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Abstract

Hidden semi-Markov models have been proposed in Meier-Hellstern et al (1991) to model the
times between transmission of packets at a source. In this paper, we specifically investigate
such models where the distributions associated with one or more of the states are heavy-tailed.
We study the asymptotic properties of the sample covariance and correlation functions and
show that the correlation function at nonzero lags is asymptotically equal to zero. We simulate
a five state hidden semi-Markov model to illustrate our results.

1 Introduction.

Hidden semi-Markov models have often been used in speech recognition and computational biol-
ogy; see Krogh et al (1994) and Juang and Rabiner (1991) for reviews. Such models have also
often been proposed in the teletraffic literature. In the heavy tailed context, they were recently
used by Meier-Hellstern et al (1991) to model the times between transmission of packets at a
source. In the process of fitting these models to the data, it was observed that the distributions
associated with one or more of the states of the model were heavy-tailed.

In this paper, we investigate hidden semi-Markov models where the distributions associated
with one or more of the states are heavy-tailed. Our goal is to study the asymptotic properties of
the sample covariance and autocorrelation function (acf) which are important in the processes of
parameter estimation and fitting of actual data to such models. We use point process techniques
to show that the sample correlation function at nonzero lags is asymptotically equal to zero.

The plan of the paper is as follows: In Section 2, we give a detailed description of the model
and construct a stationary version. In Section 3, we prove several convergence results for point
processes associated with the model with the aim of studying the asymptotic properties of the
sample covariance and correlation functions. In Section 4, we prove the major result of the paper,
that the sample correlation function at nonzero lags is asymptotically equal to zero. In Section
5, we offer some numerical illustrations and some concluding remarks.
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The reason for the interest in the sample autocorrelation function is the following. Exami-
nation of heavy tailed data frequently reveals the characteristic that the acf plots for different
subsets of the data do not look similar. Some examples are given in Resnick (1996). Various
explanations for this phenomenon are possible: maybe the data exhibits lack of stationarity or
maybe the underlying model is non-linear. The following plot, from Davis and Resnick (1996)
shows an extreme case: Plots of the acf from independent samples of the same stationary nonlinear
process look completely different.
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Figure 1: ACF of three independent samples from a bilinear process.

Subset analysis of the acf of a data set is often sufficient to rule out the iid or linear time
series models as candidate models for fitting to the data. We were curious to see if the hidden
Markov model was a possiblity and hence set out to investigate the asymptotic behavior of the
sample acf. Unfortunately our results rule out hidden Markov models as well since the behavior
of the acf for such models is asymptotically the same as for the iid model. Unless one gives up
finite mean sojourn times (and thus it is likely one must also give up stationarity) such models
will be difficult to fit to data whose sample acf fails to exhibit subset stationarity.

2 The model.

Let {J,,n > 0} be an ergodic Markov chain with state space {1,...,p}. Let the transition
probability matrix of this chain be P = {p;;,1 < 7,j < p} and the stationary distribution be 7' =

(71,...,7p). Suppose for ¢ = 1,... ,p we are given holding time distributions {q,(,i)} concentrating
on {1,2,...} and that for¢ =1,... ,p, {Dg),n > 0} are iid with common distribution {qr(f)} and
further, E[q,(f)] = 1; < 0o. The sequences

{{p¥},i=1,...,p}



are independent. Define the semi-Markov chain {V,,,n > 0} by

Vi =Jo, if 0 < j < DI,
— g, if D(()Jo) <j< D(()Jo) +D§J1),
— Jo, it DY)+ DI < j < DY) + DI 4 DY),

Thus
o @)
Vi=Y Jpl o1 (). g
’ k; FIES o<, o)

The observable process { X,,} consists of random elements of R defined on {V,,} such that the
conditional distribution of X,, given the state of V,, is ¢ is F;. More precisely, given distributions
Fi,...,F, on R, and iid uniform random variables with support [0, 1] which we call {U,,,n > 0},
we then define for n > 0

Xn = Fy, (Un)

and assume {Uy, }, {Jn}, {D,(f),n > 0,1 <1< p} are all independent.

Thus, changes of state follow the Markov chain {J,,} and a transition from ¢ to j occurs with
probability p;;. Having entered state 7, the system stays in state  for k£ time units with probability
q,(;). While the V-process is in state ¢, random variables are generated from a distribution Fj.

One or more of the distributions F; may be heavy-tailed. We assume that F7 has the heaviest

tail with index of regular variation «. Thus
tli)m (1—Fi(te))/(1— Fi(t))=a ¢ (2.1)
and

Jim (1= Fj(8))/(1L = F1(t)) =0, j=2,...,p. (2.2)

For a distribution function G, we will abbreviate the tail function by G := 1 — G.
The above is the definition of a basic hidden semi-Markov model. However, the model, as we
have defined it, is not stationary. Note that if {V,,} is stationary, then so is {X,} since

k
PX;<zj,j=0,...,k|=E (HFV].(Q:)> :
=0

Since the holding time distributions {q(i)} have finite expectations, it follows that the semi-Markov
process {V,,} has a stationary distribution {v;} with

P
v; =T/ Z TiTj

j=1



and where {v;} is also the asymptotic distribution of {V,,}. Since time series modeling is usually
done with stationary models we shall modify the definition of the model so that the process {V,,}
is stationary and therefore, {X,,} is stationary. This construction can be carried out following
the procedure described by Cinlar (1969).
Choose Vj such that
PVy = j]=v;

If Ajg, A;'k are the semi-Markov matrices associated with the delayed semi-Markov process

{V»}, following Cinlar, choose
ie(n) = (1/7) Y 1A — Ajp(9)]
1=0

where

Aji = Aji(+o0)

In this paper, we shall assume that the underlying semi-Markov process {V,,} is stationary
and therefore the hidden semi-Markov model {X,,} is stationary.

3 Point processes associated with the model.

In this section, we use point process techniques to prove a theorem that enables us to study the
asymptotic properties of the sample correlation function in the next section.
Let {X,,} be the stationary process defined in Section 2 and define

P
a, = inf{z : Zsz(w) >n71}
i=1
so that
LA 1
Z viFi(an) ~ —.
n
2=1
Furthermore we have
nPla; X1 € ] 5 M) (3.1)

on (0, c0] where X is a measure on (0, co] such that A(z, co] = 2~* and the convergence above is in
the vague topology on the space of Radon measures on (0, co]. To verify (3.1), use the definition

of {X,,} to get

nP[X1 > apz] = zp:nP[Xl > anz|Vi = i|P[V1 = 1]
=1

~ S wiFi(ane) /(3 viFi(an)).

=1

1=1



Dividing numerator and denominator by Fy(a,,) and using equations (2.1) and (2.2) we easily see
that
1i_>m nP[X1 > apz] =2 ¢

which suffices for (3.1). O

We need a result about the frequency of visits to each state.

Lemma 1 Let N,,(j) be the number of “visits” to state j by the semi-Markov chain up to time
n so that

Then we have

Proof. The proof is almost exactly as in Resnick and Starica (1996). The semi-Markov process
{V;} changes states at times {S,} where

_ "D
q=0

Let p,(j) be the number of “visits” to state j by the underlying Markov chain {J,,}. As n — oo,
we have

P Hn(k)
/n— (1/n) Z D
k=1 i=1
l‘n(k) p
- [ DY Jun(B)] (k) fn] = 3 EDF
=1 k=1

Tk Tk

i M@ i M\s

Now define the process inverse to {.S,} as
M(t) =sup{n: S, <t}

so that as t — oo

M)/t = 1/(> memy).
k=1



Note that M (t) represents the number of changes of state up to time ¢t. Now

( /n< 1/n Z S—Sql [Jy—1=k]

4 #(M(n)+1)( )
=1/ Y, DB
q=0
H(M(n)+1)()
=( > DB/ en) B/ (M(0) + 1))((M () + 1) /n)
q=0

— Tkﬂ'k/ Z TjTj.
j=1

A lower bound is obtained similarly and this completes the proof. O
For what follows, for a nice metric space [E, we define M, (E) to be the Radon point measures

on [E, topologized by the vague topology. A point measure is represented by
> e
1

where z; € E. A Poisson process with mean measure A on E will be denoted PRM(A).
We now consider point processes based on the observed process {X,, }.

Proposition 1 For the stationary process {X,} defined in Section 2,

> €atx, = PRM())
k=1

in Mp((0,00]).

Proof. We show the convergence in the space of point measures by proving that the corre-
sponding Laplace functionals converge. Therefore, we need to show that for f € C%((0, co])

U, (f) = Bexp{—_ f(X;/an)} — exp{~ /(0 ](1 — exp(—f(z)))M(dz)} (3.2)
j=1 e
Let N,,(j) be the number of “visits” to state j by the semi-Markov chain up to time n. Then
U,(f) = B(B(exp{~)_ f(Xj/an)}IVo,--- V)

j=1

=F - exp(—f(z))F;(andz))N"0)
L(f,  oxp(f e Efonde)

. _/ (1 — e 7@ nF;(ande) n-Na (i)
(0,00] n

:EH

P
Jj=1



In the previous Lemma 1, we have shown that

Jim Ny (5)/n = v,

where {v;} is the stationary distribution for the semi-Markov chain. For j =2,... ,p
lim nFj(a,dz) =0
n—oo
and
nll{%o nFi(andz) = (1/v1)A(dz).
Therefore,

1

b
i=1

1 / (1 —e f@nE; (andz)\" Nalg)/o
(0,00] n

P
— H exp{—/ (1—e fl) li_r>n nFj(andz)v;}
j=1 (0,00] nTree

= exp{= [ (1= exp(= () \(d=)).
We can now apply the dominated convergence theorem to conclude

V() = exp{~ [ (1-e)A(da)}
0,00]
This completes the proof of the proposition. O
Our methods require the following definition of a new sequence {Y'}:

Yk' = (Xka e ,Xk—m—f—l)

for k > 1 and fixed m > 1. The sequence {Y;} is conditionally m-dependent given the sequence

{Va}-

We now define two new processes:

_1Yk

||M§

]kéi

where é; € R™ is the basis element with ¢th component equal to 1 and the rest equal to zero. Let

E = ([0,00]™\ {(0,...,0)}). Let S be the collection of all sets B of the form

B = [bl,Cl] X e X [bm,cm]

where [b1,c1] X ... X [by, ¢m] is bounded away from (0,...,0), b; < ¢;, by > 0. It is easy to see
that either [];~,[b;,ci] does not intersect any axis; that is,

(C1) [b1,c1] x - % [bm,cm]ﬂ{yéi cyeRL} =0, fori=1,...,m



or [17,[bi,c;] intersects exactly one, say the *?; that is

[biyci], for j =1,
0

(02) [blacl] X X [bmacm] m{yéj (Y€ R+} = { , for j #i.

In (C2), b; =0 < ¢; and for j # i we have b; > 0.

We now give some properties of I, and I.

Lemma 2 We have
P[I(0B)=0]=1

forall BE S.

Proof. If B satisfies (C1) , the assertion is trivial since I has all its points on the axes. If B
satisfies (C2),

I(0B) < Z fjk({bi’ci}) =0
k=1
a.s. since the mean measure of Y 77 €, is atomless. O
Lemma 3 (o) If B € S satisfies (C1), then
P[I(B) =0]=1 and EI,(B) — 0.
(b) If B € S satisfies (C2),
P[I(B) = 0] = exp{=A([bi, ci]) }

and

E(In(B)) = A[bi, cil)-

Proof. (a) Let
Vim,---ﬂ'l = P[Vm = im, .. ,Vl = ’il].

We have
EIn(B) = nP(a’ngm € [blacl]a' o ,a'ngl € [bmacm])

=n Y P(()lan Xm—js1 € [bj,cilllVin =tm,- .., Vi =i1)Vi .. iy

imyedy j=l1

= Z F;, (an[b1,c1]) ... Fiy(an[bm,cm]) Vi,,... i1 -

Since B has empty intersection with the coordinate axes and the inner summation is finite, the
above goes to zero as n — oo.



(b) We have
EI,(B) =nPla;' Xy € [b1,c1], -+ 05 Xt—mi1 € [Bimy Cm]]

=nP((len X141 € [br, allVin = iy -, V1 = i)V, iy
=1

= Y F,(anfb1,c1]) - Fy (an[bms Cm]) Vi ... iy -
P

Since bj = 0 < ¢j for j # ¢, Fj,(an[bj,cj]) = 1 as n — oo for j # i. Therefore,
E(1.(B)) ~ P[V1 = 1]Fi(an[bi, ci]) /(v1 F1(an))

and so

E(I,(B)) = Albi, ]

This completes the proof of the lemma. O

Proposition 2 Let I, = Y10 Y™, €azly .- Then

L,(B) — [,(B) 50
forall B€ S.

Proof. We can assume, without loss of generality, that B = [b,c1] X -+ X [by,cm]. If B
satisfies (C1), EI,(B) — 0 and I,,(B) = 0 which proves the result in this case.
Suppose B satisfies (C2). Then b; = 0 for j # ¢ and b; > 0. Write

i—1 n
L(B)=>" €latyy) (B) + Ze(aglyk)(B). (3.3)
k=1 k=1

By stationarity of the process {X,}, the expectation of the first term is bounded above by
(i — 1).Pla; 1 X1 € [b;,c;]] which tends to zero as n — oo since b; > 0. This expresses

L,(B) = op(1) + IV (B)

and it suffices to show

INB)-I,(B) 5 o. (3.4)

n

The second term, i (B) in (3.3) can be bounded above by

n—i+1 n

> tix, (binci) <D gy ((biseil) = Ln(B).
J=1 j=1
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Also

EIL,(B) = Z Pla, X; € [biyc;]]
j=1
=nP(a; X, € [bi,ci])
= A([bi, ci])

from (3.1). We thus conclude that
0< I.(B)-I.(B) 30

and therefore,

L(B) - IV(B) L0
as required. This completes the proof of the proposition. [l

Proposition 3 We have

kz_:l €lax'Y}) = Z Z €(inéi)

k=11i=1
in Mp(E), where E := [0,00]™ \ {0} and {(ji) : kK > 1} are the points of a PRM(X) on (0,00].

Proof. By the result of the previous Proposition 2, it clearly suffices to show that

. n m [e @] m
I, = E Z €ty 6 = Z Z €jréi
k=1i=1 k=11i=1

By the result of Lemma 2
n >0
> Curtx, T D€
k=1 k=1

in Mp[(0,00]]. Further, the mapping

S o 0o m
€vy (Z €vp.€rye ey Z G(vk.e;n> = Z Z € .65
k=1

is continuous from Mp((0,oc0]) into My(E). By the continuous mapping theorem, it follows that
o0

In= D7D (e

k=1:i=1

This completes the proof of the proposition. O
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4 Asymptotic properties of sample correlation function.

This section concentrates on describing the asymptotic behavior of the sample autocorrelation
function (acf) for the heavyn tailed hidden Markov model. The classical sample acf is defined in
time series analysis as

P (X = X)(Xpn — X)
E?:l X752 ’

In heavy tail analysis where neither variances nor means are guaranteed to exist, there is little
point to centering by means of X and so we define

p(h) = h=0,1,....

_ S X X

ﬁH(h) En 1X2 9
i= i

h=0,1,....

See Davis and Resnick (1985, 1986)
From the Proposition 3, we have

n [e @] m
Zea,jlYk = Zzejkez (4.1)
k=1 k=1:=1

Let v > 0, and for each integer h, 0 < h < m — 1, define the mapping

¢h77 : MP(E) — R+

by
oo [o.@]
¢h77(z e(uk,()v--s“k,m—l)) = Z ukvoukvh1[|“k,0‘>7 Or |ug, i|>7] (4'2)
k=1 k=1

The map @}, , is a.s. continuous relative to the limit point process in (4.1). Therefore, by the
continuous mapping theorem,

(‘I)h”(k;eall(xk,--- 7Xk—m+1)), h=0,...,m—1)

2
= (an Z Xka7h1[|Xk\>an'y or |Xk,h\>an7]>h =0,1,...,m— 1)
k=1

converges in distribution in [0,00]™ to the random variable whose components are

> & 0 for h >0
09 SR L ’
i ER1 Gkl for =0,

where (j2,k > 1) are the points of a PRM(\) on (0, c0] with A(dz) = />~ }(«a/2)dz.
As 4 — 0, the limit random variable approaches Y 72 ];‘: for h = 0 and equals zero for A > 0.
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Lemma 4 For anyn >0, if 0 < a < 2, then
lim i Pla; Y|y XXl =0
’yl—r)I%) l’rILIi}S;p [an |];_ kA k—h [‘ngan77|Xk—h|§an7]| > TI]

Proof. The probability in the hypothesis of the lemma is bounded above by

(n/(a2n) E[| Xk|1x, | <any) 1 X b= 115,y |<an]

By the Cauchy-Schwarz inequality, the above has an upper bound

(n/ @2EXR1x, j<an)) AEXE_ 11 1x0 oy i<ann]’?

By stationarity, the above equals (n/(ain))EX%lHXlSaﬂ]. From (3.1), X; has regularly varying
tail probabilities. If 0 < a < 2, the result follows from Karamata’s Theorem. O
Now for the result about the sample acf.

Proposition 4 Assume 0 < a < 2. Then we have

n—I

X, X

pu),l=1,...,m) = (2:;7“_1,,l=1,...m> = (0,...,0).
t=1 Et:lX{

Thus the sample correlation function at nonzero lags is asymptotically equal to zero. This is
the same behavior exhibited by the sample acf of heavy tailed iid sequences.

Proof. Using the result of the previous Lemma 4, we can apply Theorem 4.2 in Billingsley
(1968) to conclude that

ay’ (ZXE,ZXtXt_l,..,ZXtXt_mH) = (ij,o,... ,0> :
t=1 t=1 t=1 k=1

Again, by the continuous mapping theorem, it follows that
n n n n
(E Xtthl/ Z th, eey Z XtXt77n+1/ Z XtXtm+1) = (0, . ,0)
t=1 t=1 t=1 t=1

This completes the proof of the proposition. [l

5 Concluding remarks.

To illustrate the results, we simulated a five state semi-Markov process with transition matrix

0.0 02 03 0.2 03
04 00 0.2 03 0.1
P=103 01 00 04 0.2
0.1 02 0.2 0.0 0.5
04 01 0.2 01 0.2
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Figure 2: Time series plot.

The holding times in each state have discrete Pareto distributions with exponents 1.3, 1.4, 1.5, 1.6,
1.7 and the F;’s were Pareto distributions with parameters 0.7, 0.9, 1.3, 1.5, 1.8. The realization
of the resulting time series {X,,,n > 1} is of length 2182 and is labelled SMP. The time series
plot of SMP is given next.

A popular estimator of tail heaviness is the Hill estimator and we were curious to see how
this estimator performed on our data. Usually the Hill estimator is quite accurate for Pareto
data and the question arose: How accurate would it be for data produced by the mixture method
induced by the semi-Markov process. The results are satisfactory although one must push the
Hill estimator using smoothing and alternate plotting. The Hill estimator is obtained by first
computing the order statistics of the data

Xy 2 X > > X
and defining
k
Hip==) log| ———
"k 2::1 <X(k+1)
where k is the number of order statistics used in estimation. The estimate of o is Hk_; The

way estimation is done in practice is to make a Hill plot of {(k,H{i), 1 < k < n}. Resnick and
Starica (1997) recommend using a supplementary plot, called the alt-plot, where one plots

{(6,H}5 ,),0<6<1}

and also smoothing. The Hill plot is given in four views in Figure 3. Considering the correct
answer is 0.7, the ordinary Hill plot is not overly revealing. However, the alt plot and the
smoothed alt plot come quite close to the known value of 0.7.

The final plot gives the sample acf. The values for 20 lags are quite small, with the biggest
being 0.0204. Note the vertical scale extends from 0 to 0.02.
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