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Stable isotope probing is a cultivation-independent technique that allows researchers 

to identify microorganisms that metabolize substrates that are labeled with stable 

isotopes.  However, to understand the genetics and physiology of microbial processes, 

experiments using pure culture are often necessary.  Polaromonas naphthalenivorans 

CJ2 was identified as a key member of the naphthalene-degrading community in coal 

tar-contaminated sediment, and was successfully isolated in pure culture.  Using 

respirometry, metabolite detection by gas chromatography/mass spectrometry, and 

cell-free enzyme assays, strain CJ2 was shown to metabolize naphthalene via 

gentisate.  Growth assays revealed that strain CJ2 is inhibited by naphthalene 

concentrations of 78 µM (10 ppm) and higher.  Despite being able to use naphthalene 

as a carbon and energy source, strain CJ2 must balance naphthalene utilization against 

two types of toxicity.  Naphthalene directly inhibited growth, and the accumulation of 

putative naphthalene metabolites resulted in the loss of cell viability.  Stable isotope 

probing of benzoic acid metabolizing bacteria in agricultural soil revealed the role of 

Burkholderia species, and cultivation efforts led to isolation of a representative of the 

benzoic acid-degrading population, Burkholderia sp. strain EBA09.  Growth of the 

population represented by EBA09 in the field was demonstrated using MPN-PCR.  

The potential for dynamic secondary ion mass spectrometry (SIMS) ion microscopy to 

complement SIP studies by measuring 13C assimilation into individual bacterial cells 



 

grown on 13C-labeled organic compounds was explored.  A clear relationship between 

mass 27 and 26 signals in cells grown in media containing varying proportions of 12C- 

to 13C-glucose was observed; a standard curve was generated to predict 13C-

enrichment in unknown samples.  Differences in 13C signals measured by SIMS were 

shown to be due to 13C assimilation into cell biomass.  The application of SIMS ion 

microscopy to soil samples from a field experiment receiving 12C- or 13C-phenol 

revealed that 13C-labeled cells were detected in soil that was dosed a single time with 

13C-phenol, and in soil that received 12 doses of 13C-phenol, 27% of the cells in the 

total community were more than 90% 13C-labeled. 
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1. INTRODUCTION AND LITERATURE REVIEW  

 

1.1 Introduction 

 The fundamental goals of the discipline of environmental microbiology are to 

elucidate (1) which microorganisms are present in a given environment, (2) what 

functions those microorganisms are performing, and (3) how microbial communities 

organize and interact.  The observation that the majority of bacteria are not readily 

cultivated in a laboratory has led to the use of cultivation-independent techniques to 

ascertain the presence and function of bacteria in the natural environment (Amann et 

al., 1995).  Applications of molecular techniques that target the 16S rRNA gene have 

greatly improved our understanding of microbial diversity in complex environments 

(Hugenholtz, 2002).  However, while analysis of 16S rRNA sequences can provide 

insight into phylogenetic relationships and community diversity, it is difficult and 

dubious to infer function from a 16S rRNA sequence.  

 Techniques that combine the metabolism of isotopically labeled substrates with 

the analysis of 16S rRNA genes can provide a link between a microorganism’s 

identity and substrate-specific function (Neufeld et al., 2007c).  Fluorescent in situ 

hybridization combined with microautoradiography (FISH-MAR) (Ouverney and 

Fuhrman, 1999) and isotope arrays (Adamczyk et al., 2003) are techniques that use 

radiolabeled substrates in combination with oligonucleotide probes to identify 

metabolically active microorganisms.  However, both of these techniques require prior 

knowledge of 16S rRNA sequences for oligonucleotide probe design.  Stable isotope 

probing (SIP) is a technique that can directly link the identity and substrate-specific 

function of a microorganism without the need for prior knowledge of a 16S rRNA 

gene sequence (Dumont and Murrell, 2005; Madsen, 2006; Radajewski et al., 2000).   
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 Despite advancements in techniques like SIP, and the development of 

metagenomics (Handelsman, 2004) and metaproteomics (Maron et al., 2007), 

experiments with pure cultures provide unmatched control of variables and 

reproducibility.  Pure culture studies provide an important complement to cultivation-

independent studies, and they are particularly valuable to detailed investigations of 

genetic regulation and metabolic pathways.  A more complete biological picture can 

be gained if both studies performed with cultivation-independent methods and studies 

with pure cultures can be directed towards a microbial process.   

 Stable isotope probing of bacteria that metabolize aromatic hydrocarbons is a 

theme that connects the chapters within this dissertation.  Both cultivation-independent 

techniques and pure culture in vitro studies are conducted to better understand (1) 

which microbial communities successfully metabolize aromatic hydrocarbons in the 

field,  (2) how do those microorganisms metabolize aromatic hydrocarbons, and (3) 

how do those microbial communities change when aromatic hydrocarbons are added 

to their environment.   

 Polaromonas naphthalenivorans CJ2 is a cultivated representative of a 

naphthalene-degrading population from coal tar-contaminated sediment that was 

shown to be active in situ by SIP (Jeon et al., 2003).  The cultivation of strain CJ2 has 

provided the opportunity to conduct in vitro studies that could help reveal what factors 

enabled strain CJ2 to successfully occupy a niche as a naphthalene-degrader in the 

environment.  Chapter 2 of this dissertation is a study of the naphthalene catabolic 

pathway in strain CJ2, and it describes growth inhibition by naphthalene and 

naphthalene metabolites. Chapter 2 was published in Microbiology (Pumphrey and 

Madsen, 2007). 

 Chapter 3 of this dissertation describes a study that used SIP and cultivation to 

identify benzoic acid metabolizing bacteria in agricultural field soil.  Changes in 
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culturable benzoic acid metabolizing bacteria, and 16S rRNA sequence information 

obtained through SIP are used to demonstrate the growth of a population of 

Burkholderia species in the field.  Chapter 3 was published Applied and 

Environmental Microbiology (Pumphrey and Madsen, 2008).   

 Secondary ion mass spectrometry (SIMS) is a technique that allows analysis of 

the elemental and isotopic content of samples (Guerquin-Kern et al., 2005), and SIMS 

ion microscopy can be used to visualize isotope locations in a sample.  SIMS ion 

microscopy has the potential to complement SIP experiments by microscopically 

confirming the role of microorganisms that are identified through SIP and measuring 

the amount of isotopic label that individual cells have incorporated the into their 

biomass.  Chapter 4 of this dissertation is a study that demonstrated the use of a 

Cameca IMS-3f SIMS ion microscope to measure 13C-incorporation by bacteria in 

pure culture and in soil, and is in review for the journal Environmental Microbiology. 

 

1.2 Stable isotope probing 

1.2.1 Stable isotope probing overview 

Stable isotope probing (SIP) is a cultivation-independent technique that allows 

researchers to identify microorganisms that metabolize an exogenously added 

substrate.  Due to the low natural abundance of 13C (~1.1% total carbon) and 15N 

(~0.37% total nitrogen) the biomass of microorganism that metabolize a substrate 

labeled with a stable isotope becomes enriched relative to the members of the 

population that are unable to metabolize the labeled substrate.  SIP can help 

researchers identify populations that perform microbial processes in a variety of 

natural environments, while avoiding biases associated with culture-based techniques.  

A link between phylogeny and function is established by analyzing biomarkers, such 

as DNA (Radajewski et al., 2000), RNA (Manefield et al., 2002), or phospholipid fatty 
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acids (PFLA) (Boschker et al., 1998), from the biomass of populations that become 

labeled with 13C or 15N following the metabolism of a labeled substrate.  In the case of 

nucleic acids, labeled RNA and DNA can be separated from non-labeled nucleic acids 

by density gradient ultracentrifugation due to differences in buoyant density, while 

lipids can be analyzed by gas chromatography-isotope ratio mass spectrometry (GC-

IRMS).      

The first study in microbial ecology that applied the principles of SIP 

examined PFLA that were 13C-labeled due to the metabolism of 13C-acetate or 13C-

methane (Boschker et al., 1998).  13C-labeled PFLA are detected by GC-IRMS and do 

not need to be purified from unlabeled PLFA.  Furthermore, only partial incorporation 

of 13C is needed for analysis.  This makes PFLA-SIP well-suited for investigating 

populations with low cell numbers or low growth rates, and studies of methanotrophic 

populations in particular have relied on the sensitivity of PFLA-SIP (Boschker et al., 

1998; Bull et al., 2000; Crossman et al., 2004; Maxfield et al., 2006; Maxfield et al., 

2008; Mohanty et al., 2006; Qiu et al., 2008; Shrestha et al., 2008; Singh and Tate 

2007; Singh et al., 2007).  PFLA-SIP has also been used to identify populations that 

metabolize aromatic pollutants such as polychlorinated biphenyl (Tillman et al., 2005) 

or toluene (Hanson et al., 1999; Mauclaire et al., 2003; Pelz et al., 2001), rhizosphere 

populations (Butler et al., 2003; Lu et al., 2007; Treonis et al., 2004), and acetate 

metabolizing populations (Boschker et al., 1998; Pombo et al., 2002; Pombo et al., 

2005).  However, because analysis of 16S small subunit (SSU) rRNA and its 

corresponding gene provide greater taxonomic resolution than analysis of lipids, 

DNA- and RNA-SIP studies are more prevalent in the literature. 

The first application of DNA-SIP used 13C-methanol to label DNA of 

methylotrophs in oak forest soil microcosms (Radajewski et al., 2000), and RNA-SIP 

was first applied to a phenol-degrading community in an industrial bioreactor 
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following the addition of 13C-phenol (Manefield et al., 2002).  DNA replication is 

necessary for isotopic labeling of DNA.  At minimum, two cycles of replication are 

needed for the DNA to be fully labeled, which could reduce the likelihood of 

identifying slow growing organisms by DNA-SIP.  Growth is not necessary for 

isotopic labeling of RNA, and because active cells turn over RNA at high rates, it is a 

more responsive biomarker that can be labeled with incubation times that are shorter 

than those needed for DNA-SIP. 

Both DNA- and RNA-SIP require separation of stable isotope labeled nucleic 

acids from unlabeled nucleic acids by density gradient ultracentrifugation.  DNA is 

typically separated in cesium chloride (CsCl) gradients, while RNA is separated using 

cesium trifluoroacetate (CsTFA).  CsTFA prevents visualization of nucleic acids with 

ethidium bromide, and gradients containing RNA must be fractionated.  CsCl 

gradients on the other hand, can be fractionated or ethidium bromide can be included 

in the gradient, and DNA bands can be visualized and collected by puncturing the side 

of an ultracentrifuge tube with a needle.  Ultracentrifugation does not provide 

complete separation of labeled and unlabeled nucleic acids, and RNA tends to have 

higher levels of background than DNA (Lueders et al., 2004a).  Thus, the presence of 

a nucleic acid sequence in the “heavy” part of a gradient does not necessarily indicate 

a high degree of labeling.  SIP studies that use 15N are far less common because the 

difference in buoyant density due to 15N-incorporation is nearly identical to 

differences in buoyant density due to G+C content.  A technique that included an 

intercalating agent during density gradient ultracentrifugation to minimize the effect of 

G+C content (Buckley et al., 2007a) led to the identification of free-living diazotrophs 

in soil (Buckley et al., 2007b).   

Following ultracentrifugation, a variety of molecular techniques can be used to 

characterize the nucleic acids present in gradient fractions.  The active members of a 
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microbial community that incorporated the stable isotopic label can be differentiated 

from inactive community members by comparing the nucleic acids present in “heavy” 

fractions to those in “light” fractions from the same gradient, as well as by comparing 

“heavy” fractions from samples treated with a 13C-labeled substrate to “heavy” 

fractions from control samples treated with a 12C-substrate.  The most common 

techniques used to compare gradient fractions are clone libraries (Jeon et al., 2003; 

Morris et al., 2002; Padmanabhan et al 2003; Radajewski et al., 2000), terminal-

restriction fragment length polymorphism (Lu et al., 2005; Lueders et al 2004b; 

Lueders et al 2004c), and denaturing gradient gel electrophoresis (Kasai et al., 2006; 

Manefield et al., 2002; Neufeld et al., 2007).  Microarrays can provide a high-

throughput method to examine the presence of genes in 13C-labeled DNA (Cebron et 

al., 2007b; Hery et al., 2008; Leigh et al., 2007).  SIP can also be combined with 

techniques that rely on sequences identified by SIP, such as fluorescent in situ 

hybridization-microautoradiography (Ginige et al., 2004; Ginige et al., 2005) and 

quantitative-PCR (Singleton et al., 2007).  Metagenomic techniques can be used to 

detect entire operons as opposed to single gene sequences (Dumont et al., 2006).  

Additionally, microscopic techniques that can detect isotopic enrichment in cells, such 

as Raman microscopy (Huang et al., 2004; Huang et al., 2007) or secondary ion mass 

spectrometry (DeRito et al., 2005), can be used to confirm incorporation of the 

isotopic label into cellular biomass.    

SIP is not without limitations.  The availability of isotopically labeled 

substrates can be limited, particularly uniformly labeled compounds, which are 

preferred.  In order to ensure enough biomass is labeled for subsequent analysis, a 

substrate may be added at concentrations that exceed concentrations found in situ, 

which could alter populations or select for populations that are not representative at 

natural substrate concentrations.  Long incubation times can lead to carbon cross-
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feeding, where organisms not responsible for metabolism of the added substrate 

become 13C-labeled by consuming 13C-labeled metabolites from primary degraders 

(DeRito et al., 2005; Hutchens et al., 2004; Lueders et al., 2004c; Morris et al., 2002).  

As mentioned above, separation of labeled and unlabeled nucleic acids is often 

incomplete, and if organisms consume both the exogenous labeled substrate and 

endogenous unlabeled substrates then they may be overlooked.  Finally, the molecular 

tools used to analyze labeled nucleic acids are subject to biases of PCR amplification 

(von Wintzingerode et al., 1997).   

 

1.2.2 SIP applications 

 The versatility of SIP is illustrated by the many substrates and environments to 

which researchers have applied the technique.  SIP has been applied extensively to 

study methanotrophic and methylotrophic populations in soil (Cebron et al., 2007a; 

Cebron et al., 2007b; Dumont et al 2006; Hery et al., 2008; Maxfield et al., 2008; 

Morris et al., 2002; Radajewski et al., 2002; Singh and Tate, 2007; Singh et al., 2007), 

sediment (Lin et al., 2004; Nercessian et al., 2005), groundwater (Hutchens et al., 

2004), activated sludge (Osaka et al., 2006; Osaka et al., 2008), marine (Neufeld et al., 

2007; Neufeld et al., 2008), and rice field soil and rhizosphere (Lueders et al., 2004b; 

Mohanty et al., 2006; Murase and Frenzel, 2007; Noll et al., 2008; Qiu et al., 2008; 

Shrestha et al., 2008) environments. 

Researchers have also applied SIP to investigate populations that degrade 

organic pollutants.  Benzene-degrading populations have been identified in 

groundwater (Kasai et al., 2006), an iron-reducing enrichment culture (Kunapuli et al., 

2007) and freshwater sediment (Liou et al., 2008).  A population of biphenyl-

metabolizing bacteria was identified in a pine root zone contaminated with 

polychlorinated biphenyls (Leigh et al., 2007).  Populations that metabolize 
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naphthalene have been investigated by SIP in groundwater (Huang et al., 2007), 

freshwater sediment (Jeon et al., 2003), a bench-scale bioreactor (Singleton et al., 

2005), and agricultural soil (Padmanabhan et al., 2003).  Phenol-degrading 

populations have also been analyzed in agricultural soil (DeRito et al., 2005; 

Padmanabhan et al., 2003) and bioreactors (Manefield et al., 2002; Manefield et al., 

2007).  PAH-degrading populations have been investigated for their ability to degrade 

phenanthrene (Singleton et al., 2005; Singleton et al., 2007) or pyrene (Singleton et al., 

2006; Singleton et al., 2007).  Populations that degrade chlorinated compounds such as 

pentachlorophenol (Mahmood et al., 2005), perchloroethene (Kittelmann and Friedrich 

2008a; Kittelmann and Friedrich 2008b), and polychlorinated biphenyl (Tillman et al., 

2005) have been investigated as well.  Other substrates that have been used in SIP 

studies include acetate (Ginige et al., 2004; Ginige et al., 2005; Hori et al., 2007; Lear 

et al., 2007; Osaka et al., 2006; Schwartz et al., 2007; Webster et al., 2006), benzoate 

(Gallagher et al., 2005), cellulose (Haicher et al., 2007), fatty acids (Hatamoto et al., 

2007), methyl chloride (Borodina et al., 2005), propionate (Lueders et al., 2005c), 

monosaccharides (Hamberger et al., 2008), and 15N2 (Buckley et al., 2007b).  Pulse 

labeling of plants with 13CO2 has been used to study populations that metabolize root 

exudates (Griffiths et al., 2004; Lu et al., 2005; Lu and Conrad 2005; Lu et al., 2006; 

Lu et al., 2007; Rangel-Castro et al., 2005). 

Although SIP studies have primarily targeted 16S rRNA genes, DNA-SIP 

allows functional genes to be targeted in addition to taxonomic markers.  Functional 

genes from 13C-labeled have been analyzed with primers targeting specific genes, 

microarrays, and metagenomic methods.  Primers have been used to target methane 

monooxygenase genes (Cebron et al., 2007b; Hery et al., 2008; Hutchens et al., 2004; 

Lin et al., 2004; Morris et al., 2002; Nercessian et al., 2005), methanol dehydrogenase 

and methylamine dehydrogenase genes (Neufeld et al., 2007), nitrite reductase genes 
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(Osaka et al., 2006), formaldehyde-activating enzyme genes (Nercessian et al., 2005), 

and a methyltransferase gene involved in methyl-chloride metabolism (Borodina et al., 

2005).  Methane monooxygenases have also been examined with microarrays (Cebron 

et al., 2007b; Hery et al., 2008), as have aromatic ring hydroxylating dioxygenase 

subunits (Leigh et al., 2007).  Cloning of 13C-labeled DNA into a bacterial artificial 

chromosome plasmid led to the identification of a complete methane monooxygenase 

operon (Dumont et al., 2006).   

 In the majority of SIP studies, the microorganisms that are identified as active 

in situ have yet to be cultured.  However, a few studies have reported successful 

cultivation of isolates that are representative of populations identified by SIP.  

Polaromonas napththalenivorans CJ2 was isolated from coal-tar contaminated 

sediment, and was shown to be a member of the active naphthalene-degrading 

population by DNA-SIP in the field (Jeon et al 2003).    RNA-SIP of anaerobic 

benzene-degraders in groundwater revealed the role of Azoarcus species.  Two strains, 

DN11 and AN9, with 100% sequence homology to the 13C-labeled Azoarcus 16S 

rRNA sequence were subsequently isolated and shown to degrade benzene under 

denitrifying conditions (Kasai et al., 2006).  An investigation of anaerobic, long-chain 

fatty acid degrading bacteria in methanogenic sludge enrichments identified members 

of the family Syntrophomonadaceae by RNA-SIP as dominant palmitate degraders, 

and a representative of the dominant Syntrophomonadaceae population, strain MPA, 

was successfully isolated and shown to degrade palmitate to methanol and acetate 

(Hatamoto et al., 2007).  Both cultivation and DNA-SIP detected an Arthrobacter spp. 

as a biphenyl degrader in the polychlorinated biphenyl-contaminated root zone of 

Austrian pine (Leigh et al., 2007).  The cultivation of microorganisms that have been 

identified by SIP can enable genetic and physiological studies that seek to understand 
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what makes the organisms successful in their respective environments (Jeon et al., 

2006).  

 

1.3 Secondary ion mass spectrometry  

1.3.1 Secondary ion mass spectrometry overview 

Secondary ion mass spectrometry is a technique that allows selective analysis 

of elements and isotopes on sample surfaces.  The technique was developed in the 

early 1960s by Castaing and Slodzian (1962), and relies on the mass spectrometry of 

secondary ions desorbed from the sample surface by a primary ion beam.  The 

resulting secondary ions are focused, and their masses are measured with a magnetic 

sector, quadrupole, or time-of-flight mass analyzer (Pacholski and Winograd, 1999).  

SIMS can provide spatially resolved information, and by rastering the primary ion 

over an area of a sample, SIMS microscopy can provide images that reveal the origin 

of secondary ions from the sample (Guerquin-Kern et al., 2005).  SIMS analyses are 

generally divided into two categories: static or dynamic.  For static SIMS 

measurements, the number of incident, primary ions is an order of magnitude less than 

the number of sample surface atoms.  Static SIMS is generally used to measure 

abundant elements from the top monolayer of a sample.  In contrast, for dynamic 

SIMS the number of incident ions exceeds the number of surface atoms on a sample.  

The high number of incident ions increases the depth of desorbed ions, and allows for 

investigation of bulk composition and detection of trace elements.  Reviews by 

Pacholksi and Winograd (1999), Chandra et al. (2000), and Guerquin-Kern et al. 

(2005) provide greater technical detail of SIMS techniques.   

SIMS technology has tremendous potential to aid investigations of microbial 

systems, but there are technical considerations that can limit application of SIMS to 

biological problems.  Perhaps the greatest limitation of SIMS is that in vivo studies 
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cannot be performed, because the sample must be dehydrated, brought to a potential of 

several kilovolts, and held under a vacuum (Guerquin-Kern et al., 2005).  Sample 

preparation is key to SIMS analysis, and it is important to minimize changes to the 

sample during fixation.  The resolution of ions with nearly identical masses can be 

problematic as mass interference from isobaric ion species has the potential to 

influence the signal of an ion species of interest.  Sample degradation due to erosion 

by the primary ion beam can limit exposure time needed to take images, or may limit 

the number of images that can be taken if long exposure times are necessary.  The 

lateral resolution of images acquired by SIMS ranges from ~50 nm to 15 µm 

depending on the model of ion microprobe, and it can be difficult or impossible to 

distinguish small cells (Neufeld et al 2007c). 

 

1.3.2 SIMS applications in microbiology 

The application of SIMS techniques to biological investigations was limited to 

eukaryotic systems (Chandra et al., 2000; Pacholski and Winograd, 1999) until 

pioneering studies that applied SIMS to microbial systems using SIMS in combination 

with fluorescent in-situ hybridization (FISH) to show that methane-consuming 

Archaea in anoxic marine sediments were naturally 13C-depleted (Orphan et al., 2001; 

Orphan et al., 2002).  Using the erosive quality of SIMS analysis, researchers were 

able to obtain δ13C profiles from the exterior to the interior of cell aggregates 

composed of sulfur-reducing bacteria and methanotrophic archaea (Orphan et al., 

2001).  Consumption of CH4 and CO2 by methanotrophic microbial mats in the Black 

Sea was studied using a combination of SIMS, autoradiography, and FISH (Treude et 

al., 2007).  Time of flight SIMS (TOF-SIMS) has been used to the assimilation of 

inorganic carbon and nitrogen in pure cultures grown with NaH13CO3 and 

(15NH4)2SO4, and nitrogen incorporation was shown in bacterial cells and fungal 
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hyphae from riparian soil treated with (15NH4)2SO4 (Cliff et al., 2002). TOF-SIMS has 

also been used as a forensics application to distinguish Bacillus subtilis spores 

according to the type of media they were grown in by using 16 elemental signatures 

(Cliff et al., 2005).  Dynamic SIMS was used to complement a field-based SIP study 

by showing enhanced 13C-signals from bacteria in soil treated with 13C-phenol 

compared to soils treated with 12C-phenol (DeRito et al., 2005).  

Recent advances in technology have led to improvements in lateral resolution 

(~50 nm) and the ability to measure 5 masses in simultaneously (Guerquin-Kern et al., 

2005).  This nanometer-scale SIMS technology is referred to as NanoSIMS or multi-

ion imaging mass spectrometry (MIMS).  Lechene et al. (2006) demonstrated the use 

of NanoSIMS to show 15N fixation by Teredinibacter turnerae in pure culture, and 

distinguished 15N-labeled T. teredinibacter from unlabeled Enterococcus faecalis.  To 

show that NanoSIMS could be applied to soil environments, cells of 15N-enriched 

Pseudomonas fluorescens were imaged after being added to a soil matrix (Herrmann 

et al., 2007).  The application of NanoSIMS to microbial systems has not been limited 

to cellular biomass.  The association between extracellular proteins and biogenic zinc 

sulfide nanoparticles was detected by NanoSIMS in a biofilm dominated by sulfate-

reducing bacteria (Moreau et al., 2007).  Two studies have combined NanoSIMS with 

16S rRNA-targeted oligonucleotide probes that contain halogens.  Oligonucleotides 

that were labeled with iodized cytidine were combined with NanoSIMS to visualize 

both Escherichia coli grown on different amounts of 13C and 15N, and an archaeal 

population from a municipal solid waste bioreactor growing on 13C-methanol (Li et 

al., 2008).  Behrens et al. (2008) combined NanoSIMS with element labeling-FISH 

(EL-FISH), a technique that uses catalyzed reporter deposition (CARD)-FISH 

(Pernthaler et al., 2002) and halogen-containing, fluorescently labeled tyramides to 

label cells with bromine or fluorine.  This allowed both fluorescent and SIMS imaging 
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of a consortium consisting of filamentous cyanobacteria and an epibiont.  After 

incubation with 13C-bicarbonate and 15N2, researchers observed that carbon and 

nitrogen fixed by the cyanobacterium were assimilated by the epibiont (Behrens et al., 

2008).  NanoSIMS was also used to characterize cellular development and metabolite 

exchange in filamentous cyanobacteria (Popa et al., 2007). 

 

1.4 Naphthalene metabolism by Polaromonas naphthalenivorans CJ2 

1.4.1 Aerobic naphthalene metabolism by bacteria 

 Naphthalene is composed of two fused aromatic rings and is the simplest 

member of the class of compounds known as polycyclic aromatic hydrocarbons, or 

PAHs.  The metabolism of naphthalene has been studied extensively since the 1950s, 

when researchers began isolating microorganisms capable of using naphthalene as a 

source of energy and carbon.  Naphthalene metabolism has primarily been studied in 

Pseudomonas species, but other Gram-negative and Gram-positive bacteria are 

capable of metabolizing naphthalene as well (Habe and Omori, 2003).  The initial step 

in aerobic naphthalene metabolism requires a multi-component dioxygenase that 

introduces molecular oxygen into the 1,2-position of the aromatic ring (Parales, 2003).  

The product of the dioxygenation, cis-1,2-dihydroxyl-dihydronaphthalene, is 

dehydrogenated to form 1,2-dihydroxynaphthalene (Davies and Evans, 1964).  

Subsequent intermediate metabolic steps lead to the production of salicylaldehyde, 

which is transformed to salicylate by salicylaldehyde dehydrogenase (Habe and 

Omori, 2003).  A key difference among naphthalene metabolic pathways pertains to 

the metabolism of salicylate.  In well studied Pseudomonas species, salicylate is 

metabolized to catechol (Yen and Gunsalus, 1982).  Alternatively, salicylate can be 

metabolized to gentisate as observed in Ralstonia sp. strain U2 (Fuenmayor et al., 
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1998; Zhou et al., 2001).  Gentisate and catechol are ultimately metabolized to 

tricarboxylic acid cycle intermediates. 

 The salicylate and gentisate metabolic pathways are encoded by distinct 

naphthalene catabolic genes with differing operon structures.  In the archetypal 

naphthalene-degraders that use the catechol pathway, Pseudomonas putida G7 and P. 

putida NCIB 9816-4, the nah catabolic genes are arranged into two operons, upper and 

lower (Dennis and Zylstra, 2004; Sota et al., 2006).  The upper operon encodes for the 

metabolism of naphthalene to salicylate, and the lower operon encodes for the 

metabolism of catechol to TCA cycle intermediates.  A single, LysR-type regulatory 

protein, NahR, regulates both the upper and lower operons.  In Ralstonia sp. strain U2, 

the nag catabolic genes that metabolize salicylate via gentisate are arranged as a 

single, linear operon that is regulated by the LysR-type regulatory protein, NagR 

(Jones et al 2003).   

 Other naphthalene catabolic genotypes and operon structures have been 

characterized.  The phn genes of Burkholderia sp. strain RP007 show low homology 

to other naphthalene catabolic genes, and are arranged into an upper operon that 

encodes metabolism of naphthalene and phenanthrene (Laurie and Lloyd-Jones, 

1999a).  Strain RP007 also carries two distinct lower operons that encode the meta-

cleavage of catechol (Laurie and Lloyd-Jones, 1999b).  There are several strains of 

Gram-positive Rhodococcus species that carry nar naphthalene catabolic genes, which 

show low similarity to nah-like genes found in Pseudomonas species.  The nar genes 

are not organized into a single operon, but are encoded by several transcription units 

that differ by strain (Kulakov et al., 2005).  In addition, some Rhodococcus strains 

metabolize naphthalene via catechol (Kulakova et al., 1996), while another is known 

to metabolize naphthalene through gentisate (Allen et al., 1997). 
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1.4.2 Polaromonas naphthalenivorans CJ2 

Polaromonas naphthalenivorans CJ2 was isolated from coal-tar contaminated 

freshwater sediment for the ability to utilize naphthalene vapor as a sole source of 

carbon and energy (Jeon et al., 2003; Jeon et al., 2004).  Field-based stable isotope 

probing of the naphthalene-metabolizing community within the coal-tar contaminated 

sediment revealed strain CJ2 was responsible for naphthalene mineralization in the 

field (Jeon et al., 2003).  The cultivation of strain CJ2 provides the relatively rare 

opportunity to use culture-based techniques to study the genetics and physiology of a 

bacterium that was shown to metabolize naphthalene in the field by non-culture based 

techniques.    

Genetic analysis of the naphthalene catabolic operon in strain CJ2 revealed 

sequence similarity to the nag operon in the naphthalene-degrader Ralstonia sp. strain 

U2 (Jeon et al., 2006).  However, unlike the nag genes in strain U2, which are 

organized in a single operon, the naphthalene catabolic genes in strain CJ2 are 

organized into a large cluster (nagRAaGHAbAcAdBFCQEDJI’orf1tnpA) and a small 

cluster (nagR2orf2I”KL).  A LysR-type transcriptional regulator (nagR) positively 

regulates the large naphthalene catabolic gene cluster.  The small cluster is negatively 

regulated by a MarR-type transcriptional regulator (nagR2).   

The nag genes in strain CJ2 are located on the chromosome, and not on a 

plasmid as in Ralstonia sp. strain U2.  The association of two putative Azoarcus-

related transposases with the large cluster suggests that mobile genetic elements may 

have been involved in creating the novel arrangement of catabolic and regulatory 

genes in strain CJ2 (Jeon et al., 2006). 
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2. NAPHTHALENE METABOLISM AND GROWTH INHIBITION BY 

NAPHTHALENE IN POLAROMONAS NAPHTHALENIVORANS STRAIN CJ2 

 

2.1 Abstract 

This study was designed to characterize naphthalene metabolism in Polaromonas 

naphthalenivorans CJ2.  Comparisons were made with two archetypal naphthalene-

degrading bacteria: Pseudomonas putida NCIB 9816-4 and Ralstonia sp. strain U2, 

representative of the catechol and gentisate pathways, respectively.  Strain CJ2 carries 

naphthalene catabolic genes that are homologous to those in Ralstonia sp. strain U2.  

Here we show that strain CJ2 metabolizes naphthalene via gentisate using 

respirometry, metabolite detection by gas chromatography/mass spectrometry, and 

cell-free enzyme assays.  Unlike P. putida NCIB 9816-4 or Ralstonia sp. strain U2, 

strain CJ2 did not grow in minimal media saturated with naphthalene.  Growth assays 

revealed that strain CJ2 is inhibited by naphthalene concentrations of 78 µM (10 ppm) 

and higher, and the inhibition of growth is accompanied by the accumulation of 

orange-colored, putative naphthalene metabolites in the culture media.  Loss of cell 

viability coincided with the appearance of the colored metabolites, and analysis by 

HPLC suggested the accumulated metabolites were 1,2-naphthoquinone and its 

unstable autooxidation products. The naphthoquinone breakdown products 

accumulated in inhibited, but not uninhibited, cultures of strain CJ2.  Furthermore, 

naphthalene itself was shown to directly inhibit growth of a regulatory mutant of strain 

CJ2 that is unable to metabolize naphthalene.  These results suggest that, despite being 

able to use naphthalene as a carbon and energy source, strain CJ2 must balance 

naphthalene utilization against two types of toxicity. 
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2.2 Introduction 

 Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the 

environment, and the toxic and carcinogenic characteristics of PAHs have motivated 

efforts to develop bioremediation technologies to eliminate sources of PAH exposure 

(Samanta et al., 2002; Xue and Warshawsky, 2005).  Naphthalene is commonly used 

as a model for studying PAH metabolism by bacteria because it is the simplest and 

most soluble PAH, as well as a frequent constituent of PAH contaminated 

environments (Peters et al., 1999).  Studies of naphthalene degradation have shown 

that there are two primary pathways for the metabolism of naphthalene, which are 

distinguished by the conversion of salicylate to catechol or gentisate.  Metabolism of 

naphthalene via catechol has been studied extensively in two Pseudomonas species 

that carry the archetypal catabolic plasmids, NAH7 (in P. putida G7) and pDTG1 (in 

P. putida NCIB 9816-4) (Dennis and Zylstra, 2004; Yen and Serdar, 1988; Sota et al., 

2006).  The nah dissimilatory genes are organized into two operons: one coding for the 

enzymes involved in the conversion of naphthalene to salicylate (naphthalene 

degradation upper pathway) and another coding for the conversion of salicylate to 

catechol, followed by ortho- or meta-cleavage to TCA cycle intermediates 

(naphthalene degradation lower pathway) (Yen and Gunsalus, 1982).  In contrast, the 

nag genes found in Ralstonia sp. strain U2 are organized in a single operon and 

encode the alternative gentisate pathway, which converts naphthalene to fumarate and 

pyruvate via salicylate and gentisate (Fuenmayor et al., 1998; Zhou et al., 2002). 

 Although the genetics and biochemistry of naphthalene metabolism have been 

studied in-depth, the inhibition of naphthalene metabolism due to the toxicity of 

naphthalene and naphthalene metabolites has received less attention (Auger et al., 

1995; Murphy and Stone, 1955; Park et al., 2004).  Naphthalene was reported to be 

directly toxic to P. putida G7 under oxygen- and nitrogen-limited conditions; although 
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it is unclear if the toxicity was due to naphthalene or a naphthalene metabolite (Ahn et 

al., 1998).  Naphthalene was also shown to be toxic to non-naphthalene-degraders, as 

P. putida KT2440 showed reduced viability in soil amended with naphthalene (Park et 

al., 2004), and a bioluminescent strain of Escherichia coli showed reduced 

bioluminescence in the presence of naphthalene (Lee et al., 2003). 

 Polaromonas naphthalenivorans CJ2 was isolated from coal-tar-contaminated 

freshwater sediment for its ability to use naphthalene as its sole carbon source, and 

was shown to be responsible for in situ naphthalene degradation by field-based stable 

isotope probing (Jeon et al., 2003).  The naphthalene catabolic genes in strain CJ2 are 

homologous to the nag operon of Ralstonia sp. strain U2, but the genes are arranged in 

two separate clusters, each with its own regulatory protein (Jeon et al., 2006).  In the 

present investigation, we show that strain CJ2 metabolizes naphthalene via the 

gentisate pathway using respirometry, GC/MS, and cell-free enzyme assays.  In 

addition, we explore the inhibitory effects of naphthalene and its metabolites on the 

growth of strain CJ2. 

 

2.3 Materials and Methods 

2.3.1 Bacterial Strains 

 P. naphthalenivorans strain CJ2 was isolated from freshwater sediment from a 

coal-tar waste contaminated site (Jeon et al., 2003).  Naphthalene degraders P. putida 

NCIB 9816-4 (Yen and Serdar, 1988) and Ralstonia sp. strain U2 (Zhou et al., 2002) 

were included in this study for comparison.  Strain CJN110 is a mutant of strain CJ2 

in which the regulatory gene nagR has been disrupted by a suicide vector carrying a 

kanamycin resistance gene (Jeon et al., 2006).   
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2.3.2 Growth Assays 

 All growth assays were conducted with Stanier mineral salts media (MSB; 

Stanier et al., 1966) amended with pyruvate (18 mM), glucose (6 mM), and/or 

naphthalene crystals.  The aqueous concentration of naphthalene was lowered with 

Amberlite® XAD7 resin.  Naphthalene binds to the XAD7 resin, which acts as a 

reservoir, and maintains the aqueous concentration of naphthalene below saturation 

(230 µM or 30 ppm) while supplying enough naphthalene to support growth over the 

course of the experiment (Morasch et al., 2001).  Six to 14 mg of naphthalene were 

added to 6 ml MSB containing 0.1 g XAD7 before the tubes were sealed with 

Teflon®-lined stoppers and autoclaved.  Viability of test bacteria was measured by 

enumerating colony forming units (CFUs) from 10 µl drops of serially diluted cultures 

on R2A agar.  Kanamycin was added to media at 40 µg ml-1 when appropriate.   

 

2.3.3 Respirometry 

 Bacterial cells were grown to late-log phase in MSB with naphthalene (0.5% 

w/v) and harvested (6000 g).  Cells were washed twice and resuspended in 50 mM 

KH2PO4 buffer (pH=7.4).  Endogenous respiration was measured with an oxygen 

electrode (Rank Brothers, Cambridge, UK) after adding 2 ml of washed cell 

suspension to the incubation chamber, and oxygen consumption was recorded 

following the addition of 20 mM substrate dissolved in N,N-dimethylformamide 

(DMF).  Respiration upon addition of DMF only was included as a control treatment.  

 

2.3.4 Enzyme assays 

 Bacterial cells were grown in 500 ml of MSB with 18 mM pyruvate or 4 mM 

salicylate to late-log phase, and cells were harvested by centrifugation (6,000 g) and 

washed once with 50 mM KH2PO4 buffer (pH=7.4).  Cells were resuspended in buffer 



 

 20 

to a concentration of 0.1 g ml-1 and sonicated three times for 30-seconds with 60 

second cooling intervals.  Cellular debris was cleared by centrifugation (25,000 g for 

45 min.), and protein concentrations were determined with the Bio-Rad Bradford 

assay (Bio-Rad, Hercules, Calif.).  Enzyme assays were performed with a minimum of 

50 µg protein.  The enzyme substrates, gentisate (0.19 µmol) or catechol (0.9 µmol), 

were added in 1-ml volumes.  Gentisate 1,2-dioxygenase activity was measured 

spectrophotometrically by measuring the increase of absorption at 334 nm, due to the 

formation of maleylpyruvate, and was calculated with an extinction coefficient of 

10,800 M–1 cm–1 (Crawford et al., 1975).  Catechol 1,2-dioxygenase activity was 

assayed by measuring the increase in absorption at 260 nm, due to the formation of 

cis,cis-muconate, and was calculated with an extinction coefficient of 16,800 M-1 cm-1 

(Dorn and Knackmuss, 1978).  Catechol 2,3-dioxygenase activity was measured by 

monitoring the increase in 2-hydroxy-cis,cis-muconate semialdehyde at 375 nm, and 

was calculated with an extinction coefficient of 33000 M-1 cm-1 (Cerdan et al., 1994). 

 

2.3.5 GC/MS detection of naphthalene pathway metabolites 

 500 ml of cells grown on naphthalene or pyruvate were harvested, washed 

twice, and resuspended in 10 ml of 50 mM KH2PO4 buffer.  Fifty microliters of 200 

mM naphthalene in DMF were added to 5 ml of concentrated cell suspension, and 

metabolism was allowed to proceed for 5 min.  Suspensions were acidified with HCl 

to pH=1.5 and extracted twice with 7.5 ml of ethyl acetate, which was then dried over 

anhydrous Na2SO4 and concentrated under an atmosphere of N2 to a volume of 300 µl. 

Extracts were derivatized with 25 µl of BSTFA [bis(trimethylsilyl)trifluoroacetimide] 

for 5 min prior to gas chromatography-mass spectrometry (GC/MS) analysis and 

quantified using external standard calibration curves. 
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2.3.6 HPLC analysis of naphthalene and inhibitory compounds.   

 Naphthalene concentrations were determined by high-performance liquid 

chromatography.  Samples (100 µl) were taken from culture tubes and immediately 

fixed in an equal volume of methanol.  Samples were filtered through tightly packed 

glass wool prior to injection, and naphthalene was separated using a PAH-Hypersil 

column (150x4.6 mm, Keystone Scientific) and a Waters model 590 HPLC pump with 

a mobile phase of methanol-water (65:35) at a flow rate of 1 ml min-1.  Eluents were 

monitored by UV-visible light detection (ABI analytical absorbance detector, 

Spectroflow 757) at a wavelength of 270 nm and quantified using an external standard 

calibration curve. 

 Putative naphthalene metabolites were separated with a Hypersil BDS-C18 

column (4.6x250 mm, Agilent) at a flow rate of 1 ml/min with a Spectra-Physics 

model SP8800 ternary HPLC pump.  The mobile phase consisted of 20% methanol 

and 80% 40 mM acetic acid for 10 minutes, followed by a linear increase in methanol 

to 50% over 10 minutes; after 5 minutes the methanol concentration was linearly 

increased to 90% over 10 minutes and held for 15 minutes.  Eluents were detected at 

260 nm using UV-Vis detector (SPD-10A VP, Shimadzu).  Aged 1,2 naphthoquinone 

solution (50µM final concentration) was prepared by diluting a filter-sterilized 10mM 

methanolic stock, aseptically adding it to sterile MSB, and allowing the solution to 

shake for 48 hours. 

 

2.4 Results 

2.4.1 Respirometry 

 To better understand the physiology of Polaromonas naphthalenivorans CJ2, 

we compared strain CJ2 with archetypal naphthalene degrading bacteria Pseudomonas 

putida NCIB 9816-4 and Ralstonia sp. strain U2.  The simultaneous induction of 
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enzymes involved in naphthalene metabolism was compared in the three strains by 

measuring oxygen uptake after the introduction of potential naphthalene metabolites to 

washed cell suspensions (Figure 2.1).  The simultaneous adaptation assays were aimed 

at confirming that strain CJ2 metabolizes naphthalene via gentisate as suggested by 

the sequence homology of the naphthalene catabolic operons in Ralstonia sp. strain U2 

and strain CJ2, as well as to reveal potential physiological effects of the naphthalene 

catabolic gene arrangement in strain CJ2.  

Consistent with the established metabolic pathway in P. putida NCIB 9816-4, 

these cells rapidly consumed oxygen after addition of naphthalene, salicylaldehyde, 

salicylate, and catechol, while oxygen depletion was not rapid after the addition of 

gentisate (Figure 2.1).  Ralstonia sp. strain U2 cells consumed oxygen when exposed 

to naphthalene, salicylaldehyde, and salicylate.  Ralstonia sp. strain U2 cells, our 

positive control for the gentisate pathway, did not display enhanced respiration when 

exposed to gentisate (Figure 2.1).  Strain CJ2 consumed oxygen after addition of 

naphthalene, salicylaldehyde, and salicylate.  However, similar to Ralstonia sp. strain 

U2, neither gentisate nor catechol led to the rapid depletion of oxygen.  Ralstonia sp. 

strain U2 is known to lack a gentisate transporter (Xu et al,. 2006), and if the same is 

true for strain CJ2, this accounts for the absence of enhanced oxygen uptake in the 

presence of gentisate.  Regardless, the lack of enhanced oxygen uptake in the presence 

of catechol by Ralstonia sp. strain U2 and strain CJ2 reveals a key distinction between 

these two strains and P. putida NCIB 9816-4.  
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Figure 2.1. Respiration by three strains of bacteria (P. putida NCIB 9816-4, Ralstonia 
sp. strain U2, and P. naphthalenivorans strain CJ2) grown on naphthalene and 
exposed to naphthalene and 5 potential metabolites (salicylaldehyde, salicylate, 
catechol, and gentisate).  The oxygen uptake experimental values represent the mean 
and standard deviation of triplicate experiments.  All values are corrected for 
endogenous respiration of cells.  (NAP=naphthalene, SALD=salicylaldehyde, 
SAL=salicylate, CAT=catechol, GEN=gentisate, and DMF=dimethylformamide) 
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2.4.2 Metabolite detection 

 We measured potential naphthalene metabolites with GC/MS to support the 

respirometry data and to eliminate ambiguity regarding the role of gentisate or 

catechol in the naphthalene metabolic pathway in strain CJ2.  Again, P. putida NCIB 

9816-4 and Ralstonia sp. strain U2 served as controls for the catechol and gentisate 

pathway, respectively.  Table 2.1 shows the detected metabolites from washed cell 

suspensions that were incubated for 15 minutes after addition of naphthalene in DMF 

to final concentration of 2 mM.  

As expected for the nah pathway expressed by P. putida NCIB 9816-4 we 

detected cis-1,2-dihydroxydihydronaphthalene, 1,2-dihydroxynaphthalene, 

salicylaldehyde, salicylate, and catechol.  Likewise, as expected for the nag pathway 

expressed by Ralstonia sp. strain U2 we detected cis-1,2-

dihydroxydihydronaphthalene, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate, 

and gentisate.  As suggested by the respirometry data, the metabolite profile for strain 

CJ2 is consistent with the genetic similarities between Ralstonia sp. strain U2 and 

strain CJ2.  We detected cis-1,2-dihydroxydihydronaphthalene, 1,2-

dihydroxynaphthalene, salicylaldehyde, salicylate, and gentisate in strain CJ2 cell 

suspensions.  The presence of gentisate and absence of catechol provides clear 

evidence that strain CJ2 metabolizes naphthalene through the gentisate pathway.   

 

2.4.3 Dioxygenase assays 

 To provide further evidence for naphthalene metabolism by the gentisate 

pathway in strain CJ2, dioxygenase assays were conducted with cell-free extract from 

induced (salicylate grown) and non-induced (pyruvate grown) strain CJ2, P. putida 

NCIB 9816-4, and Ralstonia sp. strain U2.  Gentisate 1,2-dioxygenase activity was 

detected in strain Ralstonia sp. strain U2 when the cultures were induced by salicylate  
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Table 2.1.   
A survey of metabolites produced by P. putida NCIB 9816-4, Ralstonia sp. strain U2, 
and strain CJ2. The experimental values represent the mean and standard deviation of 
triplicate experiments.  1,2-DHDN=cis-1,2-dihydroxydihydronaphthalene, 1,2-
DHN=1,2-dihydroxynaphthalene, ND=not detected. 
 

 Naphthalene Metabolites Detected (µg/mg protein) 
 

Bacteria 
 

1,2-DHDN 1,2-DHN Salicylaldehyde Salicylate Catechol Gentisate 

Pp NCIB 
9816-4 

2870±1280 1450±600 2.3±2.2 1520±86 3.4±2.7 ND 

Ralstonia 
U2 

1260±560 1060±90 4.0±3.3 390±130 ND 2.0±1.3 

Strain 
 CJ2 

2000±1320 450±300 3.6±1.4 8.7±6.4 ND 2.6±2.2 
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(0.150 µmol/min/mg protein), but not when grown on pyruvate (0.004 µmol/min/mg 

protein).  Although gentisate dioxygenase activity was not as pronounced in strain 

CJ2, activity was induced by salicylate (0.032 µmol/min/mg protein) and not by 

pyruvate (0.003 µmol/min/mg protein).  Neither ortho- nor meta-cleavage of catechol 

was observed in strain CJ2 or Ralstonia sp. strain U2.  As expected, P. putida NCIB 

9816-4, displayed catechol 1,2-dioxygenase activity and no gentisate dioxygenase 

activity.     

 

2.4.4 Growth inhibition of strain CJ2 by naphthalene 

 Although strain CJ2 was isolated under naphthalene vapor as a carbon source, 

a comparison of growth on naphthalene in minimal media (MSB) between strain CJ2, 

P. putida NCIB 9816-4, and Ralstonia sp. strain U2 revealed unusual growth 

characteristics in strain CJ2.  Both P. putida NCIB 9816-4 and Ralstonia sp. strain U2 

grew equally well in MSB broth amended with 18 mM pyruvate or saturated with 

naphthalene crystals (~230 µM).  In contrast, strain CJ2 was unable to grow in MSB 

broth amended with naphthalene crystals (Figure 2.2a), but grew well in MSB broth 

with 18 mM pyruvate (Figure 2.2b), demonstrating the inhibition of growth is 

substrate specific.  Additionally, the lack of growth in MSB amended with 

naphthalene was accompanied by the appearance of a light orange color in the 

medium, indicating the possible accumulation of naphthalene metabolites. 

 

2.4.5 Naphthalene concentration and growth inhibition 

 To test the effect of naphthalene concentration on growth inhibition, we grew 

strain CJ2 in MSB broth with 0.1 g XAD7 resin that has been equilibrated with  
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Figure 2.2. Growth of three naphthalene degrading bacteria on mineral salts media 
with naphthalene crystals (a) or pyruvate (b).  Unlike P. putida NCIB 9816-4 (■) and 
Ralstonia sp. strain U2 (▲), which grew equally well on pyruvate and naphthalene, 
strain CJ2 (●) grew only in MSB with pyruvate but not in MSB saturated with 
naphthalene.  The experimental values represent the mean and standard deviation of 
triplicate experiments. 
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different masses of naphthalene. This procedure has been shown to buffer the aqueous 

naphthalene concentration at levels proportional to the added mass (Morasch et al. 

2001).  Once an equilibrium was established between XAD7 bound naphthalene and 

aqueous naphthalene, strain CJ2 was inoculated (initial cell density=1.56x106  CFUs 

ml-1) into media with initial aqueous concentrations of naphthalene of approximately  

23, 40, 55, 78, or 100 µM, as determined by HPLC analysis of aqueous naphthalene in 

sterile media.  Growth was strongly inhibited when the initial naphthalene 

concentration in the media was higher than 78 µM.  However, strain CJ2 grew well 

when the initial naphthalene concentration of the media was at or below 55 µM 

(Figure 2.3).  This indicates that growth inhibition by naphthalene is concentration 

dependent, with optimum growth occurring at ~40 µM and inhibitory effects manifest 

above ~78 µM. 

 

2.4.6 Direct inhibition by naphthalene 

 The hypotheses for explaining the inhibitory effect of naphthalene on strain 

CJ2 are: (i) naphthalene itself could be directly inhibitory or toxic when present at 

high concentrations; (ii) the metabolism of naphthalene could lead to the accumulation 

of toxic or inhibitory metabolites when a high concentration of naphthalene is 

available to the cells; or (iii) both naphthalene and its metabolites play a role in growth 

inhibition.   

 To determine if naphthalene is directly toxic to strain CJ2, we measured the 

growth of CJN110, a NagR1 regulatory mutant of CJ2 that is unable to grow on 

naphthalene (Jeon et al., 2006), in MSB amended with 6 mM glucose in the presence 

of naphthalene at concentrations that were inhibitory or non-inhibitory to the wild type 

strain.  Partially inhibited growth occurred on glucose in the presence of 23 µM  
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Figure 2.3. Growth of strain CJ2 in MSB media with initial aqueous naphthalene 
concentrations (□, 23 mM; ▲, 40 mM; ●, 55 mM; ■, 78 mM; ○, 100 mM 
naphthalene) buffered by XAD-7 resin.  Growth was inhibited at concentrations of 78 
µM and higher. The experimental values represent the mean and standard deviation of 
triplicate experiments. 
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Figure 2.4. Growth of a regulatory mutant of strain CJ2 (strain  CJN110, NagR-) in 
glucose with or without naphthalene.  The experimental values represent the mean and 
standard deviation of triplicate experiments. (■, glucose, no naphthalene; □, glucose + 
23 mM naphthalene; ●, glucose + 40 mM naphthalene; ○, glucose + 55 mM 
naphthalene; ∆, 23 mM naphthalene, no glucose.) 
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naphthalene.  However, at all other naphthalene concentrations growth on glucose was 

severely inhibited (Figure 2.4).  Because strain CJN110 is unable to metabolize 

naphthalene, inhibition of growth was not due to the production of potentially toxic 

naphthalene metabolites.  Therefore, naphthalene has a direct inhibitory or toxic effect 

on strain CJN110 derived from strain CJ2.   

 

2.4.7 Evidence for the production of toxic metabolites 

 In order to explore the relationship between naphthalene concentration and 

growth inhibition, cell viability and naphthalene concentration were monitored over 

the course of a growth experiment.  Strain CJ2 was inoculated into tubes containing 

MSB with 6 mM glucose or 0.1 g of XAD7 and initial aqueous concentrations of 31, 

47, and 86 µM, respectively. 

 Growth occurred as expected in the cultures containing 6 or 10 mg naphthalene 

(Figure 2.5a), with both culture conditions reaching an OD600 near 0.68 and cultures 

containing 10 mg growing slightly slower than those containing 6 mg.  However, in 

tubes containing 12 mg of naphthalene, growth was severely inhibited and did not 

exceed an OD600 of 0.13.  The aqueous naphthalene concentration dropped below 10 

µM in cultures with 6 mg (Figure 2.5b), suggesting strain CJ2 metabolized 

naphthalene faster than it was diffusing from the XAD7 resin.  In cultures containing 

10 or 12 mg there was an initial increase in the aqueous naphthalene concentration, 

indicating a new equilibrium was established upon the addition of cells.  The 

subsequent decrease in naphthalene concentration shows that even the inhibited 

cultures were metabolizing naphthalene.   

 Though growth was inhibited in cultures containing 12 mg naphthalene, viable 

cells were detected until 34 hours (Figure 2.5c).  However, after 34 hours no viable 

cells were detected, and the loss of viability corresponded with the appearance of the  
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Figure 2.5. The relationship between cell growth, aqueous naphthalene concentration, 
and cell viability.  Strain CJ2 was inoculated into MSB with glucose (□) or 0.1 g 
XAD7 and 6 (■), 10 (○), or 12 (●) mg naphthalene.  Optical density (a), aqueous 
naphthalene concentration (b), and viable cells (c) were monitored.  Inoculum density 
was held constant at 9.8x106 CFUs. 
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light orange color in the media, which appeared between 34 and 47 hours.  These 

results suggest that not only does naphthalene have an inhibitory effect, but also 

naphthalene metabolism by inhibited cells results in the accumulation of a naphthalene 

metabolite that is toxic to the cells.  It should be noted, that even though there was no 

visible color accumulation prior to 34 hours it is possible that a low level of the toxic 

metabolite had accumulated and was responsible for growth inhibition.   
 
2.4.8 Analysis of toxic accumulated metabolites 

 Previous reports have suggested that the accumulation of an orange metabolite 

in naphthalene metabolizing cultures results from the abiotic oxidative transformation 

of 1,2-dihydroxynaphthalene to 1,2-naphthoquinone (Auger et al., 1995; Davies and 

Evans, 1964; Murphy and Stone, 1955).  Spectrophotometric scans (240 to 400 nm) of 

1,2-naphthoquinone standards and colored media from naphthalene-inhibited cultures 

of strain CJ2 suggested that 1,2-naphthoquinone was present at concentrations 

between 50 and 100 µM (data not shown).  Therefore, we used HPLC to compare 1,2-

naphthoquinone standards (dissolved in MSB) with  media from strain CJ2 cultures 

that were either successfully grown on naphthalene or cultures that were inhibited by 

naphthalene and had accumulated orange-colored metabolites.   

 Analysis of 1,2-naphthoquinone dissolved in MSB revealed that it too was 

unstable in aqueous media .  When 50 µM 1,2-naphthoquinone was analyzed by 

HPLC shortly after dissolution in MSB, there was one major peak with a retention 

time of 20 minutes (peak II in Figure 2.6a).  A probable oxidation product with a 

retention time of 24 minutes (peak III in Figure 2.6a) also appeared.  However, after 

50 µM 1,2-naphthoquinone was incubated for 48 hours in sterile MSB peak II was no 

longer detected, while new peaks (I and IV) with retention times of 15 and 26 min 

(respectively) were abiotically produced (Figure 2.6b).  Analysis of the colored 

medium from a naphthalene-inhibited culture detected three peaks:  one peak (II)  
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Figure 2.6. Analysis of naphthalene metabolites by HPLC. Chromatograms of 50 µM 
1,2-naphthoquinone freshly dissolved in MSB media (a),  50 µM 1,2-naphthoquinone 
aged in sterile MSB media for 48 hours (b), culture medium from naphthalene-
inhibited strain CJ2 (c), and culture medium from naphthalene-grown strain CJ2 (d). 
Note that the vertical scale in panel A is twice that of the other panels. 
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corresponds with the primary peak of freshly dissolved 1,2-naphthoquinone, while the 

other two peaks, I and IV, correspond with daughter products of aged 1,2-

naphthoquinone (Figure 2.6c). No peaks of putative inhibitory metabolites were 

present in the uncolored medium from cultures of CJ2 that successfully grew on 

naphthalene (Figure 2.6d). Chemical instability, ineffective derivatization procedures, 

and lack of authentic standards prevented GC/MS identification of  the putative toxic  

compounds eluting as peaks I and IV in the inhibited culture of strain CJ2 (Figure 

2.6c).  Support for 1,2-naphthoquinone’s (peak II) contribution to toxicity was 

obtained in assays showing that growth of strain CJ2 was completely inhibited in 

MSB-glucose medium when 1,2-naphthoquinone was ~50 µM (data not shown). 

 

2.5 Discussion 

 The isolation of strain CJ2 has provided a unique opportunity to investigate the 

genetics and physiology of a bacterium that is linked to the in situ biodegradation of 

naphthalene in contaminated sediment.  Sequencing of the naphthalene catabolic genes 

revealed a novel arrangement of structural and regulatory genes in strain CJ2 (Jeon et 

al., 2006).  In this study, we gained insight into the physiology of naphthalene 

metabolism in strain CJ2 by comparing it to two archetypal naphthalene degrading 

bacteria.  Our data from respirometry, metabolite detection by GC/MS, and enzyme 

assays showed that strain CJ2 metabolizes naphthalene via the gentisate pathway.  

Growth assays revealed that strain CJ2 cannot grow on naphthalene at concentrations 

above 78 µM, and that metabolic imbalances may lead to inhibition and toxicity.  

Bacteria that metabolize aromatic hydrocarbons face the challenge of acquiring 

carbon and energy from compounds that are potentially toxic (Ramos et al., 2002; 

Sikkema et al., 1995).  The inability of potential biodegrading populations to tolerate 

aromatic hydrocarbon toxicity may contribute to the persistence of pollutants in the 
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environment.  The mechanisms of toxicity are generally believed to be disruption of 

biological membranes (Sikkema et al., 1995) and the production of toxic metabolites 

(e.g., Park et al., 2004).  The lipophilic character of aromatic hydrocarbons can alter 

membrane fluidity, permeablize the membrane, and cause swelling of the lipid bilayer.  

Alteration of membrane structure can disrupt energy transduction and the activity of 

membrane associated proteins (Sikkema et al., 1995).  Additionally, metabolites of 

aromatic compounds, such as catechols and quinones, can be more toxic than the 

parent compound due to an increase in solubility, production of reactive oxygen 

species, or adduct formation with DNA and proteins (Penning et al., 1999; Schweigert 

et al., 2001). 

In the present investigation we have shown that Polaromonas 

naphthalenivorans CJ2 is susceptible to both (i) direct naphthalene inhibition and (ii) 

formation of toxic intermediate metabolites.  Naphthalene inhibited the growth of 

strain CJ2 at concentrations 55 µM (Figure 2.4), which is well below naphthalene’s 

aqueous saturation point (230 µM).  Naphthalene has been reported to be toxic to the 

archetypal naphthalene degraders, P. putida G7 and P. putida NCIB 9816-4, but only 

under nitrogen- or oxygen-limiting conditions (Ahn et al., 1998) or during incubation 

in soil amended with a high concentration (0.2% w/v) of naphthalene crystals (Park et 

al., 2004), respectively.  We found that inhibition of strain CJ2 by naphthalene was 

independent of metabolism, and, based on the study of Sikkema et al. (1994), we 

speculate that the mechanisms of direct inhibition are likely to be related to impaired 

membrane function.     

 In addition to growth inhibition, naphthalene metabolism by strain CJ2 at 

inhibitory concentrations resulted in the accumulation of toxic oxidation products 

derived from 1,2-naphthoquinone, which resulted in a complete loss of viability 

(Figure 2.6c).  Davies and Evans (1964) showed that a 25 µM solution of 1,2-
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dihydroxynaphthalene is converted by nonenzymatic oxidation to 1,2-naphthoquinone 

at a rate of approximately 20% per minute at pH 6.5.  1,2-Naphthoquinone has been 

reported to accumulate and  inhibit both growth and naphthalene metabolism when 

ferrous and magnesium salts are omitted from growth media (Murphy and Stone, 

1955) or when naphthalene bioavailability is increased by surfactant addition (Auger 

et al., 1995).  Our analysis by HPLC suggests that 1,2-naphthoquinone (presumably 

produced abiotically from 1,2-dihydroxynaphthalene)  and two abiotic transformation 

products of 1,2-naphthoquinone accumulate when strain CJ2 is exposed to inhibitory 

concentrations of naphthalene.   

 Strain CJ2 was shown to metabolize naphthalene in situ by stable isotope 

probing, which suggests that strain CJ2 is an active member of the naphthalene-

degrading population in the sediment (Jeon et al., 2003).  Strain CJ2 has evolved, 

apparently successfully, to occupy a niche as naphthalene degrader even though 

naphthalene has a strong inhibitory effect and subsaturation levels of naphthalene can 

result in toxic metabolite accumulation.  It is possible that strain CJ2 never 

experienced selective pressure to develop greater tolerance to naphthalene because 

adsorption to soil and metabolism of naphthalene by other bacteria kept naphthalene 

concentrations well below inhibitory levels.  If this is the case, strain CJ2 may not 

have evolved adaptation mechanisms frequently associated with tolerance to aromatic 

compounds such as cis-to-trans isomerization of unsaturated fatty acids and efflux 

pumps (Ramos et al., 2002).  Furthermore, the accumulation of 1,2-naphthoquinone-

related oxidation products might be due to unrealistic naphthalene concentrations 

imposed in laboratory incubations combined with the slow growth of strain CJ2.  An 

enzyme in the naphthalene catabolic pathway may have a low specific activity that is 

only problematic when the concentration of naphthalene exceeds a threshold.  Another 

possibility is that, if strain CJ2 is adapted to low naphthalene bioavailability in soil, 



 

 38 

the bacterium has evolved to accumulate as much naphthalene as possible, whether 

through active uptake or through modifications of the cell membrane and envelope.  

Thus, when presented with naphthalene at the concentrations used in this study, strain 

CJ2 accumulated naphthalene to inhibitory and toxic quantities.  

 This study also showed that strain CJ2 metabolizes naphthalene via gentisate 

using the nag-type pathway found in Ralstonia sp. strain U2.  Metabolism of 

aromatics via gentisate has been studied less extensively than metabolism via catechol, 

and it is not clear whether one pathway has an advantage over the other.  A study 

investigating bacteria that metabolize 3-chlorobenzoate suggested that microorganisms 

using the gentisate pathway have lower maximum specific growth rates and lower 

apparent half-saturation constants for oxygen and 3-chlorobenzoate; thus, they may be 

well adapted to substrate- and/or oxygen-limited conditions (Krooneman et al., 2000).  

If these same characteristics are applicable to strain CJ2, they could help explain why 

strain CJ2 was successful in naphthalene-contaminated sediments despite being 

sensitive to inhibitory effects of naphthalene. 
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3. FIELD-BASED STABLE ISOTOPE PROBING REVEALS THE 

IDENTITIES OF BENZOIC ACID-METABOLIZING MICROORGANI SMS 

AND THEIR IN SITU GROWTH IN AGRICULTURAL SOIL. 

 

3.1 Abstract 

We used a combination of Stable Isotope Probing (SIP), GC/MS-based respiration, 

isolation/cultivation, and quantitative PCR procedures to discover the identity and in 

situ growth of soil microorganisms that metabolize benzoic acid.  We added [13C] or 

[12C]benzoic acid (100 µg) once, four times, or five times at 2-day intervals to 

agricultural field plots.  After monitoring 13CO2 evolution from the benzoic acid-dosed 

soil, field soils were harvested and used for nucleic acid extraction and for cultivation 

of benzoate-degrading bacteria.  Exposure of soil to benzoate increased the number of 

culturable benzoate degraders compared to unamended soil, and exposure to benzoate 

shifted the dominant culturable benzoate degraders from Pseudomonas species to 

Burkholderia species.  Isopycnic separation of heavy [13C]DNA from the unlabeled 

fraction allowed T-RFLP analyses to confirm that distinct 16S rRNA genes were 

localized in the heavy fraction.  Phylogenetic analysis of sequenced 16S rRNA genes 

revealed a predominance (15 of 58 clones) of Burkholderia species in the heavy 

fraction.  Isolate Burkholderia sp. strain EBA09 shared 99.5% 16S rRNA sequence 

similarity with a group of clones representing the dominant RFLP pattern, and the T-

RFLP fragment for strain EBA09 and a clone from that cluster matched the fragment 

enriched in the [13C]DNA fraction.  Growth of the population represented by EBA09 

during the field-dosing experiment was demonstrated using MPN-PCR and primers 

targeting EBA09 and closely related Burkholderia hospita species.  Thus, the target 

population identified by SIP not only actively metabolized benzoic acid, but 

reproduced in the field upon the addition of the substrate. 
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3.2 Introduction 

Soil environments are commonly carbon limited (Alden et al., 2001), and 

carbon input through decomposition, industrial spills, or other disturbance can lead to 

an increase in microbial activity (Nyman, 1999).  In order to understand population 

dynamics of bacteria in soils, it is necessary to understand which organisms respond to 

increases in carbon availability and how the population changes.  Investigations using 

stable isotope probing (SIP) are particularly suited to identifying bacteria that 

metabolize a specific carbon compound, because cellular biomarkers used to identify 

organisms become 13C-labeled when organisms metabolize and incorporate 13C from 

the labeled substrate (Boschker et al., 1998; Buckley et al., 2006; Leigh et al., 2007; 

Madsen, 2006; Manefield et al., 2002; Neufeld et al., 2007; Radajewski et al., 2000).  

The growth of bacteria identified by DNA-SIP can be inferred, because, at minimum, 

two generations are required for DNA to be fully labeled with 13C due to semi-

conservative DNA replication.  Researchers can use phylogenetic analysis of labeled 

sequences, along with chemical knowledge of both the labeled compound and the 

experimental environment, to gain further insight into the physiology of the 

metabolically active population.  Furthermore, the successful isolation of a strain 

representative of an active population identified by SIP allows for more detailed 

genetic and physiological investigation (Jeon et al., 2003; Jeon et al., 2006; Kasai et 

al., 2006; Liou et al., 2008; Pumphrey and Madsen, 2007).     

Benzoic acid is a naturally occurring aromatic acid that enters soil 

environments through plant decomposition and root exudates.  Soil with growing or 

decomposing quackgrass contained approximately 30 or 80 nmol benzoic acid g-1 dry 

soil, respectively (Baziramakenga et al., 1995).  Although a diverse number of bacteria 

are known to metabolize benzoic acid (Biodegradative Strain Database, 
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http://bsd.cme.msu.edu/jsp/InfoController.jsp?object=Chemical&id=C_benzo8), to 

our knowledge there are no in situ studies identifying populations that metabolize 

benzoic acid in soil.  Aerobic metabolism of benzoic acid occurs through either 

dihydroxylation of benzoate by benzoate 1,2-dioxygenase (BenABC) with subsequent 

ortho cleavage of catechol by catechol 1,2-dioxygenase (Harwood and Parales, 1996) 

or through conversion to benzoyl-CoA with subsequent ring cleavage (Gescher et al., 

2002).  Benzoic acid is also a common intermediate metabolite in metabolic pathways 

for aromatic pollutants such as benzonitrile, biphenyl, and toluene.  The extensively 

studied biphenyl degrader, Burkholderia xenovorans LB400, encodes both the 

catechol ortho cleavage pathway as well as the benzoyl-coenzyme A pathway (Denef 

et al., 2006).  In B. xenovorans LB400, the benzoate dioxygenase pathway converted 

benzoate more rapidly than metabolism via coenzyme A activation and resulted in 

faster growth (Denef et al., 2006).     

In this study, we investigated the dynamics of a benzoic acid metabolizing 

population in an agricultural field during multiple amendments of benzoic acid.  To 

discover the identity of microorganisms that metabolize benzoic acid and measure 

their in situ growth in soil we employed a combination of SIP, GC/MS-based 

respiration, isolation/cultivation.  Furthermore, to confirm the growth of the active 

population identified by SIP, we used MPN-PCR to quantify the population in situ.    

 

3.3 Materials and Methods 

3.3.1 Bacterial strains 

Burkholderia xenovorans LB400 was originally isolated from a site 

contaminated with polychlorinated biphenyls (Bedard et al., 1986), and was a gift 

from G. Zylstra, Rutgers University.  Additional strains, isolated during this study, 

were used to verify the specificity of PCR primers used to detect Burkholderia strain 
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EBA09 included Burkholderia spp. EBA01, EBA02, EBA03, EBA04, EBA05, 

EBA07, EBA11, EBA14, EBA15, and EBA16, Pseudomonas sp. EBA13, 

Arthrobacter sp. EBA06, and Cupriavidus sp. EBA17. 

 

3.3.2 Soil field treatments for respiration, stable isotope probing, cultivation, and 

population monitoring 

The application of SIP in the field is based on methods developed by 

Padmanaban et al. (2003) and DeRito et al. (2005).  A small field plot (~ 1 m2) of 

Collamer silt loam at the Cornell University Agricultural Experiment Station, Ithaca, 

NY was leveled and cleared of vegetation several days prior to the experiment.  A grid 

of dosing points (on 15-cm centers marked by screw-cap canning jar bands) was laid 

out to accommodate all treatments in triplicate.  For the SIP experiment, soil in the 

field was dosed four times with 100 µg of benzoic acid in 50 µl H2O every 48 hours 

and a fifth time 24 hours after the fourth dose.  Three treatments varied in the amount 

of [13C]benzoic acid added to the soil.  For the first treatment, soils received five doses 

of [12C]benzoic acid, the second treatment received four doses of [12C]benzoic acid 

with a final dose of [13C]benzoic acid, and the third treatment received five doses of 

[13C]benzoic acid.  Immediately following the final dose, septum-covered chambers 

were placed over the treated soils to allow headspace analysis.  In parallel with the 

respiration/SIP procedures, additional soil-plot treatments were dosed with unlabeled 

benzoic acid or left unamended.  These soils were used in experiments utilizing 

cultivation and MPN-PCR techniques.  A table was placed over the plot (0.8 m high) 

to protect the experiment from rain and direct exposure to sunlight.   
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3.3.3 GC/MS analysis of CO2 

Analysis of CO2 respired from soil was conducted as previously described 

(DeRito et al., 2005).  A Hewlett-Packard HP5890 gas chromatograph (Wilmington, 

DE) equipped with an HP5971A mass-selective detector was used for the respiration 

analyses.  With high-purity helium as the carrier gas, a Hewlett-Packard Pora Plot Q 

column (25 m by 0.32 mm, 10 um film thickness) was used to separate carbon dioxide 

from other gaseous components.  The detector was operated at an electron energy of 

70 eV and a detector voltage of 2,000 V.  The ion source pressure was maintained at 

1×10-5 torr.  A splitless injection was used, and the GC oven was isothermal at 60°C.  

CO2 eluted at 1.18 min. Single-ion monitoring allowed simultaneous quantification of 

both 12CO2 (m/z = 44) and 13CO2 (m/z = 45).  The concentration of 13CO2 was 

quantified using calibration curves prepared using external standards (Scott Specialty 

Gases, Plumsteadville, PA).  The net 13CO2 produced from metabolism of the 

[13C]benzoic acid was calculated by subtracting background 13CO2 produced by the 

native microbial community from soil organic matter.  Background 13CO2 was inferred 

from direct measurement of 12CO2 adjusted to the known fixed ratio of 12C to 13C in 

naturally occurring carbon (1.11%).  This ratio was confirmed analytically.  Net 13CO2 

values from replicate chambers were averaged at each time point. 

 

3.3.4 DNA extraction 

DNA was extracted from soil according to the method of Griffiths et al. 

(2000).  Extractions were performed by combining 0.5 g (wet weight) of soil with 0.5 

ml of hexadecyltrimethylammonium bromide (CTAB) extraction buffer and 0.5 ml of 

phenol-chloroform-isoamyl alcohol (25:24:1, pH=8.0) in Lysing Matrix E tubes (MO 

BIO Laboratories, Carlsbad, CA).  CTAB extraction buffer is prepared by mixing 

equal volumes of 10% (wt/vol) CTAB in 0.7 M NaCl with 240 mM potassium 
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phosphate buffer, pH 8.0.  Samples were homogenized with a bead-beater (BioSpec 

Products, Bartlesville, OK) for 30 s, and the aqueous phase was separated by 

centrifugation (16,000 g) for 5 min at 4°C.  The aqueous phase was moved to a 1.5 ml 

tube and phenol was removed by mixing an equal volume of chloroform-isoamyl 

alcohol (24:1) followed by centrifugation (16,000 g) for 5 min at 4°C.  DNA was 

precipitated from the aqueous layer with 2 volumes of 30% (wt/vol) polyethylene 

glycol 6000 for 2 hours at room temperature.  The precipitated DNA was pelleted by 

centrifugation (16,000 g), washed with ice cold 70% ethanol, and air dried prior to 

resuspension in TE (pH=8.0).   

  

3.3.5 Isopycnic centrifugation and gradient fractionation 

Density gradient ultracentrifugation and subsequent fractionation were 

performed according to the method of Lueders et al. (2004).  100 ng of extracted DNA 

were added to a CsCl solution in TE buffer (pH=8.0) to a final volume of 5.5 ml and 

an average density of 1.729 g ml-1.  The ultracentrifugation tubes were sealed and 

centrifuged at 146000 gav and 20°C for at least 60 hours.  The centrifuged gradients 

were fractionated from bottom to top into ~300 µl fractions by displacing the gradient 

with sterile water from the top of the tube with a HPLC pump.  The density of each 

fraction was determined by measuring the refractive index of a subsample using an 

AR200 digital refractometer (Leica Microsystems).  DNA was precipitated from the 

CsCl fractions with polyethylene glycol as above, and precipitated DNA was washed 

with 70% ethanol and suspended in 35 µl TE.  Primarily two fractions (1.70-1.71 and 

1.747 g ml-1) were analyzed. 
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3.3.6 T-RFLP 

T-RFLP protocols and analyses of the fragments were performed as described 

by Cadillo-Quiroz et al. (2006).  FAM-labeled amplicons were generated from 

community DNA from 1 µl of selected gradient fractions using the FAM-27f  (5’-

AGAGTTTGATCCTGGCTCAG), which was fluorescently labeled on the 5’ end with 

Carboxifluorescein, and 1492r (5’-TACGGYTACCTTGTTACGACTT) primers 

(Integrated DNA Technologies, USA).  The labeled 16S rRNA genes were generetated 

using Thermo-Start® PCR Master Mix (ABgene, United Kingdom), with 0.5 µM of 

each primer and 1.5 mM MgCl2.  The following PCR conditions were used: 94°C for 

15 min; 34 cycles consisting of 94°C for 30s, 55°C for 1 min, 72°C for 1 min; 

followed by 72°C for 5 min.  Amplicons were purified (Qiagen PCR Purification kit), 

and 100 ng of pooled, triplicate PCR reactions were digested with 5 units of MspI 

(New England Biolabs, USA) for 3 h at 37°C.  Purified digested products were 

concentrated in a vacuum centrifuge, and then resuspended with a mix of Hi Di-

Formamide (Applied Biosystems, USA) and Gene Scan 500-Liz marker (12 µl ml−1; 

Applied Biosystems, USA).  Fragments were resolved with an Applied BioSystems 

3730xl DNA Analyser (Bio Resources Center, Cornell University).  Terminal 

restriction fragment length and peak height were determined using Peak ScannerTM 

(Applied Biosystems).  

 

3.3.7 PCR cloning, restriction digestion, and sequencing 

PCR amplification of 16S rRNA genes from gradient fractions using universal 

eubacterial primers 27f and 1492r was performed as described previously (Bakermans 

et al., 2002; DeRito et al., 2005).  The product was ligated into the vector pCR2.1 (TA 

cloning; Invitrogen) by following the manufacturer’s recommended protocol.  

Following transformation of plasmids into host cells and blue/white screening, 
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colonies with inserts were verified by PCR with vector-specific primers (5’-

GTAACGGCCGCCAGTGTGCT and 5’-CAGTGTGATGGATATCTGCA) that 

flanked the cloning region.  Amplicons were digested with HaeIII and HhaI, and 

RFLP patterns were analyzed on 3% MetaPhore agarose gels (BioWhittaker; 

Molecular Applications, Rockland, Maine) with a 100-bp ladder (Promega) as a 

marker.  Clones that were selected for sequencing were grown overnight in 5 ml of 

Luria-Bertani broth with kanamycin (50 µg/ml), pelleted, and plasmids were purified 

(QiaPrep spin miniprep kit; QIAGEN, Santa Clarita, Calif.).   

Sequencing (Cornell University DNA Sequencing Facility) was conducted 

with four primers: M13 forward (5’-TGTAAAACGACGGCCAGT-3’), M13 reverse 

(5’-AACAGCTATGACCATG-3’), 531 reverse (5’-TACCGCGGCTGCTGGCAC-

3’), and 533 forward (5’-GTGCCAGCMGCCGCGG-3’).  Raw sequence data were 

assembled into full-length sequences using the program SEQMAN II (DNASTAR, 

Inc.).  After assembly, the consensus sequence was verified manually by referring to 

the corresponding ABI chromatograms of the sequencing reactions, and Bellerophon 

(Huber et al., 2004) was used to check for chimeras.  Phylogenetic relationships were 

discerned by the neighbor-joining method using the computational tools of Lasergene 

(DNASTAR, Madison, WI) and ClustalX (Thompson et al., 1997). 

 

3.3.8 Isolation of benzoate-metabolizing bacteria 

Benzoate metabolizing bacteria were isolated from soils that were left 

unamended or treated with benzoic acid as in the field experiment.  For both 

treatments, 1 g soil was serially diluted in phosphate-buffered solution, spread plated 

onto MSB agar plates (Stanier et al., 1966) with 0.01% (0.7 mM) sodium benzoate in 

duplicate, and incubated at room temperature.  For each treatment, 30 individual 

colonies from the two highest dilutions were randomly selected and checked for purity 
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by streaking on R2A agar plates.  Confirmed pure cultures were grown again on MSB 

agar with 0.01% benzoate, and isolates that maintained the benzoate-metabolizing 

phenotype were stored at -80°C for later characterization of the cultures.  Eleven 

genetically distinct isolates were distinguished by 16S rRNA gene fingerprinting as 

described above. 

 

3.3.9 Amplification of the benzoate 1,2-dioxygenase large subunit gene in isolated 

bacteria 

A 540-bp fragment of the benzoate 1,2-dioxygenase alpha subunit gene was 

amplified from selected isolates using primers BAf1 (5’-

GCRCARGAYAGCCAGATTCCC) and BAr2 (5’-

GGTGGCMGCYTAGTTCCAGTG), which were designed from the homologous 

regions of benA of Acinetobacter baylyi ADP1 and xylX of Pseudomonas putida TOL 

plasmid pWW0 (Francisco et al., 2001; Harayama et al., 1991; Neidle et al., 1991).  

The benA fragment was amplified with the following  program: 95°C for 15 min with 

5 initial cycles of 94°C for 30 sec, 60°C for 30 sec (-1° per cycle), and 70°C for 45 

sec, followed by 35 cycles of 95°C for 30 sec, 54° for 45 sec, 70°C for 45 sec, and a 1 

min extension at 68°C.  The resulting amplicons were sequenced directly using the 

PCR primers.   

 

3.3.10 MPN-PCR 

Quantification of bacteria identified by SIP by MPN-PCR was performed as 

previously described (Fredslund et al., 2001).  In parallel with the field SIP 

experiment, three sets of triplicate soils were dosed with 100 µg benzoic acid in 50 µl 

water every 48 hours.  Triplicate (0.5 g) soil samples were collected and stored at -

80°C at times 0 (untreated), 48 (1 dose), 144 (3 doses), and 192 hours (5 doses).  DNA 
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was extracted as described above from each soil sample, and the primer 

Burkhospita1F (5’-AAAGGCCTCGCGCTCAAG) was designed using the 16S rRNA 

gene sequence from isolate EBA09 and cloned 16S rRNA sequences D603, D617, and 

D638 (generated in this study) using Primrose software (Ashelford et al., 2002).  A 

180 bp amplicon was generated when Burkhospita1F was used in combination with 

the universal eubacterial primer 342r (5’-CTGCTGCSYCCCGTAG).  Tenfold 

dilution series of the extracted DNA were made and 1 µl was used as template in a 20 

µl PCR with the following program: 15 min at 95°C; 32 cycles of 30 sec at 95°C, 30 

sec at 60°C, 45 sec at 70°C; 4 min at 70°C; and final hold at 4°C.  The second highest 

dilution to produce the target 180-bp amplicon was used as a starting point for 

triplicate 3-fold dilution series.  The freeware MPN calculator (VB6 version; Michael 

Curiale [http://www.i2workout.com/mcuriale/mpn/index.html]) was used to calculate 

the MPN abundance of populations related to strain EBA09 in soil samples dosed with 

benzoate. 

 

3.3.11 Nucleotide sequence accession numbers 

The nucleotide sequence data reported here have been submitted to GenBank 

under accession no. EU677388 to EU677420.   

 

3.4 Results 

3.4.1 Benzoic acid metabolism at a field site 

 In order to investigate the dynamics of the benzoic acid-metabolizing 

community in the field agricultural study site, we carried out a dosing regime based on 

that established by DeRito et al. (2005).  For the first treatment, soils received five 

doses of [12C]benzoic acid, the second treatment received four doses of [12C]benzoic 

acid with a final dose of [13C]benzoic acid, and the third treatment received five doses 
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of [13C]benzoic acid.  Monitoring of benzoic acid metabolism in the field was 

determined by GC/MS analysis of 13CO2 respired from the soil after the final dose 

(Figure 3.1).  In soils exposed to [13C]benzoic acid, a net increase in respired 13CO2 

above background levels was observed, whereas no increase was seen in soils 

receiving [12C]benzoic acid.  The 13CO2 respired from soils receiving a single dose of 

[13C]benzoic acid amounted to 17% of the labeled carbon added to the soil.  Respired 

13CO2 was nearly identical between soils that received 5 doses of 13[C]benzoic acid 

and soils that received 4 doses of 12[C]benzoic acid with a final dose of 13[C]benzoic 

acid.  This suggested two things: (i) that benzoic acid was metabolized quickly-- little 

or no residual 13[C]benzoic acid remained in soils receiving prior doses: and (ii) the 

13C-labeled biomass (produced via assimilation of early doses of 13[C]benzoic acid) 

was relatively stable and not subject to further metabolism during the experiment. 

 

3.4.2 Community profiles of density-resolved DNA 

Triplicate soil samples from each of the three field treatment were collected 

and pooled.  DNA was extracted, and the [13C]DNA was separated from [12C]DNA by 

isopycnic centrifugation.  We used T-RFLP to compare community profiles from 

heavy (1.747 g ml-1) and light (1.70-1.71 g ml-1) fractions taken from the CsCl 

gradient of each field treatment (Figure 3.2). Figures 3.2A and 3.2B show results of 

our positive- and negative-control treatments, respectively, that received unlabeled 

benzoate.  As expected, the light fraction (Figure 3.2A) featured a complex T-RFLP 

pattern typical of heterogenous populations in a soil community and the heavy fraction 

(Figure 3.2B) that was virtually free of signals (except for a spurious peak at 491 bp 

that was also present in our reagent blank). All other T-RFLP patterns should be 

interpreted relative to Figure 3.2B and according to contrasts between heavy and light 

fractions in a given treatment.
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Figure 3.1. Confirmation of [13C]benzoic acid metabolism measured as net 13CO2 
respiration from the agricultural field study site.  13CO2 was produced from soils 
receiving 5 doses of 100 µg [12C]benzoic acid (●), 4 doses of 100 µg [12C]benzoic 
acid and a final 100 µg dose of [13C]benzoic acid (■), or 5 doses of 100 µg 
[13C]benzoic acid (×).  The percentage in parentheses shows the proportion of the total 
added [13C]carbon recovered as 13CO2 from the treatment receiving a single dose of 
[13C]benzoic acid.  Experimental values represent the mean and standard deviation of 
triplicate samples.   
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 For the three treatments, the distribution of T-RFLP signals within a gradient 

was consistent with type of benzoic acid label (13C or 12C) the treatment received.  In 

contrast to the treatment receiving only [12C]benzoic acid (discussed above), T-RFLP 

signals in the DNA from soil receiving 5 doses of [13C]benzoic acid were enhanced in 

the heavy fraction (Figure 3.2F) compared to the light fraction of the gradient (Figure 

3.2E).  The peak corresponding to a fragment length of 139 bp, in particular, showed 

enrichment as the density of the gradient increased (Figure 3.2F).  This suggested that 

the population represented by the 139 bp fragment was metabolizing the benzoic acid 

and fully incorporated the 13C-label into its biomass. Three peaks, corresponding to 

fragment sizes of 128, 139, and 149 bp were shared by all treatments, which suggests 

that one or all of the organisms represented by these fragments were members of the 

benzoic acid metabolizing community.      

 

3.4.3 Identifying active benzoic acid metabolizing bacteria 

 We pursued two methods to investigate the identities of active benzoic acid-

metabolizing bacteria: cultivation and cloning plus sequencing 16S rRNA genes.  

Prior to cultivating benzoic acid metabolizing isolates, soil was either dosed with 

benzoic acid as in the SIP experiment or left unamended.  Plate counts showed that 

culturable benzoic acid-metabolizing isolates from the unamended soil were present at 

3.9x105 CFU g-1 soil, while successive benzoate additions increased the number of 

benzoic acid degraders nearly 10-fold to 3.3x106 CFU g-1 soil.  Comparison of RFLP 

patterns generated from 16S rRNA gene amplicons digested with HaeIII and HhaI and 

subsequent 16S rRNA gene sequencing revealed that 16 of 24 selected isolates from 

the highest dilutions of the unamended soil were Pseudomonas species.  However, 

when the soil was exposed to benzoic acid, 14 of 17 isolates from the highest dilutions 

were Burkholderia species.   
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Figure 3.2 Microbial community composition represented by T-RFLP profiles from 
three fractions collected from CsCl gradients containing DNA extracted from soils 
receiving (A) 5 doses of 100 µg [12C]benzoic acid, (C) 4 doses of 100 µg [12C]benzoic 
acid and a final 100 µg dose of [13C]benzoic acid, or (E) 5 doses of 100 µg 
[13C]benzoic acid.  The buoyant density (g ml-1) of the fractions are shown in brackets. 
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In addition to the above culture-based investigation, a 16S rRNA gene clone 

library was prepared from the heavy (1.747 g ml-1) fraction (Figure 3.2F) of the 

treatment that received 5 doses of [13C]benzoic acid.  Fifty eight clones were screened 

by comparing RFLP patterns following double digestion with HhaI and HaeIII.  There 

were 25 unique RFLP patterns, and 22 clones representing 12 unique RFLP patterns 

were sequenced.  No chimeras were detected with Bellerophon.  BLAST analysis of 

cloned sequences revealed clones representing the predominant RFLP pattern (15 of 

58 clones) were Burkholderia species.   

A phylogenetic tree was generated using complete 16S rRNA gene sequences 

from 11 isolates cultured from soil amended with benzoic acid and 19 cloned 16S 

rRNA sequences (Figure 3.3).  One group of isolated Burkholderia strains, EBA05, 

EBA07, EBA09, and EBA11, clustered near Burkholderia hospita and Burkholderia 

sp. TH2. The latter is known to metabolize benzoate and chlorobenzoates (Suzuki et 

al., 2001).  Remarkably, this group of isolates clustered together with three clones 

representing the dominant RFLP pattern from the [13C]DNA fraction, suggesting we 

had successfully isolated representatives of the benzoic acid metabolizing population 

that was active in the field.  Isolate EBA09 was found to have 99.5% sequence 

similarity with this group of clones.  Furthermore, the T-RFLP pattern for isolate 

EBA09 and clones from that cluster revealed a 139 bp fragment (data not shown), 

which matches the fragment enriched in the [13C]DNA fraction from the field (Figure 

3.2).   

 

3.4.4 Phylogenetic analysis of benzoate 1,2-dioxygenase genes 

 A 540-bp fragment of the gene encoding the benzoate 1,2-dioxygenase alpha 

subunit was amplified from isolates EBA05, EBA07, and EBA09.  The amplified 
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Figure 3.3. Phylogenetic analysis of 11 benzoate metabolizing isolates and 19 cloned 
16S rRNA genes (~1400 bp) derived from 13C-labeled DNA from soils receiving 5 
doses of [13C]benzoic acid.  Isolates are in bold, clones are in plain text, and 17 
reference strains are in italics.  Accession numbers for reference sequences are given. 
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 benA fragments were sequenced and subjected to phylogenetic analysis along with 

other benzoate 1,2-dioxygenase, toluate 1,2-dioxygenase, and chlorobenzoate 

dioxygenase genes (Figure 3.4).  The resulting phylogenetic tree shows the benA 

genes from the isolates are closely related to the nonfunctional benA in Burkholderia 

sp. TH2 (Suzuki et al., 2002), as well chlorobenzoate dioxygenase genes from 

Burkholderia sp. NK8 (Francisco et al., 2001), Burkholderia sp. TH2, and 

Burkholderia cepacia 2CBS (Haak et al., 1995), which are able to metabolize 

chlorinated benzoates.   

 

3.4.5 Growth of the Burkholderia populations in the field during the benzoate-dosing 

regime 

 To demonstrate growth of the population represented by EBA09 upon addition 

of benzoic acid in the field, we performed MPN-PCR on archived DNA extracts using 

a primer targeting the 16S gene of EBA09 and closely related Burkholderia hospita 

species (Figure 3.5).  Specificity of the primer was tested by performing PCR on 

unrelated Burkholderia species as well as all of the isolates from the benzoic acid 

amended soil, which included Burkholderia, Pseudomonas, Arthrobacter, and 

Cupriavidus species.  We only obtained the expected 180 bp amplicon from isolates 

EBA05, EBA07, and EBA09, which share at least 99.4% sequence similarity.  The 

DNA used in the MPN-PCR assay was extracted from three sets of triplicate soils that 

were dosed with 100 µg benzoic acid in 50 µl water every 48 hours and triplicate soils 

that were unamended.  The soils treatments for the MPN-PCR assay occurred 

simultaneously with the field SIP experiment, so the field conditions for each were 

identical.  At time 0, the target population was present at slightly under 100,000 copies 

per gram of soil, with little change after 48 hours.  However, after 144 hours, the 

population underwent approximately two doublings, as the target population had 
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Figure 3.4. Phylogenetic analysis inferred from the alignment of 175 amino acid 
positions predicted from benA sequences amplified from isolates (EBA05, EBA07, 
and EBA09; accession numbers EU677418, EU677419, and EU677420, respectively; 
in bold) as well as 19 reference sequences for benzoate 1,2-dioxygenase (benA), 
toluate 1,2-dioxygenase (xylX), and chlorobenzoate dioxygenase (cbdA and cbeA) 
sequences from GenBank.  The naphthalene dioxygenase, nahAc, from Pseudomonas 
putida G7 is the outgroup.   
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increased to 4.5-4.8x105 copies per gram of soil.  Clearly, the target population 

identified by stable isotope probing not only actively metabolized benzoic acid, but 

also reproduced in the field after the addition of the substrate.    

 

3.5 Discussion 

 In this study, we found that successive addition of benzoic acid to a field soil 

resulted in the growth of Burkholderia species that were also identified as the primary 

degraders of benzoic acid in situ by SIP.  Although identifying an organism by DNA-

SIP implies growth, MPN-PCR quantification of the population identified in our SIP 

experiment confirmed the population underwent approximately two doublings.  

Furthermore, enumeration of culturable benzoic acid degraders suggested 

Pseudomonas species were initially the more abundant benzoic acid degraders, but the 

addition of benzoic acid to the soil caused a shift in the community yielding greater 

numbers of Burkholderia species.  According to the rRNA operon copy number 

database (Klappenbach et al., 2001; http://ribosome.mmg.msu.edu/rrndb/index.php), 

species from the genus Burkholderia have an average of 4.94 16S rRNA gene copies.  

Assuming the EBA09 population detected in the MPN-PCR assay has 5 16S rRNA 

gene copies per cell, the population increased from about 2×104 cells per gram of soil 

to just over 9×104 cells per gram of soil during the experiment.  Following the final 

dose of benzoic acid, the number of culturable benzoate degrading Burkholderia were 

approximately 35 to 40 times higher than those detected by MPN-PCR, which used a 

primer designed to detect only populations closely related to Burkholderia sp. EBA09.  

This discrepancy between the final number of culturable Burkholderia species and the 

EBA09 population measured by MPN-PCR is likely due to the specificity of the PCR 

primers used in the MPN-PCR assay, and the likelihood that the EBA09 population is 

a subset of the total benzoic acid-metabolizing community.  Despite this difference, a 
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Figure 3.5. Quantification of EBA09-like population in the field by MPN-PCR during 
growth on benzoic acid.  Experimental values represent the average copy number of 
the target 16S rRNA gene from triplicate soil samples.  Error bars represent the 
standard deviation. 



 

 59 

 measured increase in Burkholderia species after the addition of benzoic acid is 

consistent between culture and non-culture-based methods.  

The population numbers obtained by MPN-PCR indicated a slowdown in 

growth between 144 and 196 hours (Figure 3.5), which could indicate that nutrients 

other than carbon were becoming scarce and limiting the growth of the EBA09-related 

population.  If this were the case, it could have implications for microbial communities 

in soils receiving repeated carbon inputs.   The high rRNA gene copy number found in 

many Burkholderia species is associated with bacteria that employ a copiotrophic 

ecological strategy (Klappenbach et al., 2000).  Copiotrophic populations are expected 

to respond quickly to the added carbon and exhaust other nutrients (e.g., N and P), 

which may subsequently limit their activity.  This could explain why there was not 

greater enrichment of the 139 bp fragment in the heavy DNA fraction from the sample 

that received only 1 dose of [13C]benzoic acid after 4 doses of [12C]benzoic acid 

(Figure 3.2).  By the time the 13C-labeled substrate was added, nutrients other than 

carbon may have been limiting, causing the Burkholderia sp. EBA09 population to 

grow at a slower rate.  If the experiment had been extended another 48-96 hours, it is 

possible that oligotrophic populations, which tend to have higher affinities for 

nutrients, might have replaced the Burkholderia population as the active benzoic acid-

degraders within the community.   

In order for bacteria to take advantage of an introduced carbon source, they 

must have a combination of genes and physiology that enable them to compete for and 

utilize a substrate.  Species within the genus Burkholderia are widespread in soil 

environments, ecologically versatile, and capable of metabolizing aromatic 

compounds (Coenye and Vandamme, 2003; O’Sullivan and Mahenthiralingam, 2005).  

Other studies have suggested Burkholderia species are the primary degraders of 

aromatic compounds in soil environments.  For example, in soils amended with 2- and 



 

 60 

3-chlorobenzoate, Burkholderia species were the dominant indigenous culturable 

degraders of the added compounds (Gentry et al., 2001; Gentry et al., 2004).  Another 

study using SIP found Burkholderia species to be the primary degraders of 

polychlorinated biphenyls (Tillman et al., 2005).  The ecological versatility of 

Burkholderia is attributed to their multireplicon genomes, which can be larger than 9 

Mb (Chain et al., 2006).  Such large genomes allow metabolic versatility, and the 

presence of mobile genetic elements can promote genomic plasticity and general 

adaptability (Lessie et al., 1996).  The isolation of Burkholderia sp. EBA09 will allow 

subsequent experimentation to examine the genetic and physiological characteristics 

that enabled ecological success of the bacterium upon the introduction of benzoic acid 

in the field. 
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4. DYNAMIC SECONDARY ION MASS SPECTROMETRY (SIMS) I MAGING 

OF MICROBIAL POPULATIONS UTILIZING 13C-LABELED SUBSTRATES 

IN PURE CULTURE AND IN SOIL. 

 

4.1 Abstract 

We demonstrate that dynamic secondary ion mass spectrometry (SIMS)-based ion 

microscopy can provide a means of measuring 13C assimilation into individual 

bacterial cells grown on 13C-labeled organic compounds in the laboratory and in field 

soil.  We grew pure cultures of Pseudomonas putida NCIB 9816-4 in minimal media 

with known mixtures of 12C- and 13C-glucose and analyzed individual cells via SIMS 

imaging.  Individual cells yielded signals of masses 12, 13, 24, 25, 26, and 27 as 

negative secondary ions indicating the presence of 12C-, 13C-, 24(12C2)
-, 25(12C13C)-, 

26(12C14N)-, and 27(13C14N)- ions, respectively.  We verified that ratios of signals taken 

from the same cells only changed modestly during a ~4.5-min period of sputtering 

with primary scanning by the erosive O2
+ beam of the dynamic SIMS instrument.  

There was a clear relationship between mass 27 and 26 signals in Psuedomonas putida 

cells grown in media containing varying proportions of 12C- to 13C-glucose: a standard 

curve was generated to predict 13C-enrichment in unknown samples.  We then used 

two strains of Pseudomonas putida able to grow on either all or only a part of a 

mixture of 13C-labeled and unlabeled carbon sources to verify that differential 13C 

signals measured by SIMS were due to 13C assimilation into cell biomass.  Finally, we 

made three key observations after applying SIMS ion microscopy to soil samples from 

a field experiment receiving 12C- or 13C-phenol:  (i) cells enriched in 13C were 

heterogeneously distributed among soil populations; (ii) 13C-labeled cells were 

detected in soil that was dosed a single time with 13C-phenol; and (iii) in soil that 

received 12 doses of 13C-phenol, 27% of the cells in the total community were more 
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than 90% 13C-labeled.   

 

4.2 Introduction 

 Linking the identity of active microorganisms with their function in situ is a 

central challenge in environmental microbiology (Madsen, 2005).  Techniques such as 

stable isotope probing (SIP), which combine molecular identification methods with 

isotopic tracers (Boschker et al., 1998; Buckley et al., 2006; Leigh et al. 2007; Lu and 

Conrad, 2005; Madsen, 2005, 2006; Manefield et al., 2002; Neufeld et al., 2007; 

Radajewski et al., 2000; Whiteley et al. 2007), are proving to be effective and 

insightful means for identifying metabolically active microorganisms (Jeon et al., 

2003; Kasai et al., 2006; Liou et al. 2008; Pumphrey and Madsen, 2008).  The 

growing application of such techniques in microbial ecology has increased interest in 

developing microscopic techniques that both confirm the role of microorganisms that 

are identified through SIP and measure the amount of isotopic label individual cells 

have incorporated the into their biomass.   

When suitable probes are available, fluorescent in situ hybridization (FISH) is 

an effective means of microscopic identification of microorganisms (Wagner et al., 

2003), and can be combined with techniques using radioactive and stable isotopes to 

identify metabolically active microorganisms.  The localization of radioactive isotopes 

can be determined through microautoradiography, and when used in combination with 

FISH, can provide insight into the structure and function of microbial communities 

(Lee et al., 1999; Ouverney and Fuhrman 1999).  For the localization and 

measurement of stable isotopes, Raman microspectroscopy (Huang et al., 2004; Huang 

et al., 2007) and secondary ion mass spectrometry (SIMS) are potentially powerful 

methods that have been successfully combined with FISH. 
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SIMS is a technique that can characterize the isotopic composition of a sample 

by first bombarding the sample surface with a primary ion beam, and then separating 

and measuring the resulting secondary ions by mass spectrometry (Chandra, 2005; 

Chandra and Morrison, 2000).  To date researchers have applied various SIMS 

techniques to pure cultures and environmental samples to measure 13C, 15N, as well as 

inorganic isotopes in bacteria.  Early pioneering studies applying SIMS to microbial 

systems used a SIMS ion microprobe in combination with fluorescent in-situ 

hybridization (FISH) to show that methane-consuming Archaea in anoxic marine 

sediments were naturally 13C-depleted (Orphan et al., 2001; Orphan et al., 2002).  A 

SIMS ion microprobe was also used in combination with autoradiography and FISH to 

show CH4 and CO2 consumption by methanotrophic microbial mats (Treude et al., 

2007).  Time of flight SIMS (TOF-SIMS) has been used to measure inorganic carbon 

and nitrogen assimilation in individual bacterial cells and fungal hyphae (Cliff et al., 

2002), and to distinguish Bacillus subtilis spores grown on different media based 

elemental signatures (Cliff et al., 2005).  Lechene et al. (2006) demonstrated the use of 

nanometer-scale SIMS (NanoSIMS) to show 15N fixation by Teredinibacter turnerae 

and not Enterococcus faecalis in pure culture, and NanoSIMS was able to distinguish 

15N-enriched Pseudomonas fluorescens that were added to a soil matrix (Herrmann et 

al., 2007).  Application of NanoSIMS to a biofilm dominated by sulfate-reducing 

bacteria showed the aggregation of extracellular proteins and biogenic zinc sulfide 

crystals (Moreau et al., 2007).  The use of an oligonucleotide probe labeled with 

iodized cytidine was combined with NanoSIMS to visualize both Escherichia coli 

grown on different amounts of 13C and 15N, and an archaeal population from a 

municipal solid waste bioreactor growing on 13C-methanol (Li et al., 2008). 

SIMS technology has tremendous potential to aid investigations examining the 

role of bacteria in the biodegradation of organic pollutants.  DeRito et al. (2005) used 
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dynamic SIMS ion microscopy to provide qualitative evidence that a soil community 

exposed to 13C-phenol was enriched in 13C relative to a population that received an 

equal amount of 12C-phenol.  However, in this study the increased 13C signal detected 

by SIMS was qualitative, and the amount of 13C incorporated into the bacterial 

biomass was unclear.  A related ratio imaging approach applied to dynamic SIMS ion 

microscopy clearly distinguished 13C-labeled from unlabeled cells in soil samples 

(Chandra et al., 2008).  In the present investigation, we show that it is possible to use 

dynamic SIMS ion microscopy to measure the degree of isotopic enrichment in single 

cells from pure cultures grown on mixtures of 12C- and 13C-labeled organic substrates.  

In addition, using pure-culture experiments to generate a dose-response curve, we 

estimated the degree of 13C-labeling in bacterial cells from a soil community that 

received 13C-phenol in a series of field soil experiments. 

 

4.3 Methods 

4.3.1 Bacterial strains and growth conditions 

Standards of 13C-labeled bacteria grown in known ratios of 13C- and 12C-

glucose were prepared by growing the naphthalene-degrading bacterium Pseudomonas 

putida NCIB 9816-4 (Serdar and Gibson 1989) overnight in mineral salts broth (MSB) 

(Stanier et al., 1966) amended with 1 g· L-1 total glucose while varying the proportion 

of 13C in the pool (Sigma 13C-glucose; 99 % purity). Initial proportions of the 13C label 

varied from 1% (natural abundance) to 25, 50, 75, or 99% 13C-glucose.  To show that 

metabolism of 13C-glucose caused proportionate labeling of cells, P. putida NCIB 

9816-4 and P. putida NCIB 9816-4.C (Stuart-Keil et al., 1998), a strain cured of the 

plasmid encoding naphthalene-catabolic genes, were grown in 6 ml MSB amended 

with 0.1% 13C-glucose (6mg) and 10 mg 12C-naphthalene (unlabeled) crystals in tubes 

sealed with a Teflon®-lined septa.  Bacterial growth and metabolism of the substrates 
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were monitored by optical density and headspace analysis of respired CO2 by GC/MS, 

respectively.  Pure culture samples were fixed for SIMS microscopy by adding 100 µl 

of bacterial culture to 300 µl of 4% formaldehyde.   

 

4.3.2 GC/MS analysis of CO2 

Procedures used were those of DeRito et al. (2005).  A Hewlett-Packard 

HP5890 gas chromatograph (Wilmington, DE) equipped with an HP5971A mass-

selective detector was used for CO2 analyses.  With high-purity helium as the carrier 

gas, a Hewlett-Packard Pora Plot Q column (25 m by 0.32 mm, 10 µm film thickness) 

was used to separate CO2 from other gaseous components.  The detector was operated 

at an electron energy of 70 eV and a detector voltage of 2,000 V.  The ion source 

pressure was maintained at 1×10-5 torr.  A splitless injection was used, and the GC 

oven was isothermal at 60°C.  Single-ion monitoring allowed simultaneous 

quantification of both 12CO2 (m/z = 44) and 13CO2 (m/z = 45).  The concentration of 

CO2 was quantified using calibration curves prepared using external standards (Scott 

Specialty Gases, Plumsteadville, PA). 

 

4.3.3 Soil field treatments 

Soil samples produced in experiments by DeRito et al. (2005) were analyzed in 

this study.  Briefly, a soil plot (Collamer silt loam) at the Cornell University 

Agricultural Experiment Station, Ithaca, NY was level and free of vegetation.  A table 

was placed over the plot (0.8 m high) to protect the experiment from rain and direct 

exposure to sunlight.  Three soil treatments received 12 daily doses of phenol, with 

each 20 µl dose containing 200 µg of phenol.  The first treatment received only 12C-

phenol and the second treatment received only 13C-phenol.  The third treatment 

received 11 daily doses of 12C-phenol and a single dose of 13C-phenol on the twelfth 
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day.  A fourth treatment was not dosed with phenol for the first 11 days, but received a 

single dose of 13C-phenol on the twelfth day.  Twenty-four hours following the final 

dose, one-tenth of a gram of surface soil was aseptically collected from the field 

treatments, fixed in 4% formaldehyde (1 ml), and stored in screw-cap glass vials. 

 

4.3.4 SIMS imaging 

Procedures used were those of Chandra et al. (2008).  A small drop (~2 µl) 

from the formaldehyde-fixed samples was smeared on the polished surface of sterile 

silicon wafer pieces (Silicon Quest International, Santa Clara, CA, about 1 cm2 surface 

area).  The samples were air dried and heat-fixed to the silicon substrate by passing 

rapidly (~2 sec) over a flame prior to SIMS analysis.  A CAMECA IMS-3f SIMS ion 

microscope was used in the study.  A 5.5 keV mass filtered primary ion beam of O2
+ 

(about 100-200 nA beam current with a spot size of 60 µm) was raster scanned over a 

250 µm2 or 500 µm2 region, depending on the need of a particular analysis, for 

imaging studies.  A 60 µm contrast aperture and 150 µm transfer optics were 

employed in the imaging mode for the detection of negative secondary ion signals.  

SIMS images of masses 12, 13, 24, 25, 26, and 27, primarily representing 

contributions from 12C-, 13C-, 24(12C2)
-, 25(13C12C)-, 26(12C14N)-, and 27(13C14N)-, 

respectively, were recorded for designated times on the Photometrics CCD camera 

capable of 14 bits per pixel image digitization.  It should be noted that under these 

instrumental conditions of mass resolution of the ion microscope imaging mode, mass 

interfering species like 13(12CH)-, 26(13C2)
-, 25(12C2H)-, 27(13C2H)-, and 27(13C14N)- 

cannot be separated from the species of interest like 25(12C13C)-, 26(12C14N)-, and 

27(13C14N)-.  However, the enhancement of signals reflected in ion microscopy images 

of masses 13, 25 and 27 from 13C-labeled phenol treated cells compared to controls 

does provide meaningful imaging of 13C incorporation in individual bacterial cells. 
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4.3.5 Image analysis 

Computer image processing was performed with DIP Station (Haydon Image 

Processing Group).  To measure the mean signal intensities for corresponding masses 

(i.e. 27 and 26), the images of corresponding masses from the same field of view were 

overlayed and registered.  A region of interest (ROI) was drawn within an individual 

bacteria cell on one image, copied onto the same cell in the corresponding image, and 

the mean pixel intensities for the corresponding ROIs between the two images were 

measured.  The relationship between masses 27 and 26 was calculated as percent mass 

27 of the combined mass 26 and mass 27 signals using the following equation: 

 

100
)27mass26mass(

27mass
27mass% ×









+
=  

Ratio imaging provided a direct comparison of the enhancement of 13C signals in 

individual bacterial cells due to the treatment with 13C-labeled phenol in direct 

comparison to the unlabeled phenol treatment.  For ratio imaging, the corresponding 

SIMS bacterial images were calibrated to a single contrast scale; then the 13C signal 

was divided by the 12C signal using the NIH’s ImageJ software.  The result is an image 

in which the value of each pixel is the ratio of one mass image to the other.  A color 

gradient map was then applied to each ratio image in Adobe Photoshop, where 

2:1=cyan, 1:1=magenta, and 0=yellow. This color scale allows clear distinction 

between the highest ratios (cyan, where 27(13C14N)- is greater than 26(12C14N)-), the 1:1 

ratios (magenta), and the fractional ratios (yellow, where 13C isotopes are scarce or 

not present).  The resulting image distinguishes which bacteria are assimilating the 

13C-labeled compound and which are not.  Overlay images were created using 

Metamorph® software.    
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4.3.6 Automated image processing 

Analysis of secondary ion signal intensities of SIMS images was performed 

with Metamorph Software (Molecular Devices).  A 1:1 correspondence was 

established between the DIP Station and Metamorph analyses of the pure culture 

standard images by first generating a mass 27 and mass 26 composite image for each 

field of view analyzed using ImageJ (NIH). ROIs were determined by generating a 

segmented image with minimum and maximum region widths and heights of 2 and 10 

pixels respectively at specific graylevels above a background intensity specific to each 

composite image. ROIs identified in composite images were transferred to 

corresponding mass 27 and mass 26 images to quantify average ROI pixel intensities.  

Field soil SIMS images and images from the pure culture experiments involving P. 

putida NCIB 9816-4 (wild-type) P. putida NCIB 9816-4.C (cured of pDTG1) were 

analyzed in the same manner as the automated analysis of the pure culture 13C-glucose 

standards. 

 

4.4 Results 

4.4.1 Effect of continuous ion beam sputtering on the constancy of isotope ratios 

Our standard SIMS protocol for analyzing microbiological samples began with 

~1 min of primary O2
+ beam exposure used for fine focusing and signal stabilization. 

Then, images of masses 12, 13, 24, 25, 26 and 27 as negative secondary ions from 

each field of view revealed the presence of 12C-, 13C-, 24(12C2)
-, 25(13C12C)-, 26(12C14N)-, 

and 27(13C14N)- in individual bacterial cells.  The surface sputtering mechanism 

utilized by dynamic SIMS is a destructive process and masses are imaged one at a 

time; therefore, it is essential to know that mass signals and calculated isotopic ratios 

from microbiological samples are consistent throughout the time images are recorded. 
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Figure 4.1. A comparison of the change in mass 27 and mass 26 signal intensities 
detected by SIMS in P. putida NCIB 9816-4 cells grown on 13C-glucose after 
exposure to the O2

+ beam for 4.5 min.  The percent mass 27 for each cell was 
calculated from signal intensities from an initial measurement of mass 27 and 26 ions 
(white bars) and signal intensities from a subsequent measurement after 4.5 minutes of 
exposure to the O2

+ beam (black bars).  Image analysis was performed using DIP 
station software. 
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The percent mass 27 relative to mass 26 before and after the 4.5 minute beam 

exposure was calculated and used to compare the change in signals from 

Pseudomonas putida NCIB 9816-4 cells grown on 99% 13C-glucose (Figure 4.1).  The 

vertical axis in Figure 4.1 did not reach 100% because several ions besides 26(12C14N)-  

contribute to the mass 26 signal (see below). Among the 24 cells randomly examined 

the average change in the percent mass 27 was 0.3% ± 5.8%, with only two cells 

showing a change of more than 10%.  This shows that the destructive dynamic SIMS 

sampling process under our experimental conditions caused minimal change in signal 

ratios over the time typically needed to record images; thus, dynamic SIMS ion 

microscopy can provide reliable data for determining isotope ratios in bacterial 

samples.   

 

4.4.2 Measurement of 13C incorporation by pure cultures 

To determine whether dynamic SIMS ion microscopy could distinguish 

between cells that are unlabeled, partially labeled, or fully labeled with 13C, we grew 

pure cultures of Pseudomonas putida NCIB 9816-4 in minimal media with known 

mixtures of 12C- and 13C-glucose.  Masses 12, 13, 24, 25, 26, and 27 were measured 

via SIMS imaging, and the average signal intensity for individual cells was measured 

both by hand drawing regions of interest (ROIs) within cells using DIP station and by 

using Metamorph® to automatically select ROIs by intensity (Figure 4.2).  Data 

generated from images of mass 27 and 26 are shown because these two masses 

provide optimal resolution among the available secondary ions.  The other secondary 

ions produced similar data to mass 27 and mass 26 for pure cultures, but have been 

found to be less effective for soil samples (DeRito et al., 2005; Chandra et al., 2008).  

Plotting the intensity of 13C containing masses against the intensity of 12C containing 

masses for individual cells revealed increases in slope that corresponded with an 



 

 71 

 
 
 
 
 
 
 
 
 
 

R
2
 = 0.6537

R
2
 = 0.8775

R
2
 = 0.8079

R
2
 = 0.796

R
2
 = 0.7141

0

40

80

120

0 40 80 120
Mass 26 signal intensity

M
a

ss
 2

7 
si

gn
a

l i
n

te
n

si
ty

99%
75%

50%

25%

1%

 
 
Figure 4.2. A scatter plot showing the relationship between mass 27 and mass 26 
signal intensities from individual cells of P. putida NCIB 9816-4 grown on 1 g· L-1 
total glucose while varying the proportion of 13C label from 99 to 75, 50, 25, or 1%.  
Each data point represents an individual bacterial cell whose mass 27 and mass 26 
signals were determined using SIMS. Up to 200 determinations were completed for 
each growth condition.  Images were recorded by dynamic SIMS ion microscopy and 
signal intensities were measured with Metamorph® software. 
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increase in 13C-glucose in the growth medium (Figure 4.2).  Plotting signal intensities 

from individual cells also showed that though signal intensity can vary greatly 

between cells with similar 13C-enrichment, the ratios between signal intensities (i.e. 

mass 27 to mass 26) are consistent.   

 Standard curves were generated by plotting the average percent mass 27 values 

calculated from the mass 27 and 26 signals from individual cells, which were grown 

on various proportions of 13C-glucose.  For each growth condition, 60 individual 

bacteria cells were measured manually and up to 200 individual bacteria cells were 

measured using a procedure with Metamorph® software to automatically select ROIs 

by intensity and size.  Cultures were grown on glucose whose 13C proportions varied 

from 1%, 25%, 50%, 75%, or 99% 13C-glucose.  Both manually measured images and 

the automated procedure using Metamorph® software produced equivalent standard 

curves (Figure 4.3).  The percent mass 27 values shows that as 13C increases in cellular 

biomass, the (13C2)
- secondary ion makes a greater contribution to the mass 26 signal 

than the (12C14N)- secondary ion.  Despite the influence of interfering masses, there is 

a positive correlation between mass 27 and 26 signals recorded by dynamic SIMS ion 

microscopy and the ratio of 13C- to 12C-glucose in the growth media (Figure 4.3).  This 

relationship can be used to quantitatively estimate 13C enrichment in samples with 

unknown carbon isotope ratios.   

In order to demonstrate that an enriched signal measured by SIMS was due to 

metabolism and incorporation of the 13C, we conducted experiments with wild-type P. 

putida NCIB 9816-4 and P. putida NCIB 9816-4.C, which was cured of pDTG1, the 

plasmid encoding naphthalene-catabolic genes.  Both the wild-type and cured strain 

were grown in minimal media containing a mixture of 13C-glucose and unlabeled (12C) 

naphthalene crystals and we monitored growth (OD), respiration, and mass 27/mass 26 

ratios in individual cells using SIMS (Figure 4.4).  As expected, the highest OD 
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Figure 4.3. Standard curves generated from pure cultures of P. putida NCIB 9816-4 
grown on 0.1% glucose composed of 99, 75, 50, 25, or 1% 13C-glucose.  Plotted points 
represent the mean percent mass 27 values calculated from the mass 27 and mass 26 
signal intensities from individual cells that were measured by automated selection with 
Metamorph® software (×, solid trendline) or manually with DIP station software (+, 
dashed trendline).  Error bars represent the 95% confidence interval for the mean of 
each sample.  A total of 60 determinations for each growth condition were completed 
manually, and up to 200 were completed automatically. 
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reading (Figure 4.4A) was achieved by the wild-type strain, able to utilize both 

glucose and naphthalene. The cured strain reached only moderate density (Figure 

4.4A), confirming it was growing on glucose, not naphthalene. The wild-type strain 

released high amounts of both labeled and unlabeled CO2 (from glucose and 

naphthalene, respectively; Figure 4.4 B), while the cured strain only respired 13CO2, 

indicating the cured strain only metabolized the 13C-glucose.   As expected from the 

above trends in growth and respiration, the ratios of masses 27/26 in individual cells 

showed that the wild-type strain exhibited a low proportion of mass 27 in its biomass 

because its cell carbon was derived from both labeled and unlabeled substrates (Figure 

4.4C).  In contrast, cured cells were fully labeled with 13C (Figure 4.4C), which 

indicates the naphthalene was not incorporated into the cellular biomass and had little 

to no influence on the SIMS signal.  Using the standard curve generated from pure 

culture standards (Figure 4.3), the percent mass 27 values in the wild-type cells 

suggested mixed isotopic compositions that ranged between 30-70% 13C for individual 

cells, confirming the wild-type strain metabolized and incorporated both the 13C-

glucose and 12C-naphthalene. 

 

4.4.3 Measurement of 13C incorporation by phenol-degraders in soil 

Confident in our methods to measure carbon isotope composition in bacteria, 

we applied SIMS ion microscopy to soil communities that were exposed to 12C- or 

13C-phenol in the field.  We plotted the mass 27 and mass 26 signal intensities from 

soil treatments that received twelve 20-µl doses (200 µg phenol per dose) of either 

13C- or unlabeled phenol (Figure 4.5). The pattern of labeling clearly shows that many 

cells in the soil receiving 13C-phenol were enriched in 13C compared to cells from soil 

receiving only 12C-phenol.  The mass 27 and 26 signal intensities from the 12C-phenol  
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Figure 4.4. The metabolism of naphthalene or glucose by P. putida NCIB 9816-4 and 
P. putida NCIB 9816-4.C is shown by (a) growth in MSB amended with unlabeled 
naphthalene crystals and 0.1% 13C-glucose, (b) production of 13CO2 and 12CO2 

respired during growth on the substrates shown in (a), and (c) mass 27 and 26 signal 
intensities for individual wild-type (wt) or cured P. putida NCIB 9816-4 cells after 
growth on the media in (a).  Signal intensities were measured with Metamorph® 
software. 
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treatment were consistent with intensities shown in Figures 4.2 and 4.3.  The mass 27 

and 26 signal intensities from the 13C-phenol treatment indicated a much more diverse 

distribution in terms of 13C content: data in Figure 4.5 clearly show cells containing a 

low (natural abundance) of 13C, as well as cells exhibiting a high degree of 13C 

enrichment.  Overlay images created by combining mass 27 images (green) and mass 

26 images (red) confirmed that the soil microbial community exposed to 13C-phenol 

contained heterogeneous populations, with many cells showing no incorporation of the 

13C-label and others showing a range of 13C incorporation (Figure 4.6A).  It is not 

possible to distinguish metabolically inactive cells from those that grew on phenol in 

the 12C-phenol treatment (Figure 4.6B).  Images created by overlaying the intensity of 

mass 27 onto mass 26 for individual cells, provided a means of direct, semi-

quantitative assessment of 13C incorporation (Figure 4.6C).   High mass 27 signals in 

cells (blue in Figure 4.6C) clearly metabolized 13C-phenol; while cells showing low 

(natural abundance) mass 27 signals in cells (yellow in Figure 4.6C) did not.  An 

image of a comparable soil sample stained with DAPI (Figure 4.6D) is provided for 

comparison with the SIMS images.  The absence of any 13C signal in many cells in 

these images (Figure 4.6) reinforce the information from Figure 4.4 that signal 

intensity is a result of 13C assimilation, not caused by physical association between the 

cell and an added labeled chemical. 

 To estimate percent 13C-enrichment in individual cells from the soil 

community dosed with either labeled or unlabeled phenol, the percent mass 27 was 

calculated for each ROI measured using Metamorph®, and percent 13C-enrichment 

was estimated using the standard curve generated from pure cultures (Figure 4.3).  

Cells from the 4 field-dosing treatments were grouped according to percent 13C-

enrichment by 10% intervals to show the distribution of 13C in the populations that  
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Figure 4.5. A scatter plot showing the relationship between mass 27 and mass 26 
signal intensities of bacterial cells detected by SIMS in soils exposed to 12 doses of 
13C-phenol (□) or 12C-phenol (■).  The signal intensities of 481 regions of interest 
(ROIs) from images of soil receiving 12C-phenol and 327 ROIs from images of soil 
receiving 13C-phenol were measured with Metamorph® software. 
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Figure 4.6. A comparison of mass 27 and mass 26 SIMS images.  Mass 27 (green) to 
mass 26 (red) overlay of field samples dosed with (A) 13C-phenol or (B) 12C-phenol. 
(C) A mass 27 to mass 26 ratio image of the same 13C-phenol exposed soil.  (D) DAPI 
image, 40x magnification, of comparable soil sample not exposed to the O2

+ beam. 
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received 12C- or 13C-phenol (Figure 4.7).  For the control treatment of soil dosed 12 

times with 12C-phenol, 98% (473 of 481) of the cells were found to have less than 10% 

13C in their biomass.  The distribution of 13C in cells from soil dosed 12 times with 

13C-phenol differed markedly from the control treatment:  only 30% (99 of 327) of the 

cells from soil dosed with 13C-phenol were found to be less than 10% 13C-labeled; 

while 27% of the cells were more than 90% 13C-labeled, suggesting many cells were 

metabolizing the 13C-phenol exclusively.  The remainder of signals from cells in the 

multiple 13C-phenol treatment were of intermediate intensity (from 20% to 80 % 

enrichment), which was likely due to a combination of mixotrophy, carbon cross-

feeding, and possible heterogeneous distribution of 13C-phenol in the soil matrix.   

Cells enriched with 13C above background levels were also detected in the two 

soil treatments that received a single dose of 13C-phenol.  From the soil community 

that only received a single dose of 13C-phenol (no unlabled substrate), 61% (704 of 

1150) were less than 10% labeled, while 33% contained between 10 and 20% 13C-

label, 4% of the cells contained between 20 and 30% label, and a small number of 

cells contained between 30 and 60% 13C-label (Figure 4.7).  Like the treatment with 

no prior exposure, the soil community exposed to unlabeled phenol (11 prior doses), 

60% (147 of 242) of the community was less than 10% labeled; however, 14% of the 

population was labeled with 20-30% 13C, and 7% of the cells contained between 30% 

and 40% 13C-label.   No detected cells in either treatment that received a single dose of 

13C-phenol were greater than 70% 13C-labeled, though the possibility of >90% 

labeling of rare cells cannot be dismissed.  Although multiple doses of 13C-phenol 

were necessary for detection the of fully labeled cells, dynamic SIMS ion microscopy 

was sensitive enough to distinguish between 13C-labeled cells and unlabeled cells in 

soil after exposure to a single dose of 200 µg 13C-phenol for 24 hours.  These cells are  
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Figure 4.7.  A bar graph comparing the distribution of 13C signal intensity in 
individual bacterial cells responding to four types of phenol treatments in a field-soil 
experiment. The four treatments were:  (i) the soil was soil dosed 12 times with 12C-
phenol (black bars, 481 ROIs measured) over a period of 12 days; (ii) no phenol was 
added for the first 11 days, only a single dose of 13C-phenol was added prior to 
sampling at the end of day 12 (diagonal lines, 1150 ROIs measured); (iii) during the 
same 12-day period, the soil was soil dosed 11 times with 12C-phenol with a final dose 
of 13C-phenol (white bars, 242 ROIs measured); and (iv) soil was dosed 12 times with 
13C-phenol (cross hatching, 327 ROIs measured).  For each treatment, the percent 13C-
enrichment of individual cells was estimated using the standard curve (Figure 4.3) 
generated from pure cultures of P. putida NCIB 9816-4 grown on known amounts of 
13C-glucose. Cells were categorized by 10% intervals.  Ratios were calculated from 
signal intensities measured with Metamorph® software. 
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likely to be the primary phenol degraders; not cells labeled through carbon cross-

feeding.  

 

4.5 Discussion 

 In this study, we demonstrate the use of dynamic SIMS ion microscopy to 

measure 13C-incorporation into individual bacteria grown in two settings:  laboratory 

media and field soil.   It was first necessary to show that although the primary ion 

beam used in SIMS erodes the sample surface, we could obtain reliable and consistent 

images of bacteria (Figure 4.1).  Overall, we found that signal change during SIMS 

analysis processing was minimal over exposure times typically needed to collect 

images.  However, occasionally signals from a small number of cells would disappear 

or appear during image acquisition, presumably due to changes to the sample surface 

caused by the primary ion beam and exposure of new cells hidden beneath the 

sampling plane.  To increase the likelihood of reliable signals it is advisable to 

optimize and limit exposure times, sequentially record images of corresponding ions 

(i.e. mass 26 then mass 27), and collect data from a large sample size.   

For dynamic SIMS ion microscopy assays to allow inferences about metabolic 

function, it was necessary to link substrate assimilation to 13C signal detection.  For 

this purpose, we chose two strains of Pseudomonas putida, one with and one without a 

naphthalene catabolic plasmid.  Absence of the plasmid prevented cells from 

incorporating carbon from naphthalene when cells were exposed to a mixture of 13C-

glucose and unlabeled naphthalene.  The data (Figure 4.4) clearly showed that 13C 

signal intensity (measured by SIMS) was proportionate to the degree of 13C-substrate 

respiration and growth.  It was possible to measure 13C incorporation in bacteria by 

imaging masses 12, 13, 24, 25, 26, and 27 representing contributions from 12(12C-), 

13(13C-), 24(12C2)
-, 25(13C12C)-, 26(12C14N)-, and 27(13C14N)- secondary ions, respectively 
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(Figures 4.2 and 4.3).  Unlike NanoSIMS and TOF-SIMS techniques, dynamic SIMS 

ion microscopy does not provide the ion resolution needed to distinguish the ion 

species of interest from potentially interfering species of the same mass.  However, 

using pure cultures grown on known amounts of 13C, we were able to show that the 

relationship between mass 26 and mass 27 signal intensities strongly correlated with 

13C-enrichment in cells (Figures 4.2 and 4.4).   

When we measured the distribution of 13C in a soil microbial community that 

had respired 13C-phenol in situ, dynamic SIMS ion microscopy allowed us to quantify 

13C incorporated into individual cells (Figures 4.5 and 4.7).  Using the calibration and 

image-processing procedures developed here and applied to our prior field soil 

experiments (DeRito et al., 2005), we found that when soil was dosed 12 times with 

13C-phenol, 27% of the soil microbial populations assimilated at least 90% of their cell 

carbon from the added 13C phenol.  The majority of cells however, were partially 13C-

labeled.  Because the phenol was applied to soil, it is likely that the availability of 

phenol was not even and that gradients were present.  Thus, some cells may have 

metabolized phenol exclusively, but did not acquire enough phenol to become fully 

labeled.  It is also likely that mixotrophs in the population were metabolizing 13C-

phenol as well as other non-labeled substrates.  Carbon cross-feeding may also lead to 

partial 13C-labeling as bacteria metabolize by-products and other cellular components 

from the primary phenol degraders.  We note that a substantial portion of the soil 

community treated with 13C-phenol never delivered a 13C-signal above background 

(approximately 60% from soil treated with one dose of 13C-phenol and 30% from soil 

treated with 12 doses 13C-phenol).  These are likely dormant cells or ones that utilize 

substrates other that phenol, or simply ones whose growth rate on phenol is relatively 

slow.  Understanding the physiology and ecological role of soil populations found to 

be inactive by SIMS microscopy is a major research frontier. 
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In order for dynamic SIMS ion microscopy to be maximally insightful as a tool 

in microbial ecology, researchers should be able to use SIMS in combination with 

techniques that identify individually labeled cells that are isotopically enriched.  We 

are exploring feasibility of using oligonucleotide probes in combination with dynamic 

SIMS ion microscopy.  Additionally, different methods of sample preparation are 

being explored, such as cryogenic sample preparation, which may help improve image 

quality and quantitative analysis.   
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