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Abstract

Consider a production system producing several items on any of sev-
eral identical machines. Each machine has a finite production capacity.
The system operates in discrete time to satisfy non-stationary demand
of each items in each time period. There is a fixed cost of setting up a
machine for production in any time period, and a fixed cost of setting up
the production of any item on any machine. In addition, there is a linear
inventory holding cost for each item. The objective is to decide when
each item is to be produced, and in what quanities, in order to minimize
the total setup and inventory holding costs over the planning horizon.
The problem can effectively model several distribution systems where
trucks are used for transportation, and certain production systems in
which production can be subcontracted at a cost. The well known joint
replenishment problem is a special case of this model.

We consider both the single item and multi-item versions of this
problem. For the single item problem an efficient dynamic programming
formulation is developed to obtain the optimal solution. We also develop
heuristics for this case which have very tight theoretical bounds on their
performance if demand is constant over time. The multi-item case is
NP-complete, and we develop fast (linear computation time) forward
heuritics for this problem. The behavior of our heuristics for a randomlsf

generated set of problems is discussed.



Introduction

Consider the lot sizing problem for several items over a finite time horizon. The
system operates in discrete time, and demands for each item in each time period
over the time horizon are assumed to be known. The demand may not be constant
over time, but may vary from one time period to the next. This external demand for
each item must be satisfied in each time period, and backorders are not permitted.

Fach item has a fixed ordering cost which is incurred whenever it is ordered, and
a linear inventory holding cost. In addition, there is a shipping cost. All the items
which are ordered in a single time period are shipped together in one shipment. The
shipment is made in trucks of capacity C each, with an associated cost K, for each
truck. If the total volume of all the items that are ordered in any time period is z,
then a shipping cost of Ko[z/C] will be incurred, where [y] denotes the smallest
integer larger than or equal to y. Hence this problem will be referred to as the
Trucking Problem. We are focussing on decisions of when to order each item, and
in what lot sizes, in order to minimize the total ordering, inventory holding, and
shipping costs over the entire time horizon.

In a manufacturing environment, this problem arises if the items can be man-
ufactured on any of several identical machines. Each item has a setup cost which
is incurred in any time period when a machine is set up to produce it, and a linear
inventory holding cost. In a time period, C now denotes the manufacturing capacity
of a machine. If a machine is used to produce any item in a time period, a setup
cost of Ko is incurred for that machine. Then if # denotes the total production of
all the items in a time period, the number of machines which are required is [z/C'],
at a total setup cost of Kq[z/C1.

Alternately, instead of identical machines, consider the manufacturing of the

items as being subcontracted to any of several identical subcontractors. Each of the



subcontractors has a production capacity of C in any time period, and the fixed
cost of subcontracting is Ko. As before, there is also an individual ordering cost
and linear inventory holding cost for each item. The problem again is an instance
of the trucking problem.

If the truck capacity C is infinite, then only one truck will be required whenever
any shipment is made. Thus a joint cost of Ko will be incurred whenever any
one or more items are ordered together in the same time period. This special
case is referred to in the literature as the Joint Replenishment Problem. Both
the nonstationary demand, discrete time, finite horizon version and the constant
demand, continuous time, infinite horizon version of the joint replenishment problem
have been extensively studied in the literature. For the non-stationary demand case,
effective approximation algorithms are provided by Joneja (1988). An extensive
review of this problem is provided by Aksoy and Erenguk (1987).

The joint replenishment problem has been shown to be NP-complete (Joneja,
1987). Since it is a special case of the trucking problem, the latter is also NP-
complete. In this paper, we will develop approximation algorithms for the trucking
problem which are both fast and effective. The algorithms are forward algorithms,
which use the solution of the problem over the first ¢ time periods to construct the
solution for time period t 4 1. In so doing, only the last order in the solution for
periods 1 through ¢ depends on demands in time periods after . Thus changes in
demand forecasts far into the future have little effect on current ordering policies.
The algorithms thus have the advantage of controlling nervousness of the generated
policy.

This paper is organized as follows. In the next section we will consider the
trucking proglem when there is only one item. We have discussed the problem so

far in the more general context of several items. The single item trucking problem



is interesting in its own right. In addition, this will guide the development of
the algorithm for the multi-item problem. The optimal solution for the constant
demand, continuous time, infinite horizon version will be obtained. This will guide
the development of a heuristic for the non-stationary demand, finite horizon case.
In addition, we will provide a dynamic programming formulation for the latter case
to obtain the optimal policy. In section 2 we will consider the multi-item version in
discrete time with non-stationary demands, and develop a heuristic for this problem.
A lower bound on the cost of the optimal solution will also be obtained. In section 3
we will report our computational experience with both of the heuristics. The last

section presents our conclusions.

1 The Single Item Trucking Problem

1.1 The Constant Demand Version

In this section, we discuss the trucking problem for a single item. This is a relevant
problem, and will later guide the development of the algorithms for the multi-item
version. We will first consider the case where the demand for the item is constant
over time. The problem is considered in continuous time over an infinite time
horizon, with the objective of finding a policy with the minimum average cost per
unit time. The exact solution to this problem can be obtained, and will be useful in
developing appriximation algorithms for the case of non-stationary demands. We

will use the following notation:
d = demand rate of the item per unit time,
H = holding cost rate of the item per unit quantity per unit time,
— ordering cost of the item,

K, = truck cost,



Without loss of generality, we assume that one unit of the item fills one truck, so
that the truck capacity is 1. This can easily be accomplished by scaling the demand
rate and the holding cost rate of the item. If T' denotes the reorder interval of the

item, then the average cost per unit time is:

_ K+ Ko[dT] | HdT

A(T) T 5

To find the optimal reorder interval, we first note that the average cost function is

bounded below by the lower bounding function:

In addition, the two functions are equal at every value of T' where dT' is an integer.
Let Ty = y/2K/Hd, and Ty = \/Z(K + Ko[dTp))/Hd (see Figure 1). Also, let
T, = [dTt)/d, and T_ = |[dTp]/d. Note that L(T) achieves its minimum at Tg,

and that dT} is the economic order quantity (EOQ) for the item. T. and T are
respectively obtained by rounding the reorder quantity dTy, down or up to the closest

full truck. The minimum of A(T) is given by the following theorem:

Theorem 1 If T < T4 < Ty then A(T) achieves its minimum at T or Tyu.

Otherwise A(T) achieves its minimum at either T_ or T}

Proof: At all T < T_, we have A(T) = L(T) > L(T-) = A(T-), where the
second inequality arises from the convexity of the function L and the fact that
T < Ty. Similarly, for all T > T, we have A(T) > L(T) > L(Ty) = A(T,).
Thus the minimum of A(T) lies in the interval [T_ , T,]. Next, note that A(T')
is continuously differentiable at all points where dT is non-integer. If A(T) is

minimized at a point where dT' is non-integer, it must satisfy 0A(T)/8T = 0, which

gives T' = \/Q(K + Ko[dT)/Hd. If this happens for a T in the interval [T , T4],

then T' = \/Z(K + Ko[dTr])/Hd = Ts. Further,in this case QA(T)/0T >0 VTa <
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| A(T)

I(T)

1 2 3 4 dT
Figure 1: The average cost funtion A(T) and lower bounding function L(T')

T < T, so that A(T4) < A(T})- Hence in this case A(T) achieves its minimum at
either T_, or T4. Otherwise A(T) is not minimized by any non-integer dT' for any

T in the interval [T- , T4]. In this case, the minimum is at either T_ or at T4. U

Thus the optimal policy can be computed by finding Tr, T4, T_ and T4, and
computing A(T) at each of these points. Notice that the optimal policy may send
partially filled trucks if the minimum is at T4. On the other hand, if the minimum
is at T_ or T,, the optimal policy sends only full trucks. This observation allows an
interesting approximate solution to the problenl. If we restrict ourselves to policies
in which only full trucks are sent, clearly the best solution is at T_ or at Ty. This
is called a full truck policy. If the global minimum of A(T) occurs at Ty, this would
then be rounded down to T_ or up to T5. To evaluate the performance of this
policy, define the relative cost of a policy as the ratio of the cost of the policy to
the cost of the optimal policy.

Let the reorder interval of the optimal full truck policy be Tr, where Tr =
T_ or T,. Clearly, the relative cost of this full truck policy is 1 if T4 does not lie

in the interval [T_ , T4]. If T4 lies in this interval, then the relative cost can be
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larger than 1. In this case, consider any full truck policy with a reorder interval
of T, where dT is an integer. The relative cost of this policy is A(T)/A(Ta) <
L(T)/L(Ts) < L(T)/L(Ty). Simple algebra gives L(Ty) = 2K /Ty + dKo, and
L(T)=K1/T + T/T%?) + dKo. Thus:

: : K(1/T +T/T? 1 /T T
relative cost < L(T)/L(Tz) = ( /2K/TL/ 2 = 5(% TL>'

Theorem 2 If dIy > 1/\/5, then the relative cost of the optimal full truck policy

is no worse than 1.06.

Proof: For all T, such that dTp > 1 / V2, there is at least one value of T such
that dT is an integer and TL/\/§ < T < Tyv/2. For any such value of T', consider
the full truck policy whose reorder interval is T'. Its relative cost is no larger than
1/2(T/Ty + T /T) < 1/2(v/2 + 1/4/2) = 1.06. Thus the optimal full truck policy
has a relative cost no larger than 1.06. O

This result is very similar to that obtained for a special form of routing problem
with one warehouse supplying several retailers, obtained by Gallego and Simchi-
Levy (1988). Notice that dTp, is just the econimic order quantity for the item. This
theorem then says that if the EOQ fills at least 0.7 of a truck, then a full truck
policy will always be very close to optimal. On the other hand, the EOQ may fill
less than 0.7 of a truck, in which case the full truck policy can be arbitrarily bad.
This motivates the Modified Full Truck Policy, which has a reorder interval of Ty
if dT4 < 1, and Tr otherwise. In other words, if the optimal solution would ship
less than one truck, then this optimal solution is used and partial trucks are sent.
If the optimal solution would ship one or more truck, then partial trucks are not
sent, and only full trucks are used.

For the modified full truck policy, if dT4 < 1 then from Theorem 1 A(T') achieves

its minimum at T4 (note T_ = 0, so A(T_) = 00). Since the policy ships dT4 in this



case, its relative cost is 1. If dT4 > 1 and dT < 1/4/2, then by Theorem 1 A(T)
achieves its minimum at T, which is what the modified full truck policy uses. In
this case again its relative cost is thus 1. Finally, if dT4 2> 1 and dTp > 1/\/§, then
the policy sends full trucks and the result of Theorem 2 holds. Thus the following

result is clear:

Corollary 3 The relative cost of the modified full truck policy is never larger than
1.06.

In the next section we will use the idea behind this policy to develop a heuristic for

the non-stationary demand version of the trucking problem.

1.2 The Non-stationary Demand Version
1.2.1 A Dynamic Programming Formulation

In this section we consider the single item trucking problem with non-stationary
demands in discrete time. The demand in time period ¢ is d;. The objective is to
find a policy with minimum total ordering, inventory holding, and trucking cost
over a finite time horizon of length 7. Let z, denote the quantity ordered in time
period t, and I; denote the inventory of the item at the end of time period t. The
first lemma below is very similar to that obtained for capacitated dynamic lot sizing
problems by Baker et. al. (1978). Again, with no loss of generality we are assuming

that the truck capacity is 1.

Lemma 4 In any optimal policy, if z.I,_y > 0 in a time period t then z, must be

an wnteger.

Proof: If in time period t the policy has z:J;_1 > 0 and z, non-integer, then

there is a 6 > 0 satisfying =, + & < [z;] and § < I,_;. If s is the last time period



prior to t at which an order is placed, then decreasing the order quantity at s by é
and increasing that at ¢ correspondingly will decrease the cost of the policy by at

least H(t — s)6 > 0. O

Lemma 5 In any optimal policy, let zI,_y > 0 n a time period t. Let v >t be
the first time period after period t —1 with I, = 0, and let Dy, = Y3, d,. Then

It-—l = Dy — LDth-

Proof: In an optimal policy let z, I, 1 > 0 and I,_; > 1in any time period ¢.
Let s be the last time period prior to t in which the item was ordered. Decreasing
the order quantity at s by § = min(1, z,) and correspondingly increasing that at
¢ will decrease the cost of the policy by at least H(t — s)6. Thus I,y < 1. Also,
by lemma 4 the order quantity in every time period from t through v is integer.
Thus I,_, equals the fractional part of the total demand in time periods ¢ through
v, which is given by Dy, — | Dy ). O

To obtain a dynamic programming formulation of this problem, note that if we
know I, = 0 in an optimal policy, then any ordering decisions in a time period after
¢ can be made independently of the ordering decisions up to time period t. Thus
requiring that I, = 0 decomposes the problem into independent subproblems over
the time intervals [1 , ¢] and [t + 1, T] which are of the same form as the original
trucking problem. Define Cy, as the minimum cost in time periods (v +1), ..., v
assuming I, = I, = 0, and I, >0 Y u <t <wv. Also, let f(v) denote the minimum
cost in time periods 1,...,v assuming [, = 0. Then f(v) can be obtained by the

following dynamic programming recursion:

f(0) =0
flv)y = 0151?321”( flu)+ Cu ) Yo=1,..., T.

The optimal cost over the time horizon is given by f(T).
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We are now left with the problem of finding Cy,. This optimization problem is
denoted by P(u,v). For this,letu < s <t <, where s and t are two successive time
periods in which an order is placed. Note that lemma 5 specifies I,_; and I; 4 (with
I, = 0). Then the quantity ordered at time s is given by ©, = li—1 + D1 — I
Thus the cost incurred in time periods s through ¢ — 1 can be calculated. Let Cy
denote this cost, which can be obtained using C, 41+ in constant computational time.
Similarly, C,, which is the cost incurred in periods s through v assuming that the
last order in P(u,v) is at s can be obtained for all values of s, u < s < v. Also,
let f(s) denote the minimum cost in time periods s through v in problem P(u,v).

Then f(s) can be computed using the following dynamic programming recursion:

floy = G,
F(s) = min(min(Cy + ), Cy) Ys=v—1,..., u.

s<t<v
Then f(u) is equal to Cy,.

To estimate the computation time of this algorithm, first note that the solution
to P(u,v) can be obtained using the solution to P(u-+1,v) as follows. In P(u+1, v),
we have I, = 0, while in P(u,v) the value of I, is specified by lemma 5. Hence
Cuprs Vs, ut+l<s<w will have to be recomputed. In addition, Cue Vs, u<
s < v have to be calculated. This can be done with O(v — u) computational effort.
Note that the values of f(t) in P(u,v) are the same as in Plu+1,v) Vt>u+1
Thus in P(u,v) only f(u +1) and f(u) have to be computed, which can be done
in O(v — u) time. Thus P(u,v) can be solved using the solution of P(u + 1,v) in
O(v —u) computational effort. Thus for any v, all the Cy,, w = 0,..., v can be
obtained in O(T,(v — u)) = O(v?) time. Hence all the C,, can be computed in
O(T?) computataional time. Finally, the dynamic programming recursion to find
f(T) can be performed in O(T?) time. Thus the overall computation time of this

algorithm is O(T?).
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1.2.2 An Approximation Algorithm

In this section we develop an approximation algorithm for the non-stationary de-
mand version of the single item trucking problem. The optimal algorithm discussed
in the previous section has a computation time of O(T?). The heuristic we develop
is considerably faster, with a computation time which is linear in T'. In addition,
the ideas will later be extended to the multi- item trucking problem, which is NP-
complete.

The heuristic is very similar to the modified full truck policy developed for
the constant demand version of the trucking problem. This policy first finds the
economic order quantity of the item. If the policy sends full trucks, then the reorder
quantity is obtained by rounding the EOQ up or down to an integer number of
trucks. In the following discussion, we will follow the convention that if an inventory
of I, is carried from time period ¢ to ¢ +1, the the holding cost of HI; is incurred
in time period t.

To extend this idea to the non-stationary demand version, we first have to
develop an analog of the EOQ. Simple algebra shows that the constant demand
EOQ can be obtained by equating the holding cost of the item in one reorder cycle
to its ordering cost (i.e. HdT?/2 = K). Similarly, at time T4 the holding cost
equals the total ordering and trucking cost (i.e. HdT3/2 = K + Ko [dT4]). This
observation about the EOQ is used in the well known part-period balancing heuristic
for the single item dynamic lot sizing problem (DeMatteis and Mendoza, 1968). It
proceeds by placing an order in time period 1, and in each successive time period
it decides whether or not an order will be placed. When considering time period
t, the ordering policy for each period prior to ¢ has already been decided. Then in
period t it calculates the total amount of holding cost incurred since the last order

was placed. If this total holding cost exceeds the ordering cost, an order is placed
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in the current time period. It then proceeds to the next time period.

This idea is extended to the trucking problem. The heuristic for the single item
trucking problem is stated in Figure 2. It starts in time period 1 by placing an
order (step 1). At any time period 1, let the last order placed by the heuristic be in

time period s. This order will satisfy a part f,d, of the demand in time period s.
The value of f, has already been fixed. It will further satisfy the demand in time
periods s + 1, s+2,.... First we assume that it satisfies the total demand through
time period t, and find the total holding cost incurred in time periods s through
t — 1. Algebraically, this is given by:

t
holding cost = H Y (7 — s)d-. (1)
r=3t1
If this holding cost exceeds the order cost of the item, it becomes a candidate for
an order (step 3 of the algorithm.)

When the item becomes a candidate for an order, the tentative order quantity of
the last order is zo4 = fod, + 5,1 dr- There are two cases: 4 < landz, > 1. If
at time ¢ the item is a candidate for order and z,, < 1, then we determine whether
the holding cost exceeds the sum of the ordering cost and the trucking cost. Since
[z,] = 1, the trucking cost is just Ko. Hence an order is placed in time period ¢
if the holding cost exceeds K + K,. The size of the last order in time period s is
set to @, 41, which covers the demand in time periods s through ¢t — 1. The order
in period t will cover the entire demand in period t, and we set f, = 1. This order
will be referred to as a regular order of the item (step 3(a) of the heuristic). This
is similar to the order of size dT in the modified full order policy for the constant
demand version, where a single partially filled truck is sent.

On the other hand, if this order quantity of the last order is at least 1 truck
(z4 > 1), then we restrict ourselves to sending only full trucks. This is parallel to

the modified full truck policy for the constant demand case. It is accomplished as
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1. Set last order period, s = 1, set f; = 1; set time index t = 1.
9. Set t = t + 1; If t > T stop, otherwise go to step 3.

3. Find holding cost since s given by equation 1; find z,; = fodg+ 3t d I

holding cost > K:

(a) If holding cost > K + Ko, place regular order at t, set s =1 set fi =1

(b) Otherwise, if tentative order quantity, z,; > 1, place a full truck order in

time period p obtained from equations 2. Set s = p, and set fs = fp

4. Go to step 2

Figure 2: Heuristic for the single item trucking problem.

follows. Since ¢, > 1, and the order size in time period s will be |z,]. Clearly

there exists a time period p and fraction 0 < f, <1 such that
s<p<t, and (2)

p-1
fsds + Z d*r + fpdp - l_mstJ‘

r=3+1

The next order after s will be placed in time period p, and f, will be fixed. This
will be referred to as a full truck order of the item.

The heuristic then proceeds to the next time period. To estimate the compu-
tational effort for the heuristic, note that the time period p in equations 2 can be
obtained with O(t — s) effort. All other computations in time period t can be done
with constant computational effort. Clearly the heuristic can be implemented so

that it will run in O(T') time.
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2 The Multi-Item Trucking Problem

In this section we discuss the multi-item trucking problem with non-stationary
demands. The system operates in discrete time, and the objective is to minimize
the total holding, ordering, and trucking cost over a finite time horizon of length
T. As discussed previously, the multi-item trucking problem with infinite truck
capacity gives the joint replenishment problem, which is NP-complete. Thus the
multi-item trucking problem is also NP-complete. In this section we will develop a
fast approximation algorithm for this problem.

The system is made of N items, and the subscript n will be used for item
n. K,, H.,and d, respectively denote the ordering cost, holding cost rate, and
demand in period t for item n. Again, with no loss of generality we assume that
one unit of any item fills one truck, and that the truck capacity is 1.

As in the single item heuristic, the multi-item algorithm starts by placing an
order for each item in time period 1, and proceeds successively from one time period
to the next. The two basic elements of the single item heuristic, the regular order
and the full truck order, will be used in the multi-item heuristic. To this is added
a third element, the pull order. Let the last order of an item n be in time period
s,,. Then the holding cost incurred in time periods s,, through t is

t
HC.,=H Z (7 — sn)d-. (3)
r=an+1
Recall that an item becomes a candidate for an order when its total holding cost
since its last order exceed its ordering cost. At time period ¢, let item n become a
candidate for an order. Let the last order of any item prior to ¢ be in time period
s. If s > s, then an order of item n is placed in period s. This is a pull order of
item 7 in time period s. The pull order of item n in period s, will cover demands

in time periods s,, through s — 1. If f.. denotes the fraction of the demand in time
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period ¢ which is covered by the order in time period t for item n, then f,, = 1. The
underlying idea of a pull order is to increase the coordination of the order periods
of the various items in order to permit future sharing of trucks by the items. This
concept originated in the cost covering heuristic for the joint replenishment problem
(Joneja, 1988).

The algorithm is stated formally in Figure 3. It starts by placing an order for
each item in time period 1 (step 1 in Figure 3). In each time period, the heuristic
first places a pull order of each item if possible (step 3). It then determines the
candidate items and places a regular order of all the candidate items in time period
t if possible (step 4). This is done if the total holding cost of the candidate items
exceeds their total setup cost and the truck cost. As above, H C,: denotes the
holding cost if item n in time periods s, through t. A regular order is placed for

the candidate items in time period t if:
N
S (HCn —~ K,)" > K.
n=1

Here (z)* denotes max(0, z). If a regular order is placed in time period t, then the
last order of each candidate item n before t covers all demands through ¢ —1, and
fae = 1.

If no regular order is placed in period ¢, the algorithm checks whether a full
truck order of the candidate items can be placed (step 5). Notice that due to the
pull order, the last order of every candidate item is in time period s. In addition,
the fraction f., has been fixed for each item. The size of the tentative order at ? is
then z,, where:

L = Z (fnsdns + Z dnf) . (4)

nn a candidate item T=s+1

A full truck order is placed if z,; > 1. As in the single item problem it is placed in

15



1. For each item n, set last order period, s, = 1, set far = 1; set time index

+ — 1. Set last order period of any item, s = 1.
2. Set t =t + 1; If ¢ > T stop, otherwise go to step 3.

3. For each item n, find the holding cost HC,, incurred since time s, from
equation 3. If HCyy > K, and s, > st place a pull order of item n in period

s, set s, = s, and update HC;.

4, ¥, (HCy — K,)" > Ko place a regular order of all candidate items at %,

set s = t, and for every candidate item n set s, =1 and fr = 1.

5. Otherwise, if tentative order quantity z, > 1 from equation 4, place a full
truck order of each candidate item in time period p as determined from equa-

tion 5, and for each candidate item n set s, =p and f, = fup-

6. Go to step 2

Figure 3: Heuristic for the multi-item trucking problem.

a time period p where:
s<p<t, and (5)

Z Jrpdep + Tsp-1 = sttJ

nn is candidate

Every candidate item is ordered in time period p, and f,, for all candidate items n
is equal, and is set so that the equality in the last line is maintained.
The heuristic then proceeds to the next time period. Clearly the algorithm can

be implemented to run in O(N T) computational time.
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3 Computational Results

3.1 The Single-Item Trucking Problem

The heuristic for the single item trucking problem with non-statinary demands was
coded in the C programming language and tested on a randomly generated set of
problem instances. The optimal solution for this problem was also obtained using
the dynamic programming formulation. This allowed a comparison of the heuristic
solution to the optimal solution.

The data for the tests was generated as follows. In the following discussion, a
U(w,o) distribution denotes a uniform probability distribution with mean p and

standard deviation o.

— The individual order costs were generated from a U(15,5) distribution. The

holding cost of the item was taken as 1.
— Demands in each time period were generated from a U (u,0) distribution.
— A planning horizon of 120 time periods was used.

A total of 750 test problems were used to evaluate the performance of the heuris-
tic. The average difference of the heuristic solution from the optimal cost was 3.82%.
About 81% of the problems were less than 5% from the optimal cost. Only 4 prob-
lems had a difference of over 10%, the maximum obtained being 12.3% from the
optimal cost. The heuristic thus appears to perform very well in general. The
computation time for each problem was under 1 second on an AT&T 6300 personal
computer.

Next we investigate the sensitivity of the heuristic to the various cost and de-
mand parameters. We first consider the effect of demand variability and average

demand on the performance of the heuristic. The results are presented in Table 1.
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In the tables we report Y, which is the average percentage differnce of the heuristic
solution from the cost of the optimal solution (Y = 100x(relative cost - 1)). The
numbers within brackets in the tables are the standard deviation of Y. The average
demand could take one of three possible values of 1, 2, or 3. Corresponding to each
value of mean demand g, three values of standard deviation o were used: 0.1pu,
0.3u, and 0.5u. Each of these nine combinations was tested over a wide spectrum
of values of truck cost Ko and capacity C'. The relative cost of the heuristic is
fairly insensitive to the average demand and variability of demands, considering the
standard deviation of the relative costs obtained.

Next we consider the sensitivity of the heuristic to variations in truck cost Ko and
truck capacity C. These tests used demands generated from a U(1,0.5) distribution.
Six values of Ko were used: 15, 30, 45, 60, 75 and 90. Note that the expected value
of the individual order cost is 15. Eight values of truck capacity were used: 1, 3, 5,
7.5, 10, 12.5, 15 and 20. This varies the truck capacity from the very low, where 5
to T trucks were used each time an order was placed, to very high, where each order
filled only a fraction of one truck. The values of relative cost obtained in each case
are reported in Table 2.

If the truck capacity is high, so that only one partially filled truck is used in any
time period in which an order is placed, then the problem is essentially equivalent
to the single item dynamic lot sizing problem with an ordering cost of K + Ko. It
is also easy to see that our heuristic in this case acts in the same manner as the
part-period balancing heuristic (DeMatteis and Mendoza, 1968) for the single item
dynamic lot sizing problem. Since the part-period balancing heuristic generally
performs very well, a similar performance would be expected of our heuristic in this
case. In Table 2, the relative cost figures for ¢' = 12.5,15 and 20 show that this is

indeed the case.
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At the other extreme, if the truck capacity is low, then a large number of trucks
will be used, and only a few of them will be partially filled. Thus the truck utilization
should be high. This is exactly what our heuristic does. In addition, in the policy
generated by our heuristic, in most cases when an item becomes a candidate for
an order it is immediately ordered. Thus the performance of the heuristic in this
case is also very good, as is clear from Table 2 for ¢ = land3. In addition, in this
case the heuristic sends very few partially filled trucks. As the cost of a truck, Ko,
increase, the truck cost dominates other costs. As a result, the relative cost of the
heuristic improves.

The performance of the heuristic is the worst when the costs and truck capacity
are such that close to 1 truck are used when the heuristic places an order. If the
quantity shipped in a time period is slightly over 1 truck, then the heuristic would
use 2 trucks, leading to poor truck utilization. For a fixed value of truck capacity,
if the ordering costs are low then the order quantities will be small. In this case the
heuristic performs well. As the truck cost increases, the order quantity increases
until it is close to 1 truck. As discussed above, this results in an increase in the
relative cost of the heuristic. Further increases in the truck cost lead to a small
improvement in the performance of the heuristic. Table 2 shows that even in this
worst case the average difference of the heuristic from the optimal cost is typically

no larger than 6%.

3.2 The Multi-Item Trucking Problem

The heuristic for the multi-item trucking problem was coded in the C programming
language, and tested over a broad spectrum of randomly generated problems. For
the multi-item problem, no efficient optimal solution procedure is available. The

solution generated by the heuristic was thus compared to a lower bound on the cost
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Table 1: Single item trucking problem: sensitivity to demand parameters.

. Mean of demand process, p

1 2 3

0.1p 2.7 3.9 3.1
(1.9) (2.1) (2.2)

0.3 3.4 3.6 3.9
(2.1) (2.0) (1.8)

0.5 4.0 4.8 6.2
(1.7) (2.1) (2.1)

Demand ~ U(p,o) , T =120
Table shows ¥ = 100x (relative cost - 1), averaged
over 30 replications. Numbers in brackets are

standard deviation over the 30 replications. Divide

these by v/30 to obtain standard error of Y.
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Table 2: Single item trucking problem: sensitivity to truck cost and capacity.

Truck Truck capacity, C
cost Ky 1 3 5 7.5 10 12.5 15 20

15 36 | 71 | 6.4 | 6.2 | 47 | 43 | 3.7 | 3.9
(0.6) | (1.6) | (1.7) | (1.7) | (2:0) | (1.4) | (2:2) | (1.6)
30 90 | 41 | 39 | 6.0 | 38 | 38 | 40 | 3.5

(0.4) | (0.8) | (1.0) | (2.0) | (1.2) | (1.2) | (1.4) | (1.8)

45 | 14 | 23 | 35 | 45 | 64 | 29 | 3.0 | 3.7
(0.3) | (0.8) | (0.5) | (20) | (1.7) | (1:5) | (1.0) | (1.0)

60 1.1 2.1 1.9 4.8 6.1 5.6 3.9 3.6
(0.1) | (06) | (0.8) | (19) | (26) | (18) | (24) (1.0)

75 1.0 1.5 2.2 3.1 4.3 5.5 4.3 3.6

(0.1) | (0.4) | (0.6) | (2.0) | (2.6) | (2.3) | (21) | (1.4)

90 0.7 1.5 2.1 3.1 4.0 6.4 5.0 3.4

(0.1) | (05) | (07) | (1:2) | (15) | (3:4) | (2:1) | (16)

Demand ~ U(1,0.5), T =120

Table shows ¥ = 100 (relative cost - 1), averaged over 10
replications. Numbers in brackets are standard deviation
over the 10 replications. Divide this be V10 to

obtain the standard error of Y.
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of the optimal policy. The relative cost figures reported in this section thus are with
respect to the lower bound. The relative cost with respect to the optimal cost is
expected to be lower.

To evaluate the performance of the heuristic for the multi-item problem, we
require a lower bound on the cost of the optimal policy. In order to obtain this
bound, we will formulate the problem as a mixed integer programming problem.

For this, we use the following notation:

z,, = order size of item n in time period 1,

I; = inventory of item n at the end of time period t,
1 if truck i is used in time period %,

0 otherwise.

1 if item n orders in period ¢,
Ynt —
0 otherwise.

]\4 = [Zn,t dnt‘l

The formulation, referred to as the problem (TP), is given in Figure 4. The first
constraint set is the inventory balance constraint. The constraint set (iii) ensures
that an adequate number of trucks is used in each time period. Constraint set (iv)
says that if any item places an order in time period ¢, then the first truck must
be used in time period ¢. This constraint is redundant in the present formulation.
However, it will be useful in the relaxations we will next consider.

To obtain a lower bound on the cost of the optimal policy, a relaxation of the
problem (TP) is used. To this end, the integrality constraint on the variables z;; is
relaxed for all ¢ > 2. We can then substitute the variable w; = Zf‘f’,ﬂ Zig, we > 0
in the constraint sets and in the objective function. In this relaxed problem, the
constraint set (iv) is no longer redundant. Finally, we obtain a lower bound to

the solution of the relaxed problem by using Lagrangian relaxation, dualizing the
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M T

N T
Min. Z Z(Hn-[nt + Kn,ynt) + KO Z Z Zit

n=1t=1 i=1 t=1
s.t Ie1 + Tnt — Luy = du vV on,t (2)
My, — Tt > 0 YV n,t (i)
M 2w — Tz > 0 vt (ii)
21 — Ynt > 0 VY n,t (iv)
Tnty Ly =0, Ynty, 2z O or 1.

Figure 4: Problem (TP): Integer programming formulation of the trucking problem.

constraint sets (iii) and (iv). The Lagrangian relaxation decomposes the problem
into N single item dynamic lot-sizing problems. These can be solved efliciently using
the Wagner-Whitin algorithm. We used the standard subgradient optimization

procedure (see, for example, Fisher 1981) to solve the Lagrangian dual problem.

The heuristic was tested on a wide variety of test problems. Three specific
cases, with 2 items, 4 items, and 8 items were considered. Actually, if there is
only one item, then it is easy to see that the multi-item heuristic is identical to the
single-item heuristic, the performance of which has been discussed in the previous
section. In each case, the demand for item n in each time period was selected from
a U(pn,0,) distribution. The mean demand ., for item n was between 1 and 3,
and the standard deviation o, was between 0 and 0.5u,. A variety of cases, from
identical items to very different item demands, and from low to very high variability
of demands, were tested in each case. The item ordering costs were drawn from
U(15,5) distributions, and the item holding costs were taken as 1. A planning
horizon of 120 time periods was used in each case.

The heuristic was run on a total of 1080 test problems. The average percentage

difference from the lower bound over all the tests was 9.0%. About 68% of the
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problems had a differnece from the lower bound of below 10%. The largest difference
obtained was 31.1%. It must be noted that these numbers are the percentage
difference of the cost of the heuristic policy from the lower bound on the cost of
the optimal policy. The true optimal cost lies somewhere in between the heuristic
cost and the lower bound. The only information we have about the true optimal
solution is for the single-item problem. To get an idea of where the true optimum
lies between the cost of the heuristic and the lower bound, we calculated the lower
bound as describle above for the 750 test problems which were used to test the
single item heuristic. For these problems the average percentage difference of the
heuristic cost from the lower bound was 6.4%. As discussed in the last section, the
average difference of the single-item heuristic cost from the optimal solution was
3.82%. Thus the gap between the optimal cost and the lower bound in the single
item problem accounts for aproximately 40% of the difference of the heuristic from
the lower bound. It is expected that a similar relationship holds for the multi-item
problem also.

The details of the results for the 2 item, 4 item and 8 item test problems are
shown in Tables 3, 4, and 5 respectively. In each case, the sensitivity of the solution
to variations in truck cost and truck capacity was investigated. The truck cost was
varied from about one-sixth of the total expected ordering cost of the items to 6
times the total expected ordering cost of the items. The truck capacity was varied
so that the order size in any time period would be from one-half to about 8 trucks.

We first point out that if the truck capacity is large, so that only one partially
filled truck is used in any time period in which an order is placed, then the prob-
lem is identical to the joint replenishment problem. In this case, the multi-item
heuristic actually generates an ordering policy identical to variant 2 of the cost

covering heuristic for the joint replenishment problem discussed in Joneja (1988).
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The heuristics for the joint rpelenishment problem in Joneja (1988) had an average
percentage difference from the lower bound of about 4%. When the truck capacity
is large and truck cost is small, we observe a similar performance from our heuristic
for the multi-item trucking problem.

The results further show that for a fixed truck capacity, as the truck cost in-
creases the relative cost first increases and then has a slight decrease. The value
of truck cost for which the relative cost is the highest increases as truck capac-
ity increases. Both of these effects were observed in the single-item heuristic, as
discussed in the last section. The relative cost appears to increase slightly as the
number of items is increased. The greatest effect is when going from a single item
to 2 items. As discussed above, this could be because the single item heuristic is
evaluated with respect to the optimal solution, while the multi-item heuristic is

evaluated with respect to the lower bound on the cost of the optimal policy.

4 Conclusions

In this paper we introduce the single and multi-item trucking problem. This problem
can effectively model, for example, certain distribution systems with transportation
costs, and manufacturing systems with parallel machines or where production can
be subcontracted. The joint replenishment problem is a special case of the trucking
problem. For the single item problem we show that the continuous time, infinite
horizon, constant demand version of the problem can be solved optimally. For this
version we also introduce the concepts of the Full Truck Policy and the Modified
Full Truck Policy, which are approximation solutions to the problem. We prove that
the cost of these policies will be very close to the optimal cost even in the worst
case. For the single item problem in discrete time over a finite time horizon with

non-stationary demands, we develop an O(T?) dynamic programming formulation
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Table 3: The multi-item heuristic for 2 items: sensitivity to truck cost and capacity.

Truck Truck capacity, ¢
Cost, Ko 2 5 15 22.5 30 50
5 7.9% 11.6 6.0 3.0 2.7 2.6
(1.0) (4.1) (3.6) (1.7) (1.6) (2.1)
7777777 15 A 8.2 13.3 | 14.1 7 3.1 | 24 7/22
(0.7) (2.8) (2.2) (1.8) (0.8) (1.3)
30 6.7 13.1 13.5 8.6 2.4 1.1
(1.0) (2.4) (2.8) (5.4) (0.8) (1.0)
60 5.0 11.1 9.0 9.2 4.6 1.4
(1.3) (2.9) (1.3) (2.4) (1.9) (0.4)
120 4.0 9.0 8.4 7.7 7.3 3.5
(1.4) (1.6) (3.4) (1.5) (1.1) (0.7)
180 4.0 8.9 5.3 6.0 6.7 4.8
(1.5) (2.9) (0.9) (1.4) (2.2) (0.5)
Table shows ¥ = 100x (relative cost - 1), averaged over 10 replica-
tions. Numbers in brackets are std. deviation over the 10 replications.
Divide these by v/10 to obtain the standard error of ¥
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Table 4: The multi-item heuristic for 4 items: sensitivity to truck cost and capacity.

Truck Truck capacity, ¢ |
Cost, Ko 4 10 30 45 60 100
10 109% 138 I 59 21 19 . 12 ,
(2.0) (4.0) (2.5) (1.0) (0.8) (0.8)
36 8~9 16w87 _16.9 1 42‘7 1.7 1.4 N
(14) | (3.0) | (43) | (1:2) | (03) (0.6)
w0 | 14 | w1 | wss | ss | 29 | 14
(1.5) (4.1) (4.3) (3.1) (0.3) (0.5)
120 6.8 14.2 16.2 9.7 4.7 2.6
09 | (1.8) | (82) | (14) | (0.7) (0.3)
240 5.5 13.1 19.8 9.3 8.5 5.6
(1.1) (3.1) (5.7) (2.7) (1.0) (0.3)
360 5.1 11.0 16.9 7.4 7.5 6.5
(0.9) (2.7) (8.4) (1.8) (1.2) (0.3)
Table shows ¥ = 100x (relative cost - 1), averaged over 10 replica-
tions. Numbers in brackets are std. deviation over the 10 replications.
D1V1de these by /10 to obtain the standard error of ¥
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Table 5: The multi-item heuristic for 8 items: sensitivity to truck cost and capacity.

Truck Truck capacity, C
Cost, Ko 8 20 60 90 120 200
“ 20 11.5 14.3 6.0 2.5 2.1 1.6
(2.1) (3.4) (2.4) (1.3) (0.6) (0.8)
60 8.8 16.0 17.5 3.7 2.5 1.3
(0.8) (1.6) (2.8) (2.3) (0.3) (0.3)
120 7.4 15.2 24.3 5.8 4.2 2.7
(1.1) (1.6) (4.0) (2.6) (0.2) (0.1)
240 6.0 12.5 23.1 10.9 7.0 5.9
(0.4) (1.6) (2.6) (2.8) (0.8) (0.3)
480 5.6 12.4 24.4 10.5 9.3 9.3
(1.0) (2.1) (2.4) (4.6) (0.8) (0.5)
720 5.2 12.2 22.3 10.3 8.8 10.2
(0.5) (2.6) (2.5) (7.0) (1.0) (0.7)
Table shows ¥ = 100x (relative cost - 1), averaged over 10 replica-
tions. Numbers in brackets are std. deviation over the 10 replications.
Divide these by v/10 to obtain the standard error of ¥
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to obtain the optimal policy. We also develop a heuristic for this problem which
performed very well on a wide spectrum of test problems. Finally, for the multi-
item trucking problem in discrete time over a finite time horizon with non-stationary
demands we develop and test a heuristic algorithm. The heuristic is compared to
a lower bound on the cost of the optimal policy, and the test results over a wide
variety of problems are very encouraging.

The multi-item trucking problem is NP-complete. For this problem no efficient
optimal algorithm is currently known. Three research directions appear to hold
some promise for solving this problem to optimality. One is to develop structural
results about the optimal solution, which could be used to restrict the state space in
a dynamic programming formulation. A similar exercise should also allow effective
integer programming formulations, which can be solved in several ways. Finally,
there has recently been successful development of strong cutting planes for several
multi-item lot sizing problems (see, for example, Barany, Van Roy and Wolsey, 1984,
and Leung, Magnanti and Vachani, 1988). This approach should prove effective for

solving medium size problems to optimality.

A cknowledgments

The author would like to thank Professor Robin Roundy for his advice at various
stages in the research for this paper. This research was supported in part by NSF
grant DMC-8451984, by AT&T Information Systems and DuPont Corporation, and
by the Faculty Research Grant of the Graduate School of Business at Columbia

University.

29



References

1]

8]

[9]

Aksoy, Y. and S.S.Erenguk. 1988. Multi-Item Inventory Models with Coor-
dinated Replenishments: A Survey. International Journal of Operations and

Production Management, 8, pp. 63-73.

Baker, K., P.S.Dixon, M.J.Magazine and E.A.Silver. 1978. An Algorithm
for the Dynamic Lot-Size Problem Time-Varying Production Capacity Con-

straints. Management Science, 24, 16, pp. 1710-1720.

Barany, 1., T.J.Van Roy and L.A.Volsey. 1984. Strong Formulations for Multi-

Item Capacitated Lot Sizong. Management Science, 30, 10, pp. 1255-1261.

DeMatteis, J.J. and A.G.Mendoza. 1968. An Economic Lot-Sizing Technique.
IBM Systems journal, 7, pp. 30-46.

Fisher, M.L. 1981. The Lagrangian Relaxation Method for Solving Integer

Programming Problems. Management Science, 27, pp. 1-19.

Gallego, G. and D. Simchi-Levi. 1988. On the Effectiveness of Direct Shipping
Strategy for the One Warehouse Multi-Retailer R-Systems. Technical Report,
School of IEEOR, Columbia University, New York.

Joneja. D. 1988. The Joint Replenishment Problem: New Heuristics and Worst
Clase Performance Bounds. Tech. Report 765, School of OREIE, Cornell Uni-

versity.

Leung, J., T.L.Magnanti and R.Vachani. 1987. Facets and Algorithms for Ca-
pacitated Lot Sizing. Tech Report OR 171-87, MIT, Cambridge, Mass.

Wagner, H.M. and T.M.Whitin. 1958. Dynamic Version of the Economic Lot

Size Model. Management Science, 5, 1, pp. 89-96.

30



