MAXIMA OF CONTINUOUS TIME STATIONARY STABLE PROCESSES

GENNADY SAMORODNITSKY

ABSTRACT. We study the suprema over compact time intervals of stationary locally bounded
a-stable processes. The behaviour of these suprema as the length of the time interval increases
turns out to depend significantly on the ergodic-theoretical properties of a flow generating the
stationary process.

1. INTRODUCTION

Let X = (X (t),t e ]R) be a stationary, locally bounded, separable stochastic process. Then

(1) M) = sup [X(s)], 20
0<s<t

is a well defined finite valued stochastic process. Its distributional behavior as the length of
the interval ¢ increases is a subject of study of continuous time extreme value theory. Results
are available for special classes of processes X, such as certain Gaussian processes and diffusion
processes; the two major references here are Leadbetter et al. (1983) and Berman (1992). A
number of more recent general results is due to P. Albin (e.g. Albin (1990, 1992)).

In this paper we consider the class of real, stationary, locally bounded, separable and measur-
able symmetric a-stable (SaS) processes, 0 < a < 2. (Extensions to complex-valued processes
will be mentioned in the sequel.) As we go along we will often drop the adjectives “separable
and measurable” from the description of a process, but these assumptions remain in place. Such
processes have an integral representation of the form

mo by 1/a
(1.2) X(t) = /Eat(w) (u(m)> fodi(x) M(dz), t € R

dm
where m is a o-finite measure on E, M is a SaS random measure on F with control measure
m, f € L*(m). Furthermore, (¢;) is a measurable family of maps from E onto E such that
brys(x) = ¢1(¢s(x)) for all t,s € IR and = € E, ¢o(x) =« for all z € E, and m o ¢; 1 ~ m for all
t € IR. The assumptions mean that the family (¢;) forms a measurable nonsingular flow on E.

Finally, (a;) is a measurable family of {—1,1}-valued functions on E such that for every s,t € IR
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2 G. SAMORODNITSKY
we have a;y4(@) = ag(z)ai(ps(x)) m-almost everywhere on E. This means that the family (a;)
forms a cocycle for the flow (¢;).

This representation is due to Rosinski (1995). A general source of information on stable
processes, stable random measures, integrals and integral representation of stable processes is
Samorodnitsky and Taqqu (1994).

The basic ergodic theory (see e.g. Krengel (1985) or Aaronson (1997)) leads to a natural
decomposition of stationary symmetric a-stable processes as follows. There exists a (unique up
to a set of measure zero) measurable set C' C F invariant under each of the maps ¢; and such
that each map ¢; is conservative on C and dissipative on D = C¢. A flow is called dissipative
if C = ( and conservative if C = E (all the set equalities are up to a set of measure zero). In
these two cases we say that the stationary SaS process (1.2) is generated by a dissipative or
conservative flow respectively, and, in general, a stationary SaS process given in the form (1.2)
can be decomposed into a sum of two independent stationary SaS processes

X0 = [ ale) (Mw))l/afoqst(m) M)+ [ o) (M@))Uafoast(m) M(de)

dm dm
(1.3) = Xc(t)+ Xp(t), t € R.

It has been proven by Rosiniski (1995), Theorem 4.3, that this decomposition is unique in law.
It has also been shown by Rosinski (1995), Theorem 4.4, that any stationary SaS process

generated by a dissipative flow has a mixed moving average representation
(1.4) X(t):/ / fv,z —t) M(dv,dz), te€ R,
wWJR

with M a symmetric a-stable random measure on a product measurable space (W x IR, W x B)
with control measure m = vxLeb, where v is a o-finite measure on (W, W), and f € L*(m,WxB).

It turns out that the maximal process (M (¢),t > 0) in (1.1) grows at a different rate for
stationary stable processes generated by conservative flows and those having a nonzero component
generated by a dissipative flow in the decomposition (1.3). This is proven in the next section. A

parallel result in the discrete time case is in Samorodnitsky (2002).

2. RATE OF GROWTH OF THE MAXIMAL PROCESS

Consider a locally bounded stationary SaS process given in the form

(2.1) X(t) = / fi(z) M(dz), t € IR
E
where M is a SaS random measure on E with a o-finite control measure m, and the functions

ft € L*(m) for t € IR may or may not be of the form given in (1.2). In this section we
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study the rate of growth of the maximal process (1.1) depending on the kind of the flow the
process X is generated by. We will use the following procedure to avoid the usual measurability
problems. Since the process X is measurable and stationary, it is continuous in probability (see,
e.g. Aaronson (1997), page 48). Therefore, we can take its separable version such that the
maximal process (1.1) is defined via

M(t)= sup [X(s)|, t=0,
s€[0,]NQpin
where Qp;y, is the set of the binary rational rational numbers in [0,00). We will treat, without
further discussion, all the suprema of functions encountered in the sequel in the same way:

for example, when we write for some set A sup,c4 |fi(¢)| we mean the measurable function

SUDsc ANQy,, |f1(2)]-
Define for "> 0

1/a
(2.2) b(T) = </E O?;ET |ft(m)|am(d:c)) .

Since the process X is locally bounded, it turns out that b(T") < oo for all T' > 0; see e.g. Theorem
10.2.3 in Samorodnitsky and Taqqu (1994). We remark, further, that b(T") does not depend on a
particular integral representation of the process; this can be easily deduced from, say, Corollary
4.4.6 tbid.

We start with proving that, as in the discrete time case, the rate of growth of the function

b(T') depends significantly on the flow generating the stable process.

Theorem 2.1. (i) If the flow (¢:) is conservative, then
(2.3) TV(T) 5 0 as T — .
(ii) If the flow is dissipative, then

1/a

(2.4) lim T Yb(T) = (/ g(v)“ I/(d’U)) € (0,00)
T—o0 w
where one can use any mized moving average representation (1.4) of the process and
(2.5) 9(v) = sup | f(v,2)| forvEW.
z€IR

Proof. (i) Suppose that the flow (¢;) is conservative. Let € > 0. Since b(T) < oo for all T' > 0,

monotone convergence theorem implies that there is a £k =1,2,... such that
(2.6) ~max |f;/p(z)|* m(dz) > / sup |fi(z)|*m(dz) —e.
EJ=01,.k E 0<t<1
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The discrete time stationary SaS process

is then generated by a conservative discrete-time flow (see e.g. Theorem 3.4 in Krengel (1985)).

Defining
_ 1/a
b, = < ~max | f;/i(2)]" m(dm)) ,m=0,1,...,

E ]:0717"' )1

we conclude that

(2.7) lim n~Y/%b, =0;

n—oo
see Theorem 3.1 in Samorodnitsky (2002).
Note that by stationarity, for every N =1,2,...

[ s | m(de)
E 0<t<N

S/E] =0,1,..., Nklf’/"‘( m(de) +Z/( sup M@= (zﬂ?lf ik'fj/k(m)la) m{dz)

1—1<t<s J= [N}

= b% K-I-N/ (sup | fe(z)|* — _r%axk|fj/k(:c)|a) m(dx)

0<t<1 J=ey

by (2.6). Therefore, for every 7" > 0

and using (2.7) we conclude that

1
lim sup Tb(T)a <e.

T—o0

Since € > 0 is arbitrary, (2.3) follows.

(ii) Fix any mixed moving average representation (1.4) of the process. Notice, first of all, that

/W vide) Z /W zES'Lu'Llil)-l @) vldv)

1=—00

<X (/H‘oi%&'f(v’x—ﬂl“dw) v

1=—00

/ / sup |f(v, 2 — t)|* de v(dv) = b(2)* < 0.

oo 0<t<2
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The proof of (2.4) is similar to the corresponding statement in the discrete time case. Start

with the case where f has a compact support, that is
(2.8) f(v,2) =0 for all (v,z) with |z| > A, some A > 0.

Then for all T' > 24

b(T)“:/_i_T/W sup | f (v, + )% v(dv) dm—/ /W sup |f(v,2 + )| v(dv) de

0<t<T 0<t<T
/ / sup |f(v,z+t)|* v(dv) d:c+/ / sup |f(v,z+t)|* v(dv) dz
A-T JW 0<t<T W 0<t<T
(2.9) =R} +Gr +RY .
Since
Gr = (T —24) / (@) v(dv)
w

and

Rg) < QA/ g(v)*v(dv) fori=1,2,
w
the statement (2.4) follows in the case of a compactly supported f.

For a general f, define for m >0

fm(v,z) = f(v,2)1(|z[ <m) and g,n(v) = sup [fim(v,2)| = sup |f(v, )],

v € W and o € IR. Then every f,, is compactly supported, and for every v € W
gm(v) T g(v) as m — oo.

Therefore,

(2.10) / gm (v)* v(dv) T/ g(v)*v(dv) as m — oo.
w w
Furthermore, for every v € W and z € IR,

sup (|f(v,t—2)|* = |fm(v,t—2)|*) >0 asm — o
0<t<1
(in fact, the expression is, eventually, equal to 0,) and so by the dominated convergence theorem,
(2.11) / / sup (|f(v,t—a)|* = |fm(v,t —2)|*) dzv(dv) -0 as m — co.
oo 0<t<L1
We have for all 7> 0 and m >0

1
< =

< / / sup |f(v,t—2)|* do v(dv) / / sup |fm(v,t —2)|* dz v(dv)
T\Jw J-oo0<t<T 00 0<E<T
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+’/Wg(v)az/(dv)—/ng(v)ay(dv) _

Since the claim (2.4) has been proved for compactly supported f, we see that for every m > 0,

+

AnL,T + B'm,,T + C’m~

Byt — 0as T — co. Further, C,;, — 0 as m — co by (2.10). Finally,

Mrsy [ [ s (110, = )" = (ot = 2)f*) do v(do)
oo 0<t<T
ooffﬂ

<z / [ s 11t = (vt = )" do vld)

—1<t<j

/ / sup (| (vt = 2)|% = | fon(v,t — 2)|%) dz v(dv).

oo 0<t<1
We now obtain (2.4) by letting first T — co and then m — oco. O

Theorem 2.1 is the main ingredient in both the statement and the proof of the main result of
this paper, which we state next. This is a continuous time extension of the result on the behavior

of the maxima of discrete time stationary SaS processes in Theorem 4.1 in Samorodnitsky (2002).

Theorem 2.2. Let X = (X(t),t € ]R) be a stationary, locally bounded SaS process, 0 < o < 2.
(i) Suppose that the dissipative component X p in the decomposition (1.8) of the process X is

not zero. Then
(2.12) TV M(T) = CY*Kx Z,
weakly as T — oo, where

oo -1
(2.13) Co = (/ x ¢ sin:cdac) ,
0

and Zy 1s a standard Frechét random variable with distribution function

P(Zoa<z)=e*", 2>0.

wx = ( /Wg@)av(dv))l/a,

in the notation of Theorem 2.1, where one can use an arbitrary representation of Xp as a mized

Finally,

moving average (1.4).

(ii) Suppose that X is generated by a conservative flow. Then

(2.14) T Y*M(T) = 0 in probability
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asT — oo.

Furthermore, for every positive function ¢(T) = o(b(T')) as T — oo we have
(2.15) (e(T)™*M(T)) is not tight,

while if for some 8 >0 and ¢ >0

(2.16) b(T) > ¢T? for all T large enough,

then

(2.17) (b(T)™'M(T)) s tight.
Finally, for'T > 0 define a probability measure vy on (E,é’) by

(2.18) DT (2) = HT)™ s (o))", € .

Let U](T), 7 =1,2 be independent E-valued random variables with common law nr. Suppose that
(2.16) holds and that, in addition, for any € > 0

T
()]

(2.19) P | for some 0 <t < T, @ >e, j=1,21 =0

SUPg<s<T fs (UJ )‘
asT — co. Then
(2.20) T M(T) = CcY* Z,
weakly as T — oco. A sufficient condition for (2.19) is

. b(T)
(2.21) P T

Proof. Similarly to the argument in the proof of the discrete time result in Samorodnitsky (2002),

we will use a series representation (in law) of the process {X(¢), 0 <t < T} in the form

ad It (U(T))
(2.22) X(t)=b(T)CY* > ;T V" d Ty 0St<T,

j=1 Supg<s<r | fs (Uj )
where €1,€9,... are iid Rademacher random variables (symmetric +1-valued random variables),
'y, Ty, ... is a sequence of the arrival times of a unit rate Poisson process on (0, c0), and (U](T))

are iid F-valued random variables with common law given by (2.18). All three sequences are
independent. See Samorodnitsky and Taqqu (1994) for details.

We start with proving (2.15). We use the above series representation. For 7" > 0 and m =

1,2,... let
fijom (U1(n)>‘>

K,,(T) = min (k =0,1,2,...: ‘fk/zm (Ul(n)ﬂ = 1m:':1;)/(2m<T
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Let G be the o-field generated by e1, (I'j, j > 1) and (Uj(n),j > 1), and note that K,,(T) is
measurable G. Notice that for any « > 0,

P (C(T)flM(T) >z)=P ( sup | X(t)] > c(T):c)
t€[0,T]NQbin

= i P X(1/2™)| > (T .
im (izo’lv_r_r}gﬁmgl (i/2")| > of )w)

We have by the symmetry, for any m =1,2...

P( gy, X2 > eT)a) 2 P (X (K (T)/27)] > o))

=E P |b(T)CY*Y T I (U T) > e)e\G
iz SUPg<s<T fs (UJ( )>’

Fre i (00
> 1p (P (rpte (1@)) > el
supser |2 (U17)] T ¥
(T)
_Lp|prye Tk () /2 (Ul cuectl),
T «
2 SUP4e[0. TN Quin | (Ul( ))‘ e

(n)
max;—q1,..;i/2m<T |fij2m (U ‘
- po (sl () o)

SUP5€[0,71NQbin

Therefore,

P (c(T) *M(T) > z) > %P (r;l/“ > C;/azgx)

for all z > 0 and T" > 0. Since the right hand side above converges to 1/2 as T' — oo for all « > 0,
the lack of tightness follows.

Suppose now that (2.16) holds. We will prove that there is € > 0 so small that for any A > 0
(2.23) lim P (M(T) > b(T)A, TV < e/\) = 0.
T—o0

To this end observe that for any 7" > 0 and € > 0

(2.24) P (M(T) > b(T)A, ITY* < GA)

(T)
fit(([ng);“ <eX forall j = 1,2,...) .

“1/a Sup;_1<¢<;

(7]
<M P ( sup | X (t)| > b(T)A, T
=1

i—1<t<i

SUPg<s<T
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Note that for a fixed ¢ the points

fs (U}T))D_l (ft(U]m>,i—1§t§i>,j=1,2,...

form a (symmetric) Poisson random measure on RO equipped with the cylindrical o-field,

(2.25) b(T)EjI’j_l/a < sup
0<s<T

whose mean measure is given by

// 1/aft(),,i_1gt§i)eA)

-H(y”“m@%J—lﬁtSDE—Aﬂdwwﬁ%
A a cylindrical set. We claim that 7; is the same for all 2. To this end, it is enough to check that
n;(A) is independent of i for sets A of the form

a={ge B (g(t),... ,g(ta)) € B}

ford=1,2,...,0<t; <...<tg<1and B € B% For a fixed d and ty,... ,tq, we obtain this
way a o-finite measure on IR%; let us denote it by +;. Observe that for any § > 0

Yi (([_5,5]d)c) = /E/O’-’o 1 (y_l/a|ft].(s)| > ¢ for some 7 =1,... ,d) dym(ds)

/E/OOO 1 (y—l/a|ft]-(8)| > 5) dym(ds) = d5_a/Ef0(s)a m(ds).

IN
M-

Therefore, each v; is a symmetric Lévy measure on IR?, and so to show that v; is the same for

all 7, it is enough to check that v;(B) is independent of 7 for sets B of the form

>>\}

B:{(zl,...,zd)Ele: ‘9121+...+9d2d

for 61,...,04 € IR and A > 0.

However, for each B of this form

o d
:// L[y 05 fe4io1(s)| > A | dym(ds)
rJo ;
j=1

= / Zeft-l—z 1(s)| m(ds) = A" /Zeft m(ds)

by stationarity of the process, providing us with the required independence of i.
The immediate conclusion is that the terms in the right hand side of (2.24) are independent of

1, and so

(2.26) P (M(T) > b(T)A, T < GA)
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()
fs (U}T))

Furthermore, the above argument also shows the the Poisson random measure with the points

su
—1/a Po<i<i
J

< [TVP | sup |X(t)|>b(T)N T <eX forall j=1,2,...
0<t<1

SUPg<s<T

(2.25) with ¢ =1 can be also represented by

—1
{bmejr;”"( sup |fs(v;~)|) (ft<v;->,03ts1>,j=1,2,...},

0<s<1

where (V}) are iid FE-valued random variables with the same law as (U ](1)), independent of the

sequences (sj) and (I‘j). Therefore,

(2.27) P (M(T) > b(T)A, T V% < e/\)
< 1P [ 51)cV* sup igj S (10) > B(T)A, BT, Y™ < eb(T)A
0<e<1 | supo<y<1 | fs (V5)]
Let K =1,2,... be such that
1
2.2 — —-1< K .

«

Note that this choice of K is possible as long as we choose € > 0 appropriately small. We see by
(2.27) and (2.28) that

(2.29)
—1/a = p1/a It (‘/J)
P(M(T)>bT)A\, Ty "< eX) < [T1P | sup | Y T, > Bb(T) |,
0<t<1|. % ! SUPp<s<1 | fs (Vj)|
j=K+1
with 8 = (1 — KeCa/*)b(1)71Cx /™A > 0.
Denote
g@)=—I __gcic1 sen
SuPp<s<i | fs ()]
Clearly,
(2.30) sup |gi(z)| =1 forall z € E,
0<t<1

and we have
(2.31) Pl sup | S ;T (V)| > Bb(T)

0<t<1 |, 55

o 7:1;$K o /e
:/0 et P | e (D @+ )7 quVy)| > BHT) | de.
==t =1
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Notice that by the contraction inequality for Rademacher series (see e.g. Proposition 1.2.1 in
Kwapien and Woyczynski (1992)), for every z > 0 and u > 0 we have
P | sup gj (@+T;)" Ve g,(Vi)| >u| <2P | sup £j g (Vi) > u

0<t<1 ]z:: ! ! 0<t<1 ]2:: !

Hence there is r > 0 independent of = such that
1
P | sup ny (x+T5)" e 9:(Vj) >_ <%
0<t<1 |57 32

for all z > 0. Since for every = > 0
Zey (z+T) " a(V;), 0t <1

is an infinitely divisible random vector in IR*Y whose Lévy measure is supported by the set

{y e ROY . sup |y(t)] < ml/a} ,
0<t<1

it follows by standard arguments (see e.g. proof of Lemma 2.2 in Rosiniski and Samorodnitsky

(1993)) that for all z > 0

(2.32) E exp sup Zsj (z+ I’j)fl/a a(Vy)| ¢ <4

j=1

(2.33) Pl sup | 3 &7 (V)| > BB(T)

Using (2.16) we see that

* et Blog? X ~Car?
\/1 e EGXP{—mb(T)} dee ! /1 € ﬁdm—CQE !

for some positive constants C; = C;(¢, K), 1 = 1,2. Furthermore,

1 K 1 K
LT Blog 2 LT 1/aqb —af(K+1)
/0 e o eXP{—mb(T)} dz < /0 ¢ exp { ~Csa!/*T?} do < C4T

for some other positive constants C; = C;(e, K), i = 3, 4.
Putting everything together we see that

P (M(T) > b(T)X, Ty Y/ < e,\) < [T (CQe—ClT" " C4T—a0(K+1)) S0

as T'— oo by (2.28). This proves (2.23) for € small enough.
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We note at this point that the same argument proves that for any €;, €2 > 0 such that es/e; is

small enough,

(2.34) im P<M(T) > b(T)A, TTH“ < (1 — €1)A, and for each 0 < t < T,
— 00
(T)
Ffl/a ft (U] )‘ A f s _
j %) > egA for at most one 3 =1,2,... | =
SUPg<s<T fs (U] )‘
and
(2.35) Tlim P(M(T) <b(T)A, Fl_l/a > (1+¢€1)A, and for each 0 <t < T,
— 00
(")
I‘j_l/a ! @ > eaA for at most one j =1,2,... | =0.
Supg<s<r |fs (U]‘ )‘
Indeed, the probability in the left hand side of, say, (2.34) can be bounded from above by
0 e v
TP | sup | S &1 1 (Vj) > ' b(T)
0<t<1), S5 SUPp<s<1 |fs (Vj)|

in the notation of (2.29), where ' is a positive function of K, \,e€1,€2, and K can be chosen
arbitrarily large by making the ratio ez/e1 is small enough. Therefore, the argument leading to
(2.23) applies. One approaches (2.35) in the similar way.

Fix now e for which (2.23) holds, and notice that

P (b(T)"'M(T) > \) < P (M(T) > b(T)\, T7 V% < eA) +P (r;l/“ > e)\) .

Given § > 0, choose A so large that the second term above is less than §/2 and then choose Tj
such that the first term above is less than §/2 for all " > Tj. By the local boundedness of the
process X, for every 0 < T < Tj

P (b(T)"'M(T) > \) < P(M(Ty) > b(0)X) < §

if A is large enough. This establishes (2.17).
Furthermore, the claim (2.14) follows from the just proven statement (2.17) by using part (i)
of Theorem 2.1 and adding to X , if necessary, an independent term to ensure that (2.16) holds.

See a similar argument in Samorodnitsky (2002).
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The next step is to check that the condition (2.21) implies (2.19). To this end, denote by »(T")
the probability in (2.19), and note that

H(T) < [T (P (Supmq

SUPo<s<T

)

2
= [Tb(r) > ( [ (ERea O ) s (G m(dm))

SUPg<s<T |fs (2) 0<s<T

< rrecry e ([ sup 1y (@)1" m(da) ) = [TI6(T) 220 0

as T — oo by the local boundedness of the process, and so we have (2.19).
Assuming that (2.19) holds, we immediately have

(2.36)
~1/a ‘ft (UJ(T)N
! fs (U}T))‘

as T' — oo. Since for every 0 < § < 1 and € > 0 we have

@(T):=P |forsome0<t<T, T > € for 2 different j) -0

SUPg<s<T

P (5(T)"'M(T) > \) < P (F;I/“ > o7l - 5)/\) + o(T)

+P <M(T) > b(T)A, I’l_l/a <(1—=9)A, and foreach 0 <t < T,

(o)

T
7, (v1")
by selecting € small enough relatively to § and using (2.34) and (2.36), we obtain

F,_l/a

> e\ for at most one j = 1,2,...),
SuPp<s<T ‘

lim sup P (b(T) 1M (T) > \) < P (F;I/“ > ol - 5)/\>

T—oo
=1—exp{-Co X *(1-6)“},

and by letting § — 0 we see that

(2.37) lim sup P (b(T)flM(T) >A) <1l—exp{-CaX “}.

T—o0

Similarly, for every 0 < § < 1 and € > 0 we have

P (b(T) M(T) > \) > P (P;I/a > ooV + J)A) + o(T)

+P <M(T) < b(T)A, Fl_l/a > (14 6)A, and foreach 0 <t < T,
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(T)
7 (U}

(T)
()]
Now by selecting e small enough relatively to § and using (2.35) and (2.36), we obtain

I’]«_l/a > el foratmostonejzl,Z,...).

SuPo<s<T

liminf P (6(T) " M(T) > A) > P (Fl‘l/"‘ > o1+ 5),\)
— 00

=1—exp{-Co A™*(1+6)""},
and by letting 6 — 0 we obtain a lower bound matching (2.37) and, hence, prove (2.20).
Finally, the statement of the first part of the theorem follows from Theorem 2.1 and (2.20).
This concludes the proof. O

Remark 2.3. The statement of Theorem 2.2 extends easily to the complex-valued processes.
Furthermore, one can also derive a “one-sided” result for the growth of supy<,<; X(s). The

procedure is similar to the one in the discrete time case. See Samorodnitsky (2002) for details.

3. AN EXAMPLE

In this section we consider a new class of stationary SaS processes generated by conservative
flows and apply Theorem 2.2 to investigate the rate of growth of the maxima of these processes.

Let By = (Bu(t), —0o < t < o0) be the standard Fractional Brownian motion, a centered
stationary increment Gaussian process, self-similar with exponent 0 < H < 1 and such that
EBpg(1)? = 1; see Samorodnitsky and Taqqu (1994) or Embrechts and Maejima, (2002) for details
on this process. In particular, this process is locally Hélder continuous with a Hdlder exponent
H —eforevery 0 < e < H.

Let E = C(—00,0), and m a o-finite cylindrical measure on E defined by

(o @]
(3.1) m(A) = / P(Bg € A—y)dy, A a cylindrical set.

-0
That is, m is the (infinite) law of the Fractional Brownian motion shifted according to the
Lebesgue measure on IR.

Let ¢ : IR — [0,00) be a (globally) Holder continuous even function, with a Holder exponent
0 < p <1, such that

1. ¢ is non-increasing on [0, co)

2. ¢ € L*(Leb)

3. The Holder function

L e = el
(3.2) Hiz) = sup FETE8, v >
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also belongs to L*(Leb).
Define

(3.3) X(t) = /E o(a1) M(dx), te IR,
where M is a SaS random measure on E with control measure m, and x = (4, t € IR).
Clearly,
p(ai) = p(z0) 0 p(x), te€ R,
where (¢;) is the flow of the left shifts on E. The stationarity of the increments of the Fractional
Brownian motion immediately implies that this flow preserves the measure m.

We will see shortly that

(3.4) /Ego(:z:o)a m(dx) < co.

Therefore, the process X = (X (), t € IR) in (3.3) is a well defined stationary SaS process. As
we will see, this process is generated by a conservative flow.

We start with computing the function b(7") in (2.2). The finiteness of this function will ensure,
in particular, (3.4) and the fact that our process is well defined. We have for 7" > 0, using the

assumption that ¢ is even and non-increasing on [0, o),

(3.5) b(T)" = /E sup (e m(dx)

:/OO E sup go(y—i—BH(t))“dy:/ooE'(go( inf |y+BH(t)|))a dy

—eo  0<t<T o 0<t<T

= 2/OOOE <s0(0§irtl£T|y— BH(t)|>>a dy = 2/OOOE (w((y —OggTBH(t))J))a dy

=2F /oo ’ p(y+)*dy =2 [/OOO e(y)*dy + *”(O)ani‘iET BH(t)]

—supo<i<T BH

= llella +20(0)*E sup Bu(t) = ll¢lls +2¢0(0)*T"E sup Bm(t),
0<t<T 0<t<1

where in the last step we used H-self-similarity of the Fractional Brownian motion. In particular,
b(T) < oo.
We claim, further, that the process X defined by (3.3) is a.s. sample continuous, hence locally

bounded. To see this, note that a series representation of this process is given by

(3.6) X(t)= K Y Gl V% 2 (2, + Bin(t)), te R,
j=1
where K is a finite positive constant, G1,Gq,... and Z1,Zs,... are sequences of iid standard

normal random variables, I'1,I'2,... is a sequence of the arrival times of a unit rate Poisson
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process on (0,00), and B; g = (B;g(t),t € IR),j = 1,2,... are iid copies of the Fractional
Brownian motion Bp. All four sequences are independent. See Section 3.11 in Samorodnitsky
and Taqqu (1994).

With the series representation (3.6), by Fubini’s theorem it is enough to prove that the process
X is a.s. sample continuous for each fixed realization of Z1,Zs,..., I',I'2,... and B, g =
(Bju(t),t € R),j = 1,2,.... Then X becomes, conditionally, a centered Gaussian process.
Denoting by H the o-field generated by the three random sequences above, we have for the
incremental variance of this process

3.7 E ((X(t) _ X(s)) H) = K2 i T2/ 2 (90 (zj + BLH(t)) _ go(zj + B,H(s)))
j=1

2

2

for all s,t € IR.
Denote by W the random variable in the right hand side of (3.7), and consider W for s,t €
[—A, A] for some A > 0. We have

lul<A

(38) W=K>Y ()1 (IZjI <2 sup IBj,H(U)|> +K*) ()1 (IZjI > 2 sup IBj,H(U)I)
j=1 j=1 lu|<A

= Wi + Wo.

Let

||(10|| Holder — SUp M
be the Holder norm of ¢. Fixing 0 < € < H we also denote by

|B; u(t) — Bju(s)l
HB ,H” Hold (A) = sup J )
J older CA<s <A st |t _ SlH—e

the Holder norm of B; g on [-A,A], j =1,2,....
Notice that

- —2 2/
(3.9) W1 < K20l sae YT %%/ (IZjl < 2|S|u<¥j4|BH(U)|) |Bju(t) = Bju(s)[*
i=1 uls

o
—€ —2/a 72
< K2||90||2H51der|t - 3|2p(H )er feeZi/ (|Zj| < 2|S|U<Fj4 |Bj,H(U)|) 1Byl Hoder (A)*7.
j=1 =

Notice that
2

a/
E (623/0‘1 (le| <2 sup |Bjnu(u) |> IBj, x| Halder(A)2p>

jul<A

oo

3

=1/=F (SUP |Bj.m(u)| Bl Hélder(A)”a>
u|<A
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1/2

2
< \/g E (Sup IB',H(u)|) (B (IBjzz | srotaer (A) %)) % < o0

ful<A

because both sup, <4 |Bja(u)| and ||Bj x| mslder (4) are the suprema of certain a.s. bounded
centered Gaussian processes and, as such, have all finite moments (much more than that, actually;
see Borell’s inequality (Borell (1975)), also Theorem 2.1 in Adler (1990).)

We immediately conclude that the sum in the right hand side of (3.9) converges a.s. (see
Section 1.5 in Samorodnitsky and Taqqu (1994)) and, hence,

(3.10) W1 < Byt — s|?tH=9)

where Bj is a finite H-measurable random variable.

Similarly, in the notation of (3.2),
(3.11) Wy < K2Jt — s 3 1 e H (1251/2)° 1By | msraer ()

i=1

Observe that

. a/2 8 0 « «
E (er-"/ H(|Z;1/2)* B, ul Hélder(A)2p) =1\ (/ H(z) dﬂf) E|l ns1aer (4)"" < 00
0

by the assumptions. As before, we conclude that the sum in the right hand side of (3.11) converges

a.s. and, hence,
(3.12) Wa < Balt — 5|9,

where Bs is a finite H-measurable random variable.
Putting (3.7), (3.10) and (3.12) together we see that there is a finite 7{-measurable random
variable B such that

b ((X(t) o X(S))Q‘H> < B|t— S|2p(H—e)

for all s,t € [—A, A], and this is a sufficient condition for a.s. continuity of a Gaussian process, as
the metric entropy condition easily checks. See Dudley (1967) or Corollary 4.15 in Adler (1990).

Therefore, the process X defined by (3.3) is sample continuous and, hence, locally bounded.
Therefore, Theorem 2.2 applies. Using (3.5) we see that the process X is generated by a conser-

vative flow, and for this process

(3.13) (TH/O‘ sup X (t), T > 1> is tight.
0<t<T
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Furthermore, if H > 1/2 then

(3.14) T H/* sup X(t) = (20a<p(0)aE' sup BH(t)>1/a Za
0<t<T 0<t<1

weakly as T — oco.

It is interesting that the statement (3.14) holds also for H = 1/2, even though the sufficient
condition (2.21) does not hold in that case. To see this we need to check (2.19) directly. As
before, we denote the probability in the left hand side of (2.19) by »(T"). Notice that in our case
B/ = B is the Brownian motion and by (3.5)

b(T)a =c1 + Cng/2

for some c1,co > 0. We have

»(T) :b(T)—2a/_Z /_:E

sup ¢(y+ B(s))" sup ¢(z+ B(s))”

0<s<T 0<s<T
B(t B(t
1| for some 0 <t<T, ly+ Bt) > €, #(z + B ))~ > €| |dydz
supg<s<r ¢ (y + B(s)) supg<,<r ¢ (2 + B(s))
-2
(3.15) = (cl + 02T1/2> nr),

where B and B are independent standard Brownian motions. By the symmetry,

)4 / / [sup oy — B(s))" sup_o(z— B(s))”

0<s<T 0<s<T
~ B(t — B(t
1| for some 0 <t<T, ey () > €, oz ( ))~ > €| |dydz
SUPo<s<T ¢y — B(s)) supg<s<1 (2 — B(s))

—ap [ [ <<P(y - oi‘ingB(s)”) (so(z - OgngB@m)

1 (for some 0 <t < T, o(y— B(t)) > ep(y — sup B(s))4,
0<s<T

0<s<T

—15 | / o) ()"
— SUPo<s<T B(s) J - SUPo<s<T B(s)

1 (for some 0 <t<T, o(y+ sup B(s)— B(t)) > ep(y+),
0<s<T

(3.16) ¢(z — B(t)) > ep(z — sup B(s))) dydz
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o(z+ OquTB(S) — B(t)) > ego(z+)> dydz

0o s3] s3] 0 0 0
= 4E/ / -+ SE/ / R 4E/ / }
0 0 0 —supg< <7 B(s) —supg< <7 B(s) Y —supgc <1 B(s)

= IW(T) + 1¥(T) + 18)(T).

We have

(3.17) I(T) < 4|2

Furthermore,

(3.18) 19(T) < 8]lg)l2p(0)°E sup B(s) = caT"/?
0<s<T

for some c3 > 0.

Finally,

SUPo<s<T B(s) SUPOSSSTB(S)
19(T) < 4605 | /
0 0

1 (for some 0 <t < T, |y — B(t)| < 2h(ep(0)), |z — B(t)| < 2k (E(p(O))) dydz,

where for 0 < 6§ < ¢(0), we define
h(6) = sup{z > 0: ¢(x) > d}.

We have by the self-similarity of the Brownian motion

(3.19) I8N(T) < 40(0)**E /Oo /Oo
0 0

1 (for some 0 <t <T, H(B(t),B(t)) — (y,2)

:4(,0(0)20‘TE/000 /000

(B, B®) - ,2),

< 2v2h (e(0)) ) dyd=

2

1 (for some 0 <t <1,

< (2\/§h (690(0))) T_I/Z) dydz

= 4p(0)**T6(T),

where 0(T) — 0 as T — oo.
Now (2.19) follows from (3.15)-(3.19).

19
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