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A COMPONENT OF VARIANCE DUE TO COMPETITION'

by
W. T. Federer and  O. 0. Ladipo

Abstract

The existence of a component of variance for competition among sampling
units or among individuals in a group was discussed by Yates and Zacopany
in 1935. ©No procecdure was suggested for estimating this component of variance.
It is the purpose of this paper to give a procedure for estimating the com-
ponent of variance due to competition and to apply the procedure to a

set of data on weaning weights of pigs with 116 litters of various sizes
and for Yorkshire, Chester-Yhite, and Berkshire breeds. The first problem
was to define litter size. Within this definition then, litters sizes of 3
to 14 pigs per litter were obtained. The variation among pigs within a litter
of size h was considered to have an expected value equal to VS + Vch where Vs
is the sampling variance component and VCh is the competition variance component
for a litter of size h. 1In order to obtain an estimate of V ., a polynomial

ch

relation between h and V , was postulated. In particular, it was postulated

ch
that

= - -1)2 -1)2 oo
or
— 2 3 o e 0
E(Vch) = B,h + poh< + B3h +
where E( ) denotes expected value. The first form states that V., 80es to zero

for one pig per litter while the second form puts Vch equal to zero for h = O.

1Paper No. BU-154 of the Biometrics Unit and No. 548 of the Department of Plant
Breeding and Biometry, Cornell University.
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The first form may be more appropriate as long as small litter sizes (say 1
and 2 at least) are omitted from the analysis as was done in the present
instance. Likewise, one could postulate a polyncmial relation between the
sampling variance component Vs and litter size. This polynomial would have an
intercept @ and would need to have different powers in the polynomial in order

to estimate the two variance components; e.g. one could postulate that E(Vsh)

=a+10/h.

Using the assumption that VS was unaffected by litter size and that

E(V = Bl(h—l) + ﬁ2(h~l)2, it was found that Gc reached a maximum for a

ch) h

litter size of 10 for the odd litter sizes and 6 for the even litter sizes after
the weaning weights had been adjusted by covariance for birth weights. It

appeared that Vc + VS = within litter mean square followed a different pattern

h

for odd sizes than for even sizes of litter. The biological reason for this is

uwnknown.
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by
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Introduction

Competition exists among the individuals of a litter, of a family, a
class of students, animals in a fixed size feed-lot, a team, or any group of
incéividuals competing for food, space, attention, etc. In some instances the
cempetition stimulates the individual toward a higher yield which may be weight,
scholastic achievement, or performance on a test. If the competition is limited
as in small groups or is too severe as in large groups the individual may not
perform well. If this situation holds then there should be a group size that
leads to maximum achievement. One obvious way to determine optimum group size
is to plot mean achievement per individual against group size and to estimate
‘ the optimum group size from a polyncmial regression fitted to the data. Although
this method holds for the above, it will not suffice for all purposes, as it may
be desirable to estimate a component of variance due to competition separately
from the sampling and/or genetic components of variance associated with indi-
viduals within a group. Such estimates yield information on group size leading
to a maximum component of variance due to competition. Also, investigations on
the relation of size of this component of variance to performance can then be

made.

Yates and Zacopanay [1935] described a component of variance due to compe-
tition but did not present a method for its estimation. The present paper des-

cribes a method of estimating this variance component and its application to a

1 paper No. BU-154 of the Biometrics Unit and No. 548 of the Department of Plant
. Breeding and Biometry, Cornell University.

2 pregent address is Faculty of Agriculture, University of Ife, Ibe-Ife, Nigeria.



set of data consisting of weaning (56 day) weights of swine for 116 litters with
litter sizes of h=3,k,5,***,14. Possible applications to other experimental

situations are described.

The data used in this study were obtained from W. G. Pond, Animal Science bepart-
ment, Cornell University, and were collected from 1946 through 1658. Birth
weights and 56 day weights were recorded for each piglet in the litter. Litter
size is not a simple count of animals in a litter but had to be defined; it was
defined to be the number of piglets alive in a litter from seven days after birth
to weaning time at 56 days of age. The death of a piglet within the first week
among the remaining piglets in the litter.
after birth was assumed to not materially affect competition/ If a piglet died
at any time betweenv7 and 56 days that litter was not utilized since this would
change the level of campetition within a litter. The data are frcm three breeds,
viz. Berkshire, Yorkshire, and Chester-White resulting in data for 116 litters.

The cross-breeds were not utilized in the present study; a study of data on the

Yorkshire breed only was made by Ladipo [1965].

2. A Method of Estimating a Component of Variance Due Eg Competition

Yates and Zacopanay [1935] made the assumption that the sum of the competi-
tion effects within a group would be zero. This means that what one individual
gains fram the other individuals, is compensated for by a corresponding loss in
other individuals. Jensen and Federer [1964] have found that this model does
not hold for wheat planted in adjacent rows. The loss in yield in certain varije-
ties of wheat was less than the gain in others. Thus, there was a bonus in yield

from intervarietal competition over varieties planted separately. However, for



the data at hand we shall use the model of Yates and Zacopanay [1935] and assume

the linear yield equation model is

where the p; are random variates associated with litters and are identically
ané¢ independently distributed with mean p and variance Vp, the Sij are random
variates relating to sampling variation among individuals within a litter and
are independently and identically distributed with mean zero and variance VS,
the cij are random variates associated with competition effects between indivi-
duals of a litter and are identically distributed with mean Ei and variance VC,
i=1,2,°°", ﬁh = number of litters of size h, j=1,2,°°*+,h, and the effects
are independent of each other.

Suppose that there are h individuals, piglets, in each group, litter, that
there are ﬂh randamly selected litters for each size of litter h, and that k
individuals, piglets, are randomly selected within each group, litter. Then, the
expected mean squares in the analysis of variance are of the following form for

a litter of size h:

- s s Degrees of Mean Expected value of
Source of variation
freedom square mean square
Among groups (litters) 4, =1 v, +3Ky gy
& Brour h Ay sh " Th Yen oh
Within groups (litters) zh(k—l) Wy Vo Vg

In a single analysis of variance we can only estimate Véh = Vsh + Vch and
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vph vph Vch/h. If k = h then we can only estimate V_ +V

Unless we have an estimate of Vsh we cannot estimate Vph'

and V. + hV__.
s ph

ch h
Now suppose we have ,eh litters available for p litter sizes, say h = g+l,

g+2,***,5tp, for litter or group sizes above a certain size, say g. Further

suppose that there is a b-polyncmial relationship between group size and vch

of the following nature:

b
Vch = Buhu (l )
u=
or
b
Vep = ) By (0-D)" (2)
u=l

Equation (1) indicates that V,, is zero for h = O whereas equation (2) indicates
that Vch is zero for h = 1 individual per group. The latter equation may be more
appropriate; also, it is possible that competition within small (say h=l1,2,3)
litters is quite different from thai within larger litters. If g is fairly
large, say greater than 10 to 15, either equation (1) or (2) may be utilized as

both would give approximately the same results.

Furthermore, it may be possible that VS is not a constant for all h but

h
is related to h by a polyncmial of the following form:

C
Vg =a+ ZSuhu"‘ . (3)

u=l



The forms of the polynamial in equations (1) (or (2)) and (3) need not be as
above, but it is necessary that the powers of h in (1) (or (2)) be different
from those in (3) in order to estimate the Bu, the Bu, and @. Also, it is

necessary to have o in only (1) or in (3) in order that it can be estimated.

Likewise, a polynomial relationship of Vph

here again the polynomial coefficients must be different than for equations (1)

with h could be utilized, but

and (3) if both Ah and.wh observations are utilized. In many situations it

would appear that Vph should equal VP = a constant and be independent of h.

t = v e e e e e 1 - e e
Let B (o By By By 81 85 sc), let ¥ (wg+l wg+2 wg+1a) for
b +c <p, and let X be a p X (L+b+c) matrix with ones in the first column,
h = g+l,g+2,***,g+p (or h-1) in the second column, values of hZ (or (h-1)2) in
. 1
the third column, etc. up to the b+2*? column which has values of n? (or scme

3/2

power not wnity), values of h in the b+3'¢ column, etc. The form of the

average value of the observation equation is then E(Y) = XB. The least squares
estimate of B from the normal equations is then § = (x'x)’lx'g. If the various
mean squares Wh are welghted by degrees of freedom then the weighted regression

solution is §w = (X'FX)-lX’FX where F is a p X p diagonal matrix with diagonals

equal to degrees of freedom associated with the mean squares in Y.
Weaning weights should be adjusted for birth weights as weight increases

gecmetrically in this period. Hence, the following linear yield equation is

used:



where Zij is the birth-weight corresponding to the weaning-weight Yij and B is
the linear regression coefficient of Yij on Zij' To estimate the parameters use
is made of the mean squares adjusted for the covariate and the associated degrees
of freedom in F are reduced by one. Therefore, let Xa equal the column vector

of the p adjusted mean squares and then the solutions for the parameters in B are
N

gaw=(x'(F-I)x)’l = X'(F-I)Xa where I is the p X p identity matrix, X and F are

as defined previously, Zé contains the p adjusted mean squares, and the l+b+c
elements of an are the least squares estimates of the parameters using weighted

regression and the adjusted mean squares as the observations.

For the particular set of data involving 116 litters of swine we shall use
equations (1) and (2) using only Bl = linear regression coefficient and 62 =
quedratic regression coefficient, i.e. V , = Bl(h-l) + ,Be(h-l)2 or V, =p;h
+ 52h2 depending upon which form is considered appropriate. Likewise, in equa-
tion (3) we shall assume that all 5, are zero and that V, =V =0 is inde-
pendent of litter size. This formulation states that Vch is a quadratic regres-
sion function of litter size and VS is independent of litter size. VS is posi=~
tive, §l should be positive, 82 should be negative, and the expected value of

the within litters mean square is V_ + Bl(h-l) + Be(h-l)g.

3. The Experimental Data

The experimental data for the 116 litters utilized in this study are pre-
sented in Table 1. The average birth weights (tﬁmes 10) and the average weaning
(56 day) weight from Table 1 are plotted against the number of pigs per litter

in Figure 1. Both plots follow the same pattern with the lower weights being



associated with the larger litter sizes. The mean per pig 56 day weights for
litter sizes of 13 and 14 appear to deviate from the pattern set by other litter
sizes. This is further borne out in Figure 2, where the total weight per litter
is plotted against litter size; there appears to be an almost constant total
weight for litters of size 10, 11, and 12, i.e. the extra pigs did not increase
he total weight of the litter. Thus, maximum pig size and total weight of a
litter appearg to be about 10 pigs per litter up to litter¢ sizes of 12. This
This could be sampling variation as there were only three litters in these litter sizes, or

pattern was not exemplified by litter sizes of 13 and lh./ it could be that the
pigs in litter sizes of 13 and 1l became independent of food from the dem sooner
than pigs from smaller litter sizes. Forty-day weights, e.gs may all have the

for all litter sizes
same pattern/but data were not available to check this conjecture.

The within litter regression coefficients of 56 day weights on birth weights
were ccmputed for each litter size (Table 1). A plot of the within regression
coefficients on litter size is given in Figure 3 indicating an increase in the
regression coefficient with litter size. The litter size of 5 appears to be

Except for litter size 5,
different from the pattern exthibited by other litter sizes./ this relationship

indicates that birth weight has an effect on 56 day weights which is proportional

to litter size.

The within litters mean squares in Table 1, column 4, form the p = 12
elements of the vector Y and those in'column 6 form the elements of the vector
za' The values of h in column 1 of Table 1 are used to set up the elements in
the X matrix. Since the within litter mean squares for even sized litters
appear to follow a different pattern from the odd sized litters the data are

(see Figure 4).
treated separately/ Using equation (2) for the odd sized litters
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The soluticns for éé = (ﬁs él 52) and for the corresponding éaw are given in the
top part of Table 2 under equations (vii) and (viii), respectively. Least squares
estimates for the parameters Vs, Bl, and 62 are obtained from the above equations
for V equal a constant independent of litter size andfr equations (1) and (2)
as E and E, respectively, when the ccompetition variance is a quadratic function
of litter size (see Table 2). As stated before V_ and B, should be positive and
62 should be negative. The only estimates satisfying these conditions are for
equations (vii) and (viii) in Table 2. Here the competition variance is assumed
to be zero for one piglet per litter and the adjusted within litter mean squares

are considered to be the appropriate observations. These asmumptions are con-

sidered to be the most appropriate from a biological point of view and since the
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observations are subject to different variances weighting by degrees of freedom
and using a weighted regression approach is statistically desirable. Hence,
the results in the last column of Table 2 are deemed the appropriate estimates

of the parameters.

The estimate of VS from even sized litters is approximately five times
that from odd sized litters. There appears to be no biological explanation for
this result although the results are much more discrepant than would ordinarily
be expected from random sampling. If Bi (i=1,2) from even sized litters should
be the same as from odd sized litters it would appear that the results should
be pooled. However, the results are quite discrepant statistically and it may
be that there is a higher Vs and that the Bi are different in the even sized
litters from those in odd sized litters. Also, VS may be the same for odd and
even sized litters but the linear and quadratic coefficients may be different.
In this event, @ would be estimated from both sets of data, and XB = Za for

h=2,3,4,5,6,7,8 would take the form

1 1 1 0 O Q w2
1 0 0 2 & W

Ble 3
1 3 9 0 0 W
1 0 0 416 || Poe | = Ws
1 525 0 O Blo Wg
1 0 0 636 Bas Wo
1 749 0 O w8

where W, = the within mean squares adjusted for the covariate birfh weight for

h

litters of size h, Sle and B2e are linear and quadratic coefficients for even

sized litters, and BlO and 520 are linear and quadratic coefficients for odd
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sized litters. Then, gaw = (X'(F-I)X)-lX'(F-I)Xa in the same manner as des-
cribed above. These computations were not made for these data, but this may
be a more realistic approach if there is no biological explanation that VS
should be different for odd and even sized litters. Alternatively, VS could
be estimated from column 5 of Table 1 if the expected value of each of the
mean squares 1s VS + hVP; there appears to be a linear relation when the values
of column 5 in Table 1 are plotted against litter size. Here again one could
obtain V_ from all of the data in columns 5 and 6 in the same manner as des-

cribed above for odd and even sized litters.

. . A A _ N _ A _ 2
With an estimate of V_ as V_ and of V_ as V, = Bl(h 1) + 62(h 1)° an
estimate of Vb, the variance due to litter means, is available, Likewise,

values of 9c may be computed as Qéh = 7.28(h-1) - 0.40(h-1)%® fer odd sized

h

litters and ﬁé = 1.54(h-1) - 0.15(h-1)2 for even sized litters. The maximum

h

%ch was attained for h=6 for even sized litters and h=10 for odd sized litters.

Plots of vé valuses against mean weight per pig for litters of size h or

h
against total weight of a litter of size h, did not reveal any simple relation-
ships except as noted above. Some of the plots gave rather curious configura-
tions, e.g. the plot of average weight of a litter against Vﬁh values computed

from an average Bl and 52 resembled an inverted question mark, for which no

ready explanation was available.
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4. Discussion

Using a weighted regression approach with Vch as a quadratic function of h
anc hence with the expected value of the within litter mean squares equated to
Vo + V=V, +8 (1) + B,(h-1)%, estimetes of the parameters were obtained
vhich were considered to be of the correct nature, i.e. Gs and El positive and
§2 negative. The data (vweaning weight within litter mean squares adjusted for
birth weights) appeared to fit this model quite well except that even sized and

odd sized litters followed different patterns and have different within litter

sampling variances.

A considerable number of situations involve competition among individuals
in a group, e.g. students in a classroom, members of a military air, ground or
marine patrol, members of a farm settlement in an emerging nation, animals in
an area, etc. The problem is to determine the optimum group size to make maxi-
mum achievement per individual or per group of individuals in order to utilize
resources in an efficient manner. 1In a classroom one goal could be to maximize
achievement per student per dollar spent or independent of money. Students,
animals, etc. may perform better in an atmosphere of competition than in one
freed of competition. In an atmosphere of competition then, it would be desir-
able to determine the group size as well as the size of the variance camponent
due to competition which yields maximum gain or achievement. If the variance
among individuals within a group can be formulated as a specified function of
the group size, then estimates of the various variance components are available

as described above.
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5. Summary

The existence of a ccmponent of variance for competition among sampling
units or among individuals in a group was discussed by Yates and Zacopany
in 1835. ©No procedure was suggested for estimating this component of variance.
It is the purpose of this paper to give a procedure for estimating the com-
ponent of variance due to competition and to apply the pnrocedure to an exten-
sive set of data on weaning weights of pigs with 116 litters of various sizes
and for Yorkshire, Chester-~White, ancd Berkshire breeds. The first problem
was to define litter size. 7Vithin this definition then, litters sizes of 3
to 14 pigs per litter were obtained. The variation among pigs within a litter

of size h was considered to have an expected value equal to VS + Vc where VS

h

is the sampling variance ccmponent and Vc is the competition variance cocmponent

h
for a litter of size h. In order to obtain an estimate of Vch’ a polyncmial

relation between h and VC was postulated. In particular, it was postulated

h
that

- = 2 3 e o0
E(Vy,) =By (h-1) + B,(0-1)% + B,(n-1) +
or

5 3 ¥, 2 3 o o 0
E(Vch) = 5lh + Boh= + B3h +

where E( ) denotes expected value. The first form states that Vv, goes to zero
for one pig per litter while the second form puts Vch equal to zero for h = O.
The first form may be more appropriate as long as small litter sizes (say 1 and
2 at least) are cmitted from the analysis as was done in the present instance.
Likewise, one could postulate a polynomial relation between the sampling variance

component VS and litter size. This polynomial would have an intercept @ and
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vould need to have different powers in the polynomial in order to estimate the

two variance components; e.g. one could postulate that E(Vsh) =a+0/h.

Using the assumption that VS was unaffected by litter size and that

E(V,) = B, (n-1) + Be(h-l)z, it was found that Gc reached a maximum for a

h
litter size ofl0 for the odd litter sizes and 6 for the even litter sizes after
the weaning weights had been adjusted by covariance for birth weights. It

appeared that VCh + VS = within litter mean square followed a different pattern

for odd sizes than for even sizes of litter. The biological reason for this is

unknown.
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Table 1. Number of litters, within and among mean squares on weaning weights both adjusted and unadjusted for birth
weights, weaning weight and birth weight means, and within litter regressions for 116 litters of pigs for
litters sizes 3 to 1k.

. . . o Weaning | Birth
il | Sanares umadgucted. tne covariste birtn weigne | "SHEU | vl | Witmn | ot
size | litters |Among litters | Within litters | Among litters | Within litters| (lbs.) | (1bs.) |regression {a litter
3 3 302.3 14,3 36.7 1.5 - 3.3 3.4 -
L 4 362.3 33.1 36.6 20.0 k3.2 3.4 6.3 172.8
5 5 86.2 338.6 k2.1 31.2 36.8 2.9 10.1 184.0
6 13 150.2 29.5 141.8 26.5 35.0 3.1 k.2 210.0
T 20 186.4 38.0 190.6 31.6 37.3 3.0 7.5 261.1
8 20 150.3 32.5 116.7 26.1 34.0 2.9 5.8 272.0
9 16 339.5 37.7 203.7 37.7 34.9 3.0 b 31k.1
10 13 249.1 26.8 184.2 21.1 32.9 2.7 9.2 329.0
11 12 280.6 55.6 256.1 36.0 30.4 2.9 8.7 334.4
12 7 705.4 31.k4 363.5 21.2 8.4 2.2 10.9 340.8
13 2 167.5 51.2 246.9 33.3 3.4 2.k 11.6 Lh7.2
1k 1 - 25.8 - 16.6 32.6 2.6 8.7 Ls6.L




Table 2.

Estimates of parameters under different models.

Equation (1) Equation (2)
Parameter (1) (i1) (iii) (iv) (v) (vi) (vii) | (viii)
0dd sizes
Vg -3.88 | 21.47 | -6.99 { -3.80% | L.13 | 24.60* | 1.70 | k.02
B 8.32 | 1.32 9.16 | 8.12% | T.70 | 1l.12% | 8.22 | 7.28
Bo -0.31 | 0.12 | -0.47 | -0.k0o% | -0.31 | 0.15% | -0.k7 | -0.kO
Even sizes
Vg 33.43 { 34.06%| 10.23 | 19.57 | 33.18 | 33.60% | 13.75 |21.74
By -0.23 | -0.54% 3.76 1.95 -0.26 | -0.54% 3.28 1.54
Bo -0.02 | o.o1*t| -o0.24 | -0.16 | -0.02 { o.01* | -0.24 |-0.15
(1) B = (xx )y V . = B.h+8,h3 unadjusted mean
= 117 T1= ch ~ P12
squares
A _ - ; _ 2 .
(11) B, = (X{Fx)) 1x_.'LF_3_f Vg, = ByhBoh unadjusted mean
squares
s\ B _ - _ 2 .
(111) B, = (x1x)) %(iga v, =B h#Boh adjusted mean
squares
. ~ =1 .
(iv) By = (Xi(F'I)Xl) Xi(F'I)Xa Vo = Blp+62h2 adjusted mean
squares
(V) B = (%) Xpy Vg, = B, (8-1)48,(h-1)2  unadjusted mean
squares
() B = (XLFX,) " XLFY Vg, =B, (n-1)48,(h-1)% unadjusted mean
squares
.o = - - [ —_ - - 2 .
(vii) B, = (XX,) Yy Vg = B (n-1)48,(n-1)2  adjusted mean
squares
(viii) By = (X'e(F-I)XQ)'lX'Q(F-I)Xa Vop = Bl(h-l)+62(h-l)2 adjusted mean
squares
The values of h in Xl are replaced by h-1 to obtain X2.

» F was used instead of (F-I).

+ (F-1) was used instead of F.
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Figure 1. Average birth and weaning weights per pig for each litter size.
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Figure 2. Total litter weaning weight (56 days) for each litter size.



w
£~
()
e
s
ot
—~
3 8
>
i e
—, & =
\l\\l\\l\‘.\ ﬁl
JEA]
—
L oy
|
~
1wl
Xe
—
b OV
b O
b
F \O
P N\
> <+
p M
g Qg ¥ 3 T N
o O (o] O (@ (@] (@) O O
q — o [S2 e8] o~ O n\ oD
~ — ~

(spunod) sqyBTeom YITQq UO BUTUBSM JO FUSTOTIIS0D UOTSSaIdax I933TT UTYLITA

h = litter size

Within litter regression coefficient for each litter size.

Figure 3.



Within mean squares (adj. for birth wt.)

159

101

ﬁ;:;;; = 4,02 + 7.28(h-1) - 0.40(h-1)3

odd litter size

\\\\ even litter

size

VoAV, = 2L.7h + 154 (n-1) - 0.15(h-1)3

4
L
L

—— - ———

1 2 3 ﬂ 5 6 7 é 16 11 12 13 14

O 9

h = litter size —m—m——>

Figure 4. Within litter mean squares (adjusted for birth weight) for

various litter sizes.



