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This dissertation considers the geolocation of a point of interest (POI), i.e., deter-

mining the location of a POI in the world, using multiple cooperating uninhabited

aerial vehicles (UAVs) with gimballing camera sensors. A square root sigma point

information filter (SR-SPIF) is developed to provide a probabilistic estimate of

the POI location. The SR-SPIF utilizes the UAV’s onboard navigation system

to save computation and also takes important properties for numerical accuracy

(square root), tracking accuracy (sigma points), and fusion ability (information).

The SR-SPIF is general and scales well to any tracking problem with multiple,

moving sensors.

In the development of the SR-SPIF, the errors in the navigation system output

are assumed to be zero mean. However, in the practical application, there are

non zero mean errors (biases), which degrade geolocation accuracy. Therefore, a

decentralized approach to simultaneously estimate the biases on each UAV and

the unknown POI location is developed. The new decentralized bias estimation

approach provides accurate geolocation in spite of sensor biases and further scales

well with the number of UAVs.

Communication is an important part of a cooperative geolocation mission and

in practice communication losses and delays are inevitable. Therefore, a new

method for cooperative geolocation in the presence of communication loss, termed



the predicted information method, is developed from a separable formulation of

the extended information filter. The predicted information method is shown to

give the exact solution for linear systems when the measurement dynamics are

constant or known by all UAVs.

In addition to theoretical developments, extensive experimental flight tests with

ScanEagle UAVs have been performed. The experimental flight tests serve two

purposes: 1) to develop practical guidelines for geolocation 2) to validate all of the

new approaches presented in this dissertation. In addition to the flight tests, a

high fidelity, distributed, hardware in the loop simulation test bed was developed

and used as further validation of all new approaches.
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CHAPTER 1

INTRODUCTION

The central problem addressed in this dissertation is the cooperative geoloca-

tion of a point of interest (POI) using multiple uninhabited aerial vehicles (UAVs)

with gimballing camera sensors. The conceptual scenario for cooperative geolo-

cation is shown in Figure 1.1. Geolocation is the process of using sensor data to

develop statistical estimates of a Point of Interest (POI) on the ground. Each

UAV, based on its position and orientation, points the camera (through a gim-

balling payload mount inside the UAV) at the POI on the ground. While the

aircraft is moving (navigation and attitude), and the POI is potentially moving,

the camera gimbals must adjust their angles such that the POI always remains

within the field of view of the camera. The objective of geolocation is then to

estimate the position (2D or 3D) of the POI from the aircraft, gimbal, and camera

measurements. Complicating this problem are uncertainties in the aircraft posi-

tion and orientation, gimbal angles, camera specifications and measurements, and

disturbances such as turbulence and engine vibrations.

In other research related to using vision on UAVs, several groups are using

vision systems for navigation, such as for road following [20] or obstacle avoid-

ance [34]. The latter implements a bearings-only Simultaneous Localization and

Mapping (SLAM) algorithm to localize both the vehicle and obstacles and navigate

using only a low cost inertial measurement unit and a monocular camera. Ridley

et al [51] and Grocholsky et al [23] have implemented UAV systems with cameras

using decentralized fusion (information filtering) concepts. Several other groups

have implemented gimballing camera systems on UAVs [25, 26], a few with initial

target tracking results [49, 63, 15]. Kaaniche [31] et al present an interesting traffic
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Figure 1.1: Overview of the cooperative geolocation problem, showing the tracking
Point of Interest (POI) on the ground, with multiple UAVs pointing cameras at
the POI.

surveillance approach with UAVs using a graph cut formulation and a verification

step. Stepanyan and Hovakimyan [56] demonstrate visual tracking of one aircraft

with another aircraft using only a monocular camera. In a more closely related

work Vercauteren and Wang [62] develop a Sigma Point Information Filter.

1.1 Square Root Sigma Point Information Filter

A square root, sigma point information filter (SR-SPIF) is developed in [11] and

presented in Chapter 2 to solve the cooperative geolocation problem. The square

root formulation is used to maintain numerical integrity in real time. The sigma

point formulation is used for its accuracy with nonlinear dynamics and nonlinear

measurement equations. An information form is used for ease in fusing measure-

ments from other UAVs. The SR-SPIF presented in Chapter 2 incorporates uncer-

tainty in the UAV states with a combined state (POI state) and parameter (UAV

state) formulation with a non-standard update, which utilizes the onboard naviga-
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tion system to save computation. Chapter 3 presents an improved SR-SPIF which

incorporates the UAV state uncertainty as a non-additive, nonzero mean noise.

This formulation saves both computation and communication. Both versions of

the SR-SPIF have the following important properties:

Decentralized: Each vehicle has its own geolocation estimator, and then com-

municates only necessary information to the other vehicles. This minimizes

memory and communication, and enables network robustness.

Information Form: An information form is used to 1) minimize the amount of

information shared between vehicles, 2) simplify the multiple vehicle fusion

problem, and 3) simplify the problem of delayed data (from communication

drop-outs). For single vehicle tracking the use of the information form leads

to a slight increase in the computational burden. However, when performing

tracking with cooperative vehicles, the information form can significantly

reduce the amount of computation.

Sigma Points: Sigma points are used to develop statistical linearizations of the

dynamics, which have been shown to be more accurate than the traditional

Extended Kalman Filter (or the Extended Information Filter) [27]. The

use of sigma points requires a small increase in computation compared to

the Extended Kalman or Information Filters. However, it is proposed here

that the increase in tracking performance with the nonlinear measurement is

justification for this increase in computational cost.

Square Root: A square root version of the estimator is used for its numerical

accuracy in real time implementation. The square root implementation re-

quires very little additional complexity when used in conjunction with sigma

points. The square root version is equivalent in computation to the Square

3



Root Sigma Point Filter [6], which was shown to work in real time at 20Hz

for an UAV aerodynamic model estimator [9].

1.2 Sensor Bias

In the development of the SR-SPIF, the errors in the estimate of the UAV state

are assumed to be zero mean, white, and Gaussian, which is not accurate in the

practical case, for two reasons: correlated outputs of the navigation filter and

biases in the outputs. Consider Figure 1.2, which shows a series of Sensed Points

of Interest (SPOIs), which is defined as the line of sight intersection of the camera

with the ground as computed based on the estimates of the UAV state (NAV, ATT,

and GIM). A total of 2000 SPOIs are plotted for two orbits around a stationary POI

from a flight test of the ScanEagle UAV on March 18, 2006 [67]. Figure 1.2 shows

that the SPOI moves in a roughly circular pattern around the true POI location.

The period of this oscillation corresponds directly to the UAVs orbit about the

POI and is due to nonzero mean errors (biases) in the UAV state estimate.

POI

UAV

Computed Camera
Line of Sight

SPOI

SPOI at
Time Step k

Figure 1.2: Single UAV tracking a stationary POI. The blue dots are computed
camera line of sight intersections with the ground from two orbits of tracking.

Sensor biases were shown in Refs. [10] and [67] to be a significant source of error

for geolocation using the ScanEagle UAV and were compensated for by augmenting

4



the output of the estimator with additional uncertainty, based on empirical data.

However, this did nothing to improve the estimate itself, but simply improved

estimator consistency. Biases have also been shown to be a problem for estimation

in other works. In one of the first treatments [21], Friedland showed that biases

could be estimated efficiently in a linear system by partitioning the state. More

recently in Refs. [32] and [54], bias estimation in a radar tracking context with

multiple targets was addressed. Bias estimation was further considered in Refs. [37]

and [45], where multiple sensors were used to track multiple targets in a centralized

formulation. Bias estimation has also been considered in a least squares estimation

context by Dogancay in Ref. [16].

In Chapter 4, an approach is developed to jointly estimate the sensor biases

and the unknown POI state in a decentralized manner, while using the solution

from the onboard navigation system to save significant computation. The decen-

tralized formulation allows the UAVs to share information on only the POI state,

and model only their local biases, saving computation as well as communication,

and moreover, giving geolocation accuracy comparable to the centralized case.

Further, this decentralized approach fits nicely into the decentralized data fusion

paradigm [17, 59] and allows for effective cooperation not only among UAVs with

potentially different biases but different sensors altogether. A numerical observ-

ability analysis procedure is also developed in Chapter 4 and applied, which gives

a meaningful measure of the degree of observability and also gives insight into the

effects of UAV flight path on observability. The new decentralized approach is

validated using both experimental flight data and high fidelity hardware in the

loop simulations.
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1.3 Communication Loss

Communication is an important component of the cooperative estimation process,

and recent research has focused on the effects of digital communication in both

control and estimation. Delchamps [14] presented a seminal work describing the ef-

fect of quantization on controller performance. More recently, significant work has

been done on the effect of network communication between sensors, controllers,

and system plants [60, 69, 52, 70]. In addition to quantization effects, the co-

operative estimation system must be robust to communication losses and delays.

For example, in autonomous underwater vehicle applications, communication is

particularly limited in reliability as well as bandwidth. In [1], Akyildiz et al char-

acterize the underwater communication channel noting that communication is lost

or delayed frequently due multi-path and obstructions.

The problem of cooperative estimation in the presence of communication loss

is considered in Chapter 5. Communication loss refers to a situation in which the

sensor nodes are unable to communicate with each other for a period of time that is

unknown a priori. It is assumed here that the communication losses are symmetric

and known by each sensor node. Communication delay is a related problem and

refers to the situation in which sensor nodes must communicate over a medium

which induces potentially unknown and varying delays in the data transmission;

for example, communication over an ad hoc wireless network. It is assumed here

that the delays are not symmetric between nodes and there is no confirmation of

receipt provided from the receiving node. In this case, any time a sensor node

sends data, it will have no knowledge of how long before the data is received at the

other end. Also, there is no guarantee that the data will be received at a sensor

node in the order it was generated. Under this scenario, it is the responsibility of
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the receiver to make effective use of the data received, even if the data is both late

and out of order.

The delayed data problem was explored in the Kalman filtering domain by

Larsen et al. in Ref. [35], where the focus was on estimation with a combina-

tion of fast and slow sensors. In Ref. [30], Julier and Uhlmann developed an

approach algebraically equivalent to the results of Larsen. In a centralized esti-

mation framework, Bar-Shalom developed an exact solution for out-of-sequence

measurements[3]. Nettleton and Durrant-Whyte [44] examined the delayed data

problem in the information filtering domain, which is more amenable to decentral-

ized sensor fusion. This approach is theoretically equivalent to centralized esti-

mation in linear systems, but requires large memory and bursty communication.

None of the existing methods address the communication loss (or delay) problem

in the nonlinear decentralized estimation context. These cases arise when the POI

dynamics or measurements are nonlinear, which is common in the UAV tracking

problem [11].

In Chapter 5, a new method is developed for decentralized estimation using

multiple UAVs communicating over a lossy network. The new method, termed

the Predicted Information (PI) method, is developed as an approximation to the

Separable Extended Information Filter (SEIF), which is an alternate form of the

Extended Information Filter (EIF) derived in Appendix A. The basic concept of

the PI method is to predict the information matrix updates during the communica-

tion loss to more easily update the estimator when communication is re-established.

Two variations are presented that trade accuracy with computation, memory, and

communication load. The first variation estimates the information matrix updates

over time, while the second variation uses a piecewise constant approximation to
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the information matrix updates. Although the delayed data problem is not specif-

ically addressed here, the PI method can be used with delayed data but requires

minor modifications.

1.4 Experimental and Simulated Flight Data

Each of the three theoretical developments in this dissertation are validated using

experimental flight data using the ScanEagle UAV. Flight tests were performed on

October 6, 2004 [11], March 18, 2006 [67], and March 16, 2007 [57]. In addition to

using the flight tests for validation, the 2006 flight test was used for a parametric

study of the effect of various flight parameters on geolocation accuracy [67]. The

results of the study are included in Chapter 6.

A high fidelity hardware in the loop (HiL) simulation test bed for distributed

tracking was also developed. The distributed tracking test bed was used for val-

idation of both the bias estimation and communication loss algorithms. Further,

the simulation test bed was used in the experimental demonstrations of a flight

test of cooperative tracking. [58]
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CHAPTER 2

SQUARE ROOT SIGMA POINT INFORMATION FILTER FOR

COOPERATIVE GEOLOCATION

This Chapter provides a reproduction of the journal article developing the

Square Root Sigma Point Information Filter. c©2007 IEEE. Reprinted, with

permission, from IEEE Transactions on Control System Technology, Cooperative

Tracking Using Vision Measurements on SeaScan UAVs, Mark E. Campbell and

William W. Whitacre.

2.1 Abstract

A cooperative tracking approach for uninhabited aerial vehicles with camera based

sensors is developed and verified with flight data. The approach utilizes a square

root sigma point information filter, which takes important properties for numer-

ical accuracy (square root), tracking accuracy (sigma points), and fusion ability

(information). Important augmentations to the filter are also developed for de-

layed data, by estimating the correlated processes, and moving targets, by using

multiple models in a square root interacting multiple model formulation. The fi-

nal form of the algorithm is general and scales well to any tracking problem with

multiple, moving sensors. Flight data using the SeaScan UAV is used to verify

the algorithms for stationary and moving targets. Cooperative tracking results are

evaluated using multiple test flights, showing excellent results.
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2.2 Introduction

Tracking of stationary and moving targets with multiple sensors is a problem of

wide reaching importance with obvious and abundant military applications. Other

missions include search and rescue [12], factory surveillance [50], and even animal

migration [53]. It is well known that data fusion techniques can significantly in-

crease the information (decrease the uncertainty) of the target being tracked based

on multi-sensor measurements [17]. Challenges arise, however, when the sensors

themselves are moving. Such a problem exists with multiple uninhabited aerial

vehicles (UAVs) tracking ground targets. Enabled by digital off the shelf cameras,

UAV systems are now being developed with visual cameras on board. The use of

such off the shelf systems can lead to missions involving a fleet of UAVs tracking

and classifying multiple targets on the ground. These UAVs are very complex

systems which require the integration of several hardware components (camera,

UAV, GPS, attitude sensors) and software components (camera image processing,

inner loop and path planning control, and estimation software) in order to develop

realistically accurate estimates of the object being tracked.

In other research related to using vision on UAVs, several groups are using

vision systems for navigation, such as for road following [20] or obstacle avoid-

ance [34]. The latter implements a bearings-only Simultaneous Localization and

Mapping (SLAM) algorithm to localize both the vehicle and obstacles and navigate

using only a low cost inertial measurement unit and a monocular camera. Ridley

et al [51] and Grocholsky et al [23] have implemented UAV systems with cameras

using decentralized fusion (information filtering) concepts. Several other groups

have implemented gimballing camera systems on UAVs [25, 26], a few with initial

target tracking results [49, 63, 15]. Kaaniche [31] et al present an interesting traffic
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surveillance approach with UAVs using a graph cut formulation and a verification

step. Stepanyan and Hovakimyan [56] demonstrate visual tracking of one aircraft

with another aircraft using only a monocular camera. In a more closely related

work Vercauteren and Wang [62] develop a Sigma Point Information Filter.

Most of these works typically only address a subset of the important require-

ments for vision tracking systems for production UAVs, namely 1) scalability to

a modest number of UAVs, 2) robustness to communication loss and bandwidth

limitations, and 3) numerical stability and efficiency in real time implementation

for nonlinear, decentralized tracking.

This paper details the theoretical development of a distributed, cooperative

estimation methodology for multiple UAVs which track stationary and moving

ground targets with on board cameras which meets all of the above requirements.

Key attributes of the proposed cooperative geolocation tracking estimator are:

Decentralized: Each vehicle has its own geolocation estimator, and then com-

municates only necessary information to the other vehicles. This minimizes

memory and communication, and enables network robustness.

Simplified Prediction: Only the target dynamics are used in the prediction por-

tion of the estimator, thus allowing half of the estimator to scale very well

with the number of vehicles.

Information Form: An information form is used to 1) minimize the amount of

information shared between vehicles, 2) simplify the multiple vehicle fusion

problem, and 3) simplify the problem of delayed data (from communication

drop-outs). For single vehicle tracking the use of the information form leads

to a slight increase in the computational burden. However, when performing
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tracking with cooperative vehicles, the information form can significantly

reduce the amount of computation.

Sigma Points: Sigma points are used to develop statistical linearizations of the

dynamics, which have been shown to be more accurate than the traditional

Extended Kalman Filter (or the Extended Information Filter) [27]. The

use of sigma points requires a small increase in computation compared to

the Extended Kalman or Information Filters. However, it is proposed here

that the increase in tracking performance with the nonlinear measurement is

justification for this increase in computational cost.

Square Root: A square root version of the estimator is used for its numerical

accuracy in real time implementation. The square root implementation re-

quires very little additional complexity when used in conjunction with sigma

points. The square root version is equivalent in computation to the Square

Root Sigma Point Filter [6], which was shown to work in real time at 20Hz

for an UAV aerodynamic model estimator [9].

Multiple Model: A multiple model form is used to more accurately track ma-

neuvering targets.

In addition to the theoretical developments, the work here is validated using

flight test data for tracking a moving target using the SeaScan UAV both coopera-

tively and noncooperatively, demonstrating excellent results. The SeaScan [61, 24]

is a long endurance (24+hours) UAV developed by the Insitu Group, and is now

a key component in Boeing’s UAV strategic plan.

The paper is outlined as follows. The next section gives an overview of the

geolocation problem, followed by the decentralized estimation architecture, square

root estimator with extensions for delayed data and multiple model implementa-
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tion. The subsequent section details the SeaScan UAV and its components. The

final section includes the flight test results for geolocation tracking of stationary

and moving objects.

2.3 The Cooperative Geolocation Tracking Problem

Figure 2.1 shows a conceptual scenario for the geolocation problem. The aircraft,

based on its position and orientation, points the camera (through a gimballing pay-

load mount inside the UAV) at the Point of Interest (POI) on the ground which

shows up as a projection on a screen. While the aircraft is moving (navigation and

orientation), and the POI is potentially moving, the camera gimbals must adjust

their angles to point at the POI. The objective of geolocation is then to estimate

the position (2D or 3D) of the POI from the aircraft, gimbal, and camera measure-

ments. Geolocation also requires the camera to remain directed at the POI while

the UAV and POI are moving, or else the measurement would not exist. Com-

plicating this problem are uncertainties in the aircraft position and orientation,

gimbal angles, camera specifications and measurements, and disturbances such as

turbulence and engine vibrations. Each UAV then communicates information to

every other UAV to fuse together a cooperative estimate of the POI.

Building a centralized estimator on each UAV, including UAV and gimbal mod-

els for each UAV and a target model, would require a very high load of computa-

tion, memory, and communication. Fortunately, most UAVs use an inertial mea-

surement system which includes estimators that provide statistics (estimates and

covariances) for both the UAV attitude and navigation. As described in [10] for

one vehicle, these UAV attitude and navigation estimators can be used to simplify
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Figure 2.1: Overview of the cooperative geolocation problem, showing the tracking
Point of Interest (POI) on the ground, with multiple UAVs pointing cameras at
the POI.

the geolocation tracking estimator. In this case, the dynamics for the single UAV,

single POI tracking problem are written formally as

ẋPOI = fPOI(xPOI,wPOI) (2.1)

zSCR = gSCR(xPOI,




xNAV

xATT

xGIM



,vSCR) (2.2)

where xPOI is the POI state vector, xNAV,xATT,xGIM are the UAV navigation (NAV),

attitude (ATT), and turret gimbal (GIM) states and zSCR is the location of the

POI in the camera screen (SCR). Estimates of the NAV, ATT, and GIM states are

assumed to be provided from other on-board estimators or measurements in the

form N (x̂(·), P(·)).
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Consider now an estimator designed to provide the statistics of the POI state

(x̂POI, PPOI). The prediction step is based on (2.1), and as such, only requires the

POI model. The update step, based on (2.2), requires a more complicated least

squares solution using all of the available statistics (POI,NAV,ATT,GIM). The

update step, in this case, is similar in context to that of a fully centralized Ge-

olocation estimator (taking into account all random variables), but not producing

estimates for the aircraft or gimbal states (thus being less complicated, and less

sensitive to model errors/tuning of these other estimators).

The cooperative UAV tracking problem uses the same POI dynamics in (2.1),

and is not a function of any of the UAV vehicle states. Therefore, the POI predic-

tion scales very well with the number of cooperating UAVs. The update, however,

must scale with measurements and statistics from each UAV. The measurements

in this case are written for N UAVs tracking the same POI as:




z1
SCR

...

zN

SCR




=




g1
SCR

(xPOI,




x1
NAV

x1
ATT

x1
GIM



,v1

SCR
)

...

gN

SCR
(xPOI,




xN

NAV

xN

ATT

xN

GIM



,vN

SCR
)




(2.3)

Note that the POI state, xPOI, is common in the measurements across all UAVs.

Figure 2.2 shows the proposed decentralized architecture of the Geolocation

estimator in a block diagram with i(·), I(·) representing the information about the

POI that is shared between vehicles. In this case, the model prediction step has

been reduced to only propagating the POI model (thus, no aircraft or gimbal

models are required). The least squares (LS) update step is more complicated
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Figure 2.2: Architecture for a single UAV in the proposed decentralized geolocation
estimator for cooperative vehicles tracking points of interest.

because of the stochastic dependency on the aircraft and gimbal states.

2.4 Square Root, Sigma Point Information Filter (SR-

SPIF)

A square root, sigma point information filter is developed in this work to solve the

cooperative geolocation problem. The square root formulation is used to main-

tain numerical integrity in real time. The sigma point formulation is used for its

accuracy with nonlinear dynamics and nonlinear measurement equations. An in-

formation form is used for ease in fusing measurements from other UAVs. This

section presents the base estimator with the simplified prediction step, while the

next section details the cooperative fusion of estimates from multiple vehicles and

the handling delayed data, followed by the interactive multiple model implemen-

tation. As background, details on information and sigma-point filtering can be

found in [27], [50], [6], and [42].
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The continuous dynamic model in Equations 2.1, 2.2 is first discretized to form

xPOI,k+1 = xPOI,k + ∆TfPOI(xPOI,k,wk) (2.4)

= fDPOI(xPOI,k,wk)

zSCR,k+1 = gSCR(xPOI,k+1,




xNAV,k+1

xATT,k+1

xGIM,k+1



,vSCR,k+1) (2.5)

where xPOI,k ∈ R
nPOI×1. The process and sensor noises, wk ∈ R

nw×1,vSCR,k+1 ∈

R
nSCR×1 are uncorrelated, zero mean, white processes with covariance

Pw,k, PSCR,k+1.

Now consider an augmented state vector defined as,

xa,k =




xPOI,k

wk


 (2.6)

where xa,k ∈ R
na , and na = nPOI + nw.

The initial augmented state estimate and square root covariance are assumed

to be,

x̂a,0 = E[xa,0] (2.7)

=




xPOI,0

0[nw,1]




Sa,0 =




√
PPOI,0 0

0
√
Pw,0


 (2.8)

=



SPOI,0 0

0 Sw,0




where 0[nw,1] is a column vector of zeros with length nw. The covariances are
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factored using P(·) = ST(·)S(·), where S(·) is an upper right triangular square root

covariance matrix.

Next, 2na + 1 sigma points are defined,

Xa,0 =

[
x̂a,0, x̂a,0 · 1[1,na]+σfSa,0, x̂a,0 · 1[1,na]−σfSa,0

]

=



XPOI,0

Xw,0


 , (2.9)

where σf is a scaling for the distance of the sigma points from the mean, and 1[1,na]

is a 1× na row vector of ones. A set of associated weights is then defined, which

can be used to find the sample mean/covariance:

W 0
m =

σ2
f − na

σ2
f

W 0
c =

σ2
f − na

σ2
f

+ 3−
σ2
f

na
,

W = W j
m = W j

c =
1

2σ2
f

, j = 1, · · · , 2na (2.10)

where m, c denote mean and covariance respectively.

The SR-SPIF algorithm requires three steps: SR-SPIF Prediction, Conversion

from Prediction (na) to Update (n2a), and SR-SPIF Update.

2.4.1 SR-SPIF Prediction

The SR-SPIF prediction step propagates each of the 2na+1 sigma points through

the nonlinear dynamics (2.11) and evaluates the sample mean (2.12). The predic-
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tion step is based on the POI model given in (2.4).

X j−
POI,k+1 = fDPOI(X jPOI,k,X

j
w,k), j = 0, · · · , 2na (2.11)

x̂
−
POI,k+1 =

2na∑

j=0

W j
mX j−POI,k+1, (2.12)

X c0−
POI,k+1 = X 0−

POI,k+1 − x̂
−
POI,k+1 (2.13)

X c−
POI,k+1 =

[
X 1−

POI,k+1 − x̂
−
POI,k+1 ,· · ·, X 2na−

POI,k+1 − x̂
−
POI,k+1

]
(2.14)

The square root covariance for the POI states is formed through an orthogonal-

ization and Cholesky update for the 0th sigma point, as its weight W 0
c could be

negative.

S−
POI,k+1 = up{

√
W · orth{(X c−

POI,k+1)
T }, (X c0−

POI,k+1)
√
|W 0

c |, sgn(W 0
c )} (2.15)

With S−
POI,k+1 being upper triangular and only representing the POI states, the

square root information matrix can be calculated with modest computation,

R−
POI,k+1 = orth

{(
S−

POI,k+1

)−T}
(2.16)

where Y(·) = RT
(·)R(·) defines the information matrix Y(·) and its upper right trian-

gular, square root information factor R(·).

2.4.2 Conversion from Prediction (na) to Update (n2a)

Converting to a form for the update step requires additional information based on

the dependency of the output equation on the aircraft navigation, attitude, and

gimbal states. Specifically, the augmented state vector xa,k from the prediction

step must now be further augmented for the update step to include the NAV,

ATT, and GIM states as well as the sensor noise. The secondary augmented state
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vector is then written as

x2a,k =




xa,k

vSCR,k

xx2,k




(2.17)

where the secondary states are defined as xx2,k =
[
xT

NAV,k+1,x
T
ATT,k+1,x

T
GIM,k+1

]T
.

The dimension of the secondary augmented vector is x2a,k ∈ R
n2a×1, where n2a =

na + nSCR + nx2.

As shown in Fig. 2.2, the statistics available for the update from the air-

craft include estimate and square root covariance for the aircraft navigation

(x̂NAV,k+1, SNAV,k), the aircraft attitude (x̂ATT,k+1, SATT,k+1), and the gimbal point-

ing (x̂GIM,k+1, SGIM,k+1). It is assumed that square root information factors for each

variable are also available, either as the output of a square root information filter,

or through the modest computation of inverting the square root covariance. Thus,

the secondary state estimates and square root covariance/information factors are

written formally as

x̂−
x2,k+1 =




x̂NAV,k+1

x̂ATT,k+1

zGIM,k+1




(2.18)

S−
x2,k+1 =




SNAV,k+1 0 0

0 SATT,k+1 0

0 0 SGIM,k+1




(2.19)

and R−
x2,k+1 = orth

{
(S−

x2,k+1)
−T

}
.

The centralized sigma points are now updated (in the case of POI from the

previous sigma points in Equations 2.11,2.13, and 2.14) and defined (in the case
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of SCR and the secondary states) as shown in (2.20).




X c0−
POI,k+1

X c0−
SCR,k+1

X c0−
x2,k+1




=




X c0−
POI,k+1

0[nSCR,1]

0[n2,1]




(2.20)




X c−
POI,k+1

X c−
SCR,k+1

X c−
x2,k+1




=




X c−
POI,k+1 X c0−

POI,k+1 · 1[1,2nSCR] X c0−
POI,k+1 · 1[1,2nx2]

0

[
+SSCR,k+1 −SSCR,k+1

]
0

0 0

[
+S−

x2,k+1 −S−
x2,k+1

]




The propagated sigma points are calculated by adding the mean, or



X 0−
POI,k+1

X 0−
SCR,k+1

X 0−
x2,k+1




=




X c0−
POI,k+1

X c0−
SCR,k+1

X c0−x2,k+1




+




x
−
POI,k+1

0[SCR,1]

x
−
x2,k+1




,




X−
POI,k+1

X−
SCR,k+1

X−
x2,k+1




=




X c−
POI,k+1

X c−
SCR,k+1

X c−x2,k+1




+




x
−
POI,k+1

0[SCR,1]

x
−
x2,k+1



· 1[1,2n2a] (2.21)

Finally, the sigma point weights are updated for the augmented state vector

with n2a states in the system. As shown in (2.10), only the central (0) sigma point

weights must be updated

W 0
m =

σ2
f − n2a

σ2
f

, W 0
c =

σ2
f − n2a

σ2
f

+ 3−
σ2
f

n2a
(2.22)

2.4.3 SR-SPIF Update

The SR-SPIF update is similar to an update on the square root information form.

First, the state sigma points are propagated through the nonlinear measurement
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equation (2.5), and sample mean and measurement sigma points are calculated.

Zj
SCR,k+1 = gSCR(X j−

POI,k+1,X j−
x2,k+1,X j−

SCR,k+1), j = 0, · · · , 2n2a

ẑ
SCR,k+1 =

2n2a∑

j=0

W j
mZjSCR,k+1 (2.23)

Zc0
SCR,k+1 = Z0

SCR,k+1 − ẑ
SCR,k+1

Zc
SCR,k+1 =

[
Z1

SCR,k+1 − ẑ
SCR,k+1 , · · · ,Z2n2a

SCR,k+1 − ẑ
SCR,k+1

]

Next, the stochastic linearization of the nonlinear measurement is found using

the state-measurement cross covariance,

PPOIx2,SCR = W ·



X c−

POI,k+1

X c−x2,k+1




(
Zc

SCR,k+1

)T
+ (2.24)

W c
0 ·



X c0−

POI,k+1

X c0−x2,k+1




(
Zc0

SCR,k+1

)T
(2.25)

CSCR,k+1 = (PPOIx2,SCR)T




P−1
POI,k+1 0

0 P−1
x2,k+1


 (2.26)

where P−1
POI,k+1 and P−1

x2,k+1 are computed as

P−1
POI,k+1 =

(
R−

POI,k+1

)T
R−

POI,k+1

P−1
x2,k+1 =

(
R−
x2,k+1

)T
R−
x2,k+1 (2.27)

The square root information state and gain are then calculated,

ik+1=




R−
x2,k+1x̂

−
x2,k+1

RSCR,k+1


νk+1 + CSCR,k+1




x̂
−
POI,k+1

x̂
−
x2,k+1










(2.28)

Ik+1= RSCR,k+1CSCR,k+1 (2.29)

where νk+1 is the measurement innovation and is given by

νk+1 = zSCR,k+1 − ẑ
SCR,k+1 (2.30)
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The square root information state and gain are subsequently used for two pur-

poses: 1) on-board the current UAV in its SR-SPIF geolocation estimator, and

2) communicating to the other UAVs for fusion into their SR-SPIF geolocation

estimators.

An orthogonalization is performed to find the updated square root information

matrix for the POI states RPOI,k+1,

Tk+1



RPOI,k+1 RPOI,x2,k+1

0 Rx2,k+1


= orth











R−

POI,k+1 0

0 R−

x2,k+1




Ik+1








(2.31)

Finally, the POI state estimate, x̂POI,k+1, and square root covariance, SPOI,k+1, are

calculated, (2.32) and (2.33), to be used both for the next sigma points and for

the geolocation tracking outputs.

x̂POI,k+1 =

[
R−1

POI,k+1 −R−1
POI,k+1RPOI,x2,k+1R

−1
x2,k+1

]
·

T Tk+1



R−

POI,k+1x̂
−
POI,k+1

ik+1


 (2.32)



SPOI,k+1 SPOI,x2,k+1

0 Sx2,k+1


= orth







R−1

POI,k+1 −R−1
POI,k+1RPOI,x2,k+1R

−1
x2,k+1

0 R−1
x2,k+1







(2.33)

The calculations in (2.32) and (2.33) are computationally moderate because they

are required for the POI states only, or the first nPOI states of the updated state

and covariance, and the inversions are of upper right triangular matrix factors.

The sigma points are then re-calculated for the prediction step as in (2.9) and

the process repeats.
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2.4.4 Cooperative Fusion

Fusion of estimates from multiple UAVs tracking the same POI is now a straightfor-

ward integration of the information state and gains received from the other UAVs

into the update equations (2.31)-(2.33). First, the information gain is decomposed

into partitions associated with the POI and secondary states of each UAV. For the

jth UAV, this is defined as

[Ik+1]
j =

[
[IPOI,k+1]

j [Ix2,k+1]
j

]
(2.34)

Equations 2.31-2.33 are then rewritten in a form for cooperative fusion over N

UAVs tracking the POI as shown in (2.35),(2.36), and (2.37).

Tk+1




RPOI,k+1 RPOI,x2,k+1

0 Rx2,k+1




=orth











R−
POI,k+1 0 0 0

0 [R−
x2,k+1]

1 0 0

. . .

0 0 0 [R−
x2,k+1]

N







[IPOI,k+1]
1 [Ix2,k+1]

1 0 0

... 0
. . .

[IPOI,k+1]
N 0 0 [Ix2,k+1]

N











(2.35)

x̂POI,k+1 =
[

R−1
POI,k+1 −R−1

POI,k+1RPOI,x2,k+1R
−1

x2,k+1

]
TT

k+1




R−
POI,k+1x̂

−
POI,k+1

[ik+1]
1

[ik+1]
2

...

[ik+1]
N




(2.36)




SPOI,k+1 SPOI,x2,k+1

0 Sx2,k+1



=orth








R−1
POI,k+1 −R−1

POI,k+1RPOI,x2,k+1R
−1

x2,k+1

0 R
−1

x2,k+1








(2.37)
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2.5 Augmentations to the Geolocation Filter

Three augmentations to the SR-SPIF geolocation filter are considered here because

of their importance to the final solutions: 1) Additional sensor measurements, 2)

Delayed communication transmissions, and 3) Multiple model tracking. Each of

these is described in the following subsections.

2.5.1 Additional sensor measurements

In the development of the SR-SPIF, the measurement of the target was assumed

to be the location of the target image in the camera screen (SCR). Frequently, a

reasonable estimate of the POI altitude, zh, is available (Ocean vessels, tracking a

ground target with a terrain map). When the altitude is provided as an estimate,

it can simply be appended to the list of measurements with the corresponding

measurement equation as




zSCR

zh


 =




gSCR(xPOI,




xNAV

xATT

xGIM



,vSCR)

gh(xPOI,vh)




(2.38)

In the current application, the inclusion of an altitude measurement can sig-

nificantly improve the tracking performance especially for highly maneuverable

targets because, when a single UAV using a camera tracks the POI, the states of

the POI are instantaneously unobservable. Adding an estimate of the POI alti-

tude, or using two UAVs to cooperatively track a POI, improves observability of

the POI states and therefore improves geolocation performance (convergence and
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steady state). It is noted that additional sensor measurements, such as laser or

radar measurements, can be addressed in a similar manner.

2.5.2 Estimation with Delayed Data

It is important in cooperative estimation schemes that all measurement data is

time stamped, and fused at the appropriate time. This implies that when data

is delayed, either because of a communication lag, communication blackout, or

problem with the camera or estimator, the cooperative estimation algorithms must

robustly handle each situation to provide accurate tracking results.

When considering delayed data problems, solutions differ over three important

metrics: tracking accuracy, memory storage (communication), and computation.

The simplest method to address delayed data is to simply not fuse any information

that is not communicated; therefore, fusion only occurs when communication is

working. This approach uses little memory storage and communication, but is low

performing, especially with lossy communication systems. Therefore, it should

only be used in systems with robust communications.

A second approach is to spawn a new information filter when there is a com-

munication drop, and then communicate all information in a small burst when

communication is working again. This approach, which also has good memory

and communication properties, is alluded to in [44] as a common, conservative

option. But, as described in [40], this approach yields suboptimal results as com-

pared to the centralized solution. In fact, the results are not conservative, but

overly optimistic. This is a result of the inherent coupling between the incoming

information streams as a result of the common process noise model (for the POI
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states).

A third method addresses the performance shortcomings of the first two. This

method stacks all information to be shared in a queue, and guarantees the infor-

mation is communicated, even if it is shared at a much later time. This method

is similar in concept to that described in [44]. When information is received, the

on-board system goes back to the time stamp of the incoming data, and iterates

the filter up to the current time. This method, if implemented correctly, can match

or even exceed the performance the centralized, no loss solution. This is because,

with nonlinear dynamics and measurements, one could, in theory, smooth and fil-

ter the estimates using the measurement data. The disadvantage of this method is

that it requires large amounts of storage, high computation, and at times bursty

communication.

A fourth method is proposed and described here. This method attempts to

spawn a new, modified information filter when communication is dropped. Specif-

ically, when communication is stopped, a new information filter is spawned, where

the initial condition on the information state and gain is zero. The new aspect of

this filter is that, while the vehicles are not communicating, the correlated infor-

mation between the vehicles is estimated.

To understand the method more clearly, consider the case of two UAVs tracking

the same POI. In this example, full information (not square root) forms and only

the information gain are considered to improve clarity of the discussion; square

root versions are easily derived as modified versions of the previous SR-SPIF es-

timator. At time k, each UAV has communicated with the other such that they

have common information on the POI states, Yk. On-board UAV1, the geolocation

estimator attempts to fuse its own information gain from the measurements, I1,k,

as well as the information gain that is to be communicated from the second UAV,
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I2,k. For this case, one can write a discrete Hamiltonian, which represents both

the prediction and update steps in matrix form,



Xn,k+1

Xd,k+1


 =




A−T
k (I1,k + I2,k) A−T

k

A−T
k + QA−T

k (I1,k + I2,k) QA−T
k







Xn,k

Xd,k


 (2.39)

where Ak is the linearized states dynamics matrix, and Q is the process noise

covariance. The updated information matrix is then written as

Yk+1 = Xd,k+1X
−1
n,k+1 = [Ȳk + Ī1,k + Ī2,k] · [I + Q(Ȳk + Ī1,k + Ī2,k)]

−1 (2.40)

and (̄·) indicates propagation through the system matrix, or A−T
k (·)A−1

k . This

form clearly shows the different elements of the fusion problem: 1) information is

added, 2) information is discounted due to the correlated process noise Q, and 3)

information is discounted due to the dynamics (̄·).

Consider the case when there may be a communication drop (or delayed data).

Ideally, the information on UAV2, which is to be communicated to UAV1, must be

processed and stored for eventual communication in the future. Equation 2.40 is

then considered on UAV1, when the information is not received from UAV2, but

separating the primary component of (Ī2,k), or

Yk+1 = [Ȳk + Ī1,k] · [I +Q(Ȳk + Ī1,k + Ī2,k)]
−1 + (2.41)

[Ī2,k] · [I +Q(Ȳk + Ī1,k + Ī2,k)]
−1 (2.42)

The left term is similar to a filter implementation on UAV1 alone, with the excep-

tion of the discounted information from UAV2: QĪ2,k. The term on the right is

similar to that of propagating UAV2 information, but discounted by all information

(a priori, and from UAV1 and (2)): Q(Ȳk + Ī1,k + Ī2,k). This coupling through the

process noise is a key point. With no process noise, Q = 0, the information simply

adds. But the process noise creates a coupling, which in turn creates difficulties in

handling within the fusion process.
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The second approach described above, where a new filter is spawned and only

the new information is propagated through the system dynamics, leads to a fusion

term of the form (on UAV (2), being readied for communication to UAV1)

I2PO,k+1 = [Ī2,k] · [I +Q(Ī2,k)]
−1 (2.43)

This approach, termed“propagated information only (PO)”, is clearly too opti-

mistic in its generation of information, even for small process noise, compared to

the true information shown in (2.42).

The approach proposed here attempts to estimate the true UAV (2) informa-

tion, or the right hand term of (2.42). To do this, UAV2 must estimate the current

information Yk and the information on UAV1, Ī1,k. This is written as

I2PD,k+1 = [Ī2,k] · [I +Q( ˆ̄Yk + ˆ̄I1,k + Ī2,k)]
−1 (2.44)

This approach is termed “propagated discounted information (PD).” It is assumed

that the information gain and fused information on UAV1 do not change over small

periods of time. Thus, the information estimates are written as

ˆ̄Yl = Ȳk

ˆ̄I1,l = Ȳ1,k

where l ∈ {k + 1, · · · , k +M} (2.45)

where M is the number of time steps of the communication delay. This is a re-

cursion that enables very little memory or communication to be required, yet is

a good approximation of the fusion over small drops in communication. Because

these estimates are simply used to “discount” the current information to be com-

municated, the information fusion process holds for longer periods of delayed data

compared to the other methods. This approach typically begins to break down

when the information changes due to the nonlinear nature of the dynamics or

measurement.
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The following process is proposed for handling delayed data. When a commu-

nication drop occurs, three filters are started on each UAV. Consider the three

filters on UAV1: 1) a filter using no measurements from the UAV2 (left side of

(2.42) with Ī2,k = 0), 2) a filter using an estimate from UAV2 (left side of (2.42)

with ˆ̄I2,k = Ī2,k−1), and 3) a filter preparing discounted UAV1 information (right

side of (2.42) with indices 1,2 switched, and ˆ̄Yk = Ȳk−1, Ī2,k = ˆ̄I2,k−1). Filter #1

provides the best estimate based on the current information; filter #2 provides the

best filter for eventual fusion with UAV2 information; and filter #3 provides the

best UAV1 information for eventual communication to UAV2.

The delayed data options were evaluated using flight data from the SeaScan

UAVs (to be described later). The single UAV tracking estimators were used to

track a stationary target. At multiple times during the implementation, a com-

munication drop was simulated. Different estimators were evaluated: Single UAV,

two UAVs (continuous communication), two UAVs (communication drop, propa-

gated information only for fusion), two UAVs (communication drop, no fusion),

and two UAVs (new discounted information method proposed here). This pro-

cess was repeated over 25 flight data files; all data presented are averages of these

results.

Figure 2.3 shows a plot of the one sigma uncertainty volume for each of these

cases over time; a delay of M = 50 data points occurs at k = 300 (normalized

for each data file). The single UAV and two UAV (continuous communication)

cases present upper and lower bounds on the volume of the uncertainty ellipsoid

(inversely proportional to the information). In all cases, when communication is

dropped at k = 300, the uncertainty volume begins to increase. This is because

the tracking has converged to a pseudo-steady state solution before there is a
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communication drop. In the no fusion case, at k = 350, the volume begins to

decrease again, and eventually (∼ 100 time steps) converges back to the two UAV

solution (continuous communications). In the propagated information only case,

at k = 350, the volume immediately decreases to far below the level of the two

UAV limit, thus showing how it produces overly optimistic results. In addition,

a transient is created which takes a long time (> 400 time steps) to damp out.

In the proposed discounted information case, at k = 350, the volume immediately

decreases to a level that is approximately the same as the two UAV limit. This

shows that, even with a 50 time step delay, a nonlinear measurement and a moving

sensor on a UAV, the proposed discounted information approach works quite well.
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Figure 2.3: Plot of the one sigma uncertainty volume over time for several cases:
single UAV, two UAVs cooperating with full communication, and two UAVs coop-
erating with communication drops, with and without fusion.

Figure 2.4 compares three cases: no fusion, the queuing approach [44], and

the proposed, discounted information approach, using the three critical metrics

for delayed data problems: 1) the maximum memory storage required (which is

also coupled with the required communication), 2) the maximum computation

required during one cycle, and 3) the performance, defined here as the settling
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time for the volume to return to within 5% of the two UAV solution (continuous

communications). As shown, the no fusion case has the best (smallest) memory

and best (smallest) computation, but takes a longer time to converge back to the

steady state solution; it is noted that this convergence time increases with the delay

M . The queuing approach requires increasing levels of memory and computation,

but converges immediately back to the original answer. Finally, the discounted

information approach is always within 5% of the two UAV solution (continuous

communications), and requires only storing the current delayed information matrix

and state. There is a slight increase in computation, but it is also nicely distributed

across each UAV.
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Figure 2.4: Plot of the memory (communication), computation, and performance
(time to converge back to the two UAV solution) for the delayed data simulations.

2.5.3 Square Root, Interacting Multiple Model Filter (SR-

IMM)

In tracking systems with moving targets, an important algorithm is the Interact-

ing Multiple Model (IMM) filter [4]. The IMM is designed to run nm tracking

estimators with different dynamics models in parallel, and mix the results at each

time step to produce nm new estimates, as well as an estimate of the filter prob-

ability. This enables multiple types of targets, or multiple modes of targets, to

be explored. As an extension of the SR-SPIF, a square root interacting multiple
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model (SR-IMM) filter implementation is developed.

To begin, it is assumed that nm SR-SPIF geolocation estimators are available

using nm different dynamics models. This is defined as

xl
POI,k−1, S

l
POI,k−1 for l = 1, · · · , nm (2.46)

Also, available is a Markov chain transition matrix, P, such that the lth row and jth

column, P lj is the probability of switching from model l to model j. This transition

matrix is typically chosen using a priori knowledge of the model structure. A mode

probability is also defined, νlk−1, for l = 1, · · · , nm

Using the above definitions, a mixing coefficient matrix µ at time step k− 1 is

defined to be

µljk−1 =
1

c̄j
P ljνlk−1, for l, j = 1, · · · , nm (2.47)

where c̄j is a normalizing constant c̄j =
∑nm

l=1P ljνlk−1. The mixing coefficient

matrix µ is then used to find nm probabilistic mixes of the nm estimates/covariances

at time k − 1. The mixed state estimates are given as

x̂m
POI,k−1 =

nm∑

l=1

x̂l
POI,k−1µ

lm
k−1, for m = 1, · · · , nm (2.48)

And an orthogonalization is used to find each of the nm mixed square root covari-

ances

Tm
k−1S

m
POI,k−1 = orth





√
µ1m
k−1




S1
POI,k−1

(x̂1
POI,k−1 − x̂

m
POI,k−1)

T




...

√
µnmm
k−1




Snm

POI,k−1

(x̂nm

POI,k−1 − x̂
m
POI,k−1)

T








(2.49)

with the index, m, running from 1 to nm. Each of the nm mixed estimates and

square-root covariances at time k−1 are then propagated through the appropriate
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dynamics and fused with the measurement zSCR,k at time k using the SR-SPIF.

That is,

[x̂m
POI,k, S

m
POI,k, ẑ

m
SCR,k] =SR−SPIF

(
x̂
m
POI,k−1, S

m
POI,k−1, zSCR,k

)
(2.50)

for m = 1, · · · , nm

The mixing probabilities are then updated using measurement likelihoods, or

how likely a measurement zSCR,k is given a particular mixing model. The likelihood

is formally written as

Λm
k = P[zSCR,k|x̂mPOI,k−1, S

m
POI,k−1] (2.51)

This can be approximated as a normal distribution [4]

Λmk ≈ N [ẑm
SCR,k; zSCR,k, PSCR,k] (2.52)

=
1√

(2π)nSCR |PSCR,k|
e−

1

2
(ẑm

SCR,k
−zSCR,k)TPSCR,k(ẑm

SCR,k
−zSCR,k)

where PSCR,k = (SSCR,k)
TSSCR,k is the sensor noise covariance. The mixing proba-

bilities are then calculated by normalizing the likelihoods, or

νjk =
1

c
Λj
kc̄j for j = 1, · · · , nm (2.53)

where c =
∑nm

j=1 Λj
kc̄j . The process is now repeated starting at (2.47).

During operation, it is typically important to develop a single estimate for use

external to the estimator. In this case, the nm estimates are further mixed to find
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a single estimate and square root covariance, as follows.

x̂POI,k =

nm∑

j=1

x̂
j
POI,kν

j
k (2.54)

Tk−1SPOI,k−1 = orth





√
ν1
k




S1
POI,k

(x̂1
POI,k − x̂POI,k)

T




...

√
νnm

k




Snm

POI,k

(x̂nm

POI,k − x̂POI,k)
T








(2.55)

2.6 The SeaScan UAV

The SeaScan is a long endurance UAV developed by the Insitu Group [61], and is

now a key component in Boeing’s UAV strategic plan. The SeaScan is unique, as

compared to UAVs in other university testbeds, because it:

• has a maximum flight time up to 24 hours

• is very robust, with 15+ years of development and operations in weather

reconnaissance [24], crossing the Atlantic [38], and over 25,000 flight hours

in combat operations in theater since 2004

• has visual and infrared sensing capability

• has a payload capability for higher level autonomy

Cornell recently has worked with the Insitu Group on developing a payload capa-

bility for the SeaScan [9, 8], which has been used for several flight tests. Figure 2.5

shows the SeaScan UAV during flight.
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Figure 2.5: The SeaScan UAV in flight.

2.6.1 Avionics, Inertial/Attitude Estimation, Control

Loops

The SE555 processor board provides inner loop control and data management.

The SE555 board receives data from aircraft sensors and sends commands to con-

trol surfaces; flight path characteristics can be determined from pre-programmed

or in-flight commands. The air-to-ground communication is a data link used to

communicate aircraft status, control, and mission data, as well as to relay mes-

sages from payload modules. The avionics-to-payload communication is a data

link used to send sensor reports to the payload, and receive commands from the

payload. The SE555 board communicates serially with an on-board video gimbal,

issuing camera positioning commands as well as aircraft attitude and stabilization

data. The video signal bypasses the SE555 board and is sent directly to a ground

receiver via an onboard radio frequency link. The SE555 board also communicates
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serially with an onboard GPS receiver, receiving differential GPS data from the

ground to improve position and velocity solutions. The onboard sensors include

roll, pitch and yaw rate gyros; vertical, lateral and longitudinal accelerometers;

external temperature sensors; relative pressures of pitot, alpha, beta, gamma for

wind axes estimation; and absolute pressures of barometric and manifold.

2.6.2 Camera and Image Software

The centerpiece of SeaScan is a digital video camera integrated into an inertially-

stabilized pan / tilt nose turret. The daylight camera has an acuity ≈ 50% better

than that of the unaided eye at the telescopic end. It can resolve POIs such as

small boats and logs from five miles away. The operator can command the camera

to pan back-and-forth for wide-area search, or to remain locked onto a POI while

the aircraft maneuvers; the latter mode is used here.

Ground software processes the images from the camera. When the user se-

lects a POI for geolocation, the gimballing turret and ground software attempt to

maintain the POI in the center of the frame, from frame to frame. Therefore, the

“measurement” of the POI is assumed to be at the center of the image frame, as

shown in Fig. 2.6.

2.6.3 Sensor Measurement

The measurement equation, (2.2), is a complicated function of the UAV states

and the POI states, which yield the screen coordinates in terms of pixels. For

simplicity, it is assumed that the GPS antenna, center of the aircraft, and camera
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axes are all located at the same point. The full derivation of the measurement

equation is developed in [10], and a summary is presented here.

The sensor measurement is formally defined as the location of the POI in screen

coordinates, or PCI,

zSCR =



xS−PCI

yS−PCI


 (2.56)

The measurement is converted to camera (CAM) coordinates using the field of

view (FOV), as well as the rotations of the aircraft position with respect to the

Earth, attitude and gimbal.

zSCR =




xS−PCI

yS−PCI


 (2.57)

=




yC−PCI/λy

zC−PCI/λz


 (2.58)

=



RCAM

ECEF
(2)/λy

RCAM

ECEF
(3)/λz


 [RCAM

ECEF
(1) (xE−POI − xE−NAV)]

−1
(xE−POI − xE−NAV)

where

λy =
tan (FOV/2)

pmax−y
, λz =

tan (FOV/2)

pmax−z

are pixel length scale factors, pmax−(y,z) is the maximum camera pixels in the y, z

directions. The rotation RCAM

ECEF
is a combination of rotations from the camera

(CAM) to aircraft body (ABC) to aircraft in Local level East-North-up (ENU) to

the ECEF coordinates,

RCAM

ECEF
=




RCAM

ECEF
(1)

RCAM

ECEF
(2)

RCAM

ECEF
(3)




= (RECEF

ENU
RENU

ABC
RABC

CAM
)−1
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where the rotations, RECEF

ENU
, RENU

ABC
, and RABC

CAM
are given in (2.59), (2.60), and (2.61).

RECEF

ENU
=




−S(yE−NAV) −S(xE−NAV)C(yE−NAV) C(xE−NAV)C(yE−NAV)

C(yE−NAV) −S(xE−NAV)S(yE−NAV) C(xE−NAV)S(yE−NAV)

0 C(xE−NAV) S(xE−NAV)




(2.59)

RENU

ABC
=




S(ψ)C(θ) C(φ)C(ψ) + S(φ)S(ψ)S(θ) −S(φ)C(ψ) + C(φ)S(φ)S(θ)

C(ψ)C(θ) −C(φ)S(ψ) + S(φ)C(ψ)S(θ) S(φ)S(ψ) + C(φ)C(ψ)S(θ)

S(θ) −S(φ)C(θ) −C(φ)C(θ)




(2.60)

RABC

CAM
=




C(p) −S(p) 0

S(p) C(p) 0

0 0 1







C(t) 0 −S(t)

0 1 0

S(t) 0 C(t)







C(s) −S(s) 0

S(s) C(s) 0

0 0 1




(2.61)

and xATT = (φ, θ, ψ)T are the roll, pitch, and yaw of the aircraft, xGIM = (p, t, s)T

are the pan, tilt, and scan of the gimbal, xE−POI = (xE−POI, yE−POI, zE−POI)
T and

xE−NAV = (xE−NAV, yE−NAV, zE−NAV)T are the three dimensional POI and NAV states

in Earth centered, Earth fixed (ECEF) coordinates and S(·) and C(·) denotes sin ·

and cos · respectively.

Finally, the ECEF coordinates are converted to Latitude, Longitude, and Al-

titude (LLA) according to

xE−NAV = C(yL−NAV)C(xL−NAV)(zL−NAV +R2
a/Rav) (2.62)

yE−NAV = S(yL−NAV)C(xL−NAV)(zL−NAV +R2
a/Rav)

zE−NAV = C(xL−NAV)(zL−NAV +R2
b/Rav)

where Ra, Rb are the equatorial, polar radii, andRav =
√
R2
aC(xL−NAV)2 +R2

bS(xL−NAV)2.

The POI and NAV states in the LLA coordinate system then make up the de-

sired state vectors, xPOI = xL−POI = (xL−POI, yL−POI, zL−POI)
T and xNAV = xL−NAV =

(xL−NAV, yL−NAV, zL−NAV)T .
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Figure 2.6: Image taken from a flight test of the SeaScan; note that the POI is at
the center of the image frame.

2.7 Flight Results using the SeaScan UAV

Flight tests were performed on 6 Oct 2004 and 18 March 2006. A “truth” was

set up using a GPS antenna and receiver in a car near the flight test range. Over

five hours of flight tests were recorded over the two days using a variety of POIs.

The flight tests evaluated stationary and moving targets, different altitudes of the

UAV, and different orbits of the UAV including size and offset. In all tests, the

UAV tracked the target using the on-board algorithms and camera software. All

telemetry was saved to evaluate estimation and tracking accuracy as a function of

the different parameters.

Flight results comparing single and two UAV tracking results (time histories

and uncertainty ellipsoid evolution), correlation with UAV trajectories, stationary

and moving targets, with and without an attitude estimate, and an IMM filter

are presented. Although only a single UAV was used during these test flights,

enough test data was taken over repeated trials to allow cooperative estimation

using multiple UAVs to be evaluated. For stationary POIs, data over distinct time
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blocks were used. For moving targets, data over distinct time blocks for “similar”

POI motions were used. An error between the two POIs (for the two time spans)

was subtracted from both the second POI and the second UAV position in order to

create an appropriate data set. Given that the errors were small (several meters),

and the geolocation estimator simply uses, but does not estimate the UAV state,

this approach is very realistic compared to the true multiple UAV tracking problem.

It is noted that the specific performance data is scaled (by a factor L) due to ITAR

restrictions, but the implementation and relative comparisons are still clear.

2.7.1 POI Model

The model used for the geolocation tracking results for all implementations of

the SR-SPIF is a general purpose moving target model designed to capture the

nonholonomic constraint for a wheeled vehicle. The model is written as



ẋ

ẏ

ż

V̇

φ̇

Ω̇

ȧ




=




V S(φ)/Re

V C(φ)/(C(x)Re)

0

a

Ω

−Ω/ρΩ

−a/ρa




+




0

0

wz

0

0

wΩ

wa




(2.63)

where V, φ,Ω, a are the velocity, heading, turn rate and acceleration respectively, Re

is the radius of the Earth, and C(·) and S(·) denote cos (·) and sin (·) respectively.

For implementation, this continuous model is discretized using a forward Euler

scheme at 10 Hz.
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2.7.2 Stationary POI
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Figure 2.7: Plot of the tracking latitude and longitude errors and uncertainty
bounds for a stationary target, using single and two UAVs.

Figures 2.7 and 2.8 show the two dimensional tracking estimation results for a

stationary target using UAV orbits with centers off-set from the POI (as opposed to

the center of the orbit being directly overhead of the target). A noisy POI altitude

estimate is assumed. The errors and uncertainty bounds decrease significantly

near t = 800 for both the single and two UAV cases. This is a result of one of

the UAVs moving nearly overhead of the target, thus producing a very good, high

observability measurement of the POI. Notice also that the single and multiple

UAV estimates are very similar near t = 800 because the tracking is dominated

(in terms of accuracy) by only one UAV. The second observation is that, both the

errors and the uncertainties of the two UAV case are smaller than the single UAV

case. While intuitive, the error reduction is significant. The SeaScan is known to

have large bias errors in the attitude estimates [10]. By cooperatively tracking a

target, the sensitivities of the tracking system are reduced significantly.

Figure 2.8 shows the evolution of the uncertainty ellipsoids over time. In both
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Figure 2.8: Evolution of two dimensional tracking ellipsoids over time for single
(left) and two (right) UAV tracking systems.

the single and two UAV cases, the ellipsoids decrease in volume over time. For

the single UAV case, the initial ellipsoid is oblong and aligned with the bearing

measurement. This makes sense, as the camera is dominated by a near bearing

only sensor. As the UAV orbits about the target, the uncertainty ellipsoid rotates

along with the trajectory of the UAV. This is a result of the lack of observability of

the POI position using a single bearing camera (even with the noisy POI altitude

measurement). In the two UAV case, the initial uncertainty ellipsoid is closer to a

circular ellipsoid, and the actual shape is a function of the relative spacing (approx-

imately 60 deg in this case). The two UAVs provide bearing measurements from

different perspectives, thus improving observability and reducing the uncertainty

ellipsoid size equivalently in all directions.

2.7.3 Moving POI

Figure 2.9 shows an example of a geolocation problem using a moving POI. The

POI trajectory begins by moving southeast at a constant velocity, slows to a stop,

turns left, and increases to a constant speed moving northeast. Figure 2.9 shows

the true POI motion, as well as the UAV trajectories. Individual and cooperative

geolocation estimates are given at five evenly spaced measurements and the UAV
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locations at the time of the measurements are indicated by the triangles. A noisy

altitude measurement is assumed. Figure 2.10(a) shows the geolocation error for

the moving POI for the single and two UAV cases. In the single UAV cases, the

estimate errors (and their uncertainty bounds) increase when the vehicle moves

further away from being overhead of the POI. The two UAV case demonstrates

a small estimator error over the full time history. This is a result of the two

measurements compensating for each others observability problems. Figure 2.10(a)

shows the estimation errors with and without cooperative estimation and clearly,

the estimation errors are reduced significantly through cooperation.
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Figure 2.9: UAV trajectories (triangles indicate UAV locations for the estimates
shown), POI truth, and estimated POI for single and two UAV examples tracking
the POI.

2.7.4 With and Without POI Altitude Estimate

Figure 2.10(b) presents the same moving POI case, but without the use of a POI

altitude measurement available. For the single UAV case, by using the POI altitude

measurement, the geolocation error appears to be more stable in its convergence

than without the measurement, and the error is approximately half the size as
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(a) With altitude measurement.
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Figure 2.10: Latitude and longitude estimation errors for the single and multiple
UAV cases, and with and without attitude measurements.

when no POI attitude measurement is used; this difference increases with range

to the POI. The dependency on altitude measurement decreases in the two UAV

case, when there is only a ≈ 10% increase in error due to the lack of POI altitude

measurement. It is noted that these trends were similar for other examples such as

stationary targets. Errors (and differences) increased when the range to the POI

increased, such as when the vehicles were not overhead of the target or were at a
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higher altitude.

2.7.5 Implementation of the SR-IMM

The implementation of the SR-IMM estimator used nm = 3 tracking models. The

first is a Setpoint Cruising Model, which has the same kinematic equations as

the General Cruising Model (2.63) but with different dynamics equations which

attempt to maintain a predetermined speed with random disturbances in heading

rate and acceleration. That is



Ω̇

ȧ


 =




− Ω
ρΩ

+ wΩ

− a
ρa
− kac(V − Vc) + wa


 , (2.64)

where kac is the target’s velocity control gain and Vc is the cruising velocity. The

General Turning Model is identical to the General Cruising Model (2.63) except

for the turning rate and acceleration, which are given as



Ω̇

ȧ






kΩ(Ω3 − Ω · Ω2

c) + wΩ

− a
ρa

+ wa


 , (2.65)

where Ωc is the turning rate and kΩ is a control gain to determine how quickly

the target reaches the specified turning rate. Note that due to the squaring of Ωc,

both Ωc and −Ωc are equilibria of Ω and convergence depends on the disturbances

and the initial sign of the turning rate. The Stopping Model is also identical to the

General Cruising Model (2.63) except for the turning rate and acceleration, which

are given as 


Ω̇

ȧ


 =




− Ω
ρΩ

+ wΩ

− a
ρa
− kasV + wa


 , (2.66)

where kas is the control gain determining how quickly the target is brought to a

stop. This is chosen in conjunction with the parameter ρa to make the stopping
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critically damped so that the velocity is not negative during stopping.

Figure 2.11 shows the results for a single UAV tracking the same moving POI

example described earlier, using the SR-SPIF and the SR-IMM. For this example,

a noisy measurement of the POI altitude is used. Results show that the single

model geolocation estimator increases error when the POI makes a turn, which

is a discontinuity in the data. On the other hand, the SR-IMM estimate has a

very small error near the corner. While it is clear that the tracking performance

with the SR-IMM is better, it is noted that this comes at a cost, namely the

required computation and communication transmission scales with the information

associated with nm tracking models.
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Figure 2.11: Tracking a moving POI using a single UAV, with a single model
SR-SPIF and a nm model SR-IMM estimator.

2.8 Conclusions

A square root, sigma point information filter has been developed and validated

using flight test data from an autonomous uninhabited aerial vehicle with an on-
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board gimballing camera. The estimator provides numerical accuracy through its

square root form, accuracy in the solution through the use of sigma points, and

ease in data fusion and delayed data through its information form. A new coop-

erative data fusion method has been developed and verified, which provides more

accurate, discounted information between the vehicles especially during periods of

delayed or dropped data. Important requirements in numerical precision, accuracy

and memory exist for making this approach work in real time. Validation using

flight test data shows excellent, robust results for single/two UAV cases, with and

without altitude estimates, and using a multiple model filter. By using two UAVs

to track a target, the dependency on an altitude estimate decreases significantly.

Single UAV results are also quite sensitive to relative range to the target. Finally,

tracking using the multiple model filter provided significantly improved perfor-

mance as compared to an estimator with single model, with large errors occurring

at discontinuities in the data, such as during sharp corners or changes in velocity.
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CHAPTER 3

AN IMPROVED SQUARE ROOT SIGMA POINT INFORMATION

FILTER FOR COOPERATIVE GEOLOCATION

3.1 Introduction

In Chapter 2, cooperative geolocation is treated as a combined state and parameter

estimation problem but without completing the parameter update. The primary

drawback of that approach is the complicated form of the cooperative update which

requires knowledge of the cooperating UAV statistics. Furthermore, it requires

communicating information not only about the POI, but also about the states

of each of the UAVs. The approach here is to treat the errors of the onboard

navigation system as non-additive noise.

For the development of the improved square root, sigma point information filter

(SR-SPIF), the cooperative geolocation of a point of interest (POI) using multiple

uninhabited aerial vehicles (UAVs) with camera sensors is defined as follows. First,

define the state to be estimated, xPOI,k ∈ Rnx , to be the state of the POI, with

discrete time dynamics governed by

xPOI,k+1 = f(xPOI,k,wk) (3.1)

where the disturbance, wk ∈ Rnw , is zero mean, white, Gaussian noise with co-

variance Qk, and the subscript k denotes time step tk. Assume there are N UAVs

with states, xj
UAV,k+1, for j = 1, . . . , N , composed of UAV position, UAV attitude,

and camera attitude.

The UAVs are further assumed to have an onboard navigation system and

measurements of the camera gimbal angles, which give an estimate of the UAV
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state, x̂j
UAV,k+1. For clarity in the development of the SR-SPIF, a simple model is

used here and is given by

xj
UAV,k+1 = ψ

j

k+1 + ηjk+1, (3.2)

where the UAV state estimate error, ηjk+1, is zero mean, Gaussian, and white

with covariance, P
j

UAV,k+1. This model is known to not be theoretically correct

because the statistics are not white, but correlated through the navigation filter.

Many times the errors due to autocorrelation are small [39]. Biases may also exist,

however, which can have a significant effect on accuracy [67]. A decentralized

approach to bias estimation is presented in Chapter 4, as a way of improving

geolocation accuracy.

Measurements of the POI are made on each UAV using an onboard vision

system which maintains the pixel location of the POI in the camera screen. Math-

ematically, this vision measurement is modeled as

zjk+1 = gSCR(xPOI,k+1,x
j
UAV,k+1) + vj

SCR,k+1

= gSCR(xPOI,k+1,x
j
UAV,k+1 + ηjk+1) + vj

SCR,k+1 (3.3)

where the vision system noise, vj
SCR,k+1, is zero mean, white, Gaussian noise with

covariance Pj
SCR,k+1. Note that the camera measurement function in Equation 3.3

is a complicated nonlinear function of the POI state and the UAV state; a detailed

development is given in Ref. [10] with a summary provided in Appendix C.

Here the output of the navigation system is treated as the mean of a nonzero

mean noise, vj
UAV,k+1 = xjk+1 + ηjk+1, where the change of variables is for clarity as

the variable v is used here for noise terms. This leads to a measurement function

of the form

zjk+1 = hj(xPOI,k+1,v
j
k+1) = gSCR(xPOI,k+1,v

j
UAV,k+1) + vj

SCR,k+1 (3.4)
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where the combined noise vector, vjk+1 ∈ R
nv is given by

vjk+1 =




vj
UAV,k+1

vj
SCR,k+1


 , (3.5)

with mean vjk+1, given by

vjk+1 =




xj
UAV,k+1

0


 . (3.6)

Given the new formulation of the measurement, a Square Root, Sigma Point In-

formation Filter (SR-SPIF) can be developed to solve this cooperative geolocaiton

problem and it is detailed in the next section.

3.2 SR-SPIF Development

Consider an augmented state vector defined as,

xak =




xPOI,k

wk

vk




(3.7)

where xak ∈ Rna , and na = nx + nw + nv. The initial augmented state estimate

and square root covariances are assumed to be,

x̂a0 = E[xa0] =




x̂POI,0

w̄0

v̄0




(3.8)

Sa =




SPOI,0 0 0

0 Sw,0 0

0 0 Sv,0



, (3.9)
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where 0 is an appropriately sized matrix of zeros. Also, S(·) is an upper right

triangular Cholesky factor such that P(·) = ST(·)S(·). That is SPOI,0, Sw,0, and Sv,0

are the initial square root covariances for the state estimate, process noise, and

measurement noise, respectively.

Next, sigma points are defined as,

X0 =

[
x̂POI,0 x̂POI,0 · 1[1,nx]+σf ST

POI,0 x̂POI,0 · 1[1,nx]−σf ST
POI,0

]
(3.10)

W0 =

[
w̄0 w̄0 · 1[1,nw]+σf STw,0 w̄0 · 1[1,nw]−σf STw,0

]
(3.11)

V0 =

[
v̄0 v̄0 · 1[1,nv]+σf STv,0 v̄0 · 1[1,nv]−σf STv,0

]
(3.12)

where σf is a scaling for the distance of the sigma points from the mean, and

1[1,(·)] is a 1 × (·) row vector of ones. A set of associated weights is then defined,

which can be used to find the sample mean/covariance:

Wm
0 =

σ2
f − na
σ2
f

, W c
0 =

σ2
f − na
σ2
f

+ 3−
σ2
f

na
, W =

1

2σ2
f

, (3.13)

where m, c denote mean and covariance respectively.

The SR-SPIF algorithm requires three steps: State and Measurement Predic-

tion, Effective Additive Measurement Noise Covariance Computation, and Mea-

surement Fusion.

1. State and Measurement Prediction

The state prediction step propagates the state and disturbance sigma points

through the nonlinear dynamics (Eqs. 3.14 and 3.15) and evaluates the sample

mean (Eq. 3.16).

X−
j,k+1 = f(Xj,k,W0,k), j = 0, · · · , 2nx (3.14)

X−
j+2nx,k+1 = f(X0,k,Wj,k), j = 1, · · · , 2nw. (3.15)
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The predicted mean is then computed as

xPOI,k+1 = (Wm
0 + 2nvW )X−

0,k+1 +

d∑

j=1

WX−
j,k+1, (3.16)

where d = 2(nx + nw). The centered sigma points are computed by subtracting

the mean as

X c0
k+1 = X−

0,k+1 − xk+1 (3.17)

X c
k+1 =

[
X−

1,k+1 − xk+1 , · · · , X−
d,k+1 − xk+1

]
(3.18)

The square root covariance for the POI states is formed through an orthogo-

nalization and Cholesky update for the 0th sigma point, as its weight W 0
c could

be negative.

SPOI,k+1 = up
{√

W · orth
{
(X c

k+1)
T
}
, (X c0

k+1)
√
|W c

0 |, sgn(W 0
c )

}
(3.19)

For eventual fusion in the information domain, the square root information ma-

trix, RPOI,k+1, is computed. Since SPOI,k+1 is upper triangular, the square root

information matrix can be calculated with modest computation as

RPOI,k+1 = orth
{(

SPOI,k+1

)−T}
(3.20)

where RPOI,k+1 is the upper triangular square root factor of the information matrix

(inverse covariance), YPOI,k+1 = R
T

POI,k+1RPOI,k+1 = P
−1

POI,k+1.

For measurement prediction, the predicted state sigma points are propagated

through the nonlinear measurement equation as

Zj,k+1 = h(X−
j,k+1,V0,k+1), j = 0, · · · , d

Zj+d,k+1 = h(X−
0,k+1,Vj,k+1), j = 1, · · · , 2nv

(3.21)
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The measurement mean is computed by

zk+1 = Wm
0 Z0,k+1 +

2na∑

j=1

Wm
j Zj,k+1. (3.22)

The centered measurement sigma points are computed as

Zc0k+1 = Z0,k+1 − zk+1

Zck+1 =

[
Z1,k+1 − zk+1 , · · · ,Z2na,k+1 − zk+1

]

Next, the stochastic linearization of the nonlinear measurement is found using

the state-measurement cross covariance,

Pxz = WX c
k+1

(
Zck+1

)T
+W c

0X c0
k+1

(
Zc0k+1

)T
(3.23)

CPOI,k+1 = P T
xzR

T

POI,k+1RPOI,k+1 (3.24)

The square root information state and matrix updates are then calculated,

ik+1 = (S̃v,k+1)
−T

(
zk+1 − zk+1 + CPOI,k+1xPOI,k+1

)
(3.25)

Ik+1 = (S̃v,k+1)
−TCPOI,k+1, (3.26)

where S̃v,k+1 is the effective additive square root measurement error covariance

which is developed below. The square root information state and gain are sub-

sequently used for two purposes: 1) on-board the current UAV in its SR-SPIF

geolocation estimator, and 2) communicating to the other UAVs for fusion into

their SR-SPIF geolocation estimators.

2. Effective Additive Measurement Noise Covariance Computation

A set of associated weights is defined, which can be used to find the sample

mean/covariance:

W̃m
0 =

σ2
f − 2nv

σ2
f

, W̃ c
0 =

σ2
f − 2nv

σ2
f

+ 3−
σ2
f

2nv
, W̃ =

1

2σ2
f

, (3.27)
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The mean of the measurement sigma points coming from the sensor noise is

taken by

z̃k+1 = W̃m
0 Z0,k+1 +

2nv∑

j=1

W̃Zd+j,k+1, (3.28)

and then subtracted from the measurement sigma points to get new centered mea-

surement sigma points

Z̃c0k+1 = Z0,k+1 − z̃k+1

Z̃ck+1 =

[
Zd+1,k+1 − z̃k+1 , · · · ,Zd+2nv,k+1 − z̃k+1

]
(3.29)

The square root covariance of the equivalent additive sensor noise can by found by

S̃v,k+1 = up

{√
W̃ · orth

{
(Z̃ck+1)

T
}
, (Z̃c0k+1)

√
|W̃ c

0 |, sgn(W̃ c
0 )

}
(3.30)

Measurement Fusion

The square root information state and matrix updates are used for measurement

fusion. First, consider the case of only local measurement fusion. An orthogonal-

ization is performed to find the updated square root information matrix, RPOI,k+1,

for the POI states as

Tk+1RPOI,k+1 = orth








RPOI,k+1

Ik+1








(3.31)

Finally, the POI state estimate (x̂POI,k+1) and square root covariance (SPOI,k+1)

are calculated, to be used both for the next sigma points and for the geolocation

tracking outputs.

x̂POI,k+1 = (RPOI,k+1)
−1T Tk+1




Rk+1xPOI,k+1

ik+1


 (3.32)

SPOI,k+1 = orth
{
R−T

POI,k+1

}
(3.33)
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The above calculations are computationally moderate because the inversions are

of upper right triangular matrix factors. The sigma points are then re-calculated

for the prediction step (Eqs. 3.14 and 3.15), and the process repeats.

In the case of fusion using multiple cooperating UAVs, the UAVs transmit

the information state and matrix updates. Then, fusion of the information from

multiple UAVs is now a straightforward integration of the information state and

matrix updates into the update equations (Eqs. 3.31-3.33). Equations 3.31-3.33

are rewritten in a form for cooperative fusion over N UAVs as

Tk+1RPOI,k+1 = orth








RPOI,k+1

I1
k+1

I2
k+1

...

INk+1








(3.34)

x̂POI,k+1 = (RPOI,k+1)
−1T Tk+1




RPOI,k+1xPOI,k+1

i1k+1

i2k+1

...

iNk+1




(3.35)

SPOI,k+1 = orth
{
R−T

POI,k+1

}
(3.36)

Note that only the information matrix and state updates, Ij and ij , need to be

exchanged between the UAVs. This is simpler than the form presented in [11] where

the UAV navigation system statistics must also be known by all cooperating UAVs.

Further, the information state and matrix updates are smaller in this formulation

than in the original formulation and thus require less computation for fusion and

less communication.
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3.3 Filter Comparison

The SR-SPIF presented here can be seen as a refinement or improvement of the

SR-SPIF presented in Chapter 2. The primary difference is the perspective with

respect to the uncertain UAV states. In Chapter 2, the UAV states were con-

sidered as uncertain parameters and the formulation was a combined state and

parameter estimation problem. However, for computational reasons, the update of

the parameter states was not included. This lack of an update step is equivalent

to considering the UAV state estimate errors as white.

The SR-SPIF presented here takes the perspective of considering the output

of the onboard navigation system to be the mean and covariance of a white noise

sequence. By considering the UAV states as noise, instead of parameters to be

estimated, both communication and computation can be saved. Further, as will

be shown here, the two approaches are statistically equivalent.

3.3.1 Presentation as Extended Information Filters

For clarity of comparison, both the new and original SR-SPIFs will be compared

as extended information filters (EIFs). Since the prediction steps are exactly the

same, only the update steps will be compared. Also, since only a single update

step is compared the time step is omitted. Note that if equivalence is shown for

one time step, then due to the recursive nature of the filter, equivalence is shown

for all time steps.
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Original Square Root Sigma Point Filter

The update portion of the original SR-SPIF can be detailed by defining the infor-

mation state and matrix updates, iorig, and Iorig, in non-square root form, along

with the fusion step. First consider the creation of the information state and

matrix updates, which are given by

iorig =




CT
POI

P−1
SCR

(z− z + CPOIxPOI + CUAVxUAV)

CT
UAV

P−1
SCR

(z− z + CPOIxPOI + CUAVxUAV)


 (3.37)

Iorig =

[
CPOI CUAV

]T
P−1

SCR

[
CPOI CUAV

]
, (3.38)

where CUAV is the linearization of the measurement equation with respect to the

UAV state and all other terms were defined in Section 3.2. The fusion and conver-

sion to state space steps of the original SR-SPIF can be written as




PPOI PPOI,UAV

PUAV,POI PUAV




−1

=




P
−1

POI
0

0 P
−1

UAV


 + Iorig (3.39)

The block matrix inversion lemma can be used to determine the PPOI term in the

above equation, which is after simplification

PPOI =
(
P

−1

POI
+ CT

POI

(
P−1

SCR
−P−1

SCR
CUAV(P

−1

UAV
+ CT

UAV
P−1

SCR
CUAV)−1CT

UAV
P−1

SCR

)
CPOI

)−1

(3.40)

The state portion can be written as




x̂POI

x̂UAV


 =




PPOI PPOI,UAV

PUAV,POI PUAV










P
−1

POI
xPOI

P
−1

UAV
xUAV


 + iorig


 . (3.41)

Note that in the formulation in Chapter 2 the P
−1

UAV
xUAV term in the above equation

was actually included with the information state update, iorig, but has been moved

here for clarity of the presentation. The updated state estimate can then be written
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as

x̂POI = PPOIP
−1

POI
xPOI +

(
PPOIC

T
POI

P−1
SCR

+ PPOI,UAVC
T
UAV

P−1
SCR

)
(z− z + CPOIxPOI)

+PPOI,UAVP
−1
UAV

xUAV +
(
PPOIC

T
POI

P−1
SCR

+ PPOI,UAVC
T
UAV

P−1
SCR

)
CUAVxUAV,(3.42)

where, by block matrix inversion of Eqn. 3.39,

PPOI,UAV = −PPOIC
T
POI

P−1
SCR

CUAV

(
P

−1

UAV
+ CT

UAV
P−1

SCR
CUAV

)−1

(3.43)

New Square Root Sigma Point Filter

Now, the update portion of the new SR-SPIF is written in extended information

form. First, consider the form of the information state and matrix updates, which

are given by

inew = CT
POI

(
PSCR + CUAVPUAVC

T
UAV

)−1
(z− z + CPOIxPOI) (3.44)

Inew = CT
POI

(
PSCR + CUAVPUAVC

T
UAV

)−1
CPOI (3.45)

Since only the state of the POI is considered the updated estimate and covariance

can be written simply as

P−1
POI

= P
−1

POI
+ Inew (3.46)

x̂POI = PPOI

(
P

−1

POI
xPOI + inew

)
(3.47)

and substituting for the information state and matrix updates gives

PPOI =
(
P

−1

POI
+ CT

POI

(
PSCR + CUAVPUAVC

T
UAV

)−1
CPOI

)−1

(3.48)

x̂POI = PPOIP
−1

POI
xPOI +

PPOIC
T
POI

(
PSCR + CUAVPUAVC

T
UAV

)−1
(z− z + CPOIxPOI) (3.49)
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3.3.2 Comparison of the SRSPIF Versions

Equivalence of the two filters can now be shown by comparing both the covariance

and state estimate portions of each filter. First, consider the covariance part.

For equivalence, it must be shown that the expression for PPOI in the original

formulation, Eqn. 3.40, is the same as the expression in the new formulation,

Eqn. 3.48. This can be done by using the matrix inversion lemma, Ref. [5], on the

P−1
SCR
−P−1

SCR
CUAV(P

−1

UAV
+ CT

UAV
P−1

SCR
CUAV)−1CT

UAV
P−1

SCR
term giving

P−1
SCR
−P−1

SCR
CUAV(P

−1

UAV
+CT

UAV
P−1

SCR
CUAV)−1CT

UAV
P−1

SCR
=

(
PSCR + CUAVPUAVC

T
UAV

)−1
.

(3.50)

and substituting into the expression for the covariance in the old formulation,

Eqn. 3.40, which gives

PPOI=
(
P

−1

POI+CT
POI

P
−1
SCR

CPOI−CT
POI

P
−1
SCR

CUAV(P
−1

UAV+CT
UAV

P
−1
SCR

CUAV)−1CT
UAV

P
−1
SCR

CPOI

)
−1

,

(3.51)

which is the exact same expression as given in the original formulation, Eqn. 3.40.

The comparison of the state estimate portion is a little more involved. First, con-

sider the expressions for each formulation, which are written below for comparison.

orig : x̂POI = PPOIP
−1

POI
xPOI +

(
PPOIC

T
POI

P−1
SCR

+ PPOI,UAVC
T
UAV

P−1
SCR

)
·

(z− z + CPOIxPOI) + PPOI,UAVP
−1
UAV

xUAV +

(
PPOIC

T
POI

P−1
SCR

+ PPOI,UAVC
T
UAV

P−1
SCR

)
CUAVxUAV (3.52)

new : x̂POI = PPOIP
−1

POI
xPOI + PPOIC

T
POI

(
PSCR + CUAVPUAVC

T
UAV

)−1 ·

(z− z + CPOIxPOI) (3.53)

By inspection the equivalence of the two expressions can be shown by demonstrat-

ing that the following two equations hold:

PPOIC
T
POI

P−1
SCR

+ PPOI,UAVC
T
UAV

P−1
SCR

= PPOIC
T
POI

(
PSCR + CUAVPUAVC

T
UAV

)−1
(3.54)
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PPOI,UAVP
−1

UAV
+

(
PPOIC

T
POI

P−1
SCR

+ PPOI,UAVC
T
UAV

P−1
SCR

)
CUAV = 0 (3.55)

First, consider the validity of Eqn. 3.54. Substituting for PPOI,UAV (given in

Eqn. 3.43) on the left hand side of Eqn. 3.54 and also applying the matrix inversion

lemma to the right side and rearranging gives the same expression on each side of

the equation,

PPOIC
T
POI

(
P−1

SCR
−P−1

SCR
CUAV(CT

UAV
P−1

SCR
CUAV + P

−1

UAV
)−1CT

UAV
P−1

SCR

)
. (3.56)

Now consider the validity of Eqn. 3.55. Rearranging Eqn. 3.55 gives

PPOI,UAV

(
P

−1

UAV
+ CT

UAV
P−1

SCR
CUAV

)
+ PPOIC

T
POI

P−1
SCR

CUAV = 0 (3.57)

Substituting for PPOI,UAV (from Eqn. 3.43) gives

0 = −PPOIC
T
POI

P−1
SCR

CUAV

(
P

−1

UAV
+ CT

UAV
P−1

SCR
CUAV

)−1 (
P

−1

UAV
+ CT

UAV
P−1

SCR
CUAV

)
+

PPOIC
T
POI

P−1
SCR

CUAV, (3.58)

which by inspection can be seen to hold true as all terms cancel. Therefore, the

two filtering approaches are equivalent.

3.4 Conclusions

A new square root, sigma point information filter (SR-SPIF) was developed to solve

the cooperative geolocation problem. In this new filter formulation, the uncertain

UAV state was treated as a non-additive noise in the measurement equation and

the mean was assumed to be given by the onboard navigation system. By treating

the uncertain UAV state as noise instead of as a set of parameters to be estimated,
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the measurement fusion step is considerably simplified. This simpler fusion step

requires less computation and also less communication between the UAVs

The new SR-SPIF is compared to the original SR-SPIF and shown to be sta-

tistically equivalent. For clarity, the comparison is made by considering each as an

extended information filter (EIF). Although, the numerical properties of an EIF

and SR-SPIF are different, the statistical implication of the perspective of each of

the two version of the SR-SPIF can be explored effectively with an EIF.
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CHAPTER 4

DECENTRALIZED GEOLOCATION AND SENSOR BIAS

ESTIMATION

4.1 Abstract

The cooperative geolocation of a point of interest (POI) using multiple UAVs with

articulating camera sensors is addressed, where there are non zero mean errors

(biases) in the estimate of the UAV state. The proposed approach is to use the on-

board navigation solution in the estimator and further to consider biases across all

UAVs, and jointly estimate both the biases and the unknown POI location. Fur-

thermore, a decentralized solution is presented which uses marginalization of the

biases, thus allowing the UAVs to share only information about the POI and model

only their local biases. This decentralized approach saves significant computation

and scales well with the number of UAVs. Real flight test data and hardware in

the loop simulations are used to demonstrate the improvement in geolocation with

bias estimation, as well as the effectiveness of the new decentralized POI and bias

estimation algorithm, for both stationary and moving POIs.

4.2 Introduction

Uninhabited aerial vehicles (UAVs) are currently being developed and used for a

wide variety of missions such as defense, search-and-rescue [22], and commercial

applications [55]. A key technology in UAV systems being explored is tracking of

a stationary or moving Point of Interest (POI) using visual cameras for payloads –

termed “geolocation”. Off the shelf digital cameras, which have been developed by
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the electronics industry for the past decade for consumer usage, are now enabling

very low cost UAV systems. Several groups have implemented gimballing camera

systems on UAVs [25, 26], a few with target tracking results [49, 63]. The authors

have developed and experimentally implemented a geolocation tracking algorithm

for gimballing vision payloads on UAVs [10] using sigma point filtering concepts;

extensions to information filtering and sensor fusion across multiple UAVs have

also been developed [11].

The geolocation system for a UAV requires the complex integration of sev-

eral hardware components (camera, UAV, GPS, attitude sensors) and software

components (camera image processing, inner loop and path planning control, and

estimation software) to develop accurate estimates of the object being tracked. In

Refs. [10] and [11], the authors reduce the computation of geolocation by using the

onboard navigation system, which integrates the UAV, GPS, and attitude sensors

to give an estimate of the position and attitude of the UAV and also measure-

ments of the camera gimbal angles. Further, there is an implicit assumption that

the navigation system output and camera gimbal measurements have consistent

statistics with zero mean errors. However, this assumption is not valid, as shown

in Ref. [67], because both the output of the navigation system and the camera

gimbal measurements have nonzero mean errors (biases) that significantly degrade

geolocation performance. Ref. [10] compensates for these biases with an additional

algorithm that fuses a conservative uniform density model for the bias.

Biases have also been shown to be a problem for estimation in other works. In

one of the first treatments [21], Friedland showed that biases could be estimated

efficiently in a linear system by partitioning the state. More recently in Refs. [32]

and [54], bias estimation in a radar tracking context with multiple targets was
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addressed. Bias estimation was further considered in Refs. [37] and [45], where

multiple sensors were used to track multiple targets in a centralized formulation.

Bias estimation has also been considered in a least squares estimation context by

Dogancay in Ref. [16].

This paper proposes to jointly estimate the sensor biases and the unknown

POI state in a decentralized manner, while using the solution from the onboard

navigation system to save significant computation. Uniquely, the joint estima-

tion problem is solved for multiple UAVs cooperating in a decentralized fashion

such that the UAVs share information on the POI state, and model only their

local biases. This decentralized formulation saves computation as well as com-

munication, while giving geolocation accuracy comparable to the centralized case.

Further, this decentralized approach fits nicely into the decentralized data fusion

paradigm [17, 59] and allows for effective cooperation not only among UAVs with

potentially different biases but different sensors altogether. A numerical observ-

ability analysis procedure is also developed and applied, which gives a meaningful

measure of the degree of observability and also gives insight into the effects of

UAV flight path on observability. The new decentralized approach is validated

using both experimental flight data and high fidelity hardware in the loop simu-

lations. Although multi-target tracking is not considered in this work, extensions

based on Ref. [50] can be considered.

The paper is organized as follows. In Section 4.3, the cooperative geolocation

problem is solved with explicit white, zero mean, and Gaussian assumptions on

the estimate error of the UAV state. Then, in Section 4.4, a more realistic model

including biases in the estimate of the UAV state is proposed and the joint POI

and bias estimation problem is formulated and solved both in a centralized and
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decentralized fashion. Section 4.5 develops a procedure for observability analysis

of both biases and the POI state. Then, in Section 4.6 both experimental and

simulated flight data for ScanEagle UAVs are used to evaluate the performance of

the new decentralized approach compared to the centralized approach (baseline)

for both stationary and moving POIs.

4.3 Cooperative Geolocation

Geolocation is the process of using sensor data to develop statistical estimates of a

Point of Interest (POI) on the ground. For the application of a vision sensor on a

UAV, the UAV, based on its position and orientation, points the camera (through

a gimballing payload mount inside the UAV) at the POI on the ground. While the

aircraft is moving (navigation and attitude), and the POI is potentially moving,

the camera gimbals must adjust their angles to point at the POI. This application

requires the camera to remain directed at the POI such that the POI always

remains within the field of view of the camera. The objective of geolocation is

then to estimate the position (2D or 3D) of the POI from the aircraft, gimbal, and

camera measurements. Complicating this problem are uncertainties in the aircraft

position and orientation, gimbal angles, camera specifications and measurements,

and disturbances such as turbulence and engine vibrations.

The most accurate estimator tightly couples the UAV navigation (NAV), at-

titude (ATT), camera gimbal (GIM) and POI states in a single estimator which

requires full UAV and gimbal models, and a model for the POI. However, this esti-

mator requires very high computation, memory, and communication in the case of

multiple UAVs. Fortunately, most UAVs use a navigation system with estimators
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which provide statistics (estimates and covariances) for both the ATT and NAV

states. In addition, the GIM states can be directly measured. Therefore, a geolo-

cation estimator can be developed which estimates the POI state only, thus saving

computation and memory.

A square root sigma point filter for geolocation, which utilizes the output statis-

tics of the onboard navigation system of the UAVs to reduce computation is de-

scribed in Ref. [10]. A Square Root, Sigma Point Information Filter (SR-SPIF) is

developed in Ref. [11] to facilitate cooperative tracking of POIs utilizing multiple

UAVs. In both cases, to develop the POI estimate, there is an implied assumption

that the estimates of the NAV and ATT states as well as the measurements of

the GIM states have zero mean errors. An Extended Information Filter [42] (EIF)

is developed here, which utilizes the navigation system to solve the cooperative

geolocation problem and makes explicit the assumptions about the estimates of

the UAV state. Note that an EIF is used here and presented in general terms to

make the development of the decentralized bias estimation approaches in Section

4.4 clear. However, other filtering techniques could also be used.

For this section, define the state to be estimated, xk, to be the state of the

POI, xk,POI, with discrete time dynamics governed by

xk+1 = f(xk,wk) = fPOI(xk,POI,wk,POI) (4.1)

where the disturbance, wk = wk,POI, is zero mean, white, Gaussian noise with

covariance Qk = Qk,POI, and the subscript k denotes time step tk. Note that a

general state to be estimated, xk, is used so that the bias estimation approaches

in Section 4.4 can be developed easily as extensions of the EIF presented here.

Assume there are N UAVs with states, ψj
k+1, for j = 1, . . . , N , composed of UAV

position, ψj
k+1,NAV, UAV attitude, ψj

k+1,ATT, and camera attitude, ψj
k+1,GIM written
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in vector form as

ψ
j
k+1 =




ψ
j
k+1,NAV

ψ
j
k+1,ATT

ψ
j
k+1,GIM




(4.2)

The UAVs are further assumed to have an onboard navigation system and mea-

surements of the camera gimbal angles, which give an estimate of the UAV state,

ψ̂
j
k+1. For clarity in the development of the EIF, a simple model is used here and

is given by

ψ
j
k+1 = ψ̂

j
k+1 + ηjk+1, (4.3)

where the UAV state estimate error, ηjk+1, is zero mean, Gaussian, and white with

covariance, ηRj
k+1. This model is known to not be theoretically correct because the

statistics are not white, but correlated through the navigation filter. Many times

the errors due to autocorrelation are small [39]. Biases may also exist, however,

which can have a significant effect on accuracy [67]. The incorporation of biases

in the UAV state estimate, the focus of this paper, is presented in Section 4.4 as

an extension of the EIF algorithm presented here.

Measurements of the POI are made on each UAV using

zjk+1 = hj(xk+1,η
j
k+1,v

j
k+1) = hSCR(xk+1,POI, ψ̂

j
k+1 + ηjk+1,v

j
k+1,SCR

) (4.4)

where the sensor noise, vjk+1, is zero mean, white, Gaussian noise with covariance

vRj
k+1. The process noise, sensor noises, and navigation system noises, wk, v

j
k+1,

and ηjk+1, respectively, are assumed to be uncorrelated with each other. Note that

the measurement function in Equation 4.4 is a complicated nonlinear function of

the POI state and the UAV state; a detailed development is given in Ref. [10] with

a summary provided in Appendix C.

The cooperative geolocation problem can now be solved with an EIF as follows.
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The information matrix, Yk, and information state, yk, are defined based on the

state estimate error covariance, Pk, and state estimate, x̂k, as

Yk = P−1
k (4.5)

yk = Yk · x̂k (4.6)

The EIF algorithm is written for N UAVs, as computed on a local UAV l, as a

recursion of the following five steps:

1. Time Propagation

Y−
k+1 = (FkY

−1
k FT

k + ΓkQkΓ
T
k )−1 (4.7)

y−
k+1 = Y−

k+1 · f [(Yk)
−1yk, 0], (4.8)

where

Fk = ∇xf [x,w]|x=(Yk)−1yk,w=0 (4.9)

Γk = ∇wf [x,w]|x=(Yk)−1yk,w=0 (4.10)

2. Compute Local Information State and Matrix Updates

ilk+1 = (xHl
k+1)

T (Rl
k+1)

−1 ·

(zlk+1 − hl[(Y−
k+1)

−1y−
k+1, 0, 0] + xHl

k+1(Y
−
k+1)

−1y−
k+1) (4.11)

Ilk+1 =
(
xHl

k+1

)T
(Rl

k+1)
−1(xHl

k+1), (4.12)

where

Rl
k+1 = vHl

k+1
vRl

k+1(
v
Hl
k+1)

T + ηHl
k+1

ηRl
k+1(

η
Hl
k+1)

T (4.13)
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and

xHl
k+1 = ∇xh

l[x,η,v]|x=(Y−

k+1
)−1y

−

k+1
,η=0,v=0 (4.14)

vHl
k+1 = ∇vh

l[x,η,v]|x=(Y−

k+1
)−1y

−

k+1
,η=0,v=0 (4.15)

ηHl
k+1 = ∇ηhl[x,η,v]|x=(Y−

k+1
)−1y

−

k+1
,η=0,v=0 (4.16)

3. Transmit Local Information Updates, ilk+1 and Ilk+1, to all UAVs

4. Receive Information Updates, ijk+1 and Ijk+1, from all UAVs, j = 1, . . . , N, j 6=

l

5. Fuse Local and Received Information Updates

Yk+1 = Y−
k+1 + Ilk+1 +

N∑

j=1,j 6=l

Ijk+1 (4.17)

yk+1 = y−
k+1 + ilk+1 +

N∑

j=1,j 6=l

ijk+1 (4.18)

The assumptions on the errors of the navigation system output (white, zero

mean, Gaussian) are necessary for the computation of the information state and

matrix updates (Step 2) and allow the uncertainty in both the vision system

(vRl
k+1) and the navigation system (ηRl

k+1) to be combined in Equation 4.13 to

compute the effective measurement noise covariance, Rl
k+1. Note that the super-

script l is not included for the information matrix and state since they are the same

on all UAVs. If communication losses are present, causing differences among the

UAVs, then the above algorithm can be extended using the predicted information

approach developed in Ref. [65].
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4.4 Geolocation with Bias Estimation

The assumption in Section 4.3 that the errors in the estimate of the UAV state

are zero mean, white, and Gaussian is not accurate in the practical case, for two

reasons: correlated outputs of the navigation filter and biases in the outputs.

Consider Figure 4.1, which shows a series of Sensed Points of Interest (SPOIs),

which is defined as the line of sight intersection of the camera with the ground

as computed based on the estimates of the UAV state (NAV, ATT, and GIM).

A total of 2000 SPOIs are plotted for two orbits around a stationary POI from a

flight test of the ScanEagle UAV on March 18, 2006 [67]. Figure 4.1 shows that

the SPOI moves in a roughly circular pattern around the true POI location. The

period of this oscillation corresponds directly to the UAVs orbit about the POI

and is due to nonzero mean errors (biases) in the UAV state estimate.

POI

UAV

Computed Camera
Line of Sight

SPOI

SPOI at
Time Step k

Figure 4.1: Single UAV tracking a stationary POI. The blue dots are computed
camera line of sight intersections with the ground from two orbits of tracking.

Sensor biases were shown in Refs. [10] and [67] to be a significant source

of error for geolocation and were compensated for by augmenting the output of

the estimator with additional uncertainty, based on empirical data. However,

this did nothing to improve the estimate itself, but simply improved estimator

consistency. The approach taken here is to explicitly model the sensor biases,

71



and jointly estimate both the sensor biases and the unknown POI location in a

decentralized manner. The biases, bjk, are now modeled explicitly as part of the

UAV navigation system output and camera gimbal measurement as

ψ
j
k = ψ̂

j
k + bjk + ηjk, (4.19)

where the model of the bias state, bjk, used here is

bjk+1 = bjk + wk,bj . (4.20)

Autocorrelation of the UAV state estimate error could be taken into account in

the same way as the biases [7]; by adding autocorrelation states, µj,mk , in Eqn. 4.19

as

ψ
j
k = ψ̂

j
k + bjk + ηjk + µj,1k + . . .+ µ

j,n
µj

k , (4.21)

where each of the autocorrelation terms correspond to a different frequency of

autocorrelation. The autocorrelation terms can be modeled as

µ
j,m
k+1 = aj,mµj,mk + wk,µj,m

, (4.22)

where the parameter, aj,m, is chosen to capture the appropriate autocorrelation

frequency. Although autocorrelations are not considered in this work, the approach

presented here is suitable for autocorrelation errors in addition to bias errors.

A key point of the approach here is that the navigation system and camera

gimbal measurements are used directly, while only the biases, bj , are estimated,

recursively, with the POI state, xk,POI. This utilizes the navigation system to save

significant computation, while effectively improving the estimate of the UAV state

and thus improving geolocation.
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4.4.1 Centralized Approach

With the goal of estimating the POI state, xPOI, and the biases on each UAV, bj ,

the obvious approach is to create a single estimator; this is termed the centralized

solution. In the centralized solution, the state to be estimated, xk, is modified to

include the state of the POI, xk,POI, and the biases of each of the UAVs, bjk, for

j = 1, . . . , N . The full state estimate and error covariance is now written as

x̂k =




x̂k,POI

b̂1
k

...

b̂Nk




Pk =




Pk,POI,POI Pk,POI,b1 . . . Pk,POI,bN

Pk,b1,POI Pk,b1,b1 . . . Pk,b1,bN

...
...

. . .
...

Pk,bN ,POI Pk,bN ,b1 . . . Pk,bN ,bN




(4.23)

The EIF algorithm presented in Section 4.3 can now be applied by making changes

to the dynamics model (Equation 4.1) and the measurement model (Equation 4.4).

First, the dynamics model is augmented to include models of the bias states as

xk+1 = f (xk,wk) =




fPOI(xk,POI,wk,POI)

b1
k + wk,b1

...

bNk + wk,bN




(4.24)

and the process noise covariance, Qk, includes the covariance for the process noise

of the POI as well as the bias and is given by

Qk =




Qk,POI 0 . . . 0

0 Qk,b1

. . .
...

...
. . .

. . . 0

0 . . . 0 Qk,bN




. (4.25)

Second, the measurement model must be modified to include the biases, and is

written for the jth UAV as

zjk+1 = hj(xk+1,η
j
k+1,v

j
k+1) = hSCR(xk+1,POI, ψ̂

j
k+1 + bjk+1 + ηjk+1,v

j
k+1,SCR

)(4.26)
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The EIF algorithm from Section 4.3 can now be applied with the new dynamics

and measurement equations.

Although the augmentation of the POI state with the biases of each UAV in

the centralized approach is statistically correct, there are two significant problems

with such a formulation. First, each UAV must model the dynamics and maintain

estimates of the biases of all other UAVs (Equation 4.24). This violates one of

the basic concepts of decentralized data fusion [59], and hence is termed here as

the centralized approach. Second, the size of the state to be estimated scales with

the number of UAVs (N) and therefore, the computation scales poorly with the

number of UAVs. In fact, the information filter requires a matrix inverse to recover

the state estimate and covariance, and this operation scales cubically with the size

of the state. A decentralized approach is proposed in the next section, while the

centralized solution is used in Section 4.6 to provide a benchmark for comparison.

4.4.2 Decentralized Approach

A decentralized approach, developed here, requires the UAVs to model only the

POI and their own biases, and only share information related to the POI state.

Thus, the decentralized approach scales well with the number of UAVs and re-

quires less computation and communication than the centralized approach. In the

decentralized approach, the state to be estimated on each UAV, xjk, includes only

the state of the POI, xk,POI, and the local biases, bjk, and is written as

xjk =




xk,POI

bjk


 , for j = 1, . . . , N. (4.27)
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Note that the superscript j is included as the state to be estimated is different

on each UAV and hence the estimates and covariances (information states and

matrices) are different on each UAV. The state dynamics are modified to include

only the POI and local biases as

xjk+1 = f
(
xjk,w

j
k

)
=




fPOI(xk,POI,wk,POI)

bjk + wk,bj


 ,Qj

k =




Qk,POI 0

0 Qk,bj


 (4.28)

Note that the measurement (Equation 4.26) for each UAV remains the same since

it already contains only local biases.

In the decentralized formulation, the state estimate and error covariance are

written as

x̂jk =




x̂jk,POI

b̂jk


 , Pj

k =




Pj
k,POI,POI

Pj

k,POI,bj

Pj

k,bj,POI
Pj

k,bj,bj


 , (4.29)

and the usual conversion between state and information space applies:

Yj
k = (Pj

k)
−1 yjk = Yj

kx̂
j
k (4.30)

The information state and matrix are propagated forward in time, using Equations

4.7 and 4.8 to get Yj−
k+1 and yj−k+1. The local information state and matrix updates

are computed using Equations 4.11 and 4.12 to get

Ijk+1 =




Ik,POI,POI Ik,POI,bj

Ik,bj,POI Ik,bj ,bj


 , ijk+1 =




ik,POI

ik,bj


 (4.31)

With N decentralized estimators of the form described in Eqn. 4.29, it is noted

that only the POI state is common across each of the estimators and thus it is

desired to share only information related to the POI states. However, communica-

tion and fusion of only the POI state portion of the information updates, Ik,POI,POI

and ik,POI, is unfortunately not statistically correct. The off diagonal portion of
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the information matrix updates, Ik,POI,bj , actually serves to reduce the information

about the target because of the coupling with the uncertainty in the bias states.

It is proposed to account for this coupling using two marginalization steps before

communication and fusion.

The process of computing and fusing the marginalized information updates is

written for a local UAV l as follows. The first step is to fuse the local information

updates as

Yl
k+1 = Yl−

k+1 + Ilk+1 (4.32)

ylk+1 = yl−k+1 + ilk+1, (4.33)

which includes information about the local POI and bias estimates to be incorpo-

rated (Eqn. 4.31).

The second step is to compute two marginalizations in order to prepare the

information to be communicated to the other UAVs. Marginalization of the pre-

dicted bias states begins by converting the predicted information state and matrix

back to state space as

Pl−
k+1 = (Yl−

k+1)
−1 =




Pl−
k,POI,POI

Pl−
k,POI,bl

Pl−
k,bl,POI

Pl−
k,bl,bl


 , x̂l−k+1 = Pl−

k+1y
l−
k+1 =




x̂l−
k,POI

b̂l−k


 .

(4.34)

Then, in the state space, the bias states are marginalized out by simply removing

the corresponding rows and columns of the predicted covariance and state estimate,

since the joint POI and bias state is multi-variate Gaussian. The marginalized (M)

covariance and state estimate are given as

Pl−
k+1,M = Pl−

k+1,POI,POI
, x̂l−k+1,M = x̂l−k+1,POI

(4.35)

The marginalized estimate and covariance are then converted back to information
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space as

Yl−
k+1,M = (Pl−

k+1,M)−1 yl−k+1,M = Yl−
k+1,M x̂l−k+1,M . (4.36)

This marginalization process is then repeated for the updated information matrix,

Yl
k+1, and state, ylk+1, to get Yl

k+1,M and ylk+1,M .

The third step is to compute the marginalized information state and matrix

updates as

Ilk+1,M = Yl
k+1,M −Yl−

k+1,M (4.37)

ilk+1,M = ylk+1,M − yl−k+1,M (4.38)

The final step is to communicate the local marginalized information matrix and

state updates to the other UAVs. Locally, all received updates are then fused as

Yl
k+1 ⇐ Yl

k+1 +
N∑

j=1,j 6=l




Ijk+1,M 0nPOI,nbl

0n
bl ,nPOI

0n
bl ,nbl


 (4.39)

ylk+1 ⇐ ylk+1 +

N∑

j=1,j 6=l




ijk+1,M

0n
bl ,1


 , (4.40)

where 0m,n is an m by n matrix of zeros, nPOI is the dimension of the POI state

and nbl is the dimension of the biases being estimated on UAV l.

The marginalization steps accomplish two objectives:

1. The marginalized information updates are for the POI state only. This means

that UAVs with different types of biases or even different types of sensors

can effectively cooperate in geolocation. Further, no knowledge of the biases

or even of the measurement models of the other UAVs is required.

2. The uncertainty in the bias states is used to reduce the information update

on the POI, to account for uncertainty in the bias estimates. This improves
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estimator consistency over no bias estimation, while still improving geoloca-

tion accuracy with local bias estimates.

However, marginalization causes some information to be lost. Specifically, the

cross correlation among the biases is no longer maintained, i.e. Pbj ,bl ≡ 0 in

the decentralized formulation. As long as the cross correlation is small, there is

only a small reduction in geolocation accuracy over the centralized solution. This

small loss of accuracy in geolocation is traded for significant gains in scalability,

computation, and communication. Further, this decentralized solution fits nicely

into the decentralized data fusion paradigm.

4.5 Observability Procedure

In Section 4.4, the POI and bias estimation problem is formulated with the po-

tential for biases in the UAV position, bk,NAV, UAV attitude, bk,ATT, and camera

attitude, bk,GIM. This section develops a procedure for evaluating the observability

of both the POI and bias states. Due to the nonlinear measurement function for

a camera sensor, shown in Appendix C, this is a nonlinear observability problem.

Therefore, a numerical procedure which follows Refs. [48] and [47] is developed

that utilizes the inverse of the observability grammian.

The observability grammian at time step, K, is given by

QK = OTKOK , (4.41)
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where OK is the observability matrix at time step K and is given by

OK =




xH1

xH2F1

...

xHKFK−1 . . .F1




, (4.42)

with xH defined in Eqn. 4.14 and F defined in Eqn. 4.9. Note that only one UAV

is considered here and therefore the superscripts denoting the UAV are not used in

this Section. Extensions of the observability analysis to multiple UAVs is straight

forward.

Observability requires Q or equivalently O be full rank. A scaled version of the

observability grammian, which gives physical insight into the degree of observabil-

ity, is used here and defined as

QK = OTKR−1
K OK , (4.43)

where RK is used to scale the observability grammian based on the effective sensor

noise covariance,

RK =




R1 0

. . .

0 RK



, (4.44)

where it is noted that RK is full rank.

Three important observations are made regarding this scaled observability

grammian.

1. Since observability is determined by the rank of QK , observability can also

be inferred from QK since

Rank(QK) = Rank(QK) (4.45)
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2. QK has a physically meaningful interpretation. In the case of no process

noise; i.e., Q = 0, Q−1

K is the error covariance at time step K if one starts

with a diffuse prior, Y0 = 0.

3. If the POI is stationary, Fk = I, then QK can be computed recursively by

summing the information matrix updates, Ik in Equation 4.12, as

QK =
K∑

k=1

Ik (4.46)

The process for determining observability is summarized as follows. First,

define the state to be considered, x∗. For example, the most general joint POI

and bias state is x∗ =
[
xT

POI
, bT

NAV
, bT

ATT
, bT

GIM

]T
. Define a time step of interest,

such as K = korbit where korbit is the number of time steps for the UAV to make a

single orbit about the POI. Then, compute QK using Eqn. 4.43. Finally, check the

rank of QK ; the state x∗ is then observable if and only if QK is full rank. If QK
is full rank, then the degree of observability can be assessed by taking the inverse

of QK to get PK . The matrix PK denotes the error covariance when starting

with a diffuse prior and no process noise. Large values of the diagonal of PK
indicate poor observability. Further, if some of the elements of the state x∗ have

comparable units, e.g., bATT and bGIM, then the modes and degree of observability

can be determined by analyzing the eigenvalues, Λ, and eigenvectors, V , of the

submatrix of PK corresponding to those states. Large elements of Λ indicate poor

observability and the corresponding eigenvector yields the related combination of

the elements of x∗.

80



4.6 Validation with Experimental and Simulated Flight

Data

The decentralized bias estimation approach presented in Section 4.4 is evaluated

and compared with the centralized solution using both experimental flight test

data and hardware in the loop (HiL) simulations. Additionally, the procedure for

observability analysis developed in Section 4.5 is used to evaluate the observabil-

ity of the POI and bias states. Note that due to International Traffic in Arms

Regulations (ITAR) restrictions, all results are scaled to avoid showing absolute

performance. However, since a consistent scaling is used for all results, all relative

comparisons should be clear.

4.6.1 Experimental and Simulated Flight Test Setup

Both experimental flight data and hardware in the loop (HiL) simulations are used.

Figure 4.2 shows the orbit configuration used for both the experimental and HiL

tests, including relative phasing between the UAVs, β, and orbit offsets from the

POI, ∆. The UAVs are shown as triangles and the POI is shown as a star.

Experimental flight data was collected during a cooperative UAV flight test on

March 16, 2007. In this test, two UAVs orbited a stationary POI, with a POI

centered orbit, ∆ = 0, and an orbit radius of 500 m. For this test, a van was used

as the POI and the true location was measured using a local GPS receiver. The

experimental flight test is described in more detail in Ref. [57].

In addition to the experimental flight data, a series of high fidelity HiL simula-

tions were performed. The HiL simulations include realistic environmental effects
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Figure 4.2: Diagram illustrating the configuration (in projected 2D) of two UAVs
(triangle) orbiting above a POI (∗) performing geolocation. The orbits are param-
eterized by the relative phase, β, and orbit offset, ∆.

such as wind, as well as the actual onboard guidance software that coordinates

the motion of the UAVs developed by Wise and Rysdyk [58, 68]. HiL simulations

were performed to generate flight data for both stationary and moving POIs. Tests

were performed for a range of relative phase angles between the UAVs and offsets

to their orbits from the POI. The HiL test configurations used are summarized in

Table 4.1

Table 4.1: Test configurations for the HiL simulations.

HiL Test Number POI Motion Phase, β (deg) Orbit Offset, ∆ (m)
1 Stationary [0, 30, . . . , 180] 0
2 Stationary 150 [0, 50, . . . , 500]
3 Moving [0, 30, . . . , 180] 0

For each HiL test, bias errors were added to the UAV attitude and camera

attitude. The values of the biases were chosen to be representative, and are not

shown due to ITAR restrictions. The trajectory of the POI in the moving POI case

is based on a city driving model, which is characterized by frequent stops and 90◦
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turns. The FlockGuidance software developed by Wise and Rysdyk [58, 68] is used

to maintain the configuration, shown in Figure 4.2, relative to the moving POI.

For each test of a moving POI, a different POI trajectory is used and constant bias

errors are added to both the camera and UAV attitudes estimates. Note that the

bias errors are the same for each test but different for each UAV.

4.6.2 Stationary POI Results

Geolocation and bias estimation for a stationary POI are evaluated both with

experimental flight test data and HiL simulations. A stationary POI is modeled

as

xk+1,POI = xk,POI + wk,POI, (4.47)

where the state of the POI, xk,POI, is the position in a local North-East-Down

(NED) frame. The process noise, wk,POI, is white, Gaussian noise with a relatively

small covariance, Qk,POI = 0.05 · InPOI
m/s, which is included to prevent premature

convergence. The stationary POI results are organized as follows. First, the case

of a single UAV is considered, including an observability analysis as well as ge-

olocation error evaluation. Second, cooperative geolocation is evaluated using the

experimental flight test data, which includes two UAVs in circular orbits about a

stationary POI.

Single UAV

First, consider the observability of the POI and bias states using a single UAV, a

stationary POI, and a POI centered orbit for the UAV. Observability is evaluated

using the procedure developed in Section 4.5. The state x∗ is defined to be the
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state of the POI and all possible biases,

x∗ =




xPOI

bNAV

bATT

bGIM




, (4.48)

where the dimension of x∗ is 12. Further, define K = korbit, where korbit is the

number of time steps for the UAV to complete one orbit about the POI. Note that

one orbit is used here because the UAV continually repeats orbits about the POI.

The observability of x∗ is evaluated by computing QK , as in Eqn. 4.43 and then

computing the rank giving, in this case,

Rank(QK) = 9, (4.49)

which, is a rank deficiency of 3. This indicates that not all states of x∗ are observ-

able.

Consider the effect of removing the UAV navigation bias from x∗, i.e., redefining

x∗ to be

x∗ =




xPOI

bATT

bGIM



, (4.50)

where the dimension of x∗ is now 9. Recomputing QK and taking the rank gives

Rank(QK) = 9, (4.51)

which is full rank. This indicates that xPOI, bATT, and bGIM are all observable, but

bNAV is not. Intuitively, this implies that navigation biases are translated directly

into POI biases. It is noted that the observability of UAV navigation biases was

explored in Ref. [2], where the navigation biases were modeled as

bk+1,NAV = a bk,NAV + wk,NAV. (4.52)
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It was then shown that position biases are unobservable with a = 1, which is the

bias model used here. However, if the biases are taken as autocorrelated errors,

with a 6= 1, then the position biases are observable. However, the time scale for

GPS based navigation errors is too large to be useful here as geolocation is desired

in less than an orbit and this would require multiple orbits.

Since the ATT and GIM states are observable, one can check the degree of

observability as described in Section 4.5. First, invert QK to get PK and then

analyze the eigenvectors and eigenvalues of the submatrix of PK corresponding to

bATT and bGIM. In this case, the eigenvectors and eigenvalues are

V =




0.18 0.68 0.01 0.04 −0.71 −0.01

0.01 0.04 −0.47 −0.83 −0.01 −0.30

0.02 0.00 −0.81 0.28 0.00 0.51

0.70 −0.18 0.24 −0.34 −0.02 0.55

−0.19 −0.68 −0.02 −0.01 −0.71 −0.01

−0.66 0.19 0.24 −0.35 −0.01 0.59




← roll

← pitch

← yaw

← pan

← tilt

← scan

(4.53)

Λ =

[
26.45 7.56 1.55 0.64 0.00 0.00

]
, (4.54)

where the columns of V are the eigenvectors and the elements of Λ are the corre-

sponding eigenvalues.

Since bATT and bGIM have the same units, the scaled eigenvalues in Eqn. 4.54

provide a meaningful measure of the observability and the eigenvectors in Eqn. 4.53

give the modes of observability. Note that large eigenvalues correspond to poor

observability. The least observable mode is the combination of camera pan and

camera scan with an eigenvalue of 26.4. This indicates that a pan bias is difficult to

distinguish from a scan bias. The other poorly observable mode is the combination

of UAV roll and camera tilt with an eigenvalue of 7.5. So, even though, as indicated
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by the rank condition, all of the attitude biases are observable in a POI centered

orbit, some of them are poorly observable.

The poor observability of the combination of both ATT and GIM biases in a

POI centered orbit indicates that estimating only a subset of the biases may be

effective in improving geolocation accuracy. To test this, four choices of biases to

estimate are evaluated here using the 2007 flight test data with a single UAV in

a POI centered orbit (∆ = 0) about a stationary POI: 1) No biases (No Bias) 2)

Camera gimbal bias (GIM) 3) UAV attitude (ATT ) 4) UAV attitude and camera

gimbal biases (ATT-GIM). The geolocation error for each of the four bias choices

is shown in Figure 4.3 for the first five minutes of the 2007 flight test data.
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Figure 4.3: Geolocation error during the first six minutes of the 2007 flight test
data with the UAV in a POI centered orbit about a stationary POI and using four
different choices of biases to estimate: 1) No biases (No Bias) 2) Camera gimbal
bias (GIM) 3) UAV attitude (ATT ) 4) UAV attitude and camera gimbal biases
(ATT-GIM).

Two significant observations can be made from Figure 4.3. First, all forms of

sensor bias estimation improve geolocation accuracy, both in terms of steady state

estimate error and convergence time. When the sensor biases are not modeled,
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the geolocation estimate oscillates with a period that is the same as the orbit of

the UAV. When estimating the sensor bias, the geolocation estimate converges to

within 1 of the POI location in 30 seconds, compared to more than 6 minutes

with no bias estimation. The second important observation is that the choice of

sensor biases to model has little impact on geolocation accuracy in this case, i.e.,

a centered orbit about a stationary POI. This is because the UAV attitude and

camera attitude biases are poorly observable when flying in a POI centered orbit.

As further evidence of the lack of observability in POI centered orbits, Figure

4.4 shows the estimates of the sensor biases for three bias estimation choices: 1)

GIM 2) ATT 3) ATT-GIM. Note that the estimates for biases that are not part

of that estimator are plotted as zero, e.g., the roll bias estimate for GIM bias

estimation in Figure 4.4(b).
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(a) Camera Gimbal Bias Estimates
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(b) UAV Attitude Bias Estimates

Figure 4.4: Bias estimates for the 2007 flight test data using a single UAV and a
centered orbit around a stationary POI.

Consider first the camera tilt and UAV roll bias estimates, shown in Figure 4.4.

For a POI centered orbit, the camera is perpendicular to the fuselage of the UAV,

creating a situation in which a bias in camera tilt has the same effect as a bias in

UAV roll. Consequently, the tilt bias estimate from GIM bias estimation is the
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same as the roll estimate from ATT bias estimation, i.e., a value of ≈ −1. Further,

in the case of ATT-GIM bias estimation, the tilt bias estimate drifts positive while

the roll bias estimate drifts negative. This drift is due to the poor observability

between the camera tilt and UAV roll, as described earlier and shown in Eqn. 4.53.

Interestingly, when the tilt bias estimate and the roll bias estimate are added for

the ATT-GIM case, a value of ≈ −1 results, which is the same as the GIM and

ATT cases. This is easiest to see near ≈ 160 seconds, where the circles show the

convergence of all three bias estimation cases. Similar observations can be made by

comparing the estimates of the other bias variables, albeit with more complicated

analysis.

The lack of observability for POI centered orbits is not necessarily a problem;

in fact, it can be exploited as a benefit. If the biases are being estimated only

to improve geolocation, i.e., the true biases are not required, then, the reduced

parameterization of the ATT or GIM cases will suffice to improve geolocation, as

shown in Figure 4.3. This also serves to reduce computation, which scales with

the cube of the dimension of the state to estimated.

It is insightful, then, to study the observability and performance of geolocation

for non-centered orbits about a stationary POI. The effect of orbit offset on ob-

servability can be evaluated by considering the worst observability mode and its

change with orbit offset, ∆, where the worst mode is defined to be λmax with

λmax = max
i
λi, (4.55)

where λi are the eigenvalues of PK = Q−1

K . HiL simulation tests were run for orbit

offsets up to ∆ = 500m (equal to the orbit radius), and Figure 4.5 plots λmax as a

function of the orbit offset when estimating both ATT and GIM biases. Figure 4.5

shows that observability significantly improves with orbit offset up to an offset of
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150m, with limited improvement afterwards. These results indicate that the biases

in both the UAV attitude and camera attitude can be effectively estimated with a

circular orbit which has a center offset from the POI, i.e., ∆ 6= 0.
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Figure 4.5: Observability of least observable mode over a range of orbit offsets.

The effect of orbit offset on geolocation accuracy is also evaluated with HiL

simulation. Thirty minutes of simulated data from the HiL simulation is used for

each of the 11 orbit offsets tested, ∆ ∈ [0 m, 0 m, . . . , 500 m]. Figure 4.6 shows

the steady state geolocation error for each of the orbit offset tests. The steady

state geolocation error is defined here to be the Euclidean distance between the

POI estimate and the true POI location, averaged over the last two minutes of the

thirty minutes of data.

Figure 4.6 shows that geolocation accuracy degrades with orbit offset not only

for the No Bias case, but also for the GIM only and ATT only cases as well.

This is because, as the orbit offset increases, all of the biases are observable, and

geolocation is now dependent on all of the biases. For the ATT and GIM cases,

the estimator attempts to fit an under-parameterized set of biases to the true set

of six. Since ATT-GIM bias estimation includes all of the biases, it is invariant to
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Figure 4.6: Average steady state geolocation error from HiL simulation with orbit
offsets ranging from 0 m to 500 m (the orbit radius was 500 m).

orbit offset.

Cooperative UAV Flight Test Results

Cooperative geolocation is experimentally evaluated using the 2007 flight test data,

which included two UAVs in a circular orbit centered over a stationary POI. The

experimental flight data is broken into four subsets of six minutes each. Figure 4.7

shows geolocation errors averaged over those four subsets. Six different cases are

included in Figure 4.7 based on a 3× 2 selection of three cooperation choices: 1)

a single UAV 2) centralized with two UAVs and 3) decentralized with two UAVs

and two bias choices: 1) No Bias and 2) ATT-GIM Bias. The error is defined to

be the Euclidean distance between the true and estimated POI locations.

Four important conclusions can be drawn from Figure 4.7. First, comparing

a single UAV, with and without bias estimation shows that geolocation accuracy

improves by approximately 75% with bias estimation. Second, comparing the de-
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Figure 4.7: Geolocation error averaged over four subsets of the 2007 flight test with
three choices of cooperation: Single UAV, Decentralized, and Centralized and also
with two choices of biases to estimate: No Bias, and ATT-GIM bias.

centralized No Bias vs. ATT-GIM cases, bias estimation improves the convergence

time (≈ 1 minute with bias estimation compared to ≈ 4 minutes without bias

estimation), but gives approximately the same steady state error. The centralized

(No Bias vs. ATT-GIM) comparison gives similar results. Third, comparing a

single UAV with No Bias estimation to using two UAVs (decentralized or central-

ized) with No Bias estimation shows that using two UAVs improves geolocation

accuracy significantly, both in terms of the steady state error (≈ 1.5 for one UAV

compared to ≈ 0.3 for two UAVs) and convergence time (≈ 6 minutes for one UAV

and ≈ 4 minutes for two UAVs). Fourth, with ATT-GIM bias estimation, compar-

ing the decentralized bias estimation approach and the centralized bias estimation

approach shows that the decentralized approach remains within 0.03% of the cen-

tralized approach at all times, when locating a stationary POI. This shows that

the algorithmic assumption in the decentralized approach, that the cross correla-

tion between the biases on each of the UAVs is small and can be removed through

marginalization, is reasonable in this case.
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4.6.3 Moving Point of Interest

Bias estimation for a moving POI is evaluated in this section using the HiL simu-

lation data for two ScanEagle UAVs locating a moving POI, described in Section

4.64.6.1. The path of the moving POI is based on a city driving model charac-

terized by frequent stops and 90◦ turns. A representative moving POI trajectory

is shown in Figure 4.8. The SPOIs, computed camera line of sight intersections

with the ground, are also included in Figure 4.8 as red dots for reference as an

approximate evaluation of the camera measurement.
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Figure 4.8: Representative trajectory from the HiL city driving simulator and
geolocation estimates using a single UAV and two bias estimation choices: No
Bias, and ATT-GIM bias.

A simple ballistic model is used as the POI dynamics model for the geolocation

estimator and is written as

xk+1,POI =



I3,3 δtI3,3
03,3 I3,3


xk,POI +




03,3

I3,3


wk,POI, (4.56)

where I3,3 is a 3 × 3 identity matrix. The POI state stacks three position states
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and three velocity states, both in the local North-East-Down (NED) frame.

Figure 4.8 also shows the estimates of the POI using one UAV for two cases of

bias estimation: 1) no bias estimation and 2) ATT-GIM bias estimation. When no

biases are estimated (black line in Figure 4.8) the estimate approximately follows

the SPOIs. This is due to the freedom in a ballistic POI model used here, as the

estimator considers the SPOI to be a statistically reasonable estimate for the POI

state. When biases are assumed in both the ATT-GIM states (blue dash-dot line),

the estimate follows the true POI path more closely.

The geolocation performance (average error) for the moving POI case is pre-

sented in Figure 4.9 for a 3×2 selection of three cooperation cases: 1) a single UAV

2) centralized with two UAVs and 3) decentralized with two UAVs; and two bias

cases: 1) No Bias and 2) ATT-GIM Bias. The data from the seven 30 min HiL tests

of a moving POI are each broken into four non-overlapping subsets of seven min-

utes each; giving 28 data sets (7 tests varying relative phase β ∈ [0◦, 30◦, . . . , 180◦],

and 4 subsets of each). The geolocation error in Figure 4.9 is the average over these

28 data sets. The average geolocation error is computed by finding the Euclidean

distance from the estimated POI location and the true POI location at each time

step, for each data set, and then, taking the average over the 28 data sets.

Four conclusions can be drawn from Figure 4.9. First, using only one UAV

and not estimating biases is the least accurate approach, with a steady state error

of ≈ 6.5 and is used here as a baseline for comparison. Second, adding a second

cooperating UAV with No Bias estimation (centralized and decentralized are the

same in this case) provides some reduction in steady state error over the single UAV

with No Bias estimation case with a steady state error of ≈ 4.2. Third, including

bias estimation with a single UAV provides even more improvement in steady state
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Figure 4.9: Geolocation error averaged over four subsets of the HiL moving POI
test set with three choices of cooperation: Single UAV, Decentralized, and Cen-
tralized and also with two choices of biases to estimate: No Bias, and ATT-GIM
bias.

error over the single UAV No Bias case and has a steady state error of ≈ 3. Fourth,

the centralized and decentralized approaches for two UAVs with ATT-GIM bias

estimation are the most accurate, particularly early (first four minutes) and only

moderately so afterwards. Finally, the decentralized approach has approximately

5% larger steady state error than the centralized approach; this error was 0.3%

in the stationary POI case. This indicates that the moving POI case results in a

larger coupling of the biases of each UAV than the stationary POI case, and a small

amount of information is lost through the marginalization process. This small loss

of accuracy is traded with the scalability of the decentralized implementation in

terms of reduced computation and communication.
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4.7 Conclusions

The cooperative geolocation of a point of interest (POI) using multiple UAVs with

articulating camera sensors is addressed, where there are non zero mean errors

(biases) in the estimate of the UAV state. A decentralized, joint POI and bias

estimation approach is proposed which utilizes a marginalization step allowing

each UAV to model only the POI state and the local biases. Marginalization is

used to share information only related to the POI state by assuming that the cross

correlation between the biases across each of the UAVs is small and can be ignored.

The proposed decentralized solution is scalable in that only information about the

POI is shared among the UAVs.

An observability analysis of the joint geolocation and bias estimation problem

showed that biases in the UAV navigation solution are not observable, and pass

directly to the POI estimate. Also, biases in the UAV attitude and camera atti-

tude are observable, albeit poorly for the case of a single UAV in a POI centered

orbit. While potentially problematic, this poor observability of the biases allows

for computational savings for the POI centered orbit case, by estimating only a

subset of the biases without a degradation of geolocation accuracy. As the orbit

center is offset from the POI, the biases are well observable. In this case, all biases

must be estimated in order to yield accurate geolocation estimates; estimating only

a subset of the biases degrades geolocation accuracy.

The proposed decentralized joint POI and bias estimation approach is validated

using both experimental flight test data and hardware in the loop simulation data

for two ScanEagle UAVs locating stationary and moving POIs. Including bias

estimation coupled with POI estimation improves geolocation accuracy, in terms of

convergence time and steady state estimate error for all cases. For the single UAV
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case, the steady state estimate error is reduced by more than 50%. When locating

a stationary POI, the decentralized approach recovers the centralized solution to

within 0.03%. This validates the assumption that the cross correlation of the biases

is small in this case. When locating a moving POI, however, the decentralized

approach deviates from the centralized approach by approximately 5%. However,

the small reduction in accuracy is traded for scalability in reduced computation

and communication.
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CHAPTER 5

COOPERATIVE GEOLOCATION IN THE PRESENCE OF

COMMUNICATION LOSS

5.1 Abstract

Cooperative estimation using multiple mobile sensor nodes communicating over

a lossy network is considered. A new method, termed Predicted Information, is

developed from a separable formulation of the Extended Information Filter. Two

variations of the predicted information method are presented which trade between

accuracy and computational complexity. The first variation estimates the infor-

mation matrix updates directly from estimates of the cooperating sensor node

states. The second variation uses a piecewise constant approximation to predict

the information matrix updates. The predicted information method is shown to

give the exact solution for linear systems when the measurement dynamics are

constant or known by all sensor nodes. The predicted information method is eval-

uated with a cooperative geolocation problem with two uninhabited aerial vehicles

using gimballing camera sensors. Flight test data and high fidelity hardware in

the loop simulations are used to compare the predicted information method with

three benchmark methods from the literature for tracking both stationary and

maneuvering targets, and for single extended losses and random dropouts.

5.2 Introduction

Cooperative estimation is the process where multiple possibly mobile sensor nodes

take measurements of the state of interest and work together to find a joint esti-
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mate. Fusion into a single estimate on each node can be formulated by exchanging

information from each of the measurements (information fusion [41]) or state es-

timates based on local measurements (state fusion [29]). Cooperative estimation

applications span from space [19], to air, to undersea [18]. Of particular interest

here are target tracking applications utilizing multiple Uninhabited Aerial Vehi-

cles (UAVs). Currently UAVs are being used to track ground targets in situations

ranging from military missions to search and rescue operations [12] and even to

animal migration [53]. Several groups have implemented target tracking systems

on UAVs [49, 63, 15]. It is well known that data fusion techniques can significantly

increase the information (decrease the uncertainty) of the target being tracked

based on multi-sensor measurements [36, 41]. Recognizing this, Refs. [51, 11, 23]

have implemented UAV systems using decentralized fusion (information filtering)

concepts.

Communication is an important component of the cooperative estimation pro-

cess, and recent research has focused on the effects of digital communication in

both control and estimation. Delchamps [14] presented a seminal work describ-

ing the effect of quantization on controller performance. More recently, significant

work has been done on the effect of network communication between sensors, con-

trollers, and system plants [60, 69, 52, 70]. In addition to quantization effects,

the cooperative estimation system must be robust to communication losses and

delays. For example, in autonomous underwater vehicle applications, communica-

tion is particularly limited in reliability as well as bandwidth. In [[1]], Akyildiz et

al characterize the underwater communication channel noting that communication

is lost or delayed frequently due multi-path and obstructions.

The problem of cooperative estimation in the presence of communication loss
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is considered in this paper. Communication loss refers to a situation in which

the nodes are unable to communicate with each other for a period of time that is

unknown a priori. It is assumed here that the communication losses are symmetric

and known by each sensor node. Communication delay is a related problem and

refers to the situation in which sensor nodes must communicate over a medium

which induces potentially unknown and varying delays in the data transmission;

for example, communication over an ad hoc wireless network. It is assumed here

that the delays are not symmetric between nodes and there is no confirmation of

receipt provided from the receiving node. In this case, any time a sensor node

sends data, it will have no knowledge of how long before the data is received at the

other end. Also, there is no guarantee that the data will be received at a sensor

node in the order it was generated. Under this scenario, it is the responsibility of

the receiver to make effective use of the data received, even if the data is both late

and out of order.

The delayed data problem was explored in the Kalman filtering domain by

Larsen et al. in Ref. [35], where the focus was on estimation with a combina-

tion of fast and slow sensors. In Ref. [30], Julier and Uhlmann developed an

approach algebraically equivalent to the results of Larsen. In a centralized esti-

mation framework, Bar-Shalom developed an exact solution for out-of-sequence

measurements[3]. Nettleton and Durrant-Whyte [44] examined the delayed data

problem in the information filtering domain, which is more amenable to decentral-

ized sensor fusion. This approach is theoretically equivalent to centralized esti-

mation in linear systems, but requires large memory and bursty communication.

None of the existing methods address the communication loss (or delay) problem

in the nonlinear decentralized estimation context. These cases arise when the POI

dynamics or measurements are nonlinear, which is common in the UAV tracking
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problem [11].

This paper develops a solution to the decentralized estimation problem using

multiple mobile sensor nodes with communication over a lossy network. The new

method, termed the Predicted Information (PI) method, is developed as an ap-

proximation to the Separable Extended Information Filter (SEIF), which is an

alternate form of the Extended Information Filter (EIF) derived in this work. Our

approach is to predict the information matrix updates during the communication

loss to more easily update the estimator when communication is re-established.

Two variations are presented which trade accuracy with computation, memory,

and communication load. The first variation estimates the information matrix

updates over time, while the second variation uses a piecewise constant approxi-

mation to the information matrix updates. Although the delayed data problem is

not specifically addressed here, the PI method can be used with delayed data but

requires minor modifications.

The PI method is validated and compared to benchmark methods from the

literature [29, 44, 50] using ScanEagle UAV flight data for the cooperative geolo-

cation of both stationary and moving targets. The ScanEagle is a long endurance

UAV (∼ 24 hours) developed by The Insitu Group and is equipped with a digital

video camera integrated into an inertially-stabilized pan / tilt nose turret along

with vision tracking software that allows the camera to remain pointed at both sta-

tionary and moving targets as the UAV maneuvers. Flight tests of two ScanEagle

UAVs were performed on March 16, 2007 [57] and this data along with hardware

in the loop simulations are used in the examples presented.

The paper is outlined as follows. First, the general decentralized cooperative

estimation problem is presented with a description of the Extended Information
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Filter (EIF). Second, a formulation of the EIF is presented which explicitly sep-

arates the contributions of the a priori information and the information coming

from each sensor node. Next, the PI method is developed from the Separable EIF

(SEIF) for the communication loss problem. Then, three methods from the litera-

ture are summarized as benchmark approaches for communication loss. Finally, a

challenging and practically motivated nonlinear cooperative geolocation example

is presented as validation. For the geolocation example, experimental flight data

and hardware in the loop simulations are used to track both stationary and moving

targets for two communication loss scenarios.

5.3 Decentralized Cooperative Estimation

Consider a general state of interest, x, whose discrete time dynamics are governed

by

xk+1 = f [xk,wk], (5.1)

where the disturbance, wk, is zero mean, white, Gaussian noise with covariance

Qk, and the subscript k denotes time step tk. Assume there are ns mobile sensor

nodes with states, ψs
k+1, taking measurements of the state of interest as

zsk+1 = hs[xk+1,ψ
s
k+1,v

s
k+1], s ∈ S = {1, . . . , ns}, (5.2)

where the sensor noise, vsk+1, is zero mean, white, Gaussian noise with covariance

vRs
k+1. The process and sensor noises, wk, and vsk+1, are assumed to be uncorre-

lated with each other. The sensor node dynamics are given by

ψs
k+1 = gs[ψs

k,u
s
k,w

s
k], (5.3)

where usk is a control input and ws
k is a zero mean white Gaussian noise disturbance.

The sensor nodes are further assumed to have an onboard navigation system which
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gives an estimate of the sensor node state, ψ̂s
k+1 such that

ψs
k+1 = ψ̂s

k+1 + ηsk+1, (5.4)

where the sensor node state estimate error, ηsk+1, is assumed zero mean, Gaussian,

and white with covariance, ηRs
k+1. In fact, the sensor node state estimate does not

have zero mean, white, and Gaussian errors. Because it is the output of an on-board

estimator, it will have autocorrelation errors. However, these have been shown to

be small for similar applications [39]. Further, assuming that ηsk+1 is white is

equivalent to assuming white noise in the measurement equation (Eqn. 5.2), which

has been used in many instances with success [62, 46]. Additionally, it may not

be zero mean due to alignment and turret mounting errors (biases), which enter

the problem in a similar manner. It is well known that estimation accuracy can be

improved via bias estimation [37, 45, 66]. However, the inclusion of bias models is

beyond the scope of this work as communication issues are the main focus here.

Let ZS
k+1 denote the set of all measurements from all sensor nodes up to time

step k + 1 such that

Z
S

k+1 = {z1
1, . . . , z

1
k+1, . . . , z

s
1, . . . , z

s
k+1} (5.5)

The goal of decentralized cooperative estimation is to utilize all measurements,

ZS
k+1, to develop an accurate representation of the probability density function

of the state of interest, p[xk+1|ZS
k+1], on each sensor node. Note that frequently,

only the first and second moments of p[xk+1|ZS
k+1] are maintained, denoted here

as estimate mean, x̂k+1, and estimate error covariance, Pk+1, respectively. Fur-

thermore, for decentralization, the development of p[xk+1|ZS
k+1] must utilize the

computational capabilities of each sensor node rather than a central processing

node.
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The Information Filter (IF), used as a basis here, was presented by Rao,

Durrant-Whyte, and Sheen in Ref. [50] as the optimal solution to the linear decen-

tralized estimation problem. Mutambara presented the IF and Extended Informa-

tion Filter (EIF) for nonlinear systems in the widely used form in Ref. [43], and

further showed that the EIF is algebraically equivalent to the Extended Kalman

Filter (EKF). More recently, information filtering concepts were used to develop

a more accurate and robust filter for nonlinear systems, termed the Square-Root,

Sigma Point Information Filter (SR-SPIF) in Ref. [11].

The information matrix, Yk, and information state, yk, are defined based on

the state estimate error covariance, Pk, and state estimate, x̂k, as

Yk = P−1
k (5.6)

yk = Yk · x̂k (5.7)

The EIF algorithm can then be written for ns sensor nodes, as computed on a local

node l, with a recursion of the following five steps:

1. Time Propagation

Y−
k+1 = (Fk)

−TYk(Fk)
−1(I + ΓkQk(Γk)

T (Fk)
−TYk(Fk)

−1)−1 (5.8)

y−
k+1 = Y−

k+1 · f [(Yk)
−1yk, 0], (5.9)

where I denotes the identity matrix and

Fk = ∇xf [x,w]|x=(Yk)−1yk,w=0 (5.10)

Γk = ∇wf [x,w]|x=(Yk)−1yk,w=0 (5.11)
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2. Compute Local Information State and Matrix Updates

ilk+1 = (xHl
k+1)

T (vHl
k+1

vRl
k+1(

v
Hl
k+1)

T + ψHl
k+1

ψRl
k+1(

ψ
Hl
k+1)

T )−1 ·

(zlk+1 − hl[(Y−
k+1)

−1y−
k+1, ψ̂

l
k+1, 0] + xHl

k+1(Y
−
k+1)

−1y−
k+1) (5.12)

Ilk+1 =
(
xHl

k+1

)T
(vHl

k+1
vRl

k+1(
v
Hl
k+1)

T + ηHl
k+1

ηRl
k+1(

η
Hl
k+1)

T )−1xHl
k+1,(5.13)

where

xHl
k+1 = ∇xh

l[x, ψ̂ + η,v]|x=(Y−

k+1
)−1y

−

k+1
,η=0,v=0 (5.14)

vHl
k+1 = ∇vh

l[x, ψ̂ + η,v]|x=(Y−

k+1
)−1y

−

k+1
,η=0,v=0 (5.15)

ηHl
k+1 = ∇ηhl[x, ψ̂ + η,v]|x=(Y−

k+1
)−1y

−

k+1
,η=0,v=0 (5.16)

3. Transmit Local Information Updates, ilk+1 and Ilk+1, to all Sensor Nodes,

s ∈ S \ {l}

4. Receive Information Updates, isk+1 and Isk+1, from all Sensor Nodes, s ∈ S\{l}

5. Fuse Local and Received Information Updates

Yk+1 = Y−
k+1 + Ilk+1 +

∑

s∈S\{l}

Isk+1 (5.17)

yk+1 = y−
k+1 + ilk+1 +

∑

s∈S\{l}

isk+1 (5.18)

Note that when the system is linear, Equations 5.1 and 5.2 are linear, and the

system matrices: Fk, Γk,
xHl

k+1,
vHl

k+1,
ηHl

k+1 are known and independent of

the state. For a linear system, the EIF reduces to the IF, which simplifies the

information state prediction step, Equation 5.9, to be

Lk+1 = Y−
k+1FkY

−1
k (5.19)

y−
k+1 = Lk+1yk, (5.20)
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where Lk+1 is termed the information state propagation matrix. In addition, com-

putation of the information state update, ilk+1, in Equation 5.12, simplifies to be

ilk+1 = (xHl
k+1)

T (vHl
k+1

vRl
k+1(

v
Hl
k+1)

T + ηHl
k+1

ηRl
k+1(

η
Hl
k+1)

T )−1zlk+1 (5.21)

5.4 Separable Extended Information Filter

An alternative form of the EIF is now presented, termed the Separable EIF (SEIF),

which separates the information matrix and state into components corresponding

to the a priori information and information contributed by each of the sensor nodes.

The full derivation of the SEIF is given in Appendix A and a summary is presented

here. The SEIF is summarized in the following six steps as implemented on node

l. The cumulative information variables of the SEIF are initialized as ỹk = yk,

ĩlk = 0, Ỹk = Yk, and Ĩlk = 0.

1. Compute discount factor Dk

Dk = (I + ΓkQk(Γk)
T (Fk)

−TYk(Fk)
−1)−1 (5.22)

2. Time Propagation

Y−
k+1 = (Fk)

−TYk(Fk)
−1Dk (5.23)

Lk+1 = Y−
k+1Φk(Yk)

−1 (5.24)

Ỹk+1 = (Fk)
−T Ỹk(Fk)

−1Dk (5.25)

ỹk+1 = Lk+1ỹk (5.26)

3. Compute local information updates and package into cumulative information
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updates

Ilk+1 =
(
xHl

k+1

)T
(vHl

k+1
vRl

k+1(
v
Hl
k+1)

T + ηHl
k+1

ηRl
k+1(

η
Hl
k+1)

T )−1xHl
k+1(5.27)

ilk+1 = (xHl
k+1)

T (vHl
k+1

vRl
k+1(

v
Hl
k+1)

T + ηHl
k+1

ηRl
k+1(

η
Hl
k+1)

T )−1 ·

(zlk+1 − hl[(Y−
k+1)

−1y−
k+1, ψ̂

l
k+1, 0] + xHl

k+1(Y
−
k+1)

−1y−
k+1) (5.28)

Ĩlk+1 = (Fk)
−T Ĩlk(Fk)

−1Dk + Ilk+1 (5.29)

ĩlk+1 = Lk+1̃i
l
k + ilk+1 (5.30)

4. Transmit Local Cumulative Information Updates, ĩlk+1 and Ĩlk+1, to all Sensor

Nodes, s ∈ S \ {l}

5. Receive Cumulative Information Updates, ĩsk+1 and Ĩsk+1, from all Sensor

Nodes, s ∈ S \ {l}

6. Fuse Local and Received Cumulative Information Updates

yk+1 = ỹk+1 + ĩlk+1 +
∑

s∈S\{l}

ĩsk+1 (5.31)

Yk+1 = Ỹk+1 + Ĩlk+1 +
∑

s∈S\{l}

Ĩsk+1 (5.32)

There are two key parts of the SEIF. First, is the creation of the terms, Ỹ, Ĩ,

ỹ, and ĩ, which account for the information accumulated by each sensor node (̃I, ĩ)

and the a priori information (Ỹ, ỹ). Second, is the transition matrix, Φk, shown

in Equation 5.24, which is used to propagate the cumulative information state

and update forward in time. If the state dynamics are linear, then the transition

matrix, Φk = Fk. Appendix B shows how to compute the transition matrix for

nonlinear state dynamics.

Note that no approximations are made in the development of the SEIF from the

EIF, and therefore, the SEIF and EIF are algebraically equivalent. However, the
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computation for the SEIF is a bit higher due to the prediction of the cumulative

information variables. The utility of the SEIF will be made more clear in Section

5.5 when implemented in the context of a communication loss.

5.5 Predicted Information Method

The Predicted Information (PI) method presented here is derived based on the

separable formulation of the EIF presented in Section 5.4. The explicit separation

of the information into contributions from prior information and from each sensor

node makes it possible to combine information that was not communicated, due

to a communication loss, into a single, approximate cumulative update. In this

formulation, during a communication loss, two filters are used:

1. an EIF, which fuses only local information and acts as the current local

estimator during the communication loss

2. a PI filter, which is used to quickly update the local estimator with informa-

tion from other nodes when communication is restored.

Consider trying to implement the SEIF in the case of an m− 1 step complete

communication loss for all sensors between time steps k and k + m. A complete

communication loss is one in which no sensor node is able to communicate with any

other sensor node, which is the worst case example. During the communication

loss, the fusion step of the SEIF (step 6 in Section 5.4) cannot be performed

because the transmission and reception steps (steps 4 and 5 in Section 5.4) are

not completed. Without the fusion step, the first three steps also fail at the next

time iteration because they require the information matrix, Yk+1. It is proposed
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here that the information matrix Yk+1 is estimated as Ŷl
k+1 by predicting the

information matrix updates that should have been received from each sensor node,

[̂Isk+1]
l ≈ Isk+1 (explored in Section 5.5-5.5.1), and using the standard EIF fusion

step. This gives

Yk+1 ≈ Ŷl
k+1 = Ŷl−

k+1 + Ilk+1 +
∑

s∈S\{l}

[̂Isk+1]
l, (5.33)

where the use of a hat over a variable here denotes an estimated or approximate

value. The SEIF can then proceed during the communication loss with the same

recursion but using the predicted information. Note that during the communica-

tion loss, the other variables, Dk, Lk+1, Ỹk+1, ỹk+1, Ĩk+1, and ĩk+1 are approximate

due to their dependence on the information matrix, Yk+1, and are denoted with

a hat as D̂k, L̂k+1,
̂̃
Yk+1, ̂̃yk+1,

̂̃
Ik+1, and

̂̃
ik+1, respectively. It is important to

note that Predicted Information refers to the prediction of the uncertainty about a

measurement, given by I, not prediction of the measurements themselves. This ap-

proximation allows for the use of the SEIF recursion which efficiently accumulates

local information into cumulative information updates which can be communicated

and fused easily.

During a communication loss, the PI method consists of three parts: 1. Initial-

ization, 2. Propagation During Loss, 3. Communication and Fusion. The three

parts are shown below, as applied on local node l, for an m−1 step communication

loss between time steps k and k +m.

1. Initialization

When communication is lost at time step k+1 (last completed communication

at time step k), the PI filter is initialized from the current EIF state as

̂̃
Y

l

k = Yk,
̂̃
I
l

k = 0, ̂̃y l
k = yk,

̂̃
i
l

k = 0, and Ŷl
k = Yk.
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2. Propagation During Loss

While communication is unavailable, two sets of recursions are used. The

first is the already running EIF, which fuses only local updates and is used

to develop: Fl
j , Γl

j ,
xHl

j ,
vHl

j,
ηHl

j, Φl
j, ilj , and Ilj. Second, is the PI filter,

shown in Figure 5.1.

3. Communication and Fusion

Once communication is available, the cumulative information updates,
̂̃
I
l

k+m,

and
̂̃
i
l

k+m, are transmitted to all other nodes, s ∈ S,
̂̃
I
s

k+m, and
̂̃
i
s

k+m are

received from all other nodes, s ∈ S. At local node l, all received cumulative

updates at time step k +m are then fused according to

Yl
k+m =

̂̃
Y

l

k+m +
∑

s∈S\{l}

̂̃
I
s

k+m (5.34)

ylk+m = ̂̃y l
k+m +

∑

s∈S\{l}

̂̃
i
s

k+m (5.35)

5.5.1 Predicting Information Updates

The development of the predicted information matrix updates, [̂Isj+1]
l, is dependent

on the sensor node state dynamics in Equation 5.3. Two different approaches

are used in this work. The first approach, termed Estimate Information (EI),

estimates the information matrix updates directly from estimates of the states of

the cooperating sensor nodes at each time step as

[̂Is
j+1]

l
EI

= ([
x

Ĥs
j+1]l)

T
([

v

Ĥs
j+1]lvRs

j+1([
v

Ĥs
j+1]l)T +[

η
Ĥs

j+1]lηRs
j+1([

η
Ĥs

j+1]l)T )
−1

[
x

Ĥs
j+1]l, (5.36)

where the measurement function linearizations,
x
Ĥs
j+1,

v
Ĥs
j+1, and

η
Ĥs
j+1 are es-

timated on local node l based on local estimates as [(·)Hs
j+1]

l = ∇(·)h
s[x, [ψ̂s

j+1]
l +

η,v]|
x=(Yl−

j )−1y
l−
j ,η=0,v=0

and sensor node l’s estimate of the state of sensor node
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Recursion for j = k, . . . , k +m

(a) Compute predicted discount factor D̂l
j

D̂l
j = (I + Γl

jQj(Γ
l
j)
T (Fl

j)
−T Ŷl

j(F
l
j)

−1)−1

(b) Propagate cumulative information matrix variables,
̂̃
Y

l

j+1 and
̂̃
I
l

j+1

̂̃
Y

l

j+1 = (Fl
j)

−T ̂̃
Y

l

j (F
l
j)

−1D̂l
j + Ilj+1

̂̃
I
l

j+1 = (Fl
j)

−T̂̃I lj (Fl
j)

−1D̂l
j + Ilj+1

(c) Compute time propagation of the predicted information matrix

Ŷl−
j+1 = (Fl

j)
−T Ŷl

j(F
l
j)

−1D̂l
j

(d) Compute the predicted information state propagation matrix,

L̂l
j+1 and propagate the cumulative information state variables,

ỹlj+1 and ĩlj+1

L̂l
j+1 = Ŷl−

j+1Φ̂
l
j(Ŷ

l
j)

−1

̂̃y l
j+1 = L̂l

j+1
̂̃y l
j + ilj+1

̂̃
i
l

j+1 = L̂l
j+1

̂̃
i
l

j + ilj+1

(e) Predict [̂Isj+1]
l
(·) for all s ∈ S \ {l}, where (·) is the prediction

method described in Section 5.5.1

(f) Complete the predicted measurement update of the predicted in-
formation matrix

Ŷl
j+1 = Ŷl−

j+1 + Ilj+1 +
∑

s∈S\{l}

[̂Isj+1]
l
(·)

Figure 5.1: Summary of the PI filter during a complete communication loss of
m− 1 time steps.

s at time step j + 1 is denoted as [ψ̂s
j+1]

l. The process of directly predicting

information matrix updates requires three conditions:

1. Each sensor node must have access to the measurement function for every
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other sensor node including sensor noise statistics (i.e. Equation 5.2 must be

known by all sensor nodes)

2. Each sensor node must have a model of the dynamics of the sensor node

states for every sensor node and navigation system error statistics (Equation

5.3)

3. When communication is available, in addition to transmitting information

updates, the sensor nodes must also transmit their sensor node state esti-

mates, ψ̂s
k

Condition number one is easily met by simply sharing the sensor models among

the cooperating sensor nodes. Condition number two is the most uncertain and es-

sentially requires the ‘plan’ of each sensor node to be known or the state not to vary

much. For the UAV example presented here this is reasonable. Condition number

three is straight forward but does require a small increase in communication (10

floating point numbers for each UAV in the geolocation example).

An alternative, simpler, approach, termed Constant Information (CI), is to

assume that the information matrix updates change slowly over the time of the

communication loss, and can be well approximated as constant. This would give

the following predicted information matrix update during the communication loss

[̂Isk+j]
l
CI = Isk ∀ j ∈ {1, . . . , m− 1} (5.37)

The applicability of the CI approach is problem dependent and the accuracy de-

pends on how quickly the true information matrix updates change. recall that

only the information matrix updates are being approximated, which contain the

measurement statistics and not the measurements themselves. Both the EI and

CI approaches to predicting information matrix updates are compared in Section

6.3 for a cooperative geolocation example with UAVs.
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5.5.2 Stability and Performance

The PI method was developed from the separable formulation of the EIF for nonlin-

ear estimation. Since analytic stability proofs for the EIF/EKF are only available

in special cases [33], a general analytic stability proof of the PI method is not

expected. Therefore, the stability and performance of the PI method is evaluated

empirically in Section 5.7. However, in the case of a linear system the performance

of the PI method can be shown analytically.

When applying the PI method to the general nonlinear system presented in

Section 5.3, there are two sources of error:

1. error in the predicted information matrix updates, i.e. [̂Isj+1]
l
(·) 6= Isj+1

2. incorrect linearization for the system matrices during the communication loss

(Equations 5.10, 5.11, 5.14, 5.15, and 5.16)

During a communication loss there is no feedback and in general the errors will

continue to accumulate. However, for a linear system, where all system matrices are

not sensor state dependent, both sources of error are eliminated. The linearization

error is removed because the system is already linear. Furthermore, since the

measurement functions are known by all sensor nodes and are not dependent on

the states of either the POI or mobile sensor node dynamics, the information

matrix updates can be predicted exactly during a communication loss,

[̂Isk+j]
l
EI = Isk+j ∀ j ∈ {1, . . . , m− 1}. (5.38)

Thus, for linear systems, the PI method with the EI prediction, is guaranteed

to achieve the optimal solution after a communication loss, as if the loss had

not occurred for any finite duration communication loss. Further, if the system
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matrices are linear and constant, then the PI method with CI prediction is also

exact.

5.5.3 Maintaining Equivalent Estimates Across Sensor

Nodes

One disadvantage of the PI method is that, after a communication loss, estimates

on each sensor node can be different because a different predicted a priori informa-

tion term,
̂̃
Y

l

, is computed and used on each local node. A slight modification can

be made to obtain equivalent estimates across sensor nodes by also communicating

ỹ and Ỹ to all other nodes, and performing a covariance intersection step [29] in

place of Equations 5.34 and 5.35. Formally, this is written as

Yl
k+1 =

∑

s∈S

(
ωs

̂̃
Y

s

k+1 +
̂̃
I
s

k+1

)
(5.39)

ylk+1 =
∑

s∈S

(
ωŝ̃y s

k+1 +
̂̃
i
s

k+1

)
, (5.40)

where the ωs parameters are chosen to maximize Det[Yl
k+1] subject to the con-

straints:

ωs ∈ [0, 1] ∀ s ∈ S (5.41)

∑

s∈S

ωs = 1. (5.42)

However, significant computation and communication can be saved by forgoing

the optimization step and instead using an equal weighting, ωs = 1
ns

. This is

reasonable because the differences in the predicted a priori information terms are

not of statistical significance. The sensor nodes can then transmit a weighted sum

of their a priori information and cumulative information terms as a single update.
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The fusion step then takes the form,

Yl
k+1 =

(
1

ns

̂̃
Y

l

k+1 +
̂̃
I
l

k+1

)
+

∑

s∈S\{l}

(
1

ns

̂̃
Y

s

k+1 +
̂̃
I
s

k+1

)
(5.43)

ylk+1 =

(
1

ns
̂̃y l
k+1 +

̂̃
i
l

k+1

)
+

∑

s∈S\{l}

(
1

ns
̂̃y s

k+1 +
̂̃
i
s

k+1

)
. (5.44)

5.5.4 General Communication Loss Scenarios

Frequently in practice, communication losses affect only a subset of the nodes and

further, are not always symmetric. Define Rl
k+1 to be the set of all remote nodes

from which node l has received updates at time step k + 1. Also, Define T
l
k+1 to

be the set of all remote nodes to which node l has transmitted updates at time

step k + 1. If either Rl
k+1 or Tl

k+1 or both are proper subsets of S \ {l}, then a

communication loss has occurred. The previously described PI method can still be

used, but in a modified form. In these cases, cumulative information updates must

be accumulated for each of the communication links that are lost. The changes to

the PI method are summarized as follows, from the perspective of node l.

1. Initialization now includes cumulative information updates for each of the

other nodes

̂̃
I
l

k = 0 ⇒ ̂̃
I
l,s

k = 0 and
̂̃
i
l

k = 0 ⇒ ̂̃
i
l,s

k = 0 for s ∈ S \ {l}

2. Transmit cumulative information updates to all available nodes t ∈ Tl
j+1 and

reset cumulative information updates to zero after successful transmission

̂̃
I
l,t

k = 0 and
̂̃
i
l,t

k = 0 for t ∈ Tl
j+1

3. Receive cumulative information updates from all available nodes r ∈ R
l
j+1
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and fuse as

̂̃
Y

l

j+1 =
̂̃
Y

l

j+1 +
∑

r∈Rl
j+1

̂̃
I
r,l

j+1

̂̃y l
j+1 = ̂̃y l

j+1 +
∑

r∈Rl
j+1

̂̃
i
r,l

j+1

Note that step 2 includes a resetting of the cumulative information updates to 0

after a successful transmission, to prevent double counting of information. This is

equivalent to keeping cumulative information updates only for the nodes that lost

communication and using the standard EIF updates, Ik and ik, for the nodes still

in communication.

5.6 Benchmark Methods for Communication Loss in De-

centralized Estimation

The PI method developed in Section 5.5 is compared to three benchmark methods

for decentralized nonlinear estimation from the literature. The benchmark meth-

ods vary in their trade between estimator accuracy, communication requirements,

memory storage, and computational complexity.

5.6.1 Drop Information

Perhaps the simplest approach, referred to as Drop Information (DI), is to disregard

and not use any information updates that do not arrive in time. This approach

is implied in one of the original developments of the IF [50] for decentralized data

fusion, where sensor nodes are specifically allowed to be added/subtracted from
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the sensor network. Specifically, the DI method differs from the EIF/IF algorithm

described in Section 5.3 only in the fusion step, Equations 5.17 and 5.18. Recall,

Rl
k+1 is the set of all remote nodes from which node l has received updates at time

step k + 1; during a communication loss, Rl
k+1 is a proper subset of S \ {l}. The

fusion step of the DI method is then written as

ylk+1 = yl−k+1 + ilk+1 +
∑

r∈Rl
k+1

irk+1 (5.45)

Yl
k+1 = Yl−

k+1 + Ilk+1 +
∑

r∈Rl
k+1

Irk+1 (5.46)

The DI method has a number of advantages. First, the DI method is very modu-

lar since no sensor node must know anything about the communication topology.

Second, communication losses have no effect on the required memory storage or

the size of the information transmissions. Finally, the computation required in

the DI method at each sensor node actually decreases when communication is lost

because fewer updates are fused. The biggest disadvantage of the DI method is

estimation accuracy. Dropping information, as the name implies, leads to subop-

timal estimates which may be significant if the network is lossy. Furthermore, the

sensor nodes do not maintain the same estimate.

5.6.2 Store and Burst

The Store and Burst (SB) method presented here is a general version of the method

developed in Ref. [44], where computational simplifications were made specifically

for linear systems. The SB method requires each sensor node to save their local

information state, y, and information matrix, Y, from the last time step where

all information updates were available, i.e. before the communication loss. Then,

when new updates are made available through the communication network, the
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filter iterates from this step to the most recent time.

To understand how the SB method works, consider an m − 1 time step com-

plete communication loss, on sensor node l, where communication is available at

time step k and not again until time step k + m. The SB method during a com-

munication loss can be summarized in three steps: 1. Initialization - beginning of

communication loss, 2. Storage - during communication loss, 3. Burst and Fusion

- after communication is restored.

1. Initialization

When communication is lost at time step k + 1, the information state and

matrix, ylk, and Yl
k, from time step k are stored in memory.

2. Storage

While communication is lost, two steps occur. First, the SB method uses

the prediction step of the EIF, Equations 5.8 and 5.9 and fuses only locally

available information updates, ilk+j and Ilk+j for j ∈ {1, . . . , m− 1}, as com-

puted in Equations 5.12 and 5.13. Second, during the communication loss,

local information updates, Ilj and ilj for j ∈ {1, . . . , m − 1}, are stored for

later transmission when communication is restored.

3. Burst and Fusion

After communication is restored at time step k +m, node l sends all saved

information updates,

{ilk+1, . . . , i
l
k+m, I

l
k+1, . . . , I

l
k+m}, to all other nodes, and receives information

updates from all cooperating sensor nodes, {isk+1, . . . , i
s
k+m, I

s
k+1, . . . , I

s
k+m}

for all s ∈ S\{l}, in a single burst. Each node then runs a full EIF recursion

from time step k to k+m (Equations 5.8 to 5.18 using all saved and received

information updates.
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The biggest advantage of the SB method is accuracy. For a linear system, the

SB method recovers the optimal solution, as if communication was not lost, once

all updates have been received at each node. For nonlinear systems, the accuracy

is typically still quite good, although not optimal because of linearization errors.

Note that optimal is used here to mean that the estimate and uncertainty, after

communication is restored, return immediately to the estimate and uncertainty

that would have come with no communication loss at all. The biggest disadvan-

tage of the SB method is the memory, communication, and computation required.

Specifically, the SB method requires large memory during the communication loss

to store the information updates, as well as sudden bursts of both communication

and computation when communication is restored.

5.6.3 Hybrid State Fusion

State fusion is a cooperative estimation approach where first, only local measure-

ments are used to develop a local state estimate; then, the state estimates are then

shared amongst all nodes and fused to create a new state estimate. State fusion can

even be used to combine estimates from more complicated estimation algorithms

such as Gaussian Sum Filters [28]. In Ref. [29], Julier and Uhlmann present a

method, known as Covariance Intersection (CovI), as a statistically consistent ap-

proach for fusing estimates at a given time with unknown correlation. Covariance

Intersection uses a convex combination of the state estimates and covariances to

provide an updated state estimate and covariance. Covariance Intersection can

naturally be expressed as a convex combination of the IF variables. For example,
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simultaneously fusing state estimates from ns nodes yields

YCovI
k =

ns∑

s=1

ωsYs
k (5.47)

yCovI
k =

ns∑

s=1

ωsysk, (5.48)

where the parameters, {ω1, . . . , ωns}, are typically optimized over some metric,

such as

{ω1, . . . , ωns} = argmax
{ω1,...,ωns}

Det

[
ns∑

s

ωsYs
k

]
, (5.49)

subject to the constraints

ns∑

s=1

ωs = 1 (5.50)

ωs ∈ [0, 1] for s ∈ {1, . . . , ns}. (5.51)

Note that using the determinant, in Equation 5.49, is equivalent to minimizing the

volume of the updated uncertainty ellipsoid.

State estimates in the recursive filtering domain, by design, accumulate in-

formation from a time sequence of measurements. Therefore, it is expected that

performing a state fusion after a long communication loss would combine informa-

tion from the measurements taken during the communication loss. The benefit of

state fusion is that each node fuses local information in real time and only shares

the current information matrix and state. So, communication and memory re-

quirements are low. However, the downside is that the accuracy is not as good as

centralized estimation.

The Hybrid State Fusion (HSF) approach presented here is a slight modification

of the Covariance Intersection method. The HSF method combines Covariance

Intersection with the measurement fusion of the EIF at the time of communication,

and is summarized for local node l in Figure 5.2. During a communication loss, the
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HSF functions as the DI approach. When communication resumes, the Covariance

Intersection method is used to fuse information accumulated on the other nodes

during the loss. When there is no communication loss, the Covariance Intersection

step has no effect since each of the nodes has the same information. In this case,

the HSF method functions as the original EIF.

1. Prediction

Yl−
k+1 = (Fl

k)
−TYl

k(F
l
k)

−1(I + Γl
k+1Qk(Γ

l
k+1)

T (Fl
k)

−TYl
k(F

l
k)

−1)−1

yl−k+1 = Yl−
k+1f [(Y

l
k)

−1ylk, 0]

2. Transmit Ilk+1, i
l
k+1, Y

l−
k+1, and yl−k+1 to other nodes for t ∈ Tl

k+1

3. Receive Irk+1, i
r
k+1, Y

r−
k+1, and yr−k+1 from other nodes for r ∈ R

l
k+1

4. State Fusion using Covariance Intersection for all received
state estimates

Yl−
k+1 ← ωlYl−

k+1 +
∑

r∈Rl
k+1

ωrYr−
k+1

yl−k+1 ← ωlyl−k+1 +
∑

r∈Rl
k+1

ωryr−k+1

5. Fuse local and received information updates

Yl
k+1 = Yl−

k+1 + Ilk+1 +
∑

r∈Rl
k+1

Irk+1

ylk+1 = yl−k+1 + ilk+1 +
∑

r∈Rl
k+1

irk+1

Figure 5.2: Summary of the Hybrid State Fusion method.
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5.7 Cooperative Geolocation Using Flight Test Results

A challenging and practically motivated cooperative geolocation example with ex-

perimental flight data is used to understand and compare the performance of the

PI method, developed in Section 5.5, relative to the three benchmark methods,

shown in Section 5.6. Figure 5.3 shows a conceptual scenario for the geolocation

problem. Each UAV, based on its position and orientation, points a camera (using

a gimballing payload mount inside the UAV) at the Point of Interest (POI) on

the ground. While the aircraft is moving (navigation and orientation), and the

POI is potentially moving, the camera gimbal must make adjustments to point at

the POI. The objective of geolocation is then to estimate the position (2D or 3D)

of the POI from the aircraft, gimbal, and camera measurements/estimates. It is

assumed here that the POI always remains within the camera’s field of view, even

while the UAV and POI are moving [10]. Complicating the geolocation problem

are uncertainties in the aircraft position and orientation, gimbal angles, camera

specifications and measurements, and disturbances such as turbulence and engine

vibrations. Each UAV communicates appropriate information to every other UAV

to fuse together a cooperative estimate of the POI.

Both experimental flight tests and hardware in the loop (HiL) simulations of the

ScanEagle UAVs are used in this example. The ScanEagle UAVs are produced by

The Insitu Group with the centerpiece of ScanEagle being a digital video camera

integrated into an inertially-stabilized pan / tilt nose turret. The operator can

command the camera to pan back-and-forth for wide-area search, or to remain

locked onto a POI while the aircraft maneuvers using a local, computer vision

based feedback loop [57]; the latter mode is used here. When the user selects a

POI for geolocation, the gimballing turret and on-board vision software attempt
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Figure 5.3: Overview of the cooperative geolocation problem, showing the tracking
Point of Interest (POI) on the ground, with multiple UAVs pointing cameras at
the POI.

to maintain the POI in the center of the frame, from frame to frame, with an

associated error covariance. Therefore, the ‘measurement’ of the POI is assumed

to be at the center of the image frame. The measurement equations, Equation 5.2,

are nonlinear functions of the UAV states and the POI states, which yield the

location of the POI in the camera screen in terms of pixels. The full derivation of

the measurement equation is developed in Ref. [10], and a summary is presented

in Appendix C.

The experimental flight data used for this evaluation was collected during coop-

erative UAV flight tests on March 16, 2007 [57]. In these tests, two UAVs orbited

a stationary POI with an orbit radius of 500m. Furthermore, the UAVs were sep-

arated in their orbits by ∼ 90◦ of relative phasing. Since no moving POI data was

available for this study, HiL simulations are used to test for a moving POI. The

HiL simulator provides a very accurate representation of the true system, includ-

ing the actual hardware and realistic noises. In fact, the HiL simulator is used by

Insitu to validate tests before flight [57, 58]. The motion of the POI is based on

city driving model, which is characterized by frequent starts, stops, and 90◦ turns.

122



A sample trajectory is shown in Figure 5.4. Note that the units are not included

due to ITAR restrictions.
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Figure 5.4: Sample moving POI trajectory from the hardware in the loop simula-
tions based on a city driving model.

A linear POI model of the form

xk+1 = Fkxk + Γkwk (5.52)

is used for both the stationary and moving POI. However, the state and system

matrices are different for the stationary/moving POI cases. For the stationary POI

case, the state, xk ∈ R3×1, is the POI location in a local North-East-Down (NED)

frame and the system matrices are assumed to be

Fk = I3, Γk = ∆tI3, (5.53)

where ∆t is the time step, which in this example is set to 0.1 sec. Recall, I3 denotes

the 3 × 3 identity matrix. The process noise, wk, is assumed to be zero mean,

white, Gaussian distributed with covariance Qk = α2I3, where the parameter

α = 0.001 m/s.

For the maneuvering POI case, the state, xk ∈ R6×1, is composed of the position

and velocity, both expressed in the local NED frame. The system matrices are given
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by

Fk =



I3 ∆tI3
03 I3


 , Γk =




03

∆tI3


 , (5.54)

where 03 denotes a 3× 3 matrix of zeros. The process noise covariance is given by

Qk =




α2 0 0

0 α2 0

0 0 β2



, (5.55)

where the parameters are α = 0.5 m/s2 and β = 0.05 m/s2. Note that β

corresponds to vertical accelerations and is smaller than α because ground POIs

typically accelerate more horizontally than vertically. For both the stationary and

moving POI cases the parameters α and β were chosen based on estimator tuning.

Two realistic communication loss scenarios are considered here.

1. Extended Loss - Full all to all communication is available until the occurrence

of an m step complete communication loss. Full communication is available

for the remainder of time after the communication loss. The extended loss

scenario is representative of cases such as equipment failure, environmental

effects, or enemy jamming.

2. Random Drop - At each time step the communication has probability, p, of

being lost. The random drop scenario is a good model of communication

over a wireless network.

Although, both extended losses and random drops could occur on the same tracking

mission, each is considered separately here for clarity of the analysis.

During a communication loss, the EI variation of the PI method requires each

UAV to estimate the state (position, attitude, camera attitude, and camera field
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of view), of the other UAV at each time step. The ScanEagle UAV has a guidance

loop which keeps the UAV flying in an orbit around the POI. This fact is used

to propagate the UAV position and heading angle estimate forward in time, by

assuming a constant UAV velocity and using the local POI estimate as the orbit

center. The remaining UAV states (roll angle, pitch angle, camera attitude, and

camera field of view), are estimated as constant.

5.7.1 Single, Extended Communication Loss

Consider first the case of an extended communication loss when locating a station-

ary POI. For Figure 5.5, the flight data was broken into 250 sets and an m = 50

step (5 second) communication loss was imposed from time step 300 to 350 in each

set. Figure 5.5 shows the average estimate error over the 250 sets. The estimate

error is defined to be the Euclidian distance from the estimate to the true POI

location. Due to International Traffic in Arms Regulations (ITAR), the labels from

the vertical axis of Figure 5.5 have been removed. Recall that the PI method can

be implemented using two approaches for predicting information matrix updates:

Constant Information (CI) and Estimate Information (EI). Also, the Full Commu-

nication (FC) error is included to provide a point of comparison as the ‘best’ one

could do, but would not be an option during a communication loss.

Even with the short communication loss shown in Figure 5.5, three observa-

tions are clear. First, as expected, the estimation error for all methods increases

compared to the FC case, due to communication loss. Second, during the com-

munication loss, all methods are equally accurate. Third, the accuracy of each of

the methods immediately after communication is restored at time step 351 varies,

where CI, EI, and SB all converge immediately to approximately the Full Com-
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Figure 5.5: Estimate error (distance) averaged of 250 tests with experimental
flight data for several cases: Full Communication (FC), two variations of Predicted
Information method (CI, EI), and the three benchmark methods (DI, HSF, and
SB).

munication estimate.

Immediately after communication is restored is an obvious time to evaluate

the estimator accuracy and is the time taken here. However, instead of using

the positioning error as a metric, the Kullback-Leibler Divergence (KLD) from

the Full Communication estimate is used. The KLD is used in this work for two

reasons. First, the KLD takes into account both differences in the estimate mean

and the covariance. Second, it captures the accuracy in the case of a moving

POI without having to create an arbitrary weighting of the position and velocity

accuracy. Further, the KLD is an established measure of the difference between two

probability distributions [13]. The KLD between the communication loss methods

and Full Communication is the KLD between two Gaussian distributions and is

given by

KLD(·) =
1

2

(
ln(
|P(FC)|
|P(·)|

) + tr(P−1
(FC)P(·)) + (x̂(FC) − x̂(·))

TP−1
(FC)(x̂(FC) − x̂(·))− nx

)
,

(5.56)

where the subscript (·) is used to denote the method being compared.
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Figure 5.6: Kullback-Leibler Divergence from Full Communication for the two
variations of Predicted Information method (CI, EI), and the three benchmark
methods (DI, HSF, and SB) when locating a stationary POI, averaged over 5000
tests with experimental flight data.

For the case of a stationary POI, Figure 5.6 shows the KLD for each method

compared to the Full Communication solution as a function of the length of a

single communication loss of m time steps; here, m is varied from 0 to 200 (0

sec. to 20 sec.). Note that the results in Figure 5.6 are averaged over 5000 tests;

the flight data was broken into 100 sets of length 1000 time steps (100 sec.) and

communication losses started at 50 different times. Three conclusions can be drawn

from Figure 5.6. First, as expected, the KLD metric increases with the length of

the communication loss for all methods. Second, the CI, EI, and SB methods are

all approximately equivalent and are by far the most accurate; after a 200 step (20

second) communication loss, the maximum KLD for CI, EI and SB is only 0.015.

Thus, after an extended loss of 20 sec., while tracking a stationary POI, the CI,

EI, and SB methods recover to nearly the Full Communication solution, almost as

if the loss had never occurred. Third, the Hybrid State Fusion (HSF) approach is

slightly more accurate than simply dropping information (DI).

Figure 5.7 shows the KLD averaged over 5000 tests of HiL simulation data, for
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Figure 5.7: Kullback-Leibler Divergence from Full Communication for the two
variations of Predicted Information method (CI, EI), and the three benchmark
methods (DI, HSF, and SB) when locating a maneuvering POI, averaged over
5000 tests with HiL simulation data.

each of the methods as a function of the length of the communication loss for the

case of locating a moving POI. As expected, the KLD metric increases for all of the

methods as the communication loss gets longer. However, the relative accuracy

of each of the methods depends on the length of the communication loss. For

communication losses of less than seven seconds, the CI, EI, and SB methods are

nearly equivalent and perform the best. However, as the communication losses get

longer, each of these methods begin to perform worse. The CI method becomes

worse than the HSF method at about 12 seconds and worse than the DI method

at ∼ 14 seconds. The EI method performs better than the CI method but also

degrades with the length of the communication loss and becomes worse than the

HSF method at ∼ 15 seconds and owrse than the DI method at ∼ 19 seconds.

The degradation of the PI methods is due to the accumulation of error during

the communication loss. The EI method is able to more accurately predict the

information matrix updates and hence can be used for longer communication losses

than the CI method before the accuracy degrades.
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Although estimation accuracy is important, other factors such as computation,

communication, and memory requirements must also be considered. Most impor-

tantly, consider the computation loads of each of the communication loss methods.

During a communication loss, the DI, HSF and SB methods require the same com-

putation. They implement the EIF recursion, Equations 5.8 to 5.18, fusing only

locally available information. The CI and EI methods require approximately twice

as much; the EIF recursion plus the PI filter shown in Figure 5.1. However, after

communication is restored, the CI, EI, and DI methods require the least compu-

tation; an addition of ns matrices and ns vectors. The HSF method requires the

covariance intersection step in addition to the matrix and vector additions of the

CI, EI, and DI methods. The SB method requires computation which scales lin-

early with the length of the communication loss, m EIF recursions to iterate from

the beginning of the communication loss to the end. Note that this is essentially

the computation performed by the CI and EI methods during the loss. However

the SB method must perform this burst of computation in a short period of time,

which may not be possible if the communication loss is long enough.
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Figure 5.8: Communication required by each of the communication loss methods
after an m step communication loss when locating a stationary POI.

During a communication loss there are no communication requirements. How-
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ever, after communication is restored, the amount of data that must be sent varies

between each of the methods. Figure 5.8 shows the communication requirements of

each of the methods versus the length of the communication loss. Two observations

can be made about Figure 5.8. First, the SB method requires linearly increasing

communication with the length of the communication loss. The other methods

(CI, EI, DI, and HSF) require constant levels of communication with the CI and

DI methods requiring the least, followed by the EI method with slightly more (10

floating point numbers for the geolocation example), and the HSF method requir-

ing the most. Second, the communication requirements only become a significant

problem, even for the SB method, when the communication loss gets long (20 kilo-

bytes for a 20 second loss). Note that the communication requirements shown in

Figure 5.8 are for locating a stationary POI and are approximately doubled for lo-

cating a moving POI. However the relative ordering between the methods remains

the same.
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Figure 5.9: Additional memory required by each of the communication loss meth-
ods for an m step communication loss when locating a stationary POI.

The memory requirements are related to the communication requirements for

each method and are shown in Figure 5.9. The observations about communication

requirements essentially hold for the memory requirements. The SB method re-
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quires linearly increasing memory with the length of the communication loss. The

other methods, (CI, EI, DI, and HSF), have constant memory requirements with

the DI method requiring the least, followed by the HSF method, the CI method,

and finally the EI method requires the most. As with the communication require-

ments, the memory requirements are not significant even for the SB method until

the communication loss gets very long.

5.7.2 Random Losses

In addition to single extended losses, the case of random losses is also considered. In

the random loss scenario, the probability of any single information exchange being

lost is denoted by p and is assumed to be independent of previous information

exchanges. The KLD from FC converges to a steady state value in time, which is

dependent on the probability of loss, p. This steady state value of the KLD from

FC is used here as the accuracy metric and is defined formally as the average over

the last 500 time steps (50 sec.) for 3000 time steps (300 sec.) of tracking. Note

that the flight data is broken into 100 sets that are 3000 time steps (300 sec.) long

and the results presented in this section are averages over these 100 sets.

For the case of a stationary POI, Figure 5.10 shows the steady state KLD metric

averaged over 100 tests of the experimental flight data for each of the methods and

drop probabilities varying from p = 0 to p = 0.9. Three observations can be made

about Figure 5.10. First, the CI, EI, and SB methods are the most accurate and

further, are indistinguishable from FC, even as the drop probability tends to large

values such as p = 0.9. Second, the DI and HSF methods diverge significantly as

the probability of loss, p, increases. Third, the HSF method provides essentially

no improvement over DI.
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Figure 5.10: Steady State Kullback-Leibler Divergence as compared to the Full
Communication case for the two variations of Predicted Information method (CI,
EI), and the three benchmark methods (DI, HSF, and SB) when locating a sta-
tionary POI, averaged over 100 tests with HiL simulation data.
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Figure 5.11: Steady State Kullback-Leibler Divergence as compared to the Full
Communication case for the two variations of Predicted Information method (CI,
EI), and the three benchmark methods (DI, HSF, and SB) when locating a ma-
neuvering POI, averaged over 100 tests with HiL simulation data..
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The steady state KLD metric for each of the methods when tracking a maneu-

vering POI using HiL simulation data is shown in Figure 5.11, with drop prob-

abilities varying from p = 0 to p = 0.9. As expected, the accuracy of each of

the methods degrades as the probability of loss, p, increases. The degradation in

accuracy for the PI methods (CI,EI) is not noticeable until p = 0.7. However, the

accuracy of the PI methods then degrades sharply at p = 0.9. The accuracy of

the SB method also degrades but not noticeably until p = 0.8. The accuracy of

the DI and HSF methods degrades smoothly and significantly as the probability of

loss, p, increases; with the HSF methods being little better than simply dropping

information.

The random loss scenario can be thought of as a repeated extended loss where

the length of each loss is determined probabilistically based on p. Under the as-

sumptions of the random loss scenario, it can be shown that the expected length

of each communication loss is given by mRL = p

1−p
. So, the expected communi-

cation loss length depends nonlinearly on p and further diverges to infinity as p

approaches one. Consider now the similarities between Figures 5.6 and 5.10 and

between Figures 5.7 and 5.11. The dependence of the KL divergence from Full

Communication on the single extended loss length for each of the methods (Fig-

ures 5.6 and 5.7) is similar to the dependence of the steady state KL divergence on

expected loss length for the random drop scenario (Figures 5.10 and 5.11). How-

ever, the steady state KL divergence is much higher for corresponding loss lengths.

This is due to the accumulation of error from the repetition of the communication

losses.
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5.8 Conclusions

Cooperative estimation using multiple mobile sensor nodes communicating over

a lossy network is considered in this paper. A new method, termed Predicted

Information (PI), is developed from a separable formulation of the Extended In-

formation Filter. Although derived for nonlinear systems, it is shown to give the

exact solution for linear systems when the measurement dynamics are constant or

known by all sensor nodes. Two variations of the predicted information method

are presented, which trade between accuracy and computational complexity. The

first variation, Estimate Information (EI), estimates the information matrix up-

dates directly from estimates of the cooperating sensor node states. The second

variation, Constant Information (CI), uses a piecewise constant approximation to

predict the information matrix updates. Note that although the differences in

accuracy between the PI methods is not significant in the geolocation example,

there are reasonable examples with more predictable sensor node dynamics where

the accuracy would be significantly different. The predicted information method is

evaluated with a cooperative geolocation problem with two Uninhabited Aerial Ve-

hicles (UAVs) using gimballing camera sensors. Flight test data is used to compare

the PI method with three benchmark methods from the literature, Drop Informa-

tion (DI), Store and Burst (SB), and Hybrid State Fusion (HSF), for tracking both

stationary and maneuvering Points of Interest (POIs). Furthermore, two types of

communication losses are considered: single extended losses and random dropouts.

When locating a stationary POI, in the presence of either extended losses or

random drop outs, the new PI methods (CI,EI) are shown to be as accurate as

the most accurate method (SB) and more accurate than the other two benchmark

methods (HSF, DI). Further, the PI methods are able to match the tracking ac-
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curacy of the SB method, but with significantly lower memory, communication,

and computation requirements. Note that the computational load of the SB meth-

ods scales linearly with the length of the communication loss and can become too

great if the communication loss is long enough. However, the computational load

of the proposed PI method remains constant independent of the length of the

communication loss.

When tracking a maneuvering POI in the presence of an extended communi-

cation loss, it is noted that there exists a crossover point where the PI methods

(CI, EI) are no longer more accurate than the simple DI and HSF methods. This

crossover point varies depending on the application, but could be evaluated in

simulation. If the given application has a lossy network, and is known to have

communication losses that persist beyond the crossover point, then a switch from

one of the PI methods to one of the other methods from the literature is sug-

gested. Combinations of these methods could also be used. Similarly, with random

dropouts there exists a crossover probability (p ≈ 0.9 for the geolocation example)

where the PI methods begin to lose accuracy as compared to the other methods.

This drop probability is quite high compared to most practical applications.
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CHAPTER 6

FLIGHT RESULTS FROM TRACKING GROUND TARGETS

USING SEASCAN UAVS WITH GIMBALLING CAMERAS

6.1 Abstract

Flight test results using a SeaScan UAV with a gimballing camera to track both

stationary and moving ground targets are presented. We experimentally studied

the effect of UAV altitude above the target, camera field of view, and orbit center

offsets within the geolocation tracking performance for both stationary and moving

targets. In addition, all of the tests were performed using two different aircraft

navigation systems, showing important sensitivities to avionics system accuracies.

Sensor biases are shown to directly cause slowly varying errors in the geolocation

estimates which can dominate tracking performance. These errors, which typically

oscillate with the UAV orbit, are adequately bounded with a geolocation estimator

which captures both the target tracking uncertainty, as well as unobservable sensor

biases.

6.2 Introduction

Currently, Uninhabited Aerial Vehicles (UAVs) are being used to track ground

targets in applications ranging from military missions to search and rescue opera-

tions [12] and even to animal migration [53]. Ground targets can be tracked using

digital cameras, radar, infrared cameras or any combination. There are many rea-

sons to use digital cameras for tracking ground targets when using UAVs. Digital

cameras use significantly less power and are much cheaper than radar. The sensor
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output is a digital image of the target and surroundings, and therefore is intuitive

to a human operator. Digital cameras are also now small, lightweight and inex-

pensive, which is a major benefit for UAVs because the weight, size and cost of

the payload are critical to the end missions and applications where UAVs will be

used.

Several groups have implemented gimballing camera systems on UAVs [25,

26, 64], and a subset of these now include target tracking results [49, 63, 15,

10]. Refs. [51], and [23] have implemented UAV systems with cameras using

decentralized fusion (information filtering) concepts. Stepanyan and Hovakimyan

[56] demonstrate visual tracking of one aircraft with another aircraft using only a

monocular camera.

In related research, several groups are using vision systems for UAV navigation,

such as for road following [20] or obstacle avoidance [34]. The latter implements

a bearings-only Simultaneous Localization and Mapping (SLAM) algorithm to

localize both the vehicle and obstacles and navigate using only a low cost inertial

measurement unit and a monocular camera. Kaaniche [31] et al present a traffic

surveillance approach with UAVs using a graph cut formulation and a verification

step.

The authors have developed and implemented experimentally a geolocation

tracking algorithm for gimballing vision payloads on UAVs [11]. The implemen-

tation occurred on the SeaScan UAV, a long endurance (24hr) UAV developed by

the Insitu Group. The algorithm includes attributes such as the ability to fuse

information across multiple UAVs, and the inclusion of uniform bias uncertainties.

As part of the verification of this work, sets of geolocation flight tests were per-

formed. Flight tests were nominally a single UAV in a circular orbit above the
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target, tracking the target with the two axis gimballing camera. Servo control of

the camera axes was separate from the geolocation tracking estimator as an “in-

ner” control loop. Important parameters varied during this flight test include UAV

altitude, orbit center offsets, camera field of view, and type of target (stationary,

moving). In addition, the UAV was equipped with two different UAV navigation

systems, demonstrating the sensitivity of the results to the avionics accuracy.

This paper is organized as follows. First, the geolocation estimator used for

the tracking is introduced. This is followed by a description of the SeaScan UAV

hardware. Finally the effect of each of the flight test parameters on geolocation

performance is presented.

6.3 Geolocation with the SeaScan UAV

Geolocation is the process of using sensory data to develop statistical estimates of

a Point of Interest (POI) on the ground. For the application of a vision sensor on a

UAV, the UAV, based on its position and orientation, points the camera (through

a gimballing payload mount inside the UAV) at the POI on the ground. While the

aircraft is moving (navigation and orientation), and the POI is potentially moving,

the camera gimbals must adjust their angles to point at the POI. This application

requires the camera to remain directed at the POI such that the POI always

remains within the field of view of the camera. The objective of geolocation is

then to estimate the position (2D or 3D) of the POI from the aircraft, gimbal, and

camera measurements. Complicating this problem are uncertainties in the aircraft

position and orientation, gimbal angles, camera specifications and measurements,

and disturbances such as turbulence and engine vibrations.
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Building a centralized estimator to estimate UAV navigation (NAV), attitude

(ATT), gimbal (GIM) and POI states would require full UAV and gimbal models,

and a model for the POI. Therefore, the implemented estimator would require a

very high load of computation, memory, and communication in the case of multiple

UAVs. Fortunately, most UAVs use an inertial measurement system which includes

estimators which provide statistics (estimates and covariances) for both the UAV

ATT and NAV states. In addition, the GIM states can be directly measured.

Therefore, an estimator can be developed which develops estimates of the POI

state statistics only, thus saving computation and memory.

The dynamic tracking model of the POI, and the nonlinear camera measure-

ments (dependent on POI, NAV, ATT, and GIM states) in this case are written

as:

xk+1,POI = fPOI(xk,POI,wk,POI) (6.1)

zk+1,SCR = gSCR(xk+1,POI,




xk+1,NAV

xk+1,ATT

xk+1,GIM



,vk+1,SCR) (6.2)

Ref. [10] describes a square root sigma point filter for this modified geolocation

model, as well as a compensation technique for bias uncertainties. A Square Root,

Sigma Point Information Filter (SR-SPIF) is developed in Ref. [11] in order to

facilitate cooperative tracking of POIs.

6.3.1 The SeaScan UAV

The SeaScan UAV, produced by The Insitu Group and shown in Figure 6.1, is a

long endurace UAV (24hr) used for defense and civilian applications. The SeaScan

139



Figure 6.1: The SeaScan UAV.

UAV can accommodate a variety of payloads, but the centerpiece is a digital video

camera integrated into an inertially-stabilized pan / tilt nose turret. The daylight

camera has an acuity ≈ 50% better than that of the unaided eye at the telescopic

end. It can resolve POI’s such as small boats and logs from five miles away. The

operator can command the camera to pan back-and-forth for wide-area search, or

to remain locked onto a POI while the aircraft maneuvers; the latter mode is used

here.

Software processes the images from the camera. When the user selects a POI

for geolocation, the gimballing turret and ground software attempt to maintain the

POI in the center of the frame, from frame to frame. Therefore, the “measurement”

of the POI is assumed to be at the center of the image frame. The measurement

equation, (6.2), is a complicated function of the UAV states and the POI states,

which yield the screen coordinates in terms of pixels. The full derivation of the

measurement equation is developed in Ref. [10].
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6.3.2 Sensor Bias

A key element of this estimator is the implementation of an augmentation for

sensor bias uncertainty. Sensor bias is used in this context to mean slow varying

errors in the estimators of the UAV position (NAV), attitude (ATT), or camera

gimbal (GIM) states. Biases can arise from a variety of conditions, including

mounting conditions, timing delays, sensor characteristics, thermal changes, and

GPS inaccuracies.

Figure 6.2 shows a stationary POI example with a known POI altitude. In

this case, the measurement equation (6.2) can be reconfigured and solved directly

for xPOI , given a measurement zSCR. This is called the sensed point of interest

(SPOI). Physically, the SPOI is the intersection of the camera line of sight with

the ground as computed from the UAV and camera states.

Figure 6.2 shows that the SPOI moves in a roughly circular path around the

true POI location; the period of this oscillation corresponds directly to the UAVs

orbit about the POI. These periodic SPOI errors can be attributed to a bias in the

UAV altitude, UAV attitude, or camera attitude states.

What is more challenging is that these biases are typically unobservable to the

estimator. The POI state estimates and covariances can typically be used to bound

the geolocation tracking error. A common metric is to calculate and plot a 2σ

bound on the estimate based on the UAV states, POI estimate and POI estimator

covariance. But, any biases in the sensors will directly create instantaneous errors

in the POI state estimates, and these errors are not captured in the 2σ bounds.

Therefore, these errors must be addressed.

For stationary POI’s, the biases can be reduced by assuming a stationary POI
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Figure 6.2: Single UAV tracking a stationary POI. The blue dots are computed
camera line of sight intersections with the ground from two orbits of tracking.

model, and averaging over time. But this does not work, in general, for moving

POI’s. Ref. [10] developed an approach to augment the 2σ uncertainty bounds of

the estimator with a probabilistic model of the bias uncertainties. A uniform distri-

bution of each of the biases was used, with the intuition that one bias was not more

likely than the next. Augmenting the Gaussian tracking error distribution with a

series of uniform distributions from the sensor biases created a non-Gaussian dis-

tribution that could be used to model the true tracking error distribution; bounds

with 95% confidence could be generated in real time.

Figure 6.3 shows the POI tracking errors and uncertainty bounds from the

same flight data set as used in Figure 6.2. The tracking errors were found by

subtracting off a “truth” GPS measurement of the POI location. The SPOI is

also plotted, and the oscillations can easily be seen in the data. The geolocation

state estimates oscillate similar to the SPOI, but at a smaller amplitude that

decreases over time. This is a result of the using a stationary POI model, and a

relatively small white noise intensity on the disturbance (wPOI). The dash-dot lines

denote the 2σ uncertainty bounds directly from the geolocation estimator. Notice
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that these bounds are quite small, and do not bound the true uncertainty of the

estimator. In addition, the bounds are relatively insensitive to the oscillations

of the orbit. This indicates that the system is dominated by sensor biases. The

outer dashed lines are the augmented 95% probability, uncertainty bounds, which

include components for the 2σ estimator bounds and the bias distribution. The

bias bounds capture the true uncertainty in that the zero error always falls within

the bounds. In addition, note that the bounds also oscillate with the orbital

uncertainty; this correlates well with the true bias sensitivities, such as those shown

in Figure 6.2.
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Figure 6.3: Geolocation errors and bounds using the Athena GuideStar navigation
system with a camera field of view or 3.84 deg, an altitude above target of 320 m,
and no orbit center offset.

6.4 Flight Results

Flight tests were performed on 18 March 2006. A “truth” was set up using a GPS

antenna and receiver in a car near the flight test range. Over five hours of flight

tests were recorded over the two days using a variety of POI’s. The flight tests

evaluated stationary and moving POIs, different altitudes of the UAV, and different
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orbit offsets. In all tests, the UAVs onboard vision system kept the camera pointed

at the POI. All telemetry was saved in order to evaluate estimation and tracking

accuracy as a function of the different parameters. For all cases the orbit radius was

fixed at 500 m and the altitude, camera field of view, and orbit offset were varied.

In addition, two different UAV navigation systems were used: Athena GuideStar

III and Helmsman. The Athena GuideStar III navigation system is an off the

shelf system [?] with accuracies given as σ = 0.3 deg for attitude estimates (roll,

pitch, yaw), and σ = 2 m navigation solution. Helmsman was developed by The

Insitu Group as an in house guidance solution. The POI tracking results and their

dependencies on each of the parameters varied during the test are summarized in

the following sections. Note that due to International Traffic in Arms Regulations

(ITAR), the specific performance data has been scaled. The unit of length used

here will be denoted as, L and consequently we will use a volume unit, V , with

V = L3. The relative effect of each of the parameters within the flight tests,

however, are still evident.

For the evaluation of each the test parameters, three measures of performance

will be used. First the output of the bias estimator, denoted as Bias Bound Vol-

ume, which is a 95% confidence bound which includes the tracking estimators 2σ

bound. Next the tracking estimators 2σ bound, denoted as SPF bound. Finally

an experimental measure of the error which is denoted as the experimental error

covariance or error volume. The experimental error covariance is defined by taking

the expectation of the outer product of the position estimate errors. Mathemati-

cally this can be written as

Perr =
1

N

N∑

i=1

(x̂i,POI − xi,POI)(x̂i,POI − xi,POI)
T (6.3)
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Note that given a covariance matrix, P, the 2σ volume, V2σ, is defined as

V2σ =
4

3
πdet(

√
P )8, (6.4)

where
√

(·) is the principal matrix square root, the factor of 4
3

is for the volume of

an ellipse and the factor of 8 scales the volume to the 2σ value.

6.4.1 Stationary POI

For the stationary POI tests, a vehicle was parked on the test range at an altitude

≈ 180 m above sea level. The UAV orbited the POI with a radius of 500 meters

and used the onboard vision system to keep the car image in the camera screen.

The UAV altitude, camera field of view, and orbit center were varied for each of

the tests and are summarized in Table 6.1.

Table 6.1: Flight tests for a stationary POI.

Test Number Altitude (m) Field of View (deg) Orbit Offset (m)
1 500 7.51 0
2 500 3.84 0
3 500 1.78 0
4 750 7.51 0
5 750 3.84 0
6 750 1.78 0
7 750 3.84 300
8 750 3.84 500
9 750 3.84 700

Orbit Offsets

The orbit offset is defined as the 2D off-set of the orbit center from the POI position,

projecting the UAV to the ground. When there is zero off-set, the slant range, or
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range to the POI, is a constant. When the off-set is equal to the orbital radius,

the UAV varies from being directly overhead of the POI (smallest slant range), to

quite far from the POI (largest slant range).

Test numbers 5, 7, 8, and 9 were used to evaluate the effect of orbit offsets on

geolocation performance because the only difference in these tests was the orbit

offset. Figure 6.4 shows the tracking performance from test number 8. Because the

orbit offset for test number 8 was 300 m, the slant range to the POI varied signifi-

cantly throughout the test. As the slant range varies from approximately 550 m to

1150 m (factor of two), the corresponding bias bound ranges from approximately

3L to 10L (factor of three).
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Figure 6.4: Geolocation errors and slant range to POI from flight test eight using
GuideStar.

Figures 6.5 and 6.6 show the min, max, and mean volume of the 95% bias

bounds, 2σ SPF covariance bounds, and the experimental estimate error covariance

volume for each of the offset values for the Helmsman and GuideStar avionics

systems. Several trends are evident. First, the variation in the uncertainty volume

increases with increasing orbit off-set. While this can hurt tracking performance, it

is noted that the minimum volume coincides with the minimum slant range, which
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occurs when the off-set is equal to the orbital radius (500 m). The second trend to

note is that the volume from the bias bounds is roughly 50 times larger than the

volume from the estimator bounds. Obviously, this is significant. Finally, the bias

uncertainty volume using the Helmsman avionics system is roughly twice as large

as that using the GuideStar avionics. These results indicate that the orbit off-set

is one of the most significant factors in tracking performance.
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Figure 6.5: Uncertainty volumes over a range of orbit offsets using the Helmsman
avionics system.
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Figure 6.6: Uncertainty volumes over a range of orbit offsets using the GuideStar
avionics system.
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Variations in Relative Altitude and Camera Field of View

Tests 1 to 6 were used to judge the effect of changes in altitude on tracking perfor-

mance. In tests 1-3, the UAV altitude was 500 m, giving a relative altitude above

the POI of 320 m. In tests 4-6, the UAV altitude was 750 m, giving a relative

altitude above the POI of 570 m.
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Figure 6.7: Uncertainty volumes over a range of camera field of view levels using
the Helmsman guidance system.

  1 V

1.5 V

  2 V

2.5 V

  3 V

2σ
 B

ia
s 

V
ol

um
e

1.78 3.84 7.51
 0.0 V

0.03 V

0.06 V

0.09 V

0.12 V

0.15 V

Camera Field of View (deg)

2σ
 E

rr
or

, S
P

F
 V

ol
um

es

 

 

SPF, Alt=500 Error, Alt=500 SPF, Alt=750 Error, Alt=750

Figure 6.8: Uncertainty volumes over a range of camera field of view levels using
the GuideStar navigation system.

Figures 6.7 and 6.8 show the changes in bias uncertainty volume as a function

of the UAV altitude and camera field of view for these six tests, and for both the
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Helmsman and GuideStar avionics. The primary effect of increasing the altitude is

a narrowing of the variation of the bias uncertainty volume as the altitude increases.

This is due to the nature of the camera measurement which is essentially a bearing

sensor. The only case where this did not occur is at high zoom (field of view of

1.78 deg), where the onboard vision system lost POI lock and less than one orbit

of data was recorded. For GuideStar, the UAV altitude of 750 m provided better

tracking performance across camera field of view levels.

The effect of camera field of view on tracking performance is evaluated using

test numbers 1-6. Three different field of view settings were tested: 7.51, 3.84, and

1.78 deg. Figures 6.7 and 6.8 show the three uncertainty volume metrics over the

range of field of view levels. Several trends are noted. First, the SPF covariance is

insensitive to camera field of view for both avionics systems. But, the true error

is quite sensitive to camera field of view. For the Helmsman navigation system

example, as the field of view ranges from 7.51 deg to 1.78 deg, the uncertainty

volume increases from 0.02V to 0.1V. This is because of the performance of the

image tracking loop at high zoom levels. With the camera field of view set to

1.78 deg the vision system had significant trouble remaining locked onto the target

and during test number three only 850 time steps of the test were performed due

to vision system difficulties. In the GuideStar case, the true error fluctuates more,

but is smaller than the Helmsman case. A second trend is that the bias bound

volume does not change as a function of field of view, except in the case when the

field of view was at 1.78 and altitude at 750 m, which was very sensitive.
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6.4.2 Moving POI

For the moving POI tests, a GPS unit was placed in a car which was driven at low

speeds down a road near the test range. The UAV camera field of view and orbit

center location were varied for each of the tests and are summarized in Table 6.2.

Table 6.2: Flight test parameters for the moving POI tests.

Test Number Altitude (m) Field of View (deg) Orbit Offset (m)
10 750 7.51 0
11 750 3.84 0
12 750 1.78 0
13 750 3.84 300
14 750 3.84 500
15 750 3.84 700

The Geolocation behavior with a moving POI is different than with a stationary

POI. Figure 6.9 shows the Geolocation errors and bound from test number 11.

The uncertainty volume is significantly larger for the moving POI than for the

stationary POI. Perhaps more importantly, the slowly varying errors due to the

sensor biases in the measurements are present in the estimator output. Because the

process noise intensity must be increased to track a moving POI, the geolocation

estimator cannot distinguish between the measurement biases and POI dynamics.

Orbit Offsets

Test numbers 11, 13, 14, and 15 were used to evaluate the effect of orbit offsets

on geolocation performance for the moving target case. Figures 6.10 and 6.11

show the three volume metrics (Bias, SPF, and Error) for each of the offset values,

using Helmsman and using GuideStar. The same trends from the stationary case
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Figure 6.9: Geolocation errors and slant range to POI from flight test eleven using
the Helmsman navigation system.

persist with the moving target case. Also, as with the stationary case, the Athena

GuideStar navigation system improves the tracking performance. In the moving

target case, this improvement is roughly a factor of two in the uncertainty volume,

which is the same as in the stationary case. One notable difference is that the SPF

bounds are greater than the experimental error bounds for the moving target case

but were not for the stationary target case. This is because the tracking filter was

tuned for more highly maneuverable targets than were demonstrated in this flight

test.

Camera Field of View

The effect of camera field of view on moving target tracking performance is eval-

uated based on tests 10-12 with three different field of view levels: 1.78, 3.84, and

7.51 deg. Figure 6.7 shows the 95% uncertainty volumes over the range of field of

view levels. As with the stationary case, the effect of field of view level is limited

in terms of the geolocation performance. Again the SPF bound is higher than the

error the process noise was significantly increased for tracking highly maneuverable
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Figure 6.10: Uncertainty volumes over a range of orbit offsets using the Helmsman
navigation system.
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Figure 6.11: Uncertainty volumes over a range of orbit offsets using the GuideStar
navigation system.

targets.

6.5 Conclusions

Flight test results using a SeaScan UAV with a gimballing camera to track both

stationary and moving ground targets has been presented. Important geolocation

system parameters were experimentally studied, including the effect of UAV alti-

152



 10 V

 20 V

 30 V

 40 V

 50 V

2σ
 B

ia
s 

V
ol

um
e

1.78 3.84 7.51
0.8 V

1.2 V

1.6 V

2.0 V

2.4 V

Camera Field of View (deg)

2σ
 E

rr
or

, S
P

F
 V

ol
um

es

 

 

SPF Error

Figure 6.12: Uncertainty volumes over a range of camera field of view levels using
Helmsman.
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Figure 6.13: Uncertainty volumes over a range of camera field of view levels using
GuideStar.

tude, camera field of view, and orbit center off-sets on the tracking performance.

All tests were performed with two different aircraft navigation systems.

Sensor biases were shown to cause a slowly varying, typically oscillatory set of

errors. In this work, a sensor bias model with a uniform distribution was used to

augment the uncertainty developed from the tracking estimator. With a stationary

target, the slow varying errors in the SPOI caused large geolocation errors at the

initialization, but they decreased over time. The estimator is able to converge
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to the correct answer after several orbits because the stationary tracking model

enables a simple averaging over time. However, in the moving target case, the

estimator is not able to clearly distinguish between the effects of the bias errors,

and the actual target motion.

The parameter that caused the most sensitivity in geolocation performance,

of those tested, was orbit off-set. Because the camera is a bearing only sensor,

the bias errors are influenced directly by the slant range to the target. Therefore,

the uncertainty volume is a maximum when the slant range is a maximum, and

a minimum when the slant range is a minimum. This variation can be used to

improve geolocation, especially in the multiple vehicle case, by noting that the

uncertainty volume is a minimum when the UAV is directly overhead.

In addition to slant range, the relative altitude and consequently the elevation

angle are contributing factors to geolocation performance. Due to the nature of the

camera sensor, a low elevation angle leads to greater SPOI errors in the direction

from the UAV toward the target. This leads to a trade off between increasing the

altitude above the target to get a higher elevation angle and trying to decrease the

slant range.
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CHAPTER 7

CONCLUSIONS

The central contribution of this dissertation is the solution to the problem of coop-

erative geolocation of a point of interest (POI) using multiple uninhabited aerial

vehicles (UAVs) with gimballing camera sensors and two associated complications:

sensor bias and communication loss. Several other groups have implemented gim-

balling camera systems on UAVs [23, 51, 25, 26], a few with initial target tracking

results [49, 63, 15]. In a more closely related work Vercauteren and Wang [62]

develop a Sigma Point Information Filter. Most of these works typically only

address a subset of the important requirements for vision tracking systems for pro-

duction UAVs, namely 1) scalability to a modest number of UAVs, 2) robustness

to communication loss and bandwidth limitations, and 3) numerical stability and

efficiency in real time implementation for nonlinear, decentralized tracking.

This dissertation details the theoretical development of a distributed, coopera-

tive estimation methodology for multiple UAVs which track stationary and moving

POIs with on board cameras which meets all of the above requirements. A square

root, sigma point information filter (SR-SPIF) is developed in [11] and presented

in Chapter 2 to solve the cooperative geolocation problem. The square root for-

mulation is used to maintain numerical integrity in real time. The sigma point

formulation is used for its accuracy with nonlinear dynamics and nonlinear mea-

surement equations. An information form is used for ease in fusing measurements

from other UAVs. The SR-SPIF presented in Chapter 2 incorporates uncertainty

in the UAV states with a combined state (POI state) and parameter (UAV state)

formulation with a non-standard update, which utilizes the onboard navigation

system to save computation. Chapter 3 presents an improved SR-SPIF which in-
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corporates the UAV state uncertainty as a non-additive, nonzero mean noise. This

formulation saves both computation and communication. Both versions of the

SR-SPIF have the following important properties:

Decentralized: Each vehicle has its own geolocation estimator, and then com-

municates only necessary information to the other vehicles. This minimizes

memory and communication, and enables network robustness.

Information Form: An information form is used to 1) minimize the amount of

information shared between vehicles, 2) simplify the multiple vehicle fusion

problem, and 3) simplify the problem of delayed data (from communication

drop-outs). For single vehicle tracking the use of the information form leads

to a slight increase in the computational burden. However, when performing

tracking with cooperative vehicles, the information form can significantly

reduce the amount of computation.

Sigma Points: Sigma points are used to develop statistical linearizations of the

dynamics, which have been shown to be more accurate than the traditional

Extended Kalman Filter (or the Extended Information Filter) [27]. The

use of sigma points requires a small increase in computation compared to

the Extended Kalman or Information Filters. However, it is proposed here

that the increase in tracking performance with the nonlinear measurement is

justification for this increase in computational cost.

Square Root: A square root version of the estimator is used for its numerical

accuracy in real time implementation. The square root implementation re-

quires very little additional complexity when used in conjunction with sigma

points. The square root version is equivalent in computation to the Square

Root Sigma Point Filter [6], which was shown to work in real time at 20Hz
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for an UAV aerodynamic model estimator [9].

In addition to the development of the SR-SPIF, where the errors in the estimate

of the UAV state are assumed to be zero mean, white, and Gaussian, nonzero mean

errors (biases) are also treated in this dissertation. Sensor biases were shown in

Refs. [10] and [67] (included in Chapter 6)to be a significant source of error for

geolocation using the ScanEagle UAV and were compensated for by augmenting

the output of the estimator with additional uncertainty, based on empirical data.

However, this did nothing to improve the estimate itself, but simply improved

estimator consistency. Biases have also been shown to be a problem for estimation

in other works. In one of the first treatments [21], Friedland showed that biases

could be estimated efficiently in a linear system by partitioning the state. More

recently in Refs. [32] and [54], bias estimation in a radar tracking context with

multiple targets was addressed. Bias estimation was further considered in Refs. [37]

and [45], where multiple sensors were used to track multiple targets in a centralized

formulation. Bias estimation has also been considered in a least squares estimation

context by Dogancay in Ref. [16].

In Chapter 4, an approach is developed to jointly estimate the sensor biases

and the unknown POI state in a decentralized manner, while using the solution

from the onboard navigation system to save significant computation. The decen-

tralized formulation allows the UAVs to share information on only the POI state,

and model only their local biases, saving computation as well as communication,

and moreover, giving geolocation accuracy comparable to the centralized case.

Further, this decentralized approach fits nicely into the decentralized data fusion

paradigm [17, 59] and allows for effective cooperation not only among UAVs with

potentially different biases but different sensors altogether. A numerical observ-
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ability analysis procedure is also developed in Chapter 4 and applied, which gives

a meaningful measure of the degree of observability and also gives insight into the

effects of UAV flight path on observability. The new decentralized approach is

validated using both experimental flight data and high fidelity hardware in the

loop simulations.

The second problem related to geolocation which is solved in this dissertation

is cooperative estimation in the presence of communication loss. Communica-

tion is an important component of the cooperative estimation process, and recent

research has focused on the effects of digital communication in both control and

estimation. Delchamps [14] presented a seminal work describing the effect of quan-

tization on controller performance. More recently, significant work has been done

on the effect of network communication between sensors, controllers, and system

plants [60, 69, 52, 70]. In addition to quantization effects, the cooperative estima-

tion system must be robust to communication losses and delays. For example, in

autonomous underwater vehicle applications, communication is particularly lim-

ited in reliability as well as bandwidth. In [1], Akyildiz et al characterize the

underwater communication channel noting that communication is lost or delayed

frequently due multi-path and obstructions.

The problem of cooperative estimation in the presence of communication loss

is considered in Chapter 5. Communication loss refers to a situation in which the

sensor nodes are unable to communicate with each other for a period of time that is

unknown a priori. It is assumed here that the communication losses are symmetric

and known by each sensor node. Communication delay is a related problem and

refers to the situation in which sensor nodes must communicate over a medium

which induces potentially unknown and varying delays in the data transmission;
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for example, communication over an ad hoc wireless network. It is assumed here

that the delays are not symmetric between nodes and there is no confirmation of

receipt provided from the receiving node. In this case, any time a sensor node

sends data, it will have no knowledge of how long before the data is received at the

other end. Also, there is no guarantee that the data will be received at a sensor

node in the order it was generated. Under this scenario, it is the responsibility of

the receiver to make effective use of the data received, even if the data is both late

and out of order.

The delayed data problem was explored in the Kalman filtering domain by

Larsen et al. in Ref. [35], where the focus was on estimation with a combina-

tion of fast and slow sensors. In Ref. [30], Julier and Uhlmann developed an

approach algebraically equivalent to the results of Larsen. In a centralized esti-

mation framework, Bar-Shalom developed an exact solution for out-of-sequence

measurements[3]. Nettleton and Durrant-Whyte [44] examined the delayed data

problem in the information filtering domain, which is more amenable to decentral-

ized sensor fusion. This approach is theoretically equivalent to centralized esti-

mation in linear systems, but requires large memory and bursty communication.

None of the existing methods address the communication loss (or delay) problem

in the nonlinear decentralized estimation context. These cases arise when the POI

dynamics or measurements are nonlinear, which is common in the UAV tracking

problem [11].

In Chapter 5, a new method is developed for decentralized estimation using

multiple UAVs communicating over a lossy network. The new method, termed

the Predicted Information (PI) method, is developed as an approximation to the

Separable Extended Information Filter (SEIF), which is an alternate form of the
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Extended Information Filter (EIF) derived in Appendix A. The basic concept of

the PI method is to predict the information matrix updates during the communica-

tion loss to more easily update the estimator when communication is re-established.

Two variations are presented that trade accuracy with computation, memory, and

communication load. The first variation estimates the information matrix updates

over time, while the second variation uses a piecewise constant approximation to

the information matrix updates. Although the delayed data problem is not specif-

ically addressed here, the PI method can be used with delayed data but requires

minor modifications.

Another important contribution of this dissertation is the experimental and

simulated flight data. Each of the three theoretical developments in this disserta-

tion are validated using experimental flight data using the ScanEagle UAV. Flight

tests were performed on October 6, 2004 [11], March 18, 2006 [67], and March

16, 2007 [57]. In addition to using the flight tests for validation, the 2006 flight

test was used for a parametric study of the effect of various flight parameters on

geolocation accuracy [67]. The results of the study are included in Chapter 6.

A high fidelity hardware in the loop (HiL) simulation test bed for distributed

tracking was also developed. The distributed tracking test bed was used for val-

idation of both the bias estimation and communication loss algorithms. Further,

the simulation test bed was used in the experimental demonstrations of a flight

test of cooperative tracking. [58]
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APPENDIX A

DERIVATION OF SEPARABLE EXTENDED INFORMATION

FILTER

To develop the SEIF, consider the recursive equations for the information matrix of

the EIF shown in Equations 5.8 and 5.17 at the first time step, k = 0. Substituting

Equation 5.8 into Equation 5.17 yields

Yl
1 = [(Fl

0)
−T (Yl

0)(F
l
0)

−1Dl
0] + Il1 +

∑

s∈S\{l}

Is1

= Ỹl
1 + Ĩl1 +

∑

s∈S\{l}

Ĩs1, (A.1)

where the discount factor Dl
0 is defined as

Dl
0 = (I + Γl

0Q0(Γ
l
0)
T (Fl

0)
−T (Yl

0I
s
0)(F

l
0)

−1)−1. (A.2)

The contribution of prior information and the sensor nodes in Equation A.1 is

broken into the cumulative information matrix, Ỹl
1, and updates, Ĩl1 and Ĩs1, which

are

Ỹl
1 = (Fl

0)
−T (Yl

0)(F
l
0)

−1Dl
0 (A.3)

Ĩl1 = Il1 (A.4)

Ĩs1 = Is1 for s ∈ S \ {l}. (A.5)

Propagating another time step to k = 1, the cumulative information matrix vari-

ables by substituting Equation A.1 into Equations 5.8 and 5.17 and again grouping

terms gives

Yl
2 = Ỹl

2 + Ĩl2 +
∑

s∈S\{l}

Ĩs2, (A.6)

(A.7)
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where

Ỹl
2 = (Fl

1)
−T (Ỹl

1)(F
l
1)

−1Dl
1 (A.8)

Ĩl2 = (Fl
1)

−T (̃Il1)(F
l
1)

−1Dl
1 + Il2 (A.9)

Ĩs2 = (Fl
1)

−T (̃Is1)(F
l
1)

−1Dl
1 + Is2 for s ∈ S \ {l}. (A.10)

and therefore by induction the recursion for the cumulative information matrix

variables is given by

Dl
k = (I + Γl

kQk(Γ
l
k)
T (Fl

k)
−T (Yl

kI
s
k)(F

l
k)

−1)−1 (A.11)

Ỹl
k+1 = (Fl

k)
−T (Ỹl

k)(F
l
k)

−1Dl
k (A.12)

Ĩlk+1 = (Fl
k)

−T (̃Ilk)(F
l
k)

−1Dl
k + Ilk+1 (A.13)

Ĩsk+1 = (Fl
k)

−T (̃Isk)(F
l
k)

−1Dl
k + Isk+1 for s ∈ S \ {l}. (A.14)

The information state, y, can be written in a similar fashion. First, consider the

time propagation of the information state for the EIF shown in Equation 5.9 with

the substitution of the fusion step shown in Equation 5.18 which gives

yl−k+1 = Yl−
k+1 · f


(Yl

k)
−1


yl−k + ilk +

∑

s∈S\{l}

isk


 , 0


 (A.15)

Since the state transition function, f [·, ·], may be nonlinear, Equation A.15 is not

directly separable. However, if x = 0 is a fixed point of f ; i.e., f [0, 0] = 0, then an

equivalent state transition matrix, Φ, may be found such that

Yl−
k+1·f


(Yl

k)
−1


yl−k + ilk +

∑

s∈S\{l}

isk


 , 0


 = Yl−

k+1·Φk·(Yl
k)

−1


yl−k + ilk +

∑

s∈S\{l}

isk


 .

(A.16)

If 0 is not a fixed point of f and cannot be made a fixed point by a suitable change

of coordinates then Φ is only guaranteed to exist for x 6= 0. Note that Appendix

B shows one approach to finding Φ. The equivalent state transition matrix, Φ,
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allows the information state propagation to be written in a separable formulation,

very similar to the IF, as

ỹlk+1 = Ll
k+1ỹ

l
k (A.17)

ĩlk+1 = Ll
k+1̃i

l
k + ilk+1 (A.18)

ĩsk+1 = Ls
k+1̃i

s
k + isk+1 for s ∈ S \ {l} (A.19)

where the separable information state transition matrix, Ll
k+1, is given by

Ll
k+1 = Yl−

k+1Φk(Y
l
k)

−1. (A.20)

The form of the fusion step is the same as for the information matrix, and is given

as

ylk+1 = ỹlk+1 + ĩlk+1 +
∑

s∈S\{l}

ĩsk+1 (A.21)
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APPENDIX B

COMPUTING EQUIVALENT STATE TRANSITION MATRIX

The equivalent state transition matrix, Φ, required for the Separable EIF can be

computed in a number of simple ways such as

Φ = diag[f [x, 0]./x], (B.1)

where ./ denotes element wise division and all elements of x are assumed nonzero.

However, this approach breaks down when used with the PI method because during

a communication loss, the state estimates are different on each of the sensor nodes.

So, instead of an exact equivalent state transition matrix, an approximate one is

sought that is accurate in a neighborhood of the state estimate, which will be

approximately the same on all sensor nodes. This approximate equivalent state

transition matrix can be computed with a ‘sigma point’ approach as follows. Define

a set of sigma points as

X l
k =

[
x̂lk, x̂lk + σf

√
Pl
k, x̂lk − σf

√
Pl
k

]
, (B.2)

where σf is a scaling parameter for the spacing of the sigma points. The sigma

points are then propagated through the nonlinear dynamics as

X l−,i
k+1 = f

[
X l,i
k , 0

]
for i = 1, . . . , 2nx + 1, (B.3)

where the superscript i denotes the ith column of the matrix (ith sigma point). A

least squares solution for Φ in the neighborhood of x̂lk is then found by pseudoin-

verse as

Φl = X l−
k+1 · (X l

k)
T ·

(
X l
k · (X l

k)
T
)−1

. (B.4)

The primary benefit of computing a Φ which is accurate in a neighborhood of the

estimate is the insensitivity to small differences in estimates on each of the sensor

nodes.
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APPENDIX C

CAMERA MEASUREMENT

The sensor measurement is formally defined as the location of the POI in the cam-

era screen as determined by the onboard vision system and is given by (dropping

the superscript and subscript denoting which UAV at which time step, respectively)

z = hSCR(xPOI,ψ,v)

=



λy 0

0 λz






RCAM

NED
(2)

RCAM

NED
(3)


 [RCAM

NED
(1) (xPOI −ψNAV)]−1 (xPOI −ψNAV) + v(C.1)

where v is the noise in the vision system and

λy =
tan (FOV/2)

pmax−y
, λz =

tan (FOV/2)

pmax−z

are pixel length scale factors, which depend on the camera field of view, FOV , and

pmax−(y,z), which is the maximum camera pixels in the y, z directions. Note that

the UAV position and POI location are assumed to be in a local North-East-Down

(NED) frame. The rotation matrix RCAM

NED
is a combination of the rotation matrices

from the local NED frame to the aircraft body (ABC) frame, and then to the

camera (CAM) frame, given as

RCAM

NED
=




RCAM

NED
(1)

RCAM

NED
(2)

RCAM

NED
(3)




= RCAM

ABC
RABC

NED
(C.2)
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where

RABC

NED
=




1 0 0

0 C(φ) S(φ)

0 −S(φ) C(φ)







C(θ) 0 −S(θ)

0 1 0

S(θ) 0 C(θ)







C(ψ) S(ψ) 0

−S(ψ) C(ψ) 0

0 0 1



(C.3)

RCAM

ABC
=




C(s) S(s) 0

−S(s) C(s) 0

0 0 1







C(t) 0 S(t)

0 1 0

−S(t) 0 C(t)







C(p) S(p) 0

−S(p) C(p) 0

0 0 1




(C.4)

and ψATT = [φ, θ, ψ]T are the roll, pitch, and yaw angles of the aircraft and ψGIM =

[p, t, s]T are the pan, tilt, and scan of the gimbal and C(·) and S(·) represent cos (·)

and sin (·) respectively.
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