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Abstract

We show that, contrary to the common wisdom, the workload process in a fluid queue with
a cluster Poisson input can converge, in the slow growth regime, to a Fractional Brownian
motion, and not to a Lévy stable motion. This emphasizes lack of robustness of Lévy stable

motions as "bird-eye” descriptions of the traffic in communication networks.
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1 Introduction

Understanding the effect of heavy tails on networks has been a major topic of discussion in
literature. It is believed that infinite variance in the distribution of the file sizes or bandwidth
requests in communication networks causes long range dependence and self-similar structure in
the network (see e.g. Park and Willinger (2000)). Infinite variance in the connectivity distribution
of nodes in social networks is believed to be present, and lead to scale-free networks (see e.g.
Liljeros et al. (2001)). A discussion of heavy tails in neural networks is in Kosko and Mitaim
(2003). In most cases heavy tails appear to cause unusual (and negative) effects.

Networks with heavy tailed inputs are also difficult to analyze, since they are not well suited

to Brownian or Poisson approximations. Therefore, other approximations have been sought. In
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the influential paper of Mikosch et al. (2002) they showed that for the so-called ON/OFF model
and the infinite source Poisson model, the properly compensated and normalized workload in a
fluid queue looks like a Fractional Brownian motion in the fast growth regime and like a Lévy
stable motion in the slow growth regime. This result was later extended to networks of fluid
queues by D’Auria and Samorodnitsky (2005). A random field version of such results is in Kaj
et al. (2007).

These results appeared to indicate that the deviations from the mean in a fluid queuing
network with heavy tailed inputs could look, in the limit, as either a Fractional Brownian mo-
tion or a Lévy stable motion. Robustness of this conclusion was investigated in Mikosch and
Samorodnitsky (2006) in a general setup, described below. Consider a stationary marked point

process

((TTEO)’ Zn))”EZ)

where we interpret ... < T iol) <T éo) <0< Tl(o) < ... as the arrival times of packets brought to

)

the system and Z,, as the amount of work brought to the system at TT(L0 . Each arrival corresponds
to a ”source’, and it transmits its work at a unit rate. The number of active sources at time t is

given by the process

M(t) = Z 1{T£O)St<T7(LO)+Zn} for t > 0,
nez

and the amount of work brought to the system in the interval [0,¢] is given by the stochastic

process

AW = [ M)y =Y (50 A @~ TO) ~ Zu A (T
0 nez
Under the assumption that the marks (Z,,) have, under the Palm measure, a finite mean, A(t)
has a finite mean with E(A(¢)) = ut for all ¢ > 0, where p > 0 is the expected amount of work
arriving in a time interval of unit length, i.e. u = E(A(1)).
Let (A;)ien be iid copies of the process A. With n input processes and at a time scale T', the
deviation of the cumulative workload from its mean is the stochastic process

n

Dngp =Y (A(T) — mtT) fort > 0. (1.1)

i=1

One is interested in the limits of the sequence of processes (D, r) as n and T' grow to infinity.
The situation where the number of input processes is relatively large in comparison with the
time scale, is referred to as the fast growth regime, while the opposite situation is referred
to as the slow growth regime (boundary regimes may exist as well; see e.g. Gaigalas and Kaj
(2003)). What Mikosch and Samorodnitsky (2006) discovered was that the Fractional Brownian
limits of Mikosch et al. (2002) in the fast growth regime were very robust, and held under very

general assumptions on the underlying stationary marked point process. On the other hand,



the Lévy stable limits turned out to be non-robust, and very special conditions were needed to
ensure such limits. One of the conclusions of Mikosch and Samorodnitsky (2006) was, in certain
circumstances of a very irregular arrival process, a Fractional Brownian limit was possible even
in the slow growth regime. They provided a somewhat artificial example of such situation, and
conjectured that the same was true in the important case of a cluster Poisson arrival process. It
is the purpose of this paper to consider that case and establish the Fractional Brownian limit.
This paper is arranged as follows. The arrival cluster Poisson model we are working with is
formally described in Section 2. The main result of the paper is stated and discussed in Section 3.
The arguments required to prove the main result uses a number of renewal theoretical and
extreme value results, some of which may be of independent interest. These appear in Section 4.
Section 5 presents the proof of the main theorem. Finally, Section 6 contains additional lemmas

and other technical results needed for the proof of the main theorem.

2 The cluster Poisson model

We assume that the work requirements (Z,)nez form an iid sequence independent of the arrival

process (TT(LO))TLGZ. Let the number of sources arriving in the interval (s,t] be described by

N (s,t] = Z 1{s<T,§°)§t} for s < t.
nez

Furthermore, we assume that this arrival point process is a cluster Poisson process. Specifically:

(i) initial cluster points, denoted by ... < T'_; < 0 < T'; < Ty < ... form a homogeneous

Poisson process N with rate Ao;

(ii) at each initial cluster center '), an independent copy of a randomly stopped renewal point

process N, starts.

A generic point process N, has the form
NC[O’t] = NO[O’t] A (K + 1)’

where Nj is a renewal point process with arrival times 0 = 7T, < T} < ..., and K is a positive
integer valued random variable independent of Ny. The interarrival times X,, =T, — 1T, _; for
n > 1 are iid random variables, with a common distribution F', and the cluster size K has
distribution F. The cluster with the initial point I'j, will have the points I',, = I'y, + T, <
Ly + T < ... < Ty + Tk, m, where the second subscript refers to independent copies of a
process.

The within-cluster interarrival times and the cluster sizes are assumed to satisfy the following

conditions.

The interarrival distribution function satisfies F'€ R_j/5 with 8> 1, (2.1)



and

the cluster size distribution function satisfies Fx € R_, with 1 < a < 2. (2.2)

The assumption (2.1) assures that the within-cluster interarrival times have infinite mean; it
also makes the arrival process sufficiently irregular for our result. The assumption (2.2) makes
sure that the amount of work brought within each cluster has infinite variance. Note that the

intensity of NV is then
A= X1+ E(K)). (2.3)

We denote by
h(u) =F (1/u) =u’l(u) foru>1 (2.4)

the generalized tail inverse function of the within-cluster interarrival time distribution (see
Resnick (2007), Section 2.1.2). Here, [ is a slowly varying function. One implication of the as-

sumption (2.1) is the weak convergence

(Tiney /0(1)) 12 = (S1/8(8))iz0 (2.5)

in D [0, 00) as n — oo; see Kallenberg (2002), Theorem 16.14. Here (51 /5(t))i>0 is an 1/B-stable

subordinator. We will use the notation
I(u) =inf{t > 0:Sy/5(t) >u} for u>0, (2.6)

for its inverse process.

We will continue using the notation = for weak convergence, L, for convergence in proba-
bility, == for vague convergence, and 24 for weak convergence of the finite dimensional distri-
butions. For z € R we write x4 = max(0, ). For two random variables X, Y the symbol X Ly
means that X has the same distribution as Y.

We will also adopt the following convention. We will use the notation «q, as, 51 and [y for
positive numbers satisfying a1 < a < as and 81 < 8 < (2, in the sense that the statements in the
text where this notation appears hold for any choice of numbers satisfying the above conditions

with, perhaps, different multiplicative constants.

3 The Main Result

Below is the main result of this paper. It describes a slow growth regime under which the properly
normalized deviations from the mean process (1.1) converge to a Fractional Brownian motion.
For a positive sequence A\, T oo serving as the time scale T for a system with n input processes

we define

by = /nAF(\) 2B(K > F(\)"))  for n>1. (3.1)

The sequence (by,) turns out to be the right normalization for process (1.1).



Theorem 3.1 Assume that 1 < o < (, and that the distribution F' of the within-cluster
interarrival times (X,,) satisfies Assumption A below. Assume that the marks (Z,,) form, under
the Palm distribution Py, a sequence of iid random variables, independent of the underlying point
process, such that EolZmlz < 0. Let A, be a sequence of positive constants such that A, T oo
and such that b, in (3.1) satisfies

_a-1
lim nb, ” 0 (3.2)
n—oo

for some p > 0. Then the cumulative input process Sp(t) = b, Dy »,(t), n > 1, t > 0, satisfies

fidj

(Sn(t))tz0 = (Eo(Z2)Bu(t))i>0 asn — oo,

and the limiting process By is a Fractional Brownian motion with

2+8 -«
H=——"— .
23 (3.3)
and
Var(Bu(1)) = 5o [y GRS, (1) < ) dyt
24 5 —« Jo /8 -
2o / B (=2 w170 2 T (w4 1) — 2 I(w)* ) duw
0 2—« a—1 2—a)(a—1)
Assumption A
Assume that either
1. <2 and o o
Fx) - F 1
lim sup z (z) = (z+1) < 00, (3.4)
or
2. F is arithmetic, with step size A > 0, and
F({nA
lim sup nM < 00. (3.5)

n>0 F(nA)

Remark 3.2 We need the technical Assumption A to obtain a local renewal theorem; see
Lemma 4.3 below or Theorem 3 in Doney (1997). In fact, if the local renewal theorem is known to
hold (if only in the form of an upper bound), then Assumption A is unnecessary. We conjecture
that the local renewal theorem holds under (3.4) for any 3 > 1, regardless of whether or not F'

is arithmetic.

Remark 3.3 Note for any € > 0 there exist C' > 1 such that
C’*lné)\gf6 <b, < C’n%)\{?”rE forn>1,

with H given by (3.3). Hence, a necessary and sufficient condition for (3.2) is that for some € > 0

28—a+1
7“1’6
Ap > n2Hle—1 17,

28—a+1
i.e. n2Ma—1) " = o()\,) as n — oo. This identifies (3.2) as a slow growth condition.




We will prove Theorem 3.1 by showing that the assumptions of Theorem 5.9 in Mikosch and
Samorodnitsky (2006) are satisfied. For convenience, we state that theorem below, in a form

simplified for the situation where the marks are independent of the arrival process.

Theorem 3.4 (Mikosch and Samorodnitsky (2006)) Consider a marked stationary point
process, where the marks (Z,,) are independent of the arrival process N (whose intensity is \),
and have a finite first moment. Let \,, be a sequence of positive constants with \,, T co. Suppose

that there exists a sequence b,, T co such that the following conditions are satisfied.
(a) Let N; be iid copies of N. Then

<bn1 Zn:(NZ- (0, Ant] — )\)\nt)> L8 (1)) >0,
=1

>0

where (£(t)) is some non-degenerate at zero stochastic process.

(b) Let (Z\)mez for i € N be iid copies of (Zy)mez. Then

n [An]
bt Z Z(Zﬁ? —E(2)) 50 forn — co.
i=1 m=1

(c) Let I(0) be the total amount of work, of the ith input process, in the session arriving by
time 0 which are not finished by that time. Then

n
b;lzfi*(()) 250 forn— 0.
i=1

Under these conditions the normalized process Sy (t) = bEIDn,)\n (t), n € N, t > 0, satisfies

(Sult))izo 25 (B(2)E(B) 0 for n — oo.
As we will see, the slow growth condition (3.2) is needed only for verification of condition (c)
in Theorem 3.4.

4 Some Renewal and Extreme Value Theory

Our first proposition in this section deals with the tails of randomly stopped random sums when
both the individual terms and the number of terms have infinite means. It complements the

existing results dealing with the situations where at least one of these means is finite; see e.g.
Fay et al. (2006).

Proposition 4.1 Let (Xj) be iid random variables independent of the positive integer-valued
random variable K with distribution function Fx and let T = Zszl X}, with distribution
function Fr, . Let G be the distribution function of | X;|. Assume that

Fx €R_,, forsome0< k<1 (4.1)



and
G eR_, forsome0<~y<1, lim ———"2 =pc(0,1]. (4.2)
Then
. P(TK > :C)
lim —
2= P(K > G(z)™!)

where S, is a strictly y-stable random variable such that

—E((5,)7). (43)

P(Sy>z)~pz™” and P(Sy<—-z)~(1—-p)z”” asx— oo.
In particular, FTK €R_wry-

Proof. For k > 1, let a; := G~ (1/k), and note that

1 -
k
(cf. (2.5)). For large M > 1 we write

P(Tk >2) = P(Ix >z, K>MG@) ) +P(Tx >z, K <M 'G(z)™)
+P(Tx >z, M 'G(z) ' < K < MG(z)™) (4.5)
= Eiym(x)+ Ex pm(x) + Es ().
Note that, as x — oo,
Eip(z) <P(K > MG(z) ') ~ M"P(K > G(z) '),
and so

o B ()
lim limsup —
M—oo z—oo P(K > G(fb)fl)

We claim, further, that for any x < k1 < 1, for all M large enough,

lim sup E“i(x) < M~(=r) (4.7)
z—oo P(K > G(z)"1)

= 0. (4.6)

Indeed, suppose that (4.7) fails for some k < k1 < 1. Then there is a sequence z; T oo such that

jG(x;) — 0 as j — oo and

G UTIP(K > G(x;) ™) (4.8)

DN |

By j(xj) >
for j € N. Let py := P(K = k) for k£ > 1. Note that
571 Gl) ]

By j(x5) = Z (X1 + .. 4+ X > xj).
k=1

Theorem 9.1 in Denisov et al. (2007) shows that

P(Xl 4+ ...+ Xk; > IEJ') ~ kjp@(.’ﬁj)



as j — oo uniformly in k£ < j_la(:ﬂj)_l. Therefore, for large j, by Karamata’s theorem,

i Gz~
_ p 1= _

and by Potters’s inequalities (cf. Resnick (2007), p. 36), for any k < ko < k1 there is C; > 0
such that for large j

By j(x;) < O~ U P(K > Glay) ™).
This, clearly, contradicts (4.8), and so (4.7) has to hold. We conclude that

o Es pi(x)
lim limsup — =
M—oo z—oo P(K > G(fb)fl)

(4.9)

We now consider the term Ej(z) in (4.5). For M~'G(z)™! < k < MG(x)~! we denote
r= xalzl. Since G(ag) ~ k! as k — oo, we see that, for all x large enough, and M ~1G(z)~! <
k< MG(z)™!,

(2]\4)715(@*1 < a(ak)*l < 2MG($)*1,

which implies that for the same range of x and k, (4M)~! <17 <4M. In particular, P(S, > r)
is bounded away from 0. Since by (4.4)

1
P(X1+...+Xk>:C):IF’<G—(X1+...+Xk)>T> —P(S,>r), ask—o0
k

(if r is kept fixed), we conclude that

P(X;+...+ Xk >2x)

lim sup — 1‘ = 0.
T M1G(2) " <k<MG(x)"! P(Sy > z/ax)
Therefore,
| MG(z)~1]
Es p(z) ~ Z piP(Sy > z/ay)  as z — oo.

k=|M-1G(z)~1]+1
If f denotes the density of S, this statement translates by Fubini into

[MG(z)~1]

Esm(z) ~ / > Pk Liapsayyy f(U) dy
O MG@) 1
|MG(z)~!]

~ /0 > P lpegen oy W dy

k=|M—1G(z)~!|+1

_ /OO [P(max(Mla(:c)l,a(x/y)l) <K< Mé(x)l)} fy)dy.
0



Now, for every y > 0, as z — o0,

P(max(M—lé(x)—l,a(x/y)—l) <K< Mé(x)—l)
P(K > G(z)~1)

— [min(M“,yW) — M7
+

while the same ratio in the left hand side is bounded from above, for large x uniformly in y > 0
by

P(K > M 'G(z)™!)

— <2M*.
P(K > G(z)™!)
Therefore, by the dominated convergence theorem,
B3 m(z ) /°° [ : _
lim = min(M",y"") — M~ "| f(y)dy. 4.10

As M — oo, the right hand side of (4.10) converges to E((Sj)”"‘), and so the statement of the
proposition follows from (4.5), (4.6), (4.9) and (4.10). O

The next two results are renewal theorems needed in the proof of the main theorem.

Proposition 4.2 Let (X}) be an iid sequence of positive random variables with distribution
function F, such that F € R_1)3, 0 < 1/B8 < 1. Let T, = >7;_; Xy, n € N. Suppose that
(c(t))e>0 is a non-negative eventually non-increasing function, regularly varying of index —n in
infinity, 1 < n < 2. Then

o0 1 B

Zc P(T; > ) NU— aaE () e(F(r)™h)  asr — oo,

1
7=0

where C, 3 = E((Sl/ﬁ(l))(”_l)/ﬂ), and Sy,g is the positive strictly 1/ stable stochastic process
n (2.5).

Proof. Let Hg be the distribution function of S;/3(1). Then by the weak convergence in (2.5)

lim sup |Hg(r) — P(T,, < anr)| =0,

n—00 reR

where a,, = F (1/n) (cf. Petrov (1975), Theorem 11, p.15, and Theorem 10, p. 88). Thus, there
exist a positive sequence (¢;);>0 with €; | 0 as j — oo such that for any r > 0

P(Tj >r) < H@(ajlr) + €.

Let (51,(52 > 0, (51 < (52 and § = (51,52). Then

[62F(r) "] () [62F(r) "]
cCOP(T; >r) < Y e(Hplay'r)+ > eli)g =t Ji(6,r) + Ja(5,7).
j=[8:1F(r)~1] J=[61F(r)=1] J=[61F(r)=1]



First, we study the first summand. Let xg-r) := jF(r) and £ be a slowly varying function such
that F(z) = £(z)z~'/8. Then, as n — oo,

nF(ay) = nl(ay)a; /% — 1. (4.11)
Since 61 F(r)~! < j < 5 F(r)~! we have for some Cy,Cy > 0, for all r large enough,
Clr S FH(‘]) == CLJ' S CQT.

By Theorem 1.5.2 of Bingham et al. (1987) we obtain ¢(a;) ~ ¢(r) as r — oo uniformly for
S1F(r)™1 < j < 6F(r)~t. Thus, (4.11) gives £(r) ~ jflajl-/ﬁ as r — oo uniformly for 6; F(r)~! <
j < 8F(r)~! and
My-8 — (jory—1/8) " o "
(x; )7 = (jé(r)r ) ~ o asT oo,
J

Hence, as r — oo,

[62F(r) "] [62F(r) "]
COHsr/a) ~ Y (V)T Ha(2) )
j=[61F(r)~1] j=[61F(r)~1]
[62F(r) ]
=F0)™ Y = (T ) Fal(@) ).
j=[61F(r)= "]

Since ¢ € R_,, we obtain by Theorem 1.5.2 of Bingham et al. (1987) as r — oo,

1 [62F (r)~ "] [62F (r) =]
== > )Hplr/ay) ~ (e = 2) @) T H (@) )
E(r)=le(F(r)~Y) _ = =
J=[01F(r)=1] J=[61F(r)=1]
&
~ / y "Hp(y ") dy,
61
and so
J1(6,7) ~ F(T)_IC(F(?“)_I)/ y "Hp(y ") dy asr — oo,
01
On the other hand,
J2(6,7) < €5, F(r)—1 Z c(j)
JZ6F(r)~!
~ 6617(7’)*1(77 — 1)*151F(T)716(51F(T)*1)
5.7y (1 — D0 TEE) (B ()T as - oo (412)
by Bingham et al. (1987), Proposition 1.5.10. Since d; is arbitrary and €5, F(r)-1 — OQasr — o0
we obtain
Jim lim Hm F(r)e(F(r) =)~ (A(0,r) + B(0,r) = ﬁx&((swu))(ﬂ—l)/ﬁ). (4.13)
2—00 01 T—00 —_

10



Next, Proposition 1.5.8 in Bingham et al. (1987) and Lemma 6.4 result in

Yoo cGPT ) < G5 Y. ei)iF(r)

J<61F(r)~t <81 F(r)—1

~  CaF(r)e(0yF(r) )5 (F(r))
~ Gy TE(r) T e(F(r) 7Y
as r — oo for some C3,Cy > 0. Hence,
= (o —1y—1 ; . —
(lsllrlr(l)rll)ngo F(r)e(F(r)™) Z c(j)P(T; > r) =0. (4.14)
J<OF(r)~t
Also, by Bingham et al. (1987), Proposition 1.5.10,
F(r)e(FEr)™™ > P >r) < Fr)eEr) ™)™ > i)
j>62F(r)=1 §262F(r)=1

1 -
~ gl 2, (4.15)
n— 172

By (4.13), (4.14) and (4.15) the result follows. O

The following result is a local renewal theorem.

Lemma 4.3 Let the conditions of Proposition 4.2 hold, ans assume additionally Assumption A
of Theorem 3.1. Then

S ) [P(T; > 2) = P(Ty > 2+ 1)] ~ % s Fe) e(Fe))  asa — oo,
=0

Proof. Under the first scenario of Assumption A, the proof, using Proposition 4.2, is the same
as the proof of Theorem 2 in Anderson and Athreya (1988), which in particular requires 5 < 2.
Under the second scenario of Assumption A, the statement is Theorem 3 of Doney (1997). O

5 Verification of the conditions of Theorem 3.4

The main result of this paper, Theorem 3.1, is proved in this section via verifying the conditions
of Theorem 3.4.

5.1 Verification of condition (a) of Theorem 3.4

We can write

12 (0, Ant] — Mnt] = 12[ OA"t]O)\nt]—IE(N(OA"t](O)\t])}

S [NE9 (0,0, BV (0,0,6)
=1

= & (1) +&, (1),

11



where NZ-A(B) is the number of arrivals of packets in a measurable set B belonging to a cluster

initiated in a measurable set A. We will show that for every ¢ > 0
& (t) = By(t) and & (1) = By(t), (5.1)

where (B;(t))i>0 and (B (t))1>0 are independent fractional Brownian motions of index H with

time 1 variances

2 20 ][“><2+ﬁaVﬁ
=57 5-al Y (S1/5(1) <y)dy (5.2)
and
ﬁ:;x/mE-JLJ@HJVQ+—3—Hmnw+nla————i———um2a(m
-0 2 -« a—1 2—a)(a—1) )
(5.3)
By independence, (5.1) will imply that for ¢t > 0
En(t) = &1 (1) + &, () = B(t) + By (t) = Bu(t), (5.4)

where By (t) ~ N(0,t*H0?) with 02 = 0% + 0%. Applying Lemma 4.8 of Kallenberg (2002) we
see that for every k£ > 1 and 0 < t] <ty < ... <t < 00, the family of the laws of the random

vectors
(gn(t1)7 e 7§n(tk))n€N7 (55)
are tight. Let By = (Bg(t1), ..., Bu(t)) be a weak subsequential limit of this family, i.e. there

exist a subsequence (n;) such that

(Ens(t1), -+, &ns (1)) =2 By

On the one hand, By is infinitely divisible (because of the Poisson arrivals of clusters). On the
other hand, the one-dimensional marginal distributions of By are Gaussian with B m(ti) LB m(ti)
by (5.4). Hence, B g 18 zero mean multivariate Gaussian. We will compute now its covariance
matrix. The stationarity of the N;’s and, hence, that of the &,’s implies by (5.4) that for 1 < j <
i <k,

Enlti) — En(t;) = Bu(ti —t;).

Thus, By (t;) — EH(tj) 4 Bu(t; — t;), and so

Cov(Bu(ts), Bu(ty) = 5 (B(Bu(t)?) +E(Bu(t)?) — E(Bu(t) — Bu(t;))?)

N~ DN

(E(Br(t:)?) + E(Bu(t;)?) — E(Bu(ti — t;)?))

l\’)|qw

(87 + 157 — (8 — £)*).

This implies that the random vectors in (5.5) converge weakly to the corresponding finite dimen-
sional distributions of the appropriate fractional Brownian motion, and this will verify condition
(a) of Theorem 3.4.

12



In order to prove (5.1) we notice that & (¢) and &, (¢) are infinitely divisible random variables

whose characteristic function can be written in the form
E(exp(i0EE(t))) = exp {/ (eiez -1- i@x) u,jf(dx)} ,
0

where v+

— are the corresponding Lévy measures. These can be represented in the form

vE = nXo(P x Leb) o ¢1 1,

with the following notation. Let (€1, F1,P1) be a probability space on which a generic cluster
process (N¢ [0, u])y>0 is defined. The maps (4 and (_ are defined as follows: (; : 1 x (0, A\pt] —
[0, 00) is given by (4 (w1, u) = N[0, u] (w1)/bp, and (— : Q1 xR — [0, 00) is given by (_ (w1, u) =
Nc (u,u + Apt] (w1)/by. To see this write NZ-(_OO’O] (0, Ant] and NZ-(_OO’O] (0, Apt] as integrals with
respect to a Poisson random measure and use, for example, Lemma 12.2 (i) in Kallenberg (2002)
(cf. proof of Proposition 3.5 in Fay et al. (2006)). For the notational simplicity below we often
drop the subscript in P; and, hence, write for A € B(R)

n

Ant 0o
vi(A) = n)\o/ P(N.[0,u] /b, € A)du, v, (A) = n)\o/ P(N; (u,u 4+ A\pt] /by, € A) du.
0 0

Since the Lévy measures are concentrated on the positive half line, the standard results for
the weak convergence of infinitely divisible distributions, see e.g. Theorem 15.14 in Kallenberg
(2002), say that one needs to check that for every e > 0:

lim *vE(dr) = 0% and  lim zvE(dz) = 0. (5.6)
"m0 Hjel<e} 00 el >e}

Without loss of generality we will assume Ay = 1 in the following.

5.1.1 Convergence of Ei

Ant N:|0,u 2
Li(n) = n/o E( lE ] 1{NC[0,u}§ebn}) du

n

Ant Nc O,U
n/O £ < IE ] 1{N0[0,u]>5bn}) du.

The statement (5.6) for &1 reduces to

Let € > 0. Denote

and

Ir(n) :

lim I (n) = t*"0% (5.7)
and
lim Iy(n) =0. (5.8)

We use the decomposition

Ant , n AntAT )
Ln) =5 E <1{K+1§ebn} ; Ne [0, 4] du) + oK (1{K+1>5bn}/0 N[0, u] du)

13



and

)\nt )\nt o
L(n) = ne /O P(N, [0,u] > ebn) du +n /0 / P(N, [0,u] > zb,) dz du
= Ig’l(n) + 1272(77,).

The claim (5.7) now follows from Lemma 6.5 and Lemma 6.6, while the claim (5.8) follows from

Lemma 6.7 and Lemma 6.8.

5.1.2 Convergence of £~

The argument is similar to that of the previous subsection, but somewhat more involved techni-

cally. Denote

nA, [
I3(n) = b—2/0 E (Nc A, An (w + 1)) 1{NC(Anw,,\n(w+t)}gebn}) dw
and
n, [
I4(TZ) = b— 0 E (Nc ()‘nwa )\n(w + t)] 1{Nc(/\nw,)\n(w+t)]>ebn}) dw.
Then
lim I3(n) =t*1o2, (5.9)
and
lim I4(n) =0, (5.10)

such that (5.6) follows.

We start with introducing some notation. Let

HY(w) = E (Nc A, An (w + 1)) LN (A (wtt)] <ebn } 1{K>No(0,)\n(w+t)]}> ;
HP(w) = E (Nc A0, A (W + )12 LN, (Ao ()] <ebr} 1{No(O,Anw}<K§No(0,)\n(w+t)}}) ,
so that

E (Nc ()\nwa )\n(w + t)]Q 1{Nc()\nw,/\n(w+t)}§6bn}) = Hr(Ll)(w) + H’r(LQ) (w)

By Lemma 6.9, Lemma 6.10 and Theorem 6.11 we can use the dominated convergence theorem
such that

. T MAn
lim I3(n) = /0 nlgrolob—2(H7(zl)(w) + H? (w)) dw

n—oo

— /OOO [E((I(w +1) = I(w))*I(w +1)7%)

2a
a—1

+E (2 fal(w + )27 4 T(w)I(w + t)l‘o‘>

E (I(w)21(w e mz(w)wﬂ dw.

14



Now, by substituting w by tz and using the self-similarity of I of index 1/3 (cf. Meerschaert and

Scheffler (2004), Proposition 3.1) we obtain (5.9).
Therefore, it remains to check (5.10). Here we assume, once again for the ease of notation,

that e = 1, and write for M > 0,

nx, [
I4(n) = b— o E(NC ()\nw, )\n(w + t)] 1{Nc()\nw7>\n(w+t)]>bn}) dw
nh, (M
+b— 0 E(N. ()‘nwv )‘n(w + t)] 1{Nc(>mw,)\n(w+t)}>bn}> dw

=: I471(7”L) + 14,2(’”)'

Let 6 > 0. We have

[e.9]

Lia(n) < 075 = E<Nc (A, An (w + £)]7H 1{Nc()\nw,)\n(w+t)}>bn}> dw

o= g [ 1 N, Apw, Ap (w + )]\ 20
< bIF() 9/M P(K>F(An)1)1a(( =50 + ) ) duw.

As in the proof of Theorem 6.11 we have that the integral is bounded above by Cj fz\o/f w™" dw
for some C7 > 0,7 > 1. Then by (6.1) we conclude that I, 1(n) — 0 as n — oo. For I, 2, notice
that

0 (0, A (M
E < (F( () 1) 1{N0(0,/\n(M+t)}>bn}>
— b F(A)B(No (0, Aa(M +1)] > ba) + ﬁ /b P(No (0, A\ (M + )] > ) dz

< an(An)e—an(kn(M—I—t)) F T /°° o~ TFEOn(M+)) g,
bn

= an()\n)e_b”FO\”(M—H)) + F()\n(M + t))—lf()\n)e_bnf()\n(]\/[_i_t)) .

Therefore,

nAn
Iip(n) < b—ME(No (0, At (M 4 )] LN (0,00 (M+8)] b0} L{E>b0})

i No (0, A\ (M + t)] P(K > by)
F(A) ! {N°<°’A”<M“”>b"}) P(K > F(M) ")
CLFn)bn)? + FAn(M + ) TF () F(Ag)by Je T CnAT+0) (p, (), )) o0

n—~o0o 0

IN

MF ()b, E (

IN

by (6.1). Therefore, (5.10) follows. O

5.2 Verification of condition (b) of Theorem 3.4

This is an immediate consequence of the Chebyshev inequality and (6.2).
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5.3 Verification of condition (c) of Theorem 3.4

It is in this part of the argument that the slow growth condition (3.2) plays a role, as will be
presently seen.

The initial step is to show that we may, without loss of generality, assume that the interarrival
times of the cluster process Ny are bounded from below by a positive number. To this end we
modify the renewal point process Ny into a different renewal point process, ]\70, as follows. Let
d > 0 be such that P(X > ¢) > 0.

Let T} := min{7Tj : T; > 0}. Define Zo = Zo+ M7 Z;46), where My := min{j : T; > §}.
We view Zg as the amount of work brought in the single arrival, at time T 0:=0.

In general, given Tn and M,,, we define the next arrival by Tn+1 = min{T}; : Tj — Tn >4},
and the amount of work brought in by the arrival at time T}, as Z,, := Zy, + Zﬁ?\zﬁ(& +9),
where My, 11 :=min{j : T; — T, > 6}.

Note that with this (sample path) modification, every arrival point of the original process Ny
will arrive, in the new process, not later than before (but it may be aggregated with other points
of Ny into a single new arrival), and its work will last in the new process for at least as long as
in the original process. We will still take K of the new aggregated arrivals, so this modification
can only increase the random variable I*(0).

For the new process the random amount of work brought in with any arrival has the repre-
sentation Zo = Zy + Zi]\ilfl(Zl- + 6), and since M is stochastically dominated by a geometric
random variable, we see that E(Zg) < o0. Furthermore, the interarrival times of the new process
satisfy )?Z >0 a.s. and P(X; > z) < ]P’()?Z >z) <PX14+0>2) ~P(X; >z)as ¢ — .
Hence, P(X; > ) ~ P(X; > ) as = — .

Therefore, for the purpose of obtaining an upper bound, we may work with the new renewal
process, and we will simply assume that the original renewal process Ny has interarrival times
that are bounded from below by a positive constant.

We observe that I*(0) is an infinitely divisible random variable with Lévy measure given by
1W(B) = Ay / P(A©(z) € B)dz for B € B(R),
0

where A®©) (x) is the total amount of work in a session belonging to a single cluster, initiated at
zero, that does not finish by time x > 0. To see this write I*(0) with respect to a Poisson random
measure and use, for example, Lemma 2.2 (i) in Kallenberg (2002). Without loss of generality

let A\g = 1. We have, therefore, the decomposition

00
,U,(Z, OO) = / ]P’(AC(.%') > Z) dr < 15’0 + 1571 + 1572 + 15’3, (511)
0
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where

I570 = / P(A(C)(.T) > Z) dx,
0

IS,l = / P(ZNC(O,:E} >z + (1‘ - TNC(O,x})vTK > Z) dmv

Nc(0,z]-1
1572 = E 1{TK>Z}/ P U {Z] >.%'—Tj} F |l dz|,

oo K
Iz = E 1{Tng}/ P U{Zj>x—Tj}F dz |,

where F is the o-field generated by the cluster point process N..
Let z > 1. Then Proposition 4.1 in Fay et al. (2006) gives us

K
Ig<zP > Zj>z| < Coz' ™. (5.12)
j=0

Next,

Tit1
15’1 < E 1{TK>z} Z / Zk >Z+($—Tk)‘f)d1‘
k=No(0,z]

+E <1{TK>Z}/ ]P’(ZK >z 4+ (.%' — TK)’]:) d.%') .
Tk

By Markov’s inequality we obtain

Tk+1
1571 < CiE 1{TK>Z} Z / Z+ .’L'—Tk)) dx

k=No(0,z]
+008 (Vnoy [+ (0= Ti) 2 )
Tk
K-1
= CLE 1{TK>Z} Z [Z_l — (Z + X]H_l)_l] + C3E (1{TK>Z} Z_l)
k=Ny(0,z]
< C32 'E(lyresay K). (5.13)
Note that
oo
E(1{r>z) K) K)> P(K P(X1+...+ X > z) = E(K)P(T > z),
k=1
where K is a positive integer valued random variable with ]P’(K k) = kP(K = k)/E(K), k € N.
Further, by Karamata’s Theorem
IP’(IN( >n) ~ ;LnP(K >n) asn— oo.
E(K)a—1
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Hence, by Proposition 4.1
- - ot
E(lyz,ss K) ~ CiF(2) P (K > F(2))) < G52~ 7,
and thus,

ap—1 ay—1

1571 < 062712_ B2 < C7Z Bz .

Next, we decompose I5 2 into

Iso = I521 + I5 2.2,

where
Tr 31 No(0,2]—1
Is01 = E 1{TK>Z}/ P U {Z; >z —T;}|F | dz |,
z ]:0
0 K
Is22 = E| i1y U{Zj >z —Tk}| F| do
TK+1 j=0
Then

TK+1 NO 0$
I;01 = E 1{TK>Z}/ Z P(Z; >z — T}|F) dx
z

Tk+1k1
E | 1{7gsa Z / ZPZ > x — Tj|F) dx

k= NoOZ] Jj=

IN

Again applying Markov’s inequality and (5.14) lead to

Tk+1
15’271 < CgE 1{TK>Z} Z / d.%'

k=No(0,2] j=0
K-1

= GSE | L7z Z [(Tno0,5vG+1) = T3) 7 = Tk — T5) 7]
j=0
K

< OOE | Lpyesny ) X5
j=1

< Cod 'E(lrysay K)

_ ay—1
~ Cioz P2

as z — oo. Further, by Markov’s inequality, as above and (5.14)
o

I509 <E(Z*)E (1{TK>Z} K
Tr+1

18

(.%' — TK)i2 d.%') < CllE(l{TK>z} K) < Cla2z

(5.14)

(5.15)

(5.16)

(5.17)

ay;—1

B (5.18)



for z large enough. We decompose I5 3 into

z+1 K
Ly = E(1gpcr<n P (U{Zj >z T} F| do

0o K
+E 1{2/2@(9}/ 11@ (U{Zj >ax— T} F | do

o0
+E 1{TK<z/2}/ P {Zj >x — T]} F | dx
z j:O
=: Is31+Is32+ I533. (5.19)
On the one hand, by Proposition 4.1 in Fay et al. (2006),
1
Is31 <P(Tg > 2/2) < Cizz P2 (5.20)

On the other hand, by Markov’s inequality and (5.14) we obtain

ap—1

1573’2 S Cl4E <1{z/2§TK§z} K/:Ol(.%' — TK)72 d.%') S Cl5E(1{TK>z/2} K) S 0162_}3—2. (521)
z
Finally, another application of Markov’s inequality gives us
I533<E (1{TK<Z o K / Oo(x — Tx) ™2 d:c> < C1E(K)z L. (5.22)
A conclusion of (5.11)-(5.22) is

ay—1 1 ay—1

p(z,00) < Cigz' ™ + Croz” 72 + Oz P2 + Cyz ' < COpnz 52 .

Hence, a stochastic domination argument and the fact that the tail of a regularly varying Lévy
measure is equivalent to the tail of its distribution function show that for large =z

ay—1

P(I*(O) > Z) < 0232’_ Pz .

By assumption (3.2) (the slow growth condition) we obtain lim,, o, nP(1*(0) > b,,) = 0, and the
result follows. O
6 Auxiliary Results

A number of lemmas and other auxiliary results are collected in this section. We start with a

lemma that clarifies the behavior of the normalizing sequence (b,) in Theorem 3.1.

Lemma 6.1 Let the assumptions of Theorem 3.1 hold. Then

lim (F(\,)b,)"! = 0, (6.1)
lim nA,b,%2 = 0. (6.2)
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Proof. For n large we have by Potter’s theorem

1__
NP(K > F(A)) ™ > n2A2F(\)

Nl
Sl

F(A)b, =n

Since (1 — a2)/(261) > 0 and \,, — o0 as n — oo we obtain

_Bi1—x

FOuba)t <nir, =0,

Finally, (6.2) results from
nARb2 = F(An)2P(K > F(A\) 1)1 < F(A)2 72 "= 0.

0

The next result is a simple consequence of the strong Markov property which is useful in

various places in our arguments.

Lemma 6.2 Let f, g be measurable functions and f be increasing. Suppose Ny is a renewal

process. Then for w,d > 0

E(f(No (w, w + 6])g(No (0, w]) L (N (0,u]£No(0,w-+8]})
< E(f(1+ No (0,6]))E(g(No (0,0]) 11 n(0,0]£No (0,0+5]})-

Proof. Condition on the time and the number of the first arrival after w and use the iid assump-

tion of the interarrival times. O

The next lemma gives a simple estimate on the probability of having "too many” arrivals

within a time interval.

Lemma 6.3 Let (Xi) be an iid sequence of positive random variables with distribution function
F, such that F € R_1/8, 0 < 1/B8 <1 and let h be the generalized tail inverse function (2.4).
Let T, = > 1_; Xx, n € N. For any § > 0 such that F(§) > 0 and m > 1,

(i) we have
P(T,, < 6) < F(8)™ < e ™FO) (6.3)
(ii) if x > 6/h(m), then for any 1 < 3 < B2 we have
P(T,, < h(m)z) <e ¢ min(e” P12 P2) (6.4)

for some C = C(9, 41, B2);
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Proof. Trivially, for § > 0,

P(T,, <6) < [1-F(5)]™.
Now (6.3) follows from the fact that (1—a~1)% < e~! for a > 1, and Potter’s bounds (cf. Resnick
(2007), p. 36) give (6.4). O

The following simple result on convolution tails of random variables with infinite mean is

often useful.

Lemma 6.4 Let (Xi) be an iid sequence of positive random variables with distribution function
F,F ¢ R_1/p and 0 < 1/8 < 1. Then there exist K > 0 and ng € N such that for any x > 0

and n > ny,
I (z) < KnF(z). (6.5)

Proof. Suppose that the statement is not true. Then for each j > 1 there exist a n; > j and a
x; > 0 such that

Fa*(z;) > jn,;F(z;) (6.6)

Let h be the generalized tail inverse function (2.4). Assume first that there is a sequence ji T oo

as k — oo such that

. Zj
lim Tk

= OQ.
k—o0 h(njk)

This implies limy_o nj, F'(25,) = 0. Therefore, by Theorem 9.1 in Denisov et al. (2007) we obtain

T E GO
k=00 my, F(:C]k)
which contradicts (6.6).
Next, we suppose that there is M > 0 such that
zj < Mh(n;) forall j € N. (6.7)

Then
n;F(z;) > nyF(Mh(ng)) == M~/
by the regular variation of F. Thus, (6.6) results in
oo

F7i*(x5) 2 jn; F(a;) — oo.

Since F™i* is bounded by 1, this is impossible. Hence, the claim follows. O
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6.1 Auxiliary Results for the Proofs of Subsection 5.1.1

The next series of lemmas provides estimates needed to prove the convergence of E;L" in Subsec-

tion 5.1.1. We are using the same notation.

Lemma 6.5 In the notation of Subsection 5.1.1

) 2 248—a [ 248-a

Proof. We have by the independence of K and Ny
€2b2
BV 0,0 Lpcsacay) = [ BN 0.0 A (K + 1) Lz, > 2) do
0 o
. /O yP(No [0,u] > y)P(y < K +1 < eby) dy.
Hence,

Ant ebn,
Lii(n) = 2 / / yP(Np [0,u] > y)P(y < K + 1 < €by,) dy du
0

ebn, Ant
= 2—/ yPy < K +1< ebn)/ P(Ty) < u)dudy
0
€bn
= 2 / yP(y < K +1 < ebp)E(Ant — T)y))+ dy
0

o ebn F'(An) o
()2 /0 P(zF (M) < K+ 1< eb) Bt — T py,y-1))+ d

€ 'l —1 T = _
_ 2/ PEFQ) <K+ 1<) (t Er Y 1J> &
0 P(K > F(\,)™Y) An n
€bn F(\n) ¥l -1 < T = _
+2/ PEFQ) < K+ 1< eba) o <t ~ LEFOW 1J> &
€ ]P)(K > F()\n)fl) An +
=: Ji(n,€) + Ja(n,e). (6.8)

By Karamata’s theorem

2
< —
P(K > F

Ji(n,€) INET /0 PK +1> 2F0) ) dz

P(K+1> F()\n)_l) 2t /GF(A”)_1 ZP(K+1>2)dz
P(K >F(\,)™Y) FA)2P(K +1>F(\) 1) Jo

n—oo 2t o_,

gy 5 _ae : (6.9)

and we conclude that lim,|glim, . Ji(n,€) = 0. We estimate Ja(n,¢€) as follows. By Potter’s

inequality there exists C; > 0 such that for z > € and n large,

P(K+1>z2F(\,)" 1)

~ < Crz,
P(K > FO)-1) —
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Similarly, Potter’s inequality leads to

MEEFO) ™) | hEFOG) ™ 1)

> 2P for z > e
e WEO)-L+1) = 2 re=e

If we define m,, = |2F(\,)~!], then for § > 0 such that F(§) < 1,

T 5\ -
E <t— [2F(An) 1]) - F <t— Ton, h(mn))
An n h(mn) A /).
T,
< E(t— -0y
n (t h(mn)C2z >+

Cyltz=P1
T
= /2 Co 2P (—" §x> dx
0 h(mn)

§/h(my) Cyltz=h1 T
/ +/ IP’( UL :c> dzx
0 5/h(mn) h(my)

= Cp2[Vi(n, 2) + Va(n, 2)).

= szﬁl

We have by (6.3) for large n,
Vi(n, 2) < (6/h(my))P(Tp, <6) < e F0) < Oy le™ 057

for some C5 > 0, since m,, > z for n large. Further, by (6.4)
Cy it n(z—1/81 p—1/5
Vz(n, Z) < / 6704 min(z 1,z 2) dr < Cg)—ltzfﬁlefc%z < 06—167062
0
for some Cy4, Cs, Cs > 0. Hence, we have

T =y \—
E (t — 7LZF§\’\”) 1J) < Oy Vi(n,z) 4+ Va(n,z)] < C;lzﬁlefcmv
+

n

and so by the dominated convergence theorem, (2.5) and the regular variation of F,

n—~oo

lim Ja(n,e) = 2/ TRt - Zﬁ51/[3(1))+ dz.

Therefore, by (6.8),

n—oo

lim 1171(77,) = 2/ ZliaE(t—Zﬁsl/ﬁ(l))_i_ dz
0

2 2+8-«a 24+B—a

= ﬁt B / x B E(l—x_lSl/ﬁ(l))+dx
0

2 24p-a > — —a r
_ 73 / 5 1/ P(Sy,5(1) < 2) dz da
B 0 0
2 248-a [ _248-a
- 2 TIPS, 5(1) < 2) de.
st [ R0 <2 e

Lemma 6.6 In the notation of Subsection 5.1.1

lim 1172(71) =0.

n—oo
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Proof. By the independence of K and Ny we have

Ant Ant
Iio(n) < b%E (1{K+1>€bn} Ny [0,u]2 du> = b%P(K +1> ebn)/ E(No [0,u]2) du.
n 0 n 0
Thus,
n Ant [e'e)
Iio(n) < b—QIF’(K +1> ebn)/ / P(Np [0,u)? > ) dz du
n 0 0
< 2%%@(1{ +1> eby) / 2P(T) < Ant) dz.
n 0
By (6.3),
Liao(n) < Oy b%)\nﬂP)(K +1> ebn)/ 2o~ EIFOnt) g,
n 0
n =/ -
< CgéAnIP’(K + 1> eby)F(N\,) 2
2]P’(K>_€bn—1) =
P(K > F(h) )
by Potter’s inequality and (6.1). O

Lemma 6.7 In the notation of Subsection 5.1.1

lim Ig’l(n) =0.

n—oo
Proof. Suppose ¢ = 1. The independence of K and Ny results in

Ant Ant
I1(n) = nP(K+1> bn)/ P(Np [0,u] > by,) du = nP(K +1 > bn)/ P(T, | < u)du.
0 0

As in (6.3) we obtain

An .
La(n) < nP(K+1>b,) / o LonIT ) g,
0
< nP(K +1 > by)Ape OrDECR)
= P(K +_1 > bn) (F()\n)bn)Qef(bnfl)F()\n) nio>o 0
B(K >F () ")

)

since b, F'(\n,) "— 00 by Lemma 6.1. O

Lemma 6.8 In the notation of Subsection 5.1.1

lim 1—2’2(”) =0.

n—oo

Proof. Suppose e =1 and t = 1. Then
00 An
Iro(n) = n/ P(K+1> bnx)/ P(No [0, u] > byx) dudx
1 0
[e.o] A'n,
= n/ P(K+1> bnx)/ P(Tp,2) < u)dudz.
1 0

24



Again as in (6.3) we obtain by (6.1),

) An —
Iro(n) < n/ P(K +1> bnx)/ e Lon@ F () gy, e
1 0

IN

nAn / P(K + 1> byx)e One=DFO) gy
1

IN

e'n\, /OO e~0neF(n) gy
1

eln)\n(bnf()\n))_1e_bnf()‘")

IN

1 _
e nin, )T (5, F () et O
Ci (b F(A)) ™ B Am73) 1 gm0 FOR) n22¥

IN

IN

)

which is the result. OJ

6.2 Auxiliary Results for the Proofs of Subsection 5.1.2
The next several results deal with the convergence of £, in Subsection 5.1.2.
Lemma 6.9 In the notation of Subsection 5.1.2

—H<1>(w) =E((I(w+1t) — I(w))?I(w+1)~).

Proof. We divide HY(L ) in three parts and define

An,w = {NO ()‘nwa)‘n(w + t)] < Eban > NO (07 )‘n(w + t)]}

For M > 0 let
HEWM) () = E (No (Anw, A (w + )] L1 <P () No (0 A (wet)] <M} lA"vw) ’
HL2M) () = E (NO (Anw, An (w + 1)) LF () No (0 (w+] <M1} 1A"’w) ’
HEM) () = E (No (A, An (w0 4+ 8 L0 No (0 A0 (wt)] 501 1A"vw> ’
so that
HW () = HELM) () 4 FE2M) () 4 gE3M) (). (6.10)
Note that

<N0 (0, )\nw] NO (0, )\n(w + t)]
F(\,)~t F(\,)t
(cf. Meerschaert and Scheffler (2004), Theorem 3.2). Furthermore, regularly varying functions

> = (I(w), I(w + 1))

converge uniformly on compact sets (cf. Bingham et al. (1987), Theorem 1.5.2). Thus,

(NO nw, A (w + )]

nA, 1,1,M
2 HEWM) () FOw)—2 {No (A w, A ()] <ebp, M~ <F (A ) No (0, (w-£)] <M}

2 n
bn

P(K > No (0, A\ (w + )] \fo))
P(K > F(A\)7h)
T E((I(w +t) — I(w))? L1 <rqwrty<my L(w +1)7%), (6.11)
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where Fy = o(Np). For the second summand of HT(ll) we have for large n by Potter’s inequality

nA\y,
b—QHr(Ll’Q’M) (w)

i [ No Qo An(w + DN 1o No@m (i _
]P)(K N F()\n)_l) {No(0,Anw]#No (0,\, (w+t)]<F(An)~1M}

F(\,)™t

No (0, A (w + )]\ > 772
<CiE << F(h)- ! 1{NO(O,Anw];éNo(O,An(w+t)]<F(/\n)—1M}

< CyMee2 Mo, (6.12)
By Potter’s inequality the last term of HY(LI) has the upper bound

n_)‘”H(L&M) (w)

b2 "
nA\p, 2
<57 B (No (0, An(w + D1 Lim(a, ) No (0,00 (w0 =113 P> No (0, An(w + 1)) ’f0)>
No (0, A (w +8)]\*7
< OE <( F(A)~! LiNo @ An (b 2FO) 113

= Oy /Mozal P ((NO (%(/t\z()wf t)])Z_al > y) dy
+Cy M2~ P ((NO (0, An(w + t)])2_m > M2_°‘1> .

The first term in the right hand side above can be bounded as follows. For some constant Cy > 0

we obtain as in (6.3) that

/Moj—al ’ ((NO (%();\T;(ﬁj t)]>2_a1 g y) W

— 2 —»a1>JC;ozlalP(ﬁﬁ)<o,An<ux+-tn > ZF(A) ) dz

<@2-a) /M 2T F) -1 41 < An(w 1)) dz

s@—aﬂﬂjf““mwafum1Fuuw+w»w

B
"2dz — 0 as M — oo.

00
< C:;l / Zlfale*C%(ert)
M

Similarly,

N 2—a
M2—o¢1]P> (( 0 (07();\”()’[?1—’_ t)]) > M2—0¢1> — 50 as M — oo.

Hence, the result follows. O
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Lemma 6.10 In the notation of Subsection 5.1.2

n\ o 200
. n r7(2) _ 22—« 11—«
lim ——H}\* (w) E(—Q_af(w+t) +—a_1l(w)l(w +1) )

_E (I(w)QI(w by muw)m) .

Proof. We define
Apar = {M ™" <F(An)No (0, Agw] < F(An)No (0, A (w + )] < M, No (Ayw, An(w + 1)] < eby}
and

Ay ={M™' <I(w) <I(w+1t) < M}.

By Karamata’s theorem and the uniform convergence of regularly varying functions on compact

sets we have

B ( o2 HESNo A w0)]) ~ LI <Ny Al 4 M>
F(A)2B(K > F(An)7Y) "

n—oo &

= B ([(w+ )" = I(w)* ™) 1a,,), (6.13)
and
(NE(O’ An W] Kl{K>J_Vo(0,>\nw]} - 1{KiNo(o,An(w+t)]} 1 >
F(\,)™! F(\) 'P(K > F(\)™Y) M
= = CE (1) (I(w)' ™ = I(w +1)' ") 14,,) - (6.14)
Further,

E Ny (0, )\nw]2 LR > No (0 Aw]} = L{E>No(0, 00 (w+8)]} 1
F(\,) 2 P(K > F(\,)™Y) M

FE (I(w)*(L(w) ™ = I(w+1)"%) 1a,,) - (6.15)

Thus, (6.13)-(6.15) give us

. . n)\ 2
A}linoo Jim b—Q:E (Nc (Anw, An (W + )] 1N (0, A w]< K< No (0, A0 (w6)]} 1An,M)
(0% (0%

= ;—E (I(w+ )" = I(w)*™*) — 2

+E (I(w)*(I(w)™* = I(w +1)"%)).

E (I(w)(I(w)'=® = I(w +1)'~))

a—1

The integral over the complement of the event A, ps vanishes in the limit, as M — oo, in the

same way as in Lemma 6.9. U

The following theorem is the last major piece needed to establish the convergence of £ .
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Theorem 6.11 In the notation of Subsection 5.1.2, there exists a non-negative measurable func-

tion g : Ry — R such that fO w) dw < oo and for every n € N

n,

meNAMwJMw+m%ggm)vw>a

Proof. The existence of the required function on the interval (0, M] for an arbitrary M > 0
follows from Lemma 6.15 below, so we only need to construct a required function on the interval

(M, 00). We define

Anw = {NO (Oa)\nw] 7& NO (0’ )‘n(w+ 1)]}’
Bnw = {No(0,\,] = No (0, \yw]} N Ay,
Cn,w = {N() (0, )\n] % Ny (0, )\nw]} N An,w-

We have for w > M

nAn nAn
aE(NC Anw, Ap(w+1)]?) < aE(NC nw, A (w + D)]* 15, )
n)\n 2
+aE(N0 (Anw, Ap(w + 1] Lirs N0, 0mw]>0} 1)
= Joi(n,w) + Jo2(n,w). (6.16)

Potter’s inequality and Lemma 6.2 result in

o () T (i) )

JQ’Q(TL, w)

<E<Mﬂ&EJAw+UP
- F(d)~2

(No (0, \] +1)2
<5 Fh) 2 ) (

By (6.3) we have for large n

E 7( ’)\n2 = 0O]P’N 0 )\ d
n) —2 - 2 0 0 ) v
< 2/0 yP(T) yJ+1<)‘ ) dy
< / ye yF()\n)dy
0

= 2/ e “dz < o0. (6.17)
0

Hence, (6.16), (6.17) and Proposition 6.12 below show that Js 2(n,w) is uniformly in n bounded
from above by an integrable on [M,oo0) function. The fact that the same is true for Jy1(n, w)

follows from Lemma 6.16 below. t
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6.3 Auxiliary Results for the Proof of Theorem 6.11

The following proposition is the first ingredient in the proof of Theorem 6.11.

Proposition 6.12 Let n > 1 and M > 1, and suppose that the assumptions of Theorem 3.1
hold. Then there exists a non-negative measurable function g : Ry — R, such that f;[o g(w)dw <

oo and for every n € N

No (0, \pw]\ 77
E <<%) 1{N0(O,)\n];éNo(O,Anw];éNo(O,)\n(erl)]}) <g(w) Yw=>M.

The statement follows from Lemma 6.13 and Lemma 6.14 below.

Lemma 6.13 Let n > 1 and M > 1, and suppose that the assumptions of Theorem 3.1 hold.
Then there exists a non-negative measurable function g : Ry — Ry such that | ]\040 g(w)dw < o0

and for every n € N

No (0, \pyw]\ 7"
E <<%> 1{N0(0,/\n(w1)}7&No(0,)\nw]}> <g(w) Vw>M.

Proof. Let w > M and n so large such that A\ ! < 27!, We have

NQ (0, )\nw] 1
Ji(n,w) = E ((W) 1{N0(0,/\n(w—1)};£N0(0,)\nw}}
/)\nw _( ) i ] -n ( )
= Fo,w—y (_7> P(T; € dy
An(w—1) = F(\)™ 1t J

Fnw —y) Z:: <F(+n)1>_ P(T; € dy)

7j=1

Anw—2 Anw
= o/
An(w—1) Anw—2

=: lel(n,w) + JLQ(TL, w).

Now,
[Anw—2]—1 ka1 o ; .
Jia(n,w) < > F ()\n <w - >) > <_7_ > [P(Ty < k+1)—P(T; <k)].
k= A (w1)] —1 An S A\FA)!

Since F is regularly varying of index —1/3, by Potter’s inequality there exists a constant 0 <
(1 < oo such that

Mnw—2]—1 Sl 00
k + 1 81 F()\n) [ 1— —
Jii(n,w) < Cq Z gw T > K (k)= EF (k)" Z] T"P(T; <k+1)-P(T; < k).
k=An(w-1) j=1
Using Lemma 4.3, we obtain
Anw—2]—1 L —
B n
k=|An(w—1)] " (k)
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Taking again the regular variation of F and Potter’s Theorem into account yields

[Apw—2]—1

1 1—n
k+1\ 611 k B1
< _ (=
Jii(n,w) < C3 E (w N > - ()\n>

fe={An(w—1)]

w211 k1) "5 [k o
a2 gleess)
k=|An(w—1)]

w _1 1-n_4
< 04/ (w—2) Pz "dz

w—1

1-n_4
S C5w A1 )

which is an integrable function on [M, co) since n > 1.

Finally, using, once again, Lemma 4.3, we obtain
o0
Ja(nw) £ FOW S 57 [Py < Aww) — BTy < Aguo — 2)]
j=1
1

ApW
1-n_4

< CeF(An) " 5—F(Aw)"™!

)

AnF (M)

which is uniformly bounded by an integrable function.

(6.18)

g

Lemma 6.14 Let n > 1 and M > 1, and suppose that the assumptions of Theorem 3.1 hold.

Then there exists a non-negative measurable function g : R, — R, such that fj\o/f g(w) dw < oo

and for every n € N

No (0, \w]\ "
E ((2(7]) 1{No(0,>\n]7éNo(0,)\n(w—1)]No(O,Anw}yéNo(O,An(w-i-l)]}> <g(w) Vw>M.

F(\,)™!

Proof. As in the previous lemma,

Ji(n,w) = E ((W) ! 1{N0(0,/\n]¢N0(0,>\n(w—1)]No(O,/\nw];éNo(OAn(w+1)]}>
w—1 . 00 j -n
= [ FOww- ) -FOuw+ 1) - ) > (o) BT e )
[ (w=1)]-1
< > [FQww—k—1) = Fw+ Ay — k)]
k=[An]

> (4) BT} < k+1) — B(T; < k)]
L \FOn)! )= s=

By Lemma 4.3 we have for n large

[An(w—1)]-1 = Fnl Fal 1—
Fooaw—k—-1)—FAaw+ Xy — k) F(Ap) "
Amw) <G ) — )FA = )kf( k)l—n'
k:LAnJ ( n) ( )
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Note that for every k in the above sum by Assumption A

[An]—1
FOaw—k—=1)=FQaw+r—k) < > [FOuw—k+j) = FQpw -k +j +1)]
j=—1
Pl B vww — &+ ) FOww —k—1)
< n- < n T h T
= jz—1 Ant0 =k + ] = Gt Apw —k —1

We conclude by Potter’s Theorem that for large n and all k£ as above

— — 1 _ 9
F()\nw—k—l)_—F()\nw+)\n—k:) <c (w— k+1> B2 .
F(\) An
Hence, we obtain
An(w—1)—1 19 = 1—

kE+1 B2 F()\n) n

< - T . .

il w) < Cs ,;; (w An ) KF (k)1

Similar calculations as in (6.18) result in

1 1—n

w—1 n—1
Ji(n,w) < 05/ (w—2)"% 2% 'dz<Cqw 7
1
as an easy computation shows. This is an integrable on [M, oo) function. O

The final two lemmas needed for the proof of Theorem 6.11 follow.

Lemma 6.15 Let M > 0, and suppose that the assumptions of Theorem 3.1 hold. Then there

exists a positive constant C' < oo such that for every n € N

nAn

2 E(Ne Qnw, A (w + D) <C Yw< M.

Proof. It is clearly enough to establish the required bound for n large enough. By Potter’s

inequality and Karamata’s theorem, we obtain for all n large enough and 0 < w < M

nA\n
@E(NC (Anw, A (w + 1)]?)
nAn,
< 73 B0V (0,2 (M + D)
nAn 2 nAn 2
=57 B (No (0, An (M +1)] 1{K>N0(O,)\n(M+1)}>0}) + 752 B (K7 Likanoan (1))
No (0, A\ (M + 1))\ >~ No (0, Ay (M + 1))\ >
< oy (MM )Y | g (300N E0)YT
F(A\,)! F(A\)™!
The right hand side is bounded for n large enough by computations similar to (6.17). O
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Lemma 6.16 Let M > 1 and suppose that the assumptions of Theorem 3.1 hold. Then there
exists a non-negative measurable function g : Ry — R, such that fz\o/f g(w)dw < oo and for
every n € N

nin

5 —5 E (Nc (Anw, A (w + 1)]? 1{No(O,An]:No(O,Anw];aéNo(O,)\n(w—l—l)}}) <g(w) Vw>M.
Proof. We define By, ,, := {Noy (0, \,] = No (0, \yw] # No (0, A\, (w + 1)]} for w > M. Notice
that by Lemma 6.2,

ni, nin . 2
ﬁE(Nc ()\nwa )\n(w + 1)]2 1Bn,w) < ﬁE (mln(NO (Oa )\n] ,K) ) P(Bn,w)- (6'19)
Note that

E(min(No(O,)\n],K)2) - 2/000 P(No (0, \n] > £)P(K > t)dt

_ 2[/0F(An)_l+/oo }tP(NO(O)\] t)P(K > t) dt.

F(An)~t

Since by Karamata’s theorem, as n — oo,

(An) F(an)™
/ tP(No (0,A] > t)P(K > t)dt < / tP(K > t)dt
0 0

2 —

~ Cy(F) )P(K > F(A)™)

and by (6.17)

/OO EP(No (0, 0] > P(K > t)dt < CoP(K > F(A)™)E (No (0,A,]%)
F(n)—t

we have the bound
E (min(No (0, An], K)*) < Co(FOA) ™) P(K > F(A) ™)
On the other hand, by Assumption A and the same arguments as in (6.17),
P(Bnw) = P(No(0,An] = No (0, Anw] # No (0, An(w + 1)])

_ jf; /0 B [F(Anw —y) = Fhw+ A, — y)]IP’(Tj € dy)

< [F(Anw — ) = FOnw + An)} E(No (0, An))

An)
< 3 [FOww —An 4 k) = Fw + £+ )] [05F ()]

k=0

[An]

< CF(r Z Z}w )\)\ ++kk)
< CrF() A ()\nw_ )\)\ 2
<yt E®) (6.20)
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We conclude that

A F(A
n—Q"IE(NC()\nw,)\n(w +1)]%1p,,) < Cow™! "(Anw) < Crpw™ 182,
which is an integrable function on [M, co). O
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