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Abstract 

The existence of a component of variance for competition among sampling 

units or among individuals in a group was discussed by Yates and Zacopany 

in 1935. No proce~ure was suggested for estimating this component of variance. 

It is the purpose of this paper to give a procedure for estimating the com-

ponent of variance due to competition and to apply the procedure to a· 

set of data on weaning weights of pigs with 116 litters of various sizes 

and for Yorkshire, Chester-Hhite, and Berkshire breeds. The first problem 

was to define litter size. \-lithin this definition then, litteri sizes of 3 

to 14 pigs per litter were obtained. The variation among pigs within a litter 

of size h was considered to have an expected value equal to V + V h where V s c s 

is the sampling variance component and Vch is the competition variance component 

for a litter of size h. In order to obtain an estimate of Vch' a polynomial 

relation betvreen h and V ch vras postulated. In particular, it was postulated 

that 

or 

·where E( ) denotes expected value. The first form states that V ch goes to zero 

for one pig per litter while the second form puts Vch equal to zero for h = o. 
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The first form may be more appropriate as long as mnall litter sizes (say 1 

and 2 at least) are omitted from the analysis as vras done in the present 

instance. Likewise, one could postulate a polynomial relation between the 

sruupling variance component V and litter size. This polynomial would have an 
s 

intercept a and would need to have different pm1ers in the polynomial in order 

to estimate the two variance components; e.g. one could postulate that E(V , ) sn 

=et+fl/h. 

Using the assumption that V was unaffected by litter size and that 
s 

"' E(Vch) = ~1 (h-l) + ~2 (h-l) 2, it was found that Vch reached a maximum for a 

litter size of 10 for the odd litter sizes and 6 for the even litter sizes after 

the weaning weights had been adjusted by covariance for birth weights. It 

appeared that V h + V = within litter mean square followed a different pattern c s 

for odd sizes than for even sizes of litter. The biological reason for this is 

unlmmm. 
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A COlviPO~"'ENT OF VARIANCE DUE TO COMPEriTIO:rf 

by 

~·J. T. Federer and 0. 0. Ladi:po2 

Introduction 

Competition exists among the individuals of a litter, of a family, a 

class of students, animals in a fixed size feed-lot, a team, or any group of 

individuals competing for food, space, attention, etc. In same instances the 

competition stimulates the individual toward a higher yield which may be weight, 

scholastic achievement, or performance on a test. If the competition is limited 

as in small groups or is too severe as in large groups the individual may not 

perform \vell. If this situation holds then there should be a group size that 

leads to maximum achievement. One obvious way to determine optimum group size 

is to plot mean achievement per individual against group size and to estimate 

the optimum group size from a polynomial regression fitted to the data. Although 

this method holds for the above, it will not suffice for all purposes, as it may 

be desirable to estimate a component of variance due to competition separately 

from the sampling and/or genetic components of variance associated with indi-

viduals within a group. Such estimates yield information on group size leading 

to a maximum ccmponent of variance due to competition. Also, investigations on 

the relation of size of this component of variance to performance can then be 

made. 

Yates and Zacopanay [1935] described a component of variance due to compe-

titian but did not present a method for its estimation. The present paper des-

cribes a method of estimating this variance component and its application to a 

1 Paper No. BU-154 of the Biometrics Unit and No. 548 of the Department of Plant 
Breeding and Biometry, Cornell University. 

2 Present address is Faculty of Agriculture) University of Ife) Ibe-Ife, Nigeria. 



- 2 -

set of data consisting of weaning (56 day) weights of Sidne for 116 litters VIith 

litter sizes of h=3,4,s,···,l4. Possible applications to other experL~ental 

situations are described. 

The data used in this study were obtained from W. G. Pond, Animal Science Depart-

ment, Cornell University, and were collected from lS46 through 1)58. Birth 

Heights and 56 day weights were recorded for each piglet in the litter. Litter 

size is not a simple count of animals in a litter but had to be defined; it was 

defined to be the number of piglets alive in a litter from seven days after birth 

to weaning time at 56 days of age. The death of a piglet within the first week 
among the remaining piglets ~n the litter. 

after birth was assumed to not materially affect competition/ If a piglet died 

at any time betvreen 7 and 56 days that litter was not utilized since this vlould 

change the level of competition within a litter. The data are frc.m three breeds, 

viz. Berkshire, Yorlcshire, and Chester-White resulting in data for 116 litters. 

The cross-breeds were not utilized in the present study; a study of data on the 

Yorkshire breed only was made by Ladipo [1965]. 

2. !::: Method of Estimating 2: Component of Variance Due !.,2 Competition 

Yates and Zacopanay [1935] made the assumption that the sum of the competi-

tion effects within a group would be zero. This means that what one individual 

gains from the other individuals, is compensated for by a corresponding loss in 

other individuals. Jensen and Federer [1964] have found that this model does 

not hold for ~<rheat planted in adjacent rows. The loss in yield in certain varie-

ties of wheat was less than the gain in othars. Thus, there was a bonus in yield 

from intervarietal competition over varieties planted separately. However, for 
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the data at hand we shall use the model of Yates and Zacopanay [1935] and assume 

the linear yield equation model is 

Y .. = p. + s .. + c .. 
~J l ~J lJ 

1-Jhere the p. are random variates associated 'dth litters and are identically 
l 

and independently distributed with mean fl and variance V , the s. . are random 
p ~J 

variates relating to sampling variation among individuals within a litter and 

are independently and identically distributed with mean zero and variance V , 
s 

the c .. are random variates associated with competition effects between indivi­
~J 

duals of a litter and are identically distributed with mean c. and variance V , 
l c 

i=l,2,···, th =number of litters of size h, j=l,2,···,h, and 

are independent of each other. 

the effects 

Suppose that there are h individuals, piglets, in each group, litter, that 

there are th randomly selected litters for each size of litter h, and that k 

individuals, piglets, are randomly selected within each group, litter. Then, the 

expected mean squares in the analysis of variance are of the follmving form for 

a litter of size h: 

Source of variation 

Among groups (litters) 

Hi thin groups (litters) 

Degrees of 
freedcm 

£ -1 
h 

!. (k-1) 
h 

Mean 
square 

Expected value of 
mean square 

Vsh + h-k V + kV 
h ch ph 

vsh + vch 

In a single analysis of variance we can only estimate V~h = Vsh + Vch and 
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V~h = V ph - V c..Jh. If k = h then '\'le can only estimate V sh + V ch and V sh + hV ph. 

Unless I'Te have an estimate of V sh we cannot estimate Vpb. 

Now suppose we have .eh litters available for p litter sizes, say h = g+l, 

g+2,···,G+p, for litter or group sizes above a certain size, say g. Further 

suppose that there is a b-polynamial relationship between group size and Vch 

of the following nature: 

or 

b 

vch = I 13uhu 
u=l 

b 

vch = I 13u(h-l)u 

u=l 

(1) 

(2) 

Equation (1) indicates that Vch is zero for h = 0 whereas equation (2) indicates 

that V ch is zero for h = l indi vicl:ual per group. The latter equation may be more 

appropriate; also, it is possible that competition within small (say h=l,2,3) 

litters is quite different from that within larger litters. If g is fairly 

large, say greater than 10 to 15, either equation {l) or (2) may be utilized as 

both vrould give approximately the same results. 

Furthermore, it may be possible that Vsh is not a constant for all h but 

is related to h by a polyncmial of the follrndng form: 

c 

v sh = 0: + L. auhu-~ 
u=l 

(3) 



--

- 5 -

The forms of the polynomial in equations (1) (or (2)) and (3) need not be as 

above, but it is necessary that the pO'W'ers of h in (1) (or (2)) be different 

from those in (3) in order to estimate the ~ , the o , and a. Also, it is 
u u 

necessa~J to have a in only (1) or in (3) in order that it can be estimated. 

LD~ewise, a polynomial relationship of Vph with h could be utilized, but 

here again the polynomial coefficients must be different than for equations (1) 

and (3) if bot~ ~ and Wh observations are utilized. In many situations it 

vToulcl. appear that V h should equal V = a constant and be independent of h. 
p p 

Let~~ = (a (31 f3 2 ••• j3b o1 o2 ••• oc), let!' = (Wg+l Wg+2 • •• Wg+p) for 

b + c < p, and let X be a p X (l+b+c) matrix with ones in the first column, 

h = g+l,g+2,···,g+p (or h-1) in the second column, values of h2 (or (h-1) 2 ) in 
~ 

the third column, etc. up to the b+2nd column which has values of h~ (or some 

povTer not unity), values of h3/ 2 in the b+3rd column, etc. The form of the 

average value of the observation equation is then E(I.) = X~. The least squares 

estimate of B from the normal equations is then~ = (X'X)-lx'1· If the various 

mean squares Wh are weighted by degrees of freedom then the weighted regression 

solution is B = (X'FX)-lx'FY_ where F is a p X p diagonal matrix with diagonals -w 

equal to degrees of freedom associated with the mean squares in Y. 

Heaning -.;·reights shoulc. be adjusted for birth "reights as weight increases 

geometrically in this period. Hence, the following linear yield equation is 

used: 

Y .. = p. + s .. + c .. + ~(Z .. -Z) 
l.J l. l.J l.J l.J 
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vlhel~e Z .. is the birth-weight corresponding to the v7eaning-vteight Y .. and t3 is 
~J ~J 

the linear regression coefficient of Yij on Zij. To estimate the parameters use 

is made of the mean squares adjusted for the covariate and the associated degrees 

of freedom in F are reduced by one. Therefore, let Y equal the column vector -a 

of the p adjusted mean squares and then the solutions for the parameters in ~ are 

B =(X'(F-I)X)-l =X' (F-1)y where I is the p X p identity matrix, X and Fare -aw -a 

as defined previously, Y contains the p adjusted mean squares, and the l+b+c -a 
A 

elements of B are the least squares estimates of the parameters using weighted -aw 

regression and the adjusted mean squares as the observations. 

For the particular set of data involving 116 litters of swine we shall use 

equations (1) and (2) using only ~l = linear regression coefficient and ~2 = 

~uadratic regression coefficient, i.e. Vch = t31 (h-l) + t32(h-1) 2 or Vch = t31h 

+ t32h 2 depending upon which form is considered appropriate. Likewise, in equa­

tion (3) we shall assume that all o are zero and that V h = V = a is inde-u s s 

pendent of litter size. This formulation states that Vch is a quadratic regres­

sion function of litter size and V is independent of litter size. V is posi-s - s 
A A 

tive, 131 should be positive, 13 2 should be negative, and the expected value of 

the within litters mean square is Vs + 131 (h-l) + 132(h-1) 2 • 

3· ~ Experimental ~ 

The experimental data for the 116 litters utilized in this study are pre­

sented in Table 1. The average birth weights (times 10) and the average weaning 

(56 day) weight from Table 1 are plotted against the number of pigs per litter 

in Figure 1. Both plots follow the same pattern with the lower weights being 



- 7 -

associated >·rith the larger litter sizes. The mean :per pig 56 day weights for 

litter sizes of 13 and 14 appear to deviate from the pattern set by other litter 

sizes. This is further borne out in Figure 2, where the total \veight per litter 

is plotted against litter size; there appears to be an almost constant total 

·11eight for litters of size 10, ll, and 12, i.e. the extra pi·gs did not increase 

the total weic;ht of the littel~. Thus, maximum pig size and total "~;.reight of a 

litter appear~ to be about 10 pigs per litter up to litter¢ sizes of 12. This 
This could be sampling variation as there were only three litters in these litter sizes, or 

pattern Has not exemplified by litter sizes of 13 and 14./ it could be that the 

pigs in litter sizes of 13 and 14 became independent of food from the dam sooner 

than pigs frcm smaller litter sizes. Forty-day ueights, e. g.,, may all have the 
for all litter sizes 

same pattern/but data 1·1ere not available to chec~>. this conjecture. 

The within litter regression coefficients of 56 day weights on birth 1veights 

were ccmputed for each litter size (Table 1). A plot of the within regression 

coefficients on litter size is given in Figure 3 indicating an increase in the 

regression coefficient with litter size. The litter size of 5 appears to be 
Except for litter size 5, 

different from the pattern e:~hibited by other litter sizes./ this relationship 

inc'icates that birth weight has an effect on 56 day weights vlhich is proportional 

to litter size. 

The ui thin litters mean squares in Table 1 1 column 4, form the p = 12 

elements of the vector Y and those in column 6 form the elements of the vector 

Y • The values of h in column 1 of Table 1 are usecl to set up the elements in -a 

the X matrix. Since the vrithin litter mean squares for even sized litters 

appear to follow a different pattern from the odd sized litters the data are 
(see Figure 4). 

treated separately/ Using equation (2) for the odd sized litters 
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1 2 4 14.5 
-1 4 16 v 31.2 s - 1 6 36 - 31.6 XB = (31 = =Y -a 1 8 64 37·7 

-a -
1 10 100 (32 36.0 

1 12 144 33.3 -
and 

6 0 0 0 0 0 1000000 5 0 0 0 0 0 

0 20 0 0 0 0 0 1 0 0 0 0 0 0 19 0 0 0 0 

(F-I) 0 0 120 0 0 0 0 0 1 0 0 0 0 0 0 119 0 0 0 = = 
0 0 0 128 0 0 0 0 0 1 0 0 0 0 0 0 127 0 0 

0 0 0 0 120 0 0 0 0 0 1 1 0 0 0 0 0 119 0 

0 0 0 0 0 24 0 0 0 0 0 0 1 0 0 0 0 0 23 

The solutions for~~= (Vs ~l ~2) and for the corresponding ~aw are given in the 

top part of Table 2 under equations {vii) and (viii), respectively. Least squares 

estimates for the parameters Vs, (31 , and f32 are obtained fran the above equations 

for V equal a constant independent of litter size and fbr equations (1) and (2) s 
A -as ~ and ~~ respectively, when the competition variance is a quadratic function 

of litter size {see Table 2). As stated before Vs and f31 should be positive and 

~2 should be negative. The only estimates satisfying these conditions are for 

equations (vii) and (viii) in Table 2. Here the competition variance is assumed 

to be zero for one piglet per litter and the adjusted within litter mean squares 

are considered to be the appropriate observations. These asBumptions are con-

sidered to be the most appropriate from a biological point of view and since the 
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observations are subject to different variances weighting by degrees of freedom 

and using a weighted regression approach is statistically desirable. Hence, 

the results in the last column of Table 2 are deemed the appropriate estimates 

of the parameters. 

The estimate of V from even sized litters is approximately five times s 

that from odd sized litters. There appears to be no biological explanation for 

this result although the results are much more discrepant than would ordinarily 

be expected from random sampling. If ~. (i=l,2) from even sized litters should 
~ 

be the same as from odd sized litters it would appear that the results should 

be pooled. However, the results are quite discrepant statistically and it may 

be that there is a higher V and that the ~. are different in the even sized 
s ~ 

litters from those in odd sized litters. Also, V may be the same for odd and s 

even sized litters but the linear and quadratic coefficients may be different. 

In this event, a would be estimated from both sets of data, and XB = Y for 
- -a 

h=2,3,4,5,6,7,8 would take the form 

1 1 1 0 0 a w2 
1 0 0 2 4 w3 

~le 
1 3 9 0 0 ~ 
1 0 0 4 16 ~2e = w5 
1 5 25 0 0 ~10 w6 
1 0 0 6 36 

~0 
w7 

1 7 49 0 0 w8 

where Wh = the within mean squares adjusted for the covariate birth weight for 

litters of size h, ~le and ~2e are linear and quadratic coefficients for even 

sized litters, and ~10 and ~20 are linear and quadratic coefficients for odd 
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sized litters. Then, ~ = (X'(F-I)X)-~'(F-I)Y in the same manner as des--aw -a 

cribed above. These computations were not made for these data, but this may 

be a more realistic approach if there is no biological explanation that V 
s 

should be different for odd and even sized litters. Alternatively, V could s 

be estimated from column 5 of Table l if the expected value of each of the 

mean squares is V + hV ; there appears to be a linear relation when the values s p 

of column 5 in Table 1 are plotted against litter size. Here again one could 

obtain V from all of the data in columns 5 and 6 in the same manner as des­
s 

cribed above for odd and even sized litters. 

With an estimate of Vs as Vs and of Vch as Vch = ~1 (h-l) + ~2 (h-1)2 an 

estimate of V , the variance due to litter means, is available. Likewise, 
p 

values of vch may be computed as vch = 7.28(h-l) - o.40(h-1)2 fer odd sized 

litters and Vch = 1.54(h-l) - O.l5(h-1)2 for even sized litters. The maximum 
A 

Vch was attained for h=6 for even sized litters and h=lO for odd sized litters. 
A 

Plots of Vch values against mean weight per pig for litters of size h or 

against total weight of a litter of size h, did not reveal any simple relation-

ships except as noted above. Some of the plots gave rather curious configura-

tions, e.g. the plot of average weight of a litter against Vch values computed 

from an average ~l and ~2 resembled an inverted question mark, for which no 

ready explanation was available. 
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4. Discussion 

Using a weighted regression approach with Vch as a quadratic function of h 

and hence rTith the expected value of the within litter mean squares equated .to 

Vs + Vch = Vs + ~1 (h-l) + ~2 (h-1) 2, estimates of the parameters were obtained 
A A 

rThich were considered to be of the correct nature, i.e. V s and 131 positive and 
~ 

~2 negative. The data (,·leaning weight within litter mean squares adjusted for 

birth weights) appeared to fit this model quite well except that even sized and 

odd sized litters followed different patterns and have different within litter 

sampling variances. 

A considerable number of situations involve competition among individuals 

in a group, e.g. students in a classroom, members of a military air, ground or 

marine patrol, members of a farm settlement in an emerging nation, animals in 

an area, etc. The problem is to determine the optimum group size to make maxi-

mum achievement per individual or per group of individuals in order to utilize 

resources in an efficient manner. In a classroom one goal could be to maximize 

achievement per student per dollar spent or independent of money. Students, 

animals, etc. may perform better in an atmosphere of competition than in one 

freed of competition. In an atmosphere of competition then, it would be desir-

able to determine the group size as well as the size of the variance component 

due to ccmpetition which yields maximum gain or achievement. If the variance 

among individuals within a group can be formulated as a specified function of 

the group size, then estimates of the various variance components are available 

as described above. 
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5· Summary 

The existence of a. component of variance for competition among sampling 

units or among individuals in a group was cliscussed by Yates and Zacopany 

in 1935. No procedure was suggested for estimating this component of variance. 

It is the purpose of this paper to give a procedure for estimating the com-

ponent of variance due to competition and to apply the procedure to an exten-

sive set of data on weaning vreights of pigs with 116 litters of various sizes 

a.nc. fa:..· Yorkshire, Chester-Hhite, anc1 Berkshire breeds. The first problem 

was to define litter size. vlithin this definition then, litters sizes of 3 

to 14 pigs per litter 11ere obtained. The variation among pigs within a litter 

of size h was considered to have an expected value equal to V + V h ivhere V s c s 

is the sampling variance component and Vch is the competition variance component 

for a litter of size h. In order to obtain an estimate of Vch' a polynomial 

relation between h and V ch was postulated. In particular, it was postulated 

that 
./\ 

E(V ch) = 131 (h-1) + !3 2 (h-1) 2 + !3 3(h-1) 3 + • · • 

or 
,, 

E(Vch) ; !3lh + !32h2 + !33h3 + ••• 

where E( ) denotes expected value. The first form states that V ch goes to zero 

for one pig per litter while the second form puts Vch equal to zero for h = o. 

The first form may be more appropriate as long as small litter sizes (say 1 and 

2 at least) are omitted frcm the analysis as was done in the present instance. 

Likeilise, one could postulate a polyncmial relation between the sampling variance 

component V and litter size. This polynomial would have an intercept a and 
s 
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uould need to have different powers in the polynomial in order to e~timate the 

tvm variance components; e.g. one could postulate that E (V sh) = a + IT /h . 

Using the assumption that V was unaffected by litter size and that 
s 

E(Vch) = ~1 (h-l) + ~2 (h-1) 2 , it was found that Vch reached a maximum for a 

litter size oflO for the odd litter sizes and 6 for the even litter sizes after 

the weaning weights had been adjusted by covariance for birth weights. It 

appeared that V h + V = vrithin litter mean square followed a different pattern 
c s 

for odd sizes than for even sizes of litter. The biological reason for this is 
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Table 1. Number of litters, within and among mean squares on weaning weights both adjusted and unadjusted for birth 
weights, weaning weight and birth vleight means, and within litter regressions for 116 litters of pigs for 
litters sizes 3 to 14. 

' 

Weaning weight mean Mean squares adjusted for I Weaning Birth I 
squares unadjusted the covariate birth weight vreight weight Hi thin Total 

Litter No. of - mean mean litter weight of 
size litters Among litters lwithin litters Among litters "Within litters (lbs.) (lbs.) regression a litter 

3 3 302.3 14.3 36.7 14.5 - 3-3 3.4 -
4 4 362.3 33-1 36.6 20.0 43.2 3.4 6.3 172.8 

5 5 86.2 38.6 42.1 31.2 36.8 2.9 10.1 184.0 

6 13 150.2 29-5 141.8 26.5 35.0 3.1 4.2 210.0 

7 20 186.4 38.0 190.6 31.6 37·3 3.0 7·5 261.1 

8 20 150.3 32.5 116.7 26.1 34.0 2.9 5.8 272.0 

9 16 339·5 37·7 203·7 37·7 34.9 3.0 4.1 314.1 

10 13 249.1 26.8 184.2 21.1 32.9 2.7 9-2 329.0 

ll 12 280.6 55.6 256.1 36.0 30.4 2.9 8.7 334.4 

12 7 705.4 31.4 363.5 21.2 28.4 2.2 10.9 340.8 

13 2 167.5 51.2 246.9 33-3 34.4 2.4 11.6 447.2 

14 1 - 25.8 - 16.6 32.6 2.6 8.7 456.4 

I I ' 
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Table 2. Estimates of parameters under different models. 

Equation (l) Equation (2) 

Parameter (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

Odd sizes 

Vs -3.88 2l.47 -6.99 -3.80* 4.13 I 24.6o+ 1.70 4.02 

!31 8.32 1.32 9·16 8.12* 7-70 1.12+ 8.22 7.28 

!32 -0.31 0.12 -0.47 -o.4o.r.- -0.31 0.15+ -0.47 -0.40 

Even sizes 

Vs 33.43 ]4.o6+ 10.23 19-57 33.18 33.6o+ 13.75 21.74 

f3r -0.23 -0.54 + 3-76 l.95 -0.26 -0. 54+ 3.28 l.54 

!32 -0.02 o.o1+ -0.24 -0.16 -0.02 o.o1+ -0.24 -0.15 

"' (X'X ) -Ix, Y V ch = !3lh+(32h2 (i) ~ = unadjusted mean 1 1 l- squares 
"' (xpx1)-lxiFl v = !3 h+(3~2 (ii) ~w = unadjusted mean ch 1 squares 

(iii) J3 = (xixr) -Ixila V ch = !31 h+(32h2 adjusted mean -a squares 
"' (Xi(F-I)X1 )-1xi(F-I)Ia V ch = !31 h+(32h2 (iv) B = adjusted mean -a>v squares 

(v) ~ = (X2X )-lx•y vch = f31(h-1)+!32(h-1)2 unadjusted mean 2 2-
squares 

(vi) B = (X2FX2) -Ix~li vch = !3l(h-1)+!32(h-1)2 unadjusted mean 
-w squares 

(vii) B = (X2X2) -Ix2la vch = !3l(h-1)+!32(h-1)2 adjusted mean -a squares 

(viii) B = -aw (X2(F-I)X2)-lx2(F-I)la vch = !3l(h-1)+!32(h-1)2 adjusted mean 
squares 

The values of h in x1 are replaced by h-l to obtain x2• 

"'" F vras used instead of (F-I). 

+ (F-I) vms used instead of F. 
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Figure 1. Average birth and ·weaning "\'/'eights per pig for each litter size. 
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Figure 3. vJithin litter regression coefficient for each litter size. 
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Figure 4. Within litter mean squares (adjusted for birth weight) for 
various litter sizes. 


