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A PROJECT FOR SOME MONTE CARLO 

STUDIES OF VARIANCE COMPONENT ESTIMATES* 

BU-161-M s. R. Searle October, 1963 

Abstract 

This paper represents some preliminary notes about Monte Carlo studies 

that are being contemplated for an investigation into the distribution of 

variance component estimates obtained from unbalanced data. The presentation 

is in terms of the 2-way classification, and covers such topics as calculating 

s~~ces, selecting patterns of n13 -values, sampling cell means, 

sampling the normal distribution and the uniform distribution, and estimating 

the histogram of the probability distribution of a variance component estimate. 
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Henderson (1953) gives methods for estimating variance components from 

unbalanced data. Searle (1956, 1958 and 1961) gives procedures based on the 

normality assumption for obtaining variances of such estimates in the one-

way, two-way and two-way ne&ted classifications, using Method 1 of Henderson's 

paper. Mahamunulu (1963) uses the same procedures for the three-way nested 

Monte Carlo studies are now being contemplated to investigate 

the distribution of variance components estimates obtained by Hendersonws 

method, utilizing the variances of the estimates derived by Searle's proced­

ures. These notes are a preliminary discussion of some of the metliods that 

are being considered. They are presented in terms of the two-way (cross) 

classification. 

1. Calculating Sampling Variances 

The n-pattern 

Suppose in a two-way classification of a rows and b columns there are 

n13 observatio~~ in the cell def~n~d by the ith row and jth column. Let n1 • 

be the total number of observations in the ith row and n. 3 the total in the 

jth column, with n altogether. Thus 

Row 

1 

2 

• •· 
e 

i 

• • • 
a 

Total 

•• 
No. of observations 

ColUinn 

1 2 0 •• j 

Total 

b 

n ., . 
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We will refer to any set of values of the n13 •s, n1• 's n.J's as ann-pattern. 

Estimates 

If Ta = uncorrected sum of squares for rows 
II II II 

II II II 

II 11 

II II 

columns 

interaction 

total sum of squares 

T, = correction factor 

then, as suggested in Searle (1958), the estimated variance components can be 

expressed as 

=qle; +<Ja~ +CJs~ro 

= Cls~ .+ <Je~~ + fJJ, 0rc 

~ ~ "" = ~0'1' + q10°o + qll O'l'C 

= ql3~ • 

(1) 

The q's are constants, functions of the n-pattern. They are such that an 

explicit solution of these equations for the ~21 s is not feas.ible algebraically. 

But for a given set of n's the q's can be COmPUted and the equations solved as 

~ r =AlTa + AgTb + AsTab + A.t,T, + pl~ 

~ = AsTa + AaTb + A7Tab + AeTt "'2 (2) 
0 + PaO'• 

"'2 
0 ro = A9Ta + AlOTb + A11 Tab +AuT, ~ 

+ P3 O'o ' 

where the A's and p 1s are appropriate constants. 

Variances of estimated components . 

For any given n-pattern the q's of the; first set of equations and the 

A.'s and p's of the second set can be calculatede The estimate of the within 

~ub-class variance, ~ 1 is independent of the T's; and Searle (1958~ gives 

express ions for the variances and cova.riances of the T 's • V a.riances of var­

iance component estimates. derived from equation (2) ~aft therefore be obtained. 

Algebraic complexity prevents explicit expressions being obtained for these . 

variances, which invol~e both the n-pattern and the true variance components. 

But for a given n-patterri and a given set of values of the true variance 
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components the variances can be calculated. These will be the true (sampling) 

variances of variance component estimates derived from data with the given 

n-pattern that are a sample from a population having the given set of values 

as true variance components. 

Prior to Monte Carlo sampling of such a situation we will first make a 

se~ies of calculations to investigate properties of these sampling variances. 

For a given n-pattern,the sampling variances will be computed for various .· . 
sets of values of the true variance components - and for each set of such 

components the sampling variances will be computed for various n-patterns. 

This study will be of interest in itself', and among other things it mS\Y, 

hopeful~, indicate which n-patterns and which sets of values for true variance 

components would be worthy of use in the Monte Carlo sampling. If the sampling 

variances are relatively insensitive to small changes in the n-patterns or in 

the values used for the true variance components, then only combinations of 

these that lead to sampling variances substantial~ different in value will 

be .. us~d for the Monte Carlo sampling.. But the first problem is to select the 

n-patterns • 

Selecting n-patterns 

Initially one might contemplate starting this_project with only a small 

number of rows and columns and using n-patterns that are patently different 

and easily specified: e.g. in a configuration of 4 rows and 5 columns two 

such n-patterns might be 

n n 0 

0 n n 

0 o. n 

0 o· 0 

0 0 

0 0 

n 0 

n n 

and n n 0 0 0 

n n 0 0 0 

n n n n n 

n n n n n 

• 

Patterns such as these have been. studied by Bush and Anderson (1962); they 

are.,certainly different, one from another, and they are easily specified and 

simple to describe.- but whereas they may be of· some interest in .analysing 

dat~ from a fixed-effects_model they bear little relation to same of the 

practical problems that arise in estimating variance components from random­

effects models. One particular instance '·rhere this estimation :procedure is 
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widely used is that of dairy production records of cows in various herds sired 

by a {relatively) few bulls used in artificial breeding. In this case columns 

may represent bulls and rows represent herds, and an analysis of actual data 

may well contain as many as 100 columns and 600 rows • Furthermore, maybe only 

lfY'/o of all cells will have observations in them and of these maybe 7\J{o have 

only one observation. This situation is so far removed from the well-organized 

n-patterns illustrated above that it is felt that a study of such patterns would 

give little information about the practical problem. Possible methods of con­

sidering the latter have therefore been evolved. 

Considering for a moment the dairy production problem we may note that 

the distribution of a sire's daughter's over the population of herds using A.B. 

is operationally fairly much a random-process. Furthermore, empirical dis­

tributions of the number of daughters from a given sire in a given herd can 

be easily obtained. One such is given in Table 1. This inJeffect1 is the 

distribution of n13 -values in a study of actual data made recently in New 

Zealand {Searle, 1963). One way of establishing an n-pattern for an analysis 

of a rows and b columns would be to take for each row (representing a herd) 

b randomly chosen values from the empirical distribution given in Table 1 

(or one like it, based on other data - from New York for example). 

There is, however, a disadvantage to the above suggestion. The number of 

observations in a rmr total, n1 , (iee. herd size) would then depend largely . . 

on the number of columns (sires) in the analysis, And this is not true in 

practice - an A.B. stud has enough bulls at any one time to cater to the whole 

of its clientele, but the size of an individual far.mer•s herd is certainly not 

determined by the number of bulls at the AcE. stud. Tliis mitigates against 

the method suggested above for setting up n-patterns. 

The number of cows that a farm has is largely a matter of specific limi~ 

tation by the farmer concerned, and this factor must be taken into account. 

This can be done by deciding on a series of values for the number of obser­

vations in a row (herd) and then distributing them randomly among the columns 

(bulls) according to the empirical distribution in Table 1. The values _for 

the number of observations in a row can themselves be selected from a dis­

tribution of herd sizes, such as is given in Table 2. For a rows, a values 

will be chosen; these will be the n1 ~ values. Then, for each row, sufficient 
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non-zero values could be chosen at random from the distribution given in 

Table 1 such that their total is n1 • • These would be the non-zero n1 .1 values 

for that row, and together with the appropriate number of zeros these would be 

distributed at random among the b columns of the row. And so for every row. 

The n • .1 values would then simply be the sum of the appropriate nil 1s. 

To better specify the distributions in Tables 1 and 2 it may oe possible 

to fit Poisson distributions to them. Even if the fit is not statistically a 

very good one, so long as it is not horrendously bad this may be a suitable 

technique. It would provide an opportunity for easily specifying other 

(Poisson) distributions. 

If Poisson distributions are suitable in the above discussion further 

refinement is possible. First use a Poisson distribution to establish the 

numbers of observations in a row, the n1 values. Then, knowing that 
• 

p(n1 ) is Poisson 
• 

and p(ni 3 ) is Poisson 

the distribution 

p(n11 n12 • • • nib f n1 ) is Multinomial 
• 

and can be sampled for the nu 1s for each row. For example, in the above 

Tables the mean value of n1 is 7546/654 = 11.54 • 
• 

Suppose 

and 

m = 11.54 

-m 11 
e m t• 

p(n ) = • 
1 • tn. 
~ 

Then, with 119 sires the me~~ value of n1 , (including zeros) is 

m 11.54 
119 = 119 = 0.09696 c 

Thll!3 we will suppose that-
-m/119 n 

( - ). _ e (m/119) 1.1 
p nil - ln .• 

L.!l. 

Then 
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-·m/ "I = !L.J 119) t. 

n1n13 
3 

which is a multinomial distribution with all p's equal to 1/119, the recip­

rocal of· the numbe:t: ~f sires {columns). One must, of' course, test the fit of 

these Poisson distributions to the empirical distributions in Tables 1 and 2. 

It will also be useful to have other empirical distributions, such as those 

from New York dairy data for example. 

Having chosen a method (or methods) for specifying n-patterns for a con­

figuration of a rows and b columns, further control of the n-pattern specifi­

cation will lie in the number of rows and columns chosen for study. Four 

easy possibilities are available: few rows and many columns, many rows and 

few columns, or many or few of both. Having decided on a series of' n-patterns 

-perhaps as many as 20, or 50 or even 100- (?) -each will be used in con­

junction with various sets of values for the true variance components, to 

calculate sampling variances of variance component estimates. In practice the 

true components will be taken as fractions of a;, then using 1.00 for a; in 

the computations and values in the range 0.1 to 2.0- (?) -for the row, column 

and interaction components. 

2. Monte Carlo Procedures 

SamEling cell means 

Same of the n-patterns and sets of values of the true variance components 

used in the calculations desc~ibed above will be used in carrying out the 

·Monte Carlo :procedures • Sampling normal populations to obtain cell meallS will 

proceed as follows~ Suppose t 1, t 3, t 13 and t 1J. are four rando~y-chosen 

values from a standardized normal distribution (zero mean and unit variance). 
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If ~' a;, o~c and o; represent the set of values of the true variance com­

ponentsJthe "observed" cell mean obtained from the sampling procedure for the 

cell corresponding to row i and column j will be 

• (;) 

For each cell for which n13 ~ 0 a sample of values t 1 , t 3, t 13 and t 13 • will 

be drawn and xi j. calculated. Individual "observations 11 , xi jk, will not be 

sampleda Estimating variance components from these cell means is discussed 

below, but first some comments on drawing samples from the standardized normal 

distribution~ 

Sampling the normal distribution 

Several methods of sampling the normal distribution are discussed by 

Muller (1959). All of them rely on first sampling the uniform distribution, 

the simplest procedure then being to invoke the central limit theorem and use 

the mean of a number of variables chosen randomly from a uniform distribution; 

i.e. the mean of a sample of random numbers chosen from a given interval. The 

fastest and most accurate procedure is that due to Box and Muller (1958) of 

using a pair of such random numbers, U1 and Ua say, to generate a pair of 

random normal deviates by the transformations 

Both methods take a relatively long time to compute, especially when repeated 

a vast number of times as will be the case in the studies under consideration. 

An alternative is therefore proposed, based on a table look-up procedure 

utilizing a random number. 

Stored in the computer will be 1000 "values, w(s), such that 

1 J:w(s) -t2 /2 : s 
---- e dt = 2005 
/2fi 0 

for s = o, 1, 2, ;, ••• , 999· 

On each occasion that a random normal deviate is required two -random numbers 

will be generated: 
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s, a random number between 000 and 999, 

and z, a random sign, +1 or -1. 

The corresponding random normal deviate will then be z[w(s)]. This will be 

a fast procedure computationally, and it is felt that the degree of approxi­

mation to true normal sampling is likely to be quite sufficient for the studies 

being undertaken. 

It is easily seen that the values w(s) for s = 0~ 1, ••• , 999 divide the 

positive half of the normal distribution into 1,000 equi-probable areas having 

probability 1/2000. A table of w(s) has been prepared and is available. One 

might note that it can be used very eaaily to generate similar tables; e.g. 

every fourth value yields a table of equi-probable areas having probability 

1/500. 

Sampling the uniform distribution 

The power residue method of sampling the uniform distribution is well 

described by the Applied Research Laboratory (1962). The procedure is as 

follows. To generate a series of integers, each of d digits, (d > 3), start 

with a:ny such integer U0 , that is not divisible by 2 or 5. Choose another 

integer X, of the form 

where 

and 

such that 

X = 200t ± r 

t is any integer 

r is any one of the values ;, 11, 13, 19, 21, 27, 29, 37, 53, 

59, 61, 67, 69, 77, 8;, 91, 

X is close to lOd/2• 

The series U1 , Ua, ••• :is now generated by taking the d right-hand digits of 

the successive products of U0 with X. Thus 

. ul = right-hand d digits of XUo 

Ua ~ 
.. " II " 11 xu .• 

l' 

• • • • • • 
and ull 11 II 1.1 II· II xun-1 = • 
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T~is yields a series of numbers that are uniform and random as judged by 

various statistical tests, see IBM (1959). The series is only pseudo-random 

in that it repeats itself after 5(lod-a) terms. 

The above method of generating random numbers of 3 digits will result in 

a series that repeats after 50 values, for any given Uo and X. This is 

impractical for the purposes needed. But if 7-digit numbers are generated, 

(the maximum size on a 48-bit word computer) they can be classified by their 

first three digits for the purposes required; i.e. for all numbers in the 

range 0000000 to 0009999, s will be taken as 'ooo; for those in the range 

0010000 to 0019999, s will be taken as 001; and s'o on. This will give a 

series that repeata itself only after 500,dOO terms. For each of the random 

normal deviates required for xi j ·' the t's in equation (3), a different pair 

of values for X and U0 will be used. And if the number of :f.:illed cells in an 

n-pattern is N, new pairs of values for X and U0 will be required after 

5001 000/N samples have been taken. If fewer samples than this are taken for 

any particular combination of n ... pattern and set of true variances, the values 

of X and U0 will be different for each such combinations; if more than 

500,000/N samples are taken X and U0 will be changed after 500,000/N samples 

and after each combination of n-pattern and set of true variances. 

The distribution of estimated variance cgmponents 

From the cell means obtained from equation (3) by the above process the 

uncorrected sums of squares T8 , Tb, Tab and Tt used in equations (2) can be 

calculated. Suppose we consider the first of these, namely 

a;= A.1Ta + A.aTb + A.3Tab + A.4Tt + P1~ • 

Since ~ has a ~-distribution we will rewrite this as 

~ = "-1 Ta + A.;Tb + A.sTab + 4Tr + e1x2 • 

·It is· at once apparent that, for any particular n-pattern and set of values 

for the true variance components (and hence for any particular A.'s and e), 

the conditional distribution of _cr=;, given Ta; Tb! Tab and Tr, is 91-x.2 • i.e. 

the form of p(G; IT., Tb, Tab' Tt) is known. 

Furthermore, as in the earlier calculations, ·the variance of a; has been 

obtained; and, since a; is Unbiased its mean value is ~. Therefore, although 
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the distribution of G; is unknown, it is possible to create empirically a set 

of contiguous intervals that encompass the complete range of possible values 

of G;. For example if V r = V ar (~;) 

~: -eo < ~ :;;; cr;-3.0V r 
'_2 r«T -"'2 _2 2 'lttT Ia =or-3oVV 't < a't :;;; or- O,.IY r 

; :·a;-2.3V r < ~ :;;; a;-1.96V r 

• • • 
etc • 

• • • 

Decisions regarding the number of intervals and their magnitudes (the co­

efficients of V r) would probably be based on the particular values of a; and 

V, concerned. One would like to have the same number of intervals and the 

same coefficients of·v, for all situations. 

The known distribution 

p(~ IT., Tb, Tab' T,) 

is now used to calculate (from appropriate tables of the X..2 -distribution) the 

probability 

Pr,k = p(G; lies in Ik I T., Tb, T~b' T1 ) • 

This probability is calculated for each interval Ik; and it is calculated for 

every random sample drawn for any particular n-pattern and set of values of 

the true variance components • In each interval the mean probability is then 

calculat~d over all samples. Thus is established, by Monte Carlo ~ethods, a 

histogram of the probability_ distribution of· 8; for a given n-patt~rn and a 

given set of valu~s of the true variance components. This will be, done for 

each component in the analysis, ~xcluding a;, whose distribution is known. 

The whole process vrill be repeated for different n-pat~erns an~ different s~ts 

of values of the true variance components • If the· intervals .11, • ~ ~ ! 11 are 

taken reasonably s_mall and sufficient in number J the his-tograms mi~t be in- . 

formative enough to display differences for diff:ererit n-patterns and different 
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sets o£ true variance components, i£ such di££erences exist. 

Number o£ samples 

As well as making decisions necessary £or the setting up o£ the n­

patterns and decisions on the sets of values to be used £or the true variance 

components, one must also decide on the number of samp~es to take in any one 

case. 500-800 seems a nicely ... sized range, but undoubtedly the amount of 

computer time needed for each sample will be a very determining factor. 

3· Additional Topics 

(a) Crump (1951) and Searle (1956) give expressions £or the large sample 

variances of maximum likelihood estimators ,- o£ the variance components in the 

1-way classification. These could be calculated and compared with variances 

o£ estimators obtained from Henderson's Method 1. The maximum likelihood 

estimators themselves could possibly oe obtained also, by iterative procedures. 

Similar large sample variances are also available for the 2-way nested 

classification, (Searle, unpublished). The 2-way cross-classification appears 

to be intractable in this regard. The 3-way nested classification hasn't been 

tried. 

(b) Henderson's other methods could be used - £or both random and mixed modeLs • 

Such work would require a lot of preliminary analysis - to find the sampling 

variances. 

(c) Mahamunulu (1963) suggests a method of finding unbiased estimates of the 

sampling variances of estimated components. These could be calculated £or each 

random sample and their d:i:fitribution plotted - this- may require sampling indi­

vidual observations and not just cell means. 

(d) Searle (1956) considers components of covariance in the 1-way classifica­

tion.. These could be considered too, perhaps. 

(e) Bush and Anderson (1962) have developed matrix notation which merits close 

consideration, to see if it can simplify the necessary computing procedures. 



Acknowledgements 

Many of the ideas presented above originated in discussions with 

colleagues, particularly with c. R. Henderson and D. s. Robson. 

References 

12 

Applied Research Laboratory, (1962). The generation of random samples from 
common statistical distributions. United States Steel, Technical Report, 
Project No. 25.17-016(1). 

Box, G. E. p, and MUller, M. E. (1958). A note on the generation of normal 
deviates, Ann. Math. Stat. 28, 610-611. 

Bush, Norman and Anderson, R. L. (1962). Est·imating variance components in a 
multi-way classification. Institute of Statistics, North Carolina State 
College, Mimeo Series· No. 324. 

Crump, s. c. (1951). The present status of variance component analysis. 
Biometrics 7, 1-16. 

Henderson, c. R. (1953). Estimation of variance and covariance components. 
Biometrics 9, 226-252. 

I.B.M. (1959). Random number generation and testing. Reference Manual C20-80ll. 

Mahamunulu, D. M. (1963). Sampling variances of the estimates of variance 
components in the unbalanced 3-wa.y nested classification. Ann. Math. 
Stat. 34, 521-527. 

Muller, M. E. (1959). A comparison of methods for generating normal deviates 
on digital computers. J. Assoc. Computing Machiner, 6, 376-383. 

Searle, S. R. (1956). Matrix methods in variance and covariance components 
analysis. Ann. Math Stat. 27, 737-748. 

Searle, s. R. (1958). S8mpling variances of estimates of com.pc;>nents of 
variance. Ann. Math. Stat. 29, 167-178. 

Searle, s. R. (1961). Variazice components in the unbalanced 2-way nested 
: classification. Ann. Math. Stat. 32, 1161-1166. 

Searle, s. R. (1963). Genetic studies of dairy production early in lactation. 
J. Dairy Sci. 47, (in press). 



. ( 

13 
Table 1 Distribution of numbers of A.B. Daughters in herd-sire sub-classes 

in a study of 10,589 records in 654 herds by 119 sires, 1959-60. 
1 (i.e. numbers of paternal 2 -sibs in the same herd) 

No. of daughters 

in a herd-sire 

subclass 

No. of 

subclasses 

~ of all 

subclasses 

Totals 

Ratios: 

0 60,280 88.8745% 

1 5,472 8.o677 

2 1,456 2.1467 

.3 406 ·5986 
4 129 .1901 

5 54 .0796 
6 12 .0177 

7 11 .0162 

8 4 .0059 

9 1 .0015 

10 0 

11 1 .0015 

119 X 654 = 67,826.subclasses 

7,546 occupied subclasses 

10,589 daughters 

11.1255% of subclasses were occupied 

72.515~ of occupied subclasses had 1 observation 

·1.4o.32 observations :per occupied subclass 



Table' 2· Dis_t:r_:i.bution of !lumbers of A.B. Da.ughte!s in 654 herds in 
New ~aland (1959-60) 

No. of A.B. No. of i of 
daughters in herds herds 

a h~rd 

1 3 ·5 
2 11 1.7 
3 31 4.7 
4 30 4.6 
5 33 5.0 
6 29 4.4 
7 30 4.6 
8 26 4.0 
9 31 4o7 

10 33 5.0 
11 27 4.1 
12 31 4.7 
13 22 3.4 
14 25 ,.a 
15 22 3.4 
16 20 3.1 
17 18 2.7 
18'"''' 15 2.3 
19 20 ;.1 
20 18 2.7 
21 13 2.0 
22 15 2o3 
23 14 2.1 
24 10 1.5 
25 9 1.4 
26 10 1o5 
27 5 .8 
28 7 1.1. 
29 9 1.:4. 
;o· 5 .8 

No. of A.B, No. of i of 
daughters in . herds herds 

a herd 

31 6 ·9 
32 6 ·9 
33 3 ·5 
34 10 1.5 
35 7 1.1 
36 4 .6 
37 6 ·9 
38 3 .5 
39 3 ·5 
4o 2 ·3 
41 3 ·5 
42 2 ·3 
43 4 .6 
44 3 ·5 
45 1 .1 
46 1 .1 
47 0 
48 1 ·.1 
49 2 .; 
50 . 2: ·3 
51 1 .1 
52 2 .; 
53 1 .1 
54 1 .1 
55 1 .1 
56 3 ·5 
58 2 .; 
59 1 .1 
75 1 .1 

Totals 654 herds, 
. 10,589:d.S.ughters 
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