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Abstract

For a complexity measure x, a set is x-infinite if it contains
a x-decidable infinite subset. For a time-based k, we prove that
there is a recursive S s.t. both S and its complements, S, are in-
finite but not x-infinite.

Lipton[6] states that the existence of a recursive set S s.t.
neither S nor S is polynomially infinite is not a purely logical
conseqguence of Hg theorems of Peano's Arithmetic PA. His proof
uses a construction of an algorithm within a non-standard model
of Arithmetic, in which the existence of infinite descending chains
in such models is overlooked. We give a proof of a stronger
statement to the effect that the existence of a recursive set S

s.t. neither S nor S is linearly infinite is not a tautological

0
2

We comment on other aspects of [6], and show (§2) that a

consequence of all true JI. assertions.

tautological consequence of true Hg assertions may not be equiva-
lent (in PA, say) to a ng sentence. The three 'secticns of this paper
use techniques of Recursion Theory, Proof Theory and Model Theory,

respectively.



1. k-infinite sets, for a complexity class «x.

1.1. x-enumerations. Let x be a set of recursive functions with

a given time-based calculation complexity; e.g., the functions
calculated (a.e.) in polynomial time. A function f ¢ « is a «-enumera-
tion if f(x) # f(y) for x #y. X c N is x-enumerable if it

is the rgnge of a x-enumeration. If we drop the injectiveness

clause, then any r.e. set becomes linearly enuﬁerable, devoiding

the notion of interest. On the other hang, any r.e. set enurer-

ated by a function majorizing all f € x is not k-enumerable. We
show that this does not imply that a k-enurmerable set must have

a simple structure. Assume given some (primrec.) coding of sequences

of naturals, and let (x)i denote the i'th element of the segquence

coded by x (:=0 if no such element exists).
1.2. Proposition. There is a many-one complete linearly enumerable set
Proof. Let K = (the domain of ¢e) be a many-one complete

r.e. set. Define a recursive function £ as follows. For input

x perform (x) steps in calculating ¢ ((x)l). If this yields

0 e

a result only at the last step, then set f(x):= 2(x)1. Other-

wise f(x):= 2x + 1. The function £ {is clearly a linear-tine

enumeration and, for any z, z ¢ K iff 2z e range(f). [X
1.3. k-listing. The example of 1.2. shows that the non-monotonicity

of a x-enumeration may offset much of the restriction implied by
injectiveness. Define a function f € x ¢to be a k-listing if
it is strictly increasing. A set X < bﬂ.is K-listable if it

is the range of a x-listing. X c [N is x-recursive if itg

characteristic function Xy 1is in k. Clearly, a x-listable set

is k-recursive, so there are x-enumerable sets that are not x-list-
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able. On the other hand, a x-recursive set may fail to be x-listable.
Let f be a recursive function majorizing all functions in «, and
let 2(x) be the run-time of f(x); define g(x):= <x, f(x), 2(x)>,
X:= rance{g). Clearly, X 1is not «x-listable; but 2z ¢ X can be
decided by performing (z)2 steps in the calculation of f((z)o), and

comparing the result with (Z)l' So X 1is linearly recursive.

1.4. k-imnune sets. A set X c [Jis x-infinite if it contains an

infinite x-recursive subset. X 1is strongly x-infinite if it

contains an infinite x-listable subset. In the example in
1.3., X 1is x-infinite but not strongly x-infinite.
A set X c N is k-immune if it is infinite but not k-in-

finite. X 1is weakly x-immune if it is infinite but not strongly
’

k-infinite. When the restriction to a complexity class k is lifted,
one gets the sets extensively studied under the name immune (cf.
Rosers (9] p. 107). for « = [all recursive functions] the dis-
tinction between the attributes x-infinite and strongly k-infinite
disappears. It is easy to show that there are 2 0 sets X s.t.

both X and its corplement, X, are immune (Rogers [9] p. 108). The
existence of infinite recursive sets that are x-immune was demon-

strated by R. Constable [11].

1.5. Recursive sets that are «x-immune and co-x-immune. Post [7]

proved that there are r.e. sets with an immune complement (cf.

Rogers (9] p. 106; such sets are called simple). We give a construction
akin to Post's, in which we make sure that our set is recursive, not
just r.e. or «-enumerable.

Trheorem I. Given a complexity class x, there is a recursive set S s.t.

both S and S are «-irmmune.



. Jd < J

Proof. We assume that the k-functions may be listed effectively,

(wi)i. This holds true for all usual measures x. Let xj := domain |

We define simultaneously, by recursion, functions f(n), g(n)

and finite sets Kn' Jn (n 2 0). We shall have Kn < Kn+1,

n € Tner’ Kn c Jn' and for S:= range(f), T:= range(g) we

shall have S n T = #. Having 3j e I will guarantee that
’ xj nS#g@, and j ¢ K _--that Xj nT# B. The function f (as
well as g ) will be strictly increasing, so S will be recursive.

Order all pairs (x,y) so that (xl,y) comes before (xz,y)

for %) < Xy and (x,yl) before (x,yz) for ¥y < Yy- E.qg.,
(0,0); (o,1), (1,00, (1,1); (0,2), (1,2), (2,0), (2,1), (2,2); ...;
(0,x), (1,x), ..., (r-1,1), (r,0), (r,1), ..., (r.o); ....

Set f£(0), g(0):= 0, and Jo, K0:= Pg. To define
f(n+l), g(n+l), Jn+1’ Ko41r calculate successively, following

the ordering above on (x,y), the values of wx(y) for x ¢ Kn
and y > f(n), g(n). Let (xo,yo) be the first pair s.t.
wxo(yo) > 0. If Xg / Jn' set f(n+l):= Yoo g(n+l):= g(n),

J =3 v {xo), K

el i= Kn. Otherwise, set f(n+l):= f(n),

n+l

J , K = K wu (xo}. Since f 1is non-

gntl):= yo, 3,5 I n+l n

decreasing, S:= range(f) is recursive. Also, S n T =g is
obvious.

We conclude the proof by using induction to prove that if Xn
is infinite, the f(pn), g(qn) € Xn for sufficiently large PL+ 9 -
Let I := {j < nlxj infinite}, F = {j<n]| Xj finite}. For j ¢ I,

there exists, by ind. hyp., some qj s.t. g(qj) € xj; let g be



larger than all 9y j e In’ Then In cK <J . If ne Kq, then

g(qn) = n for some q, < 9q., and f(pn) = n for some P, <9,

and we are done. Assume n ¢ Kq; then the calculation of f(r), gl(r)

for r > g uses values of wn but not of wj’ 3 In. Now let k

. F.
b €
be the number of elements in jgn j,» and let ay sees @500 be the

first 2k+2 elements of X, larger than all f(pj), g(qj), j eI,

(so wn(ai) >0 for i=1, ..., 2k+2).

By the ordering we chose for pairs (x,y), each term
w“(ai) is consiiered in our algorithm before wr(ai) for r > n.
Hence, the only cases where neither of f£(z), a(z) for =z =2g will
yield ai are when wj(ai) is considered for some j € Fn' and
wj(ai) > 0. This may happen at most twice for each j ¢ Fo a; e Xj
(since, if g{r) = ai, then ai € Kr' for r' 2 r), so altogether at most
2k times. Hence, we must have g(r) = a; for some i € {1, ..., 2k+2}

and r 2 q, and so f(s) ¢ Xn for some s < r (f(s) = ay for some

h < i with s 2 g if n ¢ Jq’ s < q otherwise). ng

1.6. Weaklv x-immune recursive sets. The proof of theorem I is

non-constructive in that the valuesof an € S n Xn, bn € T n Xn
depend on evaluating the size of the finite Xj, j < n. We
shall prove in §3 below that this non-constructive feature is es-
sential.

However, the proof of theorem I may be amended to yield a con-
structive proof of the following weaker result.
Proposition. There is a recursive set S s.t. both S and s

are wecakly «-immune.



Proof. Let (xi)i be an effective enumeration of all k-list-
ings. Now replace throughout the proof of theorem I V._.
by X, . .- We have then Fj = g trivially. 1In the closing ar-
gument, q is obtained effectively (and uniformly) from n.
If ay. a, are the first elements of Xn 1argerlthan f(pj), g(qj) £c
j < n, then: £(q) = ay, g(g+l) = 2y if n/ Jq;
g(q) = a,, f(s) € Xn for some s < q, if n € Jq - Kq. YEQ
Related to this propositionis a theorem of Rabin [8], to
the effect that, for any x, there is a recursive set S s.t.
neither S nor S is k-recursive. Rabin's proof is also fully

constructive (though the result is not recursive in «x, as shown

by Hartmanis and Stearns [2]).

2. The theory of true Hg statements.

Let TA stand for the first-order theory in the language

X

of PA, whose axioms are all the true Hg sentences. I.e., TAk

consists of the tautological consequences of true Hg sentences.

We shall be especially interested in TAZ.

2.1. The scope of TAz. Among the axioms of TA2

most of the open problems in Number Theory. E.g., Fermat's

one may find

"Last Theorem," Goldbach's Conjecture and the (by now proven) Four-
Colors Theorem are ng; the existence of infinitely many twin primes,

and of infinitely many perfect numbers is Hg, etc. Certain theorems

-0

and conjectures in Analysis turn out to be equivalent to Ty

sen-
tences.  An example is Riemann's Hypothesis (cf. [1) p. 335).

In Metarmathematics, all theorems on consistency and relative



consistency of formal theories may be codified as ﬂg sentences.

2.2. TA, in relation to PA. Infinitely many of the axioms of

, are not theorems of PA, since the set of true ng sen-

tences is not r.e. On the other hand, there are infinitely many

TA

instances of induction that are not theorems of TAz. Induction,

here, is the schema

Ind(¢): ¢(0) & ¥x(¢(x) + ¢(x+1)) + ¥x¢(x).
0

'For a Xl formula ¢(x) with x as the only free variable,
Ind (%) 1is tautologically equivalent to a true Eg sentence,
and hence derived from a true Hg instance thereof. Similarly,
for a Hg ¢(x), Ind(é) is Zg, and hence-derived from a Hg
sentence. However, the consistency of TA2 can be proved in TAZ
Plus induction over Ig formulas with parameters, so already

such instances of induction exceed TA by Godel's Second Incomplete-

2'
ness Theorem.
2.3. The constructive contents of TQZ. All axioms of TA2 are

"constructively true": if V¥x3y¢(x,y) (¢ gquantifier-free), then

¥x¢(x,f(x)) for the total recursive function f(x):= py ¢(x,y).
“Also, any prenex formula that is constructively true, in that sense,
is a thecorem of TAZ: assume that Vxlﬂyl e kaﬂyk ¢(xl,...,xk;
yl,...,yk) (¢ quantifier-free) is constructively true, in that
there exist recursive functions that yield each Y; from
1 e X5 (i=1, ..., k). This is codified by

V) eeeXy Typ eee g [ lsisk T('Ei, X seeeiX;>, Vi)

& O(le...,xk? U(Vl)' ccey U“k))]’



where T and U are Kleene's calculation-relation and result-ex-
tracting function, respectively (both are primitive-recursive),

and e e are codes for the algorithms in question.

) R
In spite of the points raised above, it seems confusing and

misleading to baptise TA2 as "Constructive Arithmétic' (cf. [6]).
There is a general concensus that at least the elementary part

of constructive arithmetical reasoning is correctly represented
by Heyting' Arithmetic HA (the intuitionistic variant of PA, in
which the Law of Excluded Third, ¢ v 93¢, is dropped from the
underlying logic). It is true that prenex theorems of HA are

tautological consequences of Hg

(classically) Hg theorems of HA that are underivable in TAZ;

e.g., the consistency of TA, .
(classically) Hg classical tautologies, so certainly thearems

that are underivable in HA; e.g., ¢ v 1 ¢ where ¢

theorems of HA; but there are
On the other hand, there are

of TAZ,

is a Hg sentence canonically expressing the consistency of HA.

2.4. Theorems of TA2 that are not ng.

language of PA) is a theorem of TA,; but, regardless of its

Any tautology ¢ (in the

complexity, ¢ is then tautologically equivalent to a quantifier-

free sentence like 0 =0 + 0 = 0. Are there any theorems of TAZ

that are not tautologically equivalent to a Ho sentence? We

2
answer this positively, and actually establish the sharpest pos-

sible result.



Theorem II. There is a (tautologically) Ag theorem ¢ of

TA, that is not eguivalent to any ng sentence even in

2

PT1:= PA + TAl. Moreover, ¢ is derived from an axiom of TAZ,

using a propositional inference only.
Proof. Let Prl be a cononical Eg provability predicate for PTI'

and let Conl and ConIConl be ng sentences expressing the

consistency of PTl and of PTl + Conl,

= s = 1 = i
Conl.; ﬂPrl( 0 ITh. Lret ¢:= Conl—+ ConlCoul. ConlCon1 is

true, so TAZ)-¢ (by a single instance of implicatiomintroduc-

respectively; so

tion).

Assume (1) PTIF ¢e>y for some ng sentence Y.

. . - c 0.
Clainm A. PTl}/ ¥. Assunme PTl}-v, then PTlf Con; =~ ConIConl

by (1), i.e.: The theory PT, + Conl proves its own consistency,

1
contradicting Godel's Second Incompleteness Theorem.

Claim B. If (2) PT, F =y + Con,, then PTlf Y. (This is due to
Kreisel [S5)). We use the elementary derivability conditions of
Kilbert-Bernays [3)] for PTl and Prl (cf. [10) p. 827). The

0

sentence — ¥ is 22, so (3) PTlP'Ww - Prl(rj v

(second
derivability céndition). Assuming (2) yields
(4) PTlf Prl(rﬁ ¢_7) - Prl(rConlj) (first and third conditions).
Finally, by Rosser's refinement to Godel's Second Incompleteness
Theorem ((10] 2.2.3, p. 828), (5) PT }Pr ("con, ™) +cCon,. Put-
ting (3), (4) and (5) together yields.(s) PTIP Yy o+ ﬂConl. Com-
bined with (2), (6) implied PT,}V¥. This proves claim B.

To conclude the proof, observe that (1) implies

PTl} S, = Con which yields PTlf v by claim B, contradicting

1’

claim A, m



3., Underivability of theorem I in TA, .

3.1. In [6) R. Lipton states that theorem I above is not a tauto-
logical consequence of the ng theorems of PA. In that paper,
Lipton pioneers a novel field of research, by indicating the poten-
tial application of Model Theory to independence result in Com-

_ plexity Theory. Unfortunately, the proof in [6] is, at best,
vague and misleading on a major issue. A non-standard model Mo

is constructed, for the Hg theorems of PA; then ([6], end of
§3), an attempt is made to construct an algorithm within MO,
without paying attention (at least not explicitly ) to the fact
that M0 is not well-founded. Indesd, standard inforral algorithm-
descriptions become inapplicable in non-standard models, where,

k x], k=1,2, ..., does not terminate

e.g., the sequence [log
whenever x is non-standard.

We feel that clarifying this point is of some interest, since
most future applications of Model Theory to independence results
in Computer Science would probably depend on a correct handling of
algorithms in non-standard models of Arithmetic.

Our correction depends on avoiding algorithmic ‘constructions
within non-standard models. Instead, those properties of the al-
gorithm one has in mind should be arithmetized, and proven true
in a series of standard models. When evoking the Compactness
Theorem to yield a non-standard model, the properties considered
remain true. The object realizing them is, however, a non-standard
number, which "codes an algorithm” in the sense of the model.

In 3.6.2. below we mention ways in which our theorem III

improves on Lipton's statement.
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3.2. Theorem III. Theorem I is not derivable in TAZ. Actually,
more is true: it is not a theorem of TAZ that there is a recursive

set S s.t. both S and S are linear-time immune.

Corollary. Let (-;:i)i be an effective enumeration of «k. There
ere no recursive set S and recursive functions a, B s.t. a(i)
and B(i) are defined whenever Xi:= {x | wi(x) > 0} is infinite,

and a(i) € x; n S, B(i) € X; o S.

Proof of the corollary. If there were such S, a, B, then

theorem I would have a constructive form codified as a Hg
sentence, as in 2.3 above, making it an axiom of TAZ, in contradic-

tion to theorem III. X

3.3. Proof of theorem ITI. We shall use the notations and

conventions of Kleene [4) for coding sequences, algorithms and
calculations. Also, it will be convenient to assume that the lan-
guage of PA contains a symbol & for exponentiation (though this is
not directly relevant, we . note that PA with defining axioms
for § is a conservative extention of PA).

By the Compactness Theorem, it suffices to show that for any

recursive set S and any finite list
¢ = anywi(x,y) (i=1, ..., m

of true ng sentences, there is a model M0 satisfying

01, coos ‘n and in which either S or S contains a subset
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that is linear-time infirite in the sense of Mo.

Define

fo(x):= x#x

fi(x):= uy. wi(x,y) (i=1, ..., m).

Since ¢i is true, fi is total (i =1, ..., m). Let g(x)
be a total recursive function majorizing fo, cesy fm' with
running-time function 2(x). Then the function h(x) := <g(x),£(x)>

nmajorizes f fm and h(x) 1is calculable in time

YRR
s p-h(x) for a suitable p.

2 and ng formulas, respectively,
s.t. x e S iff o(x) iff n(x); let n(x,y), §(x,v) be g%, m?

Let o(x), n(x) be L

fornulas, respectively, s.t. h(x) =y iff 7n(x,y) iff n'(x,y).
Consider the following algorithmu&,for calculating a func-

tion k(x,z,c). Let zo:= z, and generate

z2i415° h(zi) (i =0,1,...) until zj 2 x, or until p-x

steps are performed in the calculation of some h(zj), which-

ever comes first. If zj 2 x 1is reached, zj = x and (c)j =1,

then set k(x,z,c):= 1; := 0 otherwise. The length of this cal-

culation is bounded by a:= pzy + Pz, + ... 4 pzj_1 + px + t,

where t is the time to calculate (c)j. But j < x, and t is

linear in ¢, i.e. t s prc (provided p 1is suitably large,

which we may assume w.l.0.9). So, a < 2p(zl-zo)+...+2p(zj_1-zj_2)+px
< 3px+pc < 4pxg, where x):= max [x,c)]. Let e be the code of ’

(a Herbrand-Godel version of) the algorithm pdﬁ Clearly, the cal-

culation of k(x,z,c) itself is bounded by x¢i#s for a suitably

large s.
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Let g be the language of PA extended with new constants

Cr 9v 24 51'22 «... Consider the following formulas of Z.

(1) c<asq-= 4-p-a,

(205 nlta;, a;,,) } 120
(3;  Vxca et E, %, a5, e v)
J&. U(v) =1+ m(x)

& oc(x) + U(v) =1

.&.  Lth(y) s g'x)

3.4. Lemma. For any k 2 1 there is a model N of Qsatisfying

1), (2):'.' (3)i for i < k.

Proof. Let the interpretation in N of the non-logical constants
of PA be the same as in the standard model. For the new constants

of .Q’, let

k times
N N
g_i+l' g(ii) (1 < k)
N . N
€= <Cus ween c) > where ci:>= 1l if 0(55_)'
:= 0 otherwise.
M, N (i.e., if m(a}).

(1) and (2)i (i s x) are satisfied in N trivially. For
(3)i' the existence (and uniqueress)of v, and the bound ii#s follow

by the cdefinition of the algorithm d‘j coded by e. We have

U(v) =1 1iff Kk(x, ayr ¢ ) = 1, which happens exactly when there
. . N h N h N h N N

"y - L] - - - = =
is a "-chain a: ay a2 . aj x, and (c )j 1,
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x €S, n(x), og(x).
To prove that Lth(v) < g?-x consider two cases. If
x < EN then 2Lth(y) s a < 4p-max(x,g§) < 4p§g. If x > SF

then 2th(V) s a < 4px s gsx. This proves the lemma. _‘Sﬂ

3.5. Proéf of theorem III - concluded. Let I' be the first order

- theory in % whose axioms are
(a) the guantifier-free axioms of PA (in particular--the

defining eqguations for +, -, ?).

(b) h majorizes fo, e fm' i.e. the sentence
Y= ¥x,y [ tl(x,y) -, xfix<y & ¢ Jz<y vy, (x,2)
1€ién B

(C) Ql' DN ¢m
(a) all sentences (1), (2)4, (3)4 (1 21).

Groups (a)-(C) are true sentences in the language of PA, so they
are satisfied by any model N as above. Hence, every finite

T ¢ T has a model, and, by the Compactness Theorem, I' has a

0
model <M, <M, OM, SH, +M, 'M, GM, gM, g&, gz, QT, cee>e

MM

Let My = {x ¢ M | x <" a; for some i 2 0}. By (2);,
M M . M _ ..M
n(gi, ii+1)' so by u, Mo is closed under fo = Ax*x¢ 'x, and
hence (by (a)), under +M and °M. Thus, taking the restriction
. 7
to Mo of +M' _M, SM we get a correctly defined model of 4?.

Since Mo is a submodel of M, every Hg sentence true in M

is true in MO too. We claim that Mo is a model of T. This

is immecdiate for the ng axioms (a), (b) and (1), (2)i. By
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u, the exponential bound in (3)i is realized in MO' and
¢y --- 0, are also true in M.
Now consider the set A:= {i ] ﬂ(g?) is true in MO). if
A is infinite, Ho satisfies, in addition, also the statement
Vvzix>1 3v [TJ(E,x,go,g,v) & U(v) = 1). oOtherwise, A is infinite,

and M_ satisfies the same, with 0 in place of I.

0
Putting everything together, Mo is a model satisfying the

sentence (in the language of PA)

(*) da,c,q{¥xav(T’ (5,x,a,c,V)
& U(v) =1+ (%)
.&. of(x) » U(V) =1
L& Lth(v) < gx]
¢ [ Vz3x>2av T3(5,x,a,c,v) & U(v) = 1

v. Vz3x>zdv T (S,x.a.c,v) & U(v) = 0]).

Cecoded, this sentence says that the algorithm dfvmay be sup-

plemented with numbers a,c and become a linear-time algorithm for

the characteristic function of either an infinite subset of

{x ]| o(x)}or an infinite subset of {x |-0(x)}. (Here we assume o(x) + w(x)).

This concludes the proof of the theorem. YEQ

3.6. Some corments on [6].

3.6.1. In [6] Lipton states the independence of our theorem I, to
which there is no reference. An erroneous assumption seems to have
been made, namely; that this is a direct corollary of Rabin's

theorem. Actually, Rabin's proof is fully constructive, and the
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statement of his theorem can consequently be strengthened to a

Hg sentence. The first corollary on p. 197 in [6] seems therefore
erroneous. The same remark would protably apply to the second

corollary, as well as to the concluding paragraph of [6] §3.

3.6.2. Theorem III improves on the statement in [6] in two respects.
Firstly, we show independence over all true ng sentences, not

just the Hg theorems of PA. Secondly, we refer to lincar-time
immune sets; the argument in [6], if corrected, would refer to
x-immune sets, where x is the run-time-class for Xn.an~g—1(n), g

a fixed monotonous function majorizing the PA-provably recursive

functions.

3.6.3. In the proof of lemma 4 in [6] it is assumed that every re-
cursive predicate is provably-recursive in PA. This is false, as
can be seen by considering the graph of a total recursive function

majorizing all PA-provably recursive functions.
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