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Abstract 

It is shown that every Kirkmai!--Steiner triple system of order v ;;; 3 (mod 6) 

implies the existence of a set consisting of at least one pair of mutually, ortho-

gonal latin sq_uares of order v. The combinatorial structure of this set is dif-

ferent from those of known sets of orthogonal latin squares in the literature and 

this might prove to be useful for the construction of other designs and combina-

torial systems derivable from sets of mutually orthogonal latin squares·. The 

case v = 15 leads to a new result, namely the existence of a set consisting of 

three mutually orthogonal latin sq_uares of order 15. 

Preparatory Definitions 

l. Let r: be a v-set, v = l, 3 (mod 6 ). Then a Steiner triple system of order v 

on L: is a collection of v(v-l)/6 unordered triplets (x,y,z) with x,y,z in r:, such 

that··every pair of distinct elements of L: belongs to exactly one triple. A 

triple system of order v = 3 (mod 6) is said to be a Kirkman-Steiner triple system 

of order n if it is a Steiner triple system with the following additional stipula-

tion: The set of triples can be partitioned into r = (v-l)/2 distinct classes 

such that the totality of elements in each class exhaust the set on which the 
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system is defined. In experiments design jargon, a Steiner triple system 

(Kirkman-Steiner triple system) of order v is called a balanced incomplete 

block design (resolvable balanced incomplete block design) with parameters 

b = v(v-1)/6, v, r = (v-l)/2, k = 3 and A. = 1. 

2. Let 0 be an n-set. Then L is a latin square of order n on 0 if L is an 

nxn matrix with the property that each row and column of L is an n-permutation 

of elements of n. A collection of n cells in L is said to form a transversal 

(directrix) for L if the entries of these cells exhaust the set 0 and every row 

and column of L is represented in this collection. Two transversals are said to 

be parallel if they have no cell in common. Let L1 an4 L2 be two latin squares 

of order non the n-set·o1 = {a1,a2 ,··· ,an) and~= {b-1 ,b2,··· ,bn} respectively. 

Then we say L2 is an orthogonal mate for L1 if, upon superpositionr1of L2 on ~~ ai in 

L1 appears with bj in~ for all i,j=l,2,···,n. 

Preparatory Lemma, Proposition, Throrem 

Lemma. If L is a latin square of order v, then t can have an orthogonal mate - -- -- --- -··· 

g ~ only if ~ ~ v-l parallel transversals. 

Proposition. If L is ~ latin square of~ n, ~ (a) L cannot have ~ ~­

latin square of order t if n ~ odd and t ~ (n+l)/2, (b) L cannot h!Y£. ~ ~­

latin square of order t if n is ~ and t ;;::: n/2 + 1. 

Theorem. There exists a Kirkman-Steiner triple system of order v ~ ~ 

v; 3 (mod 6), [7]. 
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Results 

Theorem. Every Kirkman-Steiner triple system of orQer v implies the existence of 

~ se~ consisting of ~ least ~ pair of mutually orthogonal latin squares of order 

v. 

Proposition. There exists ~ set consisting of at least ~mutually orthogonal 

latin squares of order 15, [3]. 

Example. We consider v = 15, for it proved to be an interesting case as we shall 

see. 

The following collection of triples is a Kirkman-Steiner triple system' of 

order 15 on Z = (A,B,··· ,o}. 

(E,F,G} (E,C,I} {E,L,O} {E,H,D} {E, J,N} (E,A,M} (E,K,B} 

(C,M,O} {F,J,O} {F,I,D} (F,A,K} (F,B,M} {F,L,N} (F,C,H} 

(L,H,K} [L,D,B} {C,N,K} (C,J,B} (C,L,A} {C,G,D} (L,G,J} 

(A,J,D} (G,K,M} (G,A,B} {L,I,M} (G,H,I} (H,B,O) (A,I,O} 

{I,N,B} (H,A,N} (H,J,M} (G,N,O} (D,K,O} (J,I,K} (N,D,M} 
\_} \ I \_/ \ I \_! \ I \_! 

The corresponding pair of orthogonal latin squares of order 15 associated 

with this system of triples are 



·-··-··--.-~------&- .... --.,.....----··-----, 
AGLJMKBNODFCEHI 
GBJLKMAONCEDFIH 
L J K M 
JL MK 
MK JL 
KM LJ 
B A 0 N 
N 0 A B 
0 N B A 
DC E F 
FE CD 
CD FE 
E F DC 
HIKMJLOABECFDNG 
IHMKLJNBAFDECGO 
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--_---·---·· I 
OCEHMKJIGADLFBN I 
JODIGLCMAKNBEHF 
LKOMINFGBDJEACH 
ABFODCMKJHEIGNL 
FNBKOAHDIEGCMLJ 
DEGJHOA:NCBKFLMI 
CJMFAHOELGBNIDK 
BFNDKGLOECAHJIM 
NHICBJELOMFKDAG 
H D K A L I N J F 0 M G C E B 
KGCLNDIHMFOABJE 
EILBJMGADNHOKFC 
MLHNFEBCKJIDOGA 
IAJGEFKBHLCMNOD 
GMAECBDFNILJHKO 

The above left-hand side latin square also admits the following orthogonal mate 

which has a special feature. 

EAKGNDMOCFHBJLI 
NEHMLGJIKDOAFBC 
GDEIMOCLAHNFKJB 
KCJEHANDMBFILOG 
ABCDEFGHIJKLMNO 
HKFNOELGJADCBIM 
CIMAKBEFGLJONHD 
F J B H. D K 0 E L C A M I G N 
MGNCJIKBEOLDHFA 
OHDLINBMFEGKACJ 
DFAOGHINBKEJCML 
LNOJBMFCHGIEDAK 
IOGBCLAJDNMHEKF 
BLIFAJDKOMCNGEH 
JMLKFCHANIBGODE 

Hedayat [3] has shown that this latin square can be embedded in a set of 

three mutually orthogonal latin squares of order 15, thus disproving MacNeish's 

conjecture [ 4] for this order. The other two latin squares are exhibited below; 



, 

·----· --------- ------ ·-----·----, 

DIEAOKCHMGBLNJF 
LHNGFEBMOJKACDI 
ONJIKGLCBHAFDME 
NAFBDOHGJKMCIEL 
JFKLMBNIHACDEGO 
CGIKLFMJDEOBHNA 
ELOCJMIAGBHNFKD 
HKAOCLJENFDMGIB 
F C D H E J A B K M G I L 0 N 
BJHEAIODLNFKMCG 
MEGFBADNCILOJHK 
AMCJINKOFDEGBLH 
KDMNGHFLACIEOBJ 
GOBDHCEFILNJKAM 
IBLMNDGKEOJHAFC 

I 

I 
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-~-~ H F N K A J L 0 G M BEl 
AOGJCKDLIHEBFNM 
BJEDHCONGKIMLFA 
ONHFBALECMKJGIDI 
JFKLMBNIHACDEGO 
EKJCNLH!YlOFDIBAG 
CBLMGIAOFENHDJK 
DLCNAMFGKBHOIEJ 
NIMGJOEKBDAFHCL 
MDIOKHJFECGANLB 
GHOKLFCBDNJEAMI 
LEBIODGHAJMNCKF 
FGAEDJICMOBLKHN 
HMNAEGBJLIFKODC 
KAFBIEMDNGLCJOH 

It is easy to verify that the preceding three latin squares forms a set of 

three mutually orthogonal latin squares of order 15. 
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