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Internet search results are a growing and highly profitable advertising platform.

Search providers auction advertising slots to advertisers on their search result

pages. Due to the high volume of searches and the users’ low tolerance for

search result latency, it is important to resolve these auctions quickly. Current

approaches restrict the expressiveness of bids in order to achieve fast winner

determination, which is the problem of allocating slots to advertisers so as to

maximize the expected revenue given that advertisers are charged what they

bid. The goal of this work is to permit more expressive bidding, thus allowing

advertisers to achieve complex advertising goals, while still providing fast and

scalable techniques for winner determination. To this end, we allow advertisers

to submit programs that express complex and dynamic bidding strategies. We

provide techniques for reducing the amount of program evaluation necessary to

solve the winner determination problem, and we study the complexity of shar-

ing aggregation computations between these programs. In addition, we also

examine the problem of providing advertisers with data about search auctions

without disclosing too much about any individual. We provide algorithms for

both checking and enforcing privacy in this context.
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CHAPTER 1

OVERVIEW

With the huge number of Internet searches performed every day, search re-

sult pages have become a thriving advertising platform. The results of a search

query are presented to the user as a web page that contains a limited number

of slots for advertisements (typically between four and twenty). On each search

result page, major search engines, like Google and Yahoo, sell these slots to

advertisers via an auction mechanism that charges an advertiser only if a user

clicks on his ad. Most of Google’s multi-billion dollar revenue, and more than

half of Yahoo’s revenue, comes from these so-called sponsored search auctions

[30]; and this market is growing quickly. By 2008, spending by US firms on

sponsored search is expected increase by $3.2 billion from 2006 and will exceed

$9.6 billion, the amount spent on all of online advertising in 2004 [31]. Further-

more, 44% of the current search engine advertisers joined the market within the

last two years [31]. With the increasing market size in mind, it is natural to ap-

proach sponsored search auctions from a database perspective in order to tackle

issues of scalability and expressiveness. This thesis is a step in this direction.

Due to the high volume of searches and the users’ low tolerance for search

result latency, it is imperative to resolve these auctions fast. Current approaches

restrict the expressiveness of bids in order to achieve fast winner determination,

which is the problem of allocating slots to advertisers so as to maximize the ex-

pected revenue given the advertisers’ bids. In Chapter 2, we look at the prob-

lem of permitting more expressive bidding, thus allowing advertisers to achieve

complex advertising goals, while still providing fast and scalable techniques for

winner determination. We allow advertisers to submit bidding programs and

1



provide techniques for finding the winning programs efficiently. The material

in Chapter 2 is joint work with Johannes Gehrke and Joseph Halpern. A prelim-

inary version of the work in Chapter 2 appears in [58].

In Chapter 3, we consider various extensions to the techniques proposed in

Chapter 2, such as modeling the case where the probability of receiving a click

depends on the advertisers placed in surrounding slots, allowing advertisers to

bid on blocks of slots in various slot layouts, and dealing with the budget un-

certainty arising from ads that have been displayed from previous auctions but

have not received clicks yet. We also examine applications of our techniques to

other settings for advertisement auctions, such as massively multiplayer online

games, and map searches. The material in Chapter 3 is joint work with Johannes

Gehrke and Joseph Halpern, and portions of this work appears in [58].

The high volume of searches presents an opportunity for sharing the work

required to resolve multiple auctions that occur simultaneously. In Chapter 4,

we introduce the problem of shared winner determination and provide tech-

niques for sharing work between multiple search auctions using shared aggre-

gation and shared sort. Our analysis suggests a general framework which we

use to study the complexity of optimally sharing various abstract aggregation

operators that might be used in bidding programs. The material in Chapter 4

is joint work with Joseph Halpern, with Mingsheng Hong and Walker White

providing many useful discussions.

In order to enable advertisers to improve their bidding strategies, it would

be helpful if search providers release historical search and auction data. How-

ever, they must do so in such a way as to limit the disclosure about any individ-

ual advertiser while still providing as much useful information as possible. In
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Chapter 5, we consider the problem of controlling the release of data to advertis-

ers so that they can learn about the market they are participating in and improve

their bidding strategies, while at the same time not disclosing too much infor-

mation about any given advertiser. The material in Chapter 5 is joint work with

Daniel Kifer, Ashwin Machanavajjhala, Johannes Gehrke, and Joseph Halpern.

A preliminary versions of this work appear in [59] and [60].

The work on this thesis was supported in part by NSF under Grants IIS-

0534064, IIS-0534404, and IIS-0725260, and by grants from Microsoft.
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CHAPTER 2

TOWARD EXPRESSIVE AND SCALABLE SPONSORED SEARCH

AUCTIONS

2.1 Introduction

With the huge number of Internet searches performed every day, search result

pages have become a thriving advertising platform. The results of a search

query are presented to the user as a web page that contains a limited num-

ber of slots for advertisements (typically between four and twenty). On each

search result page, major search engines, like Google and Yahoo, sell these slots

to advertisers via an auction mechanism that charges an advertiser only if a user

clicks on his ad. Most of Google’s multi-billion dollar revenue, and more than

half of Yahoo’s revenue, comes from these so-called sponsored search auctions

[30]; and this market is growing quickly. By 2008, spending by US firms on

sponsored search is expected increase by $3.2 billion from 2006 and will exceed

$9.6 billion, the amount spent on all of online advertising in 2004 [31]. With

the increasing market size in mind, it is natural to approach sponsored search

auctions from a database perspective in order to tackle issues of scalability and

expressiveness. This work is a first step in this direction.

Sponsored search auctions currently work as follows:

1. Bid submission. Advertisers submit bids on clicks for certain keywords

offline.

2. User search. A user submits a search query.
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3. Winner determination. Slots are assigned to advertisers by the search

provider based on the advertisers’ bids.

4. User action. The search result page is returned to the user who may now

click on one or more of the sponsored links.

5. Pricing and payment. The search provider charges an advertiser accord-

ing to some pricing rule if the user clicks on the advertiser’s sponsored

link.

The speed of the winner determination in Step 3 is crucial. Since the win-

ning ads are displayed on the search result page, winner determination must be

done before the page can be returned to the user. In current sponsored search

auctions, this winner determination can be done quickly because advertisers are

limited to submitting a single bid on whether or not the user clicks on their ad.

Unfortunately, the limited bidding in current sponsored search auctions is

insufficient to meet advertisers’ needs in two respects:

1. Bidding on Multiple Features. Once the advertisers’ ads are displayed

on the search results page, the user who submitted the query may click

on the ad and may even make a purchase as a result. Advertisers clearly

value purchases because they represent immediate revenue. They also

value clicks on their ads because they indicate potential customers. How-

ever, even if the user does not click on or buy something, advertisers might

place value on having their ads displayed simply because this increases

their chance to make an impression on the customer. Advertisers who

value brand awareness may wish their ads to be placed in prominent po-

sitions. Such advertisers may prefer their ads to be displayed near the top

5



or bottom of the list, but not in the middle. Other advertisers whose goals

are to be perceived as the leaders in their markets may wish their ads to be

displayed in the topmost slot or not displayed at all. Thus it is clear that

advertisers have valuations on clicks, purchases, and slot positions.

Unfortunately, in current search advertising platforms, advertisers are re-

stricted to bidding only on whether they receive a click on their ad. We call

this a single-feature auction, since the advertisers can express their valua-

tions on only one feature, namely, receiving a click. Our goal is to support

multi-feature auctions that would allow advertisers to express valuations on

multiple features, namely, clicks, purchases, and slot positions. Extending

bidding to multiple features is non-trivial; whereas previously the adver-

tiser submitted a single value as depicted in Figure 2.1, now the adver-

tiser can submit a whole table of values for the different combinations of

features, as depicted in Figure 2.2. The fast algorithms for winner deter-

mination that are currently used by Google and Yahoo! do not extend to

non-trivial multi-feature auctions. Moreover, even for single-feature auc-

tions, these algorithms can correctly deal with only a restricted situation,

namely, one where the expected number of clicks on an ad is “separable”

into the product of an advertiser-specific factor and a slot-specific factor.

2. Dynamic Bidding Strategies. The language that search providers such

as Google and Yahoo currently use to let advertisers express their bidding

preferences is rather limited. While the language does allow advertisers

to specify a limited number of parameters to constrain their bids (such

as a daily budget, and geographic targets), the language is often insuffi-

ciently expressive for serious advertisers to express their preferences and

how they change over time. To deal with this, advertisers employ the ser-
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vices of various third-party ad-campaign management companies (such

as iProspect, SureHits, Atlas, etc.) that monitor the outcomes of auctions

and periodically resubmit bids on behalf of the advertiser in an attempt to

approximate the advertisers’ preferences as much as possible. The kinds

of goals that they try to achieve include maintaining a specified slot posi-

tion during certain hours of the day, maintaining a slot position above a

specified competitor, and equalizing the return on investment (ROI) across

multiple keywords. The success of such ad-campaign management com-

panies demonstrates the desire among advertisers for more complex ex-

pressive bidding in search auctions. Again, advertisers want these, but

can only pick from a set of pre-defined strategies that these companies

provide.

With the increasing market size in mind, our goal is to design a framework

that allows huge numbers of advertisers to bid on a richer set of features using

dynamic bidding strategies while simultaneously allowing the search provider

to determine winners quickly. We approach sponsored search auctions from a

database perspective, and tackle issues of scalability and expressiveness. Our

main contribution is an efficient and scalable infrastructure that permits much

more expressive bidding than is currently available. In particular, we provide

• a simple but rich language that allows advertisers to express their high-

level bidding strategies as bidding programs which take as input the search

query and various statistics about auction history and performance, and

output bids on clicks, purchases, and slot positions (Section 2.2);

• an efficient, scalable, and parallelizable algorithm to solve winner deter-

mination given the bids output by the bidding programs (Section 2.3); and

7



• techniques to reduce the amount of work necessary for evaluating the bid-

ding programs of multiple advertisers (Section 2.4).

This gives advertisers direct and fine-grained control over their advertising

strategies, as opposed to limiting them to a menu of pre-defined goals, without

sacrificing speed and scalability of solving winner determination. We evaluate

our techniques experimentally in Section 2.5, and we conclude in Section 2.6.

2.2 Bidding Strategies as Programs

In this section, we formalize the notion of bidding on multiple features, and we

propose a simple language for dynamic strategies that bid on these features.

2.2.1 Multiple Features

Recall that traditionally an advertiser could only bid on one property of the out-

come, namely, whether his ad received a click. Now we would like to allow ad-

vertisers to bid on additional properties as well, namely whether a purchase was

made, and whether his ad was displayed within a desired set of slots. To each

advertiser, we make available the following predicates that indicate whether or

not the outcome has one of these desired properties.

1. Slot j , indicating that the advertiser gets slot j, for j ∈ {1, . . . , k}, with k

being the number of slots.

2. Click , indicating that the user clicked on the advertiser’s ad.

8



Table 2.1: Single-feature Valuation

Click value

Y 3

3. Purchase, indicating that the user made a purchase via a link from the

advertiser’s ad.

Conceptually, the advertiser associates a value with each truth assignment to

these predicates, as depicted in Figure 2.2. However, the size of such a repre-

sentation is exponential in the number of predicates. So we represent bids as

OR-bids on Boolean combinations of predicates instead. That is, we let the ad-

vertiser fill in a Bids table where each row corresponds to a Boolean formula of

predicates and the amount that he is willing to pay should that formula be true.

If multiple formulas are true, the advertiser can be charged the sum of the cor-

responding amounts. For example, the Bids table depicted in Table 2.3 indicates

that the advertiser is willing to pay 5 cents if he gets a purchase; 2 cents if his ad

is displayed in either positions 1 or 2; and 7 cents if he gets a purchase and his

ad is displayed in positions 1 or 2.

2.2.2 Dynamic Strategies

As we said, we are interested in designing a programming language that lets

advertisers express more complex preferences, which may change over time. In-

stead of providing advertisers with a pre-defined selection of advertising strate-

gies, we let the advertisers submit their bidding strategies as programs for the

search provider to run. Conceptually, each time a user submits a search query

9



Table 2.2: Multi-feature Valuation

Purchase Click Slot1 Slot2 Slot3 value

Y Y Y N N 7

N Y Y N N 2
...

...
...

...
...

...

Y Y N N Y 5

N Y N N Y 0
...

...
...

...
...

...

Table 2.3: Bids Table

formula value

Purchase 5

Slot1 ∨ Slot2 2

to the search provider, these programs are triggered. The main purpose of these

programs is to output bids on clicks, purchases, and slot positions that may

result from displaying their ad on the search result page. In order to do so,

each program creates a Bids table as described in Section 2.2.1 each time there

is a sponsored search auction. These programs have access to several variables

pertinent to the current auction and to the advertiser, such as the keywords in

the search query, the time of day, the advertiser’s remaining budget, the cur-

rent return on investment for the keywords that the advertiser is interested in,

and so on. These variables are stored in tables, some of which are read-only

shared between all advertisers (such as the time and location of the search) and

some of which are private to each advertiser (such as information about the

keywords that the advertiser is interested in). The programs can then be writ-

ten using simple SQL updates without recursion and side-effects. SQL triggers

10



Table 2.4: Keywords Table

text formula maxbid roi bid relevance

boot Click ∧ Slot1 5 2 4 0.8

shoe Click 6 1 8 0.2

can be used to activate programs when an auction begins and to notify pro-

grams if they received a slot, click, or purchase. Programs can modify their pri-

vate tables, although commonly used variables, such as amount spent, budget

remaining, return on investment for various keywords, etc. can be automat-

ically maintained for each program by the search provider. For example, the

advertiser-specific variables related to keywords are stored in a Keyword table,

as depicted in Table 2.4 that is private to each advertiser. Each tuple in the Key-

word table corresponds to a bid for a keyword that the advertiser is interested.

The attributes of the tuple contain, among other things, the formula for the bid,

keyword’s relevance score in the search query, the return on investment that

this keyword has provided the advertiser, the maximum amount that the ad-

vertiser is willing to bid on a click by a user who searched for this keyword, and

the amount of money that the advertiser is currently bidding for the keyword.

The search provider updates the return on investment for a keyword each time

a user searches for the keyword and then clicks on the advertiser’s ad. The bid-

ding program can be stored with its private tables to improve locality. Since

bidding programs use private tables and read-only shared tables, they do not

interact with each other when they are triggered by a new search query. Hence

they can be distributed across several machines and run in parallel if necessary.

11



2.2.3 An Example: Equalizing ROI

We now give a concrete example of a dynamic bidding strategy that bids on

multiple features. Our example combines the dynamic ROI equalizing heuris-

tic mentioned in Section 2.1 with bidding on two features, clicks and the top

slot; the advertiser is interested in receiving clicks for two keywords, “boot”

and “shoe”, but also wants to be perceived as the leading supplier of boots and

so would be willing to pay extra to be shown in the top slot if the search query

is highly relevant to boots. In order to control his spending, the advertiser has

a target spending rate that he wishes to maintain. The ROI equalizing heuristic,

as suggested in [16], tries to dynamically allocate spending across the different

keywords and bids so as to maximize the advertiser’s “bang for the buck”. If

the advertiser is underspending (i.e., his current spending rate is lower than his

target spending rate), then the advertiser increases the bids on keywords that

have been most profitable for him (i.e., those with the highest return on invest-

ment). If the advertiser is overspending (i.e., his current spending rate is higher

than his target spending rate), then the advertiser decreases the bids on key-

words that have been least profitable for him (i.e., those with the lowest return

on investment). Return on investment of a bid is the total value gained from the

keyword (e.g., number of clicks received in the top slot times the amount the

advertiser values a click in the top slot) divided by the total amount spent on it.

Figure 2.1 shows the program for this strategy. Line 1 creates a trigger that

waits for a new query to be inserted into the Query table, indicating that a new

auction is taking place. If the advertiser notices that he has been underspend-

ing (line 3), he increases his tentative bids for all relevant keywords that have

provided him with the highest ROI, taking care not to increase the bid past its
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1 CREATE TRIGGER bid AFTER INSERT ON Query
2 {
3 IF amtSpent / time < targetSpendRate THEN
4 UPDATE Keywords
5 SET bid = bid + 1
6 WHERE roi =
7 ( SELECT MAX( K.roi )
8 FROM Keywords K )
9 AND relevance > 0

10 AND bid < maxbid;
11 ELSEIF amtSpent / time < targetSpendRate
12 THEN
13 UPDATE Keywords
14 SET bid = bid - 1
15 WHERE roi =
16 ( SELECT MIN( K.roi )
17 FROM Keywords K )
18 AND relevance > 0
19 AND bid > 0;
20 ENDIF;
21
22 UPDATE Bids
23 SET value =
24 ( SELECT SUM( K.bid )
25 FROM Keywords K
26 WHERE K.relevance > 0.7
27 AND K.formula = Bids.formula );
28 }

Figure 2.1: Equalize ROI Strategy

maximum value (lines 4–10). Similarly, lines 13–19 decrease his bids for relevant

keywords with the lowest ROI if he is overspending (line 11), taking care not to

decrease his bid below zero. Next, he updates the values in the Bids table with

the sum of his tentative bids for the corresponding formulas for all sufficiently

relevant keywords, namely, those with a relevance score higher than 0.7 in the

user-submitted search query (lines 22–27). For example, if the Keywords table

is as depicted in Table 2.4 after running lines 1–20, then the output Bids table
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Table 2.5: Bids Table for Example Program

formula value

Click ∧ Slot1 4

Click 0

will be as depicted in Table 2.5.

2.3 Winner Determination

Having empowered the advertisers with a language for expressing dynamic

bidding strategies to bid on a rich set of features, we now seek efficient and

scalable techniques for the search provider to perform winner determination.

All sponsored search auction mechanisms currently in use (see, for example,

[3, 5, 30, 81]) first solve the winner-determination problem and assign slot posi-

tions according to the winning allocation, and then use some method of charg-

ing prices for the positions, such as charging each advertiser their social oppor-

tunity cost (this is known as Vickrey pricing [21, 39, 82]), or charging advertiser in

the kth slot the amount bid by the next-highest bidder (this is known as general-

ized second-pricing [30]). Note that, with most pricing schemes, a provider’s rev-

enue is not the revenue that is computed in the winner-determination problem.

Nevertheless, the first step in all these auctions is to do winner determination.

Furthermore, given winner determination as a subroutine, the pricing schemes

used in these auctions (i.e., Vickrey pricing, generalized second-pricing, etc.)

can all be expressed as very simple computations. In our work, therefore, we

focus on optimizing the winner-determination computation.
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2.3.1 How Winner Determination Works

The winner-determination problem is to compute the allocation of slots to advertis-

ers that results in the highest expected revenue for the search engine provider,

under the assumption that advertisers actually pay what they bid. In keeping

with Google and Yahoo policy, we restrict the slot allocations to those in which

no advertiser gets assigned more than one slot. This prevents extremely wealthy

advertisers from monopolizing all the available slots. We call this the assignment

restriction; in Chapter 3, we return to this issue and lift the restriction.

In order to compute the expected revenue resulting from an allocation, we

need the advertisers’ bids on clicks, purchases, and slot positions as specified in

their Bids tables. For now, we assume that we actually run all of the advertis-

ers’ bidding programs to get their resulting Bids tables. In Section 2.4, we give

techniques that require us to run only a small subset of programs under certain

conditions.

In order to compute the expected revenue resulting from an allocation, we

also need the probabilities that the formulas in the Bids tables are true in the

final outcome. We thus consider the set of all possible outcomes that describe

which slot was allocated to which advertiser together with which advertisers

received clicks and purchases. The probabilities of clicks and purchases depend

on the search provider’s allocation of slots to advertisers. For example, ads

placed at the top are more likely to be noticed and clicked on than those placed

in the middle of the page [65]. As a reasonable first-order approximation, we

assume that the probability that a given advertiser gets a click depends only

on the slot allocated to him, and that the probability that he gets a purchase

depends only on whether he got a click and on the slot allocated to him. Fur-
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thermore, we assume that the search provider has (or can estimate, using data

it has collected) these click and purchase probabilities for each advertiser and

each slot allocation to that advertiser.

Note that a complete representation of the probabilities of all possible for-

mulas for each advertiser is exponential in the number of features. Although

this is not too large in our setting, the complete set of probabilities should be

stored in a database separate from the run-time system, which itself should store

only probabilities for the formulas mentioned in the bidding programs and Key-

word tables, since these are the only probabilities that are used. Furthermore,

the probabilities can be partitioned by advertiser and should be stored with the

advertiser’s bidding program and private tables to improve locality.

2.3.2 Complexity

Given the assumptions on slot allocations and distributions above, we look at

the complexity of solving the winner-determination problem given bids in our

language. Recall that a bidding program’s output is an OR-bid represented by

a Bids table whose rows contain bids of the form “Pay $d1 for E1”, . . . , “Pay

$dm for Em”, where E1, . . . , Em are Boolean combinations of the Slot j , Click , and

Purchase predicates. Recall that, in addition, we assume that, for any allocation,

we have a distribution on outcomes, conditional on that allocation. Each for-

mula Ei can be identified with an event on the set of possible outcomes, namely,

the set of outcomes in which Ei is true. Toward proving that winner determina-

tion is tractable for bids in our language, we introduce the following definition.

Definition 2.3.1 (m-dependent event) An event is m-dependent if there are at
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most m advertisers such that probability of the event given any allocation depends only

on the placement of those m advertisers.

That is, an event is m-dependent if it is independent of the slots assigned to

all but m advertisers. For example, the event that a given advertiser gets a click

is 1-dependent, since we assumed that the probability of an advertiser getting

a click depends only on the slot position of that advertiser. Similarly, the event

that a given advertiser is in either the top slot or the bottom slot is 1-dependent,

since it depends only on the slot assigned to that advertiser. However, given

two advertisers, the event that one gets the top position and the second gets

the bottom is 2-dependent, since it depends on the slots assigned to both those

advertisers.

We assume that the representation of each m-dependent event includes the

labels of the m advertisers on whose slot assignment the event depends. The

following theorem says that winner determination is tractable for 1-dependent

events.

Theorem 2.3.2 For OR-bids that contain formulas corresponding to 1-dependent

events, the winner-determination problem is in polynomial time.

Proof Consider any bid of $d on E, where E is a formula corresponding to a

1-dependent event that depends on the slot assigned to only one advertiser, say

i. If advertisers pay what they bid, then, in all outcomes, this bid contributes

exactly the same amount to the revenue as the OR-bid of $d on E ∧ Slot i1, $d

on E ∧ Slot i2, . . . , $d on E ∧ Slot ik, and $d on E ∧ (∧j¬Slot ij), where Slot ij is a

propositional variable that is true iff advertiser i gets slot j. This is because
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Slot i1, . . . , Slot ik correspond to mutually exclusive events, given that the alloca-

tions are restricted to at most one slot per advertiser. We can thus fill out a

table of advertisers versus slots where the entry for the ith advertiser and the

jth slot is the sum of the total expected revenue from bids on formulas of form

E ∧Slot ij , assuming that advertisers pay what they bid. If we interpret this table

as the edge-weight matrix of a bipartite graph between advertisers and slots,

then the winner-determination problem is the problem of finding a maximum-

weight bipartite matching for this graph, which can be done in polynomial time

[53]. �

It follows that winner determination for bids represented by a Bids

table can be solved in polynomial time, since our assumptions in Sec-

tion 2.3.1 guarantee that any Boolean combination of predicates in the set

{Click ,Purchase, Slot1, . . . , Slotk} corresponds to a 1-dependent event.

A natural question to ask is whether we can extend our tractability results

to a language that allows advertisers to bid on formulas corresponding to m-

dependent events, for m ≥ 2. The next result says that winner determina-

tion is APX-hard if we allow bids to be placed on formulas corresponding to

2-dependent events, such as the event that one advertiser is displayed above

another. APX is the class of NP optimization problems that have polynomial-

time constant-factor approximation algorithms [46].

Theorem 2.3.3 For OR-bids that contain formulas corresponding to 2-dependent

events, the winner-determination problem is APX-hard.

Proof We reduce the winner-determination problem to the maximum-weight

feedback arc set problem by using bids on formulas corresponding to 2-
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dependent events to encode the edges in a given weighted directed graphs on

advertisers. Consider any weighted directed graph on n advertisers. Let wi,i′ be

the weight of the edge from advertiser i to advertiser i′. Let Slot ij be the proposi-

tional variable that is true iff advertiser i gets assigned slot j. For two advertisers

i and i′, let Ei>i′ be shorthand for ∨j(Slot ij ∧ ((∨j′>jSlot i
′

j′) ∨ (∧j′¬Slot i
′

j′)), which

corresponds to the event that advertiser i gets a slot and is placed above adver-

tiser i′ who may or may not get a slot. Then Ei>i′ corresponds to a 2-dependent

event, since it depends on the slots assigned to advertisers i and i′. Let each

advertiser i place the following bids: for each i′ 6= i, bid wi,i′ on Ei>i′ . Then, as-

suming advertisers pay what they bid, revenue of wi,i′ will be generated if and

only if advertiser i is placed above advertiser i′. Then winner determination is

equivalent to the problem of finding the maximum-weight feedback arc set over

all size-k subgraphs, which is APX-hard in n and k [46].

In our reduction, each formula in an advertiser’s OR-bid corresponds to a

2-dependent event. This does not preclude the set of all advertisers that these

events depend on from being large (e.g., an advertiser’s OR-bid could contain

n − 1 formulas of the form Ei>i′ for each i′ 6= i). However, the reduction above

gives us an NP-hardness result even if the OR-bids are restricted so that all the

events corresponding to formulas depend on at most two other advertisers in

total (e.g., if each advertiser’s OR-bid contains at most 2 formulas of the form

Ei>i′ with i′ 6= i). This is because the maximum-weight feedback arc set problem

is NP-hard even if the input graphs have degree 3 [64, 48]. �
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Figure 2.2: Separable and Non-separable Click Probabilities

Slot1 Slot2

Nike 0.8 0.4

Adidas 0.6 0.3

Slot1 Slot2

Nike 0.7 0.4

Adidas 0.6 0.3

2.3.3 Existing Allocation Algorithms

The allocation algorithms used by Google and Yahoo, as well as those studied in

the literature [5, 3, 30, 81], deal with the issue of scalability by assuming that the

probability of a click resulting from assigning a slot to an advertiser is separable,

that is, it can be written as the product of an advertiser-specific factor and a

slot-specific factor. To illustrate this notion of separability, we provide examples

of separable and non-separable click probabilities in Figure 2.2. The left matrix

in Figure 2.2 is separable because the entries in the matrix can be split into the

product of advertiser-specific factors (namely, 4 for Nike and 3 for Adidas) and

slot specific-factors (namely, 0.2 for slot 1, and 0.1 for slot 2).

When the click probabilities are separable, it is easy to see that winner de-

termination can be performed by assigning the advertisers with jth highest

advertiser-specific factor to the slot with the jth highest slot-specific factor.1 This

can be done in time O(n log k).

Note that the assumption of separability implicitly assumes that the event

that an advertiser gets a click is 1-dependent. Indeed, it assumes the event that

an advertiser gets a click depends on only that advertiser’s slot assignment. But

separability requires much more 1-dependence; it requires that the ratio of the

expected number of clicks on one advertiser in a slot and the expected number

1A more detailed description of this algorithm is given in Chapter 4.
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of clicks on another advertiser in the same slot is the same for all slots. Thus,

separability is a very brittle property; if we change one number in a separable

matrix, it will no longer be separable (as seen, for example, in Figure 2.2).

Not only is separability a much stronger requirement than 1-dependence,

but the techniques for fast winner determination that use this assumption do

not suffice to deal with our bidding language. In particular, they cannot deal

with the situations described in Section 2.1 where one advertiser wants to be

displayed in the top slot or not displayed at all, while another wants to be dis-

played in either the top or bottom slots but not in the middle slots. (Bids repre-

senting these preferences can be easily expressed in our language.)

2.3.4 Maximum-Weight Bipartite Matching

We proved Theorem 2.3.2 by showing that winner determination in this case

is equivalent to maximum-weight bipartite matching between advertisers and

slots, where the edge-weight between an advertiser and a slot is the expected

revenue obtained by assigning that slot to that advertiser. The fastest known

(non-parallel) algorithm to solve this is the Hungarian algorithm, invented by

Kuhn [53] (also known as the Kuhn-Munkres algorithm after being revised by

Munkres [62]); it finds the best matching in time O(nk(n + k)) where n is the

number of advertisers and k is the number of slots. Since this is quadratic in n,

this will not scale well. We want to deal with situations where n can be quite

large (possibly in tens to hundreds of thousands). To make the problem scal-

able, we need it to be linear in n, the number of advertisers. There are parallel

algorithms for maximum-weight matching [36], but these require prohibitively
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Table 2.6: Expected Revenue Matrix

Slot1 Slot2

Nike 9 5

Adidas 8 7

Reebok 7 6

Sketchers 7 4

large numbers (typically Ω(n2)) of processing units in order to achieve linear

running time.

2.3.5 Our Algorithm

We now give a scalable winner-determination algorithm that takes advantage

of the fact that k, the number of slots, is quite small (say less than 20) compared

to n, the number of advertisers. Indeed, n is growing rapidly every year while k

remains the same. We can modify the Hungarian algorithm to get aO(nk log k+

k5) algorithm by considering only those advertisers whose values are in the top

k highest for some slot. That is, for each slot, we consider the k advertisers

who would produce the top k expected revenue if placed in that slot. We take

the union of these advertisers over all the k slots, and consider the bipartite

subgraph containing only these advertisers along with all the k slots. We then

solve maximum-weight bipartite matching problem for this reduced bipartite

graph.

As an example, consider the expected revenue matrix as depicted in Ta-

ble 2.6. There are two slot positions available and four advertisers. The top two
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Figure 2.3: Bipartite Graph Figure 2.4: Reduced Graph

expected revenues for the first slot come from Nike and Adidas, while the top

two expected revenues for the second slot come from Adidas and Reebok. The

corresponding edges in the original bipartite graph between advertisers and

slots have been depicted in bold in Figure 2.3. This bipartite graph is then re-

duced to contain only those advertisers with an adjacent bold edge as depicted

in Figure 2.4.

We observe that the maximum matching for the original problem must occur

for this smaller problem, since if a maximum matching in the original problem

assigned a slot to an advertiser who was not among the top k bidders for that

slot, we can simply reassign that slot to one of these top k bidders who is not

assigned any slot. Note that, since there are only k − 1 other slots, at least one

advertiser in the top k is guaranteed to remain unassigned.

Finding the relevant advertisers takes timeO(nk log k) because, for each slot,

we can find the top k bidders for that slot in time O(k + n log k) by maintaining

a priority heap of size at most k. There are at most k2 such advertisers, since in

the worst case we will have a distinct set of k advertisers for each of the k slots.

Hence, running the Hungarian algorithm on the reduced graph takes timeO(k5)

for a total running time of O(nk log k + k5) for our algorithm.
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Parallelization. Our technique lends itself very well to parallelization. Note

that in our setting there is typically already a high amount of parallelized infras-

tructure present, since the bids are collected from advertisers in a distributed

way. We construct k networks of computers each in the form of a binary tree of

height O(log n) with n leaves. We can compute a maximum matching in time

O(k log n + k5) as follows. For each slot j, we consider the jth binary tree net-

work, which will ultimately compute the top k bidders for that slot at the root:

1. The ith leaf node in the jth network starts out with the expected revenue

from assigning slot j to advertiser i.

2. Each internal node gathers the top k bidders (along with their correspond-

ing bids) from its two children, and combines them into a single list of top

k bidders. This takes time O(k) for each of the O(log n) levels of the tree,

since each level of the tree works in parallel.

3. The root nodes in each of the j-networks take the union of their lists of bid-

ders and compute the maximum-weight matching of these bidders with

the k slots using the Hungarian algorithm. This takes time O(k5), since

there are k slots and at most k2 bidders considered.

Note that we can mix sequential processing with parallel processing by

running more than one program sequentially on each machine, computing

the top k bids, and then aggregating using a tree network as before. If we

have a binary tree network with p nodes, then the total running time becomes

O(n
p
k log k + k log p+ k5).

Finally the O(k5) part of the algorithm (i.e., the part resulting from running

the Hungarian algorithm on the reduced bipartite graph) can be reduced to
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O(k2) using a parallel algorithm, such as that of Fayyazi et al. [36]. The number

of parallel processing units required is O(k5), which is independent of n.

2.4 Top-k Program Evaluation

In Section 2.3.5, we showed that, in order to solve winner determination quickly,

we need to find the advertisers with the top k expected revenue for each slot.

We can easily do this if we have the bids output by the advertisers’ programs.

However, getting these bids for a given search query requires, in the worst case,

running each advertiser’s program for that query. This itself can be quite expen-

sive. An obvious step toward alleviating this problem is for search providers to

use their proprietary keyword matching algorithms to prune away advertisers

who are not interested in the search keywords for the current auction. How-

ever, this is not enough if the search query contains a popular keyword, such

as “music” or “book”, where the set of interested advertisers can still be large.

In this section, we show that we can further reduce the amount of work by tak-

ing advantage of knowledge of the structure of the advertiser’s programs. To

simplify exposition, we assume that advertisers’ programs output bids on only

Click ∧ Slot1, . . . ,Click ∧ Slotk. It is easy to incorporate bids on other formulas,

since both Click and Purchase are assumed to be 1-dependent events.

2.4.1 Threshold Algorithm

We start by considering a situation where the only difference between the pro-

grams used by different advertisers is in the values of certain advertiser-specific
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parameters. More precisely, for each slot j ∈ [k], suppose that each advertiser’s

bids depends on a set of (numeric) parameters Xj in a monotonic way. That is,

there is a monotonic function fj : Xj → R+ that takes as input a value for each

parameter in Xj and outputs a bid for a click in slot j. We allow some subset

of the parameters Yj to be advertiser-specific: these can vary from advertiser to

advertiser (e.g., the amount that they value a particular keyword, the amount

of budget remaining, etc.).

Suppose further that these parameters Yj are updated only by programs that

win the auction. In Section 2.4.3, we consider the case where all programs can

update their state; nonetheless, restricting updates to winning programs is not

unreasonable, since most useful advertiser-specific quantities (such as number

of auctions won, amount spent so far, return on investment for a given keyword,

etc.) change only when the advertiser wins an auction.

The rest of the parameters Zj = Xj \ Yj can be thought of as public global

parameters, and are the same for all advertisers (e.g., the keyword scores as-

sociated with the user’s search query, the time and date, the number of times

the keywords in search query have appeared today). As an example, consider

the situation where advertisers all use the same general strategy of starting each

day by bidding low and then gradually increasing their bids as the end of the

day approaches. However, they each start with a different amount and might

increase their bids at different rates. The starting amounts and the rate of in-

crease would be advertiser-specific parameters in Yj , and the time of day would

be a global parameter in Zj .

For each advertiser i and each slot j, let the edge weight between advertiser

i and slot j be wi,j × fj(yi,j, zj), where wi,j is the probability of advertiser i get-
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ting a click in slot j, yi,j ∈ Yj are the values of the advertiser-specific parameters,

and zj ∈ Zj are the values of the global parameters. We previously showed that

we can solve the maximum-weight matching in time O(nk log k + k5). Under

the assumptions above, we can further reduce the O(nk log k) portion that finds

the top k bidders for each slot as follows. For a given slot j, we also store a list

of bidders sorted by wi,j and incrementally maintain |Yj| lists of bidders, each

sorted by one of the parameters in Yj . We can then run the threshold algorithm

[34] with these lists as input to find the top k advertisers with the highest values

of wi,j×fj(yi,j, zj). Note that we do not need to maintain lists for the parameters

in Zj since all advertisers have the same value for these parameters. Since fj is

monotonic, the threshold algorithm is instance optimal for the class of algorithms

that find the advertisers with the top k values of fj(xi,j) without making “wild

guesses” (i.e., the algorithms must not access an advertiser until that advertiser

is encountered via a sequential scan of one of the lists). Instance optimality

means that, for any input, the threshold algorithm finds the top k values within

a constant factor of the time it takes the fastest algorithm that avoids wild guess

on that input. Given these top k advertisers for each slot, we take O(k5) fur-

ther time to compute the winners as described in Section 2.3.5. To maintain the

sorted lists, once the k winners have been computed, we update their Yj pa-

rameters and accordingly update their positions in the sorted lists, which takes

O(|Yj|k log n) time.

2.4.2 Bid Range Tracking

In the previous section, we examined programs with the same basic structure.

We now examine programs with differing structures. Again, we assume that
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the programs are such that only programs that win the auction update their

private state. Our goal in this section is to reduce work by performing the top

k computation over a restricted set of advertisers in most rounds, while only

periodically having to evaluate the bidding programs of all advertisers.

We use the following observation. Let Ui,j and Li,j be upper and lower

bounds on output bid of advertiser i’s program for slot j. Then we only need to

consider those programs i for which Ui,j is at least as high as the kth highest Li,j

value.

The algorithm maintains a partition the advertisers’ programs into

DefiniteLosers and PossibleWinners, keeping track of upper bounds on the ex-

pected revenues for all advertisers and of lower bounds on the expected rev-

enue for just those advertisers in PossibleWinners. At every step, the partition is

updated by running the following procedure:

1. Compute the expected revenue only for programs in PossibleWinners.

2. Compute the top k expect revenue amongst the exact bids from programs

in PossibleWinners.

3. Update the upper and lower bounds for the expected revenue for the pro-

grams in PossibleWinners.

4. Update the upper bounds for advertisers in DefiniteLosers.

5. Move an advertiser from DefiniteLosers to PossibleWinners if her up-

per bound is at least as high as the kth-highest lower bound from

PossibleWinners.

6. Move an advertiser from PossibleWinners to DefiniteLosers if her upper

bound is less than the kth-highest lower bound from PossibleWinners.
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We can store the programs in DefiniteLosers in a max-heap, prioritized by the

upper bound for the expected revenue from that program, in order to perform

steps 5 and 6 efficiently. If PossibleWinners is much smaller than DefiniteLosers,

the major savings come from finding an upper bound that does not change if an

advertiser loses the auction. This eliminates the need to perform step 4.

As an example, we take the inputs to the program to be: geographic rele-

vance, temporal relevance, user profile relevance, keyword relevance, number

of clicks received so far today, amount paid for clicks so far today, and daily

budget remaining. We make the reasonable assumption that the output bid is

increasing with respect to the first four parameters. Notice that the last three

parameters do not change for losing bidders. (They also happen to be mono-

tonic with respect to time for a given day, but we do not take advantage of that

here.) Thus we can use, as an upper bound, the value of the bidding function

supplied with the maximum possible values for the relevance parameters and

current values for the last three parameters. For a lower bound, we can supply

the minimum values for the relevance parameters that result in a non-zero bid.

2.4.3 Logical Updates

We now consider the case where all program update their state, not just the win-

ners. In certain situations, it is possible to reduce the amount of work done in

this case as well. Consider a situation where many programs update their state

using an operation that maintains their relative bid ordering. For example, sup-

pose that many bidders are using the ROI heuristic described in Section 2.2.3,

each with possibly different target spending rates and maximum bids. As long
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as certain conditions hold (namely, the bid is above zero and the spending rate

is above the target spending rate), the heuristic will decrement its bid for a

given keyword. Thus, if we can maintain a decrement list—that is, a list of pro-

grams, sorted by their bid, that are currently decrementing their bid for a given

keyword—we can avoid explicitly decrementing each program’s bid, by instead

performing a single logical decrement in constant time. That is, the decrement

list is associated with a single adjustment variable, initially zero. A program’s bid

is then the sum of the adjustment variable and the program’s stored bid. So,

in order to decrement the bids of all programs in the list, we simply decrement

the adjustment variable. The sorted order is maintained because all programs

in the list adjust their bids by the same amount.

Of course, the ROI heuristic eventually stops decrementing the bid and starts

to increment it (if the spending rate drops below the target) or keep it constant

(if the bid is zero) instead. At this point we must move the program to an in-

crement list or a constant list as appropriate (similar to a decrement list, except

that the adjustment variable respectively increments or remains constant). At

first glance, this would seem to involve checking checking the conditions for

each program at every auction. However, we observe that such conditions can

often be reduced to waiting for a shared monotonic variable (such as time, or

the number of times a given keyword has occurred) to reach a critical value. For

example, in the ROI heuristic, the spending rates of losing programs decreases

with time, since their amount spent remains constant. We can thus compute

the next “critical” time that a program would have to stop decrementing and

start incrementing assuming it continued to lose. Similarly, we can compute

the number of auctions for given keyword necessary before its bid would be

decremented to zero and it would have to remain constant at zero. We maintain
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Figure 2.5: Winner Determination Performance

a list of triggers for the relevant shared monotonic variables, sorted by critical

value, that when activated move a bidding program to the appropriate incre-

ment, decrement, or constant list, and insert the appropriate new triggers. This

way, we do work only for programs that win an auction and for triggers whose

critical values have been reached.

2.5 Experiments

To evaluate our fast winner-determination algorithm, we compare the perfor-

mance of four methods for solving the winner-determination problem. The first

method (LP) solves the linear program formulation of the winner-determination

problem. We can prove that this linear program is guaranteed to have an inte-
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Figure 2.6: Reducing Program Evaluation

ger optimum using a theorem of Chvátal [20], by showing that the rows of the

constraint matrix represent the maximal cliques of a perfect graph. The second

method (H) uses the Hungarian algorithm in a straightforward way to compute

the maximum-weight bipartite matching in the bipartite graph with advertisers

on the left and slots on the right, where the weight of an edge from an advertiser

to a slot is the expected revenue from assigning that slot to that advertiser. The

third method (RH) is our winner-determination technique from Section 2.3.5,

which first reduces the bipartite graph. The fourth method (RHTALU) aug-

ments RH with the techniques for reducing program evaluation from Section 2.4

using the threshold algorithm together with logical updates with triggers.

We used 15 slots in all cases. For simplicity, search queries were generated at

a constant rate, each containing one keywords chosen uniformly at random out
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of 10 keywords. That chosen keyword was given a relevance score of 1 for that

query, while other keywords had a relevance score of 0. All bidders used the

ROI heuristic described in Section 2.2.2. For each keyword, the bidders’ value

for a click was generated uniformly at random between 0 and 50 (subject to

each bidder having at least one non-zero click value). The target spending rates

were chosen uniformly at random between 1 and the bidder’s maximum value

over all keywords. The interval [0.1, 0.9] was partitioned into 15 disjoint inter-

vals, with the (j+ 1)-highest interval associated with slot j. The probability of a

given advertiser getting a click in a given slot was generated uniformly at ran-

dom within that slot’s interval. We used a slight generalization of generalized

second-pricing to charge the advertisers who received clicks.

The entire auction system, including the ROI heuristic, was implemented in

C++. We used the GNU Linear Programming Kit to solve the linear program

via the simplex method.2 We ran the experiments on an AMD Athlon 64 3800+

processor with 1GB of RAM.

Figure 2.5 shows, for each of the four methods, the average time taken per

auction (over 100 auctions) as we increase the number of bidders. We observed

roughly an order of magnitude improvement of the Hungarian method over

naive linear programming solution, and further order of magnitude improve-

ment using our reduced bipartite graph technique. Figure 2.6 compares the per-

formance of methods RH and RHTALU in more detail. It plots the average time

taken per auction (over 1000 auctions) as we increase the number of bidders. We

observe that our techniques for reducing program evaluation from Section 2.4

give a significant further improvement in performance.

2We found that the library’s interior point method was much slower than the simplex
method for our workloads.
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2.6 Conclusions

In this chapter, we highlight the need for more expressive bidding in sponsored

search auctions. To address this, we propose a framework that empowers ad-

vertisers with an expressive bidding language, and we provide efficient, scal-

able, and parallelizable techniques for performing winner determination given

bids expressed in our language. In the next chapter, we build upon the material

presented here, and discuss several interesting extensions to our techniques, as

well as applications to other advertising scenarios.
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CHAPTER 3

EXTENSIONS AND APPLICATIONS TO OTHER ADVERTISING

AUCTIONS

In this chapter, we present some interesting extensions of the techniques we

developed in the previous chapter. In Section 3.4, we discuss applications of

these techniques to other kinds of advertising auctions.

3.1 Beyond 1-dependence

So far, our results have assumed that the probability that an advertiser receives

a click or a purchase depends only on the slot to which that advertiser was as-

signed. However, it is easy to think of situations where this assumption might

not be true. For example, if the slot assigned to an advertiser for a small com-

pany is just below a very large and popular competitor, then it is likely that the

competitor will receive a substantial portion of user clicks that might otherwise

have gone to the smaller advertiser had the competitor not been present.

Thus, the probability of receiving a click (or a purchase) would depend on

who else displays an ad and in what position. In the worst case, the probability

would depend on the entire slot assignment. The representation of such a gen-

eral probability distribution would be quite large (O(knk)); it is not clear that

we can determine winners much better than with the brute force algorithm that

considers each of the possible
(
n
k

)
k! assignments.

Moreover, advertisers could value two assignments differently even if both

assignments may give the advertiser the same slot. For example, consider two

assignments, both of which assign an advertiser slot 2. However, in the first

35



assignment, slot 1 is given to a very famous company, while in the second as-

signment, slot 1 is given to a relatively unknown company. Then the adver-

tiser in slot 2 would naturally prefer the second assignment to the first, since

the famous company poses a serious threat to the advertiser in terms of divert-

ing away clicks. Representing such general valuations would also require large

space (O(knk−1)) in general.

We now consider two extensions to our existing framework, both of which

allow events that are not 1-dependent but, at the same time, do not require us

to store such large distributions and valuations.

3.1.1 Heavyweights and Lightweights

For a given search auction, suppose that the advertisers are classified into either

heavyweights (famous advertisers) or lightweights (relatively unknown advertis-

ers). One way for the search provider to decide which advertisers are heavy-

weights is to select those advertisers with the most clicks so far.

We now allow the probability that a given advertiser gets a click (or a pur-

chase) to depend not only on his slot position, but also on which slots have

heavyweight advertisers and which slots have lightweight advertisers. We also

allow advertisers to place bids that depend on which slots get heavyweights and

which slots get lightweights, in addition to placing bids on click, purchases, and

slot positions as before. Thus, an advertiser might bid 3 cents if he gets slot 2 and

if there is a lightweight advertiser in slot 1. Advertisers could even place more

complex bids, such as bidding on having no heavyweights within 3 slot posi-

tions above or below his slot in addition to having no more than 2 heavyweights
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appear anywhere else. The representation of the probability distributions and

valuations now become O(k2k−1), and does not depend on n.

In order to solve the winner-determination problem, we must find an assign-

ment of slots to advertisers to maximize expected revenue (assuming advertis-

ers pay what they bid) given these new valuations and distributions. Suppose

that we knew exactly which slots get heavyweight advertisers in such a rev-

enue maximizing assignment. We call these slots heavyweight slots, and call the

remaining slots lightweight slots. Then we can solve the winner-determination

problem by simply solving two disjoint maximum-weight bipartite match-

ing problems: one matching the heavyweight advertisers to the heavyweight

slots, and the other matching the lightweight advertisers to lightweight slots.

And if we do this for each possible way to choose heavyweight slots, we can

find the assignment that maximizes expected revenue over all possible assign-

ments. Moreover, the maximum-weight bipartite matching problems for dif-

ferent choices of heavyweight slots can be solved independently and in par-

allel. Therefore, since there are 2k ways to choose heavyweight slots, we can

solve winner determination in time O(2k(n log k + k5)) in series, or in time

O(n log k + k5) in parallel using 2k processing units. Note that the number of

parallel processing units is independent of the number of advertisers n. There-

fore, this approach becomes practical when k is small, say 10 or less, which

seems reasonable in practice.
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3.1.2 Types

Often the search keyword might interest advertisers who are not competing

with each other for sales. For example, a keyword like “games” might inter-

est both sports stores and a video game stores. A large video game advertiser

placed would not drain clicks away from a sports store advertisement placed

just below it as much as it would drain clicks from another video game adver-

tiser. We could therefore extend our model to incorporate the notion of types.

Each advertiser has a type (e.g., ‘video game store’, ‘sports store’, etc.), and if

advertisers of the same type are displayed, they affect each other’s click-through

and purchase rates, whereas advertisers of different types do not affect each oth-

ers click-through and purchase rates.

We now allow the probability that a given advertiser gets a click (or a pur-

chase) to depend on his slot position as well as on the set of slots that have

advertisers who are of the same type. We also allow advertisers to place bids

on the set of slots that are assigned to advertisers of their own type, in addition

to placing bids on click, purchases, and slot positions as before. Thus, an ad-

vertiser might bid 3 cents if he gets slot 2 and if there is a competitor in slots 1

or 3. Typically, an advertiser would bid less for an assignment with many other

advertisers of his type, since these are the advertisers that give him the most

competition. In general, the storage requirement for each advertiser’s valua-

tions and click and purchase probability distributions is O(k2k−1), similar to the

heavyweight-lightweight model.

For winner determination, we generalize the technique employed in com-

puting winners for the heavyweight-lightweight model. That is, for each possi-

ble way to assign types to slots, we run a separate winner-determination com-
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putation, giving us a running time of O(gk(n log k + k5)) in series, or in time

O(n log k + k5) in parallel using gk processing units, where g is the number of

types of advertisers bidding in the auction.

3.2 Beyond the Assignment Restriction

In Chapter 2, we restricted the types of slot allocations to those in which each

advertiser got no more than one slot. In this section, we examine what happens

when we remove this restriction. If we allow advertisers to receive multiple

slots, then the winner-determination problems looks rather easy: we simply

assign each slot to the advertiser with the highest expected revenue in that slot.

Unfortunately, such an approach has an important shortcoming: it ignores

the fact that consecutive slots in an array of slots are often complementary goods.

That is, advertisers might value winning both of two adjacent slots more than

the sum of the values of winning each slot alone. The reason for this is that

adjacent slots give advertisers the advantage of being able to combine the two

slots to create a larger ad, perhaps even using a larger font size, thus making

their advertisement stand out more. In such case, the value of winning multiple

adjacent slots in not additive with respect to the value of winning the individual

slots by themselves. Furthermore, the click-through rate of such an ad in the

larger combined slot is no longer a simple combination of independent click-

through rates from the two adjacent slots. We thus extend our model to allow

for valuations and click and purchase probability distributions on ads that span

blocks of adjacent slots.

39



Figure 3.1: List Layout

3.2.1 List Layout

For the moment, we restrict our attention to one-dimensional arrays of slots, as

depicted in Figure 3.1. We call such a layout of advertisement slots a list lay-

out. List layouts are currently used by most of the major search engines such as

Google and Yahoo. In this setting, the blocks are slot intervals, comprising of a set

of one or more adjacent slots in the list. Letm be the number of such slot interval

blocks. Then m ∈ θ(k2), where k is the number of slots. We allow advertisers

to place OR-bids on these slot intervals instead of on individual slots. Accord-

ingly, we add predicates of the form Slotx−y for each 1 ≤ x ≤ y ≤ k that the

advertiser can use in their OR-bid table, in addition to the predicates described

in the previous chapter. The predicate Slotx−y indicates that the advertiser gets

all the slots between and including slots x and y. An example OR-bid table is

depicted in Table 3.1, where the advertiser is willing to pay $2 for slot 1 alone,

$1 for slot 2 alone, but $4 if he gets both slots 1 and 2.

We maintain separate click and purchase probabilities for each advertiser in
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Table 3.1: Interval Bids Table

formula value

Slot1 2

Slot2 1

Slot1−2 4

each slot interval. Therefore, the space requirements for storing an advertiser’s

bids and click- and purchase-probabilities increase from O(k) to O(k2).

Winner Determination

We can solve the winner-determination problem as follows. With each slot in-

terval, we associate the advertiser who would provide the highest expected

revenue if displayed in that interval. This takes time O(nm), where m is the

number of blocks or slot intervals. Now construct a weighted undirected graph

where each node corresponds to a slot interval, and the weight of the node is

the expected revenue associated with the advertiser associated with that slot as

computed above. Two nodes have an edge between them iff the intervals cor-

responding to the nodes intersect. By definition, this graph is an interval graph,

i.e., a graph whose nodes represent intervals, with an edge between two nodes

whose corresponding intervals overlap. If we had a maximum-weight indepen-

dent set of this graph, then we could assign the slot intervals corresponding to

nodes in this independent set to the highest advertisers associated with these

intervals. Such an allocation would be feasible, since the independent set cor-

responds to a set of mutually disjoint intervals, and hence no slot would be

assigned to more than one advertiser. Furthermore, such an allocation would
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be a solution to the winner-determination problem, since a maximum-weight

independent set corresponds to an allocation with maximum expected revenue.

Thus, winner determination boils down to finding the maximum-weight

independent set of an interval graph containing O(k2) nodes. Finding a

maximum-weight independent set of the intersection graph is equivalent to

finding a maximum-weight clique of the complement of the intersection graph.

This is the graph whose nodes are blocks and whose edges connect nodes corre-

sponding to disjoint blocks. We call this the non-intersection graph. Suppose we

could impose directions on the edges of the non-intersection graph such that

they satisfy transitivity. Note that for a list layout, we can do this by directing

the edge between two disjoint intervals from the lower interval to the higher

interval, assuming, without loss of generality, that the list is oriented vertically.

Then we can solve winner determination in time O(m3), where m ∈ θ(k2) is the

number of blocks, using the following algorithm proposed by Even et al. [32].

We proceed inductively, by considering each node in an order corresponding to

any linearization of the topological ordering. For each such node, we compute

the maximum-weight clique in the subgraph induced by all nodes considered

up to this point and containing this node. We can find such a clique by finding

the maximum-weight clique from the set of cliques obtained by unioning the

node under consideration with each of the cliques associated with the preced-

ing nodes that have edges into the node under current consideration. Note that

transitivity guarantees that the union of the node and a clique containing a pre-

ceding node is also a clique. Once we have encountered all nodes, we can find

a clique of overall maximum weight in the non-intersection graph by consider-

ing the clique associated with each node and picking the one with the highest

weight. Furthermore, if we store the slot intervals sorted by their endpoints,
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then we can find a maximum-weight independent set in time O(m) = O(k2)

[37]; hence, winner determination takes time O(nk2).

3.2.2 Other Layouts

We now turn our attention to layouts other than lists. For example, instead of

displaying a vertical list of ads on the right-hand side of the page, the search

provider might display ads all around the border of the page, as depicted in

Figure 3.2. Alternatively, the search provider might display ads as a vertical

list with horizontal rows of ads protruding out of the list in-between various

sections of the page, as depicted in Figure 3.4. With layouts such as these, the

winner determination algorithm described above no longer works, since it is

specific to linear layouts.

Consider the graph whose nodes are slots and whose edges connect nodes

corresponding to adjacent slots. We call this the layout graph of the slots. A

block of slots is any set of slots corresponding to a connected subgraph of the

layout graph. Let m be the number of such blocks. Following the approach

from the previous section, we construct the intersection graph of the blocks that

the advertisers can bid for. This is the graph whose nodes represent blocks and

whose edges connect nodes corresponding to blocks that intersect. As in the

previous section, once we have associated each block with the advertiser who

produces the highest expected revenue in that block, the solution to winner

determination is given by finding a maximum-weight independent set of the

intersection graph and then assigning each block in this independent set to its

associated advertiser.

43



Figure 3.2: Ring Layout

Ring Layout

We say that a layout is a ring layout if the layout graph is a simple cycle, as de-

picted in Figure 3.2. In this case, the number of blocks, m is θ(k2), and the inter-

section graph of blocks is a circular arc graph (i.e., one which is the intersection

graph of arcs of a circle), for which finding the maximum-weight independent

set is known to be solvable in time O(m2) [40, 74]. Thus, winner determination

for a ring layout can be solved in time O(nk4).

Grid Layout

We say that a layout is a k1 × k2 grid layout if the layout graph is a k1 × k2

grid, as depicted in Figure 3.3. These present a problem because the number

of blocks is exponential. Even if we restrict ourselves to rectangular blocks, for

which there are θ((k1k2)2) blocks, the problem of finding a maximum-weight

independent set is NP -hard and is in fact inapproximable to within a o(log k)
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Figure 3.3: Grid Layout

factor of optimal by any polynomial-time algorithm unless P = NP [19]. This

means that selling 2-dimensional blocks of screen real-estate is fundamentally

harder than selling blocks in a linear list. Nevertheless, if there a small number

of blocks (e.g., if at least one dimension of the grid is small), then we can use an

O(2m)-time brute force solution, where m is the number of blocks, resulting in

an O(nm+ 2m)-time winner determination algorithm.

If we restrict the assignment of blocks to ones where the blocks form an

axis-aligned recursive subdivision of the grid, then winner determination can

be achieved in polynomial time. Moreover, the restriction to subdivisions leads

to a more comprehensible display of advertisements than if the ads tiled the

grid in an arbitrary manner. We call an independent set of a grid’s intersection

graph a subdivision set if the blocks corresponding to the nodes in the indepen-

dent set form an axis-aligned subdivision of the grid. To solve winner deter-

mination, we must find a maximum-weight subdivision set for the intersection

graph. We can do so with a dynamic programming algorithm that computes

maximum-weight subdivision set for all rectangular sub-grids in increasing or-
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Figure 3.4: Tree Layout

der of area. To find the maximum-weight subdivision set of a given sub-grid,

we try all O(k1 + k2) ways to split the sub-grid into two pieces, and combine the

subdivision sets of the two smaller sub-grids formed by the split. Since there

are O(k1
2k2

2) rectangular sub-grids of the original grid, this algorithm runs in

time O((k1k2)2(k1 + k2)).

Tree Layout

The last type of layout we consider a tree layout (i.e., one where the layout graph

is a tree, as in Figure 3.4). Here again, we run into the problem of having ex-

ponentially many blocks. For example, in a star tree, there are Ω(2k−1)-many

blocks, since every subset of leaves defines a connected subgraph of slots when

connected through the central node. Therefore, we restrict our attention to trees

with bounded degree d.

However, even in trees with bounded degree, there can still be exponentially

many blocks. For example, in a full binary tree, just the number of connected
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subgraphs containing the root is Ω(2k/2). This is because each subgraph con-

taining the root is the result of taking the original binary tree and subtracting off

various subtrees, each of which corresponds to a disjoint interval of the θ(k/2)

leaf nodes; and there are Ω(2k/2)-many different ways to partition the leaf nodes

into disjoint intervals. Therefore, in order to limit the number of blocks, we fur-

ther restrict our attention to blocks containing at most b slots. Then the number

of blocks will be O(kdb), since each slot can belong to no more than db blocks,

given that the degree of the tree layout graph is bounded by d and the block size

is bounded by b.

Now the intersection graph of the blocks has a natural tree decomposition

given by associating each node in the tree layout graph with the set of blocks

containing that node. It is easy to see that this tree decomposition yields a

treewidth of O(db), since each slot can belong to no more than db blocks. For

a graph with O(m) nodes and O(db) treewidth, a maximum-weight indepen-

dent set can be found in time O(2d
b
m) = O(2d

b
kdb) [15]. Thus, the total time

for winner determination for a tree layout with degree bound d and block size

bound b is O(kdb(n+ 2d
b
)).

3.3 Dealing with Budget Uncertainty

In most existing systems, advertisers can specify a daily budget, which repre-

sents the maximum amount of money the advertiser is willing to spend per

day. The search provider is required to respect this constraint, and must there-

fore never charge an advertiser more than his daily budget on any given day. In

order to perform winner determination correctly, we need to take this budget
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into consideration. What makes this tricky is that the amount of budget remain-

ing is often uncertain. With the high rate of searches, an advertiser may well be

interested in a new auction before he has to pay for his winnings from a previ-

ous auction. Since advertisers pay for clicks only after a user clicks on their ad,

if the user from the first auction has not yet clicked on the advertiser’s ad by the

time the second auction occurs, there will be uncertainty about the amount of

budget that the advertiser has remaining, since the first user may still click on

the ad at some time in the future.

Suppose we were to ignore the budget issue during winner determination

and simply not charge the advertiser if the user clicks after the advertiser’s bud-

get has been depleted. Consider an advertiser who is interested in a popular

keyword, such as music, whose budget is almost exhausted. Until he receives

enough clicks to completely exhaust his budget, we would allow him to bid his

remaining budget on every music-related search query that occurs. He may win

m auctions, but only have enough money in his budget to pay form′ < m clicks.

If he gets more than m′ clicks, payment for the extra clicks would be forgiven.

Thus, the advertiser would get more than his budget’s worth of clicks. This

constitutes lost revenue, since the slots could have been assigned to competing

advertisers who had less chance of depleting their budgets. We now propose a

principled solution to this problem by taking into account the outstanding ads

that are awaiting clicks, and computing appropriately throttled bids for adver-

tisers who are likely to go over budget.
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3.3.1 Throttling Bids

To start with, consider an advertiser i for whom there are no outstanding ads

awaiting clicks from users. Denote the i’s remaining budget, i.e., his daily bud-

get minus the amount he has paid to the search provider for clicks that have

already occurred, as βi. Suppose that in the current round, the advertiser takes

part in mi auctions, and that his current bid for a click is bi. Rather than using bi

directly as his bid, we use a modified bid b̂i instead. If the advertiser can afford

to pay his stated bid of bi for each of the mi auctions, then we take b̂i to be bi;

otherwise, we use the highest possible bid that the advertiser could still afford

to pay for each auction. In other words, we let b̂i = min(bi, βi/mi).

Now suppose that there are some, say li, outstanding ads of advertiser i

that are awaiting clicks. For each outstanding ad j, suppose the price for a

click on that ad was determined to be πj and the probability of that ad getting

clicked (given the time elapsed since the ad was displayed) is ctrj . We make

no assumptions about the value of ctrj , but we point out that it is reasonable

to model ctrj as decreasing over time, and furthermore, that it reaches 0 after a

specified time limit has passed; this will enable us to discard outstanding ads

that have received no clicks in a long time. LetXj be the random variable for the

amount eventually paid for ad j. For any l ∈ {1, . . . , li}, let Sl =
∑l

j=1 Xj . Thus,

the amount of budget remaining once the debts for outstanding ads have been

cleared is max(0, βi − Sli). We would like to take b̂i to be the highest possible

bid that the advertiser could still afford once his debts for outstanding ads have
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been cleared. That is,

b̂i =


bi if Sli < βi −mibi

0 if Sli ≥ βi

(βi − Sli)/mi otherwise

or, written another way, b̂i = min(bi,max(0, βi − Sli)/mi). However, since the

values of the Xjs are uncertain because the ads are still awaiting clicks, we use

the expected value at the time of winner determination. That is, we let b̂i =

E(min(bi,max(0, βi − Sli)/mi)).

3.3.2 Computing Bounds for Throttled Bids

Let ωl denote
∑l

j=1 πj , where πj is the price for a click on the jth outstand-

ing ad. Note that Sli ≤ ωli , since each Xj is either πj with probability ctrj ,

or else is 0 with the remaining probability. Thus, if ωli ≤ βi − mibi, then

b̂i = bi. Otherwise, if ωli > βi − mibi, we can compute b̂i as follows. Note that

E(min(bi,max(0, βi − Sli)/mi)) = E(min(mibi, βi −min(βi, Sli)))/mi. Thus, in or-

der to compute b̂i, we can compute the distribution of min(βi, Sli) and then take

the expected value of min(mibi, βi−min(βi, Sli)) over that distribution. This takes

time O(min(2li , βi)), assuming that βi is written in the lowest denomination of

currency. However, observe that during the winner-determination phase, we

do not need the precise values of b̂i. We simply need the ability to compare b̂i

with b̂i′ for advertisers i and i′ in order to find the top k advertisers. Of course,

once winner determination is over, we will need the precise values of b̂i for the

winning advertisers in order to compute the prices for clicks. But there are only

k winning advertisers at this point, so the amount of computation is a lot less

than computing the precise b̂i values for all n advertisers.
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Now, in order to compare the b̂i and b̂i′ , we use Hoeffding bounds to compute

successively tighter upper and lower bounds for b̂i and b̂i′ until the upper bound

is lower than the lower bound for the other at which point we can resolve the

comparison test with certainty. In order to do this, notice that b̂i can be rewritten

as

bi Pr(Sli < βi −mibi) +
1

mi
E((βi − Sli)1βi−mibi≤Sli

<βi
)

We will denote upper and lower probability bounds as Pr(. . . ) and Pr(. . . )

respectively, and we denote upper and lower expectation bounds as E(. . . ) and

E(. . . ) respectively. Let µl denote E(Sl) =
∑l

j=1 ctrjπj by linearity of expecta-

tion, and let σl denote
√

Var(Sl) =
√∑l

j=1 ctrj(1− ctrj)π2
j . Using Hoeffding’s

inequality [41], which upper-bounds the probability that the sum of bounded

independent random deviates from its expected value, we can derive the fol-

lowing bounds for Pr(Sl < x) for any x > 0,

Pr(Sl < x) =


1 if ωli ≤ x

max(0.5, 1− exp(−2(x− µli)2/
∑li

j=1 π
2
j )) if µli ≤ x < ωli

0 if x < µli ≤ ωli

and

Pr(Sl < x) =

 1 if µli ≤ x

min(0.5, exp(−2(µli − x)2/
∑li

j=1 π
2
j )) if x < µli ≤ ωli

Using these bounds, we can derive bounds for Pr(x ≤ Sl < y) as Pr(x ≤

Sl < y) = max(0,min(1,Pr(Sl < y) − Pr(Sl < x))) and Pr(x ≤ Sl < y) =

max(0,min(1,Pr(Sl < y) − Pr(Sl < x))). Now for 0 < x < y, we can bound

E(Sl1x≤Sl<y) from above and below by xPr(x ≤ Sl < y) and y Pr(x ≤ Sl < y) re-

spectively. Using the bounds that we have just derived, we can bound the value

of bi Pr(Sli < βi − mibi) + βi

mi
Pr(βi − mibi ≤ Sli < βi) + 1

mi
E(Sli1βi−mibi≤Sli

<βi
)

and hence that of b̂i.
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If the bounds for b̂i and b̂i′ as computed above are insufficient to decide the

comparison, we can expand Pr(Sl < x) and E(Sl1x≤Sl<y) in terms of expressions

involving Sl−1, πl, and ctrl to get tighter bounds. We do this repeatedly until the

bounds are tight enough to decide the comparison. Pr(Sl < x) expands to

ctrl Pr(Sl−1 < x− πl) + (1− ctrl) Pr(Sl−1 < x)

and E(Sl1x≤Sl<y) expands to

ctrl E(Sl−11x−πl≤Sl−1<y−πl
)

+ ctrlπl Pr(x− πl ≤ Sl−1 < y − πl))

+ (1− ctrl) E(x ≤ Sl−1 < y)

We order the random variables Xj in increasing order of πj . We expand out

variables of high πj values first, thus quickly eliminating their appearance in

the Hoeffding bounds which as can be seen from the equations above leads to

tighter bounds. Note that, in the worst case, the running time for getting a

precise value for b̂i is still O(max(2li , βi)), but our technique allows us to ter-

minate early once the bounds are tight enough for the purpose of comparison.

Furthermore, we can cache the bounds for comparison with other b̂i′s and for

computing the precise computation of b̂i should advertiser i be one of the top k

advertisers.

3.3.3 Related Work

Related to our work on uncertain budgets, Aggarwal and Hartline propose a

related auction known as the knapsack auction, where bidders want to place

items of varying sizes in a knapsack of a given capacity [4]. They suggest that

this auction can be used to run a single auction to sell advertisement slots for the
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entire day where each advertiser’s budget runs out after receiving exactly one

click. In contrast to our approach, their auction fixes the outcome ex ante at the

start of the day. Re, Suciu, et al. propose a technique they term ‘multisimulation’

to find the top-k most probable tuples in the result of a query to probabilistic

database [67]. They do this by running Monte-Carlo simulations for all tuples

and scheduling the simulations so as to quickly eliminate unlikely contenders.

3.4 Application to Other Settings

Our algorithms are applicable to more than just web search. We now discuss

two other kinds of advertising auctions that benefit from the techniques we have

developed so far.

3.4.1 Massively Multiplayer Online Games

Beyond web search, another setting to which sponsored ad auctions can be ap-

plied is massively multiplayer online games (MMOGs). In-game advertising

in these games could prove to be a highly effective advertising platform; re-

cent studies that included eye tracking have shown that 75% of gamers engage

with at least one ad per minute across most, but not all, game types, and 81%

of gamers engage at least every other minute [38]. Advertising in the form of

product placement and in-game billboards is already making its way into the

current generation of games, and in-game ad spending could reach $1.8 billion

by 2010 [72].

We now show how to adapt our sponsored search auction framework to
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the auction of in-game billboards to advertisers. The billboard ads shown to a

player do not have to be generated statically. The game can select which ad to

display dynamically (via an auction) as long as it does so before the billboard is

rendered on the player’s screen. There are a number of ways to determine when

to run the ad auction. For example, it can be done just before drawing the first

frame in which the billboard is visible. Or it can be done by having the level-

designer manually place trigger areas on the game map that activate the routine

for ad selection. Ideally, the trigger areas would be placed on the map so that

the player would have to cross the trigger area before the billboard comes into

view. Well-developed techniques such as binary space partitioning [78] can help

to automate the process of identifying trigger areas. No matter which method is

used to determine when to run the auction, there is a requirement of fast winner

determination in order to keep the game running in real-time.

In order to see how bidding would work in the MMOG setting, we need to

identify the factors that affect how much an advertiser values being displayed

on a given billboard. We model four such factors: player profile, billboard

prominence, ad exposure, and player engagement.

Player Profile

Since the advertisements do not affect the gameplay, it would be acceptable for

two players looking at the same virtual billboard simultaneously to see different

ads. Thus, the game could display different ads for different players even in a

shared environment. This opens the door to targeted advertising. Advertisers

can bid differently for different player profiles. Accurate statistics about players’

in-game activities are already maintained by game servers in order to track play-
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ers’ progress. These statistic can be used to get a picture of the type of player.

For example, Bartle [12] proposes four prototypes: explorers, killers, achievers,

and socializers. A player is given scores, called Bartle quotients, in each of the

four types. These Bartle quotients can be used by advertisers to distinguish tar-

get market segments. For example, advertisers selling fiction books might bid

higher for their ad to be displayed to players who have high explorer quotients.

Even more useful, MMOGs contain well-defined social networks such as guilds

(large groups of players who share similar goals or virtual professions), parties

(smaller groups of players who go on quests together), and personal contact

lists (other players who are friends of a player and who often socialize with the

player in the game). These social networks can be mined to predict whether or

not a new player falls into a certain market segment based on whether or not his

friends and fellow guild-members do. Furthermore, all in-game chat is logged

and so can be mined for keywords that indicate potential interest in the prod-

ucts that the advertisers sell. Of course, the extent to which the social networks

and chat transcripts can be used to build the player profile for advertisers is

subject to the privacy policies of the game. However, one could well imagine

ad-supported versions of the game that allow players to play for free provided

they agree to sharing their in-game social data with advertisers.

Billboard Prominence

One of the most important sources of value of virtual billboard advertising to

an advertiser comes from impressions. The location of the billboard within the

virtual world can affect the amount of impact its ads can have. Billboards places

at eye-level within the gameworld tend to have greater impact. Too many
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billboards cluttered together can reduce the amount of impression that an ad

makes. Beyond spatial positioning of the billboard, gameplay-related distrac-

tions present at the location can also affect impressions. For example, if a bill-

board is placed in an area where there is a lot of intense and immersive game-

play (such as combat with a monster), then the player is not likely to pay much

attention to the ad displayed on that billboard. Thus, we can assign each bill-

board a prominence score, based on the visibility of its spatial location and on the

amount of distractions present at the location (e.g., other billboards, enemies,

etc.). The prominence score can be calculated just before the auction for a bill-

board (or set of billboards) begins, based on the number of enemies near the

billboard at the time the player enters a trigger area, and based on the visibility

the billboard would have for a player approaching from the trigger area.

Ad Exposure

Even if an ad is placed on a prominent billboard with few distractions around

it, the player may still not see the ad because he just happened to be facing the

wrong way. In determining the amount of exposure an ad has to a player, games

have a great advantage over web search. It is easy to accurately measure and

record various properties that directly affect an ad’s exposure. For example, one

can measure how long the ad is in the player’s field of vision, whether or not

the player’s view of the ad was obstructed by another object, what angle the ad

was viewed from, whether the player was engaged in some other activity (e.g.,

cycling through his inventory) while the ad was in view, etc. We can combine

these measurements into a single exposure score that is accumulated over the

course of the game. Note that the exposure score is known only after the player
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has quit the game and is therefore uncertain at the time of the ad auction.

Player Engagement

Beyond measuring the exposure that virtual billboard ads provide, one may be

tempted to implement a mechanism analogous to clicks in sponsored search

auctions to take the player to the advertiser’s homepage in a separate browser

window. However, care must be taken so as to minimize the intrusiveness of

such a mechanism on the gameplay. The mechanism should allow players to

express interest in an ad, but should not entail a substantial distraction from

the immediacy of gameplay. We can use the aiming/targeting system already

built into these games for such a non-intrusive mechanism. The idea is to allow

players to bookmark an ad by “shooting” at the ad. The number of shots fired

indicate how much the ad interests the player. Upon quitting the game, the

player is then presented with a splash screen containing the list of all the ads he

bookmarked, sorted by the extent of his interest.

Adapting Our Auction Framework

In the setting of advertising on in-game billboards, the billboards are analogous

to slots. The exposure and engagement scores are similar to clicks and purchases

in that they are unknown at auction time, and therefore the game must main-

tain distributions of exposure and engagement scores for each billboard. These

distributions can be based on historical data. An auction for a set of billboards

is run when a player enters their trigger area.

As before, advertisers submit programs to bid on their behalf, and these pro-
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Table 3.2: Bids Table for In-Game Advertising

formula value

. . . . . .

Billboard2 ∧ Exp(0.8,1] ∧ Eng (0.6,1] 3

. . . . . .

grams are given access to variables relevant to the player’s profile (e.g., Bartle

types, guild, etc.) and to the current prominence scores for the set of billboards.

Now, instead of of bidding on slots, clicks, and purchases, these programs out-

put bids on billboards as well as on intervals of exposure and engagement

scores. For examples, an advertiser can bid 3 cents for the second-most promi-

nent billboard if exposure ends up being greater than 0.8 and engagement ends

up being greater than 0.6. This would be represented by a bids table as shown

in Table 3.2.

The game then computes winners so as to maximize the expected revenue

assuming that advertisers pay what they bid. We assume once again that the

only billboard that affects the exposure and engagement scores for an advertiser

is the billboard to which he is assigned. Then we can use our algorithm from

Section 2.3 to solve winner determination efficiently. Moreover, our techniques

for reducing program evaluation from Section 2.2.2 still apply in this setting.

3.4.2 Map Routes

To illustrate the use of our more advanced techniques, consider selling adver-

tisements on online map-route searches. In a map-route search, users submit a
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start address and a destination address; then the search provider returns a page

displaying driving directions from the start to the destination, along with an

map displaying this route.

We can display ads on map-route search result pages by highlighting seg-

ments along the route such that when the user clicks on or hovers over a high-

lighted segment, an advertiser’s ad will be displayed in a balloon similar to

the balloons used to expand pushpin ads on local business searches in Google

Maps. Highlighted segments that are adjoining each other can be distinguished

by the use of different colors. Moreover, the advertisers’ ads can also be dis-

played alongside the appropriate set of steps in the driving directions.

Analogous to specifying a set of search phrases in a regular sponsored search

auction, advertisers now specify either a set of addresses and a radius around

the addresses, which are then matched to the resulting route in order to de-

termine the set of competing advertisers. Advertisers might also specify more

complex conditions, such as being a certain number of miles away from the start

or destination address. For example, a gas station could choose to advertise only

on map routes that start about 300 miles away and pass by the gas station. In

addition to specifying addresses, advertisers could also specify search phrases,

such as “beach” or “museum”, which could then be matched to addresses. In

this way, a swimwear store in an inland town could advertise on map searches

from that town to any location near a beach.

To sell segments on a map route, we first partition the route into a sequence

of unit segments. These unit segments are analogous to slots in a list layout.

Advertisers then bid on blocks (i.e., intervals) of unit segments, just as in Sec-

tion 3.2.1.
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In addition to allowing advertisers to bid on segments, we can also employ

the techniques proposed in Section 3.1.2 to allow advertisers to set different bids

based on the number of competing advertisers of the same type displayed on

the map. For example, a swimwear store might bid much higher if it is the only

swimwear store displayed on the route, since one swimsuit is usually enough

for most people.
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CHAPTER 4

SHARING WORK BETWEEN AUCTIONS

In this chapter, we look at the problem of sharing work between auctions. We

start by examining how to use shared top-k aggregation when solving winner

determination problems for multiple auctions. We provide an inapproximabil-

ity result for this problem. We then turn our attention to sharing other types of

aggregates that could appear in advertisers’ bidding programs, and we extend

our analysis to give a complete characterization of the complexity of shared ag-

gregation for commutative aggregates in terms of the algebraic properties of the

aggregation operator.

4.1 Shared Winner Determination

Given the high volume of searches performed each day, several search queries

arrive nearly simultaneously at any given time. This presents an opportunity

for sharing the work of winner determination among several sponsored search

auctions. In order to identify the work that can be shared across auctions, we

need to first describe how winner determination is solved for an individual auc-

tion.

4.1.1 Separability and Winner Determination

As mentioned in previous chapters, the probability that a user clicks on an ad-

vertiser’s ad depends on, among other things, the content of the ad and the slot

in which the advertisement is displayed. (For example, studies have shown that
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Table 4.1: Separable Click-Through Rates

ctrij slot 1 slot 2

advertiser A 0.36 0.24

advertiser B 0.33 0.22

advertiser C 0.39 0.26

ads are more likely to be clicked on if they are displayed in slots at the top of

a vertical list of slots than if they were placed lower in the list [65].) For the

moment, we make the separability assumption, described in Section 2.3.3, in

accord with the earlier literature [5, 3, 30, 81]. In Chapter 2, we showed that

winner determination could be done efficiently even without assuming separa-

bility. In fact, the techniques for sharing computation that we develop here can

be applied to the winner determination algorithm proposed in Chapter 2. We

return to this issue in Section 4.3.

Assuming separability, winner determination can be solved in time linear

in the number of advertisers for any given auction as follows. Recall that the

separability assumption states that the probability that a given ad receives a

click when displayed in a given slot can be written as the product of two fac-

tors, one that depends only on the advertiser and the other that depends only

on the slot position. This probability, denoted as ctrij , is known as the click-

through rate of advertiser i in slot j. So the separability assumption says that

ctrij = ci × dj , where ci is the advertiser-specific factor and dj is the slot-specific

factor. Table 4.1 shows an example of separable click-through rates that can

be decomposed into advertiser-specific factors and slot-specific factors, as de-

picted in Table 4.2. Since each ctrij is separable as ci×dj , winner determination
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Table 4.2: Advertiser-Specific and Slot-Specific Factors

A B C

ci 1.2 1.1 1.3

slot 1 slot 2

dj 0.3 0.2

Table 4.3: Bids and Weighted Bids

A B C

bi 14 15 10

bici 16.8 16.5 13

is equivalent to finding one-to-one mapping α from slots to advertisers so as to

maximize
∑

j∈[k] bα(j)cα(j)dj . Then α dictates the allocation of slots: slot j is as-

signed to advertiser α(j). For example, consider the click-through rates defined

by Table 4.1. Now suppose the advertisers bids are as depicted in Table 4.3.

Then winner determination assigns slot 1 to advertiserA and slot 2 to advertiser

B. Without loss of generality, assume that the slots are ordered such that slot

j has the jth highest value of dj . We can then solve the winner-determination

problem by simply finding the advertisers with the top k values of bici and set-

ting α(j) to the advertiser with the j-highest value of bici. This requires a single

scan over the bicis, keeping track of the top k advertisers.

Having described how winner determination works for a single auction, we

turn our attention to sharing the work of winner determination between multi-

ple auctions that occur in the same round. The choice of granularity of a round

is left to the system designer. While choosing a coarser granularity will lead

to higher sharing between auctions (since more searches will occur per round),

and thus greater overall efficiency, it will also increase the latency (the time the
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user has to wait before obtaining her search results). Studies have shown that

users tolerate median latencies of up to 2.2 seconds without much adverse per-

ception of search quality, but median latencies of about 3.6 seconds or more are

considered too long [70].

Under the separability assumption, winner determination amounts to find-

ing the advertisers with the top k values of bici where k is the number of slots

and bi is advertiser i’s bid and ci is the advertiser-specific factor of advertiser i’s

click-through rate. Thus, if the same set of advertisers take part in two auctions

in the same round, then slots would be awarded in the same way in both. How-

ever, not every bidder takes part in every auction. An advertiser can specify a

set of bid phrases. If the search query does not match one of the advertiser’s bid

phrases, then his ad is not entered into the auction.

In determining whether a query matches an advertiser’s bid phrase, we as-

sume that the two-stage method proposed in [66] is used, where the search

query is first mapped into a lower-dimensional space of bid phrases and is then

matched to the advertisers’ bid phrases using exact match. Accordingly, if a bid

phrase does indeed match some query, then we must find the advertisers with

the top k values of bici whose set of bid phrase contain the bid phrase. This is

where we can share work between the different auctions.

For example, suppose that the search queries “hiking boots” and “high-

heels” occur in the same round. There might be several general shoe stores

that specify both queries as bid phrases. However there might be a few sports

stores that specify “hiking boots” but not “high-heels”, while a few high-end

fashion accessory stores might only be interested in “high-heels” queries. Sup-

pose there are 200 general shoe stores, 40 sports stores, and 30 upscale fashion
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stores. Finding the top k advertisers for each of the two phrases separately re-

quires us to scan through 240 and 230 advertisers respectively. However, if we

find the top k advertisers among the general shoe stores, the top k among sports

stores, and the top k among the fashion stores (which requires looking at 200,

30, and 40 advertisers), we can then merge the first and second top k lists to find

the top k advertisers interested in “hiking boots”, and the first and third top-k

lists to find the top k advertisers interested in “high-heels”. Merging in this way

allows us to scan 40% fewer advertisers.

This suggests the use of merging of two top-k lists as a primitive aggregation

operation that we employ to build shared plans that successively aggregate the

bici values of all the advertisers so as to find the aggregates corresponding to the

sets of advertiser interested in each bid phrase while minimizing the number

of aggregate operations performed. Thus, the plan we build will be a DAG

where each leaf node represents an advertiser, and each internal node has in-

degree 2 and represents a top-k aggregation operator that aggregates the top k

advertisers from the two upstream nodes.

One further issue that complicates sharing is that not all bid phrases occur

in a given round. Thus a single shared plan may not be optimal in all rounds.

Unfortunately, coming up with a new plan on the fly at every round based is

not practical given the latency requirement of winner determination. Instead,

we try to find a single plan offline that works well ‘on average’. To formalize

this, we assume that the event that a bid phrase occurs in a round is an indepen-

dent Bernoulli trial whose probability is known. We call the probability that bid

phrase q occurs its search rate and denote it as srq. We then try to find the plan

involving pairwise top-k aggregation that computes the aggregate for each bid
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phrase, and minimizes the expected number of nodes materialized per round. A

node is materialized in a given round if it is used to compute the result for a bid

phrase that occurs in that round. In other words, a node is materialized if there

is a path in the plan’s DAG from that node to some node corresponding to a

bid phrase query node. Therefore the probability of node v being materialized

is 1−
∏

q:v vq
(1− srq) where v  q represents the statement that node v is used

in the computation of the aggregate query corresponding to bid phrase q in the

shared plan. Without loss of generality, we normalize the cost of the aggrega-

tion operator to 1. Then, by linearity of expectation, the total expected cost of a

plan is ∑
v

(
1−

∏
q:v q

(1− srq)

)
.

4.1.2 Shared Top-k Aggregation

In this section, we examine the problem at the core of sharing winner determi-

nation: optimizing shared top-k aggregation plans. To this end, we develop a

framework for shared aggregation using an abstract aggregation operator spec-

ified by a set of algebraic properties that the operator satisfies. We show that

finding an optimal shared plan for our abstraction of the top-k aggregation op-

erator is not only NP-hard, but is in fact inapproximable. The construction used

in the proof motivates our heuristic for finding a good shared plan in the next

section.

We start out by defining our notion of an abstract aggregation operator and

its associated aggregate queries. An abstract aggregate operator is simply a

binary function ⊕: Z × Z → Z, for some set of values Z (e.g., Z, N), such that
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the cost of evaluating ⊕ is constant. Given the abstract operator ⊕, aggregation

queries are represented by⊕-expressions which are obtained by starting out with

a set of variables X and closing off under the binary ⊕ operator. An example of

an aggregation query is (x ⊕ y) ⊕ z, where x, y, z are variables that take values

in Z. In our setting, each variable represents the bid of some advertiser, and the

values of the variables change rapidly since advertisers are constantly updating

their bids using external search engine optimizers [51] or automated bidding

programs [58] in order to achieve complex advertising goals such as staying

in a given slot during specific hours of the day, staying a certain number of

slots above a competitor, dividing one’s budget across a set of keywords so as

to maximize the return-on-investment, etc. [17, 51, 63]. We therefore have to

evaluate our aggregate queries at each round since the variables are constantly

taking on different values.

Without using information about the algebraic properties of ⊕, we can only

share work between queries in a rather limited manner by reusing the results of

sub-expressions used to compute the queries. For example, we can share work

between x ⊕ y and (x ⊕ y) ⊕ z by re-using the value of x ⊕ y (which was com-

puted for the first query) during the computation of the second. But if we take

advantage of the various algebraic properties that ⊕ satisfies, we can increase

the amount of shared computation. For example, if ⊕ is commutative then we

can share work between the queries x ⊕ y and (y ⊕ x) ⊕ z by aggregating the

value of z with the value of the first query in order to compute the value of the

second.

Let Iq be the set of advertisers interested in bid phrase q. Then an ⊕-

expression representing the aggregate query for bid phrase q is ⊕i∈Iq bi (we
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assume left-associativity, allowing us to omit parentheses) where bi is the vari-

able containing advertiser i’s bid. Throughout this subsection, we assume that

all bid phrases occur in every round with probability 1 (i.e., srq = 1 for each bid

phrase q). The hardness results presented here therefore extend to the case when

the srqs are arbitrary. Sharing winner determination then amounts to finding a

shared top-k aggregation plan that produces, for each phrase q, the top-k ag-

gregate of the bids of advertisers listed in Xq. Recall that the top-k aggregation

operator is the binary function that takes in two k-lists (i.e., lists of size at most

k) and outputs a k-list of the top k elements of the union of the two input lists.

Notice that this operator is clearly associative, commutative, and idempotent

(i.e., aggregating a list L with itself returns L). It also has an identity element,

namely, the empty list which, when aggregated with any k-list, returns that list.

We therefore abstract the top-k aggregator using an abstract aggregator ⊕ satis-

fying the following algebraic properties.

A1. ∀ a . ∀ b . ∀ c . a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (associativity)

A2. ∃ e . ∀ a . a ⊕ e = e ⊕ a = a (identity)

A3. ∀ a . a ⊕ a = a (idempotence)

A4. ∀ a . ∀ b . a ⊕ b = b ⊕ a (commutativity)

For convenience of notation, let A = {A1, A2, A3, A4}. A characterizes the al-

gebraic notion of a semilattice with identity element, and so our results in this

subsection apply to any meet or join operator, such as min, max, and Bloom-filter

unions and intersections [14], etc.

Two⊕-expressions e and e′ areA-equivalent iff e = e′ is provable in first-order

logic plus A. Now we can formally define the notion of a shared plan. Given
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a set E consisting of ⊕-expressions over X , an A-plan for E is a DAG satisfying

the following properties:

1. each node is labeled with an ⊕-expression and has in-degree either 0 or 2,

2. each node with in-degree 0 is labeled with a variable x ∈ X ,

3. each node with in-degree 2 is labeled with an ⊕-expression e ⊕ e′,

4. each e ∈ E is A-equivalent to the label of some node.

The total cost of an A-plan is the number of nodes with non-zero in-degree in

the graph (i.e., those nodes representing top-k aggregation operators). Now we

can formally state the shared aggregation problem as follows. Given a set E of

⊕-expressions over X , find the min-cost plan for computing each e ∈ E.

We assume, without loss of generality, that no two ⊕-expressions in E are

A-equivalent and also that no⊕-expression in E isA-equivalent to any variable

x ∈ X since we can identify such expressions upfront and remove such dupli-

cates. We define the base cost of an A-plan to be |E|. Since every expression E

must be the label of a non-leaf node of a plan for E, every plan for E has cost

at least |E|. What is interesting is the cost of the plan over and above |E|. We

define the extra cost of an A-plan to be the total cost of the plan minus |E|. The

nodes contributing to extra cost are the partial results that are used to compute

the final set of aggregates. Note that minimizing the extra cost is equivalent to

minimizing the total cost of anA-plan. Later on, when we discuss inapproxima-

bility, we will measure competitive ratio in terms of extra cost instead of total

cost, since the base cost for all A-plans for E is the same and is unavoidable.

First we state the following lemma, which is easy to prove.
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Lemma 4.1.1 Two ⊕-expressions over a set of variables X are A-equivalent iff the set

of variables appearing in the two expressions are equal. In particular, e1 ⊕ e2 and e are

A-equivalent iff the set of variables appearing in e is equal to the union of the sets of

variables appearing in e1 and e2.

Next, we show that finding an optimal shared plan is NP-hard for our ab-

straction of the top-k aggregator.

Theorem 4.1.2 Finding a min-cost A-plan for E is NP-hard, where E is a finite set of

⊕-expressions over a finite set of variables X .

Proof We reduce this to the set-cover problem, which is well-known to be NP-

complete [48]. Recall that, in the set-cover problem, we are given a finite ‘uni-

versal’ set U , a finite collection S of subsets of U such that ∪S∈S S = U , and

an integer k, and we must determine whether there is some S ′ ⊆ S such that

|S ′| ≤ k, and such that ∪S∈S′ S = U .

Consider any instance of set cover. We can convert this into an instance of the

problem of finding a minimum-cost A-plan using the following construction.

We create a variable for each element of the universal set. That is, we set X =

U . For each S ⊆ X , we define a ‘canonical’ ⊕-expression eS as follows. Let

<X be an arbitrary strict ordering on the variables in X . If S = {x1, . . . , xk} is

a nonempty set of variables in X , such that x1 <X · · · <X xk, then eS is the

expression x1 ⊕ · · · ⊕ xk with implicit left-associativity. (Since ⊕ is associative

by assumption, we do not need parentheses here.) eS thus represents the query

that aggregates the variables in S in ascending <X-order.

Now let the set of⊕-expressionsE = {eU}∪{eS : S ∈ S}. That is, we have an
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⊕-expression corresponding to each set in S and one extra ⊕-expression corre-

sponding to the universal set. Note that this construction can be done in polyno-

mial time, assuming <X is represented as a linear list of variables in ascending

order.

Now suppose that we have a polynomial-time algorithm for finding the min-

cost A-plan for E. Let G be the (DAG) plan returned by the algorithm. Let ≤

be the binary relation on nodes in G defined by u < v iff G contains a directed

(possibly zero-length) path from u to v. For each e ∈ E, let ue be the node

labeled with the ⊕-expression that is A-equivalent to e. Note that checking

whether two ⊕-expressions are A-equivalent can be done in polynomial time

by Lemma 4.1.1. Let V = {u : u ≤ ueU
} and W = {u : ∃S ∈ S . u ≤ ueS

}. That is,

V is the set of all nodes that have a path to the node labeled eU and W is the set

of all nodes that have a path to a node labeled eS for some S ∈ S . So V induces

an arborescence rooted at ueU
that represents the plan’s pairwise aggregation

computation of eU . Similarly, the DAG induced by V represents the plan’s com-

putation of the⊕-expressions in {eS : S ∈ S}. Let Z be the set of nodes in V ∩W

that have an edge into W \ V . The nodes in Z are the ones with paths leading

both to ueU
and ueS

for some S ∈ S . For each node z ∈ Z, let Sz be the set in S

such that z = ueSz
. Note that Z forms a cut of the arborescence induced by V ,

since V and W have the same leaf nodes (namely, the nodes labeled by the vari-

ables in X). Therefore, by Lemma 4.1.1, {Sz : z ∈ Z} is a set cover of U , since eU

is formed by aggregating the nodes in Z since Z cuts the arborescence induced

by V . Since the plan generated by the algorithm was minimal, this must be a

minimal set cover of U , otherwise we could have replaced the nodes in V \W

by aggregating the smaller set cover, which would have produced a plan with

fewer nodes. �
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Finally, we extend the idea behind the construction in the previous proof to

show that finding an optimal shared plan for our abstraction of the top-k aggre-

gator is, in fact, hard to approximate to within less than a logarithmic factor of

optimal.

Theorem 4.1.3 There is no polynomial-time algorithm that finds a shared plan whose

extra cost is within a log n factor of optimum unless P = NP .

Proof We follow the same construction as the proof of Theorem 4.1.2, except

that we close the query expressions off under sub-expressions before adding

the universal set query. This ensures that the only extra nodes we add are for

computing the universal set query, which as we showed in the proof of Theo-

rem 4.1.2 corresponds to finding a minimal set cover. Then the theorem follows

directly from the fact that minimal set cover is not approximable to within a

log n factor of optimal [55]. �

As we mentioned previously, these complexity results apply to the case

where the queries are probabilistic as well. We also point out that presence or

absence of the identity axiom A2 does not have any affect on our complexity of

aggregation. This is mainly due to the fact that we are aggregating variables, not

constant elements, and therefore we cannot exploit the properties of the identity

element since the variables may or may not contain the identity element at any

given round.
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Greedy Algorithm

In the previous section we proved that finding an optimal shared plan for top-k

aggregation between multiple auctions is inapproximable to within a log n fac-

tor even for the special case where all queries occur with certain probability. We

now propose a heuristic for finding a shared aggregation plan for multiple prob-

abilistic queries. Our approach consists of two stages: identifying fragments,

and aggregating across fragments.

Identifying fragments. In the first stage, we group together all variables

that occur in the same set of query expressions. We associate with each variable

a bit string of length m, where the ith bit indicates whether or not the variable

occurs in the i query expression. Then we group together all variables that are

associated with the same bit string. These groups are equivalence classes of

variables and are called fragments in [52]. Note that even though there are 2m

possible fragments, only O(n) will be non-empty since there are n variables. We

can safely aggregate elements within a fragment since no sharing occurs across

fragments, since fragments are equivalence classes. This step itself provides

some basic multiquery optimization since no fragment is computed twice. It is

not hard to see that this step takes O(mn log n) time; the log n factor comes from

having to index the fragments by bit string to identify groups of fragments.

Alternatively, a hash table of bit strings could be used for grouping.

Aggregating across fragments. In the second stage, we use a greedy heuris-

tic to complete the plan that was started out by aggregating together all the

nodes within each fragments. We say that an A-plan is incomplete if it does not

compute all query expressions, i.e., if there is some query expression that is not

equivalent to the label of any node in the plan. We can always complete an
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incomplete plan by finding a set cover of the missing query nodes from the col-

lection of existing nodes. Note that we are associating nodes with the set of

variables mentioned in the ⊕-expression labeling the node according to Theo-

rem 4.1.1. Also note that we use the term ‘set cover’ to mean a cover whose

union exactly equals the target set instead of just being a superset of the target

set. This usage of the term is made without loss of generality with respect to

earlier complexity results.

Suppose, for the moment, that all queries occur with probability 1 at each

round. Then the optimal way to complete the plan without any further sharing

would be to find a minimum set cover C of each of the missing queries, and to

aggregate together all the nodes in C using an arbitrary binary tree, all of which

use |C| − 1 nodes. Thus, the cost of completing the plan without sharing costs

is
∑

q(|Cq| − 1), where Cq is the size of the minimal set cover for query node q.

This motivates our greedy heuristic, which works as follows.

At every step, we find two nodes that would aggregate together to form a

new node that would lead to the highest decrease in
∑

q |Cq| per unit extra cost

of computing the new aggregate node. We call the decrease in
∑

q |Cq| resulting

from aggregating a pair of existing nodes the coverage gain of the pair. Note

that the extra cost of creating a new aggregate node is 1 unless the aggregate

is equivalent to a query expression, in which case the extra cost is 0 since the

query node would have had to be computed anyway, and would therefore have

counted toward the base cost. If there are multiple pairs of nodes that would

cover some previously uncovered query, then we pick the pair with the highest

coverage gain. The intuition is that the faster we cover all the query nodes, the

faster the plan gets completed, and hence the fewer the extra nodes that are
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used.

Unfortunately, as the reader might have noticed, we run into a problem if

we try to carry out the heuristic as stated above. In order to pick the pair of

nodes with the highest coverage gain, we need to first calculate the minimum

cover for each query node from the existing set of nodes. But as we saw in

Section 4.1.2, minimum set cover is an NP-hard problem, and is, in fact, not

approximable to within a log n + 1 factor. Therefore, we cannot use the real

set cover in measuring coverage gain; instead, we use the cover prescribed by

the greedy covering algorithm, which works as follows. Until the target set is

covered, repeatedly pick the feasible set that covers the maximum number of

as-yet-uncovered elements. It is known that this greedy algorithm produces a

cover within a 1 + log n factor of optimal [45]. In fact, the greedy algorithm

performs even better during the early decisions: the greedy algorithm achieves

a competitive ratio logarithmic in |S|, where S is the largest cardinality set in the

collection [45] (in our context, this is the size of the largest set associated with

an existing node in the incomplete plan). We call the total size of the covers of

all the query nodes as prescribed by the greedy covering algorithm the greedy

coverage. Since we always decrease the greedy coverage at each step, we run

for at most
∑

q |Xq| steps, where Xq is the set of variables mentioned in query

q. Each step requires finding a greedy cover for each query node. So the total

running time is polynomial in
∑

q |Xq|.

So far in this subsection, we have assumed that all queries appears at each

round. However, as we described earlier, in our application, each query occurs

independently with some probability. We therefore extend the algorithm to deal

with this probabilistic setting by replacing the notion of coverage gain with ex-
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pected greedy coverage gain. The expected greedy coverage gain of a pair of nodes

is the decrease in expected total greedy coverage of queries (i.e.,
∑

q srq|Cq|,

where srq is the probability of the aggregate query q occurring) resulting from

aggregating that pair of nodes. Thus, the algorithm favors the covering and

sharing of queries that are more probable over rare queries.

To summarize, our final algorithm works as follows:

1. First, group variables by the set of query expressions they appear in, and

then aggregate the variables within each group.

2. Until the plan covers all query nodes, do the following:

(a) For each pair of nodes in the incomplete plan, compute the expected

greedy coverage.

(b) If there exist some pairs of nodes that could be aggregated together

to form a missing query node, then aggregate one such pair with the

maximum expected greedy coverage.

(c) Otherwise, pick any pair with maximum expected greedy coverage

and aggregate them to form a new node.

The running time of the algorithm is polynomial in
P

q srq |Xq |
minq srq

, using an anal-

ysis similar to that for the deterministic queries case presented above, since the

initial expected greedy coverage is
∑

q srq|Xq|, and this decreases by at least

minq srq at each step. We observe that our algorithm performs within a con-

stant factor of any polynomial-time algorithm (unless P = NP ) in the inap-

proximable case described in the proof of Theorem 4.1.3. Initially, our algorithm

adds aggregates that compute all the ⊕-expressions of E ′ since these aggregate

nodes have zero extra cost. Once these nodes have been created, our algorithm
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then tries to find a greedy covering for the query node labeled eU , and there-

fore essentially runs greedy set cover, which is a (1 + log n)-approximation to

optimal.

4.1.3 Shared Sorting and Winner Determination

In the previous section, we provided techniques for sharing between auctions

with where the advertiser-specific factor of the click-through rate was identical

across all the bid phrases. In reality, it seems quite reasonable that the same

advertiser in the same slot position might have different click-through rates

for substantially different bid phrases. For example, a book store that mainly

sells books but also dabbles in selling movies and music might have a higher

advertiser-specific factor when the bid phrase is “books” than when the bid

phrase is “DVDs”. If this is the case, we cannot directly share the top-k aggre-

gation of the bici values across bid phrases as we did in Section 4.1.1, since the

value of ci can be different for each phrase. Instead, we devote this section to

examining how we can share work by exploiting the fact that the bi values are

shared across bid phrases.1

Threshold Algorithm

In order to share work between auctions, we use the well-known threshold al-

gorithm [34] to find the top q advertisers for each bid phrase that occurs in a

given round. In our context, the threshold algorithm works as follows. For a

1If, in addition, we allow the values of bi to vary across bid phrases, then there is no oppor-
tunity for sharing work between phrases at all, since no data is shared between the phrases.
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given bid phrase q, let cqi be the advertiser-specific factor of the click-through

rate of advertiser i for bid phrase q. Let jq1 , j
q
2 , . . . be an ordering of advertisers

who are interested in bid phrase q, ordered by descending values of cqi .
2 Let

iq1, i
q
2, . . . be an ordering of advertisers who are interested in bid phrase q, or-

dered by descending values of bi. The algorithm proceeds in stages. At each

stage s = 1, 2, . . . , the threshold algorithm incrementally maintains k indices in

{iqs′ : 1 ≤ s′ ≤ s} ∪ {jqs′ : 1 ≤ s′ ≤ s} with the highest values of bic
q
i . It terminates

early at the first stage s where all top k values are no less than the threshold

defined by biqscjq
s
. It is well-known that the threshold algorithm is instance op-

timal for the class of algorithms that find the advertisers with the top k values

of bic
q
i without making “wild guesses” (i.e., the algorithms must not access an

advertiser until that advertiser is encountered via a sequential scan of one of

the lists). Instance optimality means that, for any input, the threshold algorithm

finds the top k values within a constant factor of the time it takes the fastest

algorithm that avoids wild guess on that input. Thus, we could solve the top-k

problem for each bid phrase in an instance-optimal manner if we had a way

of listing, on demand, the advertisers interested in phrase q, starting with the

advertiser i with the highest bi and proceeding in decreasing order of bi values.

This motivates the following problem, which we call shared merge-sort.

Shared Sorting

Consider a sponsored search auction that matches some bid phrase q, and let

Iq be the set of advertisers who are interested in k. For ease of exposition, we

assume that each |Iq| is a power of two; the discussion generalizes to arbitrary
2We assume that the click-through rates are recalculated only occasionally and for the most

part remain fixed. Therefore the ordering jq
1 , jq

2 , . . . can be treated as fixed and can be precom-
puted.
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cardinalities in a straightforward way. The threshold algorithm as described

above initially asks for the advertiser i ∈ Iq with the highest value of bi. It then

asks for the advertiser from Iq with the next highest value of bi, and then the

next, and so on, until the threshold condition described above has been met. To

supply the threshold algorithm with an advertiser at each stage, we construct

a plan whose DAG is a balanced binary tree as used in a merge-sort of the set

{bi : i ∈ Iq}. Each leaf node is associated with a distinct bi from this set. Rather

than running the entire merge-sort upfront, we treat each non-leaf node as an

on-demand operator that stores a left register and a right register, and sends the

contents of the larger of the two registers upstream and then clears that register;

if a register to be read from is empty, its value is pulled from its correspond-

ing downstream node. This way, we don’t do any extra work beyond the stage

where the threshold condition is met. Each operator stores the sequence of val-

ues it has sent upstream. This will be used for caching results when operators

are shared between multiple sort plans.

Now suppose that there is some other auction for another phrase q′, and

let Iq′ be the set of advertisers who are interested in q′. If Iq ∩ Iq′ 6= ∅, then

we have already done some work in ordering advertisers who are interested in

k. We would like to re-use some of this work when feeding advertisers to the

threshold algorithm for phrase q′. Clearly, we can re-use the cached results of

any operators below which all leaves correspond to advertiser in Iq ∩ Iq′ . This

amounts to the problem of optimally sharing our on-demand merge operators

in the merge-sort trees for multiple bid phrases. With each each merge operator

v, we associate the set of advertisers Iv corresponding to the leaves below the

operator. Then, according to the usual merge-sort tree restrictions, two opera-

tors u and v can be merged into a new merge operator w only if Iu ∩ Iv = ∅ and
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|Iu| = |Iv|. The total number of times an operator v is invoked in the worst case

is |Iv|. This happens when the threshold condition is never met and the entire

set Iv is sorted. Since we do not model the distribution of values that the bis

take, we conservatively use this full-sort cost when evaluating the cost of shared

plans. Thus, the expected full-sort cost of a merge-sort operator in a shared

plan is |Iv|
(

1−
∏

q:v q(1− srq)
)

, where srq is the probability that bid phrase q

appears in some auction, and q  v denotes the property that operator v is used

in bid phrase q’s merge-sort tree in the shared plan. By linearity of expectation,

the total expected full-sort cost of a shared merge-sort plan is

∑
v

|Iv|

(
1−

∏
q:v q

(1− srq)

)
.

Greedy Algorithm

We propose the following simple bottom-up greedy heuristic for building a

shared merge-sort plan that starts out with the leaf nodes, each correspond-

ing to a distinct advertiser, and successively merges the two nodes that would

lead to the largest savings in expected cost. When creating a new node w, we

annotate it with the set of bid phrases Qw whose merge-sort tree it contributes

to. Initially, each leaf nodes v is annotated with Qv = {q : v ∈ Iq}. At any point,

we can merge nodes u and v into a new node w only if Qu ∩Qv 6= ∅, Iu ∩ Iv = ∅,

and |Iu| = |Iv|. We then set Qw = Qu ∩ Qv and Iw = Iu ∪ Iv. We pick the u

and v such that the expected savings of merging them to create new node w is

maximized. The expected savings from creating node w is given by

|Iw| ∗
n∑
i=1

[( ∏
1≤j<i

(1− srqj )

)
srqi

(
n∑

j=i+1

srqj

)]
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whereQw = {q1, . . . , qn}. Note that
∑n

i=1

[(∏
1≤j<i(1− srqj )

)
srqi

(∑n
j=i+1 srqj

)]
is simply the expected number of queries in Qw that occur beyond the first.

4.1.4 Non-Separable Click-Through Rates

Our work in Chapters 2 and 3 went beyond the traditional assumption of sep-

arable click-through rates [58]. Advertisers were allowed to bid on clicks, im-

pressions, and purchases resulting from displaying their ad, and click-through

and purchase rates were allowed to be non-separable. The techniques we pro-

posed in Chapter 2 take advantage of the fact that the number of slots is usually

very small in comparison with the number of bidders. Recall that a complete bi-

partite graph is constructed with advertisers on one side and slots on the other.

The edge between an advertiser and a slot is weighted by the expected realized

bid that would obtained by assigning that advertiser to that slot. The graph is

then pruned to a much smaller graph by considering only the advertisers with

the k highest edges incident to each slot, where k is the number of slots. Then

the maximum weight bipartite matching is found between these O(k2) adver-

tiser and k slots using the well-known Hungarian algorithm [53]. Our work in

this chapter fits very well into that framework – we can use the shared top-k

algorithms presented in Sections 4.1.2 and 4.1.3 to find the top k advertisers for

each slot in the graph-pruning step required by our algorithm from Chapter 2.
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4.2 Shared Aggregation

In this section, we look at the problem of sharing aggregation between multiple

bidding programs. Recall that in Chapter 2, we proposed the idea of having

each advertiser run a bidding program on their behalf. In order to make in-

formed decisions about how to bid, it would be useful for these programs to be

able to compute quantities such as average (or maximum) bid placed on a given

set of bid phrases (e.g., those bid phrases containing the word ‘music’), or the

total number of users who have searched for one of a set of bid phrases. These

quantities can be computed using sum, average, and count aggregates over bid

phrases. Often multiple advertisers will want to perform similar aggregates

over similar sets of bid phrases, giving us the opportunity to share such aggre-

gation. We therefore consider aggregates other than the top-k aggregate that we

considered in Section 4.1. However, rather than considering the shared aggre-

gation problem for each particular aggregate, we take a more general approach

and employ the abstract algebraic framework that we introduced earlier. In this

section, we present the relationship between algebraic properties of the aggre-

gation operation in question and the complexity of finding the optimal shared

aggregation plan. To this end, we consider the following algebraic properties of

binary aggregation operator ⊕.

A1. ∀ a . ∀ b . ∀ c . a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (associativity)

A2. ∃ e . ∀ a . a ⊕ e = e ⊕ a = a (identity)

A3. ∀ a . a ⊕ a = a (idempotence)

A4. ∀ a . ∀ b . a ⊕ b = b ⊕ a (commutativity)

A5. ∀ a . ∀ b . ∃! c . ∃! d . a ⊕ c = d ⊕ a = b (divisibility)
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These axioms can been used to characterize various algebraic struc-

tures of interest, including semigroups ({A1}), monoids ({A1, A2}), groups

({A1, A2, A5}), Abelian groups ({A1, A2, A4, A5}), bands ({A1, A3}), semilat-

tices ({A1, A3, A4}), quasigroups ({A5}), and loops ({A2, A5}). In this work, we

focus on those aggregates satisfying A4, since the most common and important

aggregation operators that come up in our setting, and in database and stream

settings in general are commutative. Such aggregates include sum, count, prod-

uct, max, min, top-k, and Bloom-filter unions and intersections. Moreover, these

aggregates can be combined with each other to compute other useful aggregates

such as mean and variance.

We have already seen axioms A1, A2, A3, and A4 from Section 4.1. For

aggregates satisfying the divisibility axiom A5, we can define a binary division

operator 	 that such that a 	 b returns the unique c such that a = b ⊕ c.

(Note that a 	 c = b since we are restricting our attention to commutative

operators and since divisors are unique by A5.) We assume that the cost of

evaluating the 	 operator is constant, and is the same as the cost of evaluating

the ⊕ operator. Then the 	 operator allows us to leverage divisibility to further

reduce the cost of plans in certain cases. For example, consider an aggregation

operator that is commutative, associative, and divisible (e.g., sum). Suppose we

have to evaluate the following five queries: u ⊕ v ⊕ w ⊕ x, u ⊕ v ⊕ w ⊕

y, u ⊕ v ⊕ x ⊕ y, u ⊕ w ⊕ x ⊕ y, and v ⊕ w ⊕ x ⊕ y. (Since we are

assuming associativity, we can omit parentheses.) Without the 	 operator, the

best possible A-plan uses nine ⊕ operations. However, if we allow the use of

	, we can construct a plan that uses four ⊕ operations and four 	 operations,

for a total of eight operations, by constructing a sequence of nodes with the

following labels: u ⊕ v, u ⊕ v ⊕ w, a ⊕ v ⊕ w ⊕ x, u ⊕ v ⊕ w ⊕ x ⊕ y,
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Table 4.4: Complexity Results for Optimally Sharing Aggregation

A1 A2 A3 A4 A5 Complexity

N * * * N PTIME

N N N * Y PTIME

N Y N * Y PTIME

N N Y * Y PTIME

N Y Y * Y O(1)

Y * N Y N NP-complete

Y * N Y Y NP-complete

Y * Y Y N NP-complete

Y * Y * Y O(1)

(u ⊕ v ⊕ w ⊕ x ⊕ y) 	 x, (u ⊕ v ⊕ w ⊕ x ⊕ y) 	 w, (u ⊕ v ⊕ w ⊕ x ⊕ y) 	 v,

and (u ⊕ v ⊕ w ⊕ x ⊕ y) 	 u. Thus, if ⊕ satisfies A5, we extend the ⊕-

expressions over a set of variables X by starting with the variables in X and

closing off under both the ⊕ and 	 operators, and we extend the definition

of A-plans to allow the use of the 	 operator in addition to the ⊕ operator.

Although ⊕-expressions are extended to include the user of the 	 operator, we

restrict query expressions to contain only the ⊕ operator.

Let A be the set of the algebraic axioms above that the abstract ⊕ operator

under consideration satisfies. We provide a nearly complete characterization

of the complexity of shared aggregation for the various possibilities for A. Ta-

ble 4.4 summarizes our complexity results. Note that this includes a complete

characterization for commutative aggregates. The first line of Table 4.4 is han-

dled in Proposition 4.2.1. Lines 2 through 4 are handled in Theorem 4.2.2. Line
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5 and 9 are handled in Theorem 4.2.3. Theorems 4.2.4, and 4.2.5 provide the

complexity results for lines 7 and 8, respectively. In Section 4.1, we already saw

that the problem is NP-complete when {A1, A3, A4} ⊆ A and A5 6∈ A, giving us

line 6 of Table 4.4. We do not yet have complexity bounds for the cases corre-

sponding to lines 6 through 9, when A4 = N .

Proposition 4.2.1 If A1, A5 6∈ A and E is a finite set of⊕-expressions over a finite set

of variables X , then we can find a min-cost A-plan in time quadratic in the total size of

the expressions in E.

Proof If A1, A5 6∈ A, then there is a straightforward polynomial-time algorithm

for finding the optimal shared plan for all combinations of the remaining ax-

ioms. The algorithm turns the subtrees of the parse trees of the expressions in

E into a canonical form and then merges identical canonicalized subtrees in a

bottom-up fashion. This can be done in time quadratic in the total size of the

parse trees. �

Theorem 4.2.2 If A1 6∈ A, A5 ∈ A, {A2, A3} ∩ Ac 6= ∅, and E is a finite set of

⊕-expressions over a finite set of variables X , then we can find a min-cost A-plan in

time quadratic in the total size of the expressions in E.

Proof Let ε denote a “null” node with no label. If T and T ′ are trees, let T ⊕ T ′

denote the tree with a root labeled ⊕ connected to two subtrees, T and T ′. If

A4 6∈ A, then the edge to subtree T is colored red, and the edge to subtree T ′

is colored black; otherwise both edges are colored black. Let T 	 T ′ denote the

tree with a root labeled 	 connected to two subtrees, T and T ′, by a red edge

and a black edge, respectively. We write T = T ′ iff T and T ′ are isomorphic
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up to graph structure, edge coloring, and node labels. For any expression e

involving possibly both⊕ and	 operators, we define a tree T (e) inductively on

the structure of e as follows. If e is a variable x, then T (e) consists of a single

node labeled x. If e is of the form e1 ⊕ e2, then, T (e) = T (e1) if T (e2) = ε; else,

T (e) = T (e2) if T (e1) = ε; else, T (e) = T (e1) if T (e1) = T (e2) and A3 ∈ A; else,

T (e) = T if T (e1) = T 	 T (e2); else, T (e) = T if T (e2) = T 	 T (e1) and A4 ∈ A;

otherwise, T (e) = T (e1) ⊕ T (e2). If e is of the form e1 	 e2, then, T (e) = T (e1)

if T (e2) = ε; else, T (e) = ε if T (e1) = T (e2) and A2 ∈ A; else, T (e) = T (e2)

if T (e1) = T (e2) and A3 ∈ A; else, T (e) = T if T (e1) = T ⊕ T (e2); otherwise,

T (e) = T (e1) 	 T (e2). Then it is not hard to see that two expressions e and e′

are A-equivalent iff T (e) = T (e′). By the inductive nature of the tree definition,

every non-empty subtree of T (e) is isomorphic to T (ê) for some subexpression

ê of e. Furthermore, if e is an expression involving only the ⊕ operator, then

for every subexpression ê, T (ê) is a subtree of T (e). Putting these two facts

together, we see that if e and e′ are two A-equivalent expressions such that e

involves only the ⊕ operator, then every subexpression of e is A-equivalent to

some subexpression of e′.

Consider any optimal A-plan for E and any lowest (with respect to height

in the A-plan) node v with label e′ such that e′ contains the 	 operator and is

A-equivalent to some e ∈ E. Without loss of generality, we can assume that

e = e1 ⊕ e2, since the expressions in E involve only the ⊕ operator, and since

we can ignore trivial expressions that are just variables. Then the set of labels

of the nodes below v is the set of subexpressions of e′, by definition of an A-

plan. So every subexpression of e must be A-equivalent to the label of some

node below v, since e involves only the ⊕ operator. In particular, e1 and e2 are

A-equivalent to some nodes u and w below v. Note that e1 and e2 both involve
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only the ⊕ operator since they are subexpressions of e. Add e1 and e2 to E, and

observe that the plan is still A-optimal for E, since e1 and e2 are computed by

the nodes u and w anyway. Replace the two edges incoming to v by edges from

u and w, relabeling the nodes above (and including) v appropriately. Note that

this does not increase the height of any node since u and w were already below

v. Repeat this process until there are no more nodes with a label that contains

the 	 operator and is equivalent to some expression in E. This loop terminates

because, at every step, we either decrease the height of the lowest such node (if

the labels of either u or w contain the 	 operator) or else we eliminate at least

one	 operator from the labels of the query nodes (if the labels of neither u norw

contain the	 operator, in which case all	 operators in v’s label are eliminated).

Therefore, an optimal plan can be found by considering plans involving only the

⊕ operator, and so our previous algorithm works in this case as well. Therefore,

the algorithm outlined in the proof of Proposition 4.2.1 produces an optimal

A-plan here as well. �

Theorem 4.2.3 If {A1, A2} ∩ A 6= ∅ and {A3, A5} ⊆ A, then we can find a min-cost

plan in O(1) time.

Proof Suppose that {A1, A3, A5} ⊆ A. Consider any a and b. By A5, there is a

unique c such that c ⊕ a = b. Then we have the following.

c ⊕ (a ⊕ b) = (c ⊕ a) ⊕ b (by A1)

= (c ⊕ a) ⊕ (c ⊕ a) (by choice of c)

= c ⊕ a (by A3)

Thus, since right-divisors are unique by A5, a = a ⊕ b. By A3, a = a ⊕ a,

and so, by uniqueness of right-divisors, a = b. Thus, a = b for any a and b. So
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aggregation is trivial in this case, since ⊕ is a constant function and hence all

⊕-expressions are equivalent.

Now suppose that {A2, A3, A5} ⊆ A. By A2, there is some e such that a ⊕

e = a for all a. However, a ⊕ a = a for all a by A3. But, by A5, divisors are

unique, and so a = e for all a. So aggregation is trivial in this case, since ⊕ is a

constant function and hence all ⊕-expressions are equivalent. �

Theorem 4.2.4 Finding a min-cost A-plan for E is NP-hard when {A1, A4} ⊆ A,

{A3, A5} ⊆ Ac, and E is a finite set of ⊕-expressions over a finite set of variables X .

Proof We reduce this to the exact-cover problem, which is well-known to be NP-

complete [48]. Recall that, in the exact-cover problem, we are given a finite

‘universal’ set U and a finite collection S of subsets of U , and we must determine

whether there is some S ′ ⊆ S such that S ∩ S ′ = ∅ for all distinct S, S ′ ∈ S ′, and

such that ∪S∈S′ S = U .

Consider any instance of exact cover. Let U be the universal set. Let S be

the finite collection of subsets of U that cover U . We can convert this into an

instance of the problem of finding a minimum-cost A-plan using the following

construction.

Let the set of variables X = U ∪ {xS : S ∈ S} so that we have one variable

for each element of the universal set, and one distinct new variables xS for each

set S ∈ S. Let <X be an arbitrary ordering on the variables in X . For each

non-empty set S ⊆ X , we define a ‘canonical’ ⊕-expression eS as in the proof

of Theorem 4.1.2. Let E ′′ = {eS ⊕ xS : S ∈ S}. Let E ′ be the closure of E ′′ under

sub-expressions. Let E = E ′ ∪ {eX}. Note that this construction can be done in

polynomial time.
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We now argue that S contains an exact cover of U iff the extra cost of all

minimum-cost A-plans for E is at most |S| − 2. Then we can tell whether or not

S contains an exact cover of U simply by examining the A-plan generated by

any algorithm that finds a min-cost A-plan.

For the “if” direction, suppose S contains an exact cover of U , say S ′ ⊆ S .

Then we can construct a plan with extra cost |S| − 2 as follows. Start with the

parse trees of the expressions in E ′′, merging those nodes with A-equivalent

labels if necessary to form a single plan. This plan clearly computes all the ex-

pressions inE ′′ and uses no extra nodes sinceE ′′ is closed under subexpressions.

The only expression left to complete is eX . This can be done by aggregating to-

gether the |S ′| nodes labeled eS , for each S ∈ S ′, and the |S| − |S ′| nodes labeled

e{xS} for each S ∈ S \ S ′. This uses |S| − 1 aggregation nodes, out of which

|S| − 2 are extra nodes (the node labeled eX does not count as an extra node

since eX ∈ E).

For the “only if” direction, suppose that there is someA-plan for E that uses

at most |S|−2 extra nodes. For a contradiction, suppose that S contains no exact

cover of U . Consider all the nodes with paths leading to the node labeled by eX .

These nodes induce an arborescence in the DAG rooted at the eX node. This

arborescence must contain all the extra nodes since all the other query nodes

are closed under subexpressions and can hence be aggregated using no extra

nodes. Consider the set V of nodes in the arborescence that are labeled by ⊕-

expressions inE ′ and have an edge into an extra node. Then there must be |V |−1

nodes descending from these |V | nodes in the arborescence. Out of these, |V |−2

will be extra nodes, and one will be the query node labeled eX . Now for each

S ∈ S, either the node labeled xS or else the node labeled eS ⊕ xS must be in
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V since these are the only two nodes labeled with an ⊕-expression in E ′ that

contain the variable xS by construction of E ′ and since xS was a distinct new

variable. Thus |V | ≥ |S|. Suppose for a moment that |V | = |S|. Then by the

pigeon-hole principle, all the nodes in V are labeled either with xS or eS ⊕ xS

for some S ∈ S. Let S ′ be the collection of sets S ∈ S for which some nodes

in V is labeled eS ⊕ xS . Now it is easy to see that, since {A1, A4} ⊆ A and

{A5, A3} ⊆ Ac, two ⊕-expressions over a set of variables X are A-equivalent iff

the multiset of variables appearing in the two expressions are equal. Therefore,

S ′ must form an exact cover of U , contradicting our initial assumption that S

contained no exact cover of U . There it is not possible that |V | = |S|. So it must

be the case that |V | > |S|, and hence there are more than |S| − 2 extra nodes

in the A-plan since there are |V | − 2 extra nodes. This completes the second

direction. �

Theorem 4.2.5 Finding a min-costA-plan forE is NP-hard when {A1, A4, A5} ⊆ A,

{A3} ⊆ Ac, and E is a finite set of ⊕-expressions over a finite set of variables X .

Proof We use the same reduction as the proof of Theorem 4.2.4 and observe that

the addition of the 	 operator does not change the proof; in particular, it is still

the case that |V | > |S| iff S contains no exact cover for U . �

4.3 Related Work

Early work on multiquery optimization includes work done by Sellis [71] to pro-

vide shared plans for select, project, and joint queries. However, this work did

not consider shared aggregation. Cocke looked at sharing work for computing
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expressions where the operators were commutative non-associative operators

in the context of compiler optimization by finding global common subexpres-

sions [22]. In contrast, our work focuses on operators that are associative as well

as commutative.

There has recently been a lot of work done in the context of data stream-

ing and sensor networks that is closely related to ours. For example, Dobra,

Garofalakis, et al. introduce a technique for computing approximate aggregates

by sharing work across multiple queries [29] transmitting ‘sketches’ of the data

rather than the entire data. In our setting, it is important to find the exact aggre-

gate values in order to ensure the desired economic properties of the auction,

such as truthfulness and envy-freeness. Trigoni, Yao, et al. look at optimizing

aggregates in sensor networks [79]. They focus on communication cost and use

more coarse cost-model than ours. They consider a unit cost of sending a vector

of aggregates whose length depend on the problem size. In contrast, we con-

sider the cost of computing each individual aggregate, which is a more accurate

computation cost model. Zhang, Koudas, et al. consider the problem of sharing

aggregation over data streams in the Gigascope system where the queries are

aggregates of group-bys of several attributes [86]. They use ‘phantom’ group-

by aggregates that contain partial results for multiple queries and propose a

greedy heuristic finding the optimal set of phantoms for count and sum aggre-

gates. Krishnamurthy, Wu, and Franklin suggest the use of fragments [52] (i.e.,

grouping inputs by the set of selection predicates that they satisfy) that we use

in the first stage of our algorithm. However, they did not take advantage of fur-

ther algebraic properties of the aggregation operator as we do. Huebsch, et al.

consider the problem of sharing aggregate computation for distributed queries

and classify aggregates based on whether or not they are linear and whether or
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not they are duplicate-insensitive [43]. Like [79], this work uses a coarser cost

model than ours. Other work on multiquery aggregation includes that of Silber-

stein and Yang where they look at aggregation using a set of multicast trees in a

network that satisfies certain assumptions on the relationship between the trees

[73]. Our setting is different in that, rather than being given a network, we have

to design an optimal network between sources (inputs) and sinks (queries).

4.4 Conclusions

In this chapter, we highlight the opportunity for sharing work when there is a

high search volume by sharing the winner-determination computation across

multiple sponsored search auctions that occur simultaneously. We provided

techniques for both separable and non-separable click-through rates even if the

advertiser-specific factor is different across bid phrases in the case of separa-

ble click-through rates. As future work, we would like to determine whether

these algorithms have provable approximation bounds. We studied the prob-

lem of sharing aggregation operators between bidding programs as a function

of the algebraic axioms that they satisfy. We provide complexity results for most

combinations of the axioms, including a complete characterization for all com-

mutative cases. Future work includes determining the complexity of the few

remaining non-commutative cases.
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CHAPTER 5

REVEALING AUCTION DATA WHILE LIMITING DISCLOSURE

5.1 Introduction

In order to enable advertisers to improve their bidding strategies, it would be

helpful if search providers release historical search and auction data. However,

they must do so in such a way as to limit the disclosure about any individual

advertiser while still providing as much useful information as possible. For

example, suppose the search provider wants to release a table containing the

username, age, location, gender, and search topic that the user has been most in-

terested in (e.g., celebrity gossip, online gambling, etc.), as depicted in Table 5.1.

This table cannot be released as-is, since it would reveal the search habits of indi-

vidual users. Instead, the search provider could release an anonymized version

of this data by partially or completely suppressing identifying attributes (i.e.,

username, age, location, and gender) from the table, as depicted in Table 5.2.

Then, each time a user submits a search, the search provider could simply in-

form the advertisers of which bucket the user falls into.

Finding an appropriately anonymized version of the data is an instance of

the privacy-preserving data publishing problem, which is applicable to a wide

variety of settings beyond search auctions, including publishing census data for

policy makers, and hospital patient data for medical researchers. We consider

the following general situation. A data publisher (such as a search provider, or

hospital) has collected useful information about a group of individuals (such

as user profiles, or patient records) and would like to publish this data while

preserving the privacy of the individuals involved. The information is stored
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Table 5.1: Original Table

non-sensitive sensitive

Name Zip Age Sex Interest

Bob 14850 23 M Anarchism

Charlie 14850 24 M Anarchism

Dave 14850 25 M Online Dating

Ed 14850 27 M Online Dating

Frank 14853 29 M Hacking

Gloria 14850 21 F Anarchism

Hannah 14850 22 F Anarchism

Irma 14853 24 F Online Gambling

Jessica 14853 26 F Adult Sites

Karen 14853 28 F Celebrity Gossip

as a table (as in Table 5.1) where each record corresponds to a unique individ-

ual and contains a sensitive attribute (e.g., top interest, or disease) and some

non-sensitive attributes (e.g., address, gender, age) that might be learned using

externally available data (e.g., phone books, birth records). The data publisher

would like to limit the disclosure of the sensitive values of the individuals in or-

der to defend against an attacker who possibly already knows some facts about

the table. Our goal in this chapter is to quantify the precise effect of background

knowledge possessed by an attacker on the amount of disclosure and to pro-

vide algorithms to check and ensure that the amount of disclosure is less than a

specified threshold.

The problem we solve is of real and practical importance; an egregious ex-

ample of a privacy breach was the reidentification of a user from anonymized
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Table 5.2: 5-anonymous Table

Name Zip Age Sex Interest

* 1485* 2* M

Anarchism

Online Dating

Hacking

Anarchism

Online Dating

* 1485* 2* F

Anarchism

Online Gambling

Anarchism

Celebrity Gossip

Adult Sites

search logs published by AOL [11]. An even more famous incident was the dis-

covery of the medical records of the Governor of Massachusetts from an easily

accessible and supposedly anonymized dataset. All that was needed was to link

it to voter registration records [77]. To defend against such attacks, Samarati and

Sweeney [69] introduced a privacy criterion called k-anonymity which requires

that each individual be indistinguishable (with respect to the non-sensitive at-

tributes) from at least k − 1 others. This is done by grouping individuals into

buckets of size at least k, and then permuting the sensitive values in each bucket

and sufficiently masking their externally observable non-sensitive attributes.

Table 5.2 depicts a 5-anonymous version of Table 5.1. Table 5.3 depicts the per-

mutation of sensitive values that was used to construct this table.

However, k-anonymity does not adequately protect the privacy of an indi-
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Table 5.3: Bucketized Table

Name Zip Age Sex Interest

Bob 14850 23 M Anarchism

Charlie 14850 24 M Online Dating

Dave 14850 25 M Hacking

Ed 14850 27 M Anarchism

Frank 14853 29 M Online Dating

Gloria 14850 21 F Anarchism

Hannah 14850 22 F Online Gambling

Irma 14853 24 F Anarchism

Jessica 14853 26 F Celebrity Gossip

Karen 14853 28 F Adult Sites

vidual;1 for example, when all individuals in a bucket have the same sensitive

value, the sensitive values of the individuals in that bucket is disclosed regard-

less of the bucket size. Even when there are multiple sensitive values in the same

bucket, the frequencies of the sensitive values in the bucket still matter when an

attacker has some background knowledge about the particular individuals in

the table. Suppose the data publisher has published the 5-anonymous table as

depicted in Table 5.2. Consider an attacker Alice who would like to learn the

interests of her neighbors. One of her neighbors is Ed, a 27 year-old male living

in Ithaca (zip code 14850). Alice knows that Ed is a user of the search provider

that published the anonymized dataset in Table 5.3, and she wants to find out

Ed’s interest. Using her knowledge of Ed’s age, gender, and zip-code, Alice can

identify the bucket in the anonymized table that Ed belongs to (namely, the first

bucket). Alice does not know which interest listed within that bucket is Ed’s
1Indeed, the definition of k-anonymity does not even mention the sensitive attribute!
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since the sensitive values were permuted. Therefore, without additional knowl-

edge, Alice’s estimate of the probability that Ed is interested in anarchism is

2/5. But suppose that Alice knows that Ed doesn’t know much about comput-

ers and is therefore extremely unlikely to be interested in hacking. After ruling

this possibility out, the probability that Ed is interested in anarchism increases

to 1/2. Now, if Alice also somehow discovers that Ed is not interested in gam-

bling, then the fact that he is interested in anarchism becomes certain. Here, two

pieces of knowledge of the form “Ed does not have X” were enough to fully dis-

close Ed’s sensitive attribute. To guard against this, Machanavajjhala et al. [57]

proposed a privacy criterion called `-diversity that ensures that it takes at least

`−1 such pieces of information to sufficiently disclose the sensitive value of any

individual. The main idea is to require that, for each bucket, the ` most frequent

sensitive values are roughly equi-probable.

`-diversity focuses on one type of background knowledge: knowledge of the

form “individual X does not have sensitive value Y”. But an attacker might well

have other types of background knowledge. For example, suppose Alice lives

across the street from a married couple, Charlie and Hannah. Once again, using

her knowledge of their genders, ages and zip-codes, Alice can identify the buck-

ets Charlie and Hannah belong to. Without additional background knowledge,

Alice thinks that Charlie is interested in anarchism with probability 2/5. But

suppose that Alice knows that Charlie is very impressionable when it comes to

political outlook. Then Alice can deduce that if Hannah is highly interested in

anarchism, then it is extremely likely that Charlie is as well. This knowledge

allows her to update her probability that Charlie is interested in anarchism to

10/19. We show how these probabilities are computed in Section 5.3. `-diversity

does not guard against the type of background knowledge in this example.
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It is thus clear that we need a more general-purpose framework that can cap-

ture knowledge of any property of the underlying table that an attacker might

know. Moreover, unlike in the two examples above where we knew Alice’s

background knowledge, we will not assume that we know exactly what the at-

tacker knows. We therefore take the following approach. In Section 5.2, we

propose a language that is expressive enough to capture any property of the

sensitive values in a table. This language enables us to decompose background

knowledge into basic units of information. Then, given an anonymized ver-

sion of the table, we can quantify the worst-case disclosure risk posed by an

attacker with k such units of information; k can be thought of as a bound on the

power of an attacker. In Section 5.3, we show how to efficiently preserve pri-

vacy by ensuring that the worst-case (i.e., maximum) disclosure for any k pieces

of information is less than a specified threshold. Furthermore, we show to inte-

grate our techniques into existing frameworks to find a “minimally sanitized”

table for which the maximum disclosure is less than a specified threshold. In

Section 5.4, we show that our techniques can be applied to other types of back-

ground knowledge. In particular, we frame the existing notion of `-diversity

within our framework and show that it does indeed bound the maximum dis-

closure with respect to the type of background knowledge that it considers.

Such formal analysis and proof of correctness was missing in the original pa-

per [57]. We present experiments in Section 5.5, related work in Section 5.6, and

we conclude in Section 5.7.

To the best of our knowledge, this is the first such formal analysis of the effect

of unknown background knowledge on the disclosure of sensitive information.
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5.2 Framework

We begin by modeling the data publishing situation formally. Let P be a (finite)

set of individuals. For each p ∈ P , we associate a tuple tp which has one sensi-

tive attribute S (e.g., top interest, or disease) with finite domain and one or more

non-sensitive attributes. We overload notation and use S to represent both the

sensitive attribute and its domain. The data publisher has a table T , which is a

set of tuples corresponding to a subset of P . The publisher would like publish

T in a form that protects the sensitive information of any individual from an at-

tacker with background knowledge that can be expressed in a language L. (We

propose such a language to express background knowledge in Section 5.2.2.)

5.2.1 Bucketization

We first need to carefully describe how the published data is constructed from

the underlying table if we are to correctly interpret this published data. That

is, we need to specify a sanitization method. We briefly describe two popular

sanitization methods.

• The first, which we term bucketization [84], is to partition the tuples

in T into buckets, and then to separate the sensitive attribute from the

non-sensitive ones by randomly permuting the sensitive attribute values

within each bucket. The sanitized data then consists of the buckets with

permuted sensitive values.

• The second sanitization technique is full-domain generalization [77], where

we coarsen the non-sensitive attribute domains. The sanitized data con-
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sists of the coarsened table along with generalization used. Note that, un-

like bucketization, the exact values of the non-sensitive attributes are not

released; only the coarsened values are released.

Note that if the attacker knows the set of individuals in the table and their non-

sensitive values, then full-domain generalization and bucketization are equiv-

alent. In this work, we use bucketization as the method of constructing the

published data from the original table T , although all our results hold for full-

domain generalization as well. We plan to extend our algorithms to work for

other sanitization techniques, such as data swapping [24] (which, like bucke-

tization, also permutes the sensitive values, but in more complex ways) and

suppression [69], in the future.

We now specify our notion of bucketization more formally. Given a table

T , we partition the tuples into buckets (i.e., horizontally partition the table T

according to some scheme), and within each bucket, we apply an independent

random permutation to the column containing S-values. The resulting set of

buckets, denoted by B, is then published. For example, if the underlying table

T is as depicted in Table 5.1, then the publisher might publish bucketization B as

depicted in Table 5.3. Of course, for added privacy, the publisher can completely

mask the identifying attribute (Name) and may partially mask some of the other

non-sensitive attributes (Age, Sex, Zip).

For a bucket b ∈ B, we use the following notation.

• Pb denotes the set of individuals p ∈ P with tuples tp ∈ b,

• nb denotes the number of tuples in bucket b,

• nb(s) denotes the frequency of the sensitive value s ∈ S in bucket b, and
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• s0
b , s

1
b , . . . denote the sensitive values appearing in bucket b in descending

order of frequency.

5.2.2 Background Knowledge

We pessimistically assume that the attacker has managed to obtain complete

information about which individuals have records in the table, what their non-

sensitive data is, and which buckets in the bucketization these records fall into.

That is, we assume that the attacker knows Pb, the set of individuals in bucket

b, for each b ∈ B, and knows tp[X] for every individual p in the table and every

non-sensitive attribute X . We call this full identification information. One way of

obtaining identification information in practice is to link quasi-identifying non-

sensitive attributes published in the bucketization (e.g., address, gender, age)

with publicly available data (e.g., phone directories, birth records) [77].

We make the standard random-worlds assumption [10]: in the absence of

any further knowledge, we consider all tables consistent with this bucketization

to be equally likely. That is, the probability of tp ∈ b having s for its sensitive

attribute is nb(s)/nb since each assignment of sensitive attributes to tuples within

a bucket is equally likely.

We now need to consider knowledge beyond the identification information

that an attacker might possess. We assume that this further knowledge is the

knowledge that the underlying table satisfies a given predicate on tables. That is,

the attacker knows that the underlying table is among the set of tables satisfying

the given predicate. This is a rather general assumption. For example, “the av-

erage age of people interested in online gambling in the table is 48 years” could
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be one such predicate. In order to quantify the power of such knowledge, we

use the notion of a basic unit of knowledge, and we propose a language which

consists of finite conjunctions of such basic units. Given full identification infor-

mation, we desire that any predicate on tables be expressible using a conjunc-

tion of the basic units that we propose. We employ a very simple propositional

syntax.

Definition 5.2.1 (Atoms) An atom is a formula of the form tp[S] = s, for some value

s ∈ S and individual p ∈ P with tuple tp ∈ T . We say that atom tp[S] = s involves

individual p and value s.

The interpretation of atoms is obvious: tJack[Interest] = online dating says that

the Jack’s tuple has the value online dating for the sensitive attribute Interest.

The basic units of knowledge in our language are basic implications, defined

below.

Definition 5.2.2 (Basic implications) A basic implication is a formula of the form

(∧i∈[m]Ai)→ (∨j∈[n]Bj)

for somem ≥ 1, n ≥ 0 and atomsAi, Bj , i ∈ [m], j ∈ [n] (note that we use the standard

notation [n] to denote the set {0, . . . , n− 1}).

The fact that basic implications are a sufficiently expressive “basic unit” of

knowledge is made precise by the following theorem.

Theorem 5.2.3 (Completeness) Given full identification information and any pred-

icate on tables, one can express the knowledge that the underlying table satisfies the
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identification information and the given predicate using a finite conjunction of basic

implications.

Proof Since the attacker is assumed to have full identification information, the

values of tp[X] and which bucket tp falls into are assumed to be common knowl-

edge. The only remaining information that it takes to completely define a partic-

ular table is the mapping between individuals and sensitive values within each

bucket. Thus we need to show that a finite conjunction of basic implications

can express any set of mappings between individuals in the table and sensitive

values. Note that, since the domain of S and the table size are finite, there are

only finitely many mappings between individuals in the table and sensitive val-

ues. Any particular such mapping between individuals and sensitive values

can clearly be represented by a finite conjunctions of atoms of the form tp = s.

Thus any set of mappings between individuals and sensitive values can be rep-

resented by a finite disjunction of finite conjunctions of atoms. We show that, in

fact, a finite conjunction of basic implications can represent any finite Boolean

combination of atoms.

Consider any finite Boolean combination of atoms. Without loss of general-

ity, assume that the formula is in conjunction normal form. It thus remains to

show that any disjunction of literals (i.e., atoms or their negations) can be rep-

resented by a finite conjunction of basic implications. We break this into two

cases depending on whether or not the given disjunction contains at least one

negative literal. In the first case, if the disjunction contains at least one negative

literal, then the disjunction is equivalent to a single a basic implication ϕ → θ

where ϕ is the conjunction of the atoms appearing in the negative literals and ψ

is the disjunction of the atoms appearing in the positive literals. In the second
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case, if the disjunction contains no negative literals, the disjunction is equivalent

to the following conjunction of basic implications: ∧s∈S(tp = s→ ϕ), where ϕ is

the given disjunction itself and p is any individual in the table. �

Hence we can model arbitrarily powerful attackers.2 Consider an attacker

who knows the sensitive value of every individual in the table except for Bob.

Then publishing any bucketization will reveal Bob’s sensitive value. To avoid

pathological and unrealistic cases like this, we need to assume a bound on the

power of an attacker. We model attackers with bounded power by limiting

the number of basic implications that the attacker knows. That is, the attacker

knows a single formula from language Lkbasic defined below.

Definition 5.2.4 Lkbasic is the language consisting of conjunctions of k basic implica-

tions. That is, Lkbasic consists of formulas of the form ∧i∈[k]ϕi where each ϕi is a basic

implication.

k can thus be viewed as a bound on the attacker’s power and can be increased

to provide more conservative privacy guarantees.

Note that our choice of basic implications for the “basic unit” of our language

has important consequences on our assumptions about the attacker’s power. In

particular, some properties of the underlying table might require a large num-

ber of basic implications to express. Since basic implications are essentially CNF

clauses with at least one negative atom, our language suffers from an exponen-

tial blowup in the number of basic units required to express arbitrary DNF for-

mulas. It may be that other choices of basic units may lead to equally expressive
2A major shortcoming of the `-diversity definition was that its choice of “basic unit” of

knowledge was essentially negated atoms (i.e., ¬tp[S] = s) which cannot capture all properties
of the underlying table. For example, negations cannot express basic implications in general.
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languages while at the same time requiring fewer basic units to express certain

natural properties, and we consider this an important direction for future re-

search. Nevertheless, many natural types of background knowledge have suc-

cinct representations using basic implications. For example, Alice’s knowledge

that “if Hannah is interested in anarchism, then so is Charlie” is simply the basic

implication

tHannah[Interest] = anarchism→ tCharlie[Interest] = anarchism.

And the knowledge that “Ed is not interested in hacking” is

tEd[Interest] = hacking→ tEd[Interest] = online gambling.

In general, we can represent ¬t[S] = s by (t[S] = s)→ (t[S] = s′) for any choice

of s′ 6= s since each tuple has exactly one sensitive attribute value.

Note that maintaining privacy when there is dependence between sensitive

values, especially across buckets, is a problem that has not been previously ad-

dressed in the privacy literature. The assignments of individuals to sensitive

values in different buckets are not necessarily independent. As we saw in the

example with Hannah and Charlie, fixing a particular assignment in one bucket

could affect what assignments are possible in another. One of the contributions

of this work is that we provide a polynomial time algorithm for computing the

maximum disclosure even when the attacker has knowledge of such dependen-

cies.

5.2.3 Disclosure

Having specified how the bucketization B is constructed from the underlying

table T and how an attacker’s knowledge about sensitive information can be
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expressed in language Lkbasic, we are now in a position to define our notion of

disclosure precisely.

Definition 5.2.5 (Disclosure risk) The disclosure risk of bucketization B with re-

spect to background knowledge represented by some formula ϕ in language Lkbasic is

max
tp∈T,s∈S

Pr(tp[S] = s | B ∧ ϕ).

That is, disclosure risk is the likelihood of the most highly predicted sensitive attribute

assignment.

Definition 5.2.6 (Maximum disclosure) The maximum disclosure of bucketiza-

tion B with respect to language Lkbasic that expresses background knowledge is

max
tp∈T,s∈S,ϕ∈Lk

basic

Pr(tp[S] = s | B ∧ ϕ).

By our assumptions in 5.2.2, we compute Pr(tp[S] = s |B∧ϕ) by considering the

set of all tables consistent with bucketization B and with background knowl-

edge ϕ and then taking the fraction of those tables that satisfy tp[S] = s. Using

this, the maximum disclosure of the bucketization in Table 5.3 with respect to

L1
basic turns out to be 10

19
, and occurs when ϕ is tp′ = s′ → tp = s where p is an

individual in the first bucket, p′ is an individual in the second bucket, and s and

s′ are both anarchism. Our goal is to develop general techniques to:

1. efficiently calculate the maximum disclosure for any given bucketization,

and

2. efficiently find a “minimally sanitized” bucketization3 (or the set of all

minimally sanitized bucketizations) for which the maximum disclosure

is below a specified threshold (if any exist).
3We will make precise the notion of “minimally sanitized” in Section 5.3.4; we want “mini-

mal sanitization” in order to preserve the utility of the data.
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5.3 Checking And Enforcing Privacy

In Section 5.2.2, we defined basic implications as the “unit of knowledge” and

showed that this was a fully expressive (in the presence of full identification

information) and reasonable choice. We now show how to efficiently calculate

and limit maximum disclosure against an attacker who has full identification

information and has up to k additional pieces of background knowledge (i.e.,

up to k basic implications). In order to do this, we will show in Theorem 5.3.3

that there is a set of k basic implications that maximizes disclosure with respect

to Lkbasic. Furthermore, each such implication has only one atom in the antecedent

and one atom in the consequent. This motivates the following definition.

Definition 5.3.1 (Simple implications) A simple implication is a formula of the

form A→ B for some atoms A,B.

5.3.1 Hardness of Computing Disclosure Risk

Unfortunately, naive methods for computing the maximum disclosure will not

work – in fact, we can show that computing the disclosure risk of a given buck-

etization with respect to a given set of k simple implications is #P-hard. Note

that k simple implications can be written in 2-CNF, for which satisfiability is

easily checkable. Complexity is introduced in trying to simultaneously satisfy

the k implications and the given bucketization. In fact, deciding whether a given

bucketization is consistent with a set of k simple implications is NP-complete.

Theorem 5.3.2 Given as input bucketization B and a conjunction of simple impli-

cations ϕ, the problem of deciding if B and ϕ are both satisfiable by some table T is
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NP-complete. Moreover, given an atom C as further input, the problem of computing

Pr(C | B ∧ ∧i∈[k]ϕi) is #P-complete.

Proof Consider the problem of deciding if B and ϕ are both satisfiable by some

table T , given as input a bucketization and a conjunction of simple implications.

It is clear that the problem is in NP, because given a mapping of tuples to sen-

sitive values (which has a description that is linear in bucketization size), we

can verify that it is indeed consistent with the bucketization and that it satisfies

∧i∈[k](Ai → Bi) in polynomial time.

To show that the problem is NP-hard, we reduce the problem of deciding

3-CNF satisfiability, which is NP-complete, to this problem as follows. Consider

any 3-CNF formula. We construct a bucketization and set of basic implications

from this formula as follows. For each variable x mentioned in the 3-CNF for-

mula, we construct a bucket containing two tuples, named tx and t¬x, and two

sensitive values, T and F . For each clause C of the form X ∨ Y ∨ Z in the

3-CNF formula (where X, Y, Z are either variables or their negations), we con-

struct a bucket containing five tuples, named tCX , t
C
Y , t

C
Z , t

C
dummy1, t

C
dummy2, and five

sensitive values, T, T, T, F, F . The background knowledge then consists of the

following set of statements:

• tx[S] = T → tCX [S] = T , for every variable x and every clause C containing

literal X ≡ x,

• tCX [S] = T → tx[S] = T , for every variable x and every clause C containing

literal X ≡ x,

• t¬x[S] = T → tCX [S] = T , for every variable x and every clause C contain-

ing literal X ≡ ¬x,
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• tCX [S] = T → t¬x[S] = T , for every variable x and every clause C contain-

ing literal X ≡ ¬x, and

• tCdummy1[S] = T → tCdummy2[S] = T , for every clause C.

Let k be the number of implications that we added above. Note that k is linear in

the size of the 3-CNF formula. It is fairly clear that if there is a mapping of tuples

to values that is consistent with the bucketization and background knowledge,

then assigning each variable x to the value tx[S] satisfies the 3-CNF formula

(since, in each bucket corresponding to a clause, at least one tuple representing

a literal must have sensitive value T ). So we can decide if the 3-CNF formula

is satisfiable, given an oracle for our problem. Thus the decision problem is

NP-complete.

It should therefore not come as a surprise that computing the probability

of Pr(C | B ∧ (∧i∈[k](Ai → Bi))) is #P-complete since computing the probabil-

ity and counting satisfying assignments are intimately related. We reduce the

problem of counting the satisfying assignments of a 2-CNF formula, which is

#P-complete [80], to an instance of computing Pr(A | B ∧ (∧i∈[k](Ai → A′i))).

Consider a 2-CNF formula ϕ, with variables x0, . . . , xn−1. We can find a satisfy-

ing assignment of ϕ in polynomial time since ϕ is 2-CNF. Let ∧i∈[n]Xi represent

the satisfying assignment, where Xi is either xi or ¬xi, depending on the value

of xi in the satisfying assignment. Consider a complete binary tree with n leaf

nodes, where the ith leaf is associated with the literal Xi. For every non-leaf

node, we introduce a new variable y and a constant number of 3-CNF clauses

that are equivalent to y↔ (U ∧ V ), where U and V are the literals at the left and

right children of the non-leaf node. Let ϕ′ be the conjunction of all the newly-

introduced 3-CNF clauses. Then the conjunction of all the newly-introduced
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3-CNF clauses implies that z↔∧i∈[n]Xi where z is variable associated with the

root of the tree. Note that ϕ′ is polynomial in the size of ϕ since the complete

binary tree with n leaves has at most O(n) nodes, and we introduced a constant

number of clauses for each internal node. ϕ∧ϕ′ is 3-CNF formula. And ϕ∧ϕ′∧z

is a 3-CNF formula with exactly one satisfying assignment (namely, setting each

variable in ϕ according to ∧i∈[n]Xi, and each newly-introduced variable to true).

So, applying the construction from the proof of Theorem 5.3.2 to get A and Ai

from ϕ ∧ ϕ′, it is easy to check that 1
Pr(tz [S]=T |ϕB∧ϕ∧ϕ′)

is exactly the number of

satisfying assignments of ϕ. �

5.3.2 A Special Form for Maximum Disclosure

It turns out that, despite the hardness results above, computing the maximum

disclosure with respect to language Lkbasic can be done in polynomial time. The

key insight is summarized in Theorem 5.3.3.

Theorem 5.3.3 For any bucketization, there is a set of k simple implications, all

sharing the same consequent, such that the conjunction of these k simple implications

maximizes disclosure with respect to Lkbasic.

This insight is tremendously useful in devising a polynomial-time dynamic pro-

gramming algorithm for computing the maximum disclosure with respect to

Lkbasic as it allows us to restrict our attention to sets of k simple implications of

the form (tpi
[S] = si)→ (tp[S] = s) for individuals p, pi ∈ P , and values s, si ∈ S,

i ∈ [k]. The proof of Theorem 5.3.3 follows from the following two lemmas.
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Lemma 5.3.4 For any formulas ψ, ϕ, θi, ϕi,

Pr(ϕ | ψ ∧ (∧i∈[k](θi → ϕi))) ≤ Pr(ϕ | ψ ∧ (∧i∈[k](θi → ϕ)))

Proof For convenience of notation,

• let θ be ¬(∧i∈[k]¬θi),

• let χ be (∧i∈[k](θi → ϕi)),

• let u = Pr(θ ∧ ϕ ∧ ψ),

• let v = Pr(¬θ ∧ ψ ∧ ϕ),

• let w = Pr(¬θ ∧ ψ),

• let x = Pr(θ ∧ χ ∧ ψ ∧ ϕ), and

• let y = Pr(θ ∧ χ ∧ ψ).

Then, for all ψ′ ∈ L, ∧i∈[k](θi → ϕ) ∧ ψ′ is logically equivalent to (θ ∧ ϕ ∧ ψ′) ∨

(¬θ ∧ ψ′). Hence,

Pr(ϕ | (∧i∈[k](θi → ϕ)) ∧ ψ)

=
Pr((∧i∈[k](θi→ϕ))∧ψ∧ϕ)

Pr((∧i∈[k](θi→ϕ))∧ψ)

= Pr((θ∧ϕ∧ϕ∧ψ)∨(¬θ∧ψ∧ϕ))
Pr((θ∧ϕ∧ψ)∨(¬θ∧ψ))

= Pr(θ∧ϕ∧ψ)+Pr(¬θ∧ψ∧ϕ)
Pr(θ∧ϕ∧ψ)+Pr(¬θ∧ψ)

= u+v
u+w

.

Similarly, using that fact that, for all ψ′ ∈ L, ∧i∈[k](θi → ϕi) ∧ ψ′ is logically

equivalent to (θ ∧ χ ∧ ψ′) ∨ (¬θ ∧ ψ′), we get that

Pr(ϕ | (∧i∈[k](θi → ϕi)) ∧ ψ)

= Pr(θ∧χ∧ψ∧ϕ)+Pr(¬θ∧ψ∧ϕ)
Pr(θ∧χ∧ψ)+Pr(¬θ∧ψ)

= x+v
y+w

.
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However, since θ ∧ χ ∧ ψ ∧ ϕ logically implies both θ ∧ ϕ ∧ ψ and θ ∧ χ ∧ ψ,

we have u ≥ x and y ≥ x. Similarly, since ¬θ ∧ ψ ∧ ϕ logically implies ¬θ ∧ ψ,

we have v ≤ w. So, since u, v, w, x, y ≥ 0, we get u+v
u+w
≥ x+v

x+w
≥ x+v

y+w
, thus proving

the required result. �

Starting with any set of k basic implications that maximize disclosure,

Lemma 5.3.4 enables us to replace the consequent in all the basic implications

by a single common atom (namely the atom corresponding to the highest pre-

dicted assignment of sensitive value to an individual), while still maintaining

maximum disclosure. Note that there always exists some set of k basic impli-

cations that maximize disclosure since there are only finitely many atoms and

therefore Lkbasic is finite.

Lemma 5.3.5 For any formulas ψ,B, θi, where B is an atom and θi is a conjunction of

atoms, there exist atoms Ai such that

Pr(B | ψ ∧ (∧i∈[k](θi → B))) ≤ Pr(B | ψ ∧ (∧i∈[k](Ai → B))).

Proof Since each of the implications (θi → B) is basic, θi is a conjunction of

positive atoms. Hence, from each of the θi pick one of the atoms Ai (the atoms

need not be distinct). Clearly, θi → Ai. Hence, the required result follows from

Lemma 5.3.6. �

Lemma 5.3.6 For all θ0, . . . , θk−1, θ
′
0, . . . , θ

′
k−1, ψ, ϕ, such that θi → θ′i, for all i ∈ [k],

we have

Pr(ϕ | ψ ∧ (∧i∈[k](θi → ϕ))) ≤ Pr(ϕ | ψ ∧ (∧i∈[k](θ
′
i → ϕ))).
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Proof Note that

Pr(ϕ | (∧i∈[k](θi → ϕ)) ∧ ψ) =
Pr((∧i∈[k](θi→ϕ))∧ψ∧ϕ)

Pr((∧i∈[k](θi→ϕ))∧ψ)

= Pr(ϕ∧ψ)
1−Pr(∨i∈[k](θi∧¬ϕ)∨¬ψ)

.

So it is enough to show that

Pr(∨i∈[k](θi ∧ ¬ϕ) ∨ ¬ψ) ≤ Pr(∨i∈[k](θ
′
i ∧ ¬ϕ) ∨ ¬ψ).

We know that θi → θ′i. Hence, any model that satisfies θi also satisfies θ′i.

This implies that any model that satisfies (∨i∈[k](θi ∧ ¬ϕ) ∨ ¬ψ) also satisfies

(∨i∈[k](θ
′
i ∧ ¬ϕ) ∨ ¬ψ). Hence, the required result. �

Next, Lemma 5.3.5 allows us to replace the antecedent of each of the result-

ing implications by an atom (possibly with a different atom for each implica-

tion), while still maintaining maximum disclosure.

In both Lemmas 5.3.4 and 5.3.5, we use ψ to represent the attacker’s knowl-

edge about the bucketization B. However, it is worthwhile pointing out that nei-

ther lemma places any restriction on ψ or on the underlying probability distri-

bution. This makes the results presented here extremely general and powerful

because they characterize the form of background knowledge that maximizes disclosure

risk for any form of anonymization and for any additional background knowledge.

The main idea behind the proof of Lemma 5.3.4 (and also Lemma 5.3.5)

can be illustrated as follows. Consider a bucketization B. Let (tpi
[S] = si) →

(tp′i [S] = s′i), for i ∈ {0, 1}, be two simple implications which maximize the dis-

closure of B with respect to L2
basic. For convenience, we let Ai denote the atom

tpi
[S] = si and Bi the atom tp′i [S] = s′i. Let C be the atom tp[S] = s such that

Pr(C | B ∧ (∧i∈[2](Ai → Bi))) is the maximum disclosure.
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Table 5.4: Truth Tables

∧i∈[2](Ai → Bi) ∧i∈[2](Ai → C)

A0 A1 B0 B1 C A0 A1 B0 B1 C

a 0 0 * * 0 = 0 0 * * 0 a

b 0 0 * * 1 = 0 0 * * 1 b

c 0 1 * 1 0

d 0 1 * 1 1 ⊆ 0 1 * * 1 d′

e 1 0 1 * 0

f 1 0 1 * 1 ⊆ 1 0 * * 1 f ′

g 1 1 1 1 0

h 1 1 1 1 1 ⊆ 1 1 * * 1 h′

Now let us restrict our attention to the set of tables consistent with B. Let T1

be the set of tables satisfying the simple implications A0 → B0 and A1 → B1,

and let T2 be the set of tables satisfying A0 → C and A1 → C. Table 5.4 is

a diagrammatic representation of T1 and T2. Each row in the the truth table

on the left (resp., right) in Table 5.4 represents a subset of T1 (resp., T2). The

variables a, b, c, d, e, f, g, h in the left-most (resp., a, b, d′, f ′, h′ in the right-most)

column represents the size of the corresponding set. For example, the set of

tables represented by the second row is the set of tables that satisfy the atom C

but do not satisfy A0 and A1, and the number of such of tables is b.

It is now clear from Figure 5.4 that the implications A0 → C and A1 →

C also produce the maximum disclosure as follows. Pr(C | ∧i∈[2]Ai → Bi) =

b+d+f+h
a+b+c+d+e+f+g+h

and Pr(C | ∧i∈[2]Ai → C) = b+d′+f ′+h′

a+b+d′+f ′+h′
. Also b+d+f+h

a+b+c+d+e+f+h
≤

b+d+f+h
a+b+d+f+h

≤ b+d′+f ′+h′

a+b+d′+f ′+h′
since d ≤ d′, f ≤ f ′, and h ≤ h′. Thus Pr(C | ∧i∈[2]Ai →

Bi) ≤ Pr(C | ∧i∈[2]Ai → C).
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5.3.3 Computing Maximum Disclosure Efficiently

Having reduced our search space from sets of basic implications that could lead

to maximum disclosure to sets of simple implications with the same consequent,

we are now in a position to create an efficient algorithm to compute the max-

imum disclosure. We want to maximize Pr(A | B ∧ ∧i∈[k](Ai → A)) over all

atoms A,Ai, i ∈ [k]. Notice that for any atoms A,Ai, i ∈ [k] such that A and

∧i∈[k]Ai → A are consistent with bucketization B we have

Pr(A | B ∧ (∧i∈[k]Ai → A))

=
Pr(A ∧ (∧i∈[k](Ai → A)) | B)

Pr((∧i∈[k](Ai → A)) | B)

=
Pr(A | B)

Pr((¬A ∧ (∧i∈[k]¬Ai)) ∨ A | B)

=
Pr(A | B)

Pr(¬A ∧ (∧i∈[k]¬Ai) | B) + Pr(A | B)
.

So it suffices to construct an efficient algorithm to minimize, over all atoms

A,Ai, i ∈ [k],

Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B)
. (5.1)

In Section 5.3.3, we show how to minimize Pr(∧i∈[k]¬Ai | B) over atoms Ai

involving individuals in the same bucket. We use this in Section 5.3.3 to pro-

vide a dynamic programming algorithm MINIMIZE1 that minimizes Formula

(5.1) over atoms A,Ai, i ∈ [k] involving individuals in the same bucket. Finally,

in Section 5.3.3, we use MINIMIZE1 to construct another dynamic programming

algorithm MINIMIZE2 to minimize Formula (5.1) jointly over the entire bucketi-

zation.
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Minimizing Pr(∧i∈[k]¬Ai | B) for One Bucket

Consider all sets of k atoms involving individuals whose tuples are in a single

b ∈ B. Each set of k atoms is associated with a tuple (l, k0, . . . , kl−1), where l is the

number of individuals involved in the k atoms, and ki is the number of atoms in-

volving the i-th individual. We label the k atoms Ai,j for i ∈ [l] and j ∈ [ki] such

that atom Ai,j is the j-th atom (out of ki atoms) involving the i-th individual.

Lemma 5.3.7 provides a closed form for the minimum value of Pr(∧i∈[k]¬Ai | B)

over all sets of k atoms associated with a particular (l, k0, . . . , kl−1).

Lemma 5.3.7 Let b ∈ B be any bucket. Let k, l, and k0, k1, . . . , kl−1 be such that

k = Σi∈[l]ki and ki ≥ ki+1 for all i ∈ [l − 1]. Let s0
b , s

1
b , s

2
b , . . . be the sensitive values

arranged in descending order of frequency in b. Then Pr(∧i∈[l],j∈[ki]¬Ai,j | B) is mini-

mized over all atoms Ai,j when, Ai,j is tpi
[S] = sjb, for all i ∈ [l] and all j ∈ [ki], where

p0, p1, . . . , pl−1 ∈ Pb are distinct. Consequently, the minimum probability is given by∏
i∈[l]

nb−i−
P

j∈[ki]
nb(sj

b)

nb−i
. (5.2)

Proof When Ai,j is tpi
= sjb for all i ∈ [l] and all j ∈ [ki], then it is easy to see that

Pr(∧i∈[l],j∈[ki]¬Ai,j | B) =
∏
i∈[l]

nb − i−
∑

j∈[ki]
nb(s

j
b)

nb − i
.

We now show, by induction on l (i.e., the number of individuals involved in the

k atoms), that for all b ∈ B and all atoms Ai,j (not necessarily ti[S] = si) such

that Ai,j and Ai,j′ mention the same tuple in b iff i = i′, we have

Pr(∧i∈[l],j∈[ki]¬Ai,j | B) ≥
∏
i∈[l]

nb − i−
∑

j∈[ki]
nb(s

j
b)

nb − i
.

In the base case (i.e., l = 1, k0 = k), all the atoms mention the same individual,

say p0. So takingA0,j to be tp0 [S] = sjb for j ∈ [k] clearly minimizes Pr(∧j∈[k]¬A0,j |

B), and actually achieves a probability of nb−Σj∈[k]nb(sj
b)

nb
.
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Suppose that the induction hypothesis holds for all l. Consider the case for

l + 1. Consider p0, the individual involved in the most (i.e., k0) atoms (namely,

A0,j , for j ∈ [k0]). Let S ′ be the set of values in S not involved in these atoms.

That is, S ′ = {s ∈ S : ∀j ∈ [k0] . A0,j 6≡ tp0 [S] = s}. For each s ∈ S ′,

• let ksi = ki+1, for each i ∈ [l],

• let Asi,j be Ai+1,j for each i ∈ [l] and each j ∈ [ksi ],

• let bs and Bs be the bucket and bucketization, respectively, obtained from

b and B by removing tp0 [X] and one occurrence of s from b.

Then it is easy to see that

• nbs = nb − 1, and

•
∑

j∈[ks
i ] nbs(s

j
bs) ≤

∑
j∈[ki+1] nb(s

j
b).

So, using these facts and the induction hypothesis, we have

Pr(∧i∈[l+1],j∈[ki]¬Ai,j | B)

=
∑

s∈S′ Pr(∧i∈[l+1],j∈[ki]¬Ai,j | B ∧ tp0 [S] = s) Pr(tp0 [S] = s | B)

=
∑

s∈S′ Pr(∧i∈[l],j∈[ks
i ]¬Asi,j | Bs)

nb(s)
nb

≥
∑

s∈S′(
∏

i∈[l]

nbs−i−
P

j∈[ks
i
]nbs (sj

bs )

nbs−i )nb(s)
nb

≥
∑

s∈S′(
∏

i∈[l]

nb−i−1−
P

j∈[ki+1]nb(sj
b)

nb−i−1
)nb(s)
nb

= (
∏

i∈[l]

nb−i−1−
P

j∈[ki+1]nb(sj
b)

nb−i−1
)
∑

s∈S′
nb(s)
nb

≥ (
∏

i∈[l]

nb−i−1−
P

j∈[ki+1]nb(sj
b)

nb−i−1
)
nb−

P
j∈[k0]nb(sj

b)

nb

=
∏

i∈[l+1]

nb−i−
P

j∈[ki]
nb(sj

b)

nb−i
.

This completes the induction. �
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Note that l ≤ k and k =
∑

i∈[l] ki since each atom involves at exactly one

individual. So the question of minimizing Pr(∧i∈[k]¬Ai | B) over all atoms Ai

that mention only tuples in b becomes one of minimizing
∏

i∈[l]

nb−i−
P

j∈[ki]
nb(sj

b)

nb−i

over all l ≤ k and all k0, . . . , kl−1 such that
∑

i∈[l] ki = k.

Algorithm 1: Minimize Within Bucket

1: procedure MINIMIZE1(b, i, k̂i, k̂))

2: Input: b is the bucket under consideration

3: Input: i is the index of the next individual pi for which ki (i.e., the number of

atoms involving individual pi) is to be determined (initially 0)

4: Input: k̂i is the the upper bound for ki (initially k)

5: Input: k̂ is the number of atoms for which the individuals involved have yet to

be been determined (initially k)

6: pmin ← 1

7: for ki = 1, 2, . . . ,min(k̂i, k̂) do

8: p← MINIMIZE1(b, i+ 1, ki, k̂ − ki)

9: p← nb−i−
P

j∈[ki]
nb(sj

b)

nb−i
× p

10: pmin ← min(pmin, p)

11: end for

12: return pmin

13: end procedure

This can easily be done using Algorithm 1. Thus, calling MINIMIZE1(b, 0, k, k)

minimizes Pr(∧i∈[k]¬Ai | ϕB) over all atoms Ai that involve individuals with tu-

ples in bucket b. It is easy to modify the algorithm to remember the minimizing

values of k0, . . . , kl−1, and thus we can even reconstruct the set of minimizing

atoms according to Lemma 5.3.7.
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Algorithm complexity. Note that the parameters of MINIMIZE1 are

bounded. That is, for every recursive call MINIMIZE1(b, i, ki, k̂) that occurs in-

side the initial call to MINIMIZE1(b, 0, k, k), parameter b does not change, and

parameters i, k̂i, k̂ are all bounded by k (i.e., the number of implications we al-

low the attacker to know). So we can easily turn this into an O(k3) time and

space algorithm using dynamic programming.

Minimizing Formula (5.1) within One Bucket

Let us now minimize Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B)
over all k + 1 atoms A and Ai, for i ∈ [k],

that only mention tuples in bucket b. Clearly any A,Ai that simultaneously

minimize the numerator and maximize the denominator will work. We know

that MINIMIZE1(b, 0, k + 1, k + 1) will minimize the numerator. According to

Lemma 5.3.7, at least one of these minimal k+1 atoms mention the most frequent

sensitive value. So, taking this atom to be A, we maximize the denominator as

well. Thus, the minimum value is given by

MINIMIZE1(b, 0, k + 1, k + 1)× nb
nb(s0

b)
.

Minimizing Formula (5.1) over All Buckets

We look again at minimizing Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B)
, except this time, we allow A and

Ai for i ∈ [k] to mention tuples in possibly different buckets. To do this, we make

use of the independence between buckets. Suppose that the k + 1 minimizing

atoms (includingA) are such that ki of them mention tuples in bucket bi, for each

i ∈ [l] for some l ≤ k+ 1. Let bj be the bucket containing the tuple mentioned by

A. Then, since the permutation of sensitive values for each bucket was picked
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independently, we can compute the minimum as

nbj
nbj (s

0
bj

)
×
∏
i∈[l]

MINIMIZE1(bi, 0, ki, ki).

So we need to minimize the above for all choices of l ≤ k + 1, j, and

k0, k1, . . . , kl−1 (which we can assume without loss of generality to be in descend-

ing order). Assuming buckets in B are labeled as b0, b1, b2, . . . , this is done by the

MINIMIZE2.

So MINIMIZE2(0, k, true) minimizes Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B)
over all atoms A,Ai,

i ∈ [k]. It is easy to modify the algorithm to remember the i’s and hi’s, and

hence reconstruct the minimizing atoms.

Algorithm complexity. Note that the parameters of MINIMIZE2 are

bounded. That is, for every recursive call to MINIMIZE2(i, hi, a) that occurs

inside the initial call to MINIMIZE2(0, k, true), parameter i is bounded by the

number of buckets, parameter ki is bounded by the total number of implications

k, and a is either true or false. Thus, assuming that we first memoize (i.e., pre-

compute all possible calls to) MINIMIZE1 (which we can do in time O(|B|×k3)),

we can modify the MINIMIZE2 algorithm using dynamic programming to take

an additional O(|B| × k)time and space. So the whole algorithm can be made to

run in O(|B| × k3)time and space.

Incidentally, if two bucketizations B and B∗ differ only in that B∗ is the result

of removing some buckets from B and adding x new buckets to B, then, after

we run the algorithm for B, we memoize MINIMIZE1 for the x new buckets; so

the incremental cost of running the algorithm for B∗ is O(|B∗|×k+x×k3)-time.

Moreover, if we knew in advance which buckets will be removed, we can order

the buckets b0, b1, . . . to reuse the memoization of MINIMIZE2 as well.
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Algorithm 2: Minimize Across Buckets

1: procedure MINIMIZE2(i, hi, a)

2: Input: i is the current bucket bi (initially 0)

3: Input: hi is number of atoms Aj, j ∈ [k] that yet to be determined (initially k)

4: Input: a is a Boolean flag that indicates if atomA involves someone in an earlier

bucket bj , j < i (initially false)

5: rmin ←∞

6: if i = |B| then

7: return rmin

8: end if

9: for hi+1 = 0, 1, 2, . . . , hi do

10: u← MINIMIZE1(bi, 0, hi+1, hi+1)

11: x← MINIMIZE2(i+ 1, hi − hi+1, true)

12: if a = false then

13: // Atom A does not involve an earlier bucket bj , j < i

14: v ← MINIMIZE1(bi, 0, hi+1 + 1, hi+1 + 1)

15: rmin ← min(rmin, v × x×
nbi

nbi
(s0bi

)
)

16: rmin ← min(rmin, u×MINIMIZE2(i+ 1, hi − hi+1, false))

17: else

18: // Atom A involves an earlier bucket bj , j < i

19: rmin ← min(rmin, u× x)

20: end if

21: end for

22: return rmin

23: end procedure
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5.3.4 Finding a Safe Bucketization

Armed with a method to compute the maximum disclosure, we now show how

to efficiently find a “minimally sanitized” bucketization for which maximum

disclosure is below a given threshold. Intuitively, we would like a minimal

sanitization in order to preserve the utility of the published data. Let us be

more concrete about the notion of minimal sanitization. Given a table, consider

the set of bucketizations of this table. We impose a partial ordering� on this set

of bucketizations where B � B′ if and only if every bucket in B′ is the union of

one of more buckets in B. Thus the bucketization B> that has all the tuples in

one bucket is the unique top element of this partial order, and the bucketization

B⊥ that has one tuple per bucket is the unique bottom element of this partial

order. Our notion of a “minimally sanitized” bucketization is one that is as low

as possible in the partial order (i.e., as close to B⊥) while still having maximum

disclosure lower than a specified threshold.

Definition 5.3.8 ((c, k)-safety) Given a threshold c ∈ [0, 1], we say that B is a (c, k)-

safe bucketization if the maximum disclosure of B with respect to Lkbasic is less than

c.

If the maximum disclosure is monotonic with respect to the partial ordering �,

then finding a �-minimal (c, k)-safe bucketization can be done in time logarith-

mic in the height of the bucketization lattice (which is at most the number of

tuples in the table) by doing a binary search. The following theorem says that

we do indeed have monotonicity.

Theorem 5.3.9 (Monotonicity) Let B and B′ be bucketizations such that B � B′.
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Then the maximum disclosure of B is at least as high as the maximum disclosure of B′

with respect to Lkbasic.

Proof Let b1 and b2 be two buckets of sizes m and n respectively in bucketiza-

tion B. Let b be the bucket formed by merging b1 and b2 and let B′ be the new

bucketization.

To show monotonicity, it is enough to show that the minimum Pr(∧i∈[k]¬Ai |

B′) is at least as high as the minimum Pr(∧i∈[k]¬Ai | B), where Ai range over

atoms that involve only individuals in b in both cases.

According to Lemma 5.3.7, let tpi
[S] = sjb be the atoms that minimize the

second probability (for B′), for i ∈ [l] and j ∈ [ki] (where p0, . . . , pl are the indi-

viduals involved in k0, . . . , kl atoms, respectively). Then, as in Lemma 5.3.7, the

minimum probability is given by

∏
i∈[l]

ai + bi − i
m+ n− i

,

where ai = nb1 −
∑

j∈[ki]
nb1(s

j
b) and bi = nb2 −

∑
j∈[ki]

nb2(s
j
b).

For each i, we define Pi , ci, and di inductively:

1. P0 = 1, c0 = 0, d0 = 0.

2. If ai−ci
m−ci ≤

bi−di

n−di
then Pi+1 = Pi

ai−ci
m−ci and ci+1 = ci + 1 and di+1 = di.

3. If ai−ci
m−ci >

bi−di

n−di
then Pi+1 = Pi

bi−di

n−di
and ci+1 = ci and di+1 = di + 1.

Think of this as choosing atoms tp′i = sjb for i ∈ [l], j ∈ [ki] where p′i is a new

individual in bucket b1 or b2 depending on whether ai−ci
m−ci ≤

bi−di

n−di
or not. It is easy

to see that Pl ≥ P (∧i∈[l],j∈[ki]¬tp′i = sjb | B). Note that, by definition, ci + di = i
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for all i. So we have ai+bi−i
m+n−i = ai−ci+bi−di

m−ci+n−di
= m−ci

m−ci+n−di

ai−ci
m−ci + ni−di

m−ci+n−di

bi−di

n−di
≥

min(ai−ci
m−ci ,

bi−di

n−di
). So at each step i, we get Pi+1 by multiplying Pi by a factor that

is no more than ai+bi−i
m+n−i . So

∏
i∈[l]

ai+bi−i
m+n−i ≥ Pl ≥ P (∧i∈[l],j∈[ki]¬tp′i = sjb | B) and so

we are done. �

Another approach is to find all �-minimal (c, k)-safe bucketizations, and re-

turn the one that maximizes a specified utility function. The monotonicity prop-

erty allows us to make use of existing algorithms for efficient itemset mining

[7], k-anonymity [13, 54] and `-diversity [57].4 For example, we can modify

the Incognito [54] algorithm, which finds all the�-minimal k-anonymous buck-

etizations, by simply replacing the check for k-anonymity with the check for

(c, k)-safety from Section 5.3.3. We can thus find the bucketization that maxi-

mizes a given utility function subject to the constraint that the bucketization be

(c, k)-safe.

5.4 Maximum Disclosure and `-diversity

We now use our framework to analyze a different restriction on background

knowledge and relate this with a privacy condition recently proposed in [57],

called `-diversity. This exercise provides further insight into our techniques,

while at the same time contributing an essential piece of formal analysis that

was missing in [57], namely, proving that recursive (c, `)-diversity is equiva-

lent to ( c
c+1

, `− 2)-safety with respect to a simple language expressing sensitive

value elimination. This is an important contribution to our understanding of

4While these algorithms typically have worst-case exponential running time in the height of
the bucketization lattice, they have been shown to run fast in practice.
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(c, `)-diversity because it shows that (c, `) diversity protects against `− 2 pieces

of information involving possibly several different individuals, rather than the ear-

lier belief that it protects against ` − 2 pieces of information involving only one

individual.

Before we begin, however, let us quickly recall the definition of recursive

(c, `)-diversity.

Definition 5.4.1 (Recursive (c, `)-diversity) A bucketization B is said to be recur-

sive (c, `)-diverse if for all buckets b ∈ B,

nb(s
0
b) ≤ c× (nb − nb(s0

b)−
`−2∑
i=1

nb(s
i
b)).

Intuitively, this definition states that a bucketization is (c, 2)-diverse if, for

every bucket, the most frequent attribute value of the sensitive attribute appears

at most c times as frequently as all the remaining attribute values of the sensitive

attribute combined. As argued in [57], it then follows that if an adversary is able

to eliminate k − 2 values of the sensitive attribute of one particular individual in

some bucket, the disclosure risk for that individual is at most c
c+1

.

We now show that eliminating the sensitive values for one particular indi-

vidual maximizes disclosure over background knowledge from language Lneg

(defined below), which allows for sensitive value elimination for possibly several

different individuals. Once again the disclosure maximizing background knowl-

edge has a special structure, namely, that all statements mentioned the same

tuple. Our proof uses the techniques from Section 5.3.

Definition 5.4.2 Let Lneg be the set of the formulas of the form ¬AwhereA is an atom.
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Recall that an atom is a formula of the form tp[S] = s. Lneg thus captures knowl-

edge of the form “Ed does not have the flu”.

Theorem 5.4.3 For any bucketization B, we have

max
atoms A,Ai

Pr(A | B ∧ (∧i∈[k]¬Ai)) = max
b∈B

nb(s
0
b)

nb −
∑

i∈[k] nb(s
i+1
b )

.

Proof This follows immediately from independence between the permutations

in separate buckets and Lemma 5.4.4 below. �

Lemma 5.4.4 Consider a bucket b ∈ B, and let p be any individual with a tuple tp in b.

Then Pr(A | B ∧ (∧i∈[k]¬Ai)) is maximized over all atoms A,A0, . . . , Ak−1 that involve

only individuals from b when

1. A is tp[S] = s0
b , and

2. Ai is tp[S] = si+1
b , for i ∈ [k].

Moreover, the maximum probability is given by

nb(s
0
b)

nb −
∑

i∈[k] nb(s
i+1
b )

.

Proof First note that when A is the statement tp[S] = s0
b , and each Ai is the

statement tpi
[S] = si+1

b , then it is easy to see that

Pr(A | B ∧ (∧i∈[k]¬Ai)) =
nb(s

0
b)

nb −
∑

i∈[k] nb(s
i+1
b )

, (5.3)

since this is the relative frequency of s0
b after s1

b , . . . , s
k
b have been eliminated. We

now show that no other choice of atoms A,Ai (involving only individuals with
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tuples in b) gives a higher probability. We proceed by induction on the number

of individuals involved in the atoms A0, . . . , Ak−1 to show that

Pr(A | B ∧ (∧i∈[k]¬Ai)) ≤
nb(s

0
b)

nb −
∑

i∈[k] nb(s
i+1
b )

.

In the base case, where all the atoms A,A0, . . . , Ak−1 involve exactly one indi-

vidual, it is easy to see that the worst case is given by Equation 5.3. Now, us-

ing the induction hypothesis, assume that the lemma is true when the atoms

involve at most m − 1 distinct individuals. We will consider the case where

A,A0, . . . , Ak−1 involve m ≥ 2 individuals. Let p be the individual involved

in A. Now A0, . . . , Ak−1 involve some other individual p′ 6= p, since m ≥ 2.

Without loss of generality, A0, . . . , Ak′−1 be the atoms not involving p′ and let

Ak′ , . . . , Ak−1 be the atoms involving p′, for some k′ < k. For ease of notation,

we abbreviate ∧i∈[k]¬Ai by κ and ∧i∈[k′]¬Ai by κ′. Thus our original background

knowledge κ is split into two parts. The first part, κ′, is the part of our back-

ground knowledge not involving p′; the second part, ∧i∈[k]\[k′]¬Ai, is the part of

our background knowledge involving only p′. Since k′ < k, we can apply our

induction hypothesis to the statement κ′.

Let Sb be the set of sensitive values that appear in bucket b (i.e., Sb =

{s ∈ S : nb(s) > 0}). For each s ∈ Sb, let bs and Bs be the bucket and bucketi-

zation, respectively, that are obtained by removing the non-sensitive attributes

of p′ and an occurrence of s from bucket b. Then it is not hard to show that:

1. nbs = nb − 1,

2. nbs(s0
bs) ≤ nb(s

0
b), and

3. 1 +
∑

i∈[k′] nbs(s
i+1
bs ) ≤

∑
i∈[k] nb(s

i+1
b ).
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So, using the induction hypothesis (in the first inequality below) and the above

facts (in the second inequality), we get:

Pr(A | B ∧ κ) =
∑

s∈Sb
Pr(A ∧ tp′ [S] = s | B ∧ κ)

=
∑

s∈Sb
Pr(A | B ∧ κ ∧ tp′ [S] = s)

×Pr(tp′ [S] = s | B ∧ κ)

=
∑

s∈Sb
Pr(A | Bs ∧ κ′) Pr(tp′ [S] = s | B ∧ κ)

≤
∑

s∈Sb

nbs (s0bs )

nbs−
P

i∈[k′] nbs (si+1
bs )

Pr(tp′ [S] = s | B ∧ κ)

≤
∑

s∈Sb

nb(s0b)

nb−
P

i∈[k] nb(si+1
b )

Pr(tp′ [S] = s | B ∧ κ)

=
nb(s0b)

nb−
P

i∈[k] nb(si+1
b )

∑
s∈Sb

Pr(tp′ [S] = s | B ∧ κ)

≤ nb(s0b)

nb−
P

i∈[k] nb(si+1
b )

.

This completes the induction. �

5.5 Experiments

In this section, we present a case-study of our framework for worst-case disclo-

sure using the Adult Database from the UCI Machine Learning Repository [9].

We only consider the projection of the Adult Database onto five attributes: Age,

Marital Status, Race, Gender and Occupation. The dataset has 45,222 tuples af-

ter removing tuples with missing values. We treat Occupation as the sensitive

attribute; its domain consists of fourteen values. We use pre-defined general-

ization hierarchies for the attributes similar to the ones used by LeFevre et al.

[54]. Age can be coarsened to six levels (using intervals of size 1, 5, 10, 20, 40,

and 100 years), Marital Status can be coarsened to three levels, and Race and

Gender can each either be left as is or be completely suppressed. We consider

all the possible anonymized tables using those generalizations.
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Figure 5.1: Disclosure vs Number of Pieces of Background Knowledge

We computed the maximum disclosure for k pieces of background knowl-

edge, for k ranging from 0 (i.e., no background knowledge) to 12 (since we know

that maximum disclosure certainly reaches 1 at k = 13 because there are only

fourteen possible sensitive values). Figure 5.1 plots, for one anonymized ta-

ble, the number of pieces of knowledge available to an adversary against the

maximum disclosure for both negated atoms (`-diversity) and basic implica-

tions. In the anonymized table used, all the attributes other than Age were sup-

pressed and the Age attribute was generalized to intervals of size 20. The solid

line corresponds to implication statements and the dotted line corresponds to

negated atoms. This graph agrees with our earlier observation that implication-

type background knowledge subsumes negation; the maximum disclosure for

k negated atoms is always smaller than the maximum disclosure for k implica-
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Figure 5.2: Entropy vs Maximum Disclosure Risk

tions. However, note that, for a given k, the difference between the maximum

disclosure for negated atoms and for basic implications is not too large. This

means that an anonymized table which tolerates maximum disclosure due to k

negated atoms need not be anonymized much further to defend against k im-

plications.

Intuitively, if all the buckets in a table have a nearly uniform distribution,

then the maximum disclosure should be lower, but the exact relationship is not

obvious. To get a better picture, we performed the following experiment. We

fixed a value k for the number of pieces of information. For every entropy value

h, we looked at the set T (h) of tables for which the minimum entropy of the

sensitive attribute over all buckets was equal to h. Among the tables in T (h),

we found the table T (h) with the least maximum disclosure for k implications.
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Let the worst case disclosure for T (h) given k pieces of knowledge be denoted

by w(T (h), k). We plotted h versus w(T (h), k) for k = 1, 3, 5, 7, 9, 11 in Figure 5.2.

We see a behavior which matches our intuition. For a given k, the disclosure risk

monotonically decreases with increase in h. This is because increasing h means

that we are looking at tables with more and more entropy in their buckets (and,

consequently, less skew).

5.6 Related Work

Many metrics have been proposed to quantify privacy guarantees in publishing

publishing anonymized data-sets. ‘Perfect privacy’ [26, 61] guarantees that pub-

lished data does not disclose any information about the sensitive data. How-

ever, checking whether a conjunctive query discloses any information about the

answer to another conjunctive query is shown to be very hard (Πp
2-complete

[61]). Subsequent work showed that checking for perfect privacy can be done ef-

ficiently for many subclasses of conjunctive queries [56]. Perfect privacy places

very strong restrictions on the types of queries that can be answered [61] (in par-

ticular, aggregate statistics cannot be published). Less restrictive privacy defi-

nitions based on asymptotic conditional probabilities [25] and certain answers

[75] have been proposed. Statistical databases allow answering aggregates over

sensitive values without disclosing the exact value [1]. De-identification, like

k-anonymity [68, 77] and “blending in a crowd” [18], ensures that an individual

cannot be associated with a unique tuple in an anonymized table. However,

under both of those definitions, sensitive information can be disclosed if groups

are homogeneous.
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Background knowledge can lead to disclosure of sensitive information. Su

et al. [76] and Yang et al. [85] limit disclosure when functional dependencies

in the data are known to the data publisher upfront. The notion of `-diversity

[57] guards against limited amounts of background knowledge unknown to the

data publisher. Farkas et al. [35] provide a survey of indirect data disclosure via

inference channels.

There are several approaches to anonymizing a dataset to ensure privacy.

These include generalizations [13, 54, 69], cell and tuple suppression [23, 69],

adding noise [1, 8, 18, 33], publishing marginals that satisfy a safety range [28],

and data swapping [24], where attributes are swapped between tuples so that

certain marginal totals are preserved. Queries can be posed online and the an-

swers audited [49] or perturbed [27]. Not all approaches guarantee privacy. For

example, spectral techniques can separate much of the noise from the data if the

noise is uncorrelated with the data [42, 47]. Anatomy [84] is a recently proposed

anonymization technique that corresponds exactly to the notion of bucketiza-

tion that we use in this chapter. When the attacker knows full identification

information, then generalization provides no more privacy than bucketization.

However, we recommend generalizing the attributes before publishing the data

since this will prevent attackers that do not already have full identification infor-

mation from re-identifying individuals via linking attacks [77]. In many cases,

the fact that a particular individual is in the table is considered sensitive infor-

mation [18].

The utility of data that has been altered to preserve privacy has often been

studied for specific future uses of the data. Work has been done on preserv-

ing association rules while adding noise [33]; reconstructing distributions of
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continuous variables after adding noise with a known distribution [6, 8]; recon-

structing data clusters after perturbing numeric attributes [18]; and maximizing

decision tree accuracy while anonymizing data [44, 83]. There have also been

some negative results for utility. Publishing a single k-anonymous table can

suffer from the curse of dimensionality [2] - large portions of the data need to

be suppressed to ensure privacy. Subsequent work [50] shows how to publish

several tables instead of a single one to combat this.

5.7 Conclusions

In this chapter, we initiate a formal study of the worst-case disclosure with back-

ground knowledge. Our analysis does not assume that we are aware of the ex-

act background knowledge possessed by the attacker. We assume bounds on

the the attacker’s background knowledge given in terms of the number of basic

units of knowledge that the attacker possesses. We propose basic implications

as an expressive choice for these units of knowledge. Although computing the

probability of a specific disclosure from a given set of k basic implications is

intractable, we show how to efficiently determine the worst-case over all sets

of k basic implications. In addition, we show how to search for a bucketization

that is robust (to a desired threshold c) against any k basic implications by com-

bining our check for (c, k)-safety with existing lattice-search algorithms. Finally,

we demonstrate that, in practice, `-diversity has similar maximum disclosure

to our notion of (c, k)-safety, which guards against a richer class of background

knowledge.

In the advertising auctions setting, our work has two important limitations.
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First, our framework assumes a single categorical sensitive attribute. Therefore,

we cannot handle multiple sensitive attributes or set-valued sensitive attributes

(e.g., search log data containing the set of phrases that each user has searched

for). Second, our framework assumes a one-time data publishing model. In

order to handle re-publishing updated data (e.g., when users’ interests change

from time to time), we would need to take into account the data that has already

been published when computing disclosure.

Another issue to consider is our choice of basic units of knowledge. Since we

chose basic implications as our units of knowledge, our algorithms will clearly

yield very conservative bucketizations if we try to protect against an attacker

who knows information that can only be expressed using a large number of

basic implications. One way to reduce the number of basic units required is

to add more powerful atoms to our existing language. For example, an inter-

esting class of formulas that require a large number of basic implications are

those of the form ∨s∈S(tp[S] = s ∧ tp′ [S] = s). Such formulas express equality

between the sensitive attributes of two tuples and can be expressed using |S|

basic implications. We could therefore try to update our framework to include

atoms of the form tp[S] = tp′ [S] in our language and consider basic implications

that contain these new types of atoms as well. Finding the right language for

basic units of knowledge is an important direction of future work. Other direc-

tions for future work include extending our framework for probabilistic back-

ground knowledge, studying cost-based disclosure (since it was observed in

[57] that not all disclosures are equally bad), and extending our results to other

forms of anonymization, such as data-swapping and collections of anonymized

marginals [50].
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CHAPTER 6

CONCLUSIONS

In this dissertation, we highlight the need for more expressive auctions, and

provide a means for advertisers to express dynamic strategies for bidding on

clicks, purchases, and slot positions in the form of bidding programs. Given

the output of these programs, we provide algorithms to solve the winner-

determination problem in time linear in the number of advertisers, reducing the

problem size to one that depends on only the number of slots. We extend our

techniques to accommodate more complicated scenarios, such as when adver-

tisers can win multiple slots, and when the probability of an advertiser receiving

a click depends on the slots assigned to other advertisers. We also identify im-

portant cases where we can reduce the work required to evaluate the bidding

programs using logical updates. We demonstrate the efficacy of our techniques

experimentally. We study the complexity of saving work by optimally sharing

aggregation between bidding programs during a single auction, and between

the winner-determination computation of multiple auctions. Finally, we pro-

vide a framework for revealing useful user information to advertisers while

limiting disclosure against any attacker who possesses a specified amount of

background knowledge.

There are many interesting opportunities for future work. Identifying other

features of bidding programs that could lead to finding the top k programs more

efficiently would be very useful. For example, if we are able to statically deter-

mine the frequency with which some programs update their bids, then we can

avoid running those programs whose bids we know will not be be changing

for a while. For the problem of optimally sharing aggregation between bidding
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programs, we provide complexity results for most of the abstract aggregators

that we considered; it would be nice to resolve the complexity of the few re-

maining non-commutative cases. Furthermore, in the cases that we show to be

NP-complete, it is of practical importance to determine whether approximate

solutions can be found efficiently. Another practical problem is how to find

good initial estimates for the click and purchase probabilities of new ads. When

a new ad enters the system, the probability that it will get a click is unknown,

and, in order to learn this probability, we need to display it even though it may

not lead to an optimal winner assignment. We need a way to occasionally inject

new ads into the winner assignment without affecting the long-term optimality

of winner determination too much.

Although we have assumed a fairly centralized system in this dissertation,

it is important to consider the issues that arise when running bidding programs

in a fault-tolerant distributed system. For example, it may be useful to have

several copies of a bidding program running on different servers in order to

protect against the failure of a single server. This raises questions about what

kind of consistency we need to guarantee across these replicas. At the very

least, the copies should see a consistent view of certain key variables, such as

the amount of daily budget that the advertiser has remaining. Moreover, in

a large distributed system, communication cost becomes an important factor

to consider. One interesting problem is that of assigning bidding programs to

servers spread across the world in such a way that the machines running the

bidding programs are located near the geographic area that the advertiser wants

to target, in order to minimize communication delay.

Our work on privacy-preserving data publishing can be extended in use-
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ful ways as well. For example, consider extending our techniques to handle

non-categorical sensitive attributes so as to deal with set-valued attributes (e.g.,

users’ keyword search history), and numerical attributes (e.g., users’ click fre-

quencies). This would allow search engines to publish data that is of great

utility not just to advertisers, but to researchers and website designers as well.

With these new kinds of attributes, we must consider new types of background

knowledge, such as statements involving the subset relation (for set-valued sen-

sitive attributes) and comparison relations (for numerical sensitive attributes).

Another issue that arises in practice is that user data changes over time, but our

framework assumes a one-time data publishing model. Allowing updated data

to be re-published in a privacy-preserving manner is a crucial open problem,

not just in our setting, but in the publishing of medical and census data as well.

Our work is a first step toward applying database principles to the excit-

ing and important problems arising in advertising auctions. We believe that

the database community has much to offer this area given its vast experience

with the trade-offs between expressiveness and scalability; providing advertis-

ers with more expressive bidding while retaining the scalability of these auc-

tions is crucial to the continued growth of this multi-billion dollar industry.
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