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Abstract 

This paper derives the covariance relations of the residuals in successive 

least-squares fits, with application to tests of heteroscedasticity. 
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We give some simplified proofs ani extensions of results in A. Hedayat's 

paper No. BU-135· 

with 

Let V be the observation space of dim. N, ~ the observed point. 

Let Ee 1j = X 9, 9 € 3 = Rp, X: 8 _.. V linear. 

Let 0 denote the mean space, Im X, and Cov ~ = D, where D is diagonal 

respect to the orthonormal standard basis e1, 

Denote Vi= the span of (e1, •••, ei}, and Oi = 

••• e 
' N" 

PV O, where P denotes 
i w 

orthogonal projection onto W cv. 

We are concerned with computing the covariance relations among the least

squares estimates of E!j and the residuals based on different numbers of 

observations. 

(1) 

k = 1, •••, i; ~ = 1, •••, j; 1 ~ i ~ j ~ N, 

is the covariance between the kth coordinate of the residual vector, based on a 

fit to the 1st i observations, and the ~th coordinate of the residual based on 

the 1st j observations. 
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= (PV -n ek, U ) , as a projection 
i i (J 

is self-adjoint. 

PV. -0 ek =. (I - P0 ) ek, as ek € Vi. So (1) becomes (PV _0 ek' 
i i i i i 

= (ek, D ez) - (ek, D Po. ez) - (D ez, P01 ek) + (Po. ek, D Po ez), 
J ~ j 

by the definition o:r eov ~ • 

Evaluation of (2). 

(4) 

Assume D = cr2 I. 

Case 1. I t i 
1 

Write ek = P'\ ek + PV i-Oi ek 

Now· V. - 0. ,... 0 1 and V . - V1• 
~ ~ J 

But 0. c 0. 3 v - v .• 
J ~ j ~ 

so v. - o. ~ o .• 
J. ~ J 

Hence, (ek' Po. ez) = (Poi ek, 
J 

Po 
j 

= ( P 0 ek' P 0 e t) • 
i j 

I 
i 

e ~) 
'" 

(5) Further, as i < t, (ez, P0 ek) = o. 
i 

I 
j N 

+ (PV -0 ek' 
i i 

Po. ez) 
J 
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So (2) becomes o. 

Therefore, any component of the residual based on the first i observations is 

uncorrelated with any component > i of the residual based on the first j obser-

vations, j > 1, in the homoscedastic case. 

Case 2. f 
1 k i j 

(4) and (6) still hold. 

So (2) = -(et, P0 ek) C12 which doesn't depend on j. 
' i 

Case 3· t t ~ f 
1 

l s: k = LSiS:j SN k i j 
t 

(4) still holds. 

So (2) = a2 {Cet, eL)- (et' P0 . eL)}, 
]. 

which doesn't depend on j. 

N 

t 
N 

A formula for the correlation between two residuals can be given. 

(8) p = k,i,t,j 

for l S: k < t S: i s j s: N. 
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Evaluation of (2). 

Assume D = 

( 
0'2 

~) 
1 

• 
0 • 

Case 1. j f· ~ t 
1 k i J, j N 

1 s k s i < t ~ j ~ N. 

The 1•t and ;rd ter.ms of (2) vanish. (2) becomes 

(P0 ek' D Po ez) - (ek, D Po ez) = (D P0 ek, P0 e£) - a~(ek'· P0 e .t) (9) 
i j j i j j 

which is not, in general, zero. 

Case 2. t i t ' 1 k .t 1 j N 

1 ~ k < .t ~ i S j ~ N. 

The l~t term of (2) vanishes. (2) becomes 
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e 
Case 3. , t t ~ t 

1 k i j N 
1S:k:J.Si< j s; N. .e 

(2) remains unchanged. 

Case 4. t t ~ t 
1 k i N 

.e j 
1S:k:J.S:i= j s; N .. 

The ~nd and 3rd terms of (2) become identical. (2) becomes 

Now to investigate 

the covariance between the kth coordinate of the estimated mean vector based 

on the first i observations and the .eth coor~inate of the residual based on 

the first j observations. 

k = 1, •••, i; .e = 1, •••, j; 1 SiS: N; 1 S: j S N. 

(12) 
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Evaluation of (12). 

Assume D = ci!I. 

Case 1. , t f t J 
1 k L j N 

i 

1 s k, t, j s N 

i = N,L s j 

( 12) becomes 

But vj - oj ~ oj and o~. vN- vj. And oN c ojG vN ·- vj. so vj - oj .... oN. 

Hence above equals o. 

Evaluation of (12). 



e 
Case 1. 

1 ~ k, £, j ::;; N 

i = N, t ::;; j. 
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t- -- t 
1 k 

f t ~ 
£ j N 

i 

(12) becomes 

which is not zero, in general. 

~t f = (en' Pv -n Pv- .... ~ n n n n 

Var f n = {1 - llP0 en\12} (J2 

n 

Var 

) 

= c n 
a2, under homoscedasticity assumption. 

= c' a2 under n n' 

heteroscedasticity assumption. 

let d = n . 

f 
n 

IC n 

Var d = a2, under hamoscedasticity assumption. 
n 

= cr2 c' , under heteroscedasticity assumption. n n 

c 
n 

Under homoscedasticity assumption, the d are uncorrelated, with constant 
n 

var. cr2 , n = r + 1, •••, N, where r =rank of X. Under heteroscedasticity 

1 assumption, the d are correlated, with cov(d 1 d 1 ) = cov(i , f 1 ), n n n+ n n+ 
/cncn+l 



-8-

The d's have expectation 0, under both hypotheses. If heteroscedasticity holds, 

p {I an+l I > I an I > 1 
2 if 

Above equals 
cov (dn+l' dn) 

var d 
n 

= 

>1. 

cov (fn+l' fn) 

~ c~ ./cn+l en 

en 

cov (f f ) n+l' n = • 
var f n /cn+l 

c n 

Thus, a sufficient condition that ...J Ia I > Ia I} > .! ~ n+l n 2 

is that the absolute value of 

be ~ 1. 

n = r + 1, •••, N 

This condition couLi then be used to insure power against alternatives in 

the GoLifeLi, Quandt peak-test. 
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