Correlation or Residuals in Successive Fittings with Least-Squares
 Robert Jacobsen
 June, 1967

Abstract

This paper derives the covariance relations of the resiauals in successive least-squares fits, with application to tests of heteroscedasticity.

Biometrics Unit, Department of Plant Breeding and Biometry, Cornell University, Ithaca, New York.

We give some simplified proofs and extensions of results in A. Hedayat's paper No. BU-135.

Let V be the observation space of aim. N, \mathcal{Y} the observed point.
Let $E_{\theta} y=x \theta, \quad \theta \in \circlearrowright=R^{p}, x: \Theta \rightarrow v$ linear.
Let Ω denote the mean space, $\operatorname{Im} x$, and $\operatorname{Cov} \mathcal{Y}=D$, where D is aiagonal with respect to the orthonormal standard basis e_{1}, \cdots, e_{N}.

Denote $V_{i}=$ the span of $\left\{e_{1}, \cdots, e_{i}\right\}$, and $\Omega_{i}=P_{V_{i}} \Omega$, where P_{w} denotes orthogonal projection onto $W \subset V$.

We are concerned with computing the covariance relations among the leastsquares estimates of $\mathrm{E} \mathcal{Y}$ and the residuals based on different numbers of observations.
(1) Now cov $\left[\left(e_{k}, P_{V_{i}-\Omega_{i}} P_{V_{i}} y\right),\left(e_{\ell}, P_{V_{j}-\Omega} P_{V_{j}} y\right)\right]$

$$
k=l, \cdots, i ; \quad \ell=1, \cdots, j ; l \leq i \leq j \leq \mathbb{N},
$$

is the covariance between the $k^{t h}$ coordinate of the residual vector, based on a fit to the $1^{s t} i$ observations, and the $l^{t h}$ coordinate of the residual based on the $1^{\text {st }} j$ observations.

Biometrics Unit, Department of Plant Breeding and Biometry, Cornell University, Ithaca, New York.

$$
\left(e_{k}, P_{V_{i}-\Omega_{i}} P_{V_{i}} \mathcal{U}\right)=\left(P_{V_{i} \Omega_{i}}^{I} P_{V_{i}}^{I} e_{k}, \eta\right)=\left(P_{V_{i}-\Omega_{i}} e_{k}, Y\right) \text {, as a projection }
$$

is self-adjoint.

$$
\begin{align*}
& \quad P_{V_{i}-\Omega_{i}} e_{k}=\left(I-P_{\Omega_{i}}\right) e_{k}, \text { as } e_{k} \in V_{i} \text {. So (I) becomes }\left(P_{V_{i}-\Omega_{i}} e_{k}, D P_{V_{j}-\Omega_{j}} e_{\ell}\right) \\
& =\left(e_{k}, D e_{\ell}\right)-\left(e_{k}, D P_{\Omega_{j}} e_{\ell}\right)-\left(D e_{\ell}, P_{\Omega_{i}} e_{k}\right)+\left(P_{\Omega_{i}} e_{k}, D P_{\Omega_{j}} e_{\ell}\right), \tag{2}\\
& \text { by the definition of cove } \mathcal{U}_{l} .
\end{align*}
$$

Evaluation of (2).

Assume $D=\sigma^{2}$ I.
Case 1.

$$
I \leq k \leq i<\ell \leq j \leq N
$$

Write $e_{k}=P_{\Omega_{i}} e_{k}+P_{V_{i}-\Omega_{i}} e_{k}$
Now $V_{i}-\Omega_{i} \Rightarrow \Omega_{i}$ and $V_{j}-V_{i}$.
But $\Omega_{j} \subset \Omega_{i} \oplus V_{j}-V_{i}$.
So $V_{i}-\Omega_{i}+\Omega_{j}$.
(4)

$$
\begin{gathered}
\text { Hence, }\left(e_{k}, P_{\Omega_{j}} e_{\ell}\right)=\left(P_{\Omega_{i}} e_{k}, P_{\Omega_{j}} e_{\ell}\right)+\left(P_{V_{i}-\Omega_{i}} e_{k}, P_{\Omega_{j}} e_{\ell}\right) \\
=\left(P_{\Omega_{i}} e_{k}, P_{\Omega_{j}} e_{\ell}\right)
\end{gathered}
$$

(5) Further, as $i<\ell, \quad\left(e_{\ell}, P_{\Omega_{i}} e_{k}\right)=0$.
(6) And, as $k<\ell,\left(e_{k}, e_{\ell}\right)=0$.

So (2) becomes 0 .
Therefore, any component of the residual based on the first i observations is uncorrelated with any component > i of the residual based on the first j obserrations, $j>1$, in the homoscedastic case.

Case 2.

$1 \leq k<\ell \leq i \leq j \leq N$

(4) and (6) still hold.

So (2) $=-\left(e_{\ell}, P_{\Omega_{i}} e_{k}\right) \sigma^{2}$, which doesn't depend on j.

Case 3.

$$
1 \leq k=\ell \leq i \leq j \leq N
$$

(4) still holds.

So (2) $=\sigma^{2}\left\{\left(e_{\ell}, e_{\ell}\right)-\left(e_{\ell}, P_{\Omega_{i}} e_{\ell}\right)\right\}$, which doesn't depend on j.
(7) Thus, $\left.\operatorname{var}\left(e_{\ell}, P_{V_{i}-\Omega_{i}} P_{V_{i}}\right\}\right)=\left(1-\left\|P_{\Omega_{i}} e_{\ell}\right\|^{2}\right) \sigma^{2}$

A formula for the correlation between two residuals can be given.
(8) $\rho_{k, i, \ell, j}=\frac{\cdot\left(e_{\ell}, P_{\Omega_{i}} e_{k}\right)}{\cdots e^{-1}\left[l^{-1}\right.}$

$$
\left[1-\left(e_{\ell}, P_{\Omega_{i}} e_{\ell}\right)\right]^{\frac{1}{2}}\left[1-\left(e_{k}, P_{\Omega_{j}} e_{k}\right)\right]^{\frac{1}{2}}
$$

for $I \leq k<\ell \leq i \leq j \leq N$.

Assume $D=\left(\begin{array}{ccc}\sigma_{1}^{2} & & 0 \\ & \ddots & 0 \\ 0 & & \sigma_{\mathrm{N}}^{2}\end{array}\right)$.

Case 1.

$1 \leq k \leq i<\ell \leq j \leq N$.

The $1^{\text {st }}$ and $3^{\text {rd }}$ terms of (2) vanish. (2) becomes

$$
\begin{equation*}
\left(P_{\Omega_{i}} e_{k}, D P_{\Omega_{j}} e_{l}\right)-\left(e_{k}, D P_{\Omega_{j}} e_{l}\right)=\left(D P_{\Omega_{i}} e_{k}, P_{\Omega_{j}} e_{l}\right)-\sigma_{k}^{2}\left(e_{k}, P_{\Omega_{j}} e_{l}\right) \tag{9}
\end{equation*}
$$

which is not, in general, zero.

Case 2.

$I \leq k<\ell \leq i \leq j \leq N$.

The $1^{\text {st }}$ term of (2) vanishes. (2) becomes
$-\left(e_{k}, D P_{\Omega_{j}} e_{l}\right)-\left(D e_{\ell}, P_{\Omega_{i}} e_{k}\right)+\left(P_{\Omega_{i}} e_{k}, D P_{\Omega_{j}} e_{\ell}\right)$, which depends on j.

Case 3.
$1 \leq k=\ell \leq i<j \leq N$.

(2) remains unchanged.

Case 4.

$1 \leq k=\ell \leq i=j \leq N$.

The $2^{n d}$ and $3^{r d}$ terms of (2) become identical. (2) becomes
(10) $\left.\sigma_{l}^{2}-2\left(e_{l}, D P_{\Omega_{i}} e_{l}\right)+\left(P_{\Omega_{i}} e_{\ell}, D P_{\Omega_{i}} e_{\ell}\right)=\operatorname{var}\left(e_{\ell}, P_{V_{i}-\Omega_{i}} P_{V_{i}}\right\}\right)$

Now to investigate
(11) $\operatorname{cov}\left[\left(e_{k}, P_{\Omega_{i}} P_{V_{i}} y\right),\left(e_{\ell}, P_{V_{j}-\Omega} P_{V_{j}} y\right)\right]$
the covariance between the $k^{t a}$ coordinate of the estimated mean vector based on the first i observations and the $\ell^{t / 4}$ coordinate of the residual based on the first j observations.

$$
k=1, \cdots, i ; \ell=1, \cdots, j ; 1 \leq i \leq N ; 1 \leq j \leq N .
$$

(11) becomes $\left(P_{\Omega_{i}} e_{k}, D P_{V_{j}-\Omega_{j}} e_{\ell}\right)=\left(P_{\Omega_{i}} e_{k}, D\left(I-P_{\Omega_{j}}\right) e_{\ell}\right)$

$$
\begin{equation*}
=\left(P_{\Omega_{i}} e_{k}, D e_{l}\right)-\left(P_{\Omega_{i}} e_{k}, D P_{\Omega_{j}} e_{l}\right) \tag{12}
\end{equation*}
$$

Evaluation of (12).

Assume $D=\sigma^{2} I$.

Case 1.

$$
\begin{array}{r}
l \leq k, \ell, j \leq N \\
i=N, \ell \leq j
\end{array}
$$

(12) becomes

$$
\sigma^{2}\left\{\left(P_{\Omega_{N}} e_{k}, e_{\ell}\right)-\left(P_{\Omega_{N}} e_{k}, P_{\Omega_{j}} e_{\ell}\right)\right\}=\sigma^{2}\left(P_{\Omega_{N}} e_{k}, P_{V_{j}-\Omega_{j}} e_{\ell}\right)
$$

But $\mathrm{V}_{\mathrm{j}}-\Omega_{\mathrm{j}}+\Omega_{\mathrm{j}}$ and $+\mathrm{V}_{\mathrm{N}}-\mathrm{V}_{\mathrm{j}} \cdot$ And $\Omega_{\mathrm{N}} \subset \Omega_{\mathrm{j}} \oplus \mathrm{V}_{\mathrm{N}}-\mathrm{V}_{\mathrm{j}} \cdot$ So $\mathrm{V}_{\mathrm{j}}-\Omega_{\mathrm{j}}+\Omega_{\mathrm{N}}$. Hence above equals 0 .
Evaluation of (12).

Assume $D=\left(\begin{array}{ccc}\sigma_{1}^{2} & & 0 \\ & \ddots & \\ 0 & & \sigma_{\mathrm{N}}^{2}\end{array}\right)$.

Case 1.

$$
\begin{aligned}
& 1 \leq k, \ell, j \leq N \\
& \quad i=N, \ell \leq j
\end{aligned}
$$

(12) becomes

$$
\sigma_{\ell}^{2}\left(P_{\Omega_{N}} e_{k}, e_{\ell}\right)-\left(P_{\Omega_{N}} e_{k}, D P_{\Omega_{j}} e_{\ell}\right)
$$

which is not zero, in general.
Let $f_{n}=\left(e_{n}, P_{V_{n}-\Omega_{n}} P_{V_{n}}, Y\right)$
$\operatorname{Var} f_{n}=\left\{1-\left\|P_{\Omega_{n}} e_{n}\right\|^{2}\right\} \sigma^{2}=C_{n} \sigma^{2}$, under homoscedasticity assumption.
$\operatorname{Var} f_{n}=\sigma_{n}^{2}-2 \sigma_{n}^{2}\left(e_{n}, P_{\Omega_{n}} e_{n}\right)+\left(P_{\Omega_{n}} e_{n}, D P_{\Omega_{n}} e_{n}\right)=C_{n}^{\prime} \sigma_{n}^{2}$, under
heteroscelasticity assumption.

Let $a_{n}=\frac{f_{n}}{\sqrt{c_{n}}}$.
$\operatorname{Var} a_{n}=\sigma^{2}$, under homoscedasticity assumption.
$=\sigma_{n}^{2} c_{n}^{\prime}$, under heteroscedasticity assumption.
C_{n}

Under homoscedasticity assumption, the d_{n} are uncorrelated, with constant $\operatorname{var} \cdot \sigma^{2}, \mathrm{n}=\mathrm{r}+1, \cdots, \mathrm{~N}$, where $\mathrm{r}=\mathrm{rank}$ of X . Under heteroscedasticity assumption, the a_{n} are correlated, with $\operatorname{cov}\left(a_{n}, a_{n+1}\right)=\frac{1}{\sqrt{c_{n} c_{n+1}}} \operatorname{cov}\left(\hat{i}_{n}, f_{n+1}\right)$,
and $\operatorname{var} d_{n}=\sigma_{n}^{2} \frac{c_{n}^{\prime}}{C_{n}}$.
The d's have expectation 0 , under both hypotheses. If heteroscedasticity holds,
$P\left\{\left|a_{n+1}\right|>\left|a_{n}\right|>\frac{1}{2}\right.$ if

$$
\left|\operatorname{cor}\left(a_{n+1}, a_{n}\right) \sqrt{\frac{\operatorname{var} a_{n+1}}{\operatorname{var} a_{n}}}\right|>1
$$

Above equals $\left|\frac{\operatorname{cov}\left(\alpha_{n+1}, \alpha_{n}\right)}{\operatorname{var} \alpha_{n}}\right|=\left\lvert\, \frac{\operatorname{cov}\left(f_{n+1}, f_{n}\right)}{\sigma_{n}^{2} c_{n}^{\prime} C_{n}} \sqrt{C_{n+1} C_{n}}\right.$

$$
\left.=1 \frac{\operatorname{cov}\left(f_{n+1}, f_{n}\right)}{\operatorname{var} f_{n} \sqrt{C_{n+1}}} \right\rvert\,
$$

$$
c_{n}
$$

Thus, a sufficient condition that $p\left\{a_{n+1}\left|>\left|a_{n}\right|\right\}>\frac{1}{2} \quad n=r+1, \cdots, N\right.$ is that the absolute value of

$$
\frac{\left(D P_{\Omega_{n}} e_{n}, P_{\Omega_{n+1}} e_{n+1}\right)-\sigma_{n}^{2}\left(e_{n}, P_{\Omega_{n+1}} e_{n+1}\right)}{\left[\sigma_{n}^{2}-2 \sigma_{n}^{2}\left(e_{n}, P_{\Omega_{n}} e_{n}\right)+\left(P_{\Omega_{n}} e_{n}, D P_{\Omega_{n}} e_{n}\right)\right]\left[\frac{1-\left\|P_{\Omega_{n+1}} e_{n+1}\right\|^{2}}{1-\left\|P_{\Omega_{n}} e_{n}\right\|^{2}}\right]^{\frac{1}{2}}}
$$

$$
\text { be } \geq 1 \text {. }
$$

This condition could then be used to insure power against alternatives in the Goldfeld, Quandt peak-test.

References

[1] Hedayat, Abdossamad (1966). Homoscedasticity in Linear Regression Analysis with Equally Spaced x's. M.S. Thesis, Cornell University, Ithaca, New York.

