A Non-Type-Theoretic
Definition of
Martin-L6f’s Types

Stuart Allen
87-832

April 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

*
This is a modified version of a paper that is to appear in The Proceedings of the
Second Annual Symposium on Logic in Computer Science, IEEE, 1987.

A Non-Type-Theoretic Definition of
Martin-Lof’s Types*

Stuart Allen
Computer Science Dept.
Cornell University

April 27, 1987

Abstract

It is possible to make a natural non-type-theoretic reinter-
pretation of Martin-Lof’s type theory. This paper presents an
inductive definition of the types explicitly defined in Martin-
Lof’s paper, Constructive Mathematics and Computer Program-
ming. The definition is set-theoretically valid, and probably will
be convincing to intuitionists as well. When this definition is
used with methods set out in the author’s thesis, the inference
rules presented in Martin-Lo6f’s paper can be shown to be valid
under the non-type-theoretic interpretation. This interpreta-
tion is non-trivial, that is, there are both inhabited types and
empty types, and so, validity entails simple consistency. Finally,
Michael Beeson has defined some recursive realizability models
which we shall compare with the term model presented here,
and we shall compare the methods of definition.

*This is a modified version of a paper that is to appear in The Proceedings of the Second
Annual Symposium on Logic in Computer Science, IEEE, 1987.

Introduction

There is some interest among computer scientists in using Martin-Lof’s intu-
itionistic theory of types [Martin-Lof] as a basis for programming [Constable
et al., Nordstrom, Petersson & Smith]. The work presented in this paper
is a piece of a larger effort (see [Allen]) to provide a non-type-theoretic se-
mantics for the expressive machinery of Martin-Lo6f’s theory. The primary
goal of this reinterpretation is to make most of the practice of mathematics
that is based on intuitionistic type theory available to those who do not
subscribe to the theory itself.

The reinterpretation of the theory of [Martin-Lof] proceeds in three
phases. First, instead of using terms constructed from an open-ended body
of term constructors, we use a fixed class of terms and an evaluation re-
lation. In [Martin-Lof], a term constructor is introduced by specifying its
argument places and variable binding structure, and also how one evaluates
the terms with that constructor outermost. Second, instead of an open-
ended body of type definitions, we use a property of terms T type, which
we may call typehood, and a three-place relation on terms ¢t = s € T', which
we may call member equality. In [Martin-Lof], a type is defined by choos-
ing a canonical term T, the type, then specifying which canonical terms
are to be members of T, and then specifying an equivalence relation on the
canonical members of T as the equality on T'. Finally, we reinterpret the
judgements of [Martin-Lof] purely in terms of the property typehood, the
relation member equality, and the syntax of the forms of judgement. The
syntax of the judgement forms may be inductively defined from terms.

Is this reinterpretation possible for a “real” system of types, such as
is defined in [Martin-Lof]? Clearly, we can define by induction the terms
built using the term constructors actually introduced in [Martin-L6f], and
we can define by induction the evaluation relation between those terms.
It should also be easy for those familiar with [Martin-Lo6f] to believe that,
given the property T type and the relation t = s € T, the judgements of
[Martin-Lof] may be reinterpreted appropriately. The issue then is whether
the property T type and the relation t = s € T' can be defined so that they
capture the types defined in [Martin-Lof]'.

lor rather, the types that are definable using only the type constructors defined in
[Martin-Lof]. I think we may consider a type constructor definition to be a procedure for

Anatomy of the Type Constructors

The canonical type constructors that are defined in [Martin-L6f] are con-
veniently divisible into three groups. The constituent types of a type are
those upon whose definition the type construction depends.

e N, N I(4,a,b) A+ B. Each of these defines a type from finitely

many, explicitly given, constituent types.

o (YXzc A)B (lz€ A)B (Wz € A)B. Each of these defines a type from
an explicitly given family of constituent types that is indexed by an
explicitly given constituent type.

e U,. The equal members of universe U,, are the extensionally equal
types? that are definable from the type constructors other than U, ;.
Although we might have included universes in the first group as hav-
ing no constituent types, it seems clearer to conceive of them as re-
sulting from a second order type constructor that builds a universe
from a level number and a collection of ordinary first order type con-
structors.

Suppose we were to define T type and t = s € T' by mutual recursion
of some sort. What might the clauses defining the canonical types be? Let
s—t mean that t is a closed term that evaluates to s. The defining clauses
for the first group of constructors are simple, those for A+ B being

A+ B type iff A type & B type
and

t=t'c A+Biff A+Btype & Jad.i(a)—t &i(a)—t' & a=a"€ A
or 3b¥.j(b)—t & j(b')—t' & b=V € B,

where i(t) and j(t) are canonical term constructors used for injection.
The second group of type constructors requires a certain kind of specifi-
cation for families of types, namely, a term B, and a type A over which B,

defining a type from its constituent types, the procedure being applicable to types not yet
defined.

2Types are extensionally equal when they have the same membership and the same
equality between members.

is type functional. We may say that a term B is type functional over A in z
when substitution of equal members of A for z in B results in extensionally
equal types. Suppose we included a clause defining T = S as extensional
type equality.

T=Siff Ttype & Stype & Vis.t=secTifft=s€ S.

Then the clauses defining (Ilz € A)B, typical of the second group, might be
(Iz € A)B type iff Atype & Vaa'. Bla/z| = Bla'/z]ifa=4a"€ A

and

t=1t € (llze A)B iff (llz€ A)B type
& Fubu'b. (Au)b—t & (Au')b' —t'
& Vad. bla/u] =b'a'/u'] € Bld'/z]
ifa=4d € A

The clause admitting U, as a type would be simply
U, type.

To define equality on U,,, we need only define the membership of U,, and
then define the equality to be extensional type equality on the members.

teTifft=teT.
T=S5ScU,iffTeU,&ScU,&T=25.

To define the membership of U,, we might duplicate the clauses defining
typehood, except that instead of the clause U, type we would use

Un €U, iff m <mn,

and in the other typehood defining clauses we would replace T type by
T € U,.

Finally, in addition to the clauses defining the other canonical types, we
would include clauses defining the non-canonical types.

T type iff 35T.S type.
t=scTiff 3IS-T.t=s€ S.

While a putative definition of T type and t = s € T having the form just
outlined may well serve as a convincing definition when properly read, the
reading is not as straightforward as possible. If one inspects the right-hand
sides of the clauses, one finds various negative, as well as positive, occur-
rences of the three-place relation ¢t = s € T';® there are no strongest T type
and t = s € T satisfying those clauses. Our aim will be to express more
explicitly, by means of an appropriate monotonic operator, what would be
meant by the recursive definition sketched above.

Extensional Type Systems

The method we shall use for defining type systems is more easily applied to
type systems with extensional type equality than to those with intensional
equality. Since the only type systems to be defined here are extensional,
we shall restrict our consideration to such.

By s«t, let us mean that term ¢ evaluates to term s. For our purposes,
what is important about evaluation is that

if s«t then t is closed & s—s
and
if st & s'—t then s is s,

that is, s«t defines a partial function in ¢. A canonical term is one that is
its own value.

Let us say that a possible type system is (or is represented by) a relation
7T ¢ between terms (T') and two-place relations on terms (¢). The intention
is that when 7 is a type system, 7T¢ is true just when T is a type and ¢
is the equality between members of T.* Let us define four relations which
should make clear the intended use of type systems.

3For example, the right-hand sides of the II type formation and equality clauses contain
explicitly negative occurrences of () = () € (). Wherever () = () occurs, we may say that
() = () € () implicitly occurs both positively and negatively. Occurrences of () = () are to
be found in the clauses for II type formation and U, equality.

*If we wanted to include type systems with intensional type equality, we would char-
acterize type systems by three-place relations TTT'¢, such that 777T'¢ holds when T and
T' are equal types with member equality ¢.

T=,Siff 3¢.7T¢ & 15¢.
T type ft T =, T.

t=se, Tiff 3¢.7T¢ & tés.
te, Tifftt=te, T.

A(n extensional) type system has certain properties which we now de-
fine.

Fun(r)iff VT ¢ ¢'. ¢ is ¢' if 7T¢ & 7T¢/,

that is, 7T¢ defines a partial (relation valued) function in 7'
TyVal(r) it VT ¢. 7T iff IT'—T.7T'9,

that is, to be a type is to evaluate to a(n equal) type.
TrSy(7) iff VT ¢. ¢ is transitive and symmetric if 779,

thus, member equality is an equivalence relation on members.
Val(r) iff VT ¢. if 7T¢ then Vts. tds iff It'—t. t'ps,

and so, in view of TrSy(7), to be a member is to evaluate to a(n equal)
member. A possible type system 7 is a type system, or ETS(7), just when
it has these four properties.

This characterization of type systems has been chosen because our cen-
tral method of definition will be inductive definition of particular relations
of the kind we have called possible type systems.

The Inductive Definition

We shall define our principal type system as the strongest possible type
system closed under the type constructors. Defining a universe U, requires
selecting the strongest possible type system closed under the type construc-
tors other than U,,;. These definitions might be treated uniformly if we
had a method for defining the strongest possible type system closed under

a given collection of universe constructors as well as under the non-universe
type constructors.

Defined below is a function TyF which is a two-place operator on pos-
sible type systems. For possible type systems ¢ and 7, TyF(o;7)T¢ holds
when type T (with equality ¢) is a type of o (with equality ¢) or else it
is constructed from the types of 7 by a non-universe constructor. The pa-
rameter o provides a means of including base types, and by this means we
will introduce universes.

We will define a one-place possible type system operator p(o) such that
p(o) is the strongest possible type system closed under TyF(s;). But is
such a definition valid? That depends upon TyF and upon the reader’s
understanding of inductive definition. There are three kinds of readers
whom [would address. Those who subscribe to set theory, those whose
ontology includes extensional properties and relations, and intuitionists or
other constructivists.

Set theoretically, the definition is valid if TyF(o;) may be construed as
a monotonic operator on the subsets of some set. Clearly, the terms can be
represented as members of a set 7. If TyF(o;) is monotonic on the subsets

of T x Pow(7T x T) then
p(a)is N{r €T x Pow(T x T)|TyF(o;7) C 7}.

If relations are essentially extensional,” and if they are ontologically
real,® then the definition is valid if TyF(o;7)T¢ is monotonic in 7, since p
is explicitly definable by

p(o)To VT T if VS . 75y if TyF(o;7)Sv.

Standard intuitionistic theory of inductive definition directly licenses
inductive definitions of

the strongest P such that Vz. Pz if 6(z; P),

where 6(z; P) is a relation between individuals and properties of individ-
uals that is (strictly) positive in P. The definition of u(o) does not quite

%as opposed to extensional equality between relations being a relation between inten-

sional relations,
Srather than facons de parler,

-~

conform to this standard since it is not a relation between individuals, but
rather, for each o, u(o) is a relation between individuals and two-place
relations between individuals. Still, the intuitionist might be convinced of
the validity of our definition if TyF(o;7)T¢ is strictly positive in 7.

It will be seen that TyF does indeed meet these various criteria for the
validity of the definition of p.

We begin the definition by setting out the type formation methods.
This is done by defining the relations N,, N,T,F &, 1T and W. Each of
these is an operator on possible type systems,” whose value (a possible type
system) has only the types that evaluate to a certain form.

The types N, and N have no constituent types.

N.T¢ iff 3n. N,—T & YV ab. adb iff Im < n. m,—a,b.
Define N-equality by

Neq is the strongest ¢ such that
Vab. apbif 0—a,b or 3a' V. suc(a’)—a & suc(b')—b & a’'pb'.

NT¢ iff N—T & ¢ is Neq.

The rest of the non-universe type constructors have constituent types,
and so the type formation operators need, as a parameter, a possible type
system from which to get these constituent types. In the definitions of T
and }, @ and J range over two-place relations on terms.

I(T)T¢iff IAaab. I(4,a,b)—T & TAa & aca & bab
&Vttt topt' iff r—t,t’ & aab.

Hr)Téiff 3IAaBB. A+B+T & tAa & TBf
&Vttt tot' iff Jad. i(a)—t & i(a')—t' & aad
or 3bb. j(b)—t & j(b')—t" & bBb'.

Now we proceed with the second group of type constructors, those hav-
ing families of constituent types. In the definitions below, a ranges over
two-place relations between terms and v ranges over three-place relations
between terms. The application of 4 to terms is indicated by tv,s.

“We may consider possible type systems to be zero-place operators.

Fam(7; A;a;2; B;y) iff TAa & YV ad'. if aca’ then v, is var
& 7 Bla/z]7,
& 7 Blad'/z] var-

When 7 is a type system, i.e., when ETS(7), then B is type functional over
A in z if and only if there are o and v such that Fam(7; A; a;z; B;vy). The
definition of the type functionality in the previous section is easily seen to
identify the type functionality of B over A in z with

Fam(7; 4; a,a’.(a = d' €, A);z; B; a,b,b'.(b =V €, Bla/z])).

In a type system, the type determines a unique member equality, so, we
can eliminate the occurrences of member equality by dropping all reference
to it, thus:

Jay. Fam(7; 4; a;z; B;v).
Note that Fam(7; 4; a; z; B;) is strictly positive in 7.

E(T)T(]S ift JAaz By. (8z€ A)B—T & Fam(r; A;a;z; B;v)
&Vtt. t¢t'iff 3abad ¥. (a,b)—t & (a',b')—t'
& aad & bry,b.

[(r)T¢
iff JAaz By. (le€ A)B—T & Fam(7; 4; a;z; B;7)
&Vttt tot iff Jubu'b. (Au)b—t & (Au')b' —t'
& Vad.bla/uly, b a /v

if aaad’.
Let us define the equality for W types.

Weq(a;v) is the strongest ¢ such that
Vit tot' if Ja fusd f'u' s sup(a, f)—t & (Au)s—f
& sup(d, f')—t' & (Au')s'— f'
& aad & Vb s[b/u]ps'[b/u'] if by,b.

W(r)T¢
ff 3Adaz By. (Wze A)B—T & Fam(7; 4;a;2; B;v) & ¢ i1s Weq(a; 7).

It may be of interest that in each of these definitions of type formation,
the definition of the member equality of a type depends only on the member
equalities of its constituent types.

We may now define type formation under these constructors plus any
base types.

TyF(o;7)T¢ iff cT¢ or N.T¢ or NT'¢ or T(T)T(}’) or H7)T¢
or £(7)T¢ or [i(r)T$ or W(7)T¢.

The relation TyF(o;7)T¢ is strictly positive, hence monotonic, in 7. Clear-
ly, the relation st can be graphed as a subset of 7 x 7, and therefore,
TyF(o;7) is a two-place operator on the subsets of 7 x Pow(7 x T), which
are the graphable possible type systems. Hence, the definition of p(o) will
be valid for graphable o. Let us introduce a convenient notation for closure
under TyF(o;).

CTyF(o;7) i VT ¢. 7T ¢ if TyF(o;7)T¢.
Now we define p.

p(a) is the strongest 7 such that CTyF(o;7).®

To complete the definition, we need only define the universes and add
them as base types. We shall define the hierarchy HAN,, of type systems
that are reflected in universes. The types of the type system spine,, are the
universes of HAN,,.°

HAN,, is p(spine,,).
spine, T'¢ iff Im < n. U,,«T & ¢ is =nan,,-

We now define the principal type system via the union of spines.!°

HAN, is p(spine,).
spine T'¢ iff Im. U,,—T & ¢ is =pan,,-

It remains to be seen that these possible type systems are indeed type
systems.

8This is set theoretically valid when o is graphable, and this is sufficient for our purpose.
9HAN,, and spine_ are graphable.
1OHAN, and spine_ are graphable.

10

Adequacy of the Definition

Is HAN, a reasonable reinterpretation of the type constructors defined in
[Martin-Lof]? It seems to me that the definition is posed in a way that
would make the adequacy of HAN, obvious if only we should ascertain
that

e HAN, and each HAN,, are extensional type systems, and

e each type of HAN,, is also a type of HAN,,; and of HAN,,, with the
same member equality.

If the theorems that follow are to be read set theoretically, the variables o
and 7 should be restricted to graphable possible type systems.

Theorem p(o) is TyF(o;u(0)).
Since CTyF(o; TyF(o;pu(0))),
since TyF(o;7) is monotonic in 7, and CTyF(o; u(o)).

In fact, p(o) is the strongest fixed point of TyF(o;).
It will be convenient to make the following crude abstraction from the
spines.

Uonly(o) ff VT ¢. if 0T¢ then In. U,—T.
Lemma Fun(u(o)) if Fun(o) & Uonly(o).
Since Fun(u(o)) ff VT ¢. if p(o)Té then Vo'. ¢ is ¢' if u(o)T¢,

and if Fun(o) & Uonly(o) then
CTyF(o; T,6.Y¢'. ¢pis ¢ if u(a)T¢").

Lemma TyVal(p(e)) if TyVal(o).
Since Vr. TyVal(TyF(o;7)) if TyVal(o).

Lemma TrSy(u(o)) if TrSy(o).
Since if TrSy(o) then CTyF(o ; T,¢. ¢ is transitive and symmetric).

Lemma Val(u(o)) if Val(o).
Since if Val(o) then CTyF(o ; T,¢. Vits. tgsiff It'—t. t'ds).

11

Lemma ETS(u(s)) if ETS(¢) & Uonly(s).
Lemma If Fun(7) then =, is transitive and symmetric.
Lemma If TyVal(r) then Vts. t =, siff 3t'—t. t' =, s.

Theorem ETS(HAN,) & ETS(spine,), by induction on n.
Since Vn. Uonly(spine,,).

Theorem ETS(HAN,).
Since ETS(spine,) & Uonly(spine,,).

Lemma p(o) is monotonic in o.

Since assuming o to be as strong as o', CTyF(o; u(o’)),
since CTyF(7;7') is antimonotonic in 7, and CTyF(¢'; u(o")).

Theorem HAN,, is a subrelation of HAN,,,; and HAN,,.

Since spine,, is a subrelation of spine,_; and spine,, and p is monotonic.

Formal Proof — Consistency

Let us call the signs expressing the judgements of [Martin-Lof] sequents.
Sequents can be defined by induction from the terms.!! In [Allen], the
reinterpretation of the judgements of [Martin-Lof] is rather directly effected
by defining a property, Fn, of sequents in terms of the property T type and
the relation t = s € T. There are methods set out in [Allen| by means of
which one can prove all the inference rules of [Martin-Lof] to be valid under
the reinterpretation, that is, the conclusion of each rule is a sequent that
satisfies F'n if the premises do.!? Thus, every sequent provable using only
those rules satisfies Fn.

For any terms T and t, there is a sequent, let us write t € T, that
satisfies Fn just when ¢t €gan, 7. If T is an empty type of HAN,, then the
sequent ¢ € T is not derivable, for any ¢, using the rules of [Martin-Lof].

1Here we include only the terms built using a fixed collection of term constructors.
12Martin-Lof intentionally elides some premises from the presentation of some inference
rules in [Martin-Lof], so these must be made explicit in order to show these rules to be

valid.

12

We may consider this as a form of simple consistency when propositions
are represented by types, the representation being such that a proposition
is true just when the type representing it is inhabited.

Comparison with Beeson’s Recursive Models

We shall compare the type systems defined in this paper with Beeson’s mod-
els for type theory, and we shall also compare the methods of definition. The
difference between Beeson’s models and the type systems presented here are
of some practical interest, and there is some theoretical significance to the
difference between the definitions. In [Beeson|, Beeson presents a sequence
M,W of models for the sequence ML, W of formal systems. The system
ML,W consists of the inference rules given in [Martin-Lof], excluding those

about universes U, ;.!3

The model M,,W, which may be viewed as a re-
cursive realizability interpretation, corresponds to the type system HAN,,
which may be viewed as a term model.

The basic difference between HAN,, and M, W is that HAN,, is a term
model based upon the so-called lazy evaluation procedure described in
[Martin-Lof], whereas M,,WW uses numbers instead of terms, and uses call-
by-value computation semantics. Beeson codes the canonical term con-
structors, except for lambda, and uses {m}(n) instead of the application of
one term to another.

By means of a recursive definition, to be discussed below, Beeson defines
some relations between numbers, including M,,W |= ¢ = j and M,W |=
it = j € k. The terms of [Martin-Lof] are made to correspond to numbers
by an effective partial function on closed terms, £, also written ¢~. The
connection with [Martin-Lof] is made by the following facts.

~

If ML, W proves A = B then M,,W = A= B,

and

13 Actually, Beeson adds the rule

zeN
I(N, suc(z), 0) = Ny

which is derivable, but the derivation uses a universe. Beeson needs this rule to establish
certain facts about MLoW, but these are of no importance to us.

13

if ML,W proves a = b € A then M,W |= a = be A.

This model deviates immediately from the semantics even when restricted
to the terms and type constructors explicitly given in [Martin-Lof]. For ex-
ample, if t is (Az)(2(2),0) then ¢(¢) evaluates to (¢(t),0), hence (Ez,y)(t(t),
0) evaluates to 0, and so the judgement (Ez,y)(¢(t),0) =0 € N is valid.
But, ¢(t)” is undefined, hence, (Ez,y)(t(t),0)" is also undefined, and so,
it is false that M, W = (Ez,y)(#(t),0)" =0 € N.

While there may be no theoretically significant difference between the
realizability model M, W and the term model HAN,,, the latter is a more di-
rect reinterpretation of the semantics of type definition given in [Martin-Lof].
Also, HAN,, is more convenient to use when one is concerned directly with
the terms.

Now we turn to the definitions. In [Beeson|, M,W is defined, given
M., W for m < n, by mutual recursion between five properties and relations
on numbers:

M, W = i type,

MW = i=j €k,

MW = i€y,

1 is a family of types in M, W over j,
MW E1=j.

The definition could have been accomplished by defining M,,W |= 1 type
and M,W = ¢ = 7 € k by mutual recursion, and then explicitly defining
each of the others in terms of these. To simplify our discussion we shall
suppose the definition to have been given in this way.

This definition is of essentially the same form as the one sketched in this
paper in the section headed Anatomy of the Type Constructors. The form
is not the standard one for inductive definitions because of negative occur-
rences of M,W |= 1 = j € k on the right-hand sides of some clauses of the
definition. Nevertheless, Beeson explains, the definition is valid because all
the members of a type are added at the same time as the type is introduced
as such. Beeson then indicates how to define the model by standard means
of induction. He applies the following device (trick). Define, by mutual
recursion, not only M, W |= i type and M,W |= @ = j € k, but also a
relation M, W [1« = j € k. When M,W = ktype, MLW ¥ 1 =j €k

14

is to be defined to be the negation of M,,W |= ¢ = j € k. Wherever,
in the clauses of the earlier definition, M,W |= 1+ = j € k occurs nega-
tively on the right-hand side, replace that occurrence by the negation of
M.W £ i = j € k. The defining clauses for M,W | i = j € k are made
by imitating those for M,,W |= 1 = j € k except that the right-hand sides
are negated (classically) in such a way that occurrences of M, W |= k type
are positive, and then negative occurrences of M,W |= ¢ = j € k are elim-
inated as just suggested. The resulting definition consists of clauses whose
right-hand sides are positive, though not strictly positive, in the definienda.
Beeson says that, classically, it can be shown that M, W |= < = j € k and
MW £ i = j € k are complementary when M,W |= k type.

The similar definition of T type and ¢t = s € T which was sketched in this
paper has the same negative occurrences of the definienda on the right-hand
sides of some clauses. However, here we proceeded to improve the definition
by making explicit Beeson’s explanation for the validity of the original defi-
nition, namely that the membership (and equality) of a type is defined when
the type is. The validity of the definition does not depend upon defining the
complement of t = s € T and so no appeal to non-intuitionistic principles
is needed to justify the reformulation of the definition. More significantly,
the resulting definition is, in this author’s opinion, far more perspicuous
than either the original one or the one achieved by the device utilized in
[Beeson], as is evidenced by the immediate availability of induction over

types.

15

References

[Allen]

[Beeson)|

[Constable et al.]

[Martin-Lof]

[Nordstrom]

[Petersson & Smith)]

Stuart F. Allen. Doctoral Dissertation, Computer
Science Department, Cornell University, 1987 (ex-
pected).

Michael Beeson. Recursive Models for Constructive
Set Theories. Annals of Mathematical Logic, v. 23
(1982).

Robert Constable et al. Implementing Mathematics
with the Nuprl Proof Development System. Prentice-
Hall, Englewood Cliffs, New Jersey, 1986.

Per Martin-Lof. Constructive Mathematics and Com-
puter Programming. Sizth International Congress
for Logic, Methodology, and Philosophy of Science.
North-Holland, Amsterdam, 1982.

Bengt Nordstrom. Programming in constructive set
theory: some examples. Proceedings 1981 Conference
on Functional Programming Languages and Computer
Architecture. Portsmouth, England, 1981.

Kent Petersson and Jan Smith. Program Deriva-
tion in Type Theory: The Polish Flag Prob-
lem. Computer Science Department, University of
Goteborg/Chalmers, Goéteborg, Sweden, January
1985.

16

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

