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Protein thiocarboxylates are members of sulfur transfer protein family and have been 

shown to be involved in a variety of important biosynthetic pathways like vitamin B1, 

molybdopterin, cysteine, thionucleosides among many others. Despite their 

importance, there has been lack of systematic efforts towards identifying new 

thiocarboxylate-forming proteins. In this work, we have taken efforts in developing 

two strategies to label them in bacterial cell-free extracts using fluorescent tags. In 

addition, bioinformatics search for new thiocarboxylate-forming proteins using a 

genomic database, theseed.uchicago.edu and a protein database, Pfam, yielded a new 

methionine biosynthetic pathway that involves a protein thiocarboxylate as the sulfur 

donor to make the precursor, homocysteine. This discovery further validated the need 

for developing methods to identify, in cell-free extracts, proteins carrying this 

important post-translational modification. The sulfur source for the protein 

thiocarboxylate involved in the methionine biosynthetic pathway has also been 

identified as sulfate or sulfite.  
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CHAPTER 1 

Sulfur transfer in micro-organisms and the importance of protein 

thiocarboxylates 

 

1.1 Introduction to sulfur transfer 

Sulfur is incorporated by micro-organisms into a variety of biomolecules such as 

amino-acids (cysteine, methionine), nucleosides (4-thiouridine, 2-thiocytidine) and co-

factors that play an important role in catalyzing interesting enzymatic reactions 

(thiamin, molybdopterin, biotin)
1
. Other examples of sulfur-containing compounds can 

be seen among siderophores (thioquinolobactin, pyridine dithiocarboxylic acid), that 

are essential for iron-scavenging and bacterial survival under iron-limiting conditions.  

The wide prevalence of sulfur in the above mentioned small molecules and many 

others requires it to be readily available for biosynthesis. However, the concentration 

of free cellular sulfide is reported to be just enough to allow cysteine biosynthesis and 

the toxicity of free cysteine makes it necessary for the cellular concentrations of the 

amino-acid to be maintained at a low steady state level of 100 – 200 µM
2
. These 

constraints make prokaryotes produce sulfur-carrier proteins that help in the transfer of 

the element from its source to its destination in a highly regulated fashion. Two 

prominent means of trafficking sulfur are formation of protein persulfides (R-S-SH) 

and thiocarboxylates (R-COSH)
1
.  

 

1.2 Persulfide forming proteins 

Cysteine desulfurases, rhodanese homology domain proteins and mercaptopyruvate 

sulfur transferases
1,2

 are members of this family. Cysteine desulfurases use the co-

factor pyridoxal phosphate (PLP) to remove the sulfur from cysteine to form the 

protein-bound persulfide as shown in Figure 1.1
3,4

. Examples include NifS, IscS, SufS 
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and many others. These proteins have been shown to be involved in the sulfur transfer 

process in more than one biosynthetic pathway. IscS in Escherichia coli has been 

suggested to be involved in the biosynthesis of thiamin, iron-sulfur clusters and 

thiouridines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Mechanism of PLP-mediated protein persulfide formation. 

 

Rhodanese homology domain proteins form cysteine-persulfide using thiosulfate as 

the sulfur source in in-vitro assays. The physiological role of these proteins is not well 

understood. However, they have been suggested to be involved in cyanide 

detoxification
5
, iron-sulfur clusters formation

6
 and elimination of reactive oxygen 
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species
7
. A well studied enzyme belonging to this family is the bovine rhodanese 

8
. 

Mercaptopyruvate sulfur transferase converts mercaptopyruvate into pyruvate 

generating persulfidic sulfur in the process.  

 

1.3 Thiocarboxylate forming proteins 

Another form of protein-mediated sulfur trafficking is through C-terminal 

thiocarboxylation of certain ubiquitin-like proteins. The sulfur source for these 

important sulfur-trafficking proteins, except for thiamin
9
 and molybdopterin

10,11
, is not 

known. Both ThiS and MoaD are postulated to receive sulfur from cysteine through 

cysteine desulfurases. We have shown later in this work that thiocarboxylate-forming 

proteins can directly acquire the sulfur through sulfate-assimilation pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Examples of thiocarboxylate-forming proteins (names on the arrows) in 

certain biosynthetic pathways. 
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Few examples of such C-terminus thiocarboxylated-proteins include ThiS (involved in 

thiamin biosynthesis)
12

, MoaD (molybdopterin biosynthesis)
11

 and CysO (cysteine 

biosynthesis in Mycobacterium tuberculosis)
13

 (Figure 1.2).  

 

1.4 Physical characteristics of thiocarboxylate-forming proteins 

Thiocarboxylate-forming proteins are small proteins. All known examples have a 

molecular weight of approximately 10 kDa or less. These proteins have a flexible C-

terminal tail that ends with diglycyl residues (Figure 1.3).  These proteins have their 

carboxy-terminus activated via adenylation for sulfur transfer by an adenylating 

enzyme (Figure 1.4).  

 

 

 

 

 

 
MGHHHHHHHHHHSSGHIGGRHMLQLNGKDVKWKKDTGTIQDLLASYQLENKIVIVERNKEIIGKERYHE

VELCDRDVIEIVHFVGGG 

 

Figure 1.3: The flexible C-terminal tail (shown in black box) of ThiS, the 

thiocarboxylate-forming protein involved in vitamin B1 or thiamin biosynthesis. PDB: 

1TYG. The primary sequence of the protein illustrating the diglycyl C-terminus is also 

shown. 
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Figure 1.4: Mechanism of protein thiocarboxylate formation. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Activation of C-terminus of a thiocarboxylate-forming protein as an acyl-

adenylate. The activating proteins in thiamin, molybdopterin and cysteine biosynthesis 

are shown in pink. 

 

1.5 Identification of new thiocarboxylate-forming proteins 

The cysteine biosynthetic pathway shown in Figure 1.5 was uncovered when 

sequence analysis of genomes for homologs of ThiS and MoaD led to the discovery of 

cysO (Rv1335) in Mycobacterium tuberculosis, clustered with cysM (Rv1336, cysteine 



 

6 

synthase) and  mec
+
 gene (Rv1334, a putative hydrolase). Further studies identified the 

three proteins to be involved in making cysteine. The presence of two other 

biosynthetic routes to cysteine in this microorganism – the sulfide-dependent pathway 

and the cystathionine pathway, makes the new pathway look redundant. However, 

transcriptional profile analysis of M. tuberculosis demonstrated that mec
+
, cysO and 

cysM genes are up-regulated under oxidative stress conditions 
14

. This observation and 

the greater resistance of thiocarboxylates to oxidation than thiols suggests that CysM-

CysO-mec
+
 route might be used when the bacteria are in the oxidizing environment of 

the macrophage.  

 

 

 

 

 

 
 

 

 

 

MAKVTVRYWAAAKAAAGVAEEPYDAATLADALGAVRERHPGELTRVLLRCSFLVDGDPVGTRGHETVRL

AEGGTVEVLPPFAGG 

 

Figure 1.6: ThiS-like protein (4117) from Streptomyces coelicolor present in an 

unknown gene cluster. 4113: putative protease, 4116: putative hydrolase, 4120: 

putative thiosulfate sulfur transferase, 4121: probable sseC protein, 4124: putative 

oxidoreductase. Primary sequence of 4117 is also shown. 

 

The discovery of cysO by sequence analysis and the subsequent revelation of a 

new cysteine biosynthetic route is an indication to the presence of more unknown 
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sulfur transfer pathways in the bacterial world, many of which might be up-regulated 

only under certain environmental-stress conditions. Sequence similarity search on 

ThiS-like proteins using Pfam (http://pfam.sanger.ac.uk/) results in the identification 

of large number of proteins with the characteristic diglycyl C-terminus found in 

thiocarboxylate-forming proteins. While many of them appear to be involved in 

already known thiamin, cysteine and molybdopterin biosynthesis, there are few ThiS-

like proteins that are present in unknown biosynthetic clusters, as the example in 

Figure 1.6 shows. This gene-clustering pattern is seen in many other organisms as 

well (Thermomonospora curvata DSM 43183, Frankia sp. EAN1pec, 

Streptosporangium roseum DSM 43021, Thermobispora bispora DSM 43833, 

Catenulispora acidiphila DSM 44928, Frankia sp. Ccl3) suggesting that they are 

functionally related. It is possible that 4117 might be activated by a non-specific 

adenylating enzyme making it ready to accept a sulfur from the thiosulfate-sulfur 

transferase, 4120, and form a protein thiocarboxylate. 

An analysis of the protein thiocarboxylate dependent biosynthetic pathways 

shown in Figure 1.2 suggests the vitality of these proteins for proper bacterial survival 

and functioning. It would hence be useful to develop a strategy to identify 

thiocarboxylate proteins in a bacterial proteome and thus to uncover new sulfur 

transfer pathways. Such a study on virulent bacteria might also aid in designing drugs 

to inhibit the sulfur transfer process in the organism.  Two approaches were taken in 

this regard to identify potential thiocarboxylate-forming proteins – the proteomics 

approach and the bioinformatics approach. 

 

1.5.1 Proteomics approach to identify new thiocarboxylate-forming proteins 

Proteomics approach involved developing labels containing fluorophores that react 

specifically with the thiocarboxylate functionality. The two approaches taken in this 
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study involved a) converting the thiocarboxylate to a reactive thioester using a thiol-

reactive reagent followed by nucleophilic substitution of the thioester with a 

fluorophore, b) treating the thiocarboxylate functionality with a fluorescent sulfonyl 

azide. In both approaches, the labeled protein was analyzed by SDS-PAGE. 

 

1.5.2 Bioinformatics approach to identify new thiocarboxylate-forming proteins 

The primary sequence of a known protein thiocarboxylate like ThiS was used as a 

template to look for new, similar proteins in genomic and protein databases like The 

SEED (http://theseed.uchicago.edu/FIG/index.cgi), STRING 

(http://theseed.uchicago.edu/FIG/index.cgi) and Pfam (http://pfam.sanger.ac.uk/). In 

the present study, search for sulfur transfer proteins in the genomic database, the 

SEED and ThiS-like proteins in Pfam led to the discovery of a new protein 

thiocarboxylate-dependent methionine biosynthetic pathway in Wolinella 

succinogenes. The identity and putative functions of the proteins in the pathway were 

analyzed by NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 
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CHAPTER 2 

Labeling thiocarboxylate proteins using alexafluor 647 cadaverine 

 

2.1 Introduction 

The soft and higher nucleophilicity of thioacids as compared to sulfhydryls makes it a 

good target for labeling reagents like iodoacetamide and N-ethylmaleimide. This 

property can be exploited in converting a protein thiocarboxylate into a reactive 

thioester group which can then be hydrolyzed by a nucleophile linked to a fluorophore 

or resin. The methodology developed involves activating the thiocarboxylate-terminus 

as an N-ethylmaleimide thioester followed by nucleophilic substitution of the ester 

with alexafluor 647 cadaverine (Figure 2.1). Alexafluor 647 cadaverine has a free 

amine as the attacking nucleophile, a molecular weight of ~ 1000 Da and has its 

excitation and emission maxima at 647 and 668 nm respectively.  

 

 

 

 

 

 

 

 

 

Figure 2.1: Strategy to label thioacids by converting them to reactive thioesters 

susceptible to nucleophilic substitution. 
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The strategy of converting thiocarboxylates into a thioester has been used extensively 

for C-terminal modification of proteins by intein purification chemistry (Figure 2.2) 

where a nucleophilic cysteine in the intein domain undergoes an S-N acyl shift to form 

the protein-intein thioester link which is then cleaved by using appropriate 

nucleophile
1
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Intein purification chemistry. DTT cleaves the protein-intein thioester link 

to form protein/DTT adduct while cleavage with sulfide yields the protein 

thiocarboxylate. 

 

2.2 Thiamin biosynthesis through ThiS thiocarboxylate 

Biosynthesis of thiamin has been well-studied in micro-organisms
2,3

. Vitamin B1 or 

thiamin pyrophosphate (Figure 2.3) comprises of two units – a five-membered 
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thiazole ring and a six-membered hydroxymethylpyrimidine ring, which are made 

separately and joined together in the final steps of the biosynthesis.  

 

 

 

 

Figure 2.3: Vitamin B1 is made up of five-membered thiazole ring and six-membered 

hydroxymethyl pyrimidine ring. 

 

The sulfur atom in the thiazole ring is provided by a small thiocarboxylate-forming 

protein, ThiS, which is adenylated at its C-terminus by the activating enzyme, ThiF. 

The activated ThiS then receives the sulfur from L-cysteine acted upon by a PLP-

dependent cysteine desulfurase, NifS (Figure 2.4). The thiamin biosynthetic protein 

was chosen as the model system to test the labeling strategy. Once it was confirmed 

that the labeling was specific for the thiocarboxylate moiety, the methodology was 

used for detecting thiocarboxylated proteins in cell-free extracts of over-expressed 

systems.  

 

 

 

 

Figure 2.4: Sulfur transfer mechanism in thiamin biosynthesis 
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2.3 Thioquinolobactin biosynthesis through QbsE thiocarboxylate  

Thioquinolobactin is a secondary siderophore produced by P.fluorescens (ATCC 

17400). The production is enhanced when the biosynthesis of the fluorescent yellow-

green primary siderophore, pyoverdine, is knocked out
4,5

. The biosynthesis of 

quinolobactin/thioquinolobactin is regulated by ferric uptake regulator (fur) protein 

and involves tryptophan degradation genes and genes analogous to sulfur transfer 

genes of thiamin biosynthesis
4
 (Figure 2.5).  

 

       

 

 

 

Figure 2.5: Gene clustering of thioquinolobactin biosynthetic proteins. TDO 

(tryptophan 2,3 dioxygenase), KMO (kynurenine monooxygenase), KTM (kynurenine 

transaminase) and KFA (kynurenine formamidase) are tryptophan degrading enzymes 

while QbsC, QbsD and QbsE are speculated to be involved in sulfur transfer. 

 

QbsE, the thiocarboxylate-forming protein in the thioquinolobactin 

biosynthesis has a cysteine-phenylalanine at the C-terminus ahead of the diglycyl 

groups (Figure 2.6).  As mentioned in Chapter 1, all known examples of these 

proteins end in diglycyl C-terminus. QbsD is a metalloprotease present in the gene-

cluster and it has been shown to cleave the last two amino-acids to expose the diglycyl 

C-terminus making it possible to be activated by a bifunctional enzyme, QbsC, which 

adenylates QbsE C-terminus and provides a sulfur derived from thiosulfate through a 

rhodanese cysteine persulfide
6
. This system was chosen to test the labeling strategy on 

a cell-free extract. 
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Figure 2.6: Putative sulfur transfer by thioquinolobactin biosynthetic proteins 

 

2.4 Experimental section 

Dithiothretiol (DTT), ATP, L-cysteine, urea and N-ethylmaleimide were purchased 

from Sigma-aldrich (St.Louis, MO). Millipore’s YM-10 microcons and 5K NMWL 

Ultrafree centrifugal filter devices, Tris.HCl and imidazole (Acros chemicals) were 

obtained from Fisher Scientific (Fairlawn, NJ) while L-
35

S-cysteine and STORM 860 

was got from GE healthcare life sciences (Piscataway, NJ). Ampicillin, kanamycin 

and isopropyl-β-D-thiogalactopyranoside (IPTG) were obtained from Lab Scientific 

Inc. (Livingston, NJ). Tris (2-carboxyethyl)phosphine hydrochloride (TCEP) was got 

from Soltec ventures Inc. (Beverly, MA). Luria-Bertani was purchased from EMD 

chemicals Inc. (Gibbstown, NJ). Sonication of cell-cultures was done using Misonix 

sonicator 3000 (Misonix Inc., Farmingdale, NY). Avanti J-E centrifuge (Beckman 

Coulter, Fullerton, CA) was used for centrifugation purposes. All protein 

concentrations were measured by Bradford assay
7
. 

 

2.4.1 Cloning of thiamin and thioquinolobactin biosynthetic enzymes 

qbsC gene was PCR amplified from P. fluorescens (ATCC 17400) genomic DNA and 

cloned into pET-28a vector. qbsE was also cloned into pACYCDuet vector. qbsCE 
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over-expression system was prepared by co-transforming qbsC (pET-28a vector) 

along with qbsE (pACYCDuet vector). qbsCDE, the quinolobactin sulfur transfer 

genes, were cloned as a single contiguous unit into pET-28a vector with the His-tag on 

QbsC
6
. thiSG and thiF were cloned into pET-22b vector while nifS was cloned into 

pET-16b vector
8
.  

 

2.4.2 Over-expression and purification of proteins 

The thiamin biosynthetic proteins were over-expressed in E.coli BL21(DE3) in Luria-

Bertani medium and induced at an OD600 of 0.6 with a final concentration of 0.5 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG). ThiSG were over-expressed together as 

the mutual presence improves the stability and solubility of the proteins. The cells 

were harvested by centrifugation and lysed by sonication on ice. ThiF, ThiSG and 

NifS were purified by Ni-NTA purification protocol at 4
o
C and buffer exchanged into 

100 mM Tris, pH 7.8.  

 

2.4.3 Reconstitution of ThiS-COSH 

The buffer used for protein samples and reagent stocks is 100 mM Tris, pH 7.8. 91 µL 

of 93 µM of NifS , 93 µL of 88 µM of ThiF, 336 µL of 6.318 mg/mL of ThiSG, 2 µL 

of 800 mM MgCl2, 2.5 µL of 200 mM ATP and 1 µL of cysteine stock which 

contained 0.9 M L-cysteine and 1.8 M DTT were added together and incubated at 

room temperature for 2 h to reconstitute ThiSCOSH
9
.  

After incubation, 50 µL of four samples were prepared as shown in Table 2.1. 

ThiSG concentration was the same in all four samples. A final concentration of 5 M 

urea was added to each sample to denature the proteins and quench the reaction. 7 µL 

of 100 mM N-ethylmaleimide was then added to samples 2 and 4. The samples were 
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incubated at room-temperature for 30 min after which 1 µL of 10 mM alexa fluor 647 

cadaverine (Invitrogen, Carlsbad, CA) was added and further incubation was carried 

out in the dark for 5 h. The samples were desalted using Bio-spin 6 Tris columns (Bio-

rad laboratories, Hercules, CA) into 10 mM Tris-HCl, 0.02% sodium azide, pH 7.4 

before being analyzed on a 15% Tris-glycine SDS-PAGE. The gel was scanned for 

fluorescence on a STORM 860 imager. 

Table 2.1: Controls for ThiS-COSH labeling experiment 

Sample number Samples Maleimide 

1 Pure ThiSG No 

2 Pure ThiSG Yes 

3 Reconstituted ThiSG No 

4 Reconstituted ThiSG Yes 

 

2.4.4 Rate of ThiS-COSH formation 

The assay was done by two different methods – by the use of the fluorescent method 

developed in this work and by using L-
35

S-cysteine. All protein samples and substrate 

stocks were made in 100 mM Tris-HCl, pH 7.8. 35 µL of 121 µM of NifS, 62 µL of 

66 µM ThiF, 246.5 µL of 4.3 mg/mL of ThiSG, 1.5 µL of 800 mM MgCl2, 2 µL of 

200 mM ATP and 3.5 µL of cysteine stock which contained 200 mM L-cysteine and 

400 mM DTT were added together and incubated at room temperature for 3 h. For the 

radioactive sample, an additional 20 µL of L-
35

S-cysteine (0.5 mCi/100 µL) was  

added to the solution. Zero time-point sample was prepared by adding 1.99 µL of 121 

µM, 3.5 µL of 66 µM ThiF, 14.1 µL of 4.3 mg/mL ThiSG, 0.2 µL of 800 mM MgCl2, 

0.2 µL of 200 mM ATP and 0.2 µL of cysteine stock containing 200 mM L-cysteine 

and 400 mM DTT to 20 µL of 8 M urea. The corresponding sample for the radioactive 
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methodology had an additional 1.07 µL of L-
35

S-cysteine (0.5 mCi/100 µL). The 

reaction was started by addition of cysteine. 10 µL aliquots were taken out from the 

reaction mixture after regular time-intervals and quenched with 10 µL of 8 M urea. 

These quenched samples were then treated as follows.  

 

2.4.4.1 Fluorescent labeling method 

 7 µL of 100 mM N-ethyl maleimide was added to each sample and incubated at 

room-temperature for 30 min after which 8 µL of 1 mM alexa fluor 647 cadaverine 

was added and further incubation for 5 h in the dark at room temperature was carried 

out. The samples were desalted using YM-10 microcons by multiple washings with 

100 mM Tris-HCl, pH 7.8 and analyzed on a 15% Tris-glycine SDS-PAGE. 

 

2.4.4.2 Radioactive method 

 The samples were desalted using 5K NMWL Ultrafree centrifugal filter devices and 

then analyzed on a 15% Tris-glycine SDS-PAGE.  

 

Fluorescent and radioactive images of the gel were obtained using STORM 860 

imager and the intensities quantified using the Imagequant 5.2 software (Molecular 

dynamics, Sunnyvale, CA).  Date-analysis to obtain the rate was done by non-linear 

regression using Grafit 5.0.11 (Erithacus software, Surrey, UK). 

 

2.4.5 Labeling of QbsE-COSH in the QbsCDE cell-free extract 

Two 100 mL cultures of E.coli BL21(DE3) strain over-expressing QbsCDE and 

QbsCE were induced with 1 mM IPTG at an OD600 of 0.8. Post-induction, the cell 

cultures were then grown at 15
o
C for 12 h with agitation after which they were 

harvested using JA-10 rotor in Avanti J-E centrifuge (Beckman Coulter Inc., 
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Fullerton, CA) at 13700 rcf. The cell-pellets were then re-suspended in approximately 

10-15 mL of lysis buffer (20 mM potassium phosphate, 250 mM NaCl, 20 mM 

imidazole, pH 8.0). The cells were lysed by sonication  (pulse ‘on’ time 1.0 sec, pulse 

‘off’ time 1.0 sec, output level 0.8, 30 cycles 5 times) on ice. The crude lysate was 

centrifuged at 39800 rcf using JA-17 rotor in Avanti J-E centrifuge to remove the cell 

debris. The supernatant in 1 mL aliquots were frozen and stored at -60
o
C. 2 mL each 

of CDE and CE cell-free extract were thawed and concentrated to a volume of 200 µL 

and 72 mg of urea was added to each solution to make a final urea concentration of 

approximately 5 M. 50 µL of the resulting solution were taken and treated for 45 min 

at room-temperature with 20 µL of 100 mM N-ethylmaleimide after which 2 µL of 10 

mM alexa fluor 647 cadaverine was added and further incubation was carried out in 

the dark at room-temperature for 2 h. The samples were desalted using YM-10 

microcons by multiple washings with the lysis buffer and analyzed on 15% Tris-

glycine SDS-PAGE. Fluorescent image of the gel was obtained using STORM 860 

imager.   

 

2.5 Results and discussions  

The nucleophilicity of thioacid was exploited in increasing the reactivity of the moiety 

using thiol-reactive probe, N-ethylmaleimide. The thioester so formed is susceptible to 

nucleophilic substitution with alexa fluor 647 cadaverine (Figure 2.1), thereby 

fluorescently tagging the protein.  

As mentioned earlier, thiamin biosynthetic enzymes were used for testing the 

methodology. ThiS-COSH was formed by treating ThiS-COOH with NifS (PLP-

utilizing cysteine desulfurase), L-cysteine, ThiF, ATP and Mg
2+

 ions. Lanes 2 and 3 in 

the SDS-PAGE shown in Figure 2.7 contain non-reconstituted ThiS. The carboxylate 

terminus of ThiS does not react with alexa fluor 647 cadaverine with or without N-
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ethylmaleimide treatment. On the other hand, lanes 4 and 5 contain reconstituted 

ThiS-COSH. There is no labeling in lane 4 because the thioacid has not been activated 

as a thioester with N-ethylmaleimide. Lane 5 shows labeling because of activation of 

ThiS-COSH as a thioester with N-ethylmaleimide which makes it efficient for 

nucleophilic substitution.   

 

              1       2         3        4        5                              1        2         3        4        5 

 

 

 

 

 

 

 

Figure 2.7: Labeling of ThiS-COSH (a) coomassie scan and (b) fluorescent image. 

Lane 1: Molecular weight markers, Lane 2: ThiSCOOH, no maleimide; Lane 3: 

ThiSCOOH, with maleimide; Lane 4: ThiSCOSH, no maleimide; Lane 5: ThiSCOSH, 

with maleimide 

 

The rate of ThiS-COSH formation using cysteine as the sulfur source was studied 

using the labeling strategy to further check the suitability of the method to assay for 

protein thiocarboxylates. The rate constant has previously been found to be of the 

order of 0.02 min
-1 8

. The rate was also confirmed using L-S
35

-cysteine as the sulfur 

source. ThiS-COSH so produced would be radiolabeled (Figure 2.8(b)). The 
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NifS 
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fluorescent and radioactive intensities can then be directly read out by imaging using 

STORM 860 (Figures 2.8(c) and 2.8(d)). 
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Figure 2.8: Time-dependence of sulfur transfer from cysteine to ThiS. (a) shows 

labeling of ThiS-COSH formed at different time-points with alexafluor 647 cadaverine 

(c) is the coomassie staining of the gel. (b) shows formation of radiolabeled ThiS-

COSH at various time-intervals. (d) is the corresponding coomassie staining. Lane 1: 

Molecular weight markers, Lane 2: 0 min, Lane 3: 2 min, Lane 4: 5 min, Lane 5: 8 

min, Lane 6: 12 min, Lane 7: 20 min, Lane 8: 30 min, Lane 9: 60 min, Lane 10: 90 

min 

 

The fluorescent and radioactive intensities on ThiS-COSH at different time-points 

obtained from the two methods were plotted using non linear regression with Grafit 

(b) 

(d) 

(a) 

(c) 
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5.0.11 (Figure 2.9) and identical rate constants of 0.04 min
-1

 was obtained by both 

ways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Rate of sulfur transfer from cysteine to ThiS (a) by fluorescent labeling of 

the thiocarboxylate formed (b) by using radioactive cysteine as the sulfur source 

 

To test the strategy on a proteomics scale, thioquinolobactin biosynthetic enzymes 

were chosen. The proposed mechanism of production of QbsE-COSH is summarized 

in Figure 2.6. QbsCDE over-expression system produces QbsE-COSH. However, the 

absence of the metalloprotease QbsD in QbsCE over-expression system prevents 
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sulfur transfer by QbsC to full-length QbsE
6
.  Hence, no QbsE-COSH would be 

formed in the QbsCE over-expression system. The dye was shown to selectively label 

only QbsE-COSH from the cell-free extract of the QbsCDE system (Figure 2.10). 

 

                           1       2     3                        1     2       3 

 

 

 

                    

 

 

 

Figure 2.10: Labeling of over-expressed QbsE-COSH in cell-free extract (a) 

coomassie staining (b) fluorescent image. Lane 1: Molecular weight markers, Lane 2: 

QbsCDE – cell-free extract, Lane 3: QbsC/QbsE - cell-free extract. 

 

2.6 Conclusions 

The methodology developed has demonstrated its ability to label thiocarboxylates in 

purified protein system as well as in cell-free extract of QbsCDE over-expression 

system. The main goal of the work is to develop a strategy that can be used as a 

proteomics tool to identify thiocarboxylate-forming protein in a native non-over-

expressed system. While alexafluor 647 cadaverine has proved its mettle in a purified 

and over-expressed system, it might not be the best tag to use in a native system where 

efficiency of the tagging reaction would play a key role in pulling out low-copy 

number putative thiocarboxylate-forming proteins. It is well-known that amines are 

not nucleophilic enough to achieve quantitative substitution of the protein-N-

(b) (a) 
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ethylmaleimide thioester. Changing the nucleophile to alexafluor 647 hydrazine, 

which is a better nucleophile than an amine, did not help either as it resulted in 

extensive non-specific labeling of other proteins. So, a new conjugation technique 

based on thioacid-azide click chemistry was exploited for proteomics. 
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CHAPTER 3 

Labeling thiocarboxylate proteins using lissamine rhodamine sulfonyl azide 

 

3.1 Introduction 

Thioacids and azides are known to react with each other to form an amide linkage
1,2

. 

The proposed mechanism of the reaction
1
 is shown in Figure 3.1. A thiatriazoline 

intermediate (compound 1, Figure 3.1), is proposed to form via either a 2+3 

cycloaddition or a stepwise diazo transfer-like mechanism. Decomposition of 6, 

stepwise or by a retro-[2+3] reaction, would ultimately lead to the amide with the 

release of nitrogen and sulfur. 

 

 

 

 

Figure 3.1: Proposed mechanism of the amide formation from thioacid-azide 

coupling. 

 

The high yields and shorter reaction times of electron-deficient azides like the sulfonyl 

azides with thioacids (Table 3.1) was exploited for labeling thiocarboxylate-forming 

proteins in bacterial cell-free extracts (Figure 3.2). A sensitive and easy-to-use 

fluorescent tag, Lissamine rhodamine sulfonyl azide, was synthesized and utilized for 

this purpose. 
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Table 3.1: Reaction of organic azides with thioacids in aqueous solvent
1
.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Reaction of protein thiocarboxylates with sulfonyl azide. 

 

3.2 Experimental section 

Lissamine rhodamine B sulfonyl chloride, EDTA, dithiothreitol (DTT), potassium 

phosphate, ferrous ammonium sulphate, sterile disposable PETG flask with vented 

closure and β-mercaptoethanol (Acros organics) were purchased from Fisher 

Scientific (Fairlawn, NJ), sodium azide, urea, ATP, Tris, bacterial protease inhibitor 

cocktail, propanedithiol and Tris(2-carboxyethyl)phosphine (TCEP) (Fluka) from 

Sigma-Aldrich (St.Louis, MO).  IPTG was bought from Lab scientific inc. 

(Livingston, NJ). Luria-Bertani from EMD biosciences (Gibbstown, NJ) and Difco 

nutrient broth from BD (Franklin lakes, NJ). Pseudomonas stutzeri KC (ATCC 

55595), S.coelicolor (ATCC 10147), S.erythrea (ATCC 11635), S.griesus (ATCC 
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23345) and S.avermitilis (ATCC 31267) was bought from American Type Culture 

Collection (Manassas, VA). B.xenovorans LB400 was a gift from Dr.James Tiedje 

(Michigan State University, East Lansing, MI) and Rhodococcus sp. RHA1 was 

provided by Dr.Lindsay Eltis (University of British Columbia, Vancouver, Canada). 

Chitin beads and pTYB1 vector was obtained from New England Biolabs (Ipswich, 

MA). Protein concentrations were determined by Bradford assay
3
. All fluorescence gel 

images were scanned using Typhoon 9400 or Typhoon trio (excitation: 532 nm green 

laser; emission: 580-nm band-pass filter (580 BP 30)) obtained from GE healthcare 

biosciences (Piscataway, NJ). Sonication of the cultures was done on Misonix 

Sonicator 3000 (Misonix Inc., Farmingdale, NY). ESI-MS analysis was performed on 

Esquire-LC_00146 instrument (Bruker, Billerica, MA). Data for nano-LC-MS/MS 

analysis of the labeled protein in the cell-free extract P.stutzeri KC was provided by 

Proteomics and Mass-spectrometry facility at Cornell University, Ithaca. NanoLC was 

carried out by an LC Packings Ultimate integrated capillary HPLC system equipped 

with a Switchos valve switching unit (Dionex, Sunnyvale, CA). The digested peptides 

were injected using a Famous auto sampler onto a C18 PepMap trap column (5 µm, 

300 µm × 5 mm, Dionex) for on-line desalting and then separated on a PepMap C-18 

RP nano column, eluted in a 30-minute gradient of 10% to 40% acetonitrile in 0.1% 

formic acid at 275 nL/min. The nanoLC was connected in-line to a hybrid triple 

quadrupole linear ion trap mass spectrometer, 4000 Q Trap from ABI/MDS Sciex 

(Framingham, MA) equipped with Micro Ion Spray Head II ion source. 2D-gel 

analysis was done using Biorad IEF protean cell with ReadyStrip IPG strips (pH 4.0 - 

7.0). Econo-pac 10 DG desalting columns were also acquired from Bio-rad (Hercules, 

CA). Dialysis was done using Novagen D-tube dialyzer Maxi MWCO 3.5 kDa (EMD 

biosciences).  
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3.2.1 Synthesis of lissamine rhodamine sulfonyl azide  

53 mg of lissamine rhodamine sulfonyl chloride (92 mmol) was dissolved in 10 mL 

acetone in a round-bottomed flask wrapped in aluminium foil. 29 mg of sodium azide 

(446 mmol, 5 eq.) was then added and the solution was stirred at room-temperature for 

24 h. The solvent was removed in vacuo and the residue was re-dissolved in 

dichloromethane and washed with water. The organic layer was dried over anhydrous 

MgSO4, filtered and removed in vacuo. Yield: 44.6 mg (83 %). Product was dissolved 

in DMSO to give a concentration of 15 mM. 
1
H NMR (400 MHz, DMSO) δ 8.43 (d, 

1H), 8.23 (t, 1H), 7.68 (dd, 1H), 7.13 – 6.85 (m, 6H), 3.65 (s, 8H), 2.10 (d, 1H), 1.21 

(t, 12H), 1.14 (s, 1H). ESI-MS (Positive mode): m/z = 584. 

 

 

 

 

 

 

Figure 3.3: Synthesis of lissamine rhodamine sulfonyl azide from lissamine 

rhodamine sulfonyl chloride. 

 

3.2.2 Over-expression and purification of T.thermophilus ThiS thiocarboxylate 

(TtThiSCOSH) and the corresponding DTT adduct (TtThiS/DTT)   

TtThiS cloned in pTYB1 was obtained from Protein facility, Department of Chemistry 

and Chemical Biology, Cornell University, Ithaca. The protein was over-expressed in 

E.coli BL21(DE3). 2 L cultures were grown at 37
o
C in Luria-Bertani till an OD600 of 

0.6 when the temperature was reduced to 15
o
C and the cultures were induced with 
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IPTG to a final concentration of 1 mM. Further growth was carried out at 15
o
C for 12-

16 h with constant agitation. The cultures were harvested by centrifugation and lysed 

by sonication on ice in 20 mM Tris, 500 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 

pH 7.8. The samples were then loaded onto 20 mL chitin beads column at a rate of 0.5 

mL/min and washed with 300 mL of 20 mM Tris, 500 mM NaCl, 1 mM EDTA, pH 

7.8 at rate of 2 mL/min. Cleavage of the protein was carried out at 4
o
C for 48 h with 

30 mL of 50 mM DTT to give ThiS/DTT and 30 mL of 50 mM Na2S to yield 

ThiSCOSH. T.thermophilus proteins were buffer-exchanged by dialysis into 100 mM 

potassium phosphate, pH 8.0 and stored at -80
o
C as 30% glycerol stock aliquots. No 

reducing agent was added to the frozen stocks.  

 

3.2.3 Labeling of TtThiSCOSH and TtThiS/DTT  

The frozen aliquots of the proteins were thawed and the samples were buffer-

exchanged into 50 mM potassium phosphate, 6 M urea, pH 6.0. 50 µL of 184 µM of 

both the proteins were then treated with 1.5 µL of 15 mM Lissamine rhodamine 

sulfonyl azide (2.5 eq.). The samples were incubated at room-temperature in the dark 

for 15 min. 6 µL of 250 mM TCEP (in 1 M potassium phosphate, pH 6.0) was added. 

The samples were analyzed on 15% Tris-glycine SDS-PAGE and imaged on Typhoon 

9400. 

 

3.2.4 Determination of time of incubation  

TtThiSCOSH was buffer-exchanged into 50 mM potassium phosphate, 6 M urea, pH 

6.0. 100 µL of 93 µM protein was incubated with 2 µL of 15 mM Lissamine 

rhodamine sulfonyl azide (3 eq., stock made in DMSO). 10 µL aliquots were taken at 

time-points 0, 5, 10, 15, 30, 45, 60 and 75 min and treated with 10 µL of SDS-PAGE 
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sample buffer containing 50 mM TCEP and analyzed on a 15% Tris-glycine SDS-

PAGE gel before imaging on Typhoon 9400.  

 

3.2.5 Specificity and sensitivity of labelling  

E.coli BL21(DE3) cells were grown in 75 mL Luria-Bertani at 37
o
C till an OD600 of 

1.6. The cells were harvested by centrifugation and lysed by sonication on ice in 4 mL 

of 50 mM potassium phosphate, 300 mM NaCl, 2 mM TCEP, pH 8.0. The sample was 

again centrifuged to obtain the cell-free extract, which was buffer-exchanged using 

Econo-pac 10 DG desalting columns into 50 mM potassium phosphate, 9 M urea, pH 

6.0. Three 90 µL samples of the above extract containing pure TtThiSCOSH (in 100 

mM potassium phosphate, 30% glycerol, pH 8.0) to a final concentration of 11 µM, 

1.1 µM and 110 nM were made and treated with 20 µL of 15 mM lissamine 

rhodamine sulfonyl azide for 15 min at room-temperature in the dark followed by 

treatment with 25 mM TCEP for another 30 min in the dark. The samples were 

desalted by CHCl3/methanol precipitation and then resuspended into 50 µL of 50 mM 

potassium phosphate, 9 M urea, pH 6.0. An equal volume of SDS-PAGE sample 

buffer was added and they were analyzed on 16% Tris-tricine gel for imaging on 

Typhoon trio (excitation: 532 nm green laser; emission: 580-nm band-pass filter (580 

BP 30)). 

 

3.2.6 Labeling different bacterial cell-free extracts 

 

3.2.6.1 P.stutzeri KC (ATCC 55595) was maintained on a nutrient broth agar plate at 

4
o
C and a colony was used to inoculate 100 mL culture of DRM media

4
 in sterile 

disposable PETG flask with vented closure. The culture was grown at 30
o
C for 48 h 

with shaking. The culture was harvested by centrifugation. P.stutzeri KC cell-pellet 
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was resuspended in 3 mL of 50 mM potassium phosphate, 300 mM NaCl, 2 mM 

TCEP, pH 8.0 containing 6.5 mg/mL of bacterial protease inhibitor cocktail. The 

sample was lysed by sonication on ice and the cell-free extract was obtained by 

centrifugation. The supernatant was then treated with Na2S, ATP and MgCl2 to a final 

concentration of 9 mM, 18 mM and 6 mM respectively and the sample was incubated 

at room-temperature for 6 h. The sample was dialysed extensively into 50 mM 

ammonium acetate and was freeze-dried. It was then re-suspended into 1 mL of 50 

mM potassium phosphate, 6 M urea, pH 6.0. 100 µL of denatured cell-free extract was 

treated with 20 µL of 15 mM rhodamine sulfonyl azide for 15 min at room-

temperature in the dark and then with 12 µL of 250 mM TCEP(dissolved in water) and 

further incubated at room-temperature for 30 min in the dark.  The sample was 

precipitated by CHCl3/methanol and subjected to 2D-gel analysis (pH 4-7, 7 cm IEF 

strip, active rehydration @ 50V for 12 h at 20
o
C. Four step focussing (20

o
C): S1: 

250V, 15 min, S2: 4000V, linear voltage ramp, 2h, S3: 4000V, rapid voltage ramp, 

20000Vh, S4: 500V, hold. Current limit/gel: 50 µA). The lower molecular weight 

fluorescent spot, imaged on Typhoon trio (excitation: 532 nm green laser; emission: 

580-nm band-pass filter (580 BP 30)), was excised out of the gel and subjected to 

mass-spectrometry analysis.  

 

3.2.6.2 S.coelicolor (ATCC 10147) maintained on yeast malt extract glucose agar at 

4
o
C was used to inoculate a 100 mL culture of M9 minimal media containing 400 mg 

glucose, 2 mM MgSO4 and 100 µM  CaCl2 in a sterile disposable PETG flask with 

vented closure with constant agitation. The culture was incubated at 30
o
C for 2-3 days 

till a good cell-growth was observed before being used to inoculate a larger 1.5 L M9 

minimal media culture. The larger culture was further incubated at 30
o
C for 5 days 

with shaking. The culture was spun-down by centrifugation and the cell-pellet 
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obtained was resuspended in 45 mL of 50 mM potassium phosphate, 300 mM NaCl, 2 

mM TCEP, 55 mg of bacterial protease inhibitor cocktail, pH 8.0. Cells were lysed by 

sonication on ice and the cell-free extract was treated with 6 mM MgCl2, 9 mM Na2S 

and 18 mM ATP for 6 h at room- temperature. The sample was dialyzed extensively 

against 50 mM ammonium acetate and freeze-dried. The residue was then re-dissolved 

in 5 mL of 50 mM potassium phosphate, 9 M urea, pH 6.0. 300 µL of denatured cell-

free extract was treated with 60 µL of 15 mM rhodamine sulfonyl azide for 15 min at 

room-temperature in the dark and then with 36 µL of 250 mM TCEP(dissolved in 

water) and further incubated at room-temperature for 30 min in the dark.  The sample 

was precipitated by CHCl3/methanol and subjected to 2D-gel analysis (pH 4-7, 17 cm 

IEF strip, active rehydration @ 50V for 12 h at 20
o
C. Four step focussing (20

o
C): S1: 

250V, 15 min, S2: 10000V, linear voltage ramp, 3h, S3: 10000V, rapid voltage ramp, 

60000Vh, S4: 500V, hold. Current limit/gel: 50 µA).  

 

3.2.6.3 Growth conditions for other organisms used in this study 

Typical growth conditions for other organisms subjected to the labelling strategy to 

identify thiocarboxylate-forming proteins in them are shown in Table 3.2. All the 

cultures were harvested by centrifugation and lysed by sonication (in case of 

S.avermitilis and S.griesus, this step was preceded by homogenization). The remaining 

protocol is same as that mentioned in Sub-section 3.2.6.1.    

 

3.2.7 Dependence of protein labelling on expression conditions 

P.stutzeri KC (ATCC 55595) from a nutrient broth agar plate maintained at 4
o
C was 

used to inoculate 100 mL culture of DRM media
4
 in sterile disposable PETG flask 

with vented closure. The culture was grown at 30
o
C for 48 h with shaking. The culture 

was harvested by centrifugation.  For iron-rich conditions, nutrient broth was used to  
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Table 3.2:  Growth conditions for micro-organisms. All organisms were grown at 

30
o
C in sterile disposable PETG flask with vented closure. 

 

grow the bacteria at 30
o
C till an OD600 of 1.0. The cell-pellets were then re-suspended 

in 3 mL of 50 mM potassium phosphate, 300 mM NaCl, 2 mM TCEP, pH 8.0 

containing 6.5 mg/mL of bacterial protease inhibitor cocktail. The samples were lysed 

Organism Liquid culture media Time of incubation 

Burkolderia xenovorans 

LB400 maintained at 4
o
C on 

nutrient broth agar plate   

M9 supplemented with 

4 g/L glucose, 2 mM 

MgSO4 and 100 µM 

CaCl2. 

Grown till OD600 of 0.6 

Rhodococcus sp. RHA1 

maintained at 4
o
C on tryptic 

soy agar plate   

M9 salts with 400 mg 

glucose, 2 mM MgSO4 

and 100 µM CaCl2. 

Grown till OD600 of 0.6 

S.griesus  maintained at 4
o
C on 

yeast malt extract glucose agar 

plate   

M9 salts with 400 mg 

glucose, 2 mM MgSO4 

and 100 µM CaCl2. 

4-5 days 

S.avermitilis maintained at 4
o
C 

on yeast malt extract glucose 

agar plate   

KH2PO4 0.5 g/L, 

Asparagine 0.5g/L, 

Glucose 10 g/L, Adjust 

pH to 7.0, Sterile 

filtered, 2 mL / L of 1 M 

MgSO4, 100 µL / L of 

1 M CaCl2 

4-5 days 

S.erythrea maintained at 4
o
C 

on yeast malt extract glucose 

agar plate   

M9 salts with 400 mg 

glucose, 2 mM MgSO4 

and 100 µM CaCl2. 

4-5 days 
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by sonication on ice and the cell-free extract was obtained by centrifugation. Na2S, 

ATP and MgCl2 were added to a final concentration of 9 mM, 18 mM and 6 mM 

respectively to all samples shown in the Table 3.3 except sample 1 and the samples 

were then incubated at room-temperature for 6 h. Freshly prepared iodoacetic acid (in 

1 M potassium phosphate, pH 8.0) was added to sample 3 to a final concentration of 

100 mM. The samples were further incubated at room-temperature for 1 h and then, 

buffer-exchanged by dialysis into 50 mM ammonium acetate. The samples were 

freeze-dried and the residue obtained was re-suspended into 50 µL of 50 mM 

potassium phosphate, 6 M urea, pH 6.0. 2 µL of 15 mM lissamine rhodamine sulfonyl 

azide was added and the samples were incubated in the dark at room-temperature for 

15 min. Equal volumes of 50 mM TCEP in 100 mM potassium phosphate, pH 8.0 

were added to the samples and further incubation was carried out in the dark for 30 

min. The solutions were then precipitated using CHCl3/methanol and re-suspended in 

50 mM potassium phosphate, 6 M urea, pH 6.0. Equal volumes of SDS-PAGE sample 

buffer containing 50 mM TCEP were added and the samples were analyzed by a 16% 

Tris-tricine gel, which was imaged on Typhoon 9400.  

 

Table 3.3: Sample preparations for studying the dependence of labelling on bacterial 

growth condtions. 

Sample number Treatment with 

Na2S/ATP/MgCl2 

Samples: 

1 mL cell-free extract of P.stutzeri KC 

grown in  

1 No DRM media 

2 Yes DRM media 

3 Yes DRM media 

4 Yes nutrient broth 
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3.3 Results and discussions 

T.thermophilus ThiS thiocarboxylate (TtThiSCOSH) and TtThiS/dithiothreitol adduct 

were made by cleaving the intein construct with sulfide and DTT respectively. The 

dye labeled the thiocarboxylate protein and not the DTT adduct suggesting that it is 

labeling the thioacid functionality specifically (Figure 3.4(a)). Approximately, 70% 

labeling was achieved in 15 min (Figure 3.4(b)). 

                                     1     2                              

                                                          

 

 

 

 

 

 

 

 

Figure 3.4: (a) Lane 1: ThiS/DTT adduct does not get labeled with the dye while lane 

2: TtThiSCOSH does. (b) Time-dependence of labeling of TtThiSCOSH. Time-points 

taken: 0, 5, 10, 15, 30, 45, 60 and 75 mins.  PMT voltage: 300 V (Typhoon 9400) 

 

Having been able to label pure TtThiSCOSH, the issue of specificity in a cell-

free extract was addressed next. TtThiS and human ubiquitin
5
 used in a previous 

study, does not have cysteine. A more general model, E.coli BL21(DE3) cell-free 

extract, was chosen to test the specificity and sensitivity of the sulfonyl azide. The 

labeling was carried out at pH 6.0 to prevent possible reaction of the dye with the 

nucleophilic thiol side-chain of cysteine (Figure 3.5). This chemistry can be similar to 
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the reduction of azides to amines using dithiols where sulfenamide adduct (compound 

1, Figure 3.5) is proposed to be an intermediate
6
. Sulfenamide linkages, however, has 

been shown to be susceptible to reduction by soft nucleophiles like thiols and 

phosphines 
6,7

. Hence, the labeling reaction is followed by treatment with TCEP/β-

mercaptoethanol to break any possible non-specific reaction between the dye and 

cysteine thiols.   

                                

 

 

 

 

Figure 3.5: Possible side reaction of the sulfonyl azide dye with cysteine sidechains. 

  

Pure TtThiSCOSH was added to the cell-free extract of E.coli BL21(DE3) in 

varying concentrations and labeling was carried out under denaturing conditions (9 M 

urea) to determine the sensitivity limits of the dye (Figure 3.6). TtThiSCOSH could 

be seen to be clearly labeled up to 9.9 X 10
-11

 moles in 90 µL sample volume 

(concentration of 1.1 µM), which corresponds to approximately 464 copies of the 

protein assuming the volume of an E.coli cell as 0.7 X 10
-15

 L 
8
 (One copy of any 

protein in an E.coli cell corresponds to 1/(6.023 X 10
23

) moles ≡ 2.37 nM. This would 

imply that a concentration of 1.1 µM would correspond to approximately 464 copies). 

Low levels of labeling are also observed for the higher molecular-weight proteins in 

the gel shown in Figure 3.6. It still remains to be seen whether they are non-specific 

or possibly other thiocarboxylate-forming proteins. The fluorescence intensity of the 

labeled proteins (both the higher molecular-weight and the thiocarboxylated proteins) 
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increases when the gel is scanned at higher PMT voltages of the instrument as 

compared to lower PMT.  

To test the method on a proteome, Pseudomonas stutzeri KC (ATCC 55595) 

was chosen. P.stutzeri KC is known to produce a siderophore, pyridine 

dithiocarboxylate (PDTC) under iron-limiting conditions
9
. PDTC is responsible for the 

dechlorination of carbon tetrachloride (CCl4) displayed by the organism. The 

biosynthesis of this small molecule requires a protein, PdtH. Sequence analysis of 

PdtH identified the protein to be small and has the characteristic diglycyl C-terminus, 

both features suggesting that it could possibly transport sulfur as a thiocarboxylate.   

                         (a)     1        2      3              (b)     1       2      3 

 

 

 

 

 

 

Figure 3.6: Sensitivity of labeling of TtThiSCOSH in the presence of E.coli BL21 

(DE3) cell-free extract. Lanes 1 (11 µM), 2 (1.1 µM) and 3 (110 nM). 15 µL samples 

of the concentrations mentioned were loaded in each lane. a) coomassie staining b) 

fluorescent image. PMT voltage: 400 V (Typhoon trio)  

 

Burkolderia xenovorans LB400 and Rhodococcus sp. RHA1, other polychlorinated 

biphenyl-degrading micro-organisms, were also chosen for this study to see if they 

harbor any thiocarboxylate-forming protein. Streptomyces coelicolor (ATCC 10147) 

an antibiotic-producing actinomycete, was also tested along with Streptomyces 

avermitilis, Streptomyces griesus and Saccharopolyspora erythrea.  The cell-free 
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extracts of all the chosen micro-organisms were treated with sulfide and ATP to form 

protein thiocarboxylate (Figure 3.7) before subjecting it to labeling.  

 

 

 

 

Figure 3.7: Reconstitution of protein thiocarboxylates 

 

P.stutzeri KC and S.coelicolor showed protein labeling in the lower-molecular weight 

region, whose intensity was higher than the background (Figure 3.8). 2D-SDS-PAGE 

was used for analysis of the labeled proteome. This provides better resolution of the 

proteins according to their isoelectric points and molecular weights. 

          (a)                                                         (b)                

 

 

 

 

 

 

Figure 3.8: 2D-gel of (a) P.stutzeri KC cell-free extract, 7 cm IEF strip, pH 4-7,  PMT 

voltage: 400 V (b) S.coelicolor cell-free extract, 17 cm IEF strip, pH 4-7,  PMT 

voltage: 400 V (Typhoon trio) 

 

The labeled protein in P.stutzeri KC cell-free extract was isolated and subjected to 

LC-MS/MS analysis (Figure 3.9 and Figure 3.10). The protein was identified as 

PdtH, the small sulfur-transfer protein that provides sulfur for the biosynthesis of the 



 

 41 

siderophore, pyridine dithiocarboxylic acid (PDTC). Identity of the labeled protein in 

S.coelicolor proteome is currently being established. S.avermitilis also showed weak 

labeling in the lower-molecular weight region of the SDS-PAGE. Attempts are being 

made to isolate a large amount of the labeled protein to identify it. Burkolderia 

xenovorans LB400, Streptomyces griesus, Saccharopolyspors erythrea and 

Rhodococcus sp. RHA1 did not show any tagged protein in the lower molecular-

weight region.  

 

 

 

 

 

 

 

 

 

Figure 3.9: LC-MS/MS analysis of the lower molecular weight protein spot of 

P.stutzeri KC cell-free extract. The protein was subjected to in-gel trypsin digestion 

followed by oxidation of methionines and carbamidomethylation of the cysteines 

(with iodoacetamide). 40% sequence coverage was obtained and the matched peptides 

are shown in red.  
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Figure 3.10: MS/MS fragmentation of FSDGLNTPLK (a peptide fragment). The 

fragmentation of the peptide happens as shown below the mass-spectra. A y-ion is a 

fragment from the C-terminus that cleaves after the nitrogen of the amide bond while 

an a-ion is a fragment from the N-terminus that cleaves before the amide carbonyl. ++ 

indicates a doubly charged fragment. The number in parentheses in the MS spectra 

(example a(1) or y(9)) indicate the number of amino-acids from the N-terminus (for an 

a-ion) or C-terminus (for a y-ion) after which cleavage occurs.  
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 Labeling of the proteins was also dependent upon the expression conditions of 

the micro-organisms. The formation of the fluorescent band in P.stutzeri KC was seen 

only when the bacteria were cultured in iron-limiting conditions. The band whose 

molecular weight was less than 10 kDa could not be seen if rich media is used 

suggesting repression of protein expression under conditions of iron abundance (box, 

Lane 2, Figure 3.11).    

                                                       1      2         3      4                     

 

 

 

 

 

 

Figure 3.11: Labeling of P.stutzeri KC cell-free extract. Lane 1: cell-free extract, 

Lane 2: cell-free extract treated with sulfide and ATP prior to labeling, Lane 3: cell-

free extract treated with sulfide and ATP and treated with iodoacetic acid to cap the 

thiocarboxylate, Lane 4: cell-free extract of P.stutzeri KC grown in nutrient broth. 

PMT voltage: 250 V (Typhoon 9400) 

 

3.4 Conclusions 

The involvement of protein thiocarboxylates in important pathways necessitates the 

development of a strategy to identify them. We have developed a proteomics tool to 

label these proteins in cell-free extracts and have successfully detected an important 

sulfur-transfer protein in the cell-free extract of P.stutzeri KC. Formation of PdtH 

thiocarboxylate has also been demonstrated for the first time. The method can detect 

thiocarboxylated proteins with copy numbers as low as 500. The labeling was found to 
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be dependent on the growth conditions of the micro-organism as illustrated by the 

PdtH protein expression. Finding new thiocarboxylate-forming proteins essential for 

bacterial survival as in the case of biosynthesis of cofactors like thiamin or amino-acid 

biosynthesis like cysteine might lead to pathways with interesting biochemistry and 

open up new vistas for drug discovery.  
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CHAPTER 4 

From sulfate to methionine via protein thiocarboxylate 

 

4.1 Introduction 

Thiocarboxylate-forming proteins have been shown to be involved in a variety of 

biosynthetic pathways, prominent among these being vitamin B1 (ThiS)
1
, 

molybdopterin (MoaD)
2
, cysteine (CysO)

3
, thioquinolobactin (QbsE)

4
, 2-

thioribothymidine (TtuB)
5
 and 5-methoxy-carbonyl-methyl-2-thiouridine (Urm1p)

6
. 

Despite their important role in sulfur transfer, there is a lack of information about their 

sulfur source, except for ThiS and MoaD thiocarboxylate which have been shown to 

derive their sulfur from L-cysteine
2,7,8

 (Table 4.1).  

 

Table 4.1: Sulfur source of thiocarboxylate-forming proteins involved in various 

biosynthetic pathways 
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 A search for sulfur transfer proteins in the genomic database, 

theseed.uchicago.edu, showed a small putative thiocarboxylate-forming protein 

clustered with the sulfate assimilation proteins in Wolinella succinogenes, a member 

of the Helicobacteraceae family (Figure 4.1).  

 

 

Figure 4.1: The putative thiocarboxylate forming protein, 936, clustered with sulfate 

assimilation proteins – 933, 937, 938 and 939, and homocysteine biosynthetic 

proteins, 941 and 944 in Wolinella succinogenes. Putative functions of the genes are 

mentioned in Table 4.2. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Sulfate as possible sulfur source for thiamin biosynthesis in Acidovorax 

sp. JS42 and Pelodictyon luteolum DSM 273 
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This clustering pattern and variations of it was seen in many other micro-

organisms like Clostridium kluyveri, Clostridium thermocellum, Desulfitobacterium 

hafniense, Carboxydothermus hydrogenoformans Z-2901, Caldicellulosiruptor 

saccharolyticus DSM 8903, Alkaliphilus metalliredigens QYMF, Geobacter 

metallireducens GS-15, Geobacter uraniireducens Rf4, Acidovorax sp. JS42 and 

Pelodictyon luteolum DSM 273 suggesting that they are functionally related.  

Prevalence of such arrangement of genes in many organisms suggests direct 

utilization of sulfate as a sulfur source for protein thiocarboxylates. In certain 

organisms such as Acidovorax sp. JS42 and Pelodictyon luteolum DSM 273, the genes 

of sulfate assimilation proteins are present in the neighbourhood of thiamin 

biosynthetic genes (Figure 4.2) indicating the possibility of sulfate being the sulfur 

source of thiamin in these organisms instead of cysteine (Figure 4.3).  

 

 

 

 

 

 

 

Figure 4.3: Putative mechanism of thiazole formation from sulfate in Acidovorax sp. 

JS42 and Pelodictyon luteolum DSM 273 
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        Figure 4.4: Two common pathways for L-methionine biosynthesis 

 

The biosynthesis of homocysteine involves direct sulfhydrylation of 

O-succinylhomoserine or O-acetylhomoserine by the corresponding sulfhydrylases, or 

breakdown of cystathionine by cystathionine-β-lyase
9
 (Figure 4.4). The homocysteine 

biosynthesis in W.succinogenes is dependent on protein-thiocarboxylate for sulfur 

transfer rather than a direct sulfhydrylation of O-acetyl-L-homoserine. Methionine is 

then made by methylation of L-homocysteine. In this work, we have also shown 

sulfite (derived from sulfate) being utilized directly in Wolinella succinogenes to make 

the protein thiocarboxylate. 

 

4.2 Experimental section 

W.succinogenes genomic DNA (ATCC 29543D-5) was purchased from ATCC 

(Manassas, VA). pTYB1, SapI, NdeI, XhoI and chitin beads were bought from New 
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Bertani, glycerol, chloroform, methanol, acetonitrile, potassium phosphate and 

ammonium acetate. IPTG, amplicillin and kanamycin were procured from Lab 

Scientific (Livingston, NJ). L-cysteine, arabinose, DL-methionine, D-glucose, M9 

minimal salts, formic acid, EDTA, urea, D2O, triton X-100, methyl viologen, TCEP, 

O-acetyl-L-serine, O-succinyl-L-homoserine, DL-homocysteine, 10% Pt (platinum) on 

activated carbon, hydroxocobalamin hydrochloride, S-adenosylmethionine chloride, 3-

mercaptopropionic acid and o-phthalaldehyde were purchased from Sigma-Aldrich 

(St.Louis, MO). Ferrous ammonium sulfate, nickel sulfate, chloramphenicol, boric 

acid, Na2SO3 and Tris.HCl were acquired from Fisher Scientific (Fairlawn, NJ). 

CaCl2, ZnSO4, MgCl2, MgSO4 and NaCl were got from Mallinckrodt. Microcon YM-

10 (MWCO 10 kDa), YM-3 (MWCO 3 kDa) and amicon (MWCO 5 kDa) cellulose 

filters were obtained from Millipore Corporation (Billerica, MA). Aminolevulinic 

acid, ATP and sodium sulfide were from Acros. O-acetyl-L-homoserine and 5-DL-

methyltetrahydrofolic acid calcium salt trihydrate was bought from TRC Canada 

(North York, Ontario). Typhoon trio and chelating sepharose fast flow (used for Ni-

NTA affinity purification) were products of GE healthcare biosciences (Piscataway, 

NJ). All bacterial cultures were grown on New Brunswick Scientific (Edison, NJ) 

Excella E25 shaker incubator and lysed by sonication using Misonix sonicator 3000 

(Misonix Inc., Farmingdale, NY). Absorbance data was collected on Cary 300 Bio 

UV-visible spectrophotometer (Varian, Palo Alto, CA). Glove box was made by Coy 

Laboratory products (Grass lakes, MI). ESI-MS analysis was performed using an 

Esquire-LC_00146 instrument (Bruker, Billerica, MA) in the positive ion mode. 

MALDI-MS data was recorded in positive mode on Applied Biosystems Voyager 

STR (matrix: sinapinic acid). LC-MS data was obtained on an Agilent 1200 capillary 

HPLC system interfaced to an API QSTAR Pulsar Hybrid QTOF mass spectrometer 

(Applied Biosystems/MDS Sciex, Framingham, MA) equipped with an electrospray 
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ionization (ESI) source. Liquid chromatography (LC) separation was achieved using a 

Phenomenex Jupiter C4 microbore column (150 × 0.50 mm, 300 Å) at a flow rate of 

10 µL/min (solvent A: water + 0.1% HCOOH, solvent B: acetonitrile + 0.1% 

HCOOH, 0 - 5 mins: 2% B; 8 min: 30% B; 52 min: 60% B; 60 min: 95% B, 65 min: 

95% B). MALDI-MS and LC-MS data were provided by Laboratory of Biological 

Mass spectrometry at Texas A&M University, College Station, Texas. All the protein 

concentrations were measured by Bradford assay 
10

. The protein stock samples are in 

100 mM Tris, 150 mM NaCl, 2 mM TCEP, 30% glycerol, pH 8.0 unless otherwise 

mentioned.  

 

4.2.1 Cloning and over-expression of the proteins  

sir, hcyD, hcyF, hcyS, metY and metZ were all cloned from Wolinella succinogenes 

FDC 602W into THT vector (a pET-28 derived vector which allows attachment of a 

modified 6xHisTag followed by a TEV protease site onto the N-terminus of the 

expressed protein) between NdeI/XhoI restriction sites. Three methyltransferase genes 

in the genome - Ws250, Ws942 and Ws1672 that could possibly make methionine 

from homocysteine were also cloned into THT vector. Sequence analysis suggests 

Ws250 and Ws1672 are 5-methyltetrahydropteroyltriglutamate-homocysteine 

methyltransferases, metE. Ws942, the methyltransferase gene present along with the 

sulfate assimilation and homocysteine biosynthetic genes, is annotated as a SAM-

dependent methyltransferase. Salmonella typhimurium cysG (siroheme synthase) was 

cloned into pACYCDuet vector. All the genes except metZ (forward primer: 

CAGCACATGCATATGCCAGCCCACAAAGATGAGACT; Reverse primer: 

TTATTCCGCTCGAGTTAAGCTTTGGCTAGGGCTTG) and Ws942 (forward 

primer: CAGCACATGCATATGCACCCCATGACCCTTGATG; Reverse primer: 

AATGTTTGCTCTTCCGCTCGAGTCATTTCCTCCATGAGATAAA) were 
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purchased from Protein facility, Department of Chemistry and Chemical Biology, 

Cornell University. Methionine-auxotroph E.coli B834(DE3) harboring the iscS-

cluster assembly genes in the vector pDB1282 was a gift from Dr.Steve Ealick 

(Department of Chemistry and Chemical biology, Cornell University, Ithaca). 

All the proteins, except WsSir, were over-expressed in E.coli BL21(DE3). 

Luria-Bertani cultures containing 40 mg kanamycin per liter were grown at 37
o
C till 

an OD600 of 0.6, cooled to 15
o
C and then induced with a final concentration of 500 µM 

IPTG before continuing growth at 15
o
C for another 12 -16 h. 

WsSir was over-expressed along with S. typhimurium CysG and A. vinelandii 

IscS cluster in E.coli B834(DE3). 1.5 L M9 minimal media cultures supplemented 

with 30 mL 20% glucose, 3 mL of 1 M MgSO4, 150 µL of 1 M CaCl2, 120 mg DL-

methionine, 150 mg ampicillin and 60 mg each of kanamycin and chloramphenicol. 

The cultures were grown at 37
o
C till an OD600 of 0.1. At this point, 3.75 g of L-

arabinose, 88 mg of ferrous ammonium sulfate and 90 mg of L-cysteine were added 

and the cultures were shaken at 100 rpm till the OD600 reached 0.6 when they cooled 

for 4 h at 4
o
C. 45 mg of aminolevulinic acid and a final concentration of 0.5 mM IPTG 

were added and the cultures were further shaken at 100 rpm for 12-16 h at 15
o
C.  

All the cultures were harvested by centrifugation and the cell-pellets were 

lysed by sonication on ice. The proteins were purified by Ni-NTA purification 

protocol at 4
o
C. All buffers contained 1 mM TCEP. After affinity column purification, 

all proteins were desalted into 100 mM Tris, 150 mM NaCl, 2 mM TCEP, 30% 

glycerol, pH 8.0 and stored as frozen aliquots at -80
o
C. 

Truncated WsHcyS (with the C-terminus alanine removed) was cloned into an 

intein construct, pTYB1, between the NdeI/SapI restriction sites (Forward primer: 

CAGCACATGCATATGAATCTCATCATCAACGGAGAGAATAA; Reverse 

primers: AATGTTTGCTCTTCCGCAGCCTCCTCCCATGAAATATAAA). To 
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make truncated WsHcyS-COSH and WsHcyS-(DL)-homocysteine, WsHcyS in 

pTYB1 was over-expressed in E.coli BL21(DE3). Luria-Bertani cultures containing 

100 mg of ampicillin per liter were grown at 37
o
C till an OD600 of 0.6-0.8 when the 

temperature was reduced to 15
o
C and the cultures were induced with a final 

concentration of 0.5 mM IPTG. Further growth was carried out at 15
o
C for 12-16 h 

with constant agitation. The cultures were harvested by centrifugation and lysed by 

sonication on ice in 20 mM Tris, 500 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 

pH 7.8. The samples were then loaded onto 20 mL chitin beads column at a rate of 

0.5 mL/min and washed with 300 mL of 20 mM Tris, 500 mM NaCl, 1 mM EDTA, 

pH 7.8 at rate of 2 mL/min. Cleavage of the protein was carried out at 4
o
C for 12-16 h 

with 30 mL of 50 mM Na2S to give truncated WsHcyS-COSH and 30 mL of 50 mM 

DL-homocysteine to yield truncated WsHcyS-(DL)-homocysteine. They were desalted 

into 100 mM Tris, 150 mM NaCl, 2 mM TCEP, 30% glycerol, pH 8.0 by dialysis 

using Novagen D-tube dialyzer Maxi (MWCO 3.5 kDa) and stored as frozen aliquots 

at -80
o
C. 

 

4.2.2 Activity of gene product WsHcyD (putative metalloprotease) 

200 µL of 611 µM WsHcyS was treated with 6 µL of 2.4 mM WsHcyD and 3 µL of 

10 mM ZnSO4 at room-temperature for 2 h. The samples were desalted into 200 µL of 

50 mM NH4OAc. 200 µL of acetonitrile was then added along with 2 µL of HCOOH 

to the sample before being analyzed by positive-mode ESI-MS.   

 

4.2.3 Product of WsHcyD cleavage of WsHcyS-GGA – identification of released 

alanine 

The proteins were desalted twice into 50 mM potassium phosphate, pH 8.0 using Bio-

rad bio-spin 6 columns. 85 µL of approximately 28 mM WsHcyS-GGA was treated 
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with 100 µL of 1.62 mM WsHcyD at room-temperature for 2 h. The sample was 

freeze-dried and re-dissolved in D2O. The proteins were filtered off using YM-3 

microcons (which had been washed extensively with D2O to remove glycerol before 

sample loading) and the filterate was analyzed on Varian 500 MHz NMR. 

 

4.2.4 Activity of gene product WsHcyF (putative MoeB-like protein) 

30 µL of 3.98 mM WsHcyS, 23 µL of 1.76 mM WsHcyF, 30 µL of 0.88 mM 

WsHcyD, 3 µL of 10 mM ATP and 6 µL of 10 mM MgCl2 were added together and 

incubated at room-temperature for 15 min. The controls (Figure 4.10) had the 

corresponding component missing. The reactions were quenched with equal volumes 

of 12 M urea (in water) before the proteins were removed using YM-10 microcons and 

the samples analyzed by HPLC (Agilent 1200 using Supelco supelcosil LC-18-T (15 

cm X 4.6 mm, 3 µm)) using the following gradient at a flow rate of 1 mL/min: solvent 

A is water, solvent B is 100 mM potassium phosphate, pH 6.6, solvent C is methanol. 

0 min: 100% B; 7 min: 10% A, 90% B; 12 min: 25% A, 60% B, 15% C; 17 min: 25% 

A, 10% B, 65% C; 19 min: 100% B, 25 min: 100% B  

 

4.2.5 Full conversion of ATP to AMP by WsHcyF  

Two separate samples containing 30 µL of 3.98 mM WsHcyS, 30 µL of 1.33 mM 

WsHcyF, 15 µL of 1.61 mM WsHcyD, 3 µL of 10 mM ATP and 2 µL of 30 mM 

MgCl2 were added together and incubated at room-temperature for 15 min and 120 

min respectively. The proteins were then removed using YM-3 microcons and 

analyzed by HPLC (Agilent 1200 using Supelco supelcosil LC-18-T (15 cm X 4.6 

mm, 3 µm)) using the following gradient at a flow rate of 1 mL/min: solvent A is 

water, solvent B is 100 mM potassium phosphate, pH 6.6, solvent C is methanol. 0 
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min: 100% B; 7 min: 10% A, 90% B; 12 min: 25% A, 60% B, 15% C; 17 min: 25% 

A, 10% B, 65% C; 19 min: 100% B, 25 min: 100% B 

 

4.2.6 Formation of protein WsHcyS thiocarboxylate from sulfite using WsSir 

(putative sulfite reductase) 

4.2.6.1 Preparation of reduced methyl viologen 

149.5 mg of methyl viologen was dissolved in 12.5 mL of 50 mM potassium 

phosphate, pH 8.0 along with 15 mg of 10% Pt on activated carbon in a 15 mL 

centrifuge tube. Argon was bubbled through the solution for 5 min after which 

hydrogen was bubbled through the sample for 30 min. The sample was quickly sealed 

with parafilm and centrifuged for 5 min to remove the catalyst. It was then taken into 

the glove-box and the supernatant was transferred to a new 15 mL centrifuge tube. The 

concentration of the reduced methyl viologen was measured at 600 nm (extinction 

coefficient 1.3 X 10
4
 M

-1
cm

-1
) 

11
. 

 

4.2.6.2 Observation by labeling with lissamine rhodamine sulfonyl azide 

30 µL of 3.98 mM WsHcyS, 30 µL of 1.33 mM WsHcyF, 10 µL of 1.61 mM 

WsHcyD and 9 µL of 379 µM WsSir were added together outside the glove-box and 

moved into the glove-box for 2 h incubation with the lids open (to let the oxygen 

diffuse out and make the sample anerobic). A similar sample was set-up without 

WsHcyD as a control. After 2 h, 30 µL of 10 mM ATP, 4 µL of 1 M MgCl2, 2.44 µL 

of 100 mM Na2SO3 and 100 µL of 3.5 mM reduced methyl viologen were added to 

both the samples inside the glove-box and further incubated within the glove-box for 

15 min. The samples were quenched by exposing to air and shaking. They were then 

desalted using Bio-rad bio-spin 6 columns into 100 µL of 50 mM NH4OAc, 6 M urea, 

pH 6.0 treated with 7.4 µL of 15 mM rhodamine sulfonyl azide for 15 min in the dark 
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at 26
o
C. They were then desalted by chloroform:methanol precipitation and analyzed 

by a 15% tris-glycine SDS-PAGE. The fluorescence image of the labeled protein in 

the gel was obtained on Typhoon Trio imager (excitation: 532 nm green laser; 

emission: 580-nm band-pass filter (580 BP 30)). 

 

    4.2.6.3 Observation of WsHcyS-COSH by LC-MS 

Thiocarboxylate formation was also assayed by LC-MS. The same procedure was 

used as mentioned above. After the quenching, the samples were heated at 100
o
C for 5 

min and left to cool to room-temperature for an hour. The protein precipitate was 

removed and the filterate was concentrated and desalted using Bio-rad bio-spin 6 

columns into 50 mM NH4OAc, pH 6.0 and analyzed by LC-MS. 

 

4.2.7 Protein thiocarboxylate as sulfur source for homocysteine biosynthesis 

95 µL of 159 µM truncated WsHcyS-COSH and 11 µL of 1.4 mM WsMetY were 

incubated with the appropriate substrate – 1.25 µL of 10 mM O-acetyl-L-serine in one 

case and 1.25 µL of 10 mM O-acetyl-L-homoserine in the other. The samples were 

incubated at room-temperature for 1 h. They were then desalted into 50 mM NH4OAc, 

pH 6.0 and analyzed by MALDI-MS. The time-period of incubation was then reduced 

to 2 min when it was realized that the higher molecular-weight 7907 Da adduct was 

formed.  

 

4.2.8 Homocysteine formation from sodium sulfide and O-acetyl-L-homoserine 

using WsMetY 

80 µL of 1.4 mM WsMetY (desalted into 50 mM potassium phosphate, pH 8.0) was 

mixed with 320 µL of 50 mM potassium phosphate, 80% D2O, pH 8.0 along with 50 

µL each of 100 mM sodium sulfide and 100 mM O-acetyl-L-homoserine. Sample was 
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incubated for 1 h at 26
o
C. Control sample had the above composition except for the 

protein. Samples were freeze-dried and re-dissolved in 100% D2O. 
1
H-NMR taken on 

Varian 300 MHz. 

 

  4.2.9 Reaction of truncated WsHcyS-COSH with WsMetZ  

2.85 µL of 1.4 mM WsMetZ and 95 µL of 42 µM truncated WsHcyS-COSH were 

incubated with the appropriate substrate – 0.4 µL of 10 mM O-acetyl-L-serine, 0.4 µL 

of 10 mM O-acetyl-L-homoserine and 0.4 µL of 10 mM O-succinyl-L-homoserine for 

3 min at room-temperature. The samples were desalted into 50 mM NH4OAc, pH 6.0.  

 

4.2.10 Homocysteine release from WsHcyS-homocysteine adduct 

95 µL of 337 µM truncated WsHcyS-(DL)-homocysteine was mixed with 3.6 µL of 

880 µM WsHcyD and incubated at room-temperature for 5 min. The control sample 

had WsHcyD absent. The samples were then treated with 98.6 µL of 9 M urea, 

desalted into 50 mM NH4OAc, pH 6.0 using Bio-rad bio-spin 6 chromatography 

columns and analyzed by MALDI-MS. 

 

4.2.11 WsHcyD hydrolyzing the WsHcyS-COSH to form WsHcyS-COOH 

95 µL of 42 µM truncated WsHcyS-COSH was mixed with 3.6 µL of 88 µM 

WsHcyD and incubated at room-temperature for 5 min. The control sample had 

WsHcyD absent. The samples were then treated with 99.5 µL of 9 M urea, desalted 

into 50 mM NH4OAc, pH 6.0 using Bio-rad bio-spin 6 chromatography columns and 

analyzed by MALDI-MS. 
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4.2.12 Identification of the released product from WsHcyS-homocysteine adduct 

made from truncated WsHcyS-COSH 

190 µL of 42 µM WsHcyS-COSH and 8 µL of 1 mM WsMetY were mixed together, 

buffer-exchanged and concentrated using YM-5 amicons to 100 µL of 50 mM 

potassium phosphate, pH 8.0. 0.4 µL of 250 mM TCEP and 0.8 µL of 10 mM O-

acetyl-L-homoserine were then added and incubated at room-temperature for 5 min. 

10 µL of 76 µM WsHcyD in 50 mM potassium phosphate, pH 8.0 was added and 

further incubation was carried out for 5 min at room-temperature. The proteins were 

removed using YM-3 microcons. The samples were then treated with a final 

concentration of 1 mM final concentration o-phthalaldehyde (dissolved in methanol) 

and analyzed by HPLC (Agilent 1200 using Supelco supelcosil LC-18-T (15 cm X 4.6 

mm, 3 µm)) using the following gradient at a flow rate of 1 mL/min: solvent A is 

water, solvent B is 100 mM potassium phosphate, pH 6.6, solvent C is methanol. 0 

min: 100% B; 7 min: 10% A, 90% B; 12 min: 25% A, 60% B, 15% C; 17 min: 25% 

A, 10% B, 65% C; 19 min: 100% B, 25 min: 100% B. 

 

4.2.13 Conversion of homocysteine to methionine by the methyltransferases 

Two samples containing 100 µL of 169 µM of Ws250 and Ws1672 were incubated 

with 20 µL of 50 mM potassium phosphate, pH 8.0, 1.69 µL of 5-DL-

methyltetrahydrofolate, 1.69 µL of 10 mM MgSO4 and 1.69 µL of DL-homocysteine. 

MetE is a Zn
2+

 utilizing enzyme that has been reported to require phosphate and its 

activity is stimulated by divalent ions like Mg
2+

 or Mn
2+

 
12

. Hence, potassium 

phosphate and MgSO4 was added to the reaction sample. The third sample contained 

100 µL of 169 µM Ws942 (volume made upto 120 µL with 100 mM Tris, 150 mM 

NaCl, 2 mM TCEP, 30% glycerol, pH 8.0) along with 1.69 µL of S-

adenosylmethionine, 1.69 µL of DL-homocysteine and 0.48 µL of 250 mM TCEP. All 
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the samples were incubated at room-temperature for 1 h. The proteins were then 

removed by passing the samples through YM-10 amicons. 150 µL of the flow-through 

was treated with 50 µL of o-phthalaldehyde derivatization solution (1 mL of 37 mM o-

phthalaldehyde in MeOH, 4 mL of 0.1 M boric acid, pH 9.3, 162 µL of 3-

mercaptopropionic acid were mixed together and pH was adjusted to 9.3 with NaOH) 

for 5 min at room-temperature before being treated with 20 µL of 1 M potassium 

phosphate, pH 6.0 and analyzed on HPLC (Agilent 1200 using Phenomenex Gemini 

5µ C18 110A (15 cm X 4.6 mm, 5 µm)) using the following gradient at a flow rate of 

1 mL/min: solvent A is water, solvent B is 100 mM potassium phosphate, pH 6.6, 

solvent C is methanol. 0 min: 100% B; 7 min: 10% A, 90%B; 12 min: 25% A, 60% B, 

15% C; 17 min: 25% A, 10% B, 65% C; 19 min: 100% B, 25 min: 100% B. 

 

4.3 Results and discussion  

4.3.1 Growth and over-expression 

Genes sir, hcyD, hcyF, hcyS, metY, metZ and three putative methionine biosynthetic 

genes (Ws250, Ws942, Ws1672) (Table 4.2) were cloned into THT vector. All the 

proteins except WsSir were over-expressed in E.coli BL21 (DE3) in Luria-bertani 

medium. WsSir was over-expressed in E.coli B834 (DE3), a methionine-auxotroph 

E.coli. WsSir, annotated as ferridoxin-sulfite reductase, was over-expressed along with 

Salmonella typhimurium siroheme synthase (cloned into pACYDuet) and Azotobacter 

vinelandii IscS-cluster assembly proteins (cloned into pDB1282) in M9 minimal 

media. Over-expression with these proteins helps in good reconstitution of the 

siroheme and [4Fe-4S] cofactors and eliminating either one results in poor 

reconstitution. The proteins were purified by normal Ni-NTA affinity purification 

protocol. WsSir was purified outside the glove-box at 4
o
C. It had the characteristic 

absorbance of a siroheme-[4Fe-4S] cluster protein 
13

 (Figure 4.5). WsMetY and 
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WsMetZ, putative PLP-containing proteins, were yellow in color suggestive of bound 

PLP. 

 

 

 

 

 

 

 

 

Figure 4.5: Absorbance of WsSir with its characteristic maximums at 388 nm and 590 

nm 

 

4.3.2 Activity of gene product WsHcyD (putative metalloprotease) 

Thiocarboxylate forming proteins usually end in diglycyl C-terminus (Figure 4.6). 

Sequence analysis of gene product, WsHcyD, suggests that it is a metalloprotease 

belonging to the Mov34/MPN/PAD-1 protein family. 

Figure 4.6: Sequences of known thiocarboxylate forming proteins. All known 

examples have diglycyl terminus at their C-terminus in their active form. 

 

Previous members of this family associated with a thiocarboxylate forming 

proteins are Mec
+
 and QbsD. Mec

+ 
cleaves off the product, cysteine from CysO C-

terminus in cysteine biosynthesis in M.tuberculosis 
3
while QbsD removes the last two 
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amino-acids (CF) from QbsE in thioquinolobactin biosynthesis in P.fluorescens 

(ATCC 17400) 
4
 (Figure 4.7). It is possible that WsHcyD could be cleaving the last 

amino-acid (alanine) from WsHcyS.  

 

 

 

 

 

 

 

Figure 4.7: Processing of the C-terminus of thiocarboxylate forming proteins by the 

partner metalloproteases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: ESI-MS showing different charge states of WsHcyS (Top panel) Full-

length WsHcyS (Bottom panel) The C-terminal alanine is removed from WsHcyS 

upon treatment with WsHcyD. 

Observed mass: 10235.61 Da 

Expected mass: 10232.92 Da   

Observed mass: 10304.98 Da 

Expected mass: 10304 Da 
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Figure 4.9: 
1
H-NMR of L-alanine released from WsHcyS C-terminus upon treatment 

with WsHcyD. No exogenous Zn
2+

 was added. 

 

This proved to be the case when the two proteins were mixed together in the 

presence of exogenous Zn
2+ 

(Figure 4.8). ICP-MS analysis suggested sub-

stoichiometry occupancy of Zn
2+

 in WsHcyD and hence, the protein was found to be 

active even in the absence of exogenously added Zn
2+

. 
1
H-NMR of the small-molecule 

product proved conclusively that L-alanine is released from WsHcyS (Figure 4.9).  

 

4.3.3 Activity of gene product WsHcyF (putative MoeB-like protein) 

Gene WsHcyF is annotated as molybdopterin biosynthetis protein, MoeB. The protein 

is speculated to activate the C-terminus of truncated gene product WsHcyS as an acyl-

adenylate to make it ready for nucleophilic attack by sulfide. The acyl-adenylate, 

being unstable, would hydrolyze in the absence of any suitable nucleophile to form 

adenosine monophosphate. The hypothesis was tested and the release of AMP was 

analyzed by HPLC. AMP formation was dependent on the presence of WsHcyF, 

1.41.41.61.61.81.82.02.02.22.22.42.42.62.62.82.83.03.03.23.23.43.43.63.63.83.8

2 
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WsHcyS and WsHcyD (Figure 4.10).  Full conversion of the ATP to AMP occurred 

within a time-period of 2 h. (Figure 4.11). 

 

 

 

 

 

 

 

 

 

Figure 4.10: Adenylating activity of WsHcyF. WsHcyF adenylates the trunctated 

WsHcyS terminus. The acyl-adenylate hydrolyses in the absence of the right 

nucleophile (S
2-

) to give AMP. 

 

 

 

 

 

 

 

 

 

Figure 4.11: Full-conversion of ATP to AMP occurred within 2 h. 
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4.3.4 Formation of protein WsHcyS thiocarboxylate from sulfite using WsSir 

(putative sulfite reductase) 

The formation of HcyS thiocarboxylate necessitates removal of the alanine first from 

the C-terminus by HcyD (causing a mass decrease from 10304 Da to 10232.92 Da), 

followed by activation of the protein by HcyF as an acyl-adenylate. The sulfur for the 

transformation was provided by reduction of SO3
2- 

to S
2-

 by WsSir with reduced 

methyl viologen (obtained by reduction over 10% Pt on activated carbon) as the 

electron donor (Figure 4.12).  

 

 

 

 

 

Figure 4.12:  Reconstitution of WsHcyS-COSH using methyl viologen as the electron 

donor and sulfite as the sulfur source. 

 

The conversion of WsHcyS C-terminus (without alanine) from a carboxylate to a 

thiocarboxylate resulted in a mass-increase of 16 Da (observed mass: 10248.8 Da, 

expected mass: 10248.92 Da, error: 0.001%) monitored by LC-MS (Figure 4.13). The 

selective transfer to truncated WsHcyS occurs because of the selective activation of 

the truncated protein by WsHcyF (Figure 4.10).   

Thiocarboxylate specific labeling strategy was also used to prove the protein 

thiocarboxylate formation. Small molecule thiocarboxylates have been shown 

previously to react with sulfonyl azides to form N-acyl-sulfonamide linkages
14,15

. This 

chemistry has been exploited in a proteomics scale (unpublished results) to identify 

protein thiocarboxylates in bacterial cell-free extracts and was used in this study to 
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assay for the formation of WsHcyS-COSH. The sulfur transfer to WsHcyS was tested 

by click chemistry between a fluorescent sulfonyl azide, lissamine rhodamine   

 

 

 

 

 

 

 

 

Figure 4.13: Formation of WsHcyS-COSH monitored by LCMS analysis. In the 

absence of WsHcyD (top panel), the C-terminal is not adenylated by WsHcyF and no 

WsHcyS thiocarboxylate (10249 Da) is formed.   

                                                      1    2                 1    2 

 

 

 

 

 

 

Figure 4.14: SDS-PAGE analysis of WsHcyS-COSH formation after tagging the 

protein with the fluorescent, lissamine rhodamine sulfonyl azide (a) coomassie image 

(b) fluorescent image. Lane 1: Sample containing all components – WsHcyD, 

WsHcyF, WsHcyS, WsSir, SO3
2-

, reduced methyl viologen (electron donor), ATP, 

Mg
2+

 Lane 2: WsHcyD removed from the reaction sample. PMT voltage: 400 V. 

 

No HcyD 

With HcyD 
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sulfonyl azide, and the thiocarboxylate formed (Figure 3.2, Chapter 3). Synthesis of 

the fluorescent dye was carried out as shown in Figure 3.3, Chapter 3. The tagged 

protein was analyzed on SDS-PAGE and scanned for fluorescence using Typhoon trio 

imager (Figure 4.14).  

 

4.3.5 Protein thiocarboxylate as sulfur source for homocysteine biosynthesis 

It would be interesting to know the final destination of the sulfur on WsHcyS-COSH. 

The presence of two genes, O-acetylhomoserine sulfhydrylase (WsMetY) and O-

succinyl/O-acetylhomoserine sulfhydrylase (WsMetZ), suggests the possibility of the 

thiocarboxylate acting as a sulfur source to make homocysteine. WsMetY was tested 

as a possible homocysteine biosynthetic protein. Thiocarboxylate form of truncated 

WsHcyS (with the last alanine removed) was made by cleaving the protein-intein 

construct with Na2S and used as a substrate along with O-acetyl-L-homoserine for 

WsMetY. 

 

 

 

 

 

 

 

 

Figure 4.15: Formation of CysO-cysteine adduct in M.tuberculosis and a similar 

formation of WsHcyS-homocysteine adduct in W.succinogenes   
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In cysteine biosynthetic pathway in M.tuberculosis, CysO-thiocarboxylate is 

converted to CysO-cysteine adduct upon treatment with PLP-dependent O-phospho-L-

serine sulfhydrylase, CysM and O-phospho-L-serine
3,16

 (Figure 4.15). WsHcyS may 

similarly form WsHcyS-homocysteine adduct in the presence of WsMetY and O-

acetyl-L-homoserine.     

WsMetY is selective to O-acetyl-L-homoserine as a substrate (Figure 4.16 (a), 

observed mass: 7809.83 Da, expected mass: 7805.96 Da, error: 0.05%) and does not 

act on O-acetyl-L-serine even after extended incubation time (Figure 4.16 (b), 

observed mass: 7709.83 Da, expected mass: 7805.96 Da). Longer incubation times or 

higher concentration of O-acetyl-L-homoserine results in a higher molecular weight, 

WsHcyS adduct being formed (m/z = 7911 Da), the identity of which has not been 

established but could possibly be homolanthionine (Figure 4.17). Homolanthionine 

has been previously observed as a side-product of MetB, cystathionine-γ-synthase in 

Corynebacterium glutamicum ATCC 13032 where methionine and cysteine 

biosynthesis repressor protein (McbR) was knocked-out
17

. WsMetZ, on the other 

hand, could not utilize truncated WsHcyS-COSH as a sulfur source for O-acetyl-L-

homoserine to form WsHcyS-homocysteine adduct (Figure 4.18, observed mass: 

7712.63 Da, expected mass: 7805.96 Da). 
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Figure 4.16: MALDI-MS analysis of WsHcyS-COSH in the presence of WsMetY and 

(a) O-acetyl-L-homoserine, 2 min incubation time (b) O-acetyl-L-serine, 1 h 

incubation time 

 

 

 

 

 

 

 

Figure 4.17: WsHcyS-COSH in the presence of WsMetY and O-acetyl-L-homoserine, 

1 h incubation time.  

 

 

 

(a) 

(b) 
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Figure 4.18: MALDI-MS analysis of (a) WsHcyS-COSH in the presence of WsMetZ 

and O-acetyl-L-serine, (b) WsHcyS-COSH in the presence of WsMetZ and O-acetyl-

L-homoserine (c) WsHcyS-COSH in the presence of WsMetZ and O-succinyl-L-

homoserine. No 7805.96 Da adduct corresponding to WsHcyS-Homocysteine adduct 

is formed in any of these cases. 

 

(a) 

(b) 

(c) 
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WsMetY can also use S
2- 

to convert O-acetyl-L-homoserine to homocysteine (Figure 

4.19).  

 

  

 

 

 

  

 

 

 

 

 

Figure 4.19: 
1
H-NMR of L-homocysteine made by WsMetY (red) using O-acetyl-L-

homoserine and Na2S as the sulfur source, 1 h incubation time. No homocysteine is 

formed in the absence of the enzyme (blue). 

 

4.3.6 Release of homocysteine from WsHcyS-DL-homocysteine adduct 

The release of homocysteine from WsHcyS-DL-homocysteine adduct might require a 

protease and WsHcyD was again tested as the possible candidate to free the terminal 

amino-acid. WsHcyS-DL-homocysteine adduct was again made by cleaving truncated 

WsHcyS-intein construct with DL-homocysteine. Product release was monitored by 

changes in the mass of WsHcyS-DL-homocysteine by MALDI-MS. WsHcyD indeed 

was seen to cleave homocysteine from the protein (Figure 4.20, observed mass: 

7695.42 Da, expected mass: 7688.82 Da, error: 0.09%).  

 



 

 72 

 

 

 

 

 

 

Figure 4.20: MALDI-MS analysis of (a) WsHcyS-homocysteine in the presence of 

WsHcyD (b) WsHcyS-homocysteine in the absence of WsHcyD. 

 

WsHcyD was also seen to cleave the sulfide off WsHcyS thiocarboxylate 

(Figure 4.21). It seems to be non-specific with respect to the identity of the amino-

acid residue at the C-terminus of WsHcyS. 

 

 

 

 

 

 

Figure 4.21: MALDI-MS analysis of (a) WsHcyS-COSH in the presence of WsHcyD 

(b) WsHcyS-COSH in the absence of WsHcyD. 

 

4.3.7 Identification of the released product from WsHcyS-homocysteine adduct 

made from truncated WsHcyS-COSH 

The treatment of truncated WsHcyS-COSH with O-acetyl-L-homoserine and WsMetY 

results in a 7805 Da adduct, the putative WsHcyS-DL-homocysteine adduct. To 

conclusively prove that the protein-bound component is homocysteine, the sample was 

(a) (b) 

(a) (b) 
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treated with the metalloprotease, WsHcyD after the reaction to release the C-terminal 

amino-acid and the released product was derivatized with o-phthalaldehyde to yield a 

fluorescent compound (Figure 4.22)
18-20

 which was analyzed by HPLC (Figure 4.23). 

Co-elution with the standard homocysteine:o-phthalaldehyde derivative identified the 

released amino-acid as homocysteine. 

 

 

 

  

  

Figure 4.22: o-Phthalaldehyde derivatization of homocysteine released from 

WsHcyS-COSH reaction with WsMetY. 

 

 

 

 

 

 

 

 

 

Figure 4.23:  o-Phthalaldehyde derivatization of homocysteine released from 

WsHcyS-COSH reaction with WsMetY. 
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4.3.8 Conversion of homocysteine to methionine 

W.succinogenes has four genes in the genome that could possibly biosynthesize 

methionine from homocysteine, a non-proteogenic amino-acid - 250 (5-

methyltetrahydropteroyltriglutamate-homocysteine methyltransferases, MetE), 942 

(SAM-dependent methyltransferase present in the gene neighbourhood), 1672 (5-

methyltetrahydropteroyltriglutamate-homocysteine methyltransferases, MetE) and 

1141 (B12-dependent metH).  

           SAM-dependent methyltransferase, Ws942, was analyzed first for methionine 

biosynthetic activity. Ws942 was unable to convert DL-homocysteine to methionine 

using S-adenosylmethionine as the methyl donor (Figure 4.24). Methionine 

production was assayed by derivatizing with o-phthalaldehyde and mercaptopropionic 

acid in borate buffer, pH 9.3.   

 

 

 

 

 

 

 

 

Figure 4.24: Methionine biosynthetic activity of methyltransferases, Ws942. Standard 

methionine:o-phthalaldehyde derivative elutes at 19.5 min in reverse-phase C18 

column. 
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Activities of the two WsMetE proteins (250 and 1672) were assayed next. Ws250, but 

not Ws1672, was found to be biosynthesize methionine (Figure 4.25). Sequence 

analysis of the two W.succinogenes MetE (250 and 1672) with the E.coli and 

T.maritima MetE enzymes suggests that while 1672 has the residues necessary to bind 

to Zn
2+

 (red boxes, Figure 4.26), the protein lacks the N-terminal domain, which aids 

in the 5-methyltetrahydrofolate binding, present in other MetE proteins. A similar 

protein sequence has previously been observed in M.thermoautotrophicum MetE and 

the enzyme was not able to utilize CH3-H4PteGlu or its analog N
5
-

methyltetrahydromethanopterin for homocysteine methylation
21,22

. Even though 

activity was obtained by using methylcobalamin and metylcobinamide as the methyl 

donors, the physiological methyl donor has still not been ascertained 
21

.  

 

 

 

 

 

 

 

 

 

Figure 4.25: Methionine biosynthetic activity of the two WsMetE – Ws250 and 

Ws1672. The peak at 19.5 min co-migrated with the standard methionine:o-

phthalaldehyde derivative. 

 

The activity of cobalamin-dependent methionine synthase, WsMetH (1141) was also 

tested but did not show methionine production conclusively. It has, however, been  
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proved by the activity of WsMetE (250) that W.succinogenes has the capability to 

convert homocysteine formed in the new pathway into methionine. 

 

4.4 Conclusions 

The occurrence of the thiocarboxylate-forming protein along with other biosynthetic 

enzymes, in the gene neighborhood of sulfate assimilation proteins answers an 

interesting question regarding the sulfur source of these proteins. It has been shown 

conclusively in this work that sulfate or sulfite can also act as alternate source of sulfur 

for this important protein modification. A new biosynthetic route for L-methionine 

that utilizes a protein thiocarboxylate to make the precursor, L-homocysteine, has been 

discovered in Wolinella succinogenes. Previously known route for cystathionine-

independent production of L-homocysteine involved direct sulfhydrylation of O-

acetyl/O-succinyl-L-homoserine by the corresponding sulfhydrylases. In this work, it 

has been shown that the sulfide is first loaded onto a small protein, forming a C-

terminal thiocarboxylate, before being utilized for making homocysteine. The 

advantage of loading a sulfur atom onto a protein as a thiocarboxylate is to prevent its 

possible oxidation under conditions of oxidative stress. This was observed in the case 

of cysteine biosynthesis in M.tuberculosis where the cysO, the thiocarboxylate-

forming protein, was expressed at higher levels when the microbe was subjected to 

oxidative stress 
23

. The identification of a new protein thiocarboxylate-dependent 

methionine biosynthetic pathway further lays stress on the importance of these 

interesting sulfur transfer proteins and the necessity for systematic approaches to 

further discover newer proteins and pathways.  
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CHAPTER 5 

Cross-linking thiazole synthase (ThiG) with ThiS, the thiocarboxylate-forming 

protein involved in thiamin biosynthesis 

 

5.1 Introduction to thiamin biosynthesis 

Thiamin is an essential vitamin that humans need to uptake through their diet. Micro-

organisms, on the other hand, are capable of meeting their thiamin requirements 

through de novo biosynthesis. The two units constituting the thiamin – 

hydroxymethylpyrimidine (HMP) and thiazole are made separately and joined 

together to form thiamin. HMP is made by a single protein ThiC in prokaryotes
1
, 

plants and algae, and THI5p in fungi and eukaryotes
2
.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Biosynthesis of the thiazole moiety of thiamin in prokaryotes and 

eukaryotes.  
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The mode of biosynthesis of thiazole ring is different in prokaryotes and eukaryotes. 

Figure 5.1 shows the two routes of biosynthesizing the thiazole moiety of thiamin in 

these two classes of organisms. While eukaryotes utilize a single enzyme, THI4p, to 

perform the complicated procedure for assembling the thiazole ring
3
, prokaryotes 

make use of seven enzymes, including ThiS thiocarboxylate, for this purpose 
4
.  

 

 

 

 

 

 

 

 

 

 

  

Figure 5.2: Mechanism of sulfur transfer from ThiS thiocarboxylate to the small five-

carbon sugar, 1-deoxy-D-xylulose-5-phosphate, bound in the active-site of thiazole 

synthase, ThiG. 

 

The mechanism of sulfur transfer from ThiS thiocarboxylate is shown in 

Figure 5.2. ThiG catalyzes an amadori-type rearrangement of DXP using simple acid-

base chemistry. DXP binds to the active-site lysine via an imine bond (1). A 

tautomerization (2) followed by nucleophilic addition of the ThiSCOSH onto the C3 

ketone yields (3), which undergoes S/O acyl shift followed by water loss to give 

thioketone (6). This is then taken over a series of steps to yield (7), one of the 
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precursor to thiamin. All the steps in the biosynthesis have been characterized using 

techniques like 
1
H-NMR, radioactive assays and isotope studies  Previous 

crystallographic studies on these proteins (PDB ID: 1TYG, 3.15 Ǻ resolution) showed 

the C-terminus of Bacillus subtilis ThiS (BsThiS) interacting with the active-site of 

BsThiG 
5
 (Figure 5.3). However, the low-resolution crystal structure had only a 

phosphate ion bound in the active-site.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3: X-ray crystal structure of BsThiS (red) and BsThiG (green). Note the C-

terminus of BsThiS reaching into the active-site of BsThiG that has a phosphate 

(yellow) bound. 

 

Substrate analogs (Figure 5.4) that can be used for co-crystallization or soaking 

studies with these two proteins were made with the goal of getting some insight into 

the interactions of the substrate or intermediate with ThiG active-site residues and 

ThiS C-terminus. Analogs 8 and 9 were synthesized by the schemes shown below 

(Figure 5.5 and Figure 5.6). Analog 10 was synthesized by cleaving the ThiS-intein 
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construct with cysteine followed by labeling the cysteine with iodoacetamide (Figure 

5.7). 

 

 

 

 

 

 

 

 

 

Figure 5.4: DXP analogs (8, 9 and 10) synthesized for crystallization studies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Synthesis of analog 8 
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Figure 5.6: Synthesis of analog 9 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Synthesis of analog 10 
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5.2 Experimental section 

All chemicals except for compound 14 were acquired from Sigma-aldrich (St.Louis, 

MO) or Fisher scientific (Fairlawn, NJ). ESI-MS analysis of the carbamidomethylated 

BsThiS-cysteine adduct was performed in positive mode using an Esquire-LC_00146 

instrument (Bruker, Billerica, MA). EMD biosciences (Gibbstown, NJ) supplied 

Luria-Bertani. Chitin beads was obtained in New England Biolabs (Ipswich, MA). 

IPTG was procured from Lab Scientific (Livingston, NJ).  Sonication was done using 

Misonix sonicator 3000 (Misonix Inc., Farmingdale, NY). 

 

5.2.1 Synthetic route for analog 8   

5.2.1.1 Synthesis of compound 13 

3.28 g of dibenzylphosphite and 1.32 g of N-chlorosuccinimide were mixed together 

in anhydrous benzene and stirred at room-temperature for 2 h under argon. The 

solution was filtered directly into a solution of anhydrous pyridine (10 mL) and 3-

acetyl-1-propanol (204 µL) stirring at -50
o
C under argon. After the addition was over, 

the cold bath was removed and stirring was continued at room-temperature overnight. 

The compound was purified by column chromatography (60:40:: hexane:EtOAc). 

Yield: 425 mg (59%). 
1
H NMR (300 MHz, CDCl3) δ 7.33 (d, 10H), 5.13 – 4.95 (m, 

4H), 3.98 (dd, 2H), 2.76 (s, 6H), 2.45 (t, 2H), 2.08 (s, 3H), 1.84 (dd, 2H). 

  

5.2.1.2 Synthesis of compound 8 

425 mg of compound 6 was dissolved in 10 mL anhydrous THF. The solution was 

purged with argon before adding 85 mg of Pd (palladium) / 10 wt % activated carbon. 

Hydrogen was filled in a balloon and bubbled through the solution for 19 h. The 

solution was filtered to remove the metal and the solvent was removed by vacuum. 

The solid obtained was dissolved in water; pH was adjusted to approximately 7.0 and 
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washed with dichloromethane/ethylacetate. The aqueous layer was lyophilized. Yield: 

230 mg (95 %). 
1
H NMR (300 MHz, D2O) 3.75 (q, 2H), 2.65 (t, 2H), 2.21 (s, 3H), 

1.88 – 1.72 (m, 2H). ESI-MS (negative mode): 181 g/mol. 

 

5.2.2 Synthetic route for analog 9  

5.2.2.1 Synthesis of compound 15 

205 mg of compound 14, 608 mg of 1-phenyl-1,2-ethanediol, 64 mg of p-

toluenesulfonic acid were dissolved in 10 mL toluene and refluxed for 2 h 15 min at 

140
o
C using Dean-Stark apparatus. Toluene was removed by vacuum and the 

compound was purified by silica gel chromatography (90:10::hexane:EtOAc). Yield: 

155 mg (46.4 %). 
1
H NMR (300 MHz, CDCl3) δ 7.45 – 7.28 (m, 5H), 5.20 – 5.08 (m, 

1H), 4.47 – 4.02 (m, 4H), 3.82 – 3.69 (m, 1H), 2.52 – 2.26 (m, 1H), 2.18 – 1.88 (m, 

4H), 1.69 – 1.53 (m, 3H). 

 

5.2.2.2 Synthesis of compound 16 

140 mg of compound 15 was dissolved in 10 mL MeOH, 1 mL water and 40 mg of 

NaOH (2 eq.) and stirred at room-temperature for 30 min. 20 mL double distilled H2O 

was added to the solution and the compound was extracted into chloroform. 

Chloroform layer was dried with MgSO4, filtered and removed by vacuum. Yield: 

Quantitative conversion. 
1
H NMR (300 MHz, CDCl3) δ 7.47 – 7.28 (m, 5H), 5.23 – 

5.07 (m, 1H), 4.53 – 3.56 (m, 5H), 2.41 – 2.17 (m, 1H), 2.05 – 1.82 (m, 1H), 1.65 – 

1.56 (m, 3H). 

 

5.2.2.3 Synthesis of compound 17 

131 mg of compound 16, 241 µL of diethyl azodicarboxylate (DEAD), 425 mg of 

dibenzylphosphate and 401 mg of PPh3 were dissolved in 10 mL of anhydrous THF at 
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0
o
C. DEAD was added the last. The reaction was allowed to warm to room-

temperature overnight (12 h). The solvent was removed by vacuum and the compound 

purified by column chromatography (75:25::hexane:EtOAc). The final product had 

DEAD impurities. Yield: Quantitative conversion. 
1
H NMR (300 MHz, CDCl3) δ 7.46 

– 7.20 (m, 15H), 5.19 – 4.96 (m, 5H), 4.39 – 4.00 (m, 8H, has DEAD peaks), 3.79 – 

3.59 (m, 1H), 2.52 – 2.27 (m, 1H), 1.97 – 1.77 (m, 1H), 1.63 – 1.46 (m, 3H). 

 

5.2.2.4 Synthesis of compound 9 

Approximately 100 mg of compound 17 was dissolved in 5:1::TFA:thioanisole and 

the reaction was stirred at room-temperature for 3 h. The solvents were removed by 

vacuum. The oily residue was dissolved in water, pH was made to 7.5, washed with 

chloroform and the aqueous layer was lyophilized. The NMR spectrum had some 

aromatic impurities. The compound was washed with absolute ethanol and the solid 

filtered, re-dissolved in water and lyophilized again. Yield: 9.2 mg. 
1
H NMR (300 

MHz, D2O) δ 4.04 – 3.82 (m, 3H), 2.46 – 2.21 (m, 4H), 2.11 – 1.94 (m, 1H). 

 

5.2.3 Preparation of analog 10  

20 mL of chitin bead slurry was loaded onto a column and the beads were allowed to 

settle. The column was then equilibrated with column buffer (20 mM Tris, 500 mM 

NaCl, 1mM EDTA, pH = 7.5). Meanwhile, E.coli ThiS-intein-chitin binding domain 

(pCLK413 in pET-22b) was transformed into E.coli Tuner(DE3). The cultures were 

grown at 37
o
C in Luria-Bertani till an OD600 of 0.4 when the temperature was reduced 

to 15
o
C. Induction was done at an OD600 of 0.5 with 0.4 mM IPTG and further growth 

at 15
o
C was carried out for 15 h. The cultures were harvested and lysed in lysis buffer 

(column buffer + 0.1% Triton X) by sonication. The crude lysate was centrifuged and 

the clarified lysate was loaded onto the column at a rate of 0.5 mL/min at 4
o
C. The 
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column was then washed with 300 mL of column buffer at a rate of 1.5 mL/min at 

4
o
C. 30 mL of column buffer containing 50 mM DL-cysteine was then loaded onto the 

column and drained at a rate of 2 mL/min till a small amount of buffer remained at the 

top of the bed. The column was then capped at both ends and incubated at 4
o
C for 48 

h. After 48 h, the column was washed with column buffer and the fractions collected 

were concentrated and buffer-exchanged into 50 mM Tris, 150 mM NaCl, pH = 7.8. 

 

5.2.3.1 Labeling the C-terminal cysteine with iodoacetamide/iodoacetic acid:  

160 µL of 157 µM ThiS-Cys was treated with 5 µL of 250 mM TCEP and different 

concentrations of iodoacetamide as shown in Table 5.1. The samples were incubated 

at room-temperature for 2 h. After incubation, the samples were desalted and 

concentrated to 20 µL of 50 mM ammonium acetate (not pH adjusted) and diluted into 

100 µL of 50:45:5::ACN:H2O:HCOOH. The sample was analyzed by positive mode 

ESI-MS.  

 

Table 5.1: Iodoacetamide concentrations in each sample 

 

5.3 Results and discussions 

The substrate analogs synthesized resemble the natural substrate, DXP, as shown in 

Figure 5.8. The five-carbon backbone is maintained in substrate analog 8. The 

phosphate might bind to the phosphate-binding cavity of the thiazole synthase while 

Sample  Volume of 250 mM 

iodoacetamide (µL) 

Vol. of buffer added  

(µL) 

Final concentration 

(mM) 

1 8 42 9 

2 16 34 19 

3 24 26 28 

4 32 18 37 

5 40 10 47 
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the ketone can anchor the analog to the active-site lysine. This is also the case for the 

substrate analog 9. An additional chloride on C3 of the backbone is a replacement for 

the C3-hydroxy of the natural substrate, DXP. Attempts were made to synthesize 9 

and 9a from 8 by the transformations shown in Figure 5.9 but were not successful. 

The synthetic route shown in Figure 5.6 worked efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Substrate analogs and their structural similarity to the actual substrate, 

DXP. Atoms shown in blue on DXP are missing from the analogs and the other 

colored atoms on the analogs represent the corresponding colored atoms on DXP. 
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Figure 5.9: Attempts to synthesize 9 and 9a from 8. 

 

The five-carbon backbone in adduct 10 is provided by the carbamidomethylated C-

terminal cysteine (Figure 5.8). The cysteine carboxyl is analogous to the ketone and 

may bind to the active-site lysine of ThiG. To provide the negatively charged group on 

the cysteine as a substitute for phosphate, the cysteine can be labeled with iodoacetic 

acid (in this work, the labeling was tried with iodoacetamide).  This step yielded two 

E.coli ThiS adducts. E.coli ThiS has two cysteines in the primary sequence – the 

native cysteine of the protein and the C-terminal cysteine that was added during the 

cleavage step in the intein purification as shown in Figure 5.10. The major product 

has the C-terminal cysteine labeled with iodoacetamide while the minor product has 

both cysteines carbamidomethylated (Figure 5.11).  

To solve the problem of dicarbamidomethylation, Thermus thermophilus HB8 

ThiS (in intein construct) and ThiG have been cloned. These proteins do not have any 

cysteines in the primary sequence. The same procedure of labeling with 
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iodoacetamide/iodoacetic acid can be repeated with the Thermus thermophilus HB8 

constructs to yield substrate analog 3. 

 

a) MQILFNDQAMQCAAGQTVHELLEQLDQRQAGAALAINQQIVPREQWAQHIVQDGDQILLFQVIAGG 
 

b) MQILFNDQAMQCAAGQTVHELLEQLDQRQAGAALAINQQIVPREQWAQHIVQDGDQILLFQVIAGGC 

 

Figure 5.10: a) pre-intein E.coli primary sequence b) post-intein E.coli primary 

sequence after cleaving the intein construct with cysteine. Cysteines are highlighted in 

red. 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: ESI-MS of E.coli ThiS-DL-cysteine (top panel) treated with 30 mM 

iodoacetamide (bottom panel).  

 

5.4 Conclusions 

Crystallography experiments with these compounds still need to be done. This 

important sulfur transfer process has not been characterized structurally and these 

substrate analogs and the natural substrate can be a good starting point.  

E.coli ThiS-DL-cysteine  

+ 30 mM iodoacetamide 

Masses: 7472 and 7530 Da   

E.coli ThiS-DL-cysteine 

Mass: 7415 Da 
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CHAPTER 6 

Summary and Outlook 

 

6.1 Summary 

Two protein thiocarboxylate-labeling strategies using the thioester-alexa fluor 647 

cadaverine nucleophilic displacement chemistry and the sulfonyl azide-thioacid 

coupling chemistry have been developed. The alexa fluor 647 cadaverine tagging 

methodology was able to identify an over-expressed thiocarboxylate protein in a cell-

free extract. To improve upon the tagging efficiency, the sulfonyl azide tagging 

chemistry was developed and it was shown to successfully label PdtH in P.stutzeri KC 

cell-free extract and an unknown protein in the S.coelicolor system. The necessity for 

developing a proteomics strategy for identifying new thiocarboxylate-forming proteins 

was further reiterated by the discovery of a methionine biosynthetic pathway involving 

these proteins. This raises the possibility of many other pathways still waiting to be 

identified. The methionine biosynthetic pathway also proved that sulfate, apart from 

cysteine, could be a source of sulfur for protein thiocarboxylate formation.  

 

6.2 Labeling of protein thiocarboxylates in cell-free extracts 

6.2.1 Development of new labeling reagents 

Thiocarboxylated proteins could possibly be the gateway to pathways with very 

interesting sulfur transfer chemistry and efforts to identify more of these special 

proteins in micro-organisms would be worthwhile. While the labeling method using 

lissamine rhodamine sulfonyl azide yielded impressive results with the P.stutzeri KC 

and S.coelicolor systems and the dye could detect proteins whose copy number is as 

low as 500 (Chapter 3), there still exists some scope for improvement in terms of the 

sensitivity of the dye. To increase the sensitivity, we propose to make resin linkers 
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with the sulfonyl azide moiety on it. The advantage of developing a resin as a tag 

instead of the fluorophore/SDS-PAGE assay method is that there would be no 

restrictions to the amount of protein sample that can be loaded onto a resin with 

respect to SDS-PAGE further enhancing the sensitivity of detection. 

Figure 6.1 shows one possible resin modification that result in sulfonyl azide 

functionality at the linker-end and the mode of cleavage of the protein from the resin 

after tagging. The ester linkage formed would be susceptible to hydrolysis by 

appropriate nucleophiles.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Tentagel-hydroxyl resin modification using 4-carboxybenzenesulfonyl 

azide. The resulting ester formed can be possibly hydrolyzed using a base or a strong 

nucleophile like hydrazine.  

 

Another possible way to increase the sensitivity of the labeling strategy using a 

fluorophore is to use one with high fluorescence intensity like alexa fluor 647 

cadaverine and form a sulfonamide with 2, 4-dinitrobenzenesulfonyl chloride. This 
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can then be used to label thiocarboxylate-forming proteins by a mechanism shown in 

Figure 6.2. This strategy has been used previously to synthesize glycosylated 

peptides
1,2

.  

 

 

 

 

 

 

 

 

 

Figure 6.2: Labeling of protein thiocarboxylates using a fluorescent sulfonamide.  

 

6.3 Methionine biosynthesis through protein thiocarboxylate 

6.3.1 Mechanism of sulfide transfer from sulfite reductase to WsHcyS-COAMP 

The mechanism of sulfur transfer from W.succinogenes ferredoxin-sulfite reductase 

(WsSir) siroheme center to WsHcyS-AMP to form WsHcyS thiocarboxylate would be 

interesting to study. Sequence alignment of W.succinogenes sulfite reductase with 

E.coli sulfite reductase shows that the former has an extra protein overhang with two 

cysteines (cysteines 570 and 703) that are conserved in all organisms having the extra 

primary sequence (Figure 6.3). Preliminary results suggest that mutating the two 

cysteines to serines results in complete loss of protein expression/solubility in the case 

of C703S mutant (analyzed by SDS-PAGE, data not shown) and lower activity in case 

of C570S mutant. Figure 6.4 shows the absorption spectrum of the two cysteine 

mutants.  
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Figure 6.4: Absorbance of cysteine to serine (C570S and C703S) mutants of 

ferredoxin-sulfite reductase of W.succinogenes. 

 

 

 

 

 

 

 

 

Figure 6.5: Cysteine 104 of D.vulgaris DsrC bound to siroheme cofactor of DsrA 

(adapted from J.Biol.Chem., 283, 34141-34149, 2008) 
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A recent report on the crystal structure of Desulfovibrio vulgaris dissimilatory 

sulfite reductase bound to DsrC, a 11 kDa protein, shows the penultimate cysteine 

(C104) of DsrC bound to the siroheme co-factor of its partner
3
. This cysteine is said to 

be conserved among all family members (including YccK/TusE, a sulfur-transfer 

DsrC-homolog that was shown recently to be involved in thio-modifications of 

bacterial tRNA wobble positions).  A second cysteine of DsrC, Cys-93, is conserved 

only in DsrC proteins involved in dissimilatory sulfur metabolism. The C-terminal 

arm of DsrC extends into the active-site of DsrA and DsrB subunits (the sulfite 

reductases) reaching to the siroheme center. This raises the question whether the 

siroheme-cysteine cross-linking is mechanistically relevant. It might be possible that 

Cys-703 of W.succionogenes is necessary to form the cross-link with the siroheme 

co-factor. This structural issue could be a reason for the low-expression/solubility of 

the C703S mutant of ferredoxin-sulfite reductase of W.succinogenes. Cys-570 could, 

on the other hand, be involved in transferring the sulfide from the siroheme-Fe center 

to the activated WsHcyS-AMP through a persulfide linkage as shown in Figure 6.6. 

 

6.3.2 Crystal structure of the proteins 

X-ray crystallography studies on the proteins involved in the methionine biosynthetic 

pathway would help us understand the interactions between the proteins. For the first 

time, a thiocarboxylate-forming protein (in this pathway, WsHcyS) has been found 

along with its sulfur source (WsSir). Co-crystallization of WsHcyS, both its full-length 

and the truncated form, with its partner proteins - WsSir, WsHcyD, WsHcyF and 

WsMetY would shed some light on the mechanism of sulfur transfer. A structure of 

WsSir would also help us understand the role played by the conserved cysteines in 

sulfur reduction and transfer chemistry. It would be interesting to see if C703 also 

cross-links to the siroheme co-factor. 
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Figure 6.6: Plausible role of Cys-570 of WsSir in the sulfur transfer to WsHcyS-AMP 

adduct to form the protein thiocarboxylate.  

 

6.3.3 Fate of the putative homolanthionine 

Figure 4.17 (Chapter 4) shows a higher molecular-weight WsHcyS adduct formed 

upon treating WsMetY with truncated WsHcyS-COSH and excess O-acetyl-L-

homoserine. A possible mechanism for formation of this adduct is shown (Figure 6.7). 

 

 

 

 

 

 

 

 

Figure 6.7: Plausible mechanism for the higher molecular-weight WsHcyS adduct 

formation. 
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In a previous study, it was reported that homolanthionine and homocysteine were 

present in elevated levels when the methionine and cysteine biosynthesis repressor 

protein (McbR) in Corynebacterium glutamicum ATCC 13032, which releases almost 

all enzymes of methionine biosynthesis and sulfate assimilation from transcriptional 

regulation, was deleted
4
. No overproduction of methionine was seen. It was also seen 

that cystathionine-γ-synthase (MetB), an enzyme that condenses cysteine with O-

acetyl-L-homoserine to make cystathionine, produced homolanthionine as a side 

reaction. Deletion of metB completely prevented homolanthionine accumulation. The 

cell was seen to cleave homolanthionine at low rates via cystathionine-β-lyase (MetC). 

The by-product of MetC-dependent cleavage of homolanthionine, 2-oxobutanoate, 

could be used for isoleucine biosynthesis through a novel threonine-independent 

pathway, an hypothesis supported by an increased intracellular isoleucine level. Again, 

the question regarding the relevance of the higher molecular weight WsHcyS adduct 

still remains unanswered.  
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