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 Gene regulation by estrogen (E2) plays an important role in mediating 

physiological responses in normal and disease states.  Estrogen receptors (ERs) 

facilitate these responses by at least two genomic modes of action:  (1) binding 

directly to estrogen response elements (EREs) or (2) binding indirectly to DNA 

through transcription factors (like AP-1).  Although the ERE pathway is well studied, 

little is known about the mechanism of E2-dependent actions through this indirect 

pathway (e.g., ER/AP-1 pathway). 

 Using an unbiased proteomic approach, that utilizes affinity purification and 

iTRAQ labeling, I examine the composition of AP-1 complexes in order to better 

understand the foundation of ER tethering.  The results from this analysis identify 

several AP-1 and non-AP-1 transcription factors associated with E2-responsive AP-1 

sites.  My results also identify putative coregulators that may play a role in mediating 

ER/AP-1 responses in vivo. 

 In further studies, I characterize the genomic interplay between E2-signaling 

and the AP-1 regulator, Jun N-terminal Kinase 1 (JNK1).  Interestingly, I show that 

JNK1 binds to discrete regions of the genome in an E2-regulated manner and correlate 

these binding events with ERα occupancy.  I also define the transcription factors 

responsible for tethering JNK1 to promoter regions.  These results reveal the emerging 

theme that MAP kinases (like JNK1) can form stable, chromatin-associated 

complexes.  Furthermore, I describe the necessity of JNK1 activity in mediating E2-



 

dependent transcriptional outcomes in breast cancer cells and demonstrate the 

importance of JNK1 in E2-dependent tumor cell growth.  Finally, I show that JNK1 

can phosphorylate coactivators involved in E2-dependent complexes, as well as 

histone H3.  Modification of these factors may play a role in facilitating E2-dependent 

transcriptional responses in vivo.  My results establish a new paradigm for estrogen 

signaling which now includes JNK1 as an E2-dependent coregulator. 
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Transcriptional Regulation by Estrogens Through the  

AP-1 Pathway: An Overview 
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Physiology of Estrogens 

It is well-known that estrogens, such as 17β-estradiol (E2), play pivotal roles 

in the regulation of sexual development and fertility in both males and females (Couse 

and Korach, 1999a; Couse and Korach, 1999b; Nef and Parada, 2000; O'Donnell et al., 

2001).  Estrogens also regulate metabolic processes in fat, liver, and bone tissues 

(DeCherney, 1993; Vaananen and Harkonen, 1996).  In addition to these roles in 

normal physiological processes, estrogens also play pivotal roles in many disease 

states.  For example, estrogens can act as potent mitogens in some cancers (e.g., 

breast, uterine) causing hormone-dependent growth and proliferation (Foster et al., 

2001; Prall et al., 1998; Sommer and Fuqua, 2001).  A variety of synthetic estrogen 

antagonists ("antiestrogens") have been developed and are used clinically to reverse 

the mitogenic action of estrogens in estrogen-dependent cancers (e.g., Tamoxifen, 

Tam; Raloxifene, Ral).  Interestingly, these same compounds may have estrogen-like 

agonistic activities in some tissues (e.g., bone, endometrium), functioning more like 

tissue- or cell type-specific "selective estrogen receptor modulators" (SERMs) than 

pure antagonists (Harper and Walpole, 1967; McDonnell et al., 2002; Paech et al., 

1997; Webb et al., 1995).  Gaining a greater understanding of the molecular actions of 

estrogens and SERMs will aid in the development of new compounds that are even 

more effective in the treatment of breast cancers. 

 

Estrogen Receptors 

The molecular actions of estrogens are mediated through estrogen receptor 

(ER) proteins which bind the hormones, dimerize, and regulate the transcription of 

estrogen-responsive genes.  ERs exist as two isoforms, ERα and ERβ (Warner et al., 

1999), which are members of a conserved superfamily of nuclear receptors that 

function as transcription factors (Mangelsdorf et al., 1995).  These isoforms have 
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unique, but overlapping, patterns of expression in a variety of tissues (Couse and 

Korach, 1999a; Nilsson et al., 2001; Pettersson and Gustafsson, 2001).  (From now on, 

the use of the term “ERs” will refer to both ERα and ERβ, unless otherwise stated.)  

Although their activities are functionally distinct, both isoforms share a similar 

structure.  ERs contain an N-terminal activation function (AF-1), a DNA-binding 

domain (DBD),  and a C-terminal activation function (AF-2) which contains the 

ligand-binding domain (LBD) (Enmark and Gustafsson, 1999) (Figure 1.1).  The 

expression of ERs in cells is a well-known prognostic indicator for some estrogen-

dependent breast cancers (Jensen et al., 2001) and serves as the protein target for 

SERMs (McDonnell et al., 2002; Sommer and Fuqua, 2001).  While several nuclear 

and non-nuclear mechanisms of ER-dependent transcription have been described 

(Figure 1.2) [reviewed in (Barnes et al., 2004)], only the ligand-dependent nuclear 

actions of ER are addressed in this work. 

 

ER-dependent Transcriptional Regulation in the Nucleus: Direct DNA Binding 

Upon hormone stimulation, ERs dissociate from nuclear chaperone proteins, dimerize, 

and bind to DNA sequences known as estrogen response elements (EREs).  Estrogen-

dependent transcriptional regulation through the ERE pathway involves a variety of 

cofactors that function with liganded ERs to modify histones, alter chromatin 

structure, and recruit the RNA polymerase II (Pol II) transcriptional machinery (Kraus 

and Wong, 2002).  Many coactivators (i.e., stimulatory cofactors) bind directly to 

agonist-activated AF-2 of ER through short α-helical "LXXLL" motifs called NR 

boxes (Glass and Rosenfeld, 2000; Leo and Chen, 2000; Robyr et al., 2000).  In 

general, antagonists fail to induce the proper AF-2 conformation and thus block 

receptor-coactivator interactions (Nichols et al., 1998).  Coactivators include the 

following:  (1) histone-modifying enzyme (HME) complexes that contain 
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Figure 1.1  Schematic of ERα and ERβ  domains.  

ERs share a conserved functional domain structure.  This  includes an amino-terminal 

activation function 1 domain (AF-1), a DNA-binding domain (DBD), and an 

activation function 2 domain (AF-2) that contains the ligand-binding pocket.  

Sequence homology is represented as a percentage for each functional domain. 
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Figure. 1.2  Estrogen-dependent signaling pathways. 

Estrogen (E2) signaling pathways include: (1) the ligand-dependent binding of the 

estrogen receptor (ER) directly to EREs (“Classical”), (2) the ligand-dependent 

binding of ER to DNA-bound transcription factors (TF) (“Non-Classical”), and (3) the 

activation of kinase cascades by membrane-associated ER (“Extra-Nuclear”).  Figure 

modified from (McDevitt et al., 2008). 
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members of the steroid receptor coactivator (SRC) family of proteins as the receptor-

binding subunit (Leo and Chen, 2000), (2) chromatin remodeling complexes such as 

SWI/SNF (Kingston and Narlikar, 1999; Robyr et al., 2000), and (3) Mediator 

complexes (e.g., TRAP and DRIP) which contain Med220/ TRAP220 as the primary 

receptor-binding subunit (Malik and Roeder, 2000; Rachez and Freedman, 2001) 

(Figure 1.3).  HMEs include the histone acetyltransferases (HATs) p300/CBP and the 

histone methyltransferase (HMT) CARM-1, which covalently modify histones to 

change the structure and function of chromatin (Davie and Chadee, 1998; Narlikar et 

al., 2002).  Chromatin remodeling complexes alter local nucleosomal structure to 

relieve chromatin-mediated transcriptional repression (Hebbar and Archer, 2003; 

Kingston and Narlikar, 1999; Varga-Weisz, 2001).  Mediator functions to stabilize the 

formation of a stable Pol II-dependent transcription preinitiation complex (Malik and 

Roeder, 2000; Rachez and Freedman, 2001).  These coactivators are recruited by 

steroid receptor proteins to promoter regions containing hormone-responsive elements 

and ultimately facilitate transcriptional activation (Kinyamu and Archer, 2004). 

 

ER-dependent Transcriptional Regulation: Tethering Pathway Overview 

Cellular signaling by estrogens is not limited to ERE-dependent transcription.  In fact, 

multiple lines of evidence point to the interaction of ER with several transcription 

factors via their recognition elements (e.g., NF-κB, Sp1, AP-1).  Indeed, the direct 

interaction of ER with NF-κB (Vandel et al., 1995) has been described with respect to 

E2-mediated regulation of the interleukin-6 promoter (Ray et al., 1997; Stein and 

Yang, 1995).  Interactions with AP-1 have also been described (Teyssier et al., 2001; 

Webb et al., 1995), as well as the E2-dependent regulation of genes harboring AP-1 

binding elements (such as collagenase, human insulin growth factor 1, chicken 

ovalbumin, ovine follicle-stimulating hormone β, human choline 
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Figure 1.3  ER activation through an estrogen response element. 

(A)  After binding estrogen, ER dimerizes and binds to estrogen response elements 

where it then recruits a cohort of factors such as histone modifying proteins, chromatin 

remodeling proteins, and proteins associated with the basal transcription machinery 

(B).  The canonical estrogen response element is shown.  N = any DNA base.  Figure 

modified from (Acevedo and Kraus, 2004). 

A 

Estrogen Response Element 
(ERE) 

B 

AGGTCA NNN TGACCT 
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acetyltransferase gene) (Gaub et al., 1990; Miller and Miller, 1996; Paech et al., 1997; 

Schmitt et al., 1995; Umayahara et al., 1994; Webb et al., 1995; Webb et al., 1999) or 

those requiring AP-1 factors (DeNardo et al., 2005). 

An interesting aspect of the ER/AP-1 pathway is that, under certain cell type 

and promoter contexts, some classical ER antagonists can function as agonists (Harper 

and Walpole, 1967; McDonnell et al., 2002; Paech et al., 1997; Webb et al., 1995; 

Webb et al., 1999).  Indeed, using an in vitro chromatin assembly and transcription 

system, our lab has reconstituted ER-dependent activation through AP-1 binding 

elements by both E2 and SERMs (Cheung et al., 2005) (Figure 1.4).  Although the 

molecular details of the ERE pathway are well characterized, our understanding of 

ligand-dependent activation of the tethered pathway is quite limited, especially with 

regard to the mechanisms of altered SERM pharmacology.  

 

AP-1 Family of Transcription Factors  

 The AP-1 transcription factor is a dimeric complex composed of members of 

the Fos (c-Fos, FosB, Fra1, and Fra2) and Jun (c-Jun, JunB, and JunD) bZIP protein 

families (Foletta et al., 1998). Initially, AP-1 complexes were found to mediate gene 

induction by the tumor promoting phorbol ester 12-0-tetradecanoylphorbol-13-acetate 

(TPA).  Because of this, the specific DNA sequence which AP-1 bound was called a 

TRE (for TPA response element) (Figure 1.5).  Fos and Jun, which were named after 

the viral oncoproteins in the Finkel-Biskis-Jinkins osteosarcoma virus and avian 

sarcoma virus 17, respectively (Vogt, 2002), were later identified as the proteins that 

bound TREs. The stability and activity of AP-1 directly results from the composition 

of its dimers [reviewed in (Eferl and Wagner, 2003; Shaulian and Karin, 2001; 

Shaulian and Karin, 2002)].  For instance, Fos proteins do not form stable 

homodimers, but rather, form heterodimers with Jun proteins that are more stable than 
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Figure 1.4  Comparison of direct and tethered ER complexes. 

(A)  Using an in vitro chromatin assembly and transcription system the Kraus lab has 

demonstrated ligand-dependent transcriptional activation of ERE and AP-1 driven 

reporters (Cheung et al., 2005).  ERα can activate transcription at both reporters in the 

presence of 17β-estradiol (E2) but only the antiestrogens, Tamoxifen (OHT), ICI, and 

Raloxifene can activate transcription through AP-1 sites. AdE4 = adenovirus E4 

promoter products. 

(B)  This altered pharmacology whereby E2 agonists and antagonist can activate 

transcription through AP-1 is one of the defining elements of ER activation through 

AP-1 in vivo. 



 10 

 

A 



 11 

Figure 1.4 (Continued) 

 

B 
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Figure 1.5  The AP-1 transcription factors.  AP-1 proteins (members of the Jun and 

Fos protein families) are basic-leucine zipper proteins.  The leucine zipper domain 

(shown in white with the leucine residues colored green) allows the dimerization of 

Jun-Jun and Jun-Fos members.  Once dimerized, their basic regions (shown in red) 

interact with specific DNA sequences (shown in yellow) known as TPA-response 

elements (TREs; TGAGTCA sequence).  The model above only shows the bZIP 

regions of c-Fos and c-Jun.  The picture was generated with Pdb viewer using the 

published crystal structure (Glover and Harrison, 1995). 

TGAGTCA 

Dimerization 
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DNA 
binding 
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 13 

Jun:Jun homodimers (Angel and Karin, 1991).  The AP-1 members that compose 

these dimers can be quite different.  Some AP-1 proteins, such as c-Fos, FosB, and c-

Jun, contain potent activation domains which allow them to promote cell 

transformation (Jochum et al., 2001).  In contrast, Fra1 and Fra2 have weak activation 

domains and weak transforming activity (Bergers et al., 1995; Foletta et al., 1994), 

while JunB and JunD have no transforming ability (Vandel et al., 1995). 

 

Regulation of AP-1 proteins 

 Before exploring ER-dependent activation through the AP-1 pathway, it is 

important to have a basic understanding of AP-1 activation.  Induction of AP-1 

activity can occur by two different mechanisms:  (1) by increasing the transactivation 

ability of the AP-1 factors and (2) increasing the overall level of the AP-1 factors.  

Both of these mechanisms are modulated by MAPK cascades explained in more detail 

below. 

 

MAP kinase cascades 

 AP-1 proteins are regulated by MAP kinase cascades which convey a response 

from various cell surface stimuli to intracellular targets by signal transduction 

pathways.  Signal transduction occurs by a series of three kinases that form a 

phosphorylation-relay [reviewed in (Davis, 2000; Hagemann and Blank, 2001; 

Johnson and Lapadat, 2002; Vlahopoulos and Zoumpourlis, 2004)].  The first kinase, 

known as a MAP kinase-kinase-kinase (MAPKKK) is activated by phosphorylation of 

serine and threonine residues (Davis, 2000; Kyriakis and Avruch, 2001).  The 

activated MAPKKK phosphorylates a MAPK-kinase (MAPKK) in a similar fashion, 

which then becomes active and phosphorylates the final kinase, a MAP kinase 

(MAPK).  MAP kinases differ from their upstream enzyme activators in that their 
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phosphorylation is on a Thr-x-Tyr motif, where x is any given amino acid (Davis, 

2000; Kyriakis and Avruch, 2001) (Figure 1.6A).  This phosphorylation enables the 

MAP kinases to translocate to the nucleus and phosphorylate their target protein(s) 

(Cavigelli et al., 1995).  There are three subfamilies of MAP kinases which include the 

extracellular signal-regulated kinases, ERKs; the c-Jun N-terminal kinases, JNKs; and 

the p38s (Johnson and Lapadat, 2002). 

 

AP-1 regulation by post-translational modification 

 Phosphorylation of c-Jun on serines 63 and 73 (Ser63/73) in its amino-terminal 

region enhance its ability to activate transcription (Hibi et al., 1993; Pulverer et al., 

1991; Smeal et al., 1992).  This activation is most likely due to the phosphorylation-

dependent recruitment of the transcriptional coactivator CBP (CREB binding protein) 

to c-Jun (Bannister et al., 1995).  c-Jun is phosphorylated by specific MAPK members, 

JNKs, following cell stimulation by various conditions (e.g., TPA, UV treatment, 

protein synthesis inhibitors) [reviewed in (Ip and Davis, 1998)].  Because c-Jun is 

activated by phosphorylation, many genes which are regulated by AP-1 behave as 

“immediate-early” genes.  These genes are rapidly induced upon cell stimulation 

independently of de novo protein synthesis. 

Three JNK proteins are known, JNK1, JNK2 and JNK3, with overlapping and 

distinct functions.  These kinases can all bind to a docking site in c-Jun known as the δ 

(delta) domain (Dai et al., 1995) and phosphorylate Ser63/73 when activated (Hibi et 

al., 1993) (Figure 1.6 B and C).  JNK1 and JNK2 are more ubiquitously expressed 

while JNK3 is mainly expressed in the brain (Mohit et al., 1995).  Due to splice 

variations, ten JNK isoforms exist (4 for JNK1, 4 for JNK2, 2 for JNK3) with JNK1 

expressed predominantly as a 46 kD protein and JNK2 as a 54 kD protein (Derijard et 

al., 1994; Kallunki et al., 1994; Mohit et al., 1995).  Although JNK1 and JNK2 have
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Figure 1.6  The JNK MAP kinases: activation, recognition and modification. 

(A)  MAP kinases (like JNKs) are activated as the result of a phosphorylation relay 

system.  Blue arrows represent phosphorylation of serine and threonine residues, red 

arrow represents phosphorylation of threonine and tyrosine residues. 

(B)  JNK substrates, like c-Jun and JIP-1, contain a JNK binding domain composed of 

basic and hydrophobic amino acids (shown as red and green letters).  Once bound, 

JNK can phosphorylate proline-directed serines.  Serines 63 and 73 in c-Jun (shown in 

magenta) are well-known targets of JNK modification. 

(C)  The picture of JNK1 was generated with Pdb viewer using the published crystal 

structure of JNK1 (Heo et al., 2004).  SP600125 (structure shown in the white box), a 

competitive ATP inhibitor of JNK MAP kinases, is bound in the ATP-binding pocket.  

The JNK binding domain of JIP (sequence from B) is also shown bound to JNK1.  

Red and green amino acids are the same as those illustrated in B. 
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redundant functions, recent studies using JNK knockout mice have highlighted 

specific roles for JNK1 and JNK2 [reviewed in (Sabapathy et al., 2004)].  JNK1 seems 

to be the main kinase which phosphorylates c-Jun in response to cell stimulation 

(Sabapathy et al., 2004) , while JNK2 is thought to mediate ubiquitin-mediated c-Jun 

turnover in unstimulated cells (Fuchs et al., 1998; Sabapathy et al., 2004).  Although 

c-Jun can also be phosphorylated by other MAPK members (e.g., ERK1 and ERK2), 

the phosphorylated residues are in the C-terminal region of the protein and are not 

associated with transactivation, but rather, the inhibition of homodimers to bind DNA 

(Chou et al., 1992; Minden et al., 1994). 

 c-Fos can also be regulated by phosphorylation.  Its C-terminal region contains 

a sequence similar to the phosphorylated sequence of c-Jun (Sutherland et al., 1992).  

Threonine-232, the c-Fos equivalent of serine-73 in c-Jun, is located in this region and 

is phosphorylated by the Fos-regulating kinase (FRK) but not by JNKs (Deng and 

Karin, 1994).  I have found that JNK1 can phosphorylate c-Fos in vitro when bound to 

c-Jun.  Although this may be the result of artificially altering JNK1 specificity, it also 

demonstrates the role of c-Jun as a scaffold protein between JNK and Jun interacting 

proteins, like c-Fos.  The mechanism of transcriptional activation through c-Fos 

phosphorylation is still unclear.  I have also conducted in vitro acetylation assays that 

also indicate that both c-Fos and c-Jun are targets of acetylation by p300 (data not 

shown) revealing the possibility of another post-translational modification that could 

regulate AP-1 activity.  To date, it is unknown if the modification state of c-Fos and c-

Jun plays a role in the ability of ER to mediate transcription through AP-1. 

 Activation of MAP kinase cascades can also result in the upregulation of 

transcription at the c-FOS and c-JUN genes [for review see (Karin, 1995)] increasing 

the overall levels of AP-1 components.  Both genes are poised for activation through 

the MAP kinase-dependent phosphorylation of the transcription factors that 
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constitutively occupy their promoters [e.g., Elk-1 at c-FOS (Treisman, 1992); c-Jun at 

c-JUN (Rozek and Pfeifer, 1993)].  So, MAP kinase activation can not only affect AP-

1 activity by post-translational modification, but it can also indirectly affect AP-1 

activity by altering the relative AP-1 abundance and composition, as well. 

 

Molecular Crosstalk in the ER/AP-1 Pathway 

Although ERs do not bind directly to TREs (Jakacka et al., 2001), they can be 

recruited by protein-protein interactions with c-Jun and can convey E2 responsiveness 

to genes lacking EREs.  AP-1 activity can be induced by E2 treatment and reduced by 

antiestrogens without an increase in c-Fos and c-Jun expression (Philips et al., 1993).  

E2 can also inhibit AP-1 activity most likely by a mechanism involving ERβ and JNK 

(Srivastava et al., 1999).  How E2 effects AP-1-induced gene transcription has been 

shown to depend on the ER isoform involved (Paech et al., 1997; Watanabe et al., 

1997; Webb et al., 1995).  Although ERα plays a role in E2-activating effects through 

AP-1, ERβ mediates the E2-inhibiting effects through AP-1 (Paech et al., 1997). The 

AF-1 region of ERα and ERβ are quite different suggesting this domain may be 

responsible for the differential regulation of ER-responsive genes (Couse et al., 1997).  

These phenomena may be facilitated by the differential recruitment of AF-1 

coactivators to TREs and their subsequent phosphorylation by JNK (Feng et al., 2001), 

though, this still needs to be determined. 

As noted above, ERs interact with the coactivators SRC-1 and CBP/p300.  c-

Jun and c-Fos also directly interact with SRC-1 and CBP/p300 and these 

transcriptional activators regulate AP-1 dependent transcriptional outcomes (Bannister 

et al., 1995; Lee et al., 1998).  Because of this, it has been proposed that the mutual 

inhibition between some nuclear receptors and AP-1 is due to competition for the 

same coactivator (Kamei et al., 1996).  It is also believed that certain coactivators may 
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also facilitate the positive interference between ERα and AP-1 as deletion of ERα 

helix 12 (Webb et al., 1999) or mutations in ERα AF-2 that prevent the binding of 

p160 coactivators dramatically inhibits estrogen-mediated transcriptional activation 

through AP-1 (Teyssier et al., 2001).  The Kraus lab has used a biochemical approach, 

involving an in vitro chromatin assembly and transcription system, to compare 

estrogen signaling through the ER/AP-1 pathway to estrogen signaling through the 

ER/ERE pathway.  Interestingly, these studies have shown that even though a similar 

set of transcriptional coactivators (e.g., SRCs, CBP/p300) are utilized by both 

pathways, their interactions, activities, and requirements in the two pathways are 

distinct (Cheung et al., 2005).  Taken together, these results suggest that although the 

ER-mediated activities at EREs and TREs may be similar, they do represent distinct 

mechanisms of ER action.  It has also been shown that estrogen treatment causes the 

recruitment of c-Fos, as well as, ERα to endogenous promoters containing TRE sites 

(Kininis et al., 2007).  This illustrates that ER-mediated activities at TREs are not 

limited to coactivator-dependent mechanisms, but may also affect the core AP-1 

component.  A more complete understanding of the proteins used by both pathways is 

needed to fully comprehend the coactivator crosstalk between ER and AP-1. 

 

Association of ER with AP-1 

Although previous studies have shown that ERα directly interacts with c-Jun 

(Qi et al., 2004; Teyssier et al., 2001; Webb et al., 1995),  the nature of the interaction 

(i.e., the protein domains involved) is unclear, as contradictory results have been 

published.  For instance, in 1995 a group using GST-tagged ERα constructs 

demonstrated an interaction between in vitro translated c-Jun and an amino-terminal 

region (amino acids 1-185) of ERα, while the ligand binding domain of ERα could 

not facilitate c-Jun binding (Webb et al., 1995).  Later, in 2001, another group (using a 
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similar in vitro binding assay) demonstrated an interaction between the hinge region of 

ERα (specifically amino acids 259-302) and the carboxy-terminal region of c-Jun 

(Teyssier et al., 2001).   They went on to further contradict the previous study by 

showing the interaction of c-Jun with an ERα construct lacking the first 250 amino 

acids.  They also stated that the phosphorylation status of c-Jun was not a factor in 

ERα binding.  Finally, in 2004, it was shown that ERα interacts with the amino-

terminal region of c-Jun and that this interaction was strongest when c-Jun was 

phosphorylated on Ser63 and Ser73 (Qi et al., 2004).  What can be drawn from these 

contrasting studies is that ERα can directly interact with c-Jun and that this interaction 

does not absolutely require the phosphorylation of c-Jun.  ERα can also interact with 

JunB and JunD but not members of the Fos family (c-Fos, FosB, Fra2, Fra1.  The 

protein domains that facilitate these interactions are still unclear. 

 

Mouse model system for studying non-classical ERα  action  

The understanding that estrogen-dependent actions were mediated through ER 

lead to the development of model systems designed to tease apart the molecular 

actions of the receptor.  In 1993, a ERα knock-out mouse was made by insertional 

disruption of the ERα gene (Lubahn et al., 1993).  This gene was not referred to as 

ERα since ERβ was not discovered until 1996 (Kuiper et al., 1996; Mosselman et al., 

1996).  Similar methods were used to generate the ERβ knock-out mouse in 1998 

(Krege et al., 1998).  These knock-out models have provided an invaluable resource 

for determining the biological functions of ERα and ERβ [summarized in (Couse and 

Korach, 1999a)] although they provide little to no information concerning the 

differences between the different molecular mechanisms of ER action.  In order to 

provide a more useful tool for non-classical ER studies, Jakacka and colleagues 

determined the specific amino acids in the DNA-binding domain of mouse ERα that 
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facilitated ERE binding but did not affect AP-1 binding (Jakacka et al., 2001) (Figure 

1.7A).  Indeed, the E207A/G208A mutant (“AA”) eliminated ERE binding and 

activation of ERE-containing reporter genes while still able to activate a TRE-

containing reporter and interact with c-Jun.  This non-classical ER was introduced into 

mouse by targeted insertion (“knock-in”) to distinguish between classical and non-

classical ERα actions in vivo (Jakacka et al., 2002). 

The knock-in model provided several useful findings.  First, while the ERα 

heterozygous knock-out females (ERα+/-) were fertile (Dupont et al., 2000; Lubahn et 

al., 1993), the heterozygous knock-in females were not.  This phenotypic difference is 

either the result of antagonism between the wild-type allele and the AA mutation, or 

the net imbalance of contributions from the classical and non-classical pathways.  

Whatever the mechanism, it underscores the importance of the non-classical pathway 

in the development and function of the female reproductive system.  Because the 

heterozygous AA males had normal fertility (Jakacka et al., 2002), a cross with ERα 
+/- females produced hemizygous AA progeny (ERαAA/-) (Figure 1.7B).  These mice 

have been used successfully in at least three studies to date to identify a physiological 

role for non-classical ERα signaling in uterus (O'Brien et al., 2006), bone (Syed et al., 

2005) and testes (Weiss et al., 2008).  Future studies using the hemizygous AA mice 

will most likely define the role of ERE-independent hormone signaling in other 

tissues. 

 

Genomic analyses: ChIP and bioinformatics 

Recent scientific advancements, like the sequencing of the human genome and 

the development of large-scale analytical techniques using microarray technology 

(e.g., ChIP-chip), have facilitated the examination of ER-containing complexes on a 

genomic scale.  Indeed, several reports (9 to be exact) have described the genomic
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Figure 1.7  Mouse models for studying ER-dependent processes.   

Although ERα and ERβ knock-out mice are invaluable tools in our search to 

understand the role of the ER in mediating physiological responses, these models do 

not discern between the different mechanistic pathways of ER-dependent actions. 

(A)  Jakacka and colleagues described a double mutation in the DNA binding domain 

of ERα (E207A / G208A, shown in yellow) that abolished its ability to interact with 

an ERE while retaining the ability to activate transcriptional responses through an AP-

1 reporter (Jakacka et al., 2001).  

(B)  Knock-in mice were made with this double alanine (“AA”) ERα to determine the 

role of non-classical signaling in vivo (Jakacka et al., 2002).  Since the knock-in 

heterozygous females  were infertile, the heterozygous males had to be crossed with 

heterozygous knock-out females in order to produce mice expressing only the non-

classical ERα.  A diagram of the crossing scheme is shown. 
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localization of ERα using ChIP-based assays [ERα localization conclusions and 

methods reviewed in (Kininis and Kraus, 2008)].  Bioinformatic analyses of the 

sequences composing ERα bound regions indicated an enrichment in AP-1 motifs 

providing genomic support for non-classical ERα complexes in vivo (Carroll et al., 

2006; Kininis et al., 2007).  The determination of ERα/AP-1 complexes has also been 

accomplished using an expression microarray approach (DeNardo et al., 2005).  This 

study identified E2-regulated genes that were affected by a blockade in the AP-1 

pathway (accomplished by the inducible expression of a c-Jun dominant negative).  

These genes, not surprisingly, were enriched for AP-1 sites demonstrating that even 

expression microarrays can be used to predict ERα/AP-1 complexes in vivo. 

Unfortunately, our understanding of non-classical E2 signaling from the 

perspective of AP-1 is greatly lacking.  Only two “genomic scale” data sets (c-Fos and 

c-Jun) are available for AP-1 factors (Bruce et al., 2005a; Bruce et al., 2005b).  The 

data from these studies are not particularly useful with respect to ER signaling since 

the ChIP-chip analysis was not conducted in the presence of hormone and the cell-line 

used did not even express ER.  Examination of AP-1 factors, in a manner similar to 

that of ERα, is greatly needed to further the understanding of hormone-dependent 

tethering through these proteins. 

 

Remaining questions 

 Previous genomic studies (mentioned above) have demonstrated that AP-1 

sites are associated with ERα binding.  Knowing this only reminds us that non-

classical ERα complexes exist instead of furthering our understanding.  What needs to 

be determined, besides the cataloging of specific promoters containing ERα/AP-1 

complexes (a feat which still needs to be accomplished), is the contribution of AP-1 

(or other tethering components) to these tethered complexes.  What are the AP-1 
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members that mediate E2 signaling?  For years it seems we have viewed the non-

classical ER pathway as a modified version of ERE-dependent signaling when, in fact, 

it most likely represents an entirely different mode of E2 (and even SERM) signaling.  

Future studies should focus on mapping all the AP-1 family members by ChIP using 

estrogen-responsive models, instead of just relying on bioinformatic analyses to 

determine possible AP-1 sequences, which may not represent functional AP-1 sites.  

Understanding the hormone-dependent binding of AP-1 and its related factors, I 

believe, will truly allow a greater understanding of the ERα/AP-1 pathway. 

Besides the known interaction between ER and c-JUN (which remains ill-

defined), there may also be a physical interaction between ER and AP-1 coregulators 

such as JNK.  It is possible that JNK could associate with liganded ERs since a recent 

study has shown that JNK1 directly interacts with another steroid receptor, the 

glucocorticoid receptor (GR).  This interaction occurs in a ligand-dependent manner 

through a “delta-like” docking domain in GR (Bruna et al., 2003).  Furthermore, E2 

with ERβ can repress AP-1-dependent transcription by the inhibition of JNK activity 

(Srivastava et al., 1999) suggesting a possible functional interaction between ER and 

JNK.  Further analysis of the molecular crosstalk between these two pathways will 

help to elucidate the mechanisms of ER-dependent activities through AP-1. 
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Summary 

In this study, I set out to define the AP-1 components involved in mediating 

the ERα/AP-1 pathway.  I discovered various AP-1 family members were recruited to 

an estrogen responsive TRE site, thereby expanding the view that other AP-1 factors, 

besides just c-Jun, can mediate E2-dependent responses.  I also found that “AP-1 like” 

transcription factor family members (those belonging to the CREB and Maf protein 

families) might also play a role in the recruitment of ER to E2-regulated promoter 

regions.  Finally, I identified several putative AP-1 coregulators that may mediate 

transcriptional outcomes through TREs.  Together, my results expand the limited 

understanding of E2-regulated events mediated through TRE and TRE-like motifs and 

provide new avenues for future research. 

 

Introduction 

 Estrogen (E2) signaling can occur through at least two distinct pathways.  The 

first pathway is mediated by the direct binding of estrogen receptors (ERs) to 

estrogen-response elements (EREs).  The second pathway is mediated by the indirect 

“tethering” of ER to DNA through protein-protein interactions with other transcription 

factors like AP-1.  Although it is known that ER can interact with c-Jun (an AP-1 

member) at TPA-response elements (TREs) (discussed at length in Chapter 1), it 

remains to be determined what other AP-1 members might facilitate the ERα tethering 

pathway.  It is also unclear if AP-1 specific coregulators play a role in mediating 

hormone responses through TREs.  Although previous work has recapitulated 

ERα/AP-1 dependent transcription in vitro (Cheung et al., 2005), the composition of 

these TRE-dependent complexes has yet to be determined. 

 In this study, I determined the compostition of TRE-specific complexes in 

order to have a better understanding of the factors involved in ERα/AP-1 complexes.  
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Several techniques have recently been developed to identity protein-protein 

interactions on a large scale.  These studies, conducted in yeast, used the yeast 2-

hybrid method (Uetz and Hughes, 2000), an affinity chromatography approach 

coupled with tandem mass spectrometry (MS/MS) (Gavin et al., 2002; Ho et al., 

2002), or a quantitative MS/MS approach (Ranish et al., 2003) to define protein-

protein interactions.  This latest approach identified the composition of in vitro 

assembled promoter complexes using DNA templates to “fish out” promoter-binding 

factors from yeast nuclear extract.  It also utilized isotopically-labeled tags which 

allowed the quantitative comparison of similarly purified complexes.  I decided to use 

this proteomic approach to identify components associated with TRE-dependent 

complexes. 

 

Results 

Immobilized templates can capture enhancer specific complexes 

In order to better understand how liganded ER activates transcriptional 

responses through AP-1, I decided to take a step back and define the AP-1 components 

that may play a role in the tethering of ERα.  To this end, I developed an immobilized 

template assay to isolate enhancer-specific complexes.  Three templates were 

generated by PCR using a biotinylated forward primer.  Each template had a unique 

PstI site located upstream of the adenovirus E4 promoter.  Five tandem TREs or 4 

tandem EREs were inserted between the PstI site and the promoter region to isolate 

AP-1 or ER complexes respectively (Figure 2.1A).  A random sequence was inserted 

to serve as a negative control.  My plan was to immobilize the various DNA templates 

to streptavidin coated beads through the 5’ biotin moiety, incubate the DNA with 

HeLa nuclear extract to assemble enhancer-specific complexes, wash the DNA to 
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remove nonspecific proteins, and elute the DNA-bound proteins by PstI digestion.  I 

would then detect the proteins by Western blotting.   

I used the ERE template to isolate ER-containing complexes as a proof of 

principle.  The HeLa nuclear extract was supplemented with recombinant ERα, since 

HeLa cells do not express either ERα or ERβ.  Western analysis demonstrated that I 

could purify ERα in an enhancer-specific manner using the immobilized templates 

(Figure 2.1B).  Moreover, when I added E2 during the assembly step, I noticed that I 

could then purify two known ER coactivators, SRC1 and Med1 (also known as 

Med220).  This demonstrated that I could isolate both proteins that directly and 

indirectly bind enhancer DNA elements.  Furthermore, using the TRE (but not the 

ERE) template I found that I could purify two AP-1 factors, c-Fos and c-Jun.  Taken 

together, the immobilized template assay could isolate enhancer-specific complexes 

from HeLa nuclear extract. 

 

Unbiased proteomic screen identifies TRE-binding proteins 

 Since the TRE-containing promoter template mediates E2-dependent 

transcription in vitro (Cheung et al., 2005), I hypothesized that some of the factors 

facilitating this response may be associated with the TRE sequence even in the 

absence of ERα.  With the immobilized template assay working in my hands, I then 

sought to identify the repertoire of factors that associated with the template in a TRE-

dependent fashion.  To this end I utilized an unbiased proteomic screen, previously 

used to identify the protein components of affinity-purified RNA polymerase II pre-

initiation complex in yeast (Ranish et al., 2003).  Briefly, this screen is based on the 

use of isotopically labeled tags and tandem mass spectrometry to compare the relative 

abundance of tryptic peptides between two isolated complexes.  The power of this 

method is that it can distinguish specific components of affinity-
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Figure 2.1  Immobilized DNA templates can isolate enhancer-specific complexes.  

(A)  A schematic of the immobilized DNA templates used to purify complexes from 

HeLa nuclear extract is shown. 

(B)  Western blotting of the Pst1 eluted material demonstrates the specificity of AP-1 

(Fos and Jun) recruitment to the TRE template (left) and the ligand-dependent 

coactivator recruitment to the ERE template (right). 
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purified complexes from a high background of co-purifying proteins eliminating the 

need for stringent purification procedures. 

To identify the components of TRE-associated complexes, I purified TRE 

complexes from HeLa nuclear extract samples using the TRE immobilized template.  

The non-TRE template was used as a control for factors associating with the TRE 

template in an enhancer independent fashion.  The control and TRE samples were 

digested with trypsin and differentially labeled with either isotopically light tags (114 

Daltons) or isotopically heavy tags (117 Daltons).  Once labeled, the samples were 

mixed together and subjected to further purification using strong cation exchange 

(SCX) fractionation.  This reduced the complexity of the sample allowing for a more 

complete identification of the individual peptides by MS/MS (Figure 2.2).  The SCX 

fractions were analyzed by MS/MS by my collaborator, Jeff Ranish, at the Institute for 

Systems Biology in Seattle, WA. 

Using Protein Pilot software and the MS/MS spectral data, I determined both 

the identity and relative abundance of the purified peptides.  The relative abundance of 

each peptide was expressed as the ratio of 117 signal to 114 signal as detected by 

MS/MS.  The Protein Pilot program normalizes the 117:114 ratios so that the average 

ratio is equal to 1.  This is based on the assumption that the majority of purified 

proteins are “co-purified contaminants” and largely represent non-specific template 

binding.  Silver-staining of the isolated complexes revealed vastly complex mixtures 

of proteins with no apparent difference in the banding pattern, justifying the 

assumption for normalization (data not shown).  Ratios greater than 1 represented an 

enrichment of a peptide in the TRE template compared to the control template.  The 

peptide ratios from a given protein were averaged to determine the protein enrichment.  

Peptides that mapped to more than one protein were not used in the protein enrichment
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Figure 2.2  Schematic of proteomic method to identify TRE-associated factors.  

Control and TRE complexes were purified from HeLa nuclear extract using 

immobilized templates.  Peptides from each sample were isotopically labeled, 

combined for further processing, and analyzed by tandem mass spectrometry (MS) to 

determine the identity and relative abundance of the proteins in each complex. B = 

bead, E4 = adenoviral E4 promoter.  
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calculation.  Using this method, I identified 1,063 proteins and their relative 

abundance between the TRE and control templates. 

This analysis revealed several transcription factors enriched in the TRE 

purified sample (Figure 2.3A).  Besides c-Fos and c-Jun, I identified three other AP-1 

factors (Fra2, JunD, JunB) that bound the DNA template in a TRE-dependent manner.  

The binding of these factors to the TRE template was confirmed by Western blotting 

(Figure 2.4).  Surprisingly, I also identified transcription factors belonging to the 

CREB and MAF protein families, which classically bind cyclic AMP response 

elements (CREs) and Maf recognition elements (MAREs), respectively.  The proteins 

comprising these families are similar to AP-1 proteins in that they bind DNA 

sequences closely resembling TREs (Figure 2.3B).  It is also known that AP-1 and 

CREB members can dimerize and bind their respective DNA elements (Eferl and 

Wagner, 2003).  These findings not only implicate AP-1 proteins other than c-Fos and 

c-Jun in the ER tethering pathway, but they also suggest that AP-1-like proteins (like 

those belonging to CREB and Maf families) may also be playing a role in ER 

tethering.  This could be accomplished by members of these families binding to TREs 

or by enabling the recruitment of ER to TRE-like enhancer sequences (like CREs or 

MAREs).  

My analysis also identified other TRE-specific components that may act as 

regulators of TRE-dependent transcriptional outcomes (Figure 2.5).  These factors 

were not as enriched as the direct TRE-binding proteins which is consistent with the 

idea that these proteins are indirectly recruited to DNA, possibly through the 

transcription factors mentioned above.  Although, I can not rule out a weak but direct 

interaction between these potential regulators and the TRE-containing DNA template.  

These factors included MAPKK7b (an upstream activator for the AP-1 MAP kinase, 

JNK), SMARCA6 (an ATPase-containing protein associated with chromatin
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Figure 2.3  Proteomic approach identifies factors enriched in TRE-containing 

template. 

(A)  The direct binding DNA factors enriched in the TRE-containing immobilized 

template are shown.  Fold and p-values determined by Protein Pilot software.  Fold 

equals the average 117:114 ratio for the given protein and represents the TRE 

specificity (TRE:control ratio).  * = p-value not determined due to the limited number 

of peptides. 

(B)  The similarity between the DNA sequences classically bound by the protein 

families mentioned in A are shown. 
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Figure 2.4  Confirmation of AP-1 proteins enriched by proteomic approach. 

The material purified using the TRE and control immobilized templates was analyzed 

by immunoblotting.  The AP-1 factors identified from the proteomic screen as 

enriched for TRE-binding were confirmed, demonstrating not only their specificity but 

also adding credibility to the proteomic results. 
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Figure 2.5  Coregulator proteins are also enriched in the TRE-containing 

template. 

Several factors were identified by our proteomic analysis as enriched in TRE-specific 

complexes.  The factors (minus the direct TRE-binding factors shown in Figure 3.4) 

with at least 1.5 fold enrichment are shown. Fold and p-values determined by Protein 

Pilot software.  Fold equals the average 117:114 ratio for the given protein and 

represents the TRE specificity (TRE:control ratio).  * = p-value not determined due to 

the limited number of peptides. 

Protein Fold p-value Related Process

*

MAPKK7b 2.2 7.3 x 10-3 AP-1 MAP kinase

Med8 1.9 Transcriptional coactivator

TFIIA! 1.7 Transcription machinery

RPB1 1.6 1.7 x 10-1 Transcription machinery

SMARCA6 1.6 3.3 x 10-4 Chromatin remodeling

ZSCAN20 1.6 1.2 x 10-1 Unknown

ZIC2 1.5 Unknown

UBA5 1.6 Ubiquitin conjugation

TAF1 1.5 6.7 x 10-2 Transcription machinery

EP400 1.5 1.2 x 10-2 Histone acetylation

*

*

*



 48 

remodeling), and UBA5 (a ubiquitin-activating enzyme).  Taken together, my 

approach identified several putative coregulators of TRE-associated complexes.  

Future studies will establish the role of these factors not only in TRE-dependent 

transcriptional outcomes, but determine if these factors play a role in mediating E2-

dependent transcriptional outcomes through AP-1 complexes. 

 

Proteins identified by proteomic approach are modulated by E2 signaling in cells. 

Armed with an understanding of the cohort of proteins able to bind TREs in 

vitro, and knowing that these enhancers facilitate E2 dependent transcriptional 

activation in the presence of ERα, I then wondered if I could detect the association of 

these factors with ERα in cells using chromatin immunoprecipitation (ChIP).  Because 

the proteomic studies were done with nuclear extracts from HeLa cells, ChIP studies 

were conducted in a HeLa cell-line that stably expressed ERα (HeLa-ER cells).  

Candidate regions for ChIP analysis were chosen by overlaying ERα-bound regions 

with regions containing AP-1 binding sequences (i.e., TREs or CREs).  I defined 

ERα-bound regions by ChIP-chip analysis using Nimblegen promoter arrays (ChIP 

procedure, analysis, and arrays described in Chapter 3).  TRE and CRE motifs 

(obtained from TRANSFAC) were mapped to genomic locations using MAST (same 

method as described in Chapter 3).  Candidate regions that also contained an ERE 

motif (mapped by MAST) within the ERα-bound region were omitted to avoid 

ambiguity concerning ERα recruitment. 

ChIP-qPCR analysis of the candidate genes revealed the ligand-dependent 

association of ERα with TRE and CRE-containing promoter regions (Figure 2.6 A and 

B).  The expression of these genes was transcriptionally regulated by E2 (unpublished 

data from Dr. Nina Heldring) demonstrating that the recruitment of ERα correlated 

with the transcriptional activation of these genes.  Examination of AP-1 members by 
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ChIP demonstrated the occupancy of these factors at endogenous TREs (Figure 2.6C).  

The binding of JunD, Fra2, and c-Fos was enhanced by E2 treatment suggesting that 

the presence of ERα at these regions either increases the affinity of AP-1 for DNA or 

plays a role in the recruitment of these AP-1 factors.  JunB occupancy was not E2 

regulated demonstrating selectivity in the liganded ER modulation of AP-1.  It is also 

important to note that AP-1 factors can be found at CREs due to the high sequence 

similarity between these motifs and the dimerization between members of these 

families (Figure 2.6C, see c-Fos ChIP bottom panel).  Interestingly, the CREB family 

members ATF2 and CREB1 showed E2 dependent recruitment to CREs containing 

ERα (Figure 2.6D).  Together, these examples demonstrate that E2 regulated 

outcomes at TRE and TRE-like motifs may be mediated by more than just c-Fos and 

c-Jun.  Other factors, like Fra2, JunD, ATF2, and CREB1, may be more directly 

responsible for conveying the hormone responsiveness at these promoters. 

 

Discussion 

This work describes the use of immobilized DNA templates coupled with a 

quantitative proteomic approach to identify enhancer-specific complexes.  Many of the 

studies that have focused on understanding the mechanism ERα activation through 

AP-1 sites have focused on the mapping and manipulation of ER-c-Jun interaction 

surfaces, the role of various ligands, or the perturbation of ERα-coativator 

associations (Cheung et al., 2005; Jakacka et al., 2001; Qi et al., 2004; Teyssier et al., 

2001; Webb et al., 1995; Webb et al., 1999).  In this study, I attempted to identify the 

repertoire of AP-1-associated factors that would be present on a known E2-responsive 

TRE.  I wanted to understand what ERα would “see” when it viewed an assembled 

AP-1 complex. 
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Using an immobilized template to isolate TRE-complexes, I found that several 

AP-1 members were able to bind the AP-1 consensus (Figure 2.3).  This demonstrates 

how complex the AP-1 composition can be, further complicating our understanding of 

tethered ERα complexes.  Interestingly, I did identify several AP-1-like proteins 

belonging to the CREB and Maf transcription factor families.  The presence of these 

other factors suggests at least two conclusions.  First, a canonical TRE can allow the 

binding of other AP-1-like transcription factors in vitro.  Although overlap between 

TRE- and CRE-binding proteins has been demonstrated before [reviewed in (Eferl and 

Wagner, 2003)], it reminds us that “TRE”, “CRE”, and “MARE” sequences, found in 

vivo, are not limited to the just the protein families to which they immediately refer.  

Indeed, ChIP analysis of c-Fos localization demonstrated the presence of this AP-1 

protein at a CRE-containing promoter (Figure 2.6C).  This also argues for the 

confirmation of specific AP-1 binding factors when bioinformatic approaches are used 

to explain ERα recruitment or hormone responsiveness, since the motif, by itself, is 

mechanistically ambiguous.  Secondly, the association of these AP-1-like factors 

opens the door to other “tethering” proteins besides c-Jun.  Indeed, work by Sabbah et 

al. nearly a decade ago demonstrated the interaction of ERα with ATF2 (Sabbah et al., 

1999), yet little more is known about how this interaction mediates ERα tethering in 

cells.  More recent work by the Katzenellenbogen lab reported evidence for an 

interaction between ERα and CREB1 (Lazennec et al., 2001).  Although this weak 

interaction was most likely mediated by an indirect association, it underscores the idea 

that factors other than c-Fos/c-Jun dimers are associated with tethered ERα 

complexes.   

I examined tethered ERα complexes in vivo to determine if the TRE-bound 

factors from the proteomic study could be linked to E2-regulated complexes in cells.  

To this end, I examined promoters in HeLa-ERα cells that had the following 
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characteristics: (1) they displayed E2-dependent transcriptional activity, (2) ligand-

dependent binding of ERα, (3) did not contain an ERE in the ERα-associated region, 

and (4) contained an AP-1-like element (TRE or CRE) under the ERα-associated 

region. The presence of several AP-1 factors was confirmed at these genes (Figure 

2.6).  It is interesting to note in these examples that E2 treatment causes the increase in 

AP-1 factors and not simply the recruitment of ERα.  Indeed, previous work from our 

lab has shown the E2-dependent recruitment of c-Fos to the TRE-containing 

UGT2B15 promoter (Kininis et al., 2007).  A model that defines AP-1 proteins as 

DNA-bound transcription factors that act as a “landing pad” for ERα does not seem to 

fit the description seen in vivo.  Perhaps these tethered complexes are formed in 

solution in the nucleoplasm before they actually associate with the DNA.  An alternate 

model would be that AP-1 proteins are loosely associated with their DNA elements 

and liganded ERα stabilizes these AP-1 factors on DNA.  ER may stabilize some AP-

1 members (c-Fos, JunD) but not others (JunB) (Figure 2.6C). 

The presence of ATF2 and CREB1 at a CRE was also confirmed by ChIP 

(Figure 2.6D).  As was the case for TRE, the factor recruitment was ligand-dependent.  

To my knowledge this was the first description of the binding of ERα to a confirmed 

CRE.  Even if this interaction is indirect (as the evidence mentioned above suggests), 

it still demonstrates that ERα can associate with a wide variety of AP-1-like proteins 

in cells.  Future work, using reporter assays or in vitro transcription systems, will need 

to be conducted to determine the role of each tethering factor in E2-mediated 

transcriptional activation. 

 My analysis also identified several putative AP-1 coregulators (Figure 2.5).  

Although I did not focus on these factors due to the lack of available reagents, future 

studies should determine if they are indeed bona fide coregulators of AP-1 

transcription.  It is interesting that four of the factors are associated with the basal  
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Figure 2.6  Identification of tethered ERa complexes in HeLa-ER cells. 

(A)  A schematic of the promoter region for two TRE and two CRE genes is shown.  

The arrows represent the location of the primer sequences used for PCR (below). 

(B)  Quantitative PCR of ERα ChIP material demonstrated the hormone-induced 

occupancy of ERα at these regions. 

(C, D)  ChIP material for AP-1 (C) and CREB (D) family members are also shown for 

the same genes. TSS = transcription start site, U = untreated, E = E2-treated.  Red line 

represents the average signal from “no antibody” immunoprecipitations. 
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Figure 2.6 (Continued) 
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Figure 2.6 (Continued) 
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transcription machinery.  An interaction between TBP (a component of TFIID) and the 

bZIP domains of c-Fos and c-Jun has already been reported adding validity to the 

proteomic enrichment for the TFIID component TAF1 (i.e., TAF250) (Ransone et al., 

1993).  Moreover, I identified UBA5, an E1 activating enzyme in the ubiquitin 

conjugation pathway.  Previous work reported another enzyme in the ubiquitin 

conjugation pathway, Ubc9, as an AP-1interacting protein suggesting that it plays a 

functional role in the association between c-Jun and the glucocorticoid receptor 

(Gottlicher et al., 1996).  Other putative coregulators (like Med8, SMARCA6, and 

EP400) may also play a role in mediating E2-dependent outcomes, similar to the 

coregulators, SRC-1 (Cheung et al., 2005; DeNardo et al., 2005) and p300 (Cheung et 

al., 2005; DeNardo et al., 2005; Kamei et al., 1996).  

 Finally, this study determined four new genes regulated, I believe, through 

tethered ERα complexes.  Further testing with more candidate promoters may lead to 

the identification of more E2-regulated, ERE-independent genes.  

Although initially I wanted to extend the proteomic analysis to include the 

identification of ERα-containing TRE complexes, the efficiency of ERα-binding to 

the TRE-containing template was not sufficient enough to allow the identification of 

ER-dependent factors.  Future modifications of the methodology described in this 

work may enable the elucidation of these factors and an even greater understanding of 

the mechanisms involved in ERα/AP-1 complex formation.  Additionally, I hope to 

determine the genomic localization of AP-1 components before and after E2 treatment 

using ChIP-chip.  It would be interesting to see if the E2-regulated AP-1 occupancy, 

described for selected genes in this work, represents a global theme for ER-associated 

AP-1 complexes. 
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Materials and Methods 

 

Nuclear extract preparation.  Nuclear extracts were prepared as described 

previously (Dignam et al., 1983; Kraus and Kadonaga, 1998).  Briefly, HeLa S3 cells 

were maintained in MEM Eagle medium (Sigma M0518) pH 7.4 and supplemented 

with 5% calf serum, NaHCO3, Penstrep, and MEM non-essential amino acids (Sigma 

M7145).  Cells were grown in suspension up to 8L and collected when the culture 

reached a density of 0.5-1.0 x 106 cells per mL.  Cells were harvested by 

centrifugation (J6-B rotor, 10 minutes at 3K rpm) and resuspended in cold PBS.  The 

cells were collected (GSA rotor, 10 minutes at 3K rpm), washed a second time with 

cold PBS, and collected by GSA centrifugation.  Cells were resuspended in 5 cell 

pellet volumes of hypotonic buffer (20mM Hepes pH 7.9, 10mM KCl, 1.5mM MgCl2, 

2mM DTT, 1mM Benzamidine, 2ug/mL Aprotonin, 2ug/mL Leupeptin, 0.2ug/mL 

Pepstatin, 0.2mM PMSF) and incubated on ice for 15 minutes.  Cells were then 

pelleted using an IEC Clinical Centrifuge (10 minutes at setting 5), resuspended with 2 

cell pellet volumes of hypotonic buffer, and dounced 15 times using a tight glass 

pestle.  The intact nuclei were collected after the cytoplasmic lysate was removed by 

centrifugation (clinical centrifuge, 15 minutes at setting 6).  Nuclei were resuspended 

in 0.5 nuclei volumes of hypotonic buffer plus 20% glycerol.  While stirring, 0.4 

nuclei volumes of hypertonic buffer (20mM Hepes pH 7.9, 1M KCl, 1mM 

Benzamidine, 2ug/mL Aprotonin, 2ug/mL Leupeptin, 0.2ug/mL Pepstatin, 0.2mM 

PMSF) were added and the extraction proceeded for 45 minutes.  The extracted nuclei 

and lipid fraction were removed after centrifugation (SS34 rotor, 30 minutes at 16K 

rpm) and the remaining HeLa nuclear extract (HNE) was dialyzed for 4hrs in dialysis 

buffer (20mM Hepes pH 7.9, 100mM KCl, 0.1mM EDTA, 20% glycerol, 1mM DTT, 

1mM Benzamidine).  After dialysis, precipitates were pelleted by centrifugation (SS34 
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rotor, 20 minutes at 15K rpm) and the extract was aliquoted and stored at -80C.  The 

protein concentration was determined by Bradford assay.  

 

Plasmids.  The templates used are derived from pIE0-E4 [described previously 

(Cheung et al., 2005)].  TREx5 is the pIE0-E4 plasmid with an insertion of 5 tandem 

TPA-response elements (TREs) upstream of the E4 promoter sequence.  The unique 

PstI site in both plasmids was moved so it was in the same location relative to the 

transcription start site (TSS).  Sequences for the modified plasmids are available upon 

request.  

 

Immobilized pull-down assay. Templates used for pull-down assays were generated 

from the plasmids described above by PCR using a biotinylated forward primer (5’-

GATTGGTTCGCTGACCATTTCCGG-3’) located ~460 bases upstream of the TSS 

and a reverse primer (5’-CAGCCTAACAGTCAGCCTTACCAG-3’) located ~85 

downstream of the TSS.  For each pull-down, approximately 360ng of amplified 

template was incubated with 5ul of Dynabeads M-280 Streptavidin beads (10ug/ul) in 

binding buffer (10mM Tris pH 7.5, 1mM EDTA, 1M NaCl, 0.003% IGEPAL) for 15 

minutes at room temperature.  (Since these beads are paramagnetic, all washes were 

carried out by sequestering the beads to the side of the tube using a magnet, removing 

the buffer, and then resuspending the beads in new buffer.)  The DNA-bound beads 

were rinsed with binding buffer and then resuspended in blocking buffer (20mM 

Hepes pH 7.6, 100mM KOAc, 5mM MgOAc, 1mM EDTA, 3.5% glycerol, 60mg/ml 

casein (Sigma C5890), 5mg/ml polyvinylpyrrolidone (USB 20611), 2.5mM DTT) for 

30 minutes at room temperature.  The blocked beads were then washed 3 times with 

blocking buffer that lacked casein and polyvinylpyrrolidone and resuspended to their 

original concentration (10ug/ul) in HNE binding buffer (20mM Hepes pH 7.9, 100mM 
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KCl, 6mM MgCl2, 0.2mM EDTA).  The beads were then incubated with 385ug of 

HeLa nuclear extract diluted 1:1 with HNE binding buffer.  Protein complexes were 

allowed to form on the DNA templates for 1 hr at room temperature before the beads 

were washed with HNE binding buffer and resuspended in PstI buffer (50mM Tris pH 

7.9, 100mM NaCl, 10mM MgCl2) with 60 units PstI (Roche 10798991001).  After 30 

minutes at 37C, the beads were pelleted and the released DNA-bound proteins were 

collected and analyzed by SDS-PAGE / Immunoblotting.  For proteomic studies using 

tandem mass spectrometry (MS/MS), the pull-down assay was scaled up 300 times to 

provide enough eluted material for further processing.  Only 680 units of PstI was 

used (~11x) in the final elution so as not to interfere with subsequent protein 

identifications by MS/MS.  

 

Peptide preparation/Isotope labeling.  The DNA-bound proteins, eluted from the 

immobilized template assay, were concentrated to 70ul using Microcon spin columns 

and SDS was added to 0.3%.  The samples were boiled for 5 minutes to dissociate 

DNA-protein interactions, cooled to room temperature, and reduced with 10mM 

TCEP.  The spin columns were rinsed with 300ul of  7.2M urea (made fresh) and this 

mixture was added to the reduced proteins.  After a 45 minute incubation at room 

temperature, cysteine residues were blocked using 8mM MMTS for 10 minutes.  

Samples were examined by SDS-PAGE/ silver staining and the protein concentrations 

were calculated using dilution standards of HeLa nuclear extract.  Approximately 

800ug of each sample was diluted with TE (10mM Tris pH 8.3, 1mM EDTA) to 

reduce the urea concentration to <0.9M and the SDS concentration to <0.01%.  

Samples were then digested with 40ug of Trypsin and 8ug of Endoprotease LysC 

overnight at 37C.  After 1:1 dilution with Buffer A (5mM KH2PO4 pH 2.7, 25% 

Acetonitrile), each sample was individually loaded onto a PolySULFOETHYL A 
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(PolyLC, 202SE0503) HPLC column, washed with Buffer A, and eluted with Buffer 

B (5mM KH2PO4 pH 6.0, 25% Acetonitrile, 0.5M TEAB).  The eluates were dried, 

resuspended in water and loaded onto a reverse phase C18 columns [Nest Group, 

218SPE1000].  The columns were washed with 2% Acetonitrile, 0.1%TFA and eluted 

with 80% Acetonitrile, 0.1%TFA.  After the peptide samples were dried, 600ug (75%) 

were labeled with either iTRAQ-114 or iTRAQ-117 (Applied Biosystems) according 

to the manufacturer’s specifications.  Isotopically labeled samples were combined and 

the excess ethanol from labeling was removed by evaporation.  The peptide mixture 

was diluted 20 fold with Buffer A, loaded onto the PolySULFOETHYLA A column, 

and fractionated by running the following gradient at 0.2 mL/min: 0-15% Buffer C 

(5mM KH2PO4 pH 2.7, 25% Acetonitrile, 600mM KCl) for 30 min, 15-60% Buffer C 

for 20 min, and 60-100% Buffer C for 15 min.  I collected 32 fractions of 0.4 ml.  

Each fraction was dried under reduced pressure and desalted using reverse phase C18 

columns as described above. 

 

Protein identification.  Peptide fractions were resuspended in 2% acetonitrile, 0.1% 

TFA.  Approximately 40% of the sample was loaded onto an HPLC C-18 column 

using an Agilent 1100 Binary pump in a split-flow configuration coupled to a LC 

Packings Famos autosampler.  Peptides were resolved by running the following 

acetonitrile gradient at 0.3mL/min:  2-10% for 5 min, 10-25% for 75 min, 25-35% for 

15 min, and 35-80% for 5 min.  Masses were detected using a QSTAR Pulsar i with 

0.75s scan time for each MS read followed by 3 MS/MS reads using 2s scan time.  

Only the most intense ions for charge states 2-4 were analyzed.  Data files from the 

individual fraction runs were collectively analyzed using Protein Pilot software. 
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CHAPTER 3 

 

Estrogen Regulates the JNK1 Genomic Localization Program to 

Control Gene Expression and Cell Growth* 

 

 

 

 

 

 

 

 

 

*Dr. Nina Heldring, Dr. Matt Gamble, and Adam Diehl contributed to this work 

by assisting with the expression, ChIP-chip, and bioinformatic analysis, 

respectively. 
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Summary 

Steroid hormone and MAPK signaling pathways functionally intersect, but the 

molecular mechanisms of this crosstalk are unclear.  Here I demonstrate an extensive 

and unexpected convergence of the estrogen and JNK1 signaling pathways at the 

genomic level in breast cancer cells.  Estrogen signaling promotes a nearly complete 

redistribution of JNK1 to estrogen receptor alpha (ERα)-bound promoters, primarily 

through an ERα tethering pathway.  JNK1 functions as a transcriptional coregulator of 

ERα at many of these promoters in a manner dependent on its kinase activity.  The 

convergence of ERα and JNK1 at target gene promoters regulates estrogen-dependent 

gene expression outcomes, as well as downstream estrogen-dependent cell growth 

responses.  Analysis of existing gene expression profiles from breast cancer biopsies 

suggests a role for functional interplay between ERα and JNK1 in the progression and 

clinical outcome of breast cancers. 

 

Introduction 

Diverse signaling pathways regulate a wide variety of cellular processes, 

including global transcription programs, in normal and disease states.  For example, 

steroid hormones, such as estrogens, act through nuclear receptors to directly regulate 

the expression of a defined set of target genes (Acevedo and Kraus, 2004; Kininis and 

Kraus, 2008).  In contrast, growth factors act through cytoplasmic membrane receptors 

to stimulate intracellular signaling pathways, including mitogen activated protein 

kinase (MAPK) cascades, that indirectly regulate gene expression through a variety of 

target transcription factors (Turjanski et al., 2007).  Although functional crosstalk 

between steroid hormone and growth factor/MAPK signaling pathways was 

demonstrated nearly two decades ago in models of steroid hormone-dependent cancer 



 66 

(Lange, 2004; Smith, 1998), our understanding of how these pathways converge at the 

genomic level to regulate gene expression remains rudimentary. 

 To explore the convergence of these signaling pathways at target gene 

promoters, I considered the possibility that Jun N-terminal kinase (JNK1), a MAPK 

whose expression is upregulated in breast cancers (Figure 3.1), might function as a 

coregulator of estrogen receptor alpha (ERα) at the promoters of estrogen-regulated 

genes.  Although the traditional view has been that MAPK-mediated phosphorylation 

events (e.g., phosphorylation of transcription factors) do not occur at the genes that 

they ultimately regulate, the terminal kinases of various signaling pathways are found 

in the nucleus under activating conditions (Edmunds and Mahadevan, 2004; Turjanski 

et al., 2007).  In addition, genomic analyses in yeast (Pascual-Ahuir et al., 2006; 

Pokholok et al., 2006) and gene specific analyses in cultured mammalian cells 

(Edmunds and Mahadevan, 2004) have shown that some signaling kinases bind to the 

promoters of genes whose expression they regulate.  The aim of this study is to 

characterize the genomic relationship between ERα and JNK1 in regard to their 

genomic occupancy and transcriptional outcomes. 

 

Results 

JNK1 is recruited to genomic regions after estrogen treatment. 

 In order to determine if JNK could be modulated by estrogen (E2) in vivo, I 

performed chromatin immunoprecipitation (ChIP) in MCF-7 cells treated with and 

without E2 using antibodies for JNK1.  I examined the JNK1 occupancy at several 

genomic regions previously reported by ChIP to bind the ERα (Kininis et al., 2007).  

Since it was already known that E2 could modulate protein-DNA interactions at these 

regions, they seemed to be the best candidates for JNK1 ChIP.  Indeed, I could detect 

the presence of JNK1 by ChIP-qPCR at these loci (Figure 3.2A).  Interestingly, I noted
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Figure 3.1  JNK1 expression is elevated in breast carcinomas.  

The relative expression of MAPK8 (i.e., JNK1) from 4 normal breast stroma samples 

and 51 breast tumor samples is shown.  The data were obtained from a larger gene 

expression analysis (Finak et al., 2008) through the Oncomine database (Rhodes et al., 

2004).  The Oncomine-reported p-value was <3.0 x 10-4.  The values were normalized 

to an average expression level of 1 for the normal breast samples.  Red lines represent 

the average signal in each category. 
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that JNK1 occupancy was induced by E2 treatment.  The hormone-dependent binding 

of ERα was also demonstrated for these regions, confirming the previous report 

(Figure 3.2B).  This novel JNK1 result was quite amazing since it implies that the 

MAP kinase might be an estrogen-dependent cofactor in DNA-bound complexes. 

 

Estrogen treatment does not affect global JNK1 localization. 

It is known that mitogen activated protein kinases (MAPKs), like JNK1, are 

regulated by the dual phosphoryation of their Thr-Pro-Tyr motif by upstream MAPK 

kinases, and that this modification results in the translocation of the MAPK into the 

nucleus and the activation of its enzymatic activity [for a review, see (Davis, 2000)].  

Because glucocorticoids and other steroid hormones have been shown to alter the 

enzymatic activity and cellular distribution of JNK (Bruna et al., 2003), I wondered if 

E2 treatment altered the localization or activation status of JNK1 in this system. 

 To this end, cytoplasmic and nuclear extracts were prepared from MCF-7 cells 

with and without E2 treatment.  Western blotting showed that the nuclear retention of 

ERα was increased upon hormone treatment demonstrating the effectiveness of 

estrogen signaling, while GAPDH served as a cytoplasmic control illustrating proper 

fractionation.  Blotting for JNK1 revealed that although it was present in both the 

cytoplasmic and nuclear extracts, only the phosphorylated form of JNK1 was detected 

in the nuclear extract (Figure 3.3A), consistent with previous findings (Gupta et al., 

1995).  The constitutive JNK1 phosphorylation may be the result of HER-2 dependent 

MAP kinase hyperactivation [described for ERK (Keshamouni et al., 2002; Kurokawa 

et al., 2000)] or related to the elevated kinase activity associated with breast cancer 

cell-lines [e.g., AKT (Lin et al., 2005)].  Surprisingly, E2 treatment did not alter the 

localization of JNK1 or the fraction of activated (phosphorylated) protein.  Analysis of 

MCF-7 cells by immunofluorescence also demonstrated similar levels of JNK1 in the
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Figure 3.2  ChIP analysis of JNK1 at ERα-occupied regions.   

ChIP-qPCR results demonstrating JNK1 (A) and ERα occupancy (B) at promoters in 

MCF-7 cells treated with ethanol (U) or E2 (E).  Each bar = mean + SEM, n ≥ 3.  
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cytoplasmic and nuclear compartments (Figure 3.3B). 

Although the antibodies used for ChIP analysis were not phosphorylation 

specific, I believe that the JNK1 complexes identified contain the phosphorylated form 

of the protein since this is the predominant JNK form in the nucleus.  Taken together, I 

conclude that E2 treatment alters the occupancy of activated JNK1 on DNA without 

altering the overall nuclear pool of JNK1. 

 

ChIP-chip identifies global patterns of E2-dependent JNK1 occupancy at 

promoter regions. 

To obtain a broader understanding of our JNK1 ChIP results I turned to DNA 

microarrays that allow a more global analysis of ChIP material rather than a gene by 

gene approach.  I used commercially available arrays from Nimblegen that contained 

approximately 19,000 promoter regions tiled from -2200 to +500 base pairs (bp) 

relative to each transcription start site.  Three biologically independent ChIP samples 

(representing two different JNK1 antibodies) were hybridized to the arrays and 

analyzed using strict peak finding criteria.  The comparison of JNK1 occupancy before 

and after E2 treatment revealed 801 promoters that contained significantly higher 

levels of JNK1 occupancy after E2 treatment (“JNK1-recruited”) and 235 promoters 

that demonstrated a significant loss of JNK1 occupancy after E2 treatment (“JNK1-

released”) (Figure 3.4A).  Averaging of peak centered ChIP-chip data across these 

classes illustrates the distinct patterns JNK1 promoter localization in response to E2 

(Figure 3.4B).  Gene-specific ChIP-qPCR revealed both a high confirmation rate 

(~93%) for JNK1 peaks on the array (Figure 3.5) and local features consistent with our 

ChIP-chip tiling (Figure 3.6).  I also noted that the JNK1 peaks were found throughout 

the promoter regions with no apparent preference for the TSS, as is the case for other 

DNA-associated factors (i.e., PARP-1) (Krishnakumar et al., 2008). 



 71 

 

 

 

 

 

 

 

 

Figure 3.3  Estrogen treatment does not affect global JNK1 localization.  

(A)  MCF-7 cells were treated with ethanol (U) or E2 (E) for 45 min., and fractionated 

into cytoplasmic (Cyto) and nuclear (Nuc) extracts.  The extracts were analyzed by 

Western blotting to determine the subcellular localization of JNK1.  Arrows indicate 

the slower migration of phosphorylated JNK1.  ERα and GAPDH were used as 

fractionation controls.   

(B)  MCF-7 cells treated as above were subjected to immunostaining with a JNK1 

antibody, and visualized by confocal microscopy.  A single nucleus in each panel is 

denoted by a dotted circle.  This data is consistent with my subcellular fractionation 

analysis, which shows no gross change in JNK1 localization upon estrogen treatment. 
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Figure 3.4  ChIP-chip reveals JNK1 localization patterns at promoter regions.  

(A) A heatmap showing JNK1 ChIP-chip signals from MCF-7 cells across target 

promoters before (U) and after (E) a 45 min. treatment with E2 is shown.  The 

promoters were arrayed from -2200 to +500 bp relative to each TSS (x-axis).  

Analysis of JNK1 occupancy revealed promoters with more JNK1 after E2 treatment 

(“Recruited”), less JNK1 after E2 treatment (“Released”), no change in JNK1 after E2 

treatment (“Constitutive”), and no JNK1 (“Absent”).  The genes in each category (y-

axis) are ordered from those with the 5'-most JNK1 peak to those with the 3'-most 

JNK1 peak.  Only 2% of the 17,297 "Absent" genes are represented.   

(B) The genes in each category were aligned to the maximal JNK1 ChIP-chip signal.  

The peak-centered data was then averaged to demonstrate the overall pattern for each 

category shown in (A). 
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Figure 3.5  ChIP-qPCR confirms JNK1 ChIP-chip categories. 

(A, B)  ChIP-qPCR confirmation of "JNK1-recruited" (A) and "JNK1-released" (B) 

promoters in MCF-7 cells treated with ethanol (U) or E2 (E).  Greater than 93% 

(28/30) of the regions tested by ChIP-qPCR confirmed the ChIP-chip results.  CHPT1 

and UGT2B15 are false negatives due to the limited number of probes present in their 

respective peak regions on the ChIP-chip array (due to repeat masking).  ChIP-qPCR 

and visual inspection of their ChIP-chip tiling profiles confirms that they are true 

"JNK1-recruited genes."   Each bar = mean + SEM, n ≥ 3.  The red line in each graph 

represents background JNK1 signal.   

(C)  ChIP-qPCR to determine JNK1 occupancy at bound (Significant; Sig) and 

unbound (Background; Bkg) regions as defined by the ChIP-chip experiments 

demonstrates the validity of the peak calls.  Red bars represent the average signal in 

each category.  
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Figure 3.6  ChIP-qPCR analysis is consistent with ChIP-chip tiling features. 

ChIP-chip tiling (left) and ChIP-qPCR (right) analyses of JNK1 at three promoter 

regions from MCF-7 cells treated with ethanol (U) or E2 (E) is shown.  The average 

JNK1 ChIP-qPCR signals from peak (gray box) and non-peak (bracket) regions 

defined by the ChIP-chip tiling are consistent with the array profiles.  For the ChIP-

qPCR, each bar = mean + SEM, n ≥ 2. 
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These results confirmed the previous finding that JNK1 required E2 treatment 

for occupancy at some loci, but also revealed that E2 treatment could contribute to the 

removal of JNK1 from other loci.  Interestingly, a relatively small number of 

promoters (29 genes) contained similar levels of JNK1 before and after hormone 

treatment demonstrating that the majority of identified JNK1 complexes are regulated 

by E2. 

 

JNK1-bound promoters are enriched for specific cellular functions. 

 I next wanted to determine if the JNK1-recruited and JNK1-released genes 

were enriched for particular cellular functions.  Using Genecodis (Carmona-Saez et 

al., 2007), I determined that both the “JNK1 recruited” and “JNK1 released” gene sets 

showed enrichment for specific ontological categories (Table 3.1).  For example, the 

“JNK1 recruited” gene set is enriched in genes encoding components of G-protein-

coupled receptor signaling pathways and enzymes that metabolize steroid hormones.  

The proteins encoded by both of these ontological categories of genes would be 

expected to affect estrogen signaling responses, either by modulating growth factor 

signaling (Smith, 1998) or by metabolizing estrogens into less active or alternately 

active forms (Zhu and Conney, 1998).  The “JNK1 released” gene set is enriched in 

genes encoding several mRNA-binding proteins associated with nuclear splicing.  

These include SF3B5 [a component of the splicesome complex (Zhou et al., 2002)], 

DHX38 [an RNA helicase (Schwer and Guthrie, 1991)], and RBM8A [a component of 

the exon junction core complex (Ballut et al., 2005)].  These genes reinforce the recent 

link between JNK signaling and the regulation of alternative splicing (Pelisch et al., 

2005). 
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Table 3.1 Gene ontology of JNK1 bound promoters. 
 

a Ontologies were obtained using Genecodis for the JNK1-recruited and JNK1-

released genes.  The entire gene list represented on the ChIP-chip array was used as 

the background reference.  Ontological assignments representing less than 5 genes 

were not considered.   

 
b p-values were determined by Genecodis  using Chi-square tests.  Randomized gene 

lists (of equal size to each gene set analyzed) were generated from the genes present 

on the ChIP-chip array to determine a significance threshold and demonstrate the 

specificity of ontology assignments.   

 
c Five random gene sets were generated using the programming language R from the 

total number of genes present on the ChIP-chip array.  No gene ontologies were 

enriched (i.e., all p-values were >0.001) in the random lists using the criteria described 

above. 

Gene set Ontologya p-valueb 
   
"JNK1-recruited" 
promoters 

• GPCR signaling pathway 9.3 x10-4 

   (801 genes)   
 • Glucuronosyltransferase activity 2.5 x10-5 
   
 • Metabolism of androgens and estrogens 6.0 x10-6 
   
   
"JNK1-released" 
promoters 

• Nuclear mRNA splicing via the 
spliceosome 

1.3 x10-5 

   (235 genes)   
   
Five random gene setsc • None <0.001 
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Recruited JNK1 peaks correlate with ERα occupancy. 

Given the estrogen-dependent alterations in the JNK1 genomic localization 

program, I tested the possibility that the JNK1 peaks might correspond to sites of ERα 

binding.  My initial investigation of JNK1 localization already demonstrated that 

JNK1 was recruited to regions where ERα was also recruited.  To explore this more 

globally, I performed ERα ChIP-chip using the same array platform that I used for 

JNK1.  These results show a strong correlation between JNK1 and ERα binding sites 

in the promoter regions, with about 85% of the JNK1 recruited peaks overlapping an 

ERα peak (Figure 3.7).  ChIP-qPCR assays confirmed that the JNK1 recruited peaks 

correlated with an E2-induced occupancy of ERα at promoter (Figure 3.8A) and distal 

enhancer regions (Figure 3.8C).  To my surprise, the JNK1 released peaks were not 

associated with ERα occupancy (Figure 3.8B).  These patterns of E2-dependent 

regulation of JNK1 and ERα binding are clearly evident for specific target promoters 

where the overlay of JNK1 and ERα peak regions using ChIP-chip tiling illustrates the 

specificity of their association (Figure 3.9).  This suggests that JNK1 and ERα are co-

recruited at JNK1 recruited regions.  JNK1 seems to be modulated by a different 

mechanism at JNK1-released regions.   

 

Nuclear E2 signaling is required for JNK1 recruitment. 

The induced binding of JNK1 and ERα at promoters suggests that E2 signaling 

causes the convergence of ERα and MAP kinase pathways at these particular regions.  

Although it is well-known that E2 is a lipophilic compound, able to diffuse directly 

into the nucleus to facilitate ER activation, it is also known that E2 can activate 

cellular processes (e.g., kinase cascades) in the cytoplasm (“extra-nuclear” signaling) 

mediated by membrane-associated ERs and other E2-activated proteins [reviewed in 
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Figure 3.7  JNK1 binding correlates with ERα  occupancy at target promoters.  

(A) Heatmaps showing JNK1 and ERα ChIP-chip signals for the "JNK1 recruited" 

genes from MCF-7 cells after a 45 min. treatment with E2.  The promoters were 

arrayed from -2200 to +500 bp relative to each TSS (x-axis).  The genes in each 

category (y-axis) are ordered from those with the 5'-most JNK1 peak to those with the 

3'-most JNK1 peak.  ERα heatmap is ordered according to JNK1 heatmap. 

(B)  Pearson correlation analysis of the JNK1 and ERα peak data from (A) shown as a 

scatter-plot. 
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Figure 3.8  ERα is bound at "JNK1-recruited" regions. 

(A, B)  ChIP-qPCR analyses of ERα binding at "JNK1-recruited" (A) and "JNK1-

released" (B) promoters in MCF-7 cells treated with ethanol (U) or E2 (E) revealed the 

association of ERα with JNK1 recruited but not JNK1 released peaks.  Each bar = 

mean + SEM, n ≥ 2. 

(C)  ChIP-qPCR analysis of JNK1 and ERα for three  previously identified ERα-

bound enhancer regions (Carroll et al., 2005) demonstrating that ERα / JNK1 

complexes do not just occur at promoter regions.  Each bar = mean + SEM, n ≥ 3. 
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Figure 3.9  JNK1 recruited peaks have a peak profile similar to ERα . 

(A)  The average JNK1 and ERα ChIP signals from ChIP-chip (left) and ChIP-qPCR 

(right) are shown for three "JNK1-recruited" promoters (GREB1, HOXC10, CYP1B1). 

(B)  Similar analysis as in (A) but for three “JNK1-released” promoters (CEP350, 

CENPA, RNF167).  ChIPs from MCF-7 cells treated with ethanol (U) or E2 (E).   The 

gray box indicates the regions of ChIP-qPCR; x-axis represents number of bp from the 

TSS.  Each bar = mean + SEM, n ≥ 2. 
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Figure 3.9 (Continued) 
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(Fu and Simoncini, 2008)].  These cascades could ultimately be responsible for the 

JNK1 recruitment observed in the ChIP assays.    

In order to determine the requirement of E2 signaling on JNK1 recruitment, I 

performed ChIP assays using conjugated E2 derivatives, which can initiate 

cytoplasmic but not nuclear estrogen signaling pathways (Harrington et al., 2006).  

Indeed, treatment of MCF-7 cells with these compounds resulted in the rapid 

phosphorylation of ERK demonstrating that the E2-conjugates, like E2, could initiate a 

cytoplasmic response (Figure 3.10A).  These reagents failed to promote the binding of 

ERα, as expected, since they can not enter the nucleus (Figure 3.10B).  Examination 

of JNK1 occupancy revealed that, like ERα, the E2-conjugates could not induce the 

binding of the MAP kinase to these regions (Figure 3.10C).  These results suggest a 

direct role for ERα at the sites of E2-dependent JNK1 recruitment.  Although 

membrane-initiated estrogen signaling may contribute to the hormone-induced binding 

of ERα and JNK1 to promoters, it is not sufficient to elicit the response alone. 

 

Bioinformatics links specific transcription factors with JNK1 occupancy. 

Because JNK1 does not bind to DNA directly, its association with DNA must be 

facilitated by DNA-bound transcription factors (TF).  I used a series of bioinformatic 

analyses to determine which TFs might be facilitating the binding of JNK1 to the 

promoter regions.  First, I used MEME (Multiple Em for Motif Elicitation) and MAST 

(Motif Alignment and Search Tool) (Bailey et al., 2006) in an unbiased search for 

DNA sequence motifs enriched in JNK1-bound regions.  These results yielded a 

number of high confidence motifs for both the “JNK1 recruited” and “JNK1 released” 

peaks, but notably did not include estrogen response elements (EREs) (Figure 3.11).  I 

then used TESS (Transcription Element Search System) to predict the TFs that might 

bind to these enriched sequences.  The TF whose binding site had the highest 
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Figure 3.10  Nuclear estrogen signaling is required for JNK1 recruitment to 

target promoters.  

(A)  MCF-7 cells were treated with ethanol (U), 10 nM E2 (E), 10 nM E2-conjugated 

BSA (E2-BSA), or 10 nM E2-dendrimer conjugate (EDC) for 10 min., followed by 

Western blotting for ERK and phosphorylated ERK (P-ERK).  The concentrations of 

the estrogen derivatives were based on the amount of E2 in the conjugates, as 

previously described (Harrington et al., 2006). 

(B,C)  The binding of ERα (A) and JNK1 (B) was determined by ChIP-qPCR at three 

selected promoters after a 45 min. treatment as described in (A).  Bars represent the 

mean ChIP signal relative to the maximal E2 signal for each experiment, n ≥ 3.  Error 

bars = SEM for U, E2-BSA, and EDC. 
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Figure 3.11  Unbiased bioinformatic analysis using MEME/MAST. 

The DNA sequences from JNK1-bound regions (± 250 bp from the center of each 

JNK1 peak) were analyzed using Multiple Em for Motif Elicitation (MEME) and 

Motif Alignment and Search Tool (MAST) software (Bailey et al., 2006), as described 

in the Materials and Methods.  The results are divided into "JNK1-recruited" and 

"JNK1-released" peaks.  The p-values for enriched sequences were determined by a 

Fisher exact test using the base count of motifs within peak regions versus those in 

JNK1-negative regions.  Motif predictions were examined by Transcription Element 

Search System (TESS) (Schug, 2008) to determine the transcription factor most likely 

to bind that sequence.  "Genes" represents the number of promoters where the 

enriched sequence falls within 225 bp of the JNK1 peak.  The JNK1 ChIP-chip 

heatmap (JNK1) and the corresponding heatmap for the enriched sequence (Motif) is 

shown for these promoters.  The number of genes and the motif mapping refer to the 

enriched sequences from MEME (not from mapping TRANSFAC weight matrices; 

shown in subsequent figures). 
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alignment score with the MEME motif was chosen as the best TF candidate.  This 

analysis identified AP-1, as well as other TFs not previously associated with JNK1 

(Figure 3.11).  These included the MADS box transcription factors MEF2 and SRF; 

the POU homeodomain transcription factors (PIT-1) and POU3F3 (OCT7); and the 

zinc finger transcription factor GATA-1. 

Next, I mapped motif probability weight matrices for each of these 

transcription factors [obtained from TRANSFAC (Wingender et al., 2001)] (Figure 

3.12) to the JNK1 peaks.  Selected TRANSFAC motifs were mapped across the 

promoter regions present on the ChIP-chip array using MAST.  Alignments with a p-

value < 1.5 x 10-4 were considered true motif calls, a threshold previously reported 

(Kininis et al., 2007).  Motifs that fell within 375 bp of a JNK1 peak were counted as 

peak motifs and compared to the number of motifs outside of the peak regions.  

Although EREs were not identified in the unbiased search, I also included an ERE 

probability weight matrix in this directed search since I had already determined that 

ERα was associated with JNK1 recruited peaks.  This analysis yielded high 

confidence sites for all of the matrices searched (Table 3.2 and Figure 3.13A).   

 To test the validity of the bioinformatics analyses, I determined if the results 

could be used to make accurate predictions about factor binding.  For this analysis, I 

focused on genomic regions containing high confidence AP-1 motifs (Figure 3.13 B 

and C).  Although “JNK1 recruited” regions showed E2-induced binding of JNK1 and 

ERα, as expected (Figure 3.13D), only the regions with a high confidence AP-1 motif 

showed binding of c-Fos, a component of the AP-1 heterodimer.  Surprisingly, the 

binding of c-Fos was also induced by E2 treatment (Figure 3.13D, bottom).  Together, 

these results support the validity of my bioinformatic analyses by demonstrating the 

recruitment of JNK1 and c-Fos to regions containing predicted AP-1 sites.  
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Figure 3.12  TRANSFAC motifs used for motif mapping.  

An unbiased bioinformatic analysis using MEME and TESS (Figure 3.11) identified 

several putative transcription factors (TFs) as potential mediators of JNK1 binding.  

The weight matrices for these factors (obtained from TRANSFAC) are shown with the 

corresponding TRANSFAC ID or reference [the ERE sequence was previously 

reported (O'Lone et al., 2004)].  The mapping of these matrices was used to define TF 

binding sites used in subsequent analysis.  Note, no weight matrix was available for 

PIT-1. 

Factor Weight Matrix ID

M00199AP-1

M00145POU3F2
(OCT7)

M00006MEF2

M00152SRF

M00128GATA-1

O’Lone et al.,
2004

ERα

POU1F1
(PIT-1) NA NA
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Table 3.2  Directed bioinformatic analysis of JNK1 Peak Regions 

 

GATA-1 V$GATA1_04 Recruited 188 <1.00 x 10-300 
  Released 42 1.93 x 10-66 
     

MEF2 V$MEF2_01 Recruited 325 <1.00 x 10-300 
  Released 77 3.94 x 10-141 
     

 
Selected TRANSFAC motifs were mapped across the promoter regions present on the 
ChIP-chip array using MAST.  Motifs that fell within 375 bp of a JNK1 peak were 
counted as peak motifs and compared to the number of motifs outside of the peak 
regions. 
 
a The TRANSFAC IDs (or reference) for the weight matrices used in the analysis are 
listed.  The ERE sequence was previously reported (O'Lone et al., 2004). 
 
b "Genes" = the number of promoters that have the given motif within 375 bp of the 
center of the JNK1 peak. 
 
c p-values were determined by Fisher's Exact Tests using the programming language 
R,  They were based on the probability of finding bases that compose the given motif 
in a JNK1-bound region divided by the probability of finding bases that compose the 
given motif in JNK1-absent regions. 

Factor Matrix ID
a
 Genes

b
 p-value

c
 

     
AP-1 V$AP1_C Recruited 120 4.94 x 10-47 

  Released 36 2.33 x 10-13 
     

POU3F2 V$BRN2_01 Recruited 209 <1.00 x 10-300 
(OCT7)   Released 53 3.60 x 10-138 

     
SRF V$SRF_01 Recruited 149 <1.00 x 10-300 

  Released 31 3.23 x 10-48 
     

ER (O'Lone et al., 
2004) 

Recruited 100 1.84 x 10-7 

  Released 35 2.78 x 10-5 
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Figure 3.13  JNK1 peaks contain likely ERα tethering factor motifs.  

(A) The results of the targeted search for transcription factor binding sites under the 

JNK1-recruited regions is summarized (shown in Table 3.2).  Motifs and their likely 

associated binding factors were identified based on an initial unbiased search (Figure 

3.11) and were mapped with MAST using position weight matrices from TRANSFAC 

(Figure 3.12).   

(B) The AP-1 motif from TRANSFAC is shown as a position weight matrix.   

(C) Heatmaps showing the location of JNK1 binding (by ChIP-chip) and predicted 

AP-1 binding sites (by MAST) for promoters containing an AP-1 motif within 225 bp 

of a JNK1-recruited peak. 

(D) ChIP-qPCR analyses of c-Fos binding at JNK1- and ERα-recruited regions before 

(U) and after estrogen (E) treatment.  UGT2B15, SPTBN4, TFF1 and GREB1 contain 

at least one predicted AP-1 motif under the JNK1 peak.  PLAC1 contains an ERE 

sequence and is included (along with BLK44) as a negative control for c-Fos binding.  

Mean ± SEM, n ≥ 3.  Red lines represent background binding levels.  
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JNK1 acts as a coregulator at E2-responsive genes. 

Since JNK1 occupancy at genomic loci is affected by E2 signaling I wondered 

if JNK1 might have a direct role in mediating E2-dependent transcriptional responses.  

To this end, JNK1-depleted MCF-7 cells were generated by retroviral- mediated gene 

transfer of a short hairpin RNA (shRNA) sequence targeting JNK1 mRNA.  Two 

different shRNA sequences gave similar levels of JNK1 mRNA and protein depletion  

(results for one are shown, Figure 3.14A).  Control cells harboring an shRNA 

sequence directed against GFP [described previously (Kim and Rossi, 2003)] were 

generated in parallel.  I examined the E2-dependent expression of target genes in 

MCF-7 cells using reverse transcription-qPCR (RT-qPCR).  Stable short hairpin RNA 

(shRNA)-mediated knockdown of JNK1 or chemical inhibition of JNK catalytic 

activity using a JNK-specific ATP competitor, SP600125 (Bennett et al., 2001), 

inhibited the E2-stimulated (or E2-repressed) expression of some, but not all, estrogen 

target genes (Figure 3.14 B and C).  Although “off-target” effects can occur when 

using chemical inhibitors in vivo, I believe that the SP600125 effects (Figure 3.14 B 

and C) represent specific JNK inhibition since they agree so strongly with the JNK1 

knock-down data for the same genes.  Thus, JNK1 and its kinase activity are required 

for full E2-dependent regulation of estrogen target genes in MCF-7 cells implicating 

JNK1 as a hormone-dependent transcriptional coregulator of ERα. 

 

E2-dependent growth of breast cancer cells requires JNK1. 

 As stated above, JNK1 expression is elevated in breast cancer carcinomas 

relative to healthy breast tissues.  One implication from this correlation would be that 

elevated JNK1 levels provide a proliferative advantage to hormone-dependent tissues 

like the breast.  JNK1 is required for full E2-responsiveness at target genes, but does it 

affect other E2-regulated outcomes, such as cell growth?  Along these lines, I tested 
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Figure 3.14  JNK1 activity is required for full estrogen-dependent transcriptional 

responses.  

(A)  Analysis of JNK1 mRNA and protein levels in MCF-7 cells stably expressing 

control (GFP) and JNK1 shRNA. 

(B)  The transcriptional response of E2-regulated genes from MCF-7 cells treated ± E2 

for 3 hrs was determined by RT-qPCR.  The effect of JNK1 knockdown (Top) or the 

effect of the JNK inhibitor SP600125 (SP) (Bottom) on E2-regulated, JNK1 recruited 

genes is shown.  Asterisks represent p-values <0.05 (*) or <0.01 (**) (Student’s t-test) 

versus E2 control (E; black bars).  The E2-regulation of HOXC10 is not affected by 

JNK1 knock-down or chemical inhibition.  Mean ± SEM, n ≥ 3.   

(C)  E2-dependent down-regulation of gene expression also requires JNK1 activity as 

the JNK inhibitor impairs E2-dependent repression of target genes.  MCF-7 cells 

treated as in (B)  Expression data for GOLGB1 was from 6 hrs E2 treatment.  Each bar 

= mean ± SEM, n ≥ 2.  Raw expression data from independent experiments were 

normalized to ACTB expression; the untreated control condition was set to 100. 
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Figure 3.14 (Continued) 
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my JNK1 knock-down line to determine if the loss of JNK1 affected the growth of 

these hormone stimulated breast cancer cells.  Indeed, JNK1 knock-down resulted in 

the loss of E2-stimulated growth while the GFP knock-down responded to hormone as 

expected (Figure 3.15).  This evidence, along with the role of JNK1 as a hormone- 

dependent transcriptional coregulator of ERα, suggests a physiological link between 

estrogen and JNK1 signaling at the genomic level with cell growth outcomes.  This 

link may have relevance for the growth and clinical outcomes of estrogen-dependent 

breast cancers. 

 

Discussion 

Collectively, my results characterize the functional interplay between the 

estrogen and MAPK signaling pathways that has been observed previously (Lange, 

2004; Smith, 1998).  This association is manifested in an extensive and unexpected 

molecular crosstalk at the genomic level. 

I demonstrated that JNK1 binds to specific sites in the genome.  This illustrates 

the fact that signaling molecules, like MAP kinases, associate with chromatin-bound 

complexes broadening the understanding of how and where these kinases 

phosphorylate their substrates.  An even more amazing finding was that E2 treatment 

caused a nearly complete redistribution of the JNK1 promoter localization pattern 

(97% of the peaks changed) (Figure 3.4).  This redistribution was not due to the net 

movement of JNK1 to or from the nuclear compartment, nor was it due to a net change 

in the phosphorylation status of JNK1 (Figure 3.3).  These facts are in agreement with 

each other since the phosphorylation of JNK is tightly linked to its nuclear 

translocation (Gonzalez et al., 1993; Lenormand et al., 1998).  Cytoplasmic E2 

signaling was not sufficient for the recruitment of JNK1 to E2-induced promoters 

(Figure 3.10).  Together, these data highlight the fact that the E2-dependent,  genomic 



 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15  JNK1 is required for E2-induced proliferation in MCF-7 cells. 

Cells expressing a shRNA construct for GFP or JNK1 were grown for 2 days in E2-

free media before being plated at equal densities and treated with ethanol or E2 (100 

nM; E). 

(A)  Cells were counted 2 and 4 days after E2 addition. 

(B)  The average E2-dependent fold in proliferation for day 4 is shown.  Bars equal the 

mean ± SEM, n ≥ 2. 
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changes of JNK1 occupancy involve the activated, nuclear pool of JNK1.  The E2-

independent activation (and thus translocation) of JNK has no doubt played a role in 

keeping the hormone-dependent crosstalk between these pathways enigmatic to date. 

My investigation into the E2-modulated binding of JNK1 at target genes led to 

the discovery that JNK recruited but not JNK released peaks correlated with ERα 

binding (Figure 3.7-9).  This suggests that at least two modes of hormone signaling 

influence the genomic occupancy of JNK1.  Bioinformatic analyses determined 

several transcription factors as likely JNK1-tethering factors.  It is interesting to note 

that due to the strong correlation between JNK1 and ERα at JNK1 recruited regions, 

the TFs associated with these JNK1 complexes are also implicated in mediating ERα 

complexes.  Indeed, ERα exhibits two distinct modes of genomic binding: direct 

binding to DNA containing ERE sequences and indirect binding or tethering through 

other DNA-binding transcription factors, such as activator protein-1 (AP-1, a 

heterodimer of c-Fos and c-Jun or related proteins) (Kushner et al., 2000).  My 

analysis identified E2 recruited JNK1 and ERα complexes at promoters containing 

EREs, but implied that this was not the major mode of JNK (and ERα) recruitment.  

EREs represented only ~10 percent of all the sites identified (100 out of 1091 sites for 

the JNK1-recruited peaks (Table 3.2 and Figure 3.13A).  These bioinformatic results, 

together with the ChIP-chip results described above, suggest that the E2-dependent 

recruitment of JNK1 occurs primarily, but not exclusively, through an ERα tethering 

mechanism mediated by diverse types of DNA-binding transcription factors. 

I further demonstrated that JNK1 can act as a coregulator of ERα-dependent 

transcriptional outcomes in a manner that requires its catalytic activity.  The gene-

specific impairment of E2-dependent transcriptional responses by JNK1 knock-down 

was mirrored in the loss of E2-stimulated growth in the JNK1 shRNA expressing line.  

It is quite interesting to note that these effects are mediated specifically by JNK1 



 103 

despite the presence of the highly redundant MAPK, JNK2 (note that JNK2 expression 

actually increased with JNK1 knock-down) (Figure 3.16).  Together, these data 

suggest that the specific E2-regulated genomic activities of JNK1 can ultimately affect 

hormone-dependent cellular processes.  Indeed, JNK activity is important in tumor 

growth and development as several studies have demonstrated the role of JNK in Ras-

mediated tumoricity [reviewed in (Davis, 2000)] and in oncogene activation [reviewed 

in (Ip and Davis, 1998)].  Estrogen signaling may play a large role in these JNK-

dependent processes since JNK1 expression is elevated in breast carcinomas (Figure 

3.1).  In addition, the expression of the JNK1 phosphatase, MPK-1, a negative 

regulator of JNK1 activity, is reduced in high grade malignant breast cancers (Figure 

3.17).   

These results support a model for the estrogen- and ERα-dependent 

recruitment of pre-activated JNK1 from the nuclear compartment (i.e., nucleoplasm or 

chromatin) to the promoters of estrogen target genes.  JNK1, in turn, serves a 

coregulator function required for efficient estrogen-dependent transcription of these 

genes.  This role of JNK1 in the genomic estrogen signaling pathway is supported by 

JNK1's kinase activity, which likely targets histones or other proteins in the promoter-

assembled transcription complexes (claims supported by the work presented in 

Chapter 4) (Figure 3.18).  In sum, my studies have identified a genomic nexus 

between the estrogen and JNK1 signaling pathways that regulates target gene 

expression and downstream cell growth responses.   Similar genomic systems are 

likely to integrate the signaling pathways for other steroid hormones and signal-

regulated nuclear kinases.  Future studies will aim to define the E2-regulated targets of 

JNK1 and determine the molecular mechanisms of JNK-dependent phosphorylation in 

mediating E2-regulated outcomes. 
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Figure 3.16  JNK2 expression is regulated by JNK1. 

JNK2 expression in MCF-7 cells stably expressing an shRNA to GFP or JNK1 was 

determined by RT-qPCR.  Raw expression data from independent experiments were 

normalized to ACTB expression and expressed relative to the GFP shRNA sample.  

Each bar = mean + SEM, n = 4. 
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Figure 3.17  Expression of the JNK phosphatase, MKP-1, decreases with breast 

cancer progression. 

The relative expression of MKP-1 across three breast carcinoma grades is shown from 

five independent studies (Bittner, 2005; Desmedt et al., 2007; Ivshina et al., 2006; 

Miller et al., 2005; Sotiriou and Desmedt, 2006).  The p-values for negative 

correlation was <0.001 for all five studies.  The values were normalized so that the 

average expression level for the Grade 1 sample from each study was 1.  Red bars 

represent the average signal in each category. 
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Figure 3.18  JNK1 is an estrogen-dependent coregulator.  

A model illustrating the estrogen-dependent regulation of JNK1 localization at 

promoters, including features described in Chapter 4 (i.e., JNK1 phosphorylation 

targets), is shown.  Activated (phosphorylated) JNK1 is co-recruited with ERα to 

promoters containing certain transcription factors, such as AP-1.  JNK1 then 

phosphorylates transcriptionally relevant targets, such as H3 or coactivators of ERα, 

allowing full E2-responsiveness at the given promoter. 



 107 

Materials and Methods 

 

Cell culture.  MCF-7 cells were maintained in MEM with Hank’s salts 

(Sigma; M1018) supplemented with 5% calf serum, sodium bicarbonate, 

penicillin/streptomycin, and gentamicin.  Prior to all experimental procedures and 

 treatment with control vehicle (ethanol) or E2 (100 nM), the cells were grown for at 

least 3 days in phenol red-free MEM Eagle modified, with Earle's salts (Sigma; 

M3024) supplemented with 5% charcoal-dextran calf serum, L-glutamine, sodium 

bicarbonate, penicillin/streptomycin, and gentamicin.  For the JNK inhibition 

experiments, the cells were treated with 20 µM SP600125 (SP) (BIOMOL) for 10 hrs 

before treatment with E2. 

 

Antibodies.  The antibodies used are as follows:  JNK1 (Santa Cruz, sc-474), 

phosphorylated JNK (Santa Cruz, sc-6254), JNK (Santa Cruz, sc-7345), c-Fos (rabbit 

polyclonal generated in the Kraus lab), ERα (rabbit polyclonal generated in the Kraus 

lab), ERK (Santa Cruz, sc-154), phosphorylated ERK (Cell Signaling, 9106L), 

GAPDH (kindly provided by Eric Alani, Cornell University). 

 

Preparation of cell extracts. 

 • JNK1 localization:  Estrogen-starved MCF-7 cells were treated with ethanol 

or 100 nM E2 for 45 min.., washed with ice-cold PBS, released by scraping, and 

collected by centrifugation.  The cell pellets were resuspended in hypotonic buffer (10 

mM Tris•HCl pH 7.9, 10 mM NaCl, 3 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 5 mM 

NaF, 1 mM sodium vanadate, 4 µg/ml aprotonin, 4 µg/ml leupeptin, 1 mM DTT, 1 

mM PMSF), incubated on ice for 10 min., and homogenized by Dounce 40 times with 

a tight glass pestle.  The lysate was centrifuged at 8,000 rpm in a microfuge at 4°C and 



 108 

the supernatant was collected as the cytoplasmic fraction.  The nuclei were washed 

twice with hypotonic buffer + 0.1% NP-40 and resuspended in hypertonic buffer (10 

mM Tris•HCl pH 7.9, 420 mM KCl, 10% glycerol, 10 mM NaCl, 3 mM MgCl2, 1 

mM EDTA, 1 mM EGTA, 5 mM NaF, 1 mM sodium vanadate, 4 µg/ml aprotonin, 4 

µg/ml leupeptin, 1 mM DTT, 1 mM PMSF).  After a 10 minute incubation on ice, the 

extracted nuclei were pelleted by centrifugation as above and the supernatant was 

collected as the nuclear fraction.  The protein concentration for both fractions was 

determined by Bradford assays. 

 

• Detection of Activated ERK:  Estrogen-starved MCF-7 cells were grown for 

24 hrs in serum-free medium, followed by a 10 min. treatment with ethanol, 10 nM 

E2, 10 nM 17β-estradiol 17-hemisuccinate:BSA (E2-BSA) (Steraloids), or 10 nM 

estrogen-dendrimer conjugate (EDC) (Harrington et al., 2006) (kindly provided by 

John Katzenellenbogen, University of Illinois, Urbana-Champaign).  The cells were 

washed with ice-cold PBS, released by scraping, and collected by centrifugation.  The 

cell pellets were resuspended in lysis buffer (50 mM Tris•HCl pH 7.9, 500 mM NaCl, 

1 mM EDTA, 10% glycerol, 1% Triton X-100, 0.1% SDS, 5 mM NaF, 1 mM sodium 

vanadate, 4 µg/ml aprotonin, 4 µg/ml leupeptin, 1 mM DTT, 1 mM PMSF) and 

subjected to three freeze-thaw cycles using liquid nitrogen.  Lysates were collected 

after maximum centrifugation in a microfuge at 4°C.  Protein concentrations were 

determined by Bradford assays. 

 

Immunofluorescence. Estrogen-starved MCF-7 cells were grown on coverslips and 

treated with ethanol or 100 nM E2 for 45 min.  After a wash with PBS, the cells were 

crosslinked on the coverslips for 10 min. at room temperature with a formaldehyde 

solution (3% formaldehyde, 5% sucrose in PBS) and the reaction was stopped by 
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addition of 125 mM glycine.  The cells were rinsed twice with PBS, permeablized for 

15 min. with 0.1% Triton X-100 made in PBS, and blocked for 20 min. with 5% BSA 

made in PBS.  The cells were washed two more times with PBS and incubated for 30 

min. with a JNK1 antibody (1:250 dilution with PBS).  Afterwards, the cells were 

washed 3 times with TBST (10 mM Tris•HCl pH 7.9, 150 mM NaCl, 0.05% Tween-

20) and incubated with a fluorescein-conjugated secondary antibody (Jackson; 115-

095-146) (1:1000 dilution with PBS) for 30 min..  The coverslips were then washed 5 

times with TBST, mounted to slides using Vectashield (Vector Laboratories; H-1000), 

and visualized using a Leica Confocal Microscope System. 

 

Chromatin immunoprecipitation (ChIP).  ChIP assays were performed as described 

previously (Kininis et al., 2007), with minor modifications .  The cells were grown to 

~80% confluence and treated with ethanol or 100 nM E2 for 45 min.  The cells were 

then crosslinked with 10 mM dimethyl suberimidate•HCl (DMS; Pierce, 20700) for 10 

min. at room temperature, followed by 1% formaldehyde for 10 min at 37°C, with 

subsequent quenching by 125 mM glycine for 5 min.  The crosslinked cells were 

collected by centrifugation, resuspended in lysis buffer [0.5% SDS, 10 mM EDTA, 50 

mM Tris•HCl pH 7.9, 1x protease inhibitors (Roche; 1836153)], and sonicated three 

times for 10 seconds using a Branson Digital Sonifier at 27% power.  This resulted in 

DNA fragments of ~500 bp as determined by agarose gel electrophoresis.  Cell debris 

was removed by centrifugation and the remaining lysate was diluted 10-fold using 

dilution buffer (1.1% Triton X-100, 1.2 mM EDTA, 17 mM Tris•HCl pH 8.0, 167 mM 

NaCl, 1x protease inhibitors).  After a 1 hr pre-clearing step using protein G-agarose 

beads (Invitrogen; 15920-010), a portion of the lysate was collected as “input” 

material, while the remaining lysate was incubated overnight with antibodies against 

JNK1, ERα, c-Fos, or without antibodies as a control.  The lysates were then 
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incubated with protein G-agarose beads for 4 hours to capture the immunoprecipiated 

complexes.  The beads were then washed three times with wash buffer (0.25% NP-40, 

0.05% SDS, 2 mM EDTA, 20 mM Tris•HCl pH 8.0, 250 mM NaCl, 2 µg/ml leupeptin 

and 2 µg/ml  aprotinin) and once with TE.  The immunoprecipitates were resuspended 

in elution buffer (1%SDS, 100 mM NaHCO3) and incubated overnight at 65°C to 

reverse the crosslinks.  The proteins were digested for 45 min. at 37°C with 12.5 µg 

proteinase K and the DNA was precipitated with ethanol/sodium acetate following an 

extraction with phenol:chloroform:isoamyl alcohol.  The DNA pellets were dissolved 

in water and analyzed by qPCR.  Before averaging, the ChIP values for each region 

were normalized.  Each ChIP experiment was conducted with at least three 

independent chromatin isolates to ensure reproducibility. 

 

Ligation-mediated PCR (LM-PCR).  For ChIP-chip analysis, immunoprecipitated 

genomic DNA was blunted and amplified by LM-PCR as described previously 

(Krishnakumar et al., 2008).  The material was purified following digestion with 

RNase (Roche) using QIAquick columns (QIAGEN). qPCR on selected regions was 

used to confirm that the LM-PCR procedure preserved the binding patterns of the 

initial immunoprecipitated material.  The LM-PCR for the ChIP-chip experiments was 

done using three independent ChIP experiments from cells treated with or without E2. 

 

ChIP-chip.  After LM-PCR, the immunoprecipitated material was labeled with Cy5 

and the reference ("input") material was labeled with Cy3.  The labeled samples were 

combined and hybridized to human HG18 RefSeq Promoter Arrays (Nimblegen; 

C4226-00-01).  Briefly, this array contains ~19,000 well-characterized RefSeq 

promoters tiled with 50-mer to 75-mer probes every 100 bp.  The tiled regions cover 

~2200 bp upstream and ~500 bp downstream of each TSS.   
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ChIP-chip data analysis. 

• Moving window analysis:  Data processing was done essentially as described 

previously (Krishnakumar et al., 2008) using the statistical programming language R 

(Team, 2006).  All R scripts are available upon request.  The pairwise data files 

supplied by Nimblegen were used to calculate the log2 ratio data for each array.  The 

ratio values were subjected to lowess normalization and the arrays were normalized to 

each other using equivalent sum of squares scaling.  An error model was generated 

using a 600 bp moving window with 150 bp steps in which both the mean probe log2 

ratio and p-value were calculated for each window.  The moving window analysis was 

also performed on a composite fold array that represented the average JNK1 ratio in 

the presence of E2 divided by the average JNK1 ratio in the absence of E2.  All p-

values were calculated using a nonparametric Wilcoxon signed-rank test.   

 

• Definition of significant bound regions:  JNK1-bound regions were defined 

as the windows containing: (1) positive means in all three biological replicates, (2) at 

least 5 probes, and (3) p-values <0.05.  Constitutive regions were defined as JNK1-

bound regions (present in the E2-treated and untreated samples) that did not have a 

significant p-value (≥0.032) from the composite fold analysis.  Recruited regions were 

defined as JNK1-bound regions (present in the E2-treated samples) that had both a 

significant p-value (<0.032) and a fold ratio >1.  Released regions were defined as 

JNK1-bound regions (present in the untreated samples) that had both a significant p-

value (<0.032) and a fold ratio <1.  Of the defined regions, 98% of the recruited 

regions and 95% of the released regions had an absolute fold change of ≥1.3.   

 

• Visual representation of the data:  The TSS-anchored heat maps used to 

visualize the ChIP-chip data were generated with Java Treeview (Saldanha, 2004).  
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For genes with multiple TSSs, the most 5’ TSS in a given tiled region was used for 

alignment as +1. 

 

Bioinformatic analyses.   

• De novo motif prediction:  Three gene lists were generated for de novo motif 

predictions: (1) JNK1-recruited, (2) JNK1-released, and (3) JNK1-negative.  The 

recruited and released lists report the 500 bp surrounding the location of the maximum 

fold change (positive or negative) for the JNK1-recruited and JNK1-released genes, 

respectively.  The JNK1-negative list reports the regions on the array with no 

significant JNK1 signal.  These lists were formulated using the tools on the Galaxy 

browser (Elnitski et al., 2006) so genomic locations from JNK1-bound regions would 

not be present in the background regions.  Genomic sequences for all regions were 

obtained from a local mirror of the UCSC genome browser, release HG18.  JNK1-

negative sequences were extracted in the same manner and used to compute 

background nucleotide frequencies and 1st- through 3rd-order Markov background 

models. 

De novo motif detection was carried out using MEME (Multiple Em for Motif 

Elicitation) (Bailey et al., 2006) on repeat masked sequences, using the 3rd order 

background model.  A width range of 6 to 15 nucleotides was specified and any 

number of sequence occurrences was allowed within peak regions.  The top 20 motifs 

in each peak class were retained for further analysis.  Motifs with a Pearson’s 

correlation coefficient ≥ 0.6 were grouped as similar motifs and were represented by 

the motif with the greatest MEME score.  MAST (Motif Alignment and Search Tool) 

(Bailey et al., 2006) was used to scan for the locations of all motif instances within 

both bound and unbound sequences, using a p-value threshold of 1.5 x 10-4 as 

previously reported (Kininis et al., 2007).  Motifs were accepted as having a potential 
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association with JNK1 binding only if they were significantly enriched within bound 

peaks relative to background sequences.  Fisher’s exact tests were used to determine 

enrichments relative to background (heretofore generically referred to as “foreground” 

and “background” classes) with p-values corrected for multiple testing using the Holm 

method in R.  Contingency tables were constructed based on the number of observed 

motifs and total number of k-tuples in foreground and background sequences, where k 

is the width of the motif. 

 

• Assigning transcription factors to the predicted motifs:  TESS 

(Transcription Element Search Software) (Schug, 2008) was used to predict the 

transcription factors that might bind to the enriched sequences from MEME.  Position 

weight matrices for the predicted transcription factors (listed below with their 

TRANSFAC identification tags) were obtained from the TRANSFAC database 

(Wingender et al., 2001) and were converted to probability models.  Pseudocounts 

were introduced to avoid over-fitting the motif models, which were based on relatively 

limited training datasets.  The adjusted matrices for the predicted transcription factors 

were mapped to the JNK1-bound and JNK1-negative regions with MAST using a 6th 

order Markov model.  Fisher's exact tests were used to determine the enrichments for 

each motif, as described above.  In addition, promoters were scanned for the presence 

of EREs  in the same manner and the enrichment calculated.  The TRANSFAC 

transcription factor motifs used for mapping are as follows: AP-1 (M00199), MEF2 

(M00006), SRF (M00152), POU3F2/OCT7 (M00145), and GATA1 (M00128).  The 

ER motif was a consensus defined by O'Lone et al., 2004 (O'Lone et al., 2004). 

 

Gene ontology.  Gene ontology (GO) analyses were performed using Genecodis 

(Carmona-Saez et al., 2007). JNK1 gene sets (i.e., "JNK1-recruited", "JNK1-
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released") were uploaded and compared to the total gene list represented on the ChIP-

chip array.  Search parameters included the following: (1) lowest GO level, (2) a 

minimum of 5 genes per category, (3) each category represented by a single GO 

identifier, false discovery rate (FDR) <0.01.  P-values were calculated by Genecodis 

using Chi-square tests.  Ten randomly selected gene lists (5 of similar size to the 

JNK1-recruited list, 5 of similar size to the JNK1-released list) were analyzed in a 

similar manner to empirically determine the FDR.  No GO terms were reported for 

these random lists using the criteria above.  Uninformative gene categories were not 

recorded. 

 

JNK1 knockdown.  JNK1-depleted MCF-7 cells were generated by stable retroviral-

mediated gene transfer of a short hairpin RNA (shRNA) sequence specifically 

targeting the JNK1 mRNA using the pSUPER.retro system under appropriate drug 

selection (Oligoengine).  Two different shRNA sequences, obtained from SuperArray 

and cloned into the pSUPER vectors using unique EcoRI/XhoI sites, gave similar levels 

of JNK1 mRNA depletion.  The JNK1 target sequences are as follows: 5’-

CAGAGAGCTAGTTCTTATGAA-3’ and 5’-CCTACAGAGAGCTAGTTCTTA-

3’.  Control cells harboring a shRNA sequence directed against GFP were generated in 

parallel  The GFP target sequence used (5’-GAAGCTGACCCTGAAGTTCATC-3’) 

was based on previous work (Kang et al., 2001). 

 

Gene-specific expression analyses.  The expression of endogenous target genes was 

determined as described previously (Kininis et al., 2007), with minor modifications.  

MCF-7 cells were grown to ~80% confluence and treated with ethanol or 100 nM E2 

for 3 or 6 hours.  Cells were washed with cold PBS and the total RNA was collected 

using TRIZOL (Invitrogen) according to the manufacturer’s specifications.  First 
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strand cDNA synthesis was performed using 2 µg of total RNA, 2 µg oligo(dT), and 

600 units of  MMLV reverse transcriptase (Promega).  The resulting cDNA from each 

sample was treated with 3 units of RNAse H (Ambion) for 30 min. at 37°C and then 

diluted 1:5 with water.  E2-treated samples were further diluted 1:10 and analyzed by 

q PCR using a 96-well DNA Engine Opticon (MJ Research) or a 384-well Prism 7700 

(ABI) real-time PCR thermocycler for 45 cycles (95°C for 15 sec, 60°C for 1 min) 

following an initial 10 min. incubation at 95°C.  The fold change in expression of each 

gene was calculated using a standard curve of diluted cDNA from untreated samples 

(1:1, 1:10, 1:100) and normalized against the fold change of β-actin, a well-

characterized housekeeping gene that I used as an internal control.  Independent 

experiments were scaled in relation to E2 expression levels with error bars 

representing the SEM. 

 

Primers for quantitative real-time PCR (qPCR).  

The qPCR primers used for ChIP analyses are as follows: 

 

ACO2 forward  5’- CTTGCACCAGGCCCGTCT -3’  

ACO2 reverse   5’- AAGATGTTTTACCCAAGAACAAAT -3’ 

ACO2distal forward  5’- CTTCAGTCCTCTGCTATCTCCTG -3’  

ACO2distal reverse  5’- CCAAGTTTTGTGATGCCAAG -3’  

ADORA1 forward  5’- GCCTTGTGTCTGGATGATGTT -3’  

ADORA1 reverse  5’- TCCCCAAACCACTGTACTCA -3’  

Blk4 forward   5’-ATCCTTGATTTGGGGCAAT -3’ 

Blk4 reverse   5’- CTTGCAGGCCTCTCCTTCTA -3’ 

Blk42 forward   5’- GGCAGGCCAAACACACATG -3’ 

Blk42 reverse   5’- GCCCTGGACACAAACTGCAT -3’ 
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Blk44 forward   5’- GGGAAAATATGCAGAAGAAAACGA -3’ 

Blk44 reverse   5’- CATTTATTCAACACCTCTGATGTCCTA -3’ 

CENPA forward  5’- CCATCTCTGCGTTGCTAAGG -3’  

CENPA reverse  5’- GTGCCCTCCAGTCAAAACAC -3’  

CEP350 forward  5’- AGTGACAGCAGTGGGTAACG -3’  

CEP350 reverse  5’- GGGGATTCGACAAGAATGAA -3’  

CHPT1 forward  5’- TCTCTGAATCCGCAGTGATG -3’ 

CHPT1 reverse  5’- TCCCTTTCTGTACGGAGGAA -3’ 

CYP1B1 forward  5’- CGTGCGGCCTCGATTG -3’ 

CYP1B1 reverse  5’- AGGTGCCCACGTTTCCATT -3’ 

FLJ13305 forward  5’- GAAGGAGGGCGGTACATTCT -3’ 

FLJ13305 reverse  5’- CCAACTCTGGGCTTTTATTGG -3’ 

FLJ31818 forward  5’- ACAGCAGATGCCCTCAAGAA -3’ 

FLJ31818 reverse  5’- TCCAAATTAAAGGACAGGAGGT -3’ 

GOLGB1 forward  5’- ATGCTCCGCTTCCTCAAAG -3’ 

GOLGB1 reverse  5’- CCACTCGACACTTCCTGTCC -3’ 

GREB1 forward  5’- AGTGTGGCAACTGGGTCATTCTGA -3’ 

GREB1 reverse  5’- GGTATGATTCATCATTGTCTGCTGCG -3’ 

HDGF2 forward  5’- CCCCTTCACTCCCTTAGAGC -3’ 

HDGF2 reverse  5’- GAGGTTGGAGCACAGCAGTT -3’ 

HLA-DMA forward  5’- TTGCACATATACACACCACTCCT -3’ 

HLA-DMA reverse  5’- CTATCTCCTCCGCCTCCTCT -3’ 

HOXC10 forward  5’- AACGGTTTCGATCAAACTGGTGGG -3’ 

HOXC10 reverse  5’- AGCAGTCAATCCAGGGAGCCATTT -3’ 

HOXC10distal forward 5’- CCCTCCACCCCTCTACCTC -3’  

HOXC10distal reverse 5’- AGTAACAGCGCCATCTAGCA -3’  
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ITGA10 forward  5’- TCGTGTCCTCCATCCTGTCT -3’ 

ITGA10 reverse  5’- TCAGGTCCCCTCCTTATCCT -3’ 

KRT13 forward  5’- ACCCAGTATTAGAACGGGACCTGA -3’ 

KRT13 reverse  5’- TCCAGGACATCCCAGTCAGAAGTT -3’ 

OVOL2 forward  5’- TTGCCTCTCCTAACCACCCGAT -3’ 

OVOL2 reverse  5’- GCGGCTAGAAGATGTAGCCAATGT -3’ 

P2RX7 forward  5’- TGGAAGCTCCCAGTCTTGTGA -3’ 

P2RX7 reverse  5’- CACTTTTTTGGTCTCATGTCTCTTG -3’ 

PCYT1A forward  5’- CCCTCGCTGTCACTTACCA -3’ 

PCYT1A reverse  5’- GTTGCAGGTGTGTGCCTATC -3’ 

PDCD6IP forward  5’- TTCCTGATACTTTTTCCGTTTACC -3’ 

PDCD6IP reverse  5’- ACTACTGTTGACGGGCTGCT -3’ 

PLAC1 forward  5’- TGACAGAACTCATTCACAGGAAG -3’  

PLAC1 reverse  5’- GGCAACAGCAAGCACTACAA -3’  

PPM2C forward  5’- TTGGTGAACACTAGGGAAGATAAG -3’  

PPM2C reverse  5’- GGCATTGGTATTGTCTGTGG -3’  

PRUNE forward  5’- ACATACACATTTGTTTACCGAACGA -3’  

PRUNE reverse  5’- TCCGCAATGTCCCTAGCAA -3’  

RNF167 forward  5’- CCAGAGGGAGGAGAGGTTTG -3’  

RNF167 reverse  5’- AGGTTAGCGATGGAGGGACT -3’  

SERPINA1 forward  5’- TGGAGGAGGAATGAAGAAAGCA -3’  

SERPINA1 reverse  5’- AGCAGGACCCCAAATTCTGA -3’  

SLC27A2 forward  5’- CACGCCTGCAATATCTCCTTTAAT -3’  

SLC27A2 reverse  5’- CACGGTTTCTTTAAATGGTGATGA -3’  

SPTBN4 forward  5’- GACTACACGTGCGTGACACC -3’  

SPTBN4 reverse  5’- ACGTCCCACACCCTATCGTA -3’  
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TFF1 forward   5’- ATAACATTTGCCTAAGGAGGCCCG -3’ 

TFF1 reverse   5’- TCAGCCAAGATGACCTCACCACAT -3’ 

TFF1distal forward  5’- GGCCTGGTGTCCTCTGTG -3’ 

TFF1distal reverse  5’- CCCCATTTTGATCCGAGAA -3’ 

UGT2B15 forward  5’- TGAACTGTACACACTAATTGGTGAGTCA -3’ 

UGT2B15 reverse  5’- TCGTGGTGCAAGTAATGTCTTCTAA -3’ 

 

The qPCR primers used for expression analyses are as follows: 

 

ACTB forward  5’- AGCTACGAGCTGCCTGAC -3’ 

ACTB reverse   5’- AAGGTAGTTTCGTGGATGC -3’ 

ANK3  forward  5’- CGCTCCTTCAGTTCGGATAG -3’ 

ANK3 reverse   5’- TTCCCTTGTGAATGTTAGATGCT -3’ 

CEP350 forward  5’- AAAGTGGCCTTAGCTTTTTGC -3’ 

CEP350 reverse  5’- GAAGATGTAAGTTTGTATTTCTTGCAG -3’ 

ELOVL2 forward  5’- AGAGGGTGGTTCATGTTGGA -3’ 

ELOVL2 reverse  5’- CAAGGTGAGGATACCCCTGA -3’ 

FAM5C forward  5’- TTTACAGTGCTTTTGTGGAACAG -3’ 

FAM5C reverse  5’- TTGTCAGCAAGTTCATGTGTG -3’ 

GOLGB1 forward  5’- CATGGGAGGACAGCATCTTC -3’ 

GOLGB1 reverse  5’- GATCAAGGGCAAAAGCAAAG -3’ 

GREB1 forward  5’- GCCGTTGACAAGAGGTTC -3’ 

GREB1 reverse  5’- GGGTTGAGTGGTCAGTTTC -3’ 

HOXC10 forward  5’- GACACCTCGGATAACGAAGC -3’ 

HOXC10 reverse  5’- TTTCTCCAATTCCAGCGTCT -3’ 

MAPK8 forward  5’- CATCATGAGCAGAAGCAAGC -3’ 
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MAPK8 reverse  5’- GCTGCGCATACTATTCCTTG -3’ 

MAPK9 forward  5’- TCATCCTGGGTATGGGCTAC -3’ 

MAPK9 reverse  5’- CAATATGGTCAGTGCCTTGG -3’ 

NUAK1 forward  5’- CAGTCACACACGCTGCTCTT -3’ 

PLAC1 forward  5’- CAGTGAGCACAAAGCCACAT -3’ 

PLAC1 reverse  5’- AACCACAGGAAACAGGAAGC -3’ 
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Determination of JNK1 Substrates Using an In vitro Kinase System 
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Summary 

 JNK family members, like other MAP kinases, transduce cellular signals by 

phosphorylating target proteins.  Identifying JNK substrates is critical to 

understanding the mechanisms of JNK-mediated processes (i.e., transcriptional 

responses, cell-growth outcomes).  Using a candidate approach, I determined that 

JNK1 can phosphorylate proteins associated with estrogen-dependent signaling.  This 

modification can occur in cis (e.g., SRC-1, p300) or in trans (e.g., Histone H3).  These 

novel JNK targets may be responsible for mediating JNK-dependent outcomes at 

hormone-responsive genes.  

 

Introduction 

 In my previous work (discussed at length in Chapter 3), I described a hormone-

dependent correlation between ERα and JNK1 occupancy at various promoter regions.  

I further demonstrated at certain E2-regulated genes occupied by JNK1 that these 

promoters require the catalytic activity of JNK1 to attain maximal hormone 

responsiveness.  The question then arises: “What are the targets of JNK1 activity that 

might play a role in mediating E2-dependent transcriptional outcomes?”  One way to 

start addressing this question would be to show the in vivo association of known JNK1 

targets at E2-regulated promoters containing JNK1.  This method would most likely 

be expensive and technically challenging (e.g., purchasing many antibodies and 

working out the appropriate chromatin immunoprecipitation conditions).  I decided to 

use an in vitro kinase assay to determine if JNK1 could phosphorylate known 

coactivators of ERα. 

 In order to conduct these kinase assays I needed purified JNK1 in its active 

form and candidate substrates to test.  A previous study reconstituted a MAP kinase 

pathway in bacteria as a means to purify rat JNK2 (rJNK2) in its active form 
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(Khokhlatchev et al., 1997).  They used a two-plasmid system that enabled the 

expression of three kinases involved in the JNK pathway.  A phosphorylation relay is 

established whereby the first kinase, a MAP kinase kinase kinase (MAPKKK), 

phosphorylates the second kinase, a MAP kinase kinase (MAPKK), which 

phosphorylates the third kinase, a MAP kinase (MAPK) (Figure 4.1A).  This signaling 

cascade is initiated by the expression of a constitutively active MAPKKK (referred to 

as MEKK-C since it is a carboxy-terminal fragment of MEKK1) expressed from a 

low-copy plasmid.  The remaining two kinases are expressed from a high-copy 

plasmid containing a different selectable marker.  Isolation of the terminal MAPK is 

facilitated by the use of a 6x Histidine tag (Figure 4.1B).  The two-plasmid system 

allows the removal of the upstream kinase (MEKK-C) if purification of inactive 

MAPK is desired.  In this study, I modify this system to purify recombinant human 

JNK1 for use in my in vitro kinase assays. 

I wanted to determine what factors, known to associate with ERα in a ligand-

dependent manner, could serve as potential substrates of JNK1 activity.  Coactivators, 

like p300 and SRC-1 have already been implicated in the ER/AP-1 pathway and are 

very good candidates as possible substrates for JNK1 activity (Cheung et al., 2005; 

Feng et al., 2001; Teyssier et al., 2001).  Having a better understanding of the JNK1 

substrates involved in E2-dependent outcomes will help to further elucidate the 

mechanisms surrounding hormone-dependent actions in vivo. 

 

Results 

JNKs can be purified in their active and inactive forms from bacteria. 

 Using the MAP kinase system previously established in Dr. Melanie Cobb’s 

lab, I purified JNK2 in its active and inactive forms.  After I replaced the rJNK2 

sequence with that of hJNK1α1 (details described in Methods and Materials), I 
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Figure 4.1  Schematic of plasmid system used to reconstitute MAP kinase 

phosphorylation relay in E. coli.   

(A)  The phosphorylation cascade for MAP kinases involves at least three enzymes.  

When activated, the MAP kinase kinase kinase (MAPKKK) phosphorylates a MAP 

kinase kinase (MAPKK) which, in turn, phosphorylates a MAP kinase (MAPK).  The 

proteins representing these kinase tiers are shown in parentheses. 

(B)  By introducing these three factors into bacteria using a two-plasmid system, 

activated (phosphorylated) MAP kinases can be purified.  Note that only the final 

MAPK is expressed as a 6xHis fusion protein. 
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purified the active form of this enzyme as well (Figure 4.2A).  As a test, I compared 

the ability of my active and inactive rJNK2 to phosphorylate c-Jun, a well-known 

substrate of JNK.  As expected, only the rJNK2 that was purified using the complete 

phosphorylation relay system resulted in the phosphorylation of c-Jun (Figure 4.2B).  

Comparison of the active rJNK2 and active hJNK1α1 demonstrated that they both 

phosphorylated c-Jun with similar efficiencies (data not shown). 

 

JNK1 phosphorylates coactivators of ERα. 

 Now that I had an in vitro kinase assay established, I wanted to determine if 

JNK1 could phosphorylate proteins likely to play a role in mediating E2-dependent 

transcriptional outcomes in vivo.  SRC-1 and p300 seemed to be good candidates for 

analysis since they both associate with liganded ER (Davie and Chadee, 1998; Leo 

and Chen, 2000; Narlikar et al., 2002).  They also, like JNK1, associate with AP-1 

proteins (Bannister et al., 1995; Lee et al., 1998).  These coactivators have also been 

implicated in the formation of E2-dependent complexes tethered to DNA through AP-

1 sites (Cheung et al., 2005; Feng et al., 2001). 

 I purified ERα, SRC-1 and p300 and determined if they were, indeed, 

substrates of JNK1 phosphorylation.  I noticed that p300 and SRC-1 were efficiently 

modified by JNK1 while ERα was phosphorylated less efficiently by comparison 

(note the film exposure times for autoradiography) (Figure 4.3A).  While all three 

proteins contain proline-directed serines or threonines, it is interesting to note that both 

p300 and SRC-1 contain a JNK binding motif similar to the docking motif found in 

the JNK-interacting proteins, glucocorticoid receptor (GR) (Bruna et al., 2003) and c-

Jun (Dai et al., 1995) (Figure 4.3B).  This further implicates these coactivators as 

likely substrates of JNK1 in vivo.  No JNK interaction motif was found in the ERα 

sequence that most likely explains the lower efficiency of phosphorylation. 
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Figure 4.2  Active, recombinant JNK can be purified from bacteria.   

(A)  Rat JNK2 was purified from E. coli using the two-plasmid system as previously 

reported (Khokhlatchev et al., 1997).  The rat JNK2 sequence was cloned out and 

replaced with the human JNK1 sequence and then purified in a similar manner.   

(B)  An in vitro kinase assay, using purified JNK2, demonstrated that the active 

enzyme (P-JNK2) could phosphorylate recombinant c-Jun.  Purification of JNK2 from 

bacteria lacking the upstream activator plasmid resulted in an inactive enzyme 

(unphosphorylated JNK2) that was unable to phosphorylate the c-Jun substrate. 
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Figure 4.3  JNK1 phosphorylates coactivators. 

(A)  Kinase reactions were conducted using recombinant JNK1 incubated with ERα 

(160 nM), p300 (160 nM), or SRC1 (140 nM).  Although phosphorylation of ERα was 

detected, the coactivators SRC1 and p300 were substantially modified in comparison 

(note the relative exposure times for each autoradiogram)  

(B)  The amino acid sequence of p300, SRC-1 and ERα were examined for a putative 

JNK interaction domain (Dai et al., 1995; Gupta et al., 1996; Kallunki et al., 1996; 

Yasuda et al., 1999).  SRC-1 and p300 but not ERα had a motif similar to the JNK-

interacting sequence in c-Jun. Taken together, this data points to SRC1 and p300 as 

probable in vivo targets of JNK1 enzymatic activity.  Key:  + = basic amino acids; x = 

any amino acid; T = Threonine; Φ = hydrophobic amino acids; R = Arginine; K = 

Lysine; M = Methionine; V = Valine.  Numbers represent the first amino acid position 

in the motif. 
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JNK1 phosphorylates H3. 

 Because recent evidence has implicated histones (Clayton and Mahadevan, 

2003; Thomson et al., 1999) as well as co-regulatory proteins (Yang et al., 2003) as 

targets of MAPK cascades, I wondered if histones might serve as targets for JNK1 

phosphorylation.  Using the in vitro kinase assay, I also determined that H3 was 

phosphorylated by JNK1 (Figure 4.4).  This modification was prevented when the 

histone was incorporated into the chromatin context of a mononucleosome.  The DNA 

template used for the nucleosome assembly contained an AP-1 binding site flanking 

the nucleosome positioning sequence.  Interestingly, JNK1 was able to phosphorylate 

nucleosomal H3 when recombinant AP-1 dimers (Figure 4.4; Figure 4.5A) were added 

to the reaction.  This mechanism of AP-1-dependent phosphorylation of H3 by JNK1 

is most likely facilitated by the recruitment of JNK1 to the mononucleosome by DNA-

bound AP-1.  Indeed, in vitro DNase I footprinting analysis demonstrated that the 

recombinant AP-1 dimers could bind AP-1 sites even when they were assembled into 

a nucleosomal array (Figure 4.5B).  This strengthens the notion that the AP-1 factors 

were most likely recruiting JNK1 activity to the mononucleosome template rather than 

just altering JNK1 specificity by interactions in solution.  Together, I demonstrated 

that H3 phosphorylation by JNK1, though inhibited by nucleosomal structure, can 

occur when JNK1 activity is targeted to the nucleosome by DNA-binding transcription 

factors. 

 

Discussion 

 JNK1 has recently been shown to play a role in E2-mediated transcriptional 

outcomes.  Not only is the enzyme recruited to E2-regulated promoter regions in a 

hormone-dependent manner, but JNK enzymatic activity is also required for full E2 

responsiveness at certain genes (discussed at length in Chapter 3).  The goal of this 
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Figure 4.4  JNK1 phosphorylates the nucleosomal histone H3. 

Kinase reactions were conducted using recombinant JNK1 incubated with core 

histones (140 ng) or core histones assembled into mononucleosomes by salt dialysis.  

Although phosphorylation of H3  was detected, incorporation of H3 into the context of 

a nucleosome prevented this modification.  Because the DNA template used for 

mononucleosome assembly contained a flanking AP-1 binding site, we added 

recombinant AP-1 (c-FOS/c-JUN heterodimers, 300 nM) to “target” JNK1 specifically 

to the assembled template.  As expected, JNK1 phosphorylates the AP-1 proteins quite 

well (exposure length is 5% that for the H3 autoradiogram).  In the presence of AP-1, 

H3 phosphorylation was restored.  Taken together, this data suggests H3 as a possible 

in vivo target of JNK1 enzymatic activity, and demonstrates that JNK1 can 

phosphorylate H3 incorporated into nucleosomes. 
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Figure 4.5  Purified c-Fos/c-Jun dimers can bind TREs in a chromatin context. 

(A)  c-Fos and c-Jun heterodimers were purified as described previously (Ferguson 

and Goodrich, 2001). 

(B)  DNase I footprinting analysis of a chromatinized template [assembled as 

previously described (Kraus and Kadonaga, 1999)] containing 5 TREs demonstrated 

specific protection of TRE regions with the addition of the purified AP-1 dimers.  Red 

arrows point to regions of DNaseI hypersensitivity.  Together, these features indicate 

that the purified AP-1 heterdimers can bind TREs even when they are assembled in 

the context of chromatin. 
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study was to further define how the enzymatic activity of JNK1 might contribute to 

E2-dependent outcomes at these promoters. I established an in vitro kinase assay using 

activated JNK1 purified from bacteria. 

Using a candidate approach, I focused my attention on the co-regulators SRC-1 

and p300, wondering if these E2-dependent coactivators might serve as substrates for 

JNK1.  Indeed these proteins, as well as ERα, were phosphorylated by JNK1 in vitro.  

Since SRC-1 and p300 have a putative JNK binding domain, similar to that found in c-

Jun and other JNK substrates [reviewed in (Bogoyevitch and Kobe, 2006)], it is likely 

that these proteins serve as bona fide substrates of JNK in vivo, although this has yet to 

be determined.  I believe that SRC-1 and p300 may require phosphorylation by JNK to 

fully potentiate E2-dependent transcriptional responses.  This could be mediated 

through the stabilization / formation of phosphorylation-dependent protein-protein 

interactions, as proposed for CBP/p300 with AP-1 complexes (Arias et al., 1994).  

JNK phosphorylation could also alter the coactivator complex activity (note that p300 

has acetyltransferase activity), a mechanism previously described for the histone 

acetyltransferase, ATF2 (Kawasaki et al., 2000).  Although weakly phosphorylated, it 

is possible that ERα, under certain conditions, would be an in vivo target for JNK.  

Recent findings have demonstrated that other nuclear receptors [specifically GR, 

androgen receptor (AR), retinoic acid receptor α (RARα), retinoid X receptor α 

(RXRα), peroxisome proliferator-activated receptor γ1 (PPARγ1), and Nur77] are 

targets of JNK suggesting that ERα may also be a bona fide substrate in vivo (Adam-

Stitah et al., 1999; Bruna et al., 2003; Camp et al., 1999; Gioeli et al., 2006; Han et al., 

2006; Srinivas et al., 2005).  These studies show that phosphorylation by JNK can 

effect the nuclear export (e.g., AR, Nur77), degradation (e.g., RARα), or 

transcriptional activity (e.g., PPARγ1) of nuclear receptors suggesting a similar 

mechanism of action for ERs.   
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It is also possible that none of these factors are modified by JNK1 in vivo, but 

their interaction with the MAP kinase facilitates the phosphorylation of other local 

JNK1 substrates.  Indeed, recruitment of JNK by c-Jun facilitates the phosphorylation 

and activation of JunD, which is unable to bind JNK by itself (Kallunki et al., 1996).  

This demonstrates that JNK binding can target phosphorylation sites in trans, as well 

as in cis.  In this regard, I have shown that JNK1 can phosphorylate H3 in a 

nucleosome when locally recruited by AP-1 transcription factors.  This is quite 

interesting since recent work has demonstrated the importance of H3 serine 10 

phosphorylation in mediating transcriptional responses (Huang et al., 2006).  Taken 

together, my work has identified several new targets of JNK1 phosphorylation and 

suggests that the local modification of these factors might play a role in E2-dependent 

transcriptional outcomes.  Future work will focus on the identification of the specific 

amino acids in SRC-1, p300, and H3 that are phosphorylated by JNK1, and 

demonstration of the significance of these modifications with regard to transcriptional 

regulation in cells. 

 

Methods and Materials 

 

Plasmids. Plasmids for the MAP kinase purification system were obtained from Dr. 

Melanie Cobb, University of Texas Southwestern Medical Center.  The NpT7-5 

plasmid, containing rat JNK2 (rJNK2) and MEK4 was modified to replace the JNK2 

sequence with that of human JNK1α1 (hJNK1α1).  Briefly, the hJNK1α1 sequence (a 

kind gift from Dr. Roger Davis, University of Massachusetts Medical School) was 

amplified by PCR inserting an NcoI site and 6x histidine sequence upstream of the 

JNK1 sequence and a ribosomal binding site (RBS) and NcoI site downstream of the 

JNK1 sequence.  The PCR primer sequences are as follows: 5’- CCAGCCATGGGCC 
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ATCACCATCACCACATAGCAGAAGCAAGCGTGACAA-3’ and 5’-

CCAGCCATGGTCTCCTTTCACAGACAAGTGCGCCATCTGCGAGGTTTTCAC

TGCTGCACCTGTGCTA-3’.  The NpT7-5 plasmid was digested with NcoI removing 

the rJNK2 and RBS and ligated to the NcoI digested PCR product.  The replacement 

of rJNK2 with hJNK1α1 was confirmed by sequencing. 

 

Purification of JNK.  The rJNK2 was purified from bacteria as previously reported 

(Khokhlatchev et al., 1997).  The inactive enzyme was purified in the same manner 

from bacteria lacking the plasmid containing the constitutively active MAPKKK 

(pBB131 with MEKK-C).  The purification of hJNK1α1 was similar to that of rJNK2 

with two major modifications: (1) the final cation exchange chromatography was not 

necessary since the initial purification procedure yielded pure protein, and (2) the final 

dialysis buffer contained 150 mM NaCl instead of 50 mM NaCl. 

 

In vitro kinase assay.  Kinase reactions were conducted with recombinant rJNK2 

(active and inactive) and hJNK1α1 using recombinant c-Jun as a substrate positive 

control.  Briefly, the purified JNK (25-300 nM) was incubated with various substrates 

for 30 minutes at 30C in kinase buffer (25 mM HEPES pH 7.5, 10 mM magnesium 

acetate, 50 µM ATP, 2 µCi γ-32P ATP).  After the labeled proteins were resolved using 

SDS polyacrylamide gel electrophoresis, the gels were dried on filter paper and the 32P 

signal was detected using a phosphoimager system.  The substrates tested are as 

follows: core histones from HeLa cells (140 ng), salt-dialyzed mononucleosomes 

(containing approximately 140 ng HeLa core histones) purified as described (Kim et 

al., 2001), flag-tagged SRC1 (140 nM) purified as described (Thackray and Nordeen, 

2002), flag-tagged ERα (160 nM) and His-tagged p300 (160 nM) were purified as 
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described (Kraus and Kadonaga, 1998), and c-FOS/c-JUN dimers (300 nm, purified as 

described (Ferguson and Goodrich, 2001)). 

 

DNase I footprinting.  DNase I primer extension footprinting was performed as 

described previously (Cheung et al., 2002; Pazin and Kadonaga, 1998).  Purified AP-1 

proteins (c-Fos/c-Jun heterodimers;12-200 nM) were added after chromatin assembly 

of the 5xTRE-containing DNA template was complete, followed by a 15 minute 

incubation at 27C to allow interaction of the factors with the chromatin template.  
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