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Abstract

In this paper, we examine the power of time-space bounded interactive protocols with private
coins. The class of languages having logspace, polynomial-time bounded private coin protocols
is exactly PSPACE. We generalize this result to other time-space bounded protocols. As a con-
sequence we obtain that EXPSPACE is exactly the class of languages having polynomial-space,
exponential-time bounded private coin interactive protocols. This coupled with earlier work
by Condon, Fortnow and Lund gives us the following characterization of standard complexity
classes in terms of time-space bounded interactive protocols.

e DEXP = IPTISP(ezp, poly, public)

e NEXP = one-way IPTISP(ezp, poly)

e EXPSPACE = IPTISP(ezp, poly, private)

We also consider time-space bounded multi-prover interactive protocols and show that lan-

guages in NEXP have 2-prover interactive protocols with logspace, polynomial-time bounded
verifiers.

1 Introduction

Recent results [LFKN90,5ha90,BFL90] about the computational power of Interactive Protocols (IP)
and Multi-Prover Interactive Protocols (MIP) have generated a lot of interest in characterizing the
relative powers of different types of interactive protocols. Some of the more recent work has focussed
on different types of time-space bounded interactive protocols. Such protocols with private coins
were first studied by Condon in [Con88], where it was shown that languages in NP have private
coin protocols with logspace, polynomial-time verifiers.

Using arithmetization techniques, Fortnow and Lund [FL91] recently explored the relationship
between time-space bounded public coin interactive protocols and time-space bounded alternating
Turing machines. They were able to obtain a nice characterization of higher complexity classes
in terms of time-space bounded public coin interactive protocols. For instance, they showed that
DEXP is ezactly the class of languages having public coin interactive protocols with polynomial-
space, exponential-time verifiers.

In this paper, we examine private coin time-space bounded interactive protocols. Our results
imply that the class of languages with private coin polynomial-space, exponential-time interactive
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protocols is ezactly EXPSPACE. This gives a nice characterization of corresponding time and space
classes in terms of time-space bounded public coin and private coin interactive protocols. These
results should be contrasted with Goldwasser and Sipser’s result [GS86] which states that private
coins do not add to the computational power of polynomial time bounded interactive protocols.
The situation is not that nice at lower complexity classes because even though PSPACE is exactly
the class of languages with logspace, polynomial-time private coin protocols, the corresponding
public coin protocols are not known to encompass all of P.

In related work, Condon [Con91] examined one-way time-space bounded interactive protocols in
which all communication is from the prover to the verifier. She proved that NP is exactly the class
of languages having one-way interactive protocols with logspace, polynomial-time verifiers. These
techniques generalize to provide a characterization of NEXP as the class of languages having one-
way interactive protocols with polynomial-space, exponential-time verifiers. Thus, for exponential
resource bounded classes we now have the nice characterization:

e DEXP = IPTISP(ezp, poly, public)
e NEXP = one-way IPTISP(ezp, poly)
e EXPSPACE = IPTISP(ezp, poly, private)

We also explore time-space bounded multi-prover interactive protocols and show that NEXP
is exactly the class of languages which have two-prover protocols with logspace, polynomial-time
verifiers. Without the provers, such verifiers can only accept languages in P. Thus, we have shown
that interaction with the provers helps the verifier, since P # NEXP. For ordinary MIPs this is

not known because the BPP = NEXP question has not been resolved.

2 Definitions and Notation

We shall use log to denote the class of functions |J,5o clogn, poly to denote the class of polynomial
functions, ez to denote the class of functions (J.5¢ 2" and ezp to denote the class of functions
2roly . We assume that the reader is familiar with the usual complexity classes P, NP, PSPACE,
BPP, DEXP = TIME[2P?¥], NEXP = NTIME[2P°¥], ESPACE = SPACE[ez] and EXPSPACE =
SPACE[ezp).

An Interactive Proof System consists of two machines, a Prover P and a Verifier V. P and
V have access to an input tape and they communicate via a separate communication tape. P is
an all powerful Turing machine whereas V is a resource bounded probabilistic machine. The aim
of the prover is to convince the verifier that the input is in the language L. If the input is indeed
in L then P should be able to convince V with high probability. If, on the other hand, the input is
not in L then irrespective of P’s actions, the verifier V should reject with high probability. More
formally, we say that P and V form an Interactive Protocol for a language L if:

1. If z € L then Prob[P — V accepts z] > 2
2. If £ ¢ L then VP*, Prob[P* — V accepts z] < 3

Interactive proofs introduced by Goldwasser, Micali and Rackoff [GMRS89] require that the
verifier be a polynomial time bounded machine. In this paper, we consider protocols in which both
time and space are bounded. The power of time-space bounded protocols depends on whether the
coin tosses of the verifier are kept private or made public. We shall consider both types of protocols.



We now define various types of time-space bounded interactive protocols. These definitions
have been adapted from definitions used in [FL91].

Definition: A language L is in IPTISP(¢(n), s(n), public) if there is a public coin interactive
protocol for L, such that, on inputs of size n, the verifier uses at most O(s(n)) space and O(t(n))
time on every computation path with every possible prover.

Definition: A language L is in IPTISP(¢(n), s(n), private) if there is a private coin interactive
protocol for L, such that, on inputs of size n, the verifier uses at most O(s(n)) space and O(#(n))
time on every computation path with every possible prover.

We will use the same notation for protocols in which only one resource is bounded. A “x” will
be used to denote a resource which is not bounded. For example, a language having an n? time
bounded private coin interactive protocol is in the class IPTISP(n?, , private).

One-way time-space bounded interactive protocols form a subclass of time-space bounded in-
teractive protocols. In such protocols all communication is one-way, i.e., from the prover to the
verifier. In this model, the prover cannot get to know the verifier’s coin tosses and thus these coin
tosses are necessarily private.

Definition: A language L is in one-way IPTISP(t(n), s(n)) if there is a one-way interactive protocol
for L, such that, on inputs of size n, the verifier uses at most O(s(n)) space and O(t(n)) time on
every computation path with every possible prover.

Multi-Prover Interactive Proofs and the class MIP were introduced by Ben-Or, Goldwasser,
Kilian and Wigderson [BGKW88] as a generalization of Interactive Proofs and the class IP. Here,
instead of just one prover there are polynomially many provers Py, P, ..., Py which cannot com-
municate with each other. Fortnow, Rompel and Sipser [FRS88] showed that polynomially many
provers could be replaced by two provers without altering the class MIP. Our definition of MIP
will be based on the 2-prover characterization.

Definition: Let P; and P, be all powerful Turing machines and let V' be a probabilistic polynomial
time machine. All these machines share the same read-only input tape. V shares communication
tapes with P, and P; but P; and P, do not share any common tape except for the read-only input
tape. V forms a multi-prover interactive protocol for a language L if:

1. If z € L then there exist provers P; and P, such that Prob[P;, P, and V accept z] > 1—-1/p(n),
for all polynomials p and large z.

2. If z ¢ L then for all provers P; and P,, Prob[P,, P, and V accept z] < 1/p(n), for all
polynomials p and large z.

MIP is the class of languages with multi-prover interactive protocols.

Definition: Let C be a class of functions. We say that C is closed under lin(-), if for all f € C and
for all linear functions [/, the function /- f € C.

Function classes used in complexity theory are usually closed under lin(-). Typical examples in-
clude the polynomial functions of various degrees, the polylogarithmic functions of various degrees,
and various classes of exponential functions.

3 Time-Space bounded Protocols with Private Coins

In this section we examine time-space bounded private coin interactive protocols. First we show that
PSPACE is exactly the set of languages having private coin logspace, polynomial-time protocols.



This result also follows from Rompel’s result! [Rom] that languages in IP have private coin protocols
in which the verifiers are logspace, polynomial-time bounded machines.

The proof uses ideas from Condon’s proof [Con88] that any s(n) space bounded public coin
interactive protocol can be simulated by an O(log(s(n))) space bounded private coin interactive
protocol (assuming, of course, that s(n) is a reasonable function). Shamir [Sha90] showed that
languages in PSPACE have interactive proofs in which the verifier is a logspace, polynomial-time
bounded machine with two way access to a polynomially long tape containing a random sequence of
coin tosses. The only communication from the verifier to the prover consists of these coin tosses.
This tape has to be hidden from the prover. We show that this tape is not required and the verifier
needs to keep only O(logn) bits of hidden information.

Theorem 2 is a generalization of this result to other space classes. As a corollary, we show
that EXPSPACE is exactly the set of languages having private coin interactive protocols in which
the verifier is a polynomial-space, exponential-time bounded machine. Fortnow and Lund [FL91]
showed that DEXP is exactly the class of languages having polynomial-space, exponential-time
public coin protocols. Thus, unlike ordinary interactive protocols, the power of time-space bounded
protocols depends on whether the coin tosses are made public or kept private. If we consider
polynomial-space, exponential-time bounded protocols then public coins gave us exactly a de-
terministic time class and private coins give us the corresponding space class. The situation is
not that nice at lower complexity classes because we do not have a characterization of the class
P in terms of time-space bounded public coin protocols. The best known result [FL91] is that
IPTISP(poly, log, public) C P C IPTISP(poly, o(log?), public).

Theorem 1 IPTISP(poly,log,private) = PSPACE.

Proof: We first show the easy direction, i.e., IPTISP(poly, log, private) C PSPACE. We note that
IPTISP(poly, log, private) C IPTISP(poly, , private). It is known that IPTISP(poly, *, private) =
IPTISP(poly, *, public) = PSPACE [GS86,Sha90] and the result follows.

We now show that PSPACE C IPTISP(poly, log, private). Let L be any language in PSPACE.
By Shamir’s result [Sha90], we know that L has a polynomial-time public coin interactive protocol
S involving a prover Ps and a verifier Vg such that:

1. If z € L then Prob[Ps — Vs accepts z] = 1.
2. If ¢ ¢ L then VP*, Prob[P* — Vs accepts z] < 2712l

The idea behind the proof is to simulate the protocol S using only a logspace verifier with private
coins. Unfortunately, a direct application of Condon’s proof mentioned earlier gives us protocol in
which the verifier is a logspace machine whose expected running time is exponential in the input
size. However, by modifying the proof, we can get a verifier which runs in polynomial time.
Intuitively, our protocol requires polynomially many stages. In each stage of our protocol the
logspace verifier V' asks the prover P to provide an entire run of S. This run consists of a sequence
of configurations of the verifier Vs (including the status of the communication tape). A correct run
will, of course, depend on the sequence of public coin tosses made by Vs. In our protocol, V' tosses
these coins and informs P about what the coin tosses were. Note that the logspace bounded V
cannot check that P is providing a valid run of . It can however check that the start configuration
is correct, the end configuration is accepting, the configuration sizes and the running time are
bounded and that the state transitions during coin tossing or other operations are locally correct

1We give a proof of the IPTISP(poly, log, private) = PSPACE result because Rompel’s result is cited as a personal
communication in [Kil88] and we will be using techniques developed in our proof later.
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(this requires storing only a small part of the configuration where the heads are). If any of these
checks fail then V rejects. Note that P can lie by giving a sequence of configurations which do not
follow from one another but nevertheless pass these local tests. Each valid computation history
provided by P will look like ¢y #c2# . . . #¢p(n) for some polynomial p. Here each ¢; is a configuration
which is polynomially long and ¢;4; follows from ¢; in one step (either as a normal transition of
Vs, or as a result of a coin toss made by Vg or as a result of the prover writing one bit on the
communication tape of Vg ).

The total size of a valid computation is bounded by a polynomial ¢g(n). If P does not provide a
valid computation history then there has to be a configuration c;;; such that ¢;4; does not follow
from c; in one step.

Now, V can’t check that the ¢;’s follow from one another, but it can randomly select an 7 and
j and check that the contents of the j** tape cell in ¢4 follow from the contents of (j — 1)th, jth
and (j + 1)** tape-cells in ¢; and the head positions in ¢;. V' generates and stores the values of ¢
and j in its private tape so that P does not know where it going to check the configurations. Note
that both ¢ and j are bounded by some polynomial and hence require only O(logn) bits to store. If
P provides an incorrect computation history then V' will detect this fact with probability at least
1/q(n). If P is caught lying then the protocol is terminated and V rejects; otherwise V' proceeds
with the next stage. After sufficiently many stages V' will accept.

Now, if the input z of size n is in the language L, then Ps can convince Vs to accept with
probability 1. Thus, if P operates like Ps and does not lie about the configurations then V' will
always proceed to the next stage and finally accept. If on the other hand, z ¢ L, then in the
protocol S, no prover can convince Vs to accept with probability > 27". Thus, at any stage of our
protocol the probability that P can provide a valid computation history is at most 2=". Therefore,
with very high probability (1 — 2~"), P will have to provide an incorrect computation history and
will get caught with probability at least 1/g(n) in that case. Thus, if we repeat this protocol n*g(n)
times (i.e., have n * g(n) stages) then with high probability P will get caught at least once and V'
will reject z.

Theorem 2 Let C be a class of space constructible functions > Q(logn) which is closed under
lin(-). Then
\J IPTISP(2°™, s(n), private) = |J SPACE[2*(")].
s(n)eC s(n)eC

Proof: First we show that

\J IPTISP(2°(™,s(n),private) C |J SPACE[2°()].
s(n)ec s(n)eC

Let L € IPTISP(2%("), s(n), private) for some s(n) € C. Clearly L € IPTISP(2¢*5(") &, private) for
some constant c¢. Define the language L' as
' = {z3#*™ |zeL}

Clearly L' has a polynomial time private coin interactive protocol (since s(n) > Q(logn)). Thus,
L’ must be in PSPACE. Thus, L € SPACE[p(25(")] for some polynomial p. Therefore, L €
SPACE[29(")] for some g(n) € C since C is closed under lin(-).

Now we show that for any s(n) € C, SPACE[25(")] C Us(n)ec IPTISP(2°(™), s(n), private). Let

L € SPACE[25(")]. Define L’ as

L/ — {$#2‘(|3‘)|IEL}



L’ is in PSPACE. Therefore, by Theorem 1, L’ is in IPTISP(poly,log,private). Thus, L €
IPTISP(p(2%(™), ¢ * s(n), private) for some polynomial p and constant c. Again, by closure of
C under lin(-) we know that L € IPTISP(29("), g(n), private) for some g(n) € C.

Corollary 1 ESPACE = IPTISP(ez, linear, private).

Corollary 2 EXPSPACE = IPTISP(ezp, poly, private).

4 Time-Space bounded Multi-Prover Protocols

The class MIP was introduced by Ben-Or, Goldwasser, Kilian and Wigderson as an extension of
single prover protocols. The power of this computational model became apparent only after Babai,
Fortnow and Lund [BFL90] used arithmetization techniques to show that MIP = NEXP. Using
ideas from Theorem 1, we show that any language in MIP has a multi-prover interactive protocol
in which the verifier is a logspace, polynomial-time bounded machine. Feige and Shamir [FS89)
have shown that languages in MIP have multi-prover interactive protocols in which the verifier is a
finite state machine which runs in polynomial time if the provers are honest and may run for more
than polynomial time with very small probability if the provers cheat. We note that our result
can be obtained by adding logspace “clocks” to their verifiers but our proof does not require the
complicated simulation of work tape that is carried out in their result.

Theorem 3 Any language in MIP has a 2-prover interactive protocol in which the verifier is a
logspace, polynomial-time bounded machine.

Proof: We use the Probabilistic Oracle Machine characterization of MIP. It is known that a
language L is in MIP iff there is a probabilistic polynomial time oracle machine M for recognizing
L. The probabilistic oracle machine M accepts L iff

e For every z € L, 30 such that M accepts z with probability 1.
e For every z ¢ L and for all oracles O, M© accepts with probability less than 2-l=l,

Our proof is based on the proof that languages accepted by probabilistic oracle machines have
2-prover interactive protocols [FRS88]. Let us first examine how a language L accepted by a
probabilistic oracle machine M can be accepted by a 2-prover interactive protocol. Without loss of
generality, we assume that M does not query the same string twice on any of its computation paths.
The protocol involves two provers P; and P, and a verifier V.. The protocol runs for polynomially
many stages. At each stage, the verifier V simulates one run of the machine M on input z. During
this simulation, if M makes a query to its oracle O then V asks P; to provide the answer. V also
keeps a list of queries made by M in the current stage along with the answers provided by P;. If
the oracle machine M rejects with the given set of answers then V' rejects. Otherwise V' randomly
chooses one of the questions it asked P; about O during the simulation. V' then asks that question
to P;. If Py’s reply is different from P;’s earlier response then V rejects. If V has performed the
required number of stages then V accepts. Otherwise, V goes to the next stage.

If the input z of size n is in the language L, then the provers P, and P; can choose an oracle O
such that M© accepts z with probability 1 and answer V' accordingly. Thus, the verifier V' can be
made to accept with probability 1. If, on the other hand, z ¢ L, then let us analyze the probability
that V accepts. At any stage, s, P, is asked only one question. Let O® be the oracle defined by P>’s
response to all the questions that V' can ask on any path in stage s. Since z is not in L, M with



oracle O* will reject on at least (1 —2~") fraction of its paths. Thus, on each of these paths, P; will
have to answer differently from O* at some point in order to prevent outright rejection by V. There
can be at most p(n) oracle questions on each path of V' (here p is a polynomial). Therefore, if at
stage s, P,’s answers differ from O, then V will catch the provers lying with probability > 1/p(n).
Therefore, the probability that the provers are not caught lying at stage s is at most

27"+ (1-27")(1 - 1/p(n)) < 1-1/2p(n).

Thus, if we have roughly 2np(n) stages then with high probability (1 — 2="), the provers would be
caught lying at least once and V will reject.

Some of the salient features of this protocol are that, at every stage, P, does not know the exact
question that V will ask P;, because the choice is made after P, has answered all its questions.
Moreover, at every stage, the lower bound on the probability that cheating provers get caught
(i-e., 1/2p(n) ), is independent of what happened during previous stages. This result would still
hold if we allow the provers to communicate between consecutive stages of the protocol and also
allowed them to examine V’s configuration during this time. These features allow us to give an
MIP protocol for L in which the verifier is a logspace, polynomial-time bounded machine with
one-bit communication channels.

Our protocol consists of provers Py and P; and a logspace verifier V*. The verifier V* runs for
polynomially many stages. At each stage, V* asks the prover Py to give a sequence of configurations
of V corresponding to one stage of the MIP protocol described above. Pf provides the sequence of
configurations till the point where V asks P, an oracle question that P; had previously answered.
We assume that this particular question along with P;’s response to it, can easily be recovered from
V’s configuration. Exactly as in the proof of Theorem 1, V* tosses the coins for V' and checks the
start configuration, the size of the configurations and local consistency in the transitions. At the
end V asks a question to P,. The last configuration of V given by Py contains the question that V'
will ask P; and also the reply expected by V. V* then transfers the question to Py using bit-by-bit

" communication and rejects if Py answers differently.

Also, as in the proof of Theorem 1, V* secretly and randomly decides to check consistency of
the sequence of configurations provided by P; at some place in the entire sequence. The size of
the entire sequence is bounded by a polynomial ¢(n) and thus V* needs only logspace to be able
to perform this check. If z € L then clearly Py and Pj can convince V* to accept with probability
1 by not lying. If, = ¢ L, then at every stage, irrespective of what happened earlier, V' rejects with
probability at least 1/2p(n). Therefore, at every stage, with probability > 1/2p(n), Pf will have
to lie about the sequence of configurations of V. In this case V* will detect the lie with probability
1/¢(n). Thus, if z ¢ L then at every stage V* will catch the provers cheating with probability at
least 1/2p(n)g(n). Therefore, if there are more than n % 2p(n) * g(n) stages in the protocol then V*
will reject with high probability.

Note that a cheating prover P; can claim that an arbitrary string was queried by V to P;. The
string itself may tell Py how to answer. This does not affect our probability analysis for one round
since P} will have to provide a false set of configurations to support this claim and V* will catch Py
with probability 1/g(n) in this case. The more serious issue is that this allows transfer of arbitrary
information from P; to P;. However, as we noted earlier, this does not affect the probability
analysis for subsequent rounds although the answers provided by the provers subsequently could
depend on what transpired between them in earlier stages.
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