65) methane-
air flame. The fits of A’ and B are used to map A’ and B as functions of 
T onto the structure of the Chemkin-calculated methane-air flame.  a’ 
and b were obtained and plotted against χ.   
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Figure 4.3: Plot and fit of ν=f(χ), the non-dimensional fluid velocity 
versus χ, the non-dimensional spatial coordinate, in the preheat zone of 
a lean (φequiv=0.65) methane-air flame. 
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Figure 4.4:  Plots of particle speed, gas speed, the non-dimensional 
thermophoretic force, and the Stokes drag constant versus χ showing 
that particle velocity acceleration across the flame lags that of the gas.   
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needed only in the preheat zone of the flame. 

To complete the specification of Eq. 4.12, ν as a function of χ needs to be 

calculated.  By continuity of a one-dimensional flame, ν=ρo/ρ.  In Figure 4.3, ν is 

plotted against χ in the preheat zone and fit to a 3rd order polynomial for input to the 

calculation. 

The fits of a’, b and ν versus χ are inputs to calculations to solve Eq. 4.12 using 

the Matlab differential equation solver (ode23).   Eq. 4.12 was integrated in time.  The 

location, χ, and velocity, u, of the particle were evaluated at each time step.  The initial 

condition used for this calculation was u=1 at χ =1.1.  The ode23 differential equation 

solver is an implementation of an explicit Runge-Kutta method, and is appropriate to 

use for moderately stiff problems, such as Eq. 4.12. The results are shown in Fig. 4.4.  

These results show that because of the large temperature gradient in the preheat region 

of a flame, thermophoretic forces can cause the motion of seeding particles to lag 

behind the flow.  For this flame, the difference is small but significant.   
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CHAPTER 5 

FLAMELET DISPLACEMENT SPEED MEASUREMENT AND RESULTS  

Experimental Apparatus 

Combined SPIV and crossed-plane tomography measurements were performed 

on a V-flame burner, Fig. 5.1. Measurements were made on a lean methane/air flame.  

The fuel and air flow rates were measured with mass flow meters and used to 

determine the bulk flow velocity (2 m/s) and the equivalence ratio (φequiv=0.65).  A 

portion of the air flow was diverted through a blast-atomizer type seed particle 

generator, within which the flow is seeded with silicone oil droplets, and then passed 

through a cyclone separator.  Droplet sizes were estimated to be no more than a few 

microns in diameter [31].  The mean droplet diameter is 1 micron, with a small 

number of larger droplets, up to 5 microns, expected as well.  The reactants were 

mixed in a plenum at the base of the burner.  Turbulence was generated by a wire 

mesh grid positioned 50 mm upstream from the stabilizing rod. The grid had 

approximately 4.5 squares/cm2, a 0.86 mm wire diameter, and a mesh spacing, M, of 

4.2 mm.  u’, the turbulence intensity, at the measurement location in cold flow was 0.2 

m/s, as measured by the SPIV system.  Measurements were made 40 mm downstream 

from the flame-stabilizing rod, which was located at the burner exit.  To reduce 

interference from light scattered by room air dust, the premixed flame was sheathed by 

a coaxial flow having a velocity similar to that of the reactant flow.   

For the combined measurements a frequency doubled, pulsed Nd:YAG laser 

(the tomography laser), was used to illuminate two orthogonal scattering planes 

oriented at 45° angles with respect to a vertical plane that was aligned perpendicular to 

the stabilizing rod of the V-flame, Figs. 5.2, 5.3.  The tomography laser beam was split 

into two beams and then formed into two thin orthogonal sheets that supply the 
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Figure 5.1: Schematic diagram of combined crossed-plane laser 
tomography and SPIV apparatus.  The tomography laser beam is split 
via a beam splitter.  One tomography laser beam is delayed temporally 
by a much longer beam path.  The three laser sheets (two tomography 
and one SPIV) intersect over the burner axis.  Imaging data are 
collected by the CCD cameras and are stored for post-processing on a 
PC. 
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incident photons for Mie scattering.  These sheets define the tomography imaging 

planes (Fig. 5.3).  One beam path was approximately 7 m longer than the other, 

resulting in a temporal separation in the beams’ arrival times at the burner of ~25 ns.  

The SPIV measurements were made in a vertical plane aligned perpendicular to the 

stabilizing rod of the V-flame.  Two frequency doubled, pulsed Nd:YAG lasers were 

used to illuminate this plane.  The crossed plane tomography and SPIV laser sheets are 

less than 0.2 mm thick.  The sheet thickness was measured by imaging a reflection of 

the sheet at low laser power onto a CCD [55].   

The lasers fired in a time sequence where the tomography laser fired first, then 

the first SPIV laser fired 1.5 ms later, and the second SPIV laser fired 42 µs after the 

first one.  The tomography ICCD camera intensifiers are used as electronic shutters so 

that the cameras can be gated around the tomography beams’ arrival times.  The delay 

in arrival time between the first and second tomography beams is 15 ns.  The 

interpulse time between the time when the tomography laser fires and the time when 

the first SPIV laser fires needs to be tightly controlled, as it determines the ∆t 

measured for the displacement speed in Eq. 3.2.  ∆t=1.5 ms was selected for this flame 

because it is on the order of the characteristic time of flamelet motion.  The interpulse 

time between the first and second SPIV laser pulses is also important, as the velocity 

of the particles are determined by measuring the distance that particles travel between 

laser pulses and dividing by the interpulse time.  A SPIV interpulse time of 42 µs was 

chosen such that most particle displacements could be measured in the SPIV image.  

Laser timing jitter is estimated to be ~ 1 µs, based on information from the 

manufacturers of the SPIV control box, which controls the timing of the SPIV and 

tomography lasers [56].  The SPIV laser beams were formed into thin sheets for Mie 

scattering to define the SPIV imaging plane.  The SPIV measurement plane was 

displaced horizontally 1 mm from the intersection of the tomography illumination  
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Figure 5.2: Schematic diagram of the V-flame and burner, tomography 
cameras and imaging planes.  The flame is stabilized on a rod placed 
across the burner exit.  The locations of measurement planes in the 
laboratory reference frame are indicated. 
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Figure 5.3: Schematic of laser-sheet orientations for combined CPLT 
and SPIV.  The two tomography laser sheets lie at 45° with respect to 
the vertical SPIV laser sheet.  The sheets intersect forming three 
measurement lines.  
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planes (Fig. 5.3). 

As noted, the reactants were seeded with micrometer sized silicone oil droplets 

that are consumed within the flamelet such that Mie scattering of laser light occurs in 

the reactants but not the products, thereby imaging the 650K isotherm [27].  

Tomography images were recorded with two ICCD cameras each having a 512 x 512 

pixel CCD array.  The tomography cameras were positioned perpendicular to the laser 

sheets, i.e. a sheet is parallel its camera’s image plane.  The field of view imaged was 

40 x 40 mm for each camera, and the cameras have a spatial resolution of better than 

0.2 mm.  SPIV images were recorded with two CCD cameras each having a 1024 x 

1360 square-pixel CCD array.  The SPIV cameras were positioned at an angle to the 

SPIV laser sheets, such that each SPIV camera views the same region of the flame 

from a different perspective.  The field of view imaged was 25 x 35 mm for each 

camera and the spatial resolution was better than 0.1 mm.  The timing sequence for 

exposing the cameras was initiated by a trigger pulse from the tomography laser.  

Image Analysis 

Approximately 1500 image sets (2 crossed-plane tomographic images and 4 

SPIV images per set) were acquired and saved for image processing.  Crossed-plane 

tomography images are bright in the reactants due to Mie scattering and are dark in the 

products (Fig. 5.4).  The boundary between light and dark regions denotes the 

intersection of the flamelet surface and the laser illumination plane, the flamelet curve.  

To find the flamelet curve in each tomography image, the images were 

processed beginning with a thresholding step.  Changes in contrast between products 

and reactants can be detected by operators that calculate the gradient of an image. The 

Sobel operator, a horizontal edge-emphasizing filter [33, 57], was used to calculate the 

gradient of an image and to create a binary mask based on a specified threshold value.   
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Figure 5.4: Sample tomography image of the turbulent V-flame.  Bright 
pixels indicate cold regions (reactants) where laser photons Mie scatter 
off of the silicone oil droplets, and dark pixels indicate hot regions 
(products).  The white lines indicate the two measurement lines: the 
crossing location of SPIV image plane (upper line) and the crossing 
location of the orthogonal tomography image plane.  The area imaged 
for each tomography image is 40 mm x 40 mm.  The area imaged for 
each SPIV image is 25 mm x 35 mm. 
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With the mask the image was made binary, and the binary image operations of 

opening and closing [33] were used to remove noise of scales smaller than the 0.2 mm 

camera resolution. Flamelet crossings were identified in each tomography image as 

points where the flamelet curve intersects the measurement lines (the intersection of 

two laser sheets).  A planar transparent target is aligned with the illumination plane 

containing the measurement line to determine the location of the measurement line.  

The lasers fired onto the target and gating of the two cameras was switched relative to 

the laser pulse arrival times so that the cameras imaged scattering from the edge-on 

sheet off of the target.  The edge-on sheets appear as lines in an image and were 

linearly fit to define their location in the image.  Flamelet crossings of these lines were 

then identified in the images, within an error of 0.2 mm.  The flamelet curve was 

found by an edge-finding algorithm [57] and then was fit locally over a fit-width of 80 

pixels to a third order polynomial at each crossing location.  From a fit of the flamelet, 

its slope is determined at flamelet crossing points and is used to define tangent vectors 

to the flamelet curve in the laser illumination plane.  The tangent vectors in the image 

pairs for a given flamelet crossing are tangent to the flamelet surface.  The normalized 

cross product of the two tangent vectors which is aligned with the flamelet surface 

normal was taken to find N.  Further details on image processing can be found in [58]. 

Flamelet surface normals were also found at the intersections of the SPIV 

illumination plane and the tomography illumination planes.  The raw SPIV images 

were processed for both velocity (see below) and flamelet normal measurements, as 

described in the paragraph above.  For the flamelet normal, the SPIV images were 

thresholded, making the images binary, followed by the binary operations open and 

close. The SPIV cameras have a spatial resolution better than 0.1 mm, so that 

individual particles in the images can be identified.  To accommodate this high 

resolution a different threshold value was used than that used for the tomography 
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images so that the Sobel operator could calculate a gradient based on the change in 

contrast between products and reactants and not between particles.  The measurement 

lines in the SPIV image plane correspond to intersections of the SPIV plane with both 

of the tomography planes.  The locations of these lines in the tomography planes and 

the SPIV plane were determined by imaging scattering from the tomography laser 

sheets off of a thin planar transparent target aligned by eye with the SPIV laser sheet.  

The scattered light appeared in the images as lines, and these lines were linearly fit to 

define the locations of the measurement lines in the SPIV camera images.  A 

registration mark on the transparent target that appears in the camera images was used 

to define the point of origin for all four cameras.  The flamelet curves at the 

measurement line crossings in each image (SPIV and tomography) were fit locally to a 

third order polynomial curve to find their tangents.   

Because the SPIV cameras were at an angle to the SPIV plane, the SPIV 

images are distorted.  The SPIV calibration target is a precisely machined grid of 5 x 5 

holes (25 x 25 mm).  The grid was positioned at the SPIV measurement plane (1 mm 

away from the stabilizing rod) and an image of this grid was used as a reference for 

correcting the flamelet position and flamelet tangent vectors for the effects of this 

distortion.   The cross product of two corresponding tangent vectors gives the flamelet 

surface normal.  The error in finding the location where the flamelet crosses the 

measurement line in the SPIV image is 0.2 mm.  Error associated with the 

measurement of N is discussed in [37].  Further details on image processing can be 

found in [25, 27-28]. 

For the reactant velocity field, SPIV images were recorded and processed 

using ProVision II version 2.01.05 software (IDT, Tallahassee, Florida).  Individual 

seed particles are discernable in the recorded images; the software evaluates the 

velocity of these individual particles within a pre-drawn mesh in the image plane.  The 
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mesh used here is 24 x 70 squares measuring 6 x 17 mm, positioned to straddle the 

measurement lines in the plane of the SPIV laser sheet.  The velocity was evaluated 

based on a calibration performed prior to data acquisition [41].  The three-dimensional 

particle velocity was extracted along the two measurement lines in the mesh in the 

SPIV measurement plane.  Flamelet crossings were then identified in the reactant 

velocity field in this mesh.  For calculating the displacement speed, the particle 

velocity was averaged over three mesh points in the velocity field (~0.5 mm) centered 

where the flamelet curve intersects the measurement line, along the tangent to the 

flamelet curve in the reactants straddling the measurement line.  The particle velocity 

was averaged over these points to reduce error in the velocity measurements.  The 

averaged value was used as the particle velocity where the flamelet crosses a 

measurement line in the SPIV plane.  Experimental uncertainty in SPIV data ranges 

from 1-5%, based on test results reported in [42] of an SPIV system in which a test 

target consisting of hollow glass spheres suspended in a solid clear araldite block was 

moved on a translation stages to simulate the three dimensional motions of seed 

particles.  See Chapter 6 for more details on determining the experimental uncertainty 

in the SPIV system. 

 

Implementing the Thermophoretic Force Correction 

Reactant velocities are measured by SPIV, where seed particle velocities are 

measured within the SPIV illumination plane.  Particle velocities are measured near 

the flamelet surface as defined by seed particle evaporation, the 650K isotherm, in the 

preheat region of the flame where temperature gradients are large (~10,000K/cm).  

SPIV relies on tracking the seed particles over a fixed time interval to measure the 

flow velocity.  It is assumed that the seed particles are traveling at the same velocity as 

the reactant flow.  SPIV is a well established and attractive tool for measuring 
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velocities in non-reacting flows [e.g. 60-63] because it is a non-intrusive method 

obtaining 3D flow velocities.  SPIV and PIV have been used in combusting laminar 

flows [e.g. 64-69] and combusting turbulent flows [e.g. 70-73], but these flows have 

large thermal gradients that are not present in non-reacting flows.  Seed particle 

velocities can lag behind the reactant flow because of thermophoretic forces.   

Many studies have been done to measure the thermophoretic force in reacting 

flows.  Experiments done in diffusion flames using LDV [43,48], in laminar 

counterflow flames using PIV [69], in premixed flames [73] and in stagnation flames 

[47,75] have all shown agreement between flame simulations and measurements that 

have been corrected for thermophoresis.  Ref. 69 makes the thermophoretic correction 

in two dimensions, neglecting the out of plane component of the flamelet surface 

orientation.  Here, results from a stationary, unstrained, planar, laminar flame 

calculation in a premixed methane-air flame were used to calculate estimates of the 

velocity difference between the particles and the reactants at the 650 K isotherm.  The 

thermophoretic velocity correction corresponds to 2.5% of the mean reactant velocity, 

which is in good agreement with corrections found in Ref. 69.  In turbulent flames, 

seed particles in the preheat region are subjected to varying strain rates caused by 

turbulent eddies and by thermophoretic forces.  Measurements and computations 

reported in Ref. 75 show that the velocity difference between the reactants and the 

seed particles caused by thermophoresis increases with increased strain rate.  

Calculations reported in Ref. 69 on a one-dimensional lean laminar flame show a 

relatively weak sensitivity to strain rate. Thermophoretic velocity corrections that 

account for strain rate were not performed for the present study.   

Particle velocity profiles and gas velocity profiles from the thermophoretic 

force calculation described above are shown in Fig. 5.5, where velocity is plotted 

against a spatial coordinate χ normal to the flame.  These data are calculated from a  
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Figure 5.5: Velocity profiles from the thermophoretic force calculation 
of the particle and of the reactants in a lean methane-air flame.  
Velocity is plotted against a spatial coordinate 1.12<χ<1.27 
(corresponding to 560<T<890 K) normal to the flame.  The values in 
the figure are non-dimensionalized for velocity (So

L) and length (α/ So
L, 

where α is the thermal diffusivity of the reactants at 650 K). These data 
are calculated for a stationary, unstrained, planar, laminar premixed 
flame model [47].   
 

∆uthermophoresis/SL
o=0.4
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stationary, unstrained, planar, laminar premixed flame model [47] detailed in Chapter 

 4.  Reactant and particle velocities were calculated by integrating the force balance 

equation (Eq. 4.12) in time, evaluating the location and velocity of the particle at each 

time step.   

  The model is in good agreement with experimental data premixed laminar 

counterflow flames [39, 47, 69].  The difference between the particle velocity and the 

reactant velocity at a specific flame location is felt to be a reasonable estimate of the 

difference between the seed particle velocity and reactant velocity in the present study.   

 After finding the particle velocities in the reactants at the 650 K isothermal 

surface along the two measurement lines (details above), the particle velocity 

component normal to the flamelet surface (Up•N) was found.  In Fig. 5.5 the 

correction for thermophoresis that relates the particle velocity component normal to 

the flame to the gas velocity is shown.  At the 650 K isotherm for this flame, the 

particle speed correction, ∆uthermophoresis, is 0.05 m/s.  As the thermophoretic force is in 

the direction of decreasing temperature, the thermophoretic correction increases the 

reactant velocity in the direction of the normal to the flamelet surface.  The reactant 

velocity component normal to the flamelet surface becomes: 

 

Since the measurements of Ur, N, and Up are all made at the 650 K isotherm, 

∆uthermophoresis = 0.05 m/s is the same for all of the data presented. 

 

Flamelet Displacement Speed Results 

We have extracted the particle velocity field in the SPIV image plane (Up) and 

the flamelet surface normal (N) at points where the three-dimensional flamelet crosses 

the three measurement lines from 1500 image sets.  Furthermore, for where the 

flamelet crosses the two measurement lines in the SPIV image plane we have 

( ) esisthermophorpr uNUNU ∆+•=•
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evaluated the velocity component of the reactants perpendicular to the flamelet 

surface, (Ur•N), these values have been corrected for thermophoretic effects.  Finally, 

the flamelet displacement speeds both in the laboratory reference frame (SL) and the 

reference frame relative to reactants (SL
d) were obtained from measurement of the 

flamelet displacement along the measurement line.  Sample results are presented 

below to demonstrate the power of the measurement methods. 

A representative velocity profile for the particles in the turbulent flame 

obtained from one measurement line in one image set (closed symbols) and its 

associated smoothed particle velocity profile (open symbols) are shown in Fig. 5.6, 

where velocity is plotted against a spatial coordinate along the measurement line 

within the SPIV mesh.  The particle velocity shown is the component of the velocity 

vector normal to the flamelet surface, defined here as the 650 K isotherm.  The particle 

velocity is zero where the temperature is above 650 K, the evaporation temperature of 

the seed particles.  The velocity profile was smoothed using a moving average over 3 

grid points, ~0.5 mm, that is of the order of the SPIV system registration error to 

reduce the contribution of measurement uncertainty in the determination of 

displacement speed.  The observed magnitude of the fluctuations in the smoothed 

velocity profile is of the same order as the reactant flow turbulence intensity.  

The measured reactant velocity profile was then calculated using the correction 

for thermophoresis, since thermophoretic forces cause a discrepancy between reactant 

and particle velocities in the high temperature gradient preheat region of the flame 

[76].  Here the thermophoretic correction was made for the first time in conjunction 

with the instantaneous flamelet normal in a premixed turbulent flame.    

The V-flame burner used here has also been used in several previous studies in 

this laboratory [21, 26-27, 29, 59] and it as been shown [26-27] that the form of the 

PDF of N given here: 
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Figure 5.6: A typical instantaneous raw particle velocity profile (closed 
diamonds) and its average (open circles) along a measurement line.  
The particle velocity shown is the component of the velocity vector in 
the direction of the flamelet normal.  The data are plotted against a 
spatial coordinate along the measurement line within the SPIV mesh 
normalized by the unstrained flame thickness.  The velocity is zero 
where the temperature is above 650 K and no droplets exist. 
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( ) θφφζφφθ ddCdP sin/exp),( 2−=Ω      (5.1) 

is applicable to turbulent V-flames.   For all three measurement lines in the current 

study, the distribution of N was determined and found to fit the form of Eq. 5.1.  The 

distribution of flamelet orientations from crossed-plane imaging of tomography 

images and SPIV images (a 45° crossing angle between the image planes) is presented 

in the form of the marginal PDF of φ, which is shown in Fig. 5.7 for the measurement 

line formed by the intersection of the tomography image planes.  P(φ) is formed by 

generating a histogram of measured φ values, independent of θ, and normalizing.  The 

fit and data are in good agreement.  Flamelet orientations were also measured with the 

90° crossing angle between the two orthogonal tomography image planes.  The range 

of the fit parameters ζ obtained from all three measurement lines is 33°≤ζ≤36° (Figs. 

5.7 and 5.8).  Knaus and Gouldin [27] report ζ=34° for a flame with the same value of 

u’/SL
o using crossed-plane image tomography.  The measured crossing-weighted [26] 

marginal PDF of θ for the 90° crossing angle tomography images is shown in Fig. 5.8 

along with a curve of the expected marginal PDF based on the assumed PDF form; 

agreement between data and fit is good. 

 To determine the displacement speed SL
d, it is assumed, as noted above, that 

the flamelet is approximately planar within the measurement volume.  For the flame 

studied in [59] we have N data from combined crossed-plane tomography and SPIV.  

The conditions for that flame and experiment are similar to those of the flame studied 

here, except that the time between the tomography laser pulse and the first PIV laser 

pulse is only 64 µs – much shorter than the time delay used in the present study.  The 

dot product of two normal vectors is a measure of the collinearity of the vectors; the 

closer to one the more collinear they are.  From a given measurement image set, three 

flamelet normals are obtained.  To test the collinearity of the normals in a set the dot 

product is taken for each possible pair of vectors from the set, giving three dot 
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Figure 5.7: Comparison of measured PDF with assumed PDF form 
(curve) of polar angle angle for the measurement line from the 
intersecting tomography image planes.  P(φ) is formed by generating a 
histogram of measured φ values, independent of θ, and normalizing.   

Figure 5.8: Comparison of measured PDF with assumed PDF form 
(curve) of the azimuthal angle, θ, for the measurement line from the 
intersecting tomography image planes.  The measured crossing-
weighted marginal PDF of θ for the 90° crossing angle tomography 
images is shown along with a curve of the expected marginal PDF 
based on the assumed PDF form.  
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Figure 5.9: PDF of the dot product of three dimensional normal vectors 
along the three measurement lines. 
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products per set and a total of 4500 for all 1500 available image sets.  The PDF of 

these products is shown in Fig. 5.9.  It is highly peaked at 1 and therefore the result 

supports the assumption that the flamelet within the measurement volume is 

approximately planar.    

The PDF of the reactant velocity component normal to the flamelet surface at 

the 650 K isotherm, (Ur•N), is shown in Fig. 5.10.  The vertical error bars in the figure 

indicate statistical uncertainty and are proportional to 1/(n)1/2 where n is the number of 

samples in each histogram bin.  The horizontal error flags indicate measurement 

uncertainty.  The generation of both the vertical and horizontal error flags will be 

detailed in Chapter 6.  Experimental error in the SPIV system is large for small 

velocities (<1 m/s) and for large velocities (>2 m/s) [42]; experimental uncertainty in 

SPIV data ranges from 1-5%, based on test results reported in [42] of an SPIV system 

in which a test target consisting of hollow glass spheres suspended in a solid clear 

araldite block was moved on a translation stages to simulate the three dimensional 

motions of seed particles.  Error in N depends on the CPLT measurement technique.  

Ref. 21 has found that error in N depend on measurement errors in φ of ±0.5° for all φ, 

and on measurement errors in θ of ±2.6° for most θ. There is also experimental error 

due to laser timing jitter and noise in the ICCD camera intensifiers used as electronic 

shutters.  The horizontal error bars shown in Fig. 5.10-5.12 were estimated by the rms 

error given in [42] and the uncertainty analysis detailed in the next chapter.  The mean 

of the distribution (<Ur•N>) is 0.28 m/s and its standard deviation is 0.48.  For 

comparison, we note that in a steady, unstrained laminar flame (Ur•N)=SL
o where Ur is 

the velocity in the reactants, and for φequiv =0.65, SL
o=0.13 m/s.   

The PDF of flamelet displacement speed observed in the laboratory frame, SL, 

is shown in Fig. 5.11.  As before the vertical error bars indicate statistical uncertainty, 

while the horizontal error bars indicate measurement uncertainty in finding the 
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Figure 5.10: PDF of reactant velocity component normal to the reaction 
sheet for the two measurement lines (open and closed symbols) 
corrected for thermophoretic effects.  The measured points are 
estimated from a histogram, and the vertical error flags, which indicate 
statistical uncertainty, are described in Chapter 6.  The horizontal error 
flags indicate measurement uncertainty.  The mean of the distribution 
(<Ur•N>) is 0.28 m/s and its standard deviation is 0.78.   
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position of the flamelet curve in each of the images.  Measurement uncertainty here is 

also due to electronic timing jitter.  Jitter in the ICCD camera intensifiers used as 

electronic shutters, laser pulse timing and in the SRS delay generator results in timing 

error both in the SPIV images used to find the particle velocity and in the timing of the 

tomography images used to find the flame displacement speed.  The speed distribution 

is spread between -2< SL <2 m/s with a mean (<SL >) of -0.12±0.06 m/s and a 

standard deviation of 0.86. 

Following the study in Ref. 54, the displacement speed is studied here in terms 

of the density-weighted displacement speed relative to reactants, SL
d*=ρSL

d/ρo, where 

ρ is the fluid density at 650 K, ρo  is the reactant density at 298 K.  This density 

weighting was performed to minimize effects of thermal expansion.  The PDF of the 

density weighted normalized displacement speed of the flamelet surface relative to the 

reactants, SL
d*/SL

o, measured along the two measurement lines is shown in Figure 5.12 

along with error bars denoting statistical and measurement uncertainty.   

It is interesting to note that this distribution has a mean near one (1.61), is 

broad (standard deviation=4.6), and that there is a significant probability of negative 

values of SL
d*.  The distribution has a skewness of 0.91 and a kurtosis of 3.  For an 

unstrained laminar flame the displacement speed equals the unstretched laminar 

burning velocity, and one would expect that for a turbulent flame the distribution of 

displacement speeds would be centered around the laminar flame speed.  As expected, 

the mean of the PDF in Figure 5.12 is 1 within experimental uncertainty.  On the other 

hand, the breadth of the distribution and the negative values of SL
d* are clear evidence 

of flamelet distortion by the turbulence. 

Thermophoretic effects have a small but significant influence on the SPIV 

measurements.  The effect of thermophoretic force on the raw measured reactant and 

flame displacement speeds is in the direction opposite the flamelet normal.   
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Figure 5.11: PDF of flame displacement speed in the direction of the 
flamelet normal, in the laboratory frame for the two measurement lines 
(open and closed symbols).  Vertical error flags indicate statistical 
uncertainty due to sample size.  Horizontal error flags indicate 
measurement uncertainty and statistical uncertainty.  The mean of the 
distribution (<SL>) is -0.03±0.06 m/s; the standard deviation is 0.70.   
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Figure 5.12: PDF of the density weighted normalized flamelet 
displacement speed relative to reactants and corrected for 
thermophoretic effects from the two measurement lines (open and 
closed symbols).  The vertical error flags indicate statistical uncertainty 
and the horizontal error flags indicate measurement uncertainty.  The 
mean of all points in the distribution (<SL

d*>/SL
o ) is 1.61 and its 

standard deviation is 4.6.  The most probable value is 1.1.  Its skewness 
is 0.91 and the kurtosis is 3.04. 
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Unmodeled changes in the thermophoretic correction due to varying rates of strain in 

the turbulent flame may partially explain the breadth of the displacement speed 

distribution and the negative values.  However, the thermophoretic velocity correction 

changes slowly with large increases in strain rate [69], so the breadth of the 

displacement speed distribution and the negative values are not entirely attributable to 

thermophoresis. 

The uncertainty analysis detailed in the succeeding chapter was performed to 

understand the uncertainty in the combined CPLT and SPIV method, and to explain 

perhaps the negative displacement speeds in Fig. 5.12.  The horizontal measurement 

uncertainty error flags in Fig. 5.12 show that the flags at the edges of the distribution 

are larger than the error flags at the center of the distribution.  While large, these 

horizontal flags still indicate that negative flamelet displacement speeds are not likely 

to be the result of measurement uncertainty.  The vertical error flags indicate statistical 

uncertainty within each bin, showing larger error at the center of the distribution 

compared to the error flags at the edges of the distribution.  This is due to the Pbin term 

dominating Eq. 6.10 for the calculations presented here.  These vertical error flags 

indicate that there is some error in the calculation of the height of the distribution.   

While the breadth of the displacement speed PDF and the observation of 

negative speeds are surprising, there is supporting evidence in the literature.  For 

example, Hisasawa, et al report displacement speeds measured in a wall-stagnating  

premixed flame with periodic fluctuations [38].  Variations in displacement speed are 

found to increase with Strouhal number to over a hundred percent.  Sinibaldi et al [39, 

77] report variations of displacement speed from 0.7 to 5.25 times the unstretched 

value in their study of two-dimensional flame-vortex interactions.  DNS results of a 

study of a hydrogen-air triple flame subjected to an unsteady strain field [78], of a 

two-dimensional methane-air turbulent flame [40] and of a two-dimensional flame 
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interacting with a vortex [79] show large variations in displacement speeds and 

negative values.  These studies found that displacement speeds often were negative 

where the strain rate was negative.   While these three studies used a different isoline 

than that used here to define the displacement speed, we believe the results are 

relevant to our results.  Finally, Sinibaldi et al [77] measured negative displacement 

speeds in methane-air premixed flames undergoing unsteady wrinkling by a laminar 

toroidal vortex.  Negative displacement speeds were measured in the negative stretch 

regions of unstable flames.  Sinibaldi et al [77] are unsure as to whether or not these 

negative values are real, and suggest that the negative values arise because of their 

definition of displacement speed.  The displacement speed is defined here as the local 

flame velocity with respect to the local reactant velocity.  Sinibaldi et al [77] suggest 

the use of another type of propagation speed, the consumption speed.  The 

consumption speed [37] is proportional to the integral of the reaction rate per unit 

volume along a line normal to the flame.  The consumption speed cannot become 

negative, but it cannot be measured with current diagnostics. 

Sinibaldi et al [39] and the authors of the DNS studies [40,78-79] suggest 

slight modifications to steady state flame stretch theory in order to account for the 

SL
d* values they observe.  Flame stretch can be caused by fluid dynamic strain in the 

plane locally tangent to the flame and by the area change due to a curved flame 

propagating at a finite speed.  Sinibaldi et al [77] suggested that, for their flame, only 

curvature changes influence the displacement speed.  Refs. [77, 80-82] show a 

negative correlation between displacement speed and curvature for DNS studies of 

fully premixed flames with Lewis numbers close to 1.  The joint PDF of the density 

weighted normalized flame displacement speed relative to reactants and two-

dimensional normalized flame curvature for the two measurement lines are shown in 

Fig. 5.13.   
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Figure 5.13: JPDF of density weighted normalized flame displacement 
speed relative to reactants and two-dimensional normalized flame 
curvature for the two measurement lines using the tomography and 
SPIV images.  The open symbols are the maximum normalized 
curvature at that SL

d*/SL
o.  The error flags indicate measurement and 

statistical uncertainty in the curvature measurements.  Also indicated is 
the best fit line through these calculated maxima. 

tomography measurement line

SPIV measurement line
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Flame curvature is measured in both of the tomography images.  Where the flamelet 

boundary intersects the measurement line in both images, the boundary is locally fit 

with a third-order polynomial, using a fit width of 80 pixels (6 mm, determined by 

observing the resulting fits for different fit widths of the flamelet boundary in 

unprocessed images). For each image set the two-dimensional flamelet curvature is 

measured for the two measurement lines.  The data set was then analyzed to find the 

joint PDF of curvature with SL
d*/SL

o.  The JPDF surface is estimated by generating a 

three-dimensional histogram, where the data are smoothed using a symmetric 

Gaussian lowpass filter of size [3 3] with a sigma of 0.95, and normalizing.  The open 

symbols in the plots are the maximum normalized curvature at that Sd
*/SL

o.  The 

vertical error flags indicate measurement and statistical uncertainty in the curvature 

measurements.  Also indicated is the best fit line through these calculated maxima.  As 

shown in Fig. 5.13, there is a weak correlation of negative displacement speeds to 

large positive flamelet curvature and thus to distortion of the preheat zone.  The results 

found in Sinibaldi’s [39,77] flame-vortex study and the trends found in the DNS 

studies [40,76-77, 80-83] found strong correlations in negative displacement speeds 

with large positive curvatures for more turbulent flames.  The curvature measured here 

is the two-dimensional curvature in the two tomography image planes.  The curvatures 

measured in [39-40, 77-83] are the principal curvatures of the flamelet surface.  To 

further investigate the causes of these measured displacement speeds, the three-

dimensional curvature of the flamelet surface should be measured. 
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CHAPTER 6 

UNCERTAINTY ASSESSMENT OF THE FLAMELET DISPLACEMENT SPEED 

MEASUREMENT METHOD  

The combined crossed-plane laser tomography and stereo PIV method was 

used to measure Ur, SL, N, and the normalized, density-weighted displacement speed 

SL
d*/SL

o for each of the 1500 image sets taken for this flame.  The PDFs of Ur, SL, N, 

and SL
d*/SL

o are presented in Figs. 5.7, 5.10-5.12.  Ur was evaluated from 

measurements of particle velocity and from calculations of the thermophoretic force 

correction, SL was obtained from measurements of the flamelet displacement along the 

measurement line, N was found from simultaneous orthogonal single plane imaging 

measurements, and SL
d*/SL

o is defined here as a function of Ur, SL and N: 

     (6.1) 

 

where ρ is the product density, ρo the reactant density and SL
o is the unstretched 

laminar flame speed.  Each of the individual measurements (i.e. particle velocity, the 

location of the flame boundary) is a source of error.  These errors propagate to the 

calculated quantities Ur, SL, N, and SL
d*/SL

o as measurement uncertainty and are 

indicated by the horizontal error flags in Figs. 5.10-5.12.  The vertical error flags in 

these figures indicate statistical uncertainty due to sample size.  This chapter will first 

discuss the individual sources of error associated with the combined CPLT and SPIV 

measurement method, then give a description of how these errors propagate to Ur, SL, 

N, and SL
d*/SL

o, and finally describe how the statistical uncertainty and the calculated 

measurement uncertainty in the individual realizations of Ur, SL, N, and SL
d*/SL

o are 

represented in the PDFs of these values. 

The combined crossed-plane laser tomography and stereo PIV method is 
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subject to four types of measurement error: (1) instrumentation errors, i.e.: error due to 

system setup and image processing, (2) uncertainty in the crossed-plane laser 

tomography measurement technique, (3) uncertainty in the SPIV measurement 

technique, and (4) uncertainty in the thermophoretic velocity correction.  The 

individual sources of error that fall into each of these categories are discussed in detail 

below.   

 

Instrumentation Errors 

Flamelet displacement speed measurements were performed on the V-flame 

burner system used in several pervious studies in this laboratory [21, 26-27, 29, 59].  

Fuel (commercial grade methane) and air flows were controlled by mass flow meters 

and premixed in a plenum at the base of the burner.  The calibration of the fuel mass 

flow meter was performed with air and corrected for the fuel metering conditions, and 

is accurate to within ±3.0% [31].  The estimated calibration accuracy of the air mass 

flow meter is ±0.5% of the mass flow rate [31].  The resulting uncertainty in 

equivalence ratio is ±0.02.  The uncertainty in the equivalence ratio results in an 

uncertainty in calculating the unstretched flame speed, SL
o, of ±0.02 m/s [85] and in 

determining the reactant density ratio, ρ/ρo, of ± 0.012.   

There are several sources of random error arising from the combined CPLT 

and SPIV experimental setup.  Error is caused by time jitter in the ICCD camera 

intensifiers used as electronic shutters and in the laser pulse timing, which results in 

timing errors.  These errors were determined to be approximately ±1 µs for the 

cameras, lasers and SRS electronic delay generator [29, 56] which are small compared 

to both the CPLT and SPIV pulse delay of 1.5 ms but are included in the uncertainty 

analysis here.   

There is also uncertainty in the location of the field of view of all 6 cameras.  



 

77 

These errors were minimized through use of a transparent optical alignment target.  

The alignment target was placed in the field of view of all cameras.  The resulting 

uncertainty, determined from the resolution of the target by the cameras, is 

approximately ±0.2 mm.   

There is random error caused by image resolution and image processing in the 

determination of the location of the flame boundary in both the CPLT and the SPIV 

images.  Uncertainty in the determination of the location of the intersection of the 

flame boundary with the measurement line is caused by the discrete nature of the oil 

droplets.  Uncertainty due to the image resolution is small compared to the uncertainty 

due to the discrete droplets identified in the images.  The influence of the random error 

due is minimized through curve fitting both the measurement line and the flame 

boundary in the image.  This error can be estimated based on the uncertainties in the 

least squares, third order polynomial fit parameters of the curve fits, which are a 

reflection of the agreement of the fits with the flamelet boundary data. A third order 

polynomial fit was chosen based on visual inspection, that showed a third order 

polynomial fit matched the flamelet boundary data well. Based on the measured 

uncertainties of the goodness of the least squares fits, the uncertainty in determination 

of the location of the flame boundary in the CPLT and SPIV images is ±0.2 mm, 

which is in agreement with previous CPLT measurements, Ref. [21,29]. 

 

Uncertainty in the crossed-plane tomography measurement technique 

Uncertainty in N depends on the CPLT measurement technique, and was 

analyzed in detail in Knaus et al [21].  Knaus et al analyzed a test image of a perturbed 

laminar V-flame, to determine the error in the flamelet normal determination at 

different locations along the flamelet boundary.  They found that when N is expressed 

in terms of a spherical coordinate system, with φ the polar angle and θ the azimuthal 
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angle with respect to a polar axis aligned with the mean orientation <N>, there was an 

error in φ with an average value of ±0.5° for all φ, and an error in θ with an average 

value of ±2.6°. Random error in the measurement of N resulted from several sources: 

uncertainty in the location of the measurement line, error in the angle between the 

laser sheets, and finite laser sheet thickness.  Uncertainty in the location of the 

measurement line in each image results in tangents not being evaluated at the same 

location on the flamelet surface.  This error is significant near cusps, where small error 

in the determination of the measurement line can result in large errors in slope.  

Uncertainty in the location of the measurement line is limited by the finite thickness of 

the laser sheet.  To reduce the error in determining the measurement line in this 

experiment, an algorithm for a linear least square fit was used to find the line of 

intersection between the laser sheets.  Error analysis based on the linear least squares 

fit used here to find the measurement line indicates that the uncertainty in the location 

of the line is ±0.2 mm.   

The angles between the laser sheets were also measured, and were within ±2% 

of their reported value.  Ref. [21] also performed a simulation to randomly generate 

surface normals in a vertical plane.  The angles of the laser sheets with respect to the 

vertical were varied in order to study the effect on measurement error of error in laser 

sheet alignment.  If one sheet is at 49° and the other at 45°, a 9% error in laser sheet 

alignment, the average error in φ is 0.25°, while the error in θ is 2.0°.  This small 

amount of error in φ and θ for a 9% error in the angle between the laser sheets 

demonstrates that there is little error introduced into the N measurement due to error in 

laser sheet angle. 

 

Uncertainty in the SPIV measurement technique 

The Ur measurement depends on the measurement of Up, the instantaneous 
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three-dimensional velocity of the seed particles, N (discussed above), and the 

correction for thermophoretic force effects.  The accuracy of the SPIV system was 

investigated by performing SPIV measurements on a test target consisting of hollow 

glass spheres suspended in a solid clear araldite block [42].  The target was moved on 

translation stages to simulate the three dimensional motions of the seed particles.  The 

error in Up is found to be large for small velocities (< 1 m/s) and for very large 

velocities (> 2 m/s).  In the test results presented in Ref. [42], error in Up for values 

between 1 and 2 m/s was ±1% while error in Up outside of this range was found to be 

±5%. 

There is also concern regarding the accuracy of Up when the SPIV 

measurement method is applied to a flame, where there are refractive index changes.  

The average particle displacement in this study is ~1 mm for a SPIV interpulse time of 

42 µs.  The light from both images arrives at the camera with very little separation in 

time.  Ref. [43] shows that the resulting exposures are influenced by very similar 

refractive index gradients such that refractive index fluctuations are unimportant. 

 

Uncertainty in the thermophoretic correction 

When SPIV measurements are performed near the flame, the effects of 

thermophoresis must be considered.  For the micron sized silicone oil droplets used in 

this study, the thermophoretic velocity has been calculated for a stationary, unstrained 

planar laminar premixed lean (φequiv=0.65) methane-air flame. An estimate of the 

thermophoretic force and SPIV particle velocity relative to the gas phase was 

calculated.  In accordance with the experiment, the flame-front location was assumed 

to be determined by the position of the 650 K isotherm in the calculation.  

Computations for this lean flame predict that the particle velocity lags behind the gas 

velocity by ∆uthermophoretic/SL
o=0.4, which is 2.5% of the mean reactant flow velocity.  
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The direction of the thermophoretic force is normal to the flame front and towards the 

reactants. This correction is in good agreement with thermophoretic effects measured 

in [69], which found that the thermophoretic velocity correction could range from 1-

3% of the mean reactant velocity.   

Because this correction was based on a premixed lean (φequiv=0.65) flame at 

the 650 K isotherm, there is uncertainty when ∆uthermophoretic/SL
o is applied to the 

current experiment, where the equivalence ratio and measurement isotherm are known 

only to within uncertainties.  For the flame studied here there is an error in air and fuel 

flow rates, which results in an uncertainty in φequiv, and an error in determining the 

location of the flame boundary, which results in uncertainty in the location of the 650 

K isotherm.  Computations were performed for a range of lean flames 

(φequiv=0.65±0.02), and the thermophoretic velocity correction was evaluated for 

locations within 0.2 mm of the 650 K isotherm, i.e. within the uncertainty of 

determining the flamelet boundary location.  The thermophoretic velocity correction 

was found for each flame at each isotherm location.  These computations indicated an 

uncertainty in the thermophoretic velocity correction of ±3%. 

 

Calculation of uncertainty in flamelet displacement speed 

Each of the individual sources of error detailed above affect the calculated 

uncertainty of N, Ur, SL, and SL
d*/SL

o.  For each of these quantities, Table 6.1 lists the 

relevant individual sources of error.  The calculated uncertainty of N depends on the 

accuracy of the measurement of the polar angle φ and the azimuthal angle θ, the 

uncertainty of the location of the measurement line, and uncertainty in the angle 

between the laser sheets.  The calculated uncertainty of Ur depends on the accuracy of 

the measurement of the seed particle velocity Up, the uncertainty in the thermophoretic 
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velocity correction2 and the calculated uncertainty of N.  The calculated uncertainty of 

SL depends on camera and laser jitter, camera registration error, uncertainty in the 

location of the flamelet boundary and the calculated uncertainty of N.  The calculated 

uncertainty of SL
d*/ SL

o depends on the calculated uncertainty of Ur, N, SL, ρ/ρo, and 

SL
o (Eq. 6.1).  The propagation of error from a single measurement to a calculated 

quantity such as Ur, N, SL, and SL
d*/SL

o has been discussed by Bevington [86].  The 

procedure detailed in Ref. [86] is followed here.   

To see how error propagates from a measured value to a calculated quantity, 

consider a general quantity x which could represent Ur, N, SL, or SL
d*/SL

o.  x is a 

function of a set of general measured variables u, v, etc., where u and v could be Up 

and the location of the flamelet boundary: 

,...),( vufx =          (6.2) 

The effect of uncertainty on the function x can be found by considering the spread of 

the values of x which result from combining the measurements from individual 

realizations, ui, vi, wi, etc. into individual results xi, where i represents the ith 

realization in our set of 1500 measurements: 

,...),( iii vufx =         (6.3) 

Following Bevington [86], assume that the mean value of x is:  

,...),( vufx =          (6.4) 

where the overbar indicates a mean quantity.  For an infinite number of measurements, 

the mean of the distribution of x will coincide with the average and the variance can 

be expressed as 

         (6.5) 

 
                                                 
2 The thermophoretic velocity correction is treated here as an independent variable, although it actually 
depends on equivalence ratio and on the location of the flamelet boundary.  However, the effect of this 
correlation is negligibly small: when error bars were recalculated with explicit dependence on 
equivalence ration and flamelet boundary location, the correction was on the order of 0.2%.   
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The uncertainty in x for an individual realization goes as 

          (6.6) 

 

where each of the partial derivatives is evaluated with all other variables fixed at their 

mean values.  Substituting Eq. 6.6 into Eq. 6.5 gives 

 

        (6.7) 

 

An approximation of Eq. 6.7 would be 

            (6.8) 

 

The first two terms in Eq. 6.8 are averages of the squares of the deviations, which 

dominate σx
2.  The third term in Eq. 6.8 is the average of the cross terms involving 

products of deviations in u and v simultaneously.  σuv is the estimated covariance 

between the u and v measurements.  This term is only important if u and v are 

correlated.  Here we assume that u and v are not correlated and Eq. 6.8 reduces to 

                                (6.9) 

 

Eq. 6.9 was used here to calculate the uncertainty in Ur, N, SL, and SL
d*/SL

o.  

Ur, N, SL, and SL
d*/SL

o were written as functions of their measured values. An 

algorithm was written to determine the uncertainty of these quantities from the 

uncertainty for each individual measurement in accordance with Eq. 6.9.  The 

individual measurements that are used to determine Ur, N, SL, ρ/ρo, and SL
o have been 

discussed above and are summarized in Table 6.1. 
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Table 6.1: Summary of measured uncertainties used in determining the 
values N, Ur, SL, SL

o, and ρ/ρo, and the uncertainties of the measured 
quantities.   
Note: The starred values represent quantities that were not measured 
directly.  The thermophoretic velocity correction was determined from 
the location of the flamelet boundary and the equivalence ratio, which 
in turn was determined from the fuel and air flow rates. 

 

Measurement Units Error 

N   

• ϕ, polar angle degrees 0.5 

• θ, azimuthal angle degrees 2.6 

• Measurement line location mm 0.2 

• Angle between laser sheets  2% 

Ur   

• N   

• Up - 1% 1>Up>2 m/s, 5% otherwise 

• Thermophoretic velocity 

correction* 

- 3% 

SL   

• Camera and laser jitter µs 1 

• Camera registration error mm 0.2 

• Location of flame boundary mm 0.2 

• N   

SL
o   

• Equivalence ratio* - 0.02 

ρ/ρo   

• Equivalence ratio* - 0.02 
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The algorithm was used to determine the uncertainty of Ur, N, SL, and SL
d*/SL

o for 

each realization i from the uncertainty for each individual measurement listed in Table 

6.1.  This experiment produced 1500 image sets.  The algorithm calculated 1500 

values of Ur, N, SL, and SL
d*/SL

o and the uncertainties associated with each value. 

 The calculated results are presented here as PDFs of Ur, N, SL, and SL
d*/SL

o, 

Figs. 5.7 and 5.10-5.12.  The PDFs were formed by generating a histogram of the 

calculated results and normalizing.  However, each value of Ur, SL, N, and SL
d*/SL

o 

has a calculated uncertainty. The following describes how the calculated uncertainty in 

the individual values of Ur, SL, N, and SL
d*/SL

o are represented in the PDFs. 

Consider the PDF of SL
d*/SL

o.  Each realization (SL
d*/SL

o)i has an associated 

calculated uncertainty δ(SL
d*/SL

o)i.  Within each histogram bin, the uncertainty 

δ(SL
d*/SL

o)i was used to compute the probability that a point with mean (SL
d*/SL

o)i and 

error δ(SL
d*/SL

o)i should fall into that bin [87].  This was done by integrating a Normal 

distribution with mean (SL
d*/SL

o)i and standard deviation δ(SL
d*/SL

o)i over the range 

of the histogram bin.  Each data point (SL
d*/SL

o)i in the histogram bin now has a 

probability Pi of being in that bin.  The calculated measurement uncertainty of the 

center value of a given histogram bin [87] is then given by: 

           (6.9) 

 

where Nbin is the number of data points (SL
d*/SL

o)i within that histogram bin.  This 

data analysis procedure was applied to Ur•N, SL and SL
d*/SL

o data to provide the 

horizontal error flags in Figs. 5.10-5.12.   

 The vertical error flags in Figs. 5.7, 5.10-5.12 denote statistical uncertainty due 

to sample size.  The statistical uncertainty of a given histogram bin [29] is 

         (6.10) 
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where Pbin is the value of the PDF at that bin, bw is the bin width and N is the total 

number of samples in the entire distribution.   
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CHAPTER 7 

SUMMARY 

 This work is the continuation of a series of experiments in this laboratory to 

gather three-dimensional information about the wrinkling of flamelet surfaces via 

crossed-plane laser tomography (CPLT).  Information on the level of wrinkling in 

turbulent flames is important because in premixed turbulent combustion in the 

flamelet regime, the reaction rate of a flame is proportional to the amount of flamelet 

surface area per unit volume.  A major effect of turbulence is to wrinkle the flamelet, 

increasing the flamelet surface area and thus the reaction rate.  When the author started 

working in this laboratory, the CPLT technique was considered valid: its uncertainty 

had been assessed, and the technique applied to the study of both turbulent V-flames 

and SI engine flames.  From these studies it was found that the form of the distribution 

of flamelet orientations N is universal – it is quasi-Gaussian; it is independent of the 

azimuthal direction; and it depends only on a single parameter, ζ.   The CPLT 

technique was used in this work with other imaging techniques to further investigate 

the wrinkling of flamelet surfaces and the internal structure of the flamelet.   

The CPLT technique was first used to measure in-plane flamelet curvature in 

laboratory V-flames.  Taking advantage of the simple universal form of the PDF of N 

and its dependence on ζ, it was shown that ζ can be determined from two-dimensional 

image data provided that the image plane is aligned correctly.  If the image plane is 

aligned perpendicular to <c> constant surfaces, the universal form of the PDF of N 

holds.  ζ and AT/A, the mean flamelet area increase due to turbulence, were measured 

from two-dimensional image data and are found to grow linearly with distance from 

the V-flame stabilizing rod.  The observed growth rates in ζ and AT/A vary 

considerably from flame to flame, and the differences cannot be explained solely by 
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changes in u’/SL
o, the ratio of the turbulence intensity to the unstretched laminar flame 

speed.  This result suggests that local burning rates in wake flames, e.g., bluff body-

stabilized flames, vary with downstream distance and cannot be quantified by a single 

number.  It is possible that this variation from flame to flame is due to mean flow 

suppression of surface production, i.e. stretch effects.   

 The CPLT technique was also used in combination with stereo PIV (SPIV) to 

simultaneously measure three-dimensional flamelet orientation and three-dimensional 

reactant velocity.  This combined technique measured instantaneous flamelet surface 

curvature and the flamelet displacement speed, defined as the component of the 

relative velocity between the reactants and the flame surface that is normal to the 

surface.  The displacement speed is an important measure of unsteady stretched 

laminar flames and turbulent flames.  Previous workers [37-38] have suggested that 

the displacement speed is a function of Markstein and Karlovitz numbers and is a 

measure of the combined effects on flamelets of strain and unsteadiness in turbulent 

flames.  Displacement speed measurements in premixed turbulent flames are difficult 

and prior to this work have not been done because they require the simultaneous 

measurement of reactant velocity, flamelet speed in the laboratory frame and the 

flamelet surface orientation.  By combining crossed-plane tomography and stereo 

particle image velocimetry (SPIV) and staggering in time the tomography and SPIV 

laser pulses we are able to measure all three of these quantities.  What is presented 

here is the first instantaneous measurement of the three-dimensional flamelet 

displacement speed.   

SPIV as applied here measures the seed particle velocity in the reactants.  In 

SPIV, three-dimensional velocity measurements are obtained using two cameras.  

Each camera records an image pair separated by a short time interval and views the 

same region of the flame from a different perspective.  Based on these different views 
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of particle displacements the out of plane of velocity is determined.  The accuracy of 

SPIV to measure the reactant velocity depends on how closely the seed particles 

follow the flow.  It is often assumed that the seed particles are traveling at the same 

velocity as the reactant flow.  However, seed particle velocities can lag behind the 

reactant flow because of thermophoretic forces in regions of high temperature 

gradients.  Here, results from a stationary, unstrained, planar, laminar flame 

calculation were used to calculate estimates of the velocity lag due to thermophoresis 

of the particles in the reactant flow.  The thermophoretic velocity correction is in good 

agreement with corrections found in other studies [69] of flat flames.  The 

thermophoretic force correction was used here in combination with flamelet surface 

orientation data for the first time.  Since the thermophoretic force is in the direction of 

decreasing temperature, all three coordinates of flamelet surface orientation must be 

considered when applying the velocity correction.  In turbulent flames, seed particles 

in the preheat region are also subjected to varying strain rates caused by turbulent 

eddies in addition to thermophoretic forces.  Measurements and computations [75] 

show that the velocity difference between the reactants and the seed particles caused 

by thermophoresis increases with increased strain rate. Thermophoretic velocity 

corrections that account for strain rate were not performed for the present study.   

The combined crossed-plane laser tomography and stereo particle image 

velocimetry (SPIV) method is applied to measure three-dimensional flamelet 

orientation, reactant velocity, and flamelet displacement along a measurement line in 

premixed turbulent flames.  From these data, the velocity components (corrected for 

thermophoresis) of the reactants perpendicular to the flamelet surface are determined.  

The flamelet displacement speed is obtained from the measurements of flamelet 

displacement and reactant velocity at the flamelet surface.  Flamelet displacement 

speed data show both a broad distribution of values and a significant probability of 
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negative values.  The breadth of the distribution and the presence of negative 

displacement speeds are attributed to high values of curvature and extensive tangential 

strain.  While the breadth of the displacement speed PDF and the observation of 

negative speeds are surprising, there is supporting evidence in the literature.  

Measurements made in Refs. [38-39, 77] have also found negative displacement 

speeds and a large variation of values.  DNS studies [40,78-79] show large variations 

in displacement speeds and negative values.  These studies found that displacement 

speeds often were negative where the strain rate was negative.   It was found here that 

there is a weak correlation of negative displacement speeds to large positive flamelet 

curvature, however the curvature measured is the two-dimensional curvature in the 

tomography image plane.   

The uncertainty in the combined crossed-plane tomography and stereo particle 

image velocimetry method was assessed, and the uncertainty of the measured flamelet 

displacement speed was calculated.   Since the flamelet displacement speed is not 

measured directly (it is determined from several measured quantities in the combined 

method), errors from individual measurements propagate to the displacement speed.  

The errors from the individual measurements were identified and a propagation of 

error analysis was performed to calculate the uncertainty in the flamelet displacement 

speed results.  Large measurement uncertainty was found at the edges of the 

displacement speed distribution compared to the measurement uncertainty at the 

center of the distribution.  While this indicates that there is significant measurement 

uncertainty associated with the negative displacement speed values, the uncertainty 

estimates indicate that negative values are real and are not the result of measurement 

uncertainty.   

This work has discussed the development of a new technique, combined 

crossed-plane laser tomography with stereo PIV.  This technique was used to measure 
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for the first time the instantaneous flamelet displacement speed.  The combined 

technique was demonstrated on a premixed turbulent flame and its uncertainty was 

assessed.  The flamelet displacement speed results are surprising, the distribution of 

displacement speeds measured is broad and shows evidence of the existence of 

negative displacement speeds.  While both negative displacement speeds and a large 

range of displacement speeds have been seen in the literature [38-40, 75-77], the 

negative displacement speeds were found in highly turbulent flames.  The flame 

studied here has a relatively weak turbulence intensity when compared to the flames 

studied in the literature.  The measured displacement speeds in the literature use in-

image plane flamelet orientation to correct the seeded flow for thermophoresis, 

neglecting the out of plane component and thus inaccurately implementing the 

thermophoretic force correction.  The results presented here is the first body of data of 

the instantaneous, directly measured flamelet displacement speed.  The thermophoretic 

correction was applied to seeded flows in combination with measured three-

dimensional flamelet orientation data for the first time.  These measurements have laid 

the groundwork for future studies measuring displacement speeds using the combined 

crossed plane laser tomography and stereo PIV technique. 

In closing, the author would like to propose ideas to further extend this work.  

The universal form of the distribution of flamelet orientations is valuable and makes it 

possible to measure three-dimensional flamelet orientation easily.  This method should 

be applied to more flames in addition to the turbulent V-flames studied here.  It is 

possible that the rod wake influenced some of the results presented here.  Other 

burners should be studied in addition to a wider range of turbulent flames and reactant 

mixtures to study how ζ and AT/A grow with distance downstream from the flame 

stabilizer.  Growth rates of ζ and AT/A are widely considered to be a function of 

u’/So
L, and it has been suggested here that there may be other factors needed to explain 
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observed growth.    

The combined CPLT and stereo PIV technique should also be applied to more 

flames that fall within the thin reaction zone regime of premixed turbulent combustion 

where large distortions of flamelet structure are expected.  Also steps need to be taken 

to measure the third component of flamelet curvature.  This combined measurement 

technique is very powerful and can provide much needed insight into the effect of 

turbulence on the structure of the preheat zone of the flamelet. 
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