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Abstract
We show that the ellipsoid algorithm applied to a system of linear
inegualities can be implemented in such & way that a2t each iteration there 13
a short proof of the containment of the feasible region in the current
ellipsoid. Moreover, the data describing each ellipsoid also generate dual

variables that provide bounds on the linear functions appearing in the

inegualities.



i. Introduction

The ellipsocid method was introduced by Yudin and Nemirovsky [12] for
convex programming and became famous (and later notorious) when Khachian [7]
used it to demonstrate that linear programming problems could be solved in
polynomial time. For a survey on these results and the ensuing research, see
Bland, Goldfarb, and Todd [2].

In this paper we are concerned with the application of the ellipsoid

method to find a point in

i = { xzR ATx <u } {1}

if one exists. MWe assume that X is either empty or of full dimension. This
problem is equivalent to the sclution of linear programming problems, and we
shall describe briefly in the concluding section how to modify the algorithm
for feasibility to handle linear optimization efficiently.

The standard ellipsocid method generates a sequence Ek of ellipsoids, =ach
containing X. The ellipsoid Ek is represented by its center Yie and a

symmetric positive definite matrix B _, so that

k:

(2)

Ek = { x: {x - yk)Tﬁgi(x - yk) <1 }
In its simplest form, we check at sach iteration whether ykzﬁ; if so we stop,
otherwise we choose j with aiyk > uj, where aj iz the jth column of A and uj
the corresponding component of u. Then Ek+i is chosen as the smallest

ellipsoid containing the half-ellipsoid

T T
{ xsEk, ajx < ajyk },

Ek+1 is given as in {2) by its center Yiw 1 and the symmetric positive definite
matrix Bk+1 defined by
_ TBka s (3)
ket = Yk

T T %
a . B a,
(JKJD



ob, a aTB
- _k gk {4)
B = &1 B -
kel k T
a.B a,
Jkd
n2 2
whers v = o & = n2_1 and o = PR

Many more sophisticated strategies have been proposed, which generally
lead to a similar update with modified parameters 7, &, and g. Even the
simplest version above guarantees that vcl{Ek+1}5v01(Ek) < exp{~-1/2{n+1)), and
this systematic reduction of volume gives bounds on the number of steps of the
algorithm before it can be concluded that X is empty, under certain
condi tions.

If the algorithm above is carried out in exact arithmetic, it is known
that Ek 2 X for each k, but the only way to demonstrate this to a skeptic is
to show that EG 2 % and that Ek was generated by a sequence of valid steps as
above. If finite precision arithmetic is used, then it is possible that Ek
fails to contain X. Rigorous proofs of the convergence of the ellipsoid
algorithm require one to specify the precision to which the computations must
be carried out {(in terms of the length of input of the initial data A and u,
assumed to be integer), and to make a slight increase in & above to ensure

that, even after rounding errors, E will contain X if Ek did. The accuracy

k+i
required is generally very high. See e.g., [3,6],

Most implementations of the ellipsoid algorithm, by contrast, use
floating-point arithmetic, and try to ensure as much accuracy as possible by
updating factorizations of Bk rather than Bk itself. For sxample, several

. T .
authors (see, e.g., [2,5]) have recommended using Bk = LkékLk’ whers Lk is
unit lower triangular and Ak is diagonal, with positive diagonal entries. One

cannot easily guarantee, however, that Ek will contain X.

. T . T T 2,
Next, note that the minimum value of ajx over xsEk is ajyk (ajBkaj) 3 if



this is greater than uj then ¥ must be empty. Once again, however, it is very
hard to convince a skeptic of this fact; it is necessary to go through all of
the iterations again. A much more satisfactory way to convince an observer
would be to exhibit a vector u with

Au =0, u > 0, and uTu < 0, (5
clearly demonstrating that ¥ is empty. The Farkas lemma guarantees that such
a uexists if ¥ is empty.

He will show in this paper that these two drawbacks of the ellipsoid
method are illusory. Each ellipsoid can be represented in such a way that a
skeptic can be easily convinced that it contains X, and infeasibility can be
demonstrated by a theorem of the alternative. Indeed, we shall maintain a dual
vector kJ that certifies a lower bound on aEx for all feasible x, for all j.
As we shall see, these two features are very closely related. For simplicity,
we work with exact arithmetic; 1f there are inaccuracies due to rounding
errors, we may use the short proofs mentioned above to restart the method as
accurately as desired, without starting from scratch.

The two desirable features, guarantsed containment and dual variables,
have previously been studied for variants of the ellipsoid method. Levin and
Yamnitsky [8] described a "simplex method”, in which X was contained in a
sequence of shrinking simplices, rather than ellipsoids. Each simplex Sk is

of the form
5 = i B'Ax < Blu {(6)
k k I

for some nonnegative B’ with n+l rows. Thus Bg provides a short proof that

K
S, 3 X. Hhile a great deal of flexibility in updating Sk is present, [8]

K
described only a method that guarantees log vol S - log vol S < ﬁ{n*z),

k+1 k

compared to ﬁ(nal) for ellipsoid algorithms.

Wolsey [11i] considered relaxation methods [1,8], which can be viewed as



precursors of the ellipsoid methods with B, held fixed -- see [2]. For a
certain sequence of nonnegative scalars {Ak}, the iterates are given by
hoa,

i (7

Vo =y, - .
kel = Y " e, ol
1)

T .
where aj(k)yk > uj(k)' Wolsey noted that, if yl+p were close to ¥ye

I+p & &,
then z ”k k” = 0Oy (8}
k=l+1 2§ (k)

thus we have an approximate nonnegative solution to Au = 0. The accuracy
depends on the distance Hy}+p - yIH, the size of p, and lower bounds on the
Ak’s; one can only achieve good approximate dual solutions p if the

convergence of the {yk} is slow. Moreover, it appears to be impossible to

modi fy the argument for the ellipsoid algorithm where a.< is replaced by

j(k)
Bkaj(k)’ He will show that exact dual sclutions can be generated at each
iteration of the ellipsoid method.

In the next section we describe how an ellipsoid can be represented in
such a way as to certify its containment of the polyhedron X. Section 3
discusses the generation of lower bounds via dual solutions, while updating
the ellipsoid is addressed in section 4. Section 5 gives the resulting
algorithm, and in section 6 we provide some concluding discussion. The
Appendix provides justification for our choice of a.

Our notation is as follows. As above, we use subscripts both for
indexing (as in yk} and to indicate components {as in uj); no confusion should
result. In particular, a denotes the ith column of the matrix A. He use e,
for the ith unit vector of appropriate dimension. For a matrix C = [e. ], C

ij +
denotes {max {O’cij}}’ and C_ = (max{G,—cij}}, so that C_, C_ 2 0 and



2. Ellipsoids Containing The Feasible Region

We will assume that the original system of linear inequalities includes

o

hounds on all the variables, i.e., that it is of the form ATx < g, x < U

-x < —ix, 1f such bounds are not included, they may be added without

affecting the feasibility of the system as long as A and b are integer -~ we
may take each component of U to be 2L and each component of lx to be ~2L,
where L is the length of the encoding of the problem (see [3]).

Let us write A = [I, -1, A} and u u, -l , b

% % , and let m denote the

number of columns of A. We assume without loss of generality that each column

a, of A is nonzero. Then X = { xzR s ATx Lo },

Moreover, because we have bounds on all the variables, we may deduce a

lower bound on ATx for xsX. Set 1 = AE!X - éiux and note that
T, wdL 1TA - WR ). Then
% % x + x -
n T
X =4 xR+ 1 <€A x ¢ ut. {9)

We can alternately define X by quadratic inequalities:

X = { xzR' 'z {a?x - li>{a§3 - ui} < 0 for all i }.

Now choose any nonnegative diagonal matrix D = diag (dl""’dm}' By combining
the quadratic inequalities above with weights di we see that X is contained in

the set E = E{D,1}, where

E = { xR (ATx - )TD(A'x - u) <0 }. (10)

The fact that D is nonnegative and diagonal provides a short proof that X C E.
T By o2, Ty L I . . % .
Note that ADA = {AD™){(D"A') is positive semi-definite, where D is
diag (df,.,.,di). Suppose that AD&T is nonsingular, and hence positive

definite. Then E is an ellipscoid. Define



r o= U+ 1

2 2
B = (QDQT}_l, and {11)
y = BADr.

Then the inequality defining E can be rewritten as

xTADATx - 2PTDATX + iTDu < 08, or

T

(x - B Hx - y) < y'B 7Yy - 170w (12)

Thus y is the center of the ellipsoid E.

There is another way of looking at the problem that is useful. Define

u - 1
2

W=

so that u =r + v, 1 = r - v. Then, defining s = s{(x} = ATx - r, we ses that

1
v }.

Again, with D a nonnegative diagonal matrix we find X C E, where

X = { xsR: -v ¢ s

[ e

E = { xzR' 2 STDQ < VTDV },

The left side is minimized by solving the least squares problem of minimizing

t

HDK(ATX

i

rill,s if ADAT is positive definite, the solution is x = BADr,
2 P Yy

H

where B

i

(ADAT)'l, Let t denote sy} = ATy - r, and note that ADt = 0. Thus
writing s = t + AT(x - y), the guadratic inequality defining E is

t' Dt + (x - y}Tﬁgiix -y < v Dv, {since tTDAT(x -y} =0), or

(x - 7B Hx - y) < vDv - t'Dt

This ineguality and {12} are identical.
Consider the right hand side of these inequalities,
g = yTB'iy ~1Tou = vDv - tDt.

If ¢ is negative then E is empty, and hence so is X. If ¥ is zero, E

degenerates to a single point {y}. Thus either X = {y} or X is empty. Hence,



in general, ¥ > 0. In this case, the matrix D {and therefore B) can be scaled
so that ¥ = 1, and we assume this scaling henceforth. HWe now have a

representation of the ellipsoid E ,
_ n T.-1
E = {xeR™: (x - y)'B (x - y) < 1}, {(13)
as in [2,3,8], with the advantage of a succinct certificate (D » 0) that it
contains X.

To obtain an initial ellipsocid E of this form is trivial.

let

1 i

D = diag [ Soe e s 520500050,
1Y LAY
i n
(b, + 1)
y = —=—2% and {14)

2

w
H

, 2 2
diag (nvi,.‘.,nvn).

We show in the ensuing sections that the ellipsoid algorithm can be
implemented in such a way that each ellipsoid generated is of the form E{D,1},
possibly with an updated and improved 1. MWe also maintain throughout a matrix
A of "dual variables” establishing that 1 is indeed a valid lower bound. We

will have
AA = <A, A> 0, and U A = -1, (15)

so that ATX < u implies ATx = -ATATX b —ATu = | as desired. Note that Ai, the

f
it” column of A, satisfies ATAS = -a., the ith column of A&, while uThi = ~13;

H

thus xiis a vector of dual variables certifying the lower bound 23.

Initially, (15} holds with

T

A= (Af, Al

4

Ed O:)' (18:}

Suppose that we have some ellipsoid E = E{D,1), where D is scaled so that



yrs"iy ~i'pu=vov - tDt = 1.

Thus £ is given by {10} and {(13). If yeX then we have obtained a feasible
solution; hence assume that vy is not in X, so that agy > uj for some j.

Egquivalently, tj > vj,

Let », = a-;'sai for each 1. Then a§x is minimized over E by
zZ =y - ?}ﬁBaj, which gives a values of aiz = a§y - vf. (A short proof of this

§z > Ij’ we have an improved lower bound on aEx

is given in the Appendix.) If a
for all xz¥. This bound is not derived in a very natural way -- in particular,
it does not correspond to a vector LJ of dual variables as above. In section 3
we show how to obtain a vector ik > 0 from the current ellipsoid with

AAJ = “aj and Y& = —uTij > agz; thus i& certifies a new lowsr bound at least
as good as that provided by the "ellipscid minimizer” z. HWe therefore update
lj to T& and replace the jth column of A by Xg,

He may find that the updated 13 is greater that Uy In this case it is
clear that ¥ is empty., Indeed, if u = ej + i& {where ej is the jth unit
Vector), we have u > 0, Ay = 0O, and uTu < 0; thus u provides a short proof of
infeasibility.

After a possible update of 1j, and assuming that we have not demonstrated
infeasibility, we have u\j 2 13, aEy > uj, and the hyperplanes a§x = ij and

azx = uj both intersect the current ellipsoid E. In such a case, Todd [10] has

shown how to obtain the minimum volume ellipsoid E' with

E* O xgE: 1, < aTx <, I
J -l J

Moreover, the proof in [10] shows that the quadratic inequality defining E' is
a convex combination of that defining E and (agx - IJ}(a§x - uj) < 0. It may
appear, then, that this new ellipsoid is also of the form E{D',1} for some D’
obtained by increasing dJ (and scaling}. This is indeed true, unless dj >0

and i~j has been updated. In this case, E already contains as part of its



defining inequality some multiple of (a?x - ?j)(azx - uj), where ?5 is the
lower bound before updating.

The simplest way to avoid this difficulty is to remove this part of the
inequality before updating. MWe describe this process in section 4, obtaining
a new ellipsoid E = E{(D,1) that contains X and has volume no bigger than that
of E'.

The combination of these modifications vields an ellipsoid algorithm that
generates a sequence of ellipscids, all of form E{D,1} for some nonnegative
diagonal D, and decreasing in volume by a factor of at worst exp(-1/2(n+1)) at
each step. The algorithm is summarized in section 5. Some concluding remarks

are made in section B.



-

3. Generating Lower Bounds By Duality

Suppose we have a current ellipsoid E = E(D,1) as in (10) and {13), with
B, r, and y as in {11). He wish to obtain a lower bound on azx for all xeX
that is at least as good as a§z,

~-% T ... T
where z = ~ vy, Ba, .= a.Ba,, minimzes a. x over xzk.
4 KRR MR J 37 J

Consider the linear programming problem

. T
mn a.x

aTx > 1 (18}

Its dual is

max 1TA‘ - UTA”

Ak’ ~ AXLT = a

§
A, AT 20
. . . . Wy = g b T
Since | € u, an equivalent statement 1s to maximize f{a) =1 A -uA,
subject to Ax = ~aj.
By linear programming duality, any A with Ax = “aJ affords a lowsr bound

f{a) on a§x for all xzX. We sesk such a A with f(k) 2 a?z, and we show below

that

A = ny{ATz -r) = nys(z) (19)

suffices. (This choice of & is motivated by consideration of the convex
relaxation of {18) where the feasible region X is replaced by E, and is

discussed in the Appendix.)}

Proposition 3.1 With » as in (18), Ax = -a.

Proof He have Ax = ??AD(ATy - - AT(? - Z))



1

-y ADA' (y - 2)

= -a,
J
. T -1 _ -k
since ADt = 0 and ADA (y - z) = B (v - z) = }3 aj.l

Thus A is dual feasible. To show that it yields a better bound than a?z,
define
%

7,
ool T T, _ B T T, _
M. ( 5 )di{Eaiz(aiz ri} (aiz 13)(352 ui}},

for all i, and note that if &, # 0 {s0 d, # 0 and &,z # r‘i), then

T T T 2
My T (aiz - li}{a§z - ui} . (aiz - }3}
o 2 2(3?2 - ri} ‘ 2(a§z - ri)
(azz - ui)z
U, + .
! 2{&?2 - ri>

MNow if Ay > 0, then a, and azz - r; have the same sign and

. (a?z - u.}2
:?‘« ...]_ :;k (¥ +_.._1—_.—.....——L—-—-—-
M i i1 Y _ i

2(3?2 - ri)

I
e
[

Similarly if xi < 0, then

Hi (a§z~!§)2
N N I D

2(a{z - ri)

(v
w

Finally, if Ai = 0, then either di = 0 s Moo= 0, or azz =r, o

(a?z - li){agz - uij < 0 and

%

¥,
= T, - T, -
M. 5 di(a%z li}(aiz Ui> > 0.

Hence ¥} o2 -f{x). Finally,
?E
T.T i T T
) Mo =AAZ - —%— 7. di(aiz - 1i)(aiz - ua)



B Vb

%
v,
N DU I T, _ T
= -a;z = ) di(aiz ii}(aiz U§>
T
= -a,z,
J

since z satisfies the quadratic inequality defining E with equality. We have

therefore proved

Theorem 3.2 MWith & as in (19}, f(x) > alz.8

J

The vector x above proves a lower bound Tﬁ = f{a) on aTx that is at least
as good as agz; we may not, however, have » > 0, i.e., ?5 may use some

previously established lower bounds. Let us therefore define

A=Ay + A 20 {20)
J - +
Then Ah, = AAh + Ar = A(x - a ) = Ax = -a,, and
J - * * - J
—uTij = ~uTAx_ - uTL+ = ITR_ - uTl+ = f(&}. Thus iﬁ has precisely the

properties we desire. {Note that we have used &i above for the §th component
of A, whereas ij is the vector certifying a new lower bound for agx; no

confusion should result.)



4, Updating The Ellipsoid

Again we have the current ellipsoid E{D,1) and B, r, v, y, and t as in
section 2. We have determined that y is not in X, and have j wii th
~-%

T . T
ay >u., 1.e. £, > v.. Also, let v, = a.Ba, and set z = - . Ba,.
AR iV ’ LS T Bt RS T

If IJ < aEz, we could use the method of section 3 to derive a naw lowsr
bound at least as great as a§z. As pointed out in section 2, however, if
dj > 0 the current ellipsoid is defined in part by the old lower bound lj;
morgover, 1T we updated fhe ellipsoid by replacing lj by its improved value
Y&, we might find that ?3 < a§£, where z is the minimizer of agx over the new
ellipsoid. HWe shall first remove the effect of the jth constraint on the
current ellipsoid, then obtain a new lower bound if necessary, and finally
update this intermediate ellipsoid.

First we prove that the removal is possible. In fact, we show under what

condition the ith constraint can be removed.

Proposition 4.1 Let 5 =0 - dieie§ and v, = a?Bai. He have

di?i < 1, with equality only if ti = 0. If ti £ 0, then diyi < 1 and ASAT is

positive definite.

Proof Note that in any case ASAT is positive semi-definite.
X T _ ¥ T T : . . .
Since ADA = ADA + diaiai’ multiplying on the left and right by Ba3 yields
a_.:'Bai = a?B(éE&T}Bai + di{azﬁai)§ S0
a?B(AﬁAT)Bai = v (1 - d¥).

The left hand side is nonnegative. 3Since v, >0, we have 1 - di?i > 0. If

equality holds, the left hand side is zero, so

5E&T5ai = 0; (21)



B R o

thus a?y = a?BéDr = azﬁ(égr + dir;ai)!= diyir: =y hence diyi = 1

H

yvields ti = 0, Finally, if t3 £Z 0 then we have shown that di?i < 1,

and since det(AﬁAT) = {1 - diy;)det(ABAT} is positive, AT s

nonsingular and hence positive definite.B

For i = j, we have tj > Vj > 0, so with 5 =0 - djeje§, ASAT is

certainly posititive definite and djja < 1.

4.1 Removing 2

~ e

Here we obtain the updated gquantities B, D, §, and t corresponding
to changing D to 5 =0 - djejeg, Note that D # 5? since we wish to
preserve our scaling, i.e.

rva.m

ngQ -+ Dt = 1.

The resulting ellipsoid is denoted E. It is convenient to let

d,
R T (22)
1 - d,».
J 373}
. 5 T _ T T
as noted above, we have 1 - djyﬁ > 0, Since ARDA = ADA - djajai’

we find

¥ - (st =8+06Baasb.
AR

Set ; = BaBr. Then

~ T
= (B 8 Ba . a. B)ADr - d.r.a,
G iT2% )€ JJ 3>
= BADr + (E,aTBADr -dr, - 8,v.d,r )Ba,
J Jd Jih 3
T
= + 8 {a,v - r,iBa,, so
y + 05{ajy - rj)Ba,
v = + 8.t .Ba..
LA AR B b

Hence we obtain t = s(;} = £+ QT(; - y), or



T=t+0tABa,
JJ J
and, in particular,

Yo o={1+86v)t..
g = e ety

HWe are assuming that D is scaled so that vTDv - tTDt = 1; we wish to

scale U {and g} similarly. Note that

i

vTﬁv VTDV - d.v?,
J

Mext
T

i

Tt {(t + 8.t A Ba.)T(D - d.e.eT)(t + e.t.ATBa.)
J d J JJd Jod J

J

= 7Dt - d.t° + 0°t°[a BADA'Ba. - d ¥} - 2d 6 ¥t
AR IR RN SRR 737
T 2 2 2. 2
= t'pt - t2{d, - 85y + 8°d. % + 20.d v,
sl - oy e gy v 295y,
= t'ot - 8 t°.
%

He therefore define

Ed

T - =1 -dv® « ot
id T

L N

Qi
1

-8 ...
ARK

Note that t, > v, and 8, > d, so that &> 1. Then

~ et T
0Ob=28 0D-de.e, };
( L

T

. - - Ba .a.B

B = s{ B -o —-L };
T

. a . Ba,

Jd

5 ot

¥ =y - —d Ba . ;

vj J

these quantities define the new ellipsoid E. The next result shows that

e

(23)

(24)

(23)

obtaining a minimum volume ellipsoid containing part of E, instead of part of

E, entails no loss in volume reduction.
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Proposition 4.2

xsE: 1, < aTx < U, C xgE: 1, € &
J J J

Proof Suppose x lies in the left hand set. Then
(ATx - 1) (A" - ) < o.
Alsoc we clearly have

T T
a.x ~ 1. id, x -y, < 0.
s Jaglape - ug) <

Adding gives (ATx - i)TD(ATx - u) < 0, so that x lies in E.B

HWe remark that if dj = 0, the analysis of this section remains
valid and yields the following results: 5 = i, G = Q, 0= o, B = B,

§ =y, and t = t.

4.2 Adding aj

o~

He now use E to generate a lower bound T& on agx for xcX. Set

o TN ~ o~
., = a.Ba, = 8(1 -~ o}v,. 26
¥ LY { )?J (28)

g

over £, Moreover, by proposition 4.2, if a.z > IJ then zzE and

Then we know that ?j > azg, where z = y - )}éﬁaj is the minimizer of aEx
T

[

T, 2 aT; 2 aTz 2 1.
J B | J

Thus we have an improved lower bound. MWe therefore update lj and
correspondingly rj and vj. It is important to notice that B, 5, and ; are
unchanged, since 85 = 0. He next update Es. If 1j > uj then X is empty, and
as discussed in section 2, we have a short proof of infeasibility. So assume
u, > 1., so that v, > 0.
J J J 7
Since agy > uj, tj > 0, and then o < 0 implies a§§ z a}y > Uj’ Thus the



center of the new ellipsoid still violates the jth constraint. Also, lj > aEg,

s0 ¥ > %, + v, L. -v, >0, Hence », 2 (T, + v,)z, v, » (¥, - v.)z, and so
J 7 J 7 J J J - J J J 7 J4 J

~ ~2 pid

y, 2 Lo+ v,

J 7 d J

Now we obtain the smallest ellipsoid containing

{ xsf: 1. < a'x < Y }. We use the formulae in [10] and some

J 7
algebraic manipulation. Define
ne s B oo
., (27)
~
g = { W v an? - DTS } > 0.
J J
. . ~ (2 - o - 85
{In terms of the quantities defined in [10], n = )} S and
£ = ;ﬁpIZ.) Then set
~ 2(n - 1)v?
g =1 - ————— and
£+ n
NG =)
(n?- 1%,
J
Finally, we obtain
5 - s-i{ G };
» (1 -9
J
. .Baad
st{s—s—?{—i—}; (29)
a .Ba
J
X
= - Ba ..
¥ =¥ > i
d

These define the new ellipsoid E. The volume of E is at most
exp(~1/2{n+1)) times that of E. The scaling factor & ensures that the

inequal ity definin E has a right hand side of one, i1.e., that
M g 3

£ = { wi (x - DB Hx - <t }*
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4.3 Combining The Updates

It is unnecessary to form the intermediate quantities D, B, §, and E; we
can obtain D, B, and y directly from D, B, y, and t. Note first that
gé. = g i - 5 Ba, and so N. = g i - ; .
i ( ) ; ¥ ( }33

Al so,

Thus the vector & required for the lower bound on aTx for xsE is

A= N&N{ A z - }
J

e TN m_.}é T~
= %D A - - A Ba,
?d { b }3 i }

= ;%5? - ﬁthé
J J
Yot
= Y%t - 0a'Ba, { (1 - a) » == }, 50
J J >,
J
. tvi (1 - 0)" . ot - o)®
A= {D - d.e.e.}{*~¢~——-~* - A Ba.{i T } }. {30)
JJd % J g%k
J J

Hence we calculate the scalars ¢ and & and then compute A from the

original B, O, and t.

From A we obtain the new 13 and hence rj, vj, and %3. Thus we can

calculate 1, £, o and &. Now note that

_ ot + ot
y =y - { — }Ba.' {31}

Now set



and | (32)

s
- 0,

1
Q
+
Q>

g

{so that {1 - o)

i

(1 - &)1 - &)). Then

D=8+ —— e.0 }
- v (1 - o) 4 J

= g~1 D - d.e.e? o oi = e.eT }
L JJJ ?J5<1 - 0)(1 - U) Jod
_ s -dv.(1 -1 -a)
=51{D+ 1 e.e.{.-}.

JJ
v. i1 a

But -dj}ﬁ(i - ) = g, so the numerator above is o + {1 - o)o = o and

D= gmi{ b+ —~—~g*—: e‘e§ }. {33)
v (1 - o) !
Finally,
Ll TN
A ~Ba.a.B
B = s{ B - o—i- }
Trv
a . Ba,
J
~ mﬁa.aTB ~ N Ba.aTB
=8{ 8] B - o—- | - 03(1 - @)—LL- }.
T T
a . Ba a ,Ba,
Jod
Therefore
L _Ba.a,B
B = s{ B -o } {34)
a Ba



5. The Algorithm

Below we summarize the method that can be assembled from the

presented in earlier sections. We suppose X is given by (9).

Initialization Let r = {u + 1)72, v = (u - 1)/2.

Iteration

The initial matrices are given by {(14).
Define A as in (1B).

Calculate v = a?Bai for each 1.

Calculate t = ATy - .
If t £ v, stop with feasible solution y.
Otherwise, choose j with tj > Vj'
(A plausible choice is to maximize <ti - vi}zfyi
over i for which t% > Vi'>
Compute w = Ba, and recalculate p, = aTBa..
J J J o4
Set g = ATm.
Compute ej from (22), and hence E& from {23} and
3 and o from {24).
Calculate A from {30}, using q = AT
T T ~
If La_-ua > 1j, compute AJ from (20), replace

the jth column of A by i&, update lj to —UTXS

and correspondingly update rj, vj, and %ﬁ.

if 13 > uj, stop with 4 = iﬁ + e‘j indicating
infeasibility.

Caloulate ;3 from {(26) and hence n, &, ;, and g
from {27)-{(28).

Obtain & and o from {32).

Compute the updated quantities y, D, and B from

R

ingredients



{31),{(33) and (34).
Update ¥, to ;i = g(yi - EQ§K)3} for all i,

Remove overbars from update quantities and repeat.

It is advisable for numerical reasons to update a factorization of B rather

than B itself. Supposs

B = LAL (35)

where L is unit lower triangular and A is diagonal with positive diagonal
entries. Then, even if L and A are contaminated by round-off errors, the
resulting B is positive definite. MWe compute first w' = LTaj, thence
}ﬁ = Egii(w%)z > 0, and then w = LAw'. The update formula {(34) for B is
exactly as in earlier versions of the ellipsoid method, and the factorization
(35) can be updated efficiently and in a numerically stable way as in, e.g.,
[5]. based on the method of Gill, Murray, and Saunders [4]. Note that, since
ES”1 = ADAT, we may recompute the factorization (35) from the current D and the
original data. Thus we use the method of [4] to compute the factorization
Y

with L unit lower triangular, A diagonal with positive diagonal entries, and
£E§ orthogonal. Then L = [-1 and A& = Ewi give {35).

It is also worth remarking that the improved lower bound can lead to

values of o that are close to 1. It is therefore important to use the

formilae



P -

i i
1 -5 = ——n
i -d,y,’
J}E
~ 2{n - i)v?
i~ o= ~——~—~—~4i, and
£+ n
1 -0 ={(1- {1 - a)

to avoid excessive cancellation when calculating 1 - o, which is then employed

in the updates of L and &4 and of D.
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1
P

constraint and proceed with the update in section 4. Suppose therefore that

-
4 Ps - s, e P . 5 . i
ﬁgfg = 1. The proof of proposition 4.1 implies that tg = O and d§a§833 = 3
for 1 > 0. Since y is feasible, . <t < v, for all i > 0, so that
H H
; 2 Zs . . z %
1= 2id,v, - d;tig implies that davg £ 1 and 50 vy £ Voo Thus the hyperplanes
H H H H A
: T o . e
aqx = 1, and 8% T L, both intersect the ourrent ellipsoid E.
i ¥ L )

improved upper bound obtained by searching in the direction Ba_. Then r
0
— T, ; . -
becomes r_ = r_ - o. HMoreover, since d.a.Ba_, = 0 for all 1 > 0, y =
O o iiTTD ’

obtain the new representation. Since v = v, - g, the right hand sid
2 g
cuadratic ineguality has become ¥ = 1 - Zd_ oy + d < 1. He theref
k4 S o

replace 0 by D = D/ and B by B = B to obtain the new representation

¥ OT Y- dggﬁag and t = s{y) = t. Thus we need only scale B and D to

that the new cemter y violates the constraint that defired the new feasible

The occcurrence of this case with d_ . = 1 is in fact impossible

o°a
version of the algorithm in section 5, which is initialized from the
. s e . O
. < ox £ ax, Indeed, the positive semi-definita matrix AlA L in the

bounds

notation

of proposition 4.1, then contains Edge:a%; with d, > 0 for 1 = 1,...,n, and
i H

% R # P P e ® 3
genaral case of soms £{D0,1}, derived in an arbitrary way. #As a final

Pt can ba shown that the modification above decreases the volume of E

If one wishes to solve the linear programming problem in canonical form:
T
minou A
AM = -ag {37



-

with & mxn and n > 2m, then it is preferable to attack its dual (38) by the
ellipsoid method. At any iteration one may obtain a feasible solution to (37)
by calculating a corresponding dual vector ié for the linear function agx as
in section 3. Previocus versions of the ellipsoid algorithm have not allowed
this possibility. If the dual linear programming problem was solved, it was
necessary to assume all data integer, work in extended precision arithmetic,
and take a huge number of iterations in order to get, by rounding, an exact

dual optimal solution; then the primal optimal solution could be obtained by

complementary slackness.
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Appendi x

A relaxation of the linear programming problem

: T
min a.x
Alx > 1 (A.1)
—ATx 7 —u
is the convex programming problem
: T
min a.x
J
T -1 {a.2)
(x-y)B (x-y)<1

whose feasible region is the current ellipsoid E., Since the Slater condition
holds for (A.2), the Karush-Kuhn-Tucker conditions below are necessary and

sufficient for z to solve (A.2):

aj v 2ﬂB—1{z -y) =20

(£.3)

z-vBHz-y) <ty

w[(z - )87 =z - y) - 1]

A
O

H
0

Since aj 20, we must have m # 0 and z = v - BaJKEﬁ, Hence z satisfies the
constraint of (A.Z) with equality, and we find m = vfﬁZ and z = y - y}ﬁﬁaj,

where v, = aTBa..
J J J

Now 5_1 = ADATand y = BADr. Thus the first equation of (A.3) vields

a, + A[y%D(ATz - r)] = 0,
or J J

Ax = -a where A = ??D(ATZ -r). {a.4)
Since the vector A is obtained from the multiplier m for (A.2), it can be
viewed as a disaggregated multiplier. Indeed, A demonstrates that z alsoc

solves



-2 T

. T
min a,x
J
a{x < a:z if di > 0 and azz > r.
a:x > aTz if d. >0 and aTz <,

i i i i
The similarity of this problem to {(A.1) suggests that A given in {A.4) is an

excellent candidate to generate a better lower bound than a§z.
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