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Abstract

We show that, contrary to the common wisdom, the workload process in a fluid queue with

a cluster Poisson input can converge, in the slow growth regime, to a Fractional Brownian

motion, and not to a Lévy stable motion. This emphasizes lack of robustness of Lévy stable

motions as ”bird-eye” descriptions of the traffic in communication networks.
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1 Introduction

Understanding the effect of heavy tails on networks has been a major topic of discussion in

literature. It is believed that infinite variance in the distribution of the file sizes or bandwidth

requests in communication networks causes long range dependence and self-similar structure in

the network (see e.g. Park and Willinger (2000)). Infinite variance in the connectivity distribution

of nodes in social networks is believed to be present, and lead to scale-free networks (see e.g.

Liljeros et al. (2001)). A discussion of heavy tails in neural networks is in Kosko and Mitaim

(2003). In most cases heavy tails appear to cause unusual (and negative) effects.

Networks with heavy tailed inputs are also difficult to analyze, since they are not well suited

to Brownian or Poisson approximations. Therefore, other approximations have been sought. In
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the influential paper of Mikosch et al. (2002) they showed that for the so-called ON/OFF model

and the infinite source Poisson model, the properly compensated and normalized workload in a

fluid queue looks like a Fractional Brownian motion in the fast growth regime and like a Lévy

stable motion in the slow growth regime. This result was later extended to networks of fluid

queues by D’Auria and Samorodnitsky (2005). A random field version of such results is in Kaj

et al. (2007).

These results appeared to indicate that the deviations from the mean in a fluid queuing

network with heavy tailed inputs could look, in the limit, as either a Fractional Brownian mo-

tion or a Lévy stable motion. Robustness of this conclusion was investigated in Mikosch and

Samorodnitsky (2006) in a general setup, described below. Consider a stationary marked point

process

((T (0)
n , Zn))n∈Z,

where we interpret . . . < T
(0)
−1 < T

(0)
0 < 0 < T

(0)
1 < . . . as the arrival times of packets brought to

the system and Zn as the amount of work brought to the system at T
(0)
n . Each arrival corresponds

to a ”source”, and it transmits its work at a unit rate. The number of active sources at time t is

given by the process

M(t) =
∑

n∈Z

1
{T

(0)
n ≤t<T

(0)
n +Zn}

for t ≥ 0,

and the amount of work brought to the system in the interval [0, t] is given by the stochastic

process

A(t) =

∫ t

0
M(y) dy =

∑

n∈Z

[Zn ∧ (t − T (0)
n ) − Zn ∧ (−T (0)

n )].

Under the assumption that the marks (Zn) have, under the Palm measure, a finite mean, A(t)

has a finite mean with E(A(t)) = µt for all t > 0, where µ > 0 is the expected amount of work

arriving in a time interval of unit length, i.e. µ = E(A(1)).

Let (Ai)i∈N be iid copies of the process A. With n input processes and at a time scale T , the

deviation of the cumulative workload from its mean is the stochastic process

Dn,T =

n∑

i=1

(Ai(tT ) − µtT ) for t ≥ 0. (1.1)

One is interested in the limits of the sequence of processes (Dn,T ) as n and T grow to infinity.

The situation where the number of input processes is relatively large in comparison with the

time scale, is referred to as the fast growth regime, while the opposite situation is referred

to as the slow growth regime (boundary regimes may exist as well; see e.g. Gaigalas and Kaj

(2003)). What Mikosch and Samorodnitsky (2006) discovered was that the Fractional Brownian

limits of Mikosch et al. (2002) in the fast growth regime were very robust, and held under very

general assumptions on the underlying stationary marked point process. On the other hand,
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the Lévy stable limits turned out to be non-robust, and very special conditions were needed to

ensure such limits. One of the conclusions of Mikosch and Samorodnitsky (2006) was, in certain

circumstances of a very irregular arrival process, a Fractional Brownian limit was possible even

in the slow growth regime. They provided a somewhat artificial example of such situation, and

conjectured that the same was true in the important case of a cluster Poisson arrival process. It

is the purpose of this paper to consider that case and establish the Fractional Brownian limit.

This paper is arranged as follows. The arrival cluster Poisson model we are working with is

formally described in Section 2. The main result of the paper is stated and discussed in Section 3.

The arguments required to prove the main result uses a number of renewal theoretical and

extreme value results, some of which may be of independent interest. These appear in Section 4.

Section 5 presents the proof of the main theorem. Finally, Section 6 contains additional lemmas

and other technical results needed for the proof of the main theorem.

2 The cluster Poisson model

We assume that the work requirements (Zn)n∈Z form an iid sequence independent of the arrival

process (T
(0)
n )n∈Z. Let the number of sources arriving in the interval (s, t] be described by

N (s, t] =
∑

n∈Z

1
{s<T

(0)
n ≤t}

for s < t.

Furthermore, we assume that this arrival point process is a cluster Poisson process. Specifically:

(i) initial cluster points, denoted by . . . < Γ−1 < 0 < Γ1 < Γ2 < . . . form a homogeneous

Poisson process Ñ with rate λ0;

(ii) at each initial cluster center Γm an independent copy of a randomly stopped renewal point

process Nc starts.

A generic point process Nc has the form

Nc[0, t] = N0[0, t] ∧ (K + 1),

where N0 is a renewal point process with arrival times 0 = T0 < T1 < . . ., and K is a positive

integer valued random variable independent of N0. The interarrival times Xn = Tn − Tn−1 for

n ≥ 1 are iid random variables, with a common distribution F , and the cluster size K has

distribution FK . The cluster with the initial point Γm will have the points Γm = Γm + T0,m <

Γm + T1,m < . . . < Γm + TKm,m, where the second subscript refers to independent copies of a

process.

The within-cluster interarrival times and the cluster sizes are assumed to satisfy the following

conditions.

The interarrival distribution function satisfies F ∈ R−1/β with β > 1, (2.1)
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and

the cluster size distribution function satisfies FK ∈ R−α with 1 < α < 2. (2.2)

The assumption (2.1) assures that the within-cluster interarrival times have infinite mean; it

also makes the arrival process sufficiently irregular for our result. The assumption (2.2) makes

sure that the amount of work brought within each cluster has infinite variance. Note that the

intensity of N is then

λ = λ0(1 + E(K)). (2.3)

We denote by

h(u) = F
←

(1/u) = uβl(u) for u > 1 (2.4)

the generalized tail inverse function of the within-cluster interarrival time distribution (see

Resnick (2007), Section 2.1.2). Here, l is a slowly varying function. One implication of the as-

sumption (2.1) is the weak convergence

(
T⌊nt⌋/h(n)

)
t≥0

=⇒ (S1/β(t))t≥0 (2.5)

in D [0,∞) as n → ∞; see Kallenberg (2002), Theorem 16.14. Here (S1/β(t))t≥0 is an 1/β-stable

subordinator. We will use the notation

I(u) = inf{t ≥ 0 : S1/β(t) > u} for u > 0, (2.6)

for its inverse process.

We will continue using the notation =⇒ for weak convergence,
P

−→ for convergence in proba-

bility,
ν

=⇒ for vague convergence, and
fidi

=⇒ for weak convergence of the finite dimensional distri-

butions. For x ∈ R we write x+ = max(0, x). For two random variables X,Y the symbol X
d
= Y

means that X has the same distribution as Y .

We will also adopt the following convention. We will use the notation α1, α2, β1 and β2 for

positive numbers satisfying α1 < α < α2 and β1 < β < β2, in the sense that the statements in the

text where this notation appears hold for any choice of numbers satisfying the above conditions

with, perhaps, different multiplicative constants.

3 The Main Result

Below is the main result of this paper. It describes a slow growth regime under which the properly

normalized deviations from the mean process (1.1) converge to a Fractional Brownian motion.

For a positive sequence λn ↑ ∞ serving as the time scale T for a system with n input processes

we define

bn =

√
nλnF (λn)−2P(K > F (λn)−1) for n ≥ 1 . (3.1)

The sequence (bn) turns out to be the right normalization for process (1.1).
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Theorem 3.1 Assume that 1 < α < β, and that the distribution F of the within-cluster

interarrival times (Xn) satisfies Assumption A below. Assume that the marks (Zm) form, under

the Palm distribution P0, a sequence of iid random variables, independent of the underlying point

process, such that E0|Zm|2 < ∞. Let λn be a sequence of positive constants such that λn ↑ ∞

and such that bn in (3.1) satisfies

lim
n→∞

nb
−α−1

β
+ρ

n = 0 (3.2)

for some ρ > 0. Then the cumulative input process Sn(t) = b−1
n Dn,λn(t), n ≥ 1, t ≥ 0, satisfies

(Sn(t))t≥0
fidi

=⇒ (E0(Z)BH(t))t≥0 as n → ∞,

and the limiting process BH is a Fractional Brownian motion with

H =
2 + β − α

2β
(3.3)

and

Var(BH(1)) =
2λ0

2 + β − α

∫ ∞

0
y−(2+β−α)/β

P(S1/β(1) ≤ y) dy+

+λ0

∫ ∞

0
E

(
2

2 − α
I(w + 1)2−α +

2

α − 1
I(w)I(w + 1)1−α −

2

(2 − α)(α − 1)
I(w)2−α

)
dw.

Assumption A

Assume that either

1. β < 2 and

lim sup
x→∞

x
F (x) − F (x + 1)

F (x)
< ∞, (3.4)

or

2. F is arithmetic, with step size ∆ > 0, and

lim sup
n≥0

n
F
(
{n∆}

)

F (n∆)
< ∞ . (3.5)

Remark 3.2 We need the technical Assumption A to obtain a local renewal theorem; see

Lemma 4.3 below or Theorem 3 in Doney (1997). In fact, if the local renewal theorem is known to

hold (if only in the form of an upper bound), then Assumption A is unnecessary. We conjecture

that the local renewal theorem holds under (3.4) for any β > 1, regardless of whether or not F

is arithmetic.

Remark 3.3 Note for any ǫ > 0 there exist C > 1 such that

C−1n
1
2 λH−ǫ

n ≤ bn ≤ Cn
1
2 λH+ǫ

n for n ≥ 1 ,

with H given by (3.3). Hence, a necessary and sufficient condition for (3.2) is that for some ǫ > 0

λn ≫ n
2β−α+1
2H(α−1)

+ǫ
,

i.e. n
2β−α+1
2H(α−1)

+ǫ
= o(λn) as n → ∞. This identifies (3.2) as a slow growth condition.
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We will prove Theorem 3.1 by showing that the assumptions of Theorem 5.9 in Mikosch and

Samorodnitsky (2006) are satisfied. For convenience, we state that theorem below, in a form

simplified for the situation where the marks are independent of the arrival process.

Theorem 3.4 (Mikosch and Samorodnitsky (2006)) Consider a marked stationary point

process, where the marks (Zm) are independent of the arrival process N (whose intensity is λ),

and have a finite first moment. Let λn be a sequence of positive constants with λn ↑ ∞. Suppose

that there exists a sequence bn ↑ ∞ such that the following conditions are satisfied.

(a) Let Ni be iid copies of N . Then
(

b−1
n

n∑

i=1

(Ni (0, λnt] − λλnt)

)

t≥0

fidi

=⇒ (ξ(t))t≥0,

where (ξ(t)) is some non-degenerate at zero stochastic process.

(b) Let (Z
(i)
m )m∈Z for i ∈ N be iid copies of (Zm)m∈Z. Then

b−1
n

n∑

i=1

⌊λn⌋∑

m=1

(Z(i)
m − E(Z))

P
−→ 0 for n → ∞.

(c) Let I∗i (0) be the total amount of work, of the ith input process, in the session arriving by

time 0 which are not finished by that time. Then

b−1
n

n∑

i=1

I∗i (0)
P

−→ 0 for n → ∞.

Under these conditions the normalized process Sn(t) = b−1
n Dn,λn(t), n ∈ N, t ≥ 0, satisfies

(Sn(t))t≥0
fidi

=⇒ (E(Z)ξ(t))t≥0 for n → ∞.

As we will see, the slow growth condition (3.2) is needed only for verification of condition (c)

in Theorem 3.4.

4 Some Renewal and Extreme Value Theory

Our first proposition in this section deals with the tails of randomly stopped random sums when

both the individual terms and the number of terms have infinite means. It complements the

existing results dealing with the situations where at least one of these means is finite; see e.g.

Fay et al. (2006).

Proposition 4.1 Let (Xk) be iid random variables independent of the positive integer-valued

random variable K with distribution function FK and let TK =
∑K

k=1 Xk with distribution

function FTK
. Let G be the distribution function of |X1|. Assume that

FK ∈ R−κ for some 0 < κ < 1 (4.1)
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and

G ∈ R−γ for some 0 < γ < 1, lim
x→∞

P(X1 > x)

G(x)
= p ∈ (0, 1] . (4.2)

Then

lim
x→∞

P(TK > x)

P
(
K > G(x)−1

) = E
(
(Sγ)γκ

+

)
, (4.3)

where Sγ is a strictly γ-stable random variable such that

P(Sγ > x) ∼ px−γ and P(Sγ < −x) ∼ (1 − p)x−γ as x → ∞.

In particular, F TK
∈ R−κγ .

Proof. For k ≥ 1, let ak := G
←

(1/k), and note that

1

ak

(
X1 + . . . + Xk

) k→∞
=⇒ Sγ (4.4)

(cf. (2.5)). For large M > 1 we write

P(TK > x) = P
(
TK > x, K > MG(x)−1

)
+ P

(
TK > x, K ≤ M−1G(x)−1

)

+P
(
TK > x, M−1G(x)−1 < K ≤ MG(x)−1

)
(4.5)

=: E1,M (x) + E2,M (x) + E3,M (x).

Note that, as x → ∞,

E1,M (x) ≤ P
(
K > MG(x)−1

)
∼ M−κ

P
(
K > G(x)−1

)
,

and so

lim
M→∞

lim sup
x→∞

E1,M (x)

P
(
K > G(x)−1

) = 0 . (4.6)

We claim, further, that for any κ < κ1 < 1, for all M large enough,

lim sup
x→∞

E2,M (x)

P
(
K > G(x)−1

) ≤ M−(1−κ1) . (4.7)

Indeed, suppose that (4.7) fails for some κ < κ1 < 1. Then there is a sequence xj ↑ ∞ such that

jG(xj) → 0 as j → ∞ and

E2,j(xj) ≥
1

2
j−(1−κ1)

P
(
K > G(xj)

−1
)

(4.8)

for j ∈ N. Let pk := P(K = k) for k ≥ 1. Note that

E2,j(xj) =

⌊j−1G(xj)
−1⌋∑

k=1

pkP(X1 + . . . + Xk > xj) .

Theorem 9.1 in Denisov et al. (2007) shows that

P(X1 + . . . + Xk > xj) ∼ kpG(xj)
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as j → ∞ uniformly in k ≤ j−1G(xj)
−1. Therefore, for large j, by Karamata’s theorem,

E2,j(xj) ≤ 2

⌊j−1G(xj)
−1⌋∑

k=1

k pkpG(xj) ≤
4p

1 − κ
j−1

P
(
K > j−1G(xj)

−1
)
,

and by Potters’s inequalities (cf. Resnick (2007), p. 36), for any κ < κ2 < κ1 there is C1 > 0

such that for large j

E2,j(xj) ≤ C1j
−(1−κ2)

P
(
K > G(xj)

−1
)
.

This, clearly, contradicts (4.8), and so (4.7) has to hold. We conclude that

lim
M→∞

lim sup
x→∞

E2,M (x)

P
(
K > G(x)−1

) = 0 . (4.9)

We now consider the term E3,M (x) in (4.5). For M−1G(x)−1 < k ≤ MG(x)−1 we denote

r = xa−1
k . Since G(ak) ∼ k−1 as k → ∞, we see that, for all x large enough, and M−1G(x)−1 <

k ≤ MG(x)−1,

(2M)−1G(x)−1 ≤ G(ak)
−1 ≤ 2MG(x)−1 ,

which implies that for the same range of x and k, (4M)−1 ≤ rγ ≤ 4M . In particular, P(Sγ > r)

is bounded away from 0. Since by (4.4)

P(X1 + . . . + Xk > x) = P

(
1

ak
(X1 + . . . + Xk) > r

)
−→ P(Sγ > r), as k → ∞

(if r is kept fixed), we conclude that

lim
x→∞

sup
M−1G(x)−1<k≤MG(x)−1

∣∣∣∣
P(X1 + . . . + Xk > x)

P(Sγ > x/ak)
− 1

∣∣∣∣ = 0.

Therefore,

E3,M (x) ∼

⌊MG(x)−1⌋∑

k=⌊M−1G(x)−1⌋+1

pkP
(
Sγ > x/ak

)
as x → ∞.

If f denotes the density of Sγ , this statement translates by Fubini into

E3,M (x) ∼

∫ ∞

0

⌊MG(x)−1⌋∑

k=⌊M−1G(x)−1⌋+1

pk 1{ak>x/y} f(y) dy

∼

∫ ∞

0

⌊MG(x)−1⌋∑

k=⌊M−1G(x)−1⌋+1

pk 1{k>G(x/y)−1} f(y) dy

=

∫ ∞

0

[
P

(
max

(
M−1G(x)−1, G(x/y)−1

)
< K ≤ MG(x)−1

)]
f(y) dy .
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Now, for every y > 0, as x → ∞,

P

(
max

(
M−1G(x)−1, G(x/y)−1

)
< K ≤ MG(x)−1

)

P
(
K > G(x)−1

) −→

[
min

(
Mκ, yγκ

)
− M−κ

]

+

,

while the same ratio in the left hand side is bounded from above, for large x uniformly in y > 0

by

P
(
K > M−1G(x)−1

)

P
(
K > G(x)−1

) ≤ 2Mκ .

Therefore, by the dominated convergence theorem,

lim
x→∞

E3,M (x)

P
(
K > G(x)−1

) =

∫ ∞

0

[
min

(
Mκ, yγκ

)
− M−κ

]

+

f(y) dy. (4.10)

As M → ∞, the right hand side of (4.10) converges to E
(
(S+

γ )γκ
)
, and so the statement of the

proposition follows from (4.5), (4.6), (4.9) and (4.10). �

The next two results are renewal theorems needed in the proof of the main theorem.

Proposition 4.2 Let (Xk) be an iid sequence of positive random variables with distribution

function F , such that F ∈ R−1/β , 0 < 1/β < 1. Let Tn =
∑n

k=1 Xk, n ∈ N. Suppose that

(c(t))t≥0 is a non-negative eventually non-increasing function, regularly varying of index −η in

infinity, 1 < η < 2. Then

∞∑

j=0

c(j)P(Tj > r) ∼
1

η − 1
Cη,βF (r)−1c(F (r)−1) as r → ∞,

where Cη,β = E((S1/β(1))(η−1)/β ), and S1/β is the positive strictly 1/β stable stochastic process

in (2.5).

Proof. Let Hβ be the distribution function of S1/β(1). Then by the weak convergence in (2.5)

lim
n→∞

sup
r∈R

|Hβ(r) − P(Tn ≤ anr)| = 0,

where an = F
←

(1/n) (cf. Petrov (1975), Theorem 11, p.15, and Theorem 10, p. 88). Thus, there

exist a positive sequence (ǫj)j≥0 with ǫj ↓ 0 as j → ∞ such that for any r > 0

P(Tj > r) ≤ Hβ(a−1
j r) + ǫj .

Let δ1, δ2 > 0, δ1 < δ2 and δ = (δ1, δ2). Then

⌊δ2F (r)−1⌋∑

j=⌈δ1F (r)−1⌉

c(j)P(Tj > r) ≤

⌊δ2F (r)−1⌋∑

j=⌈δ1F (r)−1⌉

c(j)Hβ(a−1
j r) +

⌊δ2F (r)−1⌋∑

j=⌈δ1F (r)−1⌉

c(j)ǫj =: J1(δ, r) + J2(δ, r).
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First, we study the first summand. Let x
(r)
j := jF (r) and ℓ be a slowly varying function such

that F (x) = ℓ(x)x−1/β . Then, as n → ∞,

nF (an) = nℓ(an)a−1/β
n → 1. (4.11)

Since δ1F (r)−1 ≤ j ≤ δ2F (r)−1 we have for some C1, C2 > 0, for all r large enough,

C1r ≤ F
←

(j) = aj ≤ C2r.

By Theorem 1.5.2 of Bingham et al. (1987) we obtain ℓ(aj) ∼ ℓ(r) as r → ∞ uniformly for

δ1F (r)−1 ≤ j ≤ δ2F (r)−1. Thus, (4.11) gives ℓ(r) ∼ j−1a
1/β
j as r → ∞ uniformly for δ1F (r)−1 ≤

j ≤ δ2F (r)−1, and

(x
(r)
j )−β =

(
jℓ(r)r−1/β

)−β
∼

r

aj
as r → ∞.

Hence, as r → ∞,

⌊δ2F (r)−1⌋∑

j=⌈δ1F (r)−1⌉

c(j)Hβ(r/aj) ∼

⌊δ2F (r)−1⌋∑

j=⌈δ1F (r)−1⌉

c
(
x

(r)
j F (r)−1

)
Hβ((x

(r)
j )−β)

= F (r)−1

⌊δ2F (r)−1⌋∑

j=⌈δ1F (r)−1⌉

(x
(r)
j+1 − x

(r)
j )c

(
x

(r)
j F (r)−1

)
Hβ((x

(r)
j )−β).

Since c ∈ R−η we obtain by Theorem 1.5.2 of Bingham et al. (1987) as r → ∞,

1

F (r)−1c(F (r)−1)

⌊δ2F (r)−1⌋∑

j=⌈δ1F (r)−1⌉

c(j)Hβ(r/aj) ∼

⌊δ2F (r)−1⌋∑

j=⌈δ1F (r)−1⌉

(x
(r)
j+1 − x

(r)
j )(x

(r)
j )−ηHβ((x

(r)
j )−β)

∼

∫ δ2

δ1

y−ηHβ(y−β) dy,

and so

J1(δ, r) ∼ F (r)−1c(F (r)−1)

∫ δ2

δ1

y−ηHβ(y−β) dy as r → ∞.

On the other hand,

J2(δ, r) ≤ ǫδ1F (r)−1

∑

j≥δ1F (r)−1

c(j)

∼ ǫδ1F (r)−1(η − 1)−1δ1F (r)−1c(δ1F (r)−1)

∼ ǫδ1F (r)−1(η − 1)−1δ1−η
1 F (r)−1c(F (r)−1) as r → ∞ (4.12)

by Bingham et al. (1987), Proposition 1.5.10. Since δ1 is arbitrary and ǫδ1F (r)−1 → 0 as r → ∞

we obtain

lim
δ2→∞

lim
δ1↓0

lim
r→∞

F (r)c(F (r)−1)−1(J1(δ, r) + J2(δ, r)) =
1

η − 1
E((S1/β(1))(η−1)/β ). (4.13)

10



Next, Proposition 1.5.8 in Bingham et al. (1987) and Lemma 6.4 result in

∑

j≤δ1F (r)−1

c(j)P(Tj > r) ≤ C3

∑

j≤δ1F (r)−1

c(j)jF (r)

∼ C4F (r)c(δ1F (r)−1)δ2
1(F (r))−2

∼ C4δ
2−η
1 F (r)−1c(F (r)−1)

as r → ∞ for some C3, C4 > 0. Hence,

lim
δ1↓0

lim
r→∞

F (r)c(F (r)−1)−1
∑

j≤δ1F (r)−1

c(j)P(Tj > r) = 0. (4.14)

Also, by Bingham et al. (1987), Proposition 1.5.10,

F (r)c(F (r)−1)−1
∑

j≥δ2F (r)−1

c(j)P(Tj > r) ≤ F (r)c(F (r)−1)−1
∑

j≥δ2F (r)−1

c(j)

∼
1

η − 1
δ1−η
2

δ2→∞−→ 0. (4.15)

By (4.13), (4.14) and (4.15) the result follows. �

The following result is a local renewal theorem.

Lemma 4.3 Let the conditions of Proposition 4.2 hold, ans assume additionally Assumption A

of Theorem 3.1. Then
∞∑

j=0

c(j) [P(Tj > x) − P(Tj > x + 1)] ∼
1

β
Cη,βx−1F (x)−1c(F (x)−1) as x → ∞.

Proof. Under the first scenario of Assumption A, the proof, using Proposition 4.2, is the same

as the proof of Theorem 2 in Anderson and Athreya (1988), which in particular requires β < 2.

Under the second scenario of Assumption A, the statement is Theorem 3 of Doney (1997). �

5 Verification of the conditions of Theorem 3.4

The main result of this paper, Theorem 3.1, is proved in this section via verifying the conditions

of Theorem 3.4.

5.1 Verification of condition (a) of Theorem 3.4

We can write

b−1
n

n∑

i=1

[Ni (0, λnt] − λλnt] = b−1
n

n∑

i=1

[
N

(0,λnt]
i (0, λnt] − E(N

(0,λnt]
i (0, λnt])

]

+b−1
n

n∑

i=1

[
N

(−∞,0]
i (0, λnt] − E(N

(−∞,0]
i (0, λnt])

]

=: ξ+
n (t) + ξ−n (t),

11



where NA
i (B) is the number of arrivals of packets in a measurable set B belonging to a cluster

initiated in a measurable set A. We will show that for every t > 0

ξ+
n (t)

n→∞
=⇒ B+

H(t) and ξ−n (t)
n→∞
=⇒ B−H(t), (5.1)

where (B+
H(t))t≥0 and (B−H(t))t≥0 are independent fractional Brownian motions of index H with

time 1 variances

σ2
+ =

2λ0

2 + β − α

∫ ∞

0
y−(2+β−α)/β

P(S1/β(1) ≤ y) dy (5.2)

and

σ2
− = λ0

∫ ∞

0
E

(
2

2 − α
I(w + 1)2−α +

2

α − 1
I(w)I(w + 1)1−α −

2

(2 − α)(α − 1)
I(w)2−α

)
dw.

(5.3)

By independence, (5.1) will imply that for t > 0

ξn(t) := ξ+
n (t) + ξ−n (t)

n→∞
=⇒ B+

H(t) + B−H(t) =: BH(t), (5.4)

where BH(t) ∼ N (0, t2Hσ2) with σ2 = σ2
+ + σ2

−. Applying Lemma 4.8 of Kallenberg (2002) we

see that for every k ≥ 1 and 0 ≤ t1 < t2 < . . . < tk < ∞, the family of the laws of the random

vectors

(ξn(t1), . . . , ξn(tk))n∈N, (5.5)

are tight. Let B̃H = (B̃H(t1), . . . , B̃H(tk)) be a weak subsequential limit of this family, i.e. there

exist a subsequence (ni) such that

(ξni(t1), . . . , ξni(tk))
i→∞
=⇒ B̃H .

On the one hand, B̃H is infinitely divisible (because of the Poisson arrivals of clusters). On the

other hand, the one-dimensional marginal distributions of B̃H are Gaussian with B̃H(ti)
d
= BH(ti)

by (5.4). Hence, B̃H is zero mean multivariate Gaussian. We will compute now its covariance

matrix. The stationarity of the Ni’s and, hence, that of the ξn’s implies by (5.4) that for 1 ≤ j ≤

i ≤ k,

ξn(ti) − ξn(tj)
n→∞
=⇒ BH(ti − tj).

Thus, B̃H(ti) − B̃H(tj)
d
= BH(ti − tj), and so

Cov(B̃H(ti), B̃H(tj)) =
1

2

(
E(B̃H(ti)

2) + E(B̃H(tj)
2) − E((B̃H(ti) − B̃H(tj))

2)
)

=
1

2

(
E(BH(ti)

2) + E(BH(tj)
2) − E(BH(ti − tj)

2)
)

=
σ2

2
(t2H

i + t2H
j − (ti − tj)

2H).

This implies that the random vectors in (5.5) converge weakly to the corresponding finite dimen-

sional distributions of the appropriate fractional Brownian motion, and this will verify condition

(a) of Theorem 3.4.
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In order to prove (5.1) we notice that ξ+
n (t) and ξ−n (t) are infinitely divisible random variables

whose characteristic function can be written in the form

E(exp(iθξ±n (t))) = exp

{∫ ∞

0

(
eiθx − 1 − iθx

)
ν±n (dx)

}
,

where ν±n are the corresponding Lévy measures. These can be represented in the form

ν±n = nλ0(P1 × Leb) ◦ ζ−1
± ,

with the following notation. Let (Ω1,F1, P1) be a probability space on which a generic cluster

process (Nc [0, u])u≥0 is defined. The maps ζ+ and ζ− are defined as follows: ζ+ : Ω1 × (0, λnt] →

[0,∞) is given by ζ+(ω1, u) = Nc [0, u] (ω1)/bn, and ζ− : Ω1×R+ → [0,∞) is given by ζ−(ω1, u) =

Nc (u, u + λnt] (ω1)/bn. To see this write N
(−∞,0]
i (0, λnt] and N

(−∞,0]
i (0, λnt] as integrals with

respect to a Poisson random measure and use, for example, Lemma 12.2 (i) in Kallenberg (2002)

(cf. proof of Proposition 3.5 in Fay et al. (2006)). For the notational simplicity below we often

drop the subscript in P1 and, hence, write for A ∈ B(R)

ν+
n (A) = nλ0

∫ λnt

0
P(Nc [0, u] /bn ∈ A) du, ν−n (A) = nλ0

∫ ∞

0
P(Nc (u, u + λnt] /bn ∈ A) du.

Since the Lévy measures are concentrated on the positive half line, the standard results for

the weak convergence of infinitely divisible distributions, see e. g. Theorem 15.14 in Kallenberg

(2002), say that one needs to check that for every ǫ > 0:

lim
n→∞

∫

{|x|≤ǫ}
x2ν±n (dx) = σ2

± and lim
n→∞

∫

{|x|>ǫ}
xν±n (dx) = 0. (5.6)

Without loss of generality we will assume λ0 = 1 in the following.

5.1.1 Convergence of ξ+
n

Let ǫ > 0. Denote

I1(n) := n

∫ λnt

0
E

(
Nc [0, u]

bn
1{Nc[0,u]≤ǫbn}

)2

du

and

I2(n) := n

∫ λnt

0
E

(
Nc [0, u]

bn
1{Nc[0,u]>ǫbn}

)
du.

The statement (5.6) for ξ+
n

reduces to

lim
n→∞

I1(n) = t2Hσ2
+ (5.7)

and

lim
n→∞

I2(n) = 0. (5.8)

We use the decomposition

I1(n) =
n

b2
n

E

(
1{K+1≤ǫbn}

∫ λnt

0
Nc [0, u]2 du

)
+

n

b2
n

E

(
1{K+1>ǫbn}

∫ λnt∧T
⌊ǫbn−1⌋

0
Nc [0, u]2 du

)

=: I1,1(n) + I1,2(n),
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and

I2(n) = nǫ

∫ λnt

0
P(Nc [0, u] > ǫbn) du + n

∫ λnt

0

∫ ∞

ǫ
P(Nc [0, u] > xbn) dx du

=: I2,1(n) + I2,2(n).

The claim (5.7) now follows from Lemma 6.5 and Lemma 6.6, while the claim (5.8) follows from

Lemma 6.7 and Lemma 6.8.

5.1.2 Convergence of ξ−

n

The argument is similar to that of the previous subsection, but somewhat more involved techni-

cally. Denote

I3(n) :=
nλn

b2
n

∫ ∞

0
E

(
Nc (λnw, λn(w + t)]2 1{Nc(λnw,λn(w+t)]≤ǫbn}

)
dw

and

I4(n) :=
nλn

bn

∫ ∞

0
E
(
Nc (λnw, λn(w + t)] 1{Nc(λnw,λn(w+t)]>ǫbn}

)
dw.

Then

lim
n→∞

I3(n) = t2Hσ2
−, (5.9)

and

lim
n→∞

I4(n) = 0, (5.10)

such that (5.6) follows.

We start with introducing some notation. Let

H(1)
n (w) := E

(
Nc (λnw, λn(w + t)]2 1{Nc(λnw,λn(w+t)]≤ǫbn} 1{K>N0(0,λn(w+t)]}

)
,

H(2)
n (w) := E

(
Nc (λnw, λn(w + t)]2 1{Nc(λnw,λn(w+t)]≤ǫbn} 1{N0(0,λnw]<K≤N0(0,λn(w+t)]}

)
,

so that

E

(
Nc (λnw, λn(w + t)]2 1{Nc(λnw,λn(w+t)]≤ǫbn}

)
= H(1)

n (w) + H(2)
n (w).

By Lemma 6.9, Lemma 6.10 and Theorem 6.11 we can use the dominated convergence theorem

such that

lim
n→∞

I3(n) =

∫ ∞

0
lim

n→∞

nλn

b2
n

(H(1)
n (w) + H(2)

n (w)) dw

=

∫ ∞

0

[
E((I(w + t) − I(w))2I(w + t)−α)

+E

(
α

2 − α
I(w + t)2−α +

2α

α − 1
I(w)I(w + t)1−α

)

−E

(
I(w)2I(w + t)−α +

2

(2 − α)(α − 1)
I(w)2−α

)]
dw.

14



Now, by substituting w by tz and using the self-similarity of I of index 1/β (cf. Meerschaert and

Scheffler (2004), Proposition 3.1) we obtain (5.9).

Therefore, it remains to check (5.10). Here we assume, once again for the ease of notation,

that ǫ = 1, and write for M > 0,

I4(n) =
nλn

bn

∫ ∞

M
E

(
Nc (λnw, λn(w + t)]1{Nc(λnw,λn(w+t)]>bn}

)
dw

+
nλn

bn

∫ M

0
E

(
Nc (λnw, λn(w + t)]1{Nc(λnw,λn(w+t)]>bn}

)
dw

=: I4,1(n) + I4,2(n).

Let θ > 0. We have

I4,1(n) ≤ b−θ
n

nλn

b2
n

∫ ∞

M
E

(
Nc (λnw, λn(w + t)]2+θ

1{Nc(λnw,λn(w+t)]>bn}

)
dw

≤ b−θ
n F (λn)−θ

∫ ∞

M

1

P(K > F (λn)−1)
E

((Nc (λnw, λn(w + t)]

F (λn)

)2+θ)
dw.

As in the proof of Theorem 6.11 we have that the integral is bounded above by C1

∫∞
M w−r dw

for some C1 > 0, r > 1. Then by (6.1) we conclude that I4,1(n) → 0 as n → ∞. For I4,2, notice

that

E

(
N0 (0, λn(M + t)]

F (λn)−1
1{N0(0,λn(M+t)]>bn}

)

= bnF (λn)P(N0 (0, λn(M + t)] > bn) +
1

F (λn)−1

∫ ∞

bn

P(N0 (0, λn(M + t)] > x) dx

≤ bnF (λn)e−bnF (λn(M+t)) + F (λn)

∫ ∞

bn

e−xF (λn(M+t)) dx

= bnF (λn)e−bnF (λn(M+t)) + F (λn(M + t))−1F (λn)e−bnF (λn(M+t)) .

Therefore,

I4,2(n) ≤
nλn

bn
ME(N0 (0, λn(M + t)]1{N0(0,λn(M+t)]>bn} 1{K>bn})

≤ MF (λn)bnE

(
N0 (0, λn(M + t)]

F (λn)−1
1{N0(0,λn(M+t)]>bn}

)
P(K > bn)

P(K > F (λn)−1)

≤ C1

[
(F (λn)bn)2 + F (λn(M + t))−1F (λn)F (λn)bn

]
e−bnF (λn(M+t))(bnF (λn))−α1

n→∞
−→ 0

by (6.1). Therefore, (5.10) follows. �

5.2 Verification of condition (b) of Theorem 3.4

This is an immediate consequence of the Chebyshev inequality and (6.2).
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5.3 Verification of condition (c) of Theorem 3.4

It is in this part of the argument that the slow growth condition (3.2) plays a role, as will be

presently seen.

The initial step is to show that we may, without loss of generality, assume that the interarrival

times of the cluster process N0 are bounded from below by a positive number. To this end we

modify the renewal point process N0 into a different renewal point process, Ñ0, as follows. Let

δ > 0 be such that P(X ≥ δ) > 0.

Let T̃1 := min{Tj : Tj ≥ δ}. Define Z̃0 := Z0+
∑M1−1

i=1 (Zi+δ), where M1 := min{j : Tj ≥ δ}.

We view Z̃0 as the amount of work brought in the single arrival, at time T̃0 := 0.

In general, given T̃n and Mn, we define the next arrival by T̃n+1 := min{Tj : Tj − T̃n ≥ δ},

and the amount of work brought in by the arrival at time T̃n as Z̃n := ZMn +
∑Mn+1−1

i=Mn+1(Zi + δ),

where Mn+1 := min{j : Tj − T̃n ≥ δ}.

Note that with this (sample path) modification, every arrival point of the original process N0

will arrive, in the new process, not later than before (but it may be aggregated with other points

of N0 into a single new arrival), and its work will last in the new process for at least as long as

in the original process. We will still take K of the new aggregated arrivals, so this modification

can only increase the random variable I∗(0).

For the new process the random amount of work brought in with any arrival has the repre-

sentation Z̃0 = Z0 +
∑M1−1

i=1 (Zi + δ), and since M1 is stochastically dominated by a geometric

random variable, we see that E(Z̃2
0 ) < ∞. Furthermore, the interarrival times of the new process

satisfy X̃i ≥ δ a. s. and P(X1 > x) ≤ P(X̃i > x) ≤ P(X1 + δ > x) ∼ P(X1 > x) as x → ∞.

Hence, P(X̃1 > x) ∼ P(X1 > x) as x → ∞.

Therefore, for the purpose of obtaining an upper bound, we may work with the new renewal

process, and we will simply assume that the original renewal process N0 has interarrival times

that are bounded from below by a positive constant.

We observe that I∗(0) is an infinitely divisible random variable with Lévy measure given by

µ(B) = λ0

∫ ∞

0
P(A(c)(x) ∈ B) dx for B ∈ B(R),

where A(c)(x) is the total amount of work in a session belonging to a single cluster, initiated at

zero, that does not finish by time x > 0. To see this write I∗(0) with respect to a Poisson random

measure and use, for example, Lemma 2.2 (i) in Kallenberg (2002). Without loss of generality

let λ0 = 1. We have, therefore, the decomposition

µ(z,∞) =

∫ ∞

0
P(Ac(x) > z) dx ≤ I5,0 + I5,1 + I5,2 + I5,3, (5.11)
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where

I5,0 =

∫ z

0
P(A(c)(x) > z) dx,

I5,1 =

∫ ∞

z
P(ZNc(0,x] > z + (x − TNc(0,x]), TK > z) dx,

I5,2 = E


1{TK>z}

∫ ∞

z
P




Nc(0,x]−1⋃

j=0

{Zj > x − Tj}

∣∣∣∣∣∣
F


 dx


 ,

I5,3 = E


1{TK≤z}

∫ ∞

z
P




K⋃

j=0

{Zj > x − Tj}

∣∣∣∣∣∣
F


 dx


 ,

where F is the σ-field generated by the cluster point process Nc.

Let z ≥ 1. Then Proposition 4.1 in Fay et al. (2006) gives us

I5,0 ≤ zP




K∑

j=0

Zj > z


 ≤ C0z

1−α1 . (5.12)

Next,

I5,1 ≤ E


1{TK>z}

K−1∑

k=N0(0,z]

∫ Tk+1

Tk

P(Zk > z + (x − Tk)|F) dx




+E

(
1{TK>z}

∫ ∞

TK

P(ZK > z + (x − TK)|F) dx

)
.

By Markov’s inequality we obtain

I5,1 ≤ C1E


1{TK>z}

K−1∑

k=N0(0,z]

∫ Tk+1

Tk

(z + (x − Tk))
−2 dx




+C2E

(
1{TK>z}

∫ ∞

TK

(z + (x − TK))−2 dx

)

= C1E


1{TK>z}

K−1∑

k=N0(0,z]

[z−1 − (z + Xk+1)
−1]


+ C2E

(
1{TK>z} z

−1
)

≤ C3z
−1

E(1{TK>z}K). (5.13)

Note that

E(1{TK>z}K) = E(K)

∞∑

k=1

P
(
K̃ = k

)
P
(
X1 + . . . + Xk > z

)
= E(K)P(TK̃ > z) ,

where K̃ is a positive integer valued random variable with P
(
K̃ = k

)
= kP(K = k)/E(K), k ∈ N.

Further, by Karamata’s Theorem

P
(
K̃ > n

)
∼

1

E(K)

α

α − 1
nP(K > n) as n → ∞.
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Hence, by Proposition 4.1

E(1{TK>z}K) ∼ C4F (z)−1
P
(
K > F (z)−1

)
≤ C5z

−
α1−1

β2 , (5.14)

and thus,

I5,1 ≤ C6z
−1z
−

α1−1
β2 ≤ C7z

−
α1−1

β2 . (5.15)

Next, we decompose I5,2 into

I5,2 = I5,2,1 + I5,2,2, (5.16)

where

I5,2,1 = E


1{TK>z}

∫ TK+1

z
P




N0(0,x]−1⋃

j=0

{Zj > x − Tj}

∣∣∣∣∣∣
F


 dx


 ,

I5,2,2 = E


1{TK>z}

∫ ∞

TK+1

P




K⋃

j=0

{Zj > x − TK}

∣∣∣∣∣∣
F


 dx


 .

Then

I5,2,1 = E


1{TK>z}

∫ TK+1

z

N0(0,x]−1∑

j=0

P(Zj > x − Tj|F) dx




≤ E


1{TK>z}

K∑

k=N0(0,z]

∫ Tk+1

Tk

k−1∑

j=0

P(Zj > x − Tj|F) dx


 .

Again applying Markov’s inequality and (5.14) lead to

I5,2,1 ≤ C8E


1{TK>z}

K∑

k=N0(0,z]

k−1∑

j=0

∫ Tk+1

Tk

(x − Tj)
−2 dx




= C8E


1{TK>z}

K−1∑

j=0

[
(TN0(0,z]∨(j+1) − Tj)

−1 − (TK+1 − Tj)
−1
]



≤ C9E


1{TK>z}

K∑

j=1

X−1
j




≤ C9δ
−1

E(1{TK>z}K)

∼ C10z
−

α1−1
β2 (5.17)

as z → ∞. Further, by Markov’s inequality, as above and (5.14)

I5,2,2 ≤ E(Z2)E

(
1{TK>z}K

∫ ∞

TK+1
(x − TK)−2 dx

)
≤ C11E(1{TK>z}K) ≤ C12z

−
α1−1

β2 (5.18)
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for z large enough. We decompose I5,3 into

I5,3 = E


1{z/2≤TK≤z}

∫ z+1

z
P




K⋃

j=0

{Zj > x − Tj}

∣∣∣∣∣∣
F


 dx




+E


1{z/2≤TK≤z}

∫ ∞

z+1
P




K⋃

j=0

{Zj > x − Tj}

∣∣∣∣∣∣
F


 dx




+E


1{TK<z/2}

∫ ∞

z
P




K⋃

j=0

{Zj > x − Tj}

∣∣∣∣∣∣
F


 dx




=: I5,3,1 + I5,3,2 + I5,3,3. (5.19)

On the one hand, by Proposition 4.1 in Fay et al. (2006),

I5,3,1 ≤ P(TK > z/2) ≤ C13z
− 1

β2 . (5.20)

On the other hand, by Markov’s inequality and (5.14) we obtain

I5,3,2 ≤ C14E

(
1{z/2≤TK≤z}K

∫ ∞

z+1
(x − TK)−2 dx

)
≤ C15E(1{TK>z/2}K) ≤ C16z

−
α1−1

β2 . (5.21)

Finally, another application of Markov’s inequality gives us

I5,3,3 ≤ E

(
1{TK<z/2}K

∫ ∞

z
(x − TK)−2 dx

)
≤ C17E(K)z−1. (5.22)

A conclusion of (5.11)-(5.22) is

µ(z,∞) ≤ C18z
1−α1 + C19z

−
α1−1

β2 + C20z
− 1

β2 + C21z
−1 ≤ C22z

−
α1−1

β2 .

Hence, a stochastic domination argument and the fact that the tail of a regularly varying Lévy

measure is equivalent to the tail of its distribution function show that for large z

P(I∗(0) > z) ≤ C23z
−

α1−1
β2 .

By assumption (3.2) (the slow growth condition) we obtain limn→∞ nP(I∗(0) > bn) = 0, and the

result follows. �

6 Auxiliary Results

A number of lemmas and other auxiliary results are collected in this section. We start with a

lemma that clarifies the behavior of the normalizing sequence (bn) in Theorem 3.1.

Lemma 6.1 Let the assumptions of Theorem 3.1 hold. Then

lim
n→∞

(F (λn)bn)−1 = 0, (6.1)

lim
n→∞

nλnb−2
n = 0. (6.2)
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Proof. For n large we have by Potter’s theorem

F (λn)bn = n
1
2 λ

1
2
nP(K > F (λn))−1 ≥ n

1
2 λ

1
2
nF (λn)

α2
2 ≥ n

1
2 λ

1
2
nλ
−

α2
2β1

n .

Since (β1 − α2)/(2β1) > 0 and λn → ∞ as n → ∞ we obtain

(F (λn)bn)−1 ≤ n−
1
2 λ
−

β1−α2
β1

n
n→∞
−→ 0.

Finally, (6.2) results from

nλnb−2
n = F (λn)2P(K > F (λn)−1)−1 ≤ F (λn)2−α2 n→∞

−→ 0.

�

The next result is a simple consequence of the strong Markov property which is useful in

various places in our arguments.

Lemma 6.2 Let f , g be measurable functions and f be increasing. Suppose N0 is a renewal

process. Then for w, δ > 0

E(f(N0 (w,w + δ])g(N0 (0, w])1{N0(0,w]6=N0(0,w+δ]})

≤ E(f(1 + N0 (0, δ]))E(g(N0 (0, w])1{N0(0,w]6=N0(0,w+δ]}).

Proof. Condition on the time and the number of the first arrival after w and use the iid assump-

tion of the interarrival times. �

The next lemma gives a simple estimate on the probability of having ”too many” arrivals

within a time interval.

Lemma 6.3 Let (Xk) be an iid sequence of positive random variables with distribution function

F , such that F ∈ R−1/β, 0 < 1/β < 1 and let h be the generalized tail inverse function (2.4).

Let Tn =
∑n

k=1 Xk, n ∈ N. For any δ > 0 such that F (δ) > 0 and m ≥ 1,

(i) we have

P
(
Tm ≤ δ

)
≤ F (δ)m ≤ e−mF (δ) ; (6.3)

(ii) if x ≥ δ/h(m), then for any β1 < β < β2 we have

P
(
Tm ≤ h(m)x

)
≤ e−C min(x

− 1
β1 ,x

− 1
β2 ) (6.4)

for some C = C(δ, β1, β2);
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Proof. Trivially, for δ > 0,

P
(
Tm ≤ δ

)
≤
[
1 − F (δ)

]m
.

Now (6.3) follows from the fact that (1−a−1)a ≤ e−1 for a ≥ 1, and Potter’s bounds (cf. Resnick

(2007), p. 36) give (6.4). �

The following simple result on convolution tails of random variables with infinite mean is

often useful.

Lemma 6.4 Let (Xk) be an iid sequence of positive random variables with distribution function

F , F ∈ R−1/β and 0 < 1/β < 1. Then there exist K > 0 and n0 ∈ N such that for any x > 0

and n ≥ n0,

Fn∗(x) ≤ KnF (x). (6.5)

Proof. Suppose that the statement is not true. Then for each j ≥ 1 there exist a nj ≥ j and a

xj > 0 such that

Fnj∗(xj) ≥ jnjF (xj) (6.6)

Let h be the generalized tail inverse function (2.4). Assume first that there is a sequence jk ↑ ∞

as k → ∞ such that

lim
k→∞

xjk

h(njk
)

= ∞.

This implies limk→∞ njk
F (xjk

) = 0. Therefore, by Theorem 9.1 in Denisov et al. (2007) we obtain

lim
k→∞

∣∣∣∣∣
Fnjk

∗(xjk
)

njk
F (xjk

)
− 1

∣∣∣∣∣ = 0,

which contradicts (6.6).

Next, we suppose that there is M > 0 such that

xj ≤ Mh(nj) for all j ∈ N. (6.7)

Then

njF (xj) ≥ njF (Mh(nj))
j→∞
−→ M−1/β

by the regular variation of F . Thus, (6.6) results in

Fnj∗(xj) ≥ jnjF (xj)
j→∞
−→ ∞.

Since Fnj∗ is bounded by 1, this is impossible. Hence, the claim follows. �
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6.1 Auxiliary Results for the Proofs of Subsection 5.1.1

The next series of lemmas provides estimates needed to prove the convergence of ξ+
n

in Subsec-

tion 5.1.1. We are using the same notation.

Lemma 6.5 In the notation of Subsection 5.1.1

lim
n→∞

I1,1(n) =
2

2 + β − α
t

2+β−α
β

∫ ∞

0
y
− 2+β−α

β P(S1/β(1) ≤ y) dy.

Proof. We have by the independence of K and N0

E(Nc [0, u]2 1{K+1≤ǫbn}) =

∫ ǫ2b2n

0
P((N0 [0, u]2 ∧ (K + 1)2)1{K+1≤ǫbn} > x) dx

= 2

∫ ǫbn

0
yP(N0 [0, u] > y)P(y < K + 1 ≤ ǫbn) dy.

Hence,

I1,1(n) = 2
n

b2
n

∫ λnt

0

∫ ǫbn

0
yP(N0 [0, u] > y)P(y < K + 1 ≤ ǫbn) dy du

= 2
n

b2
n

∫ ǫbn

0
yP(y < K + 1 ≤ ǫbn)

∫ λnt

0
P(T⌊y⌋ ≤ u) du dy

= 2
n

b2
n

∫ ǫbn

0
yP(y < K + 1 ≤ ǫbn)E(λnt − T⌊y⌋)+ dy

= 2
n

b2
n

F (λn)−2

∫ ǫbnF (λn)

0
zP(zF (λn)−1 < K + 1 ≤ ǫbn)E(λnt − T⌊zF (λn)−1⌋)+ dz

= 2

∫ ǫ

0
z

P(zF (λn)−1 < K + 1 ≤ ǫbn)

P(K > F (λn)−1)
E

(
t −

T⌊zF (λn)−1⌋

λn

)

+

dz

+2

∫ ǫbnF (λn)

ǫ
z

P(zF (λn)−1 < K + 1 ≤ ǫbn)

P(K > F (λn)−1)
E

(
t −

T⌊zF (λn)−1⌋

λn

)

+

dz

=: J1(n, ǫ) + J2(n, ǫ). (6.8)

By Karamata’s theorem

J1(n, ǫ) ≤
2t

P(K > F (λn)−1)

∫ ǫ

0
zP(K + 1 > zF (λn)−1) dz

=
P(K + 1 > F (λn)−1)

P(K > F (λn)−1)

2t

F (λn)−2P(K + 1 > F (λn)−1)

∫ ǫF (λn)−1

0
zP(K + 1 > z) dz

n→∞
−→

2tα

2 − α
ǫ2−α, (6.9)

and we conclude that limǫ↓0 limn→∞ J1(n, ǫ) = 0. We estimate J2(n, ǫ) as follows. By Potter’s

inequality there exists C1 > 0 such that for z ≥ ǫ and n large,

P(K + 1 > zF (λn)−1)

P(K > F (λn)−1)
≤ C1z

−α1 .
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Similarly, Potter’s inequality leads to

h(⌊zF (λn)−1⌋)

λn
≥

h(zF (λn)−1 − 1)

h(F (λn)−1 + 1)
≥ C2z

β1 for z ≥ ǫ.

If we define mn = ⌊zF (λn)−1⌋, then for δ > 0 such that F (δ) < 1,

E

(
t −

T⌊zF (λn)−1⌋

λn

)

+

= E

(
t −

Tmn

h(mn)

h(mn)

λn

)

+

≤ E

(
t −

Tmn

h(mn)
C2z

β1

)

+

=

∫ C−1
2 tz−β1

0
C2z

β1P

(
Tmn

h(mn)
≤ x

)
dx

= C2z
β1

[∫ δ/h(mn)

0
+

∫ C−1
2 tz−β1

δ/h(mn)

]
P

(
Tmn

h(mn)
≤ x

)
dx

=: C2z
β1 [V1(n, z) + V2(n, z)].

We have by (6.3) for large n,

V1(n, z) ≤
(
δ/h(mn)

)
P(Tmn ≤ δ) ≤ δe−mnF (δ) ≤ C−1

3 e−C3z

for some C3 > 0, since mn ≥ z for n large. Further, by (6.4)

V2(n, z) ≤

∫ C−1
2 tz−β1

0
e−C4 min(x−1/β1 ,x−1/β2) dx ≤ C−1

5 tz−β1e−C5z ≤ C−1
6 e−C6z

for some C4, C5, C6 > 0. Hence, we have

E

(
t −

T⌊zF (λn)−1⌋

λn

)

+

≤ C2z
β1 [V1(n, z) + V2(n, z)] ≤ C−1

7 zβ1e−C7z,

and so by the dominated convergence theorem, (2.5) and the regular variation of FK ,

lim
n→∞

J2(n, ǫ) = 2

∫ ∞

ǫ
z1−α

E(t − zβS1/β(1))+ dz.

Therefore, by (6.8),

lim
n→∞

I1,1(n) = 2

∫ ∞

0
z1−α

E(t − zβS1/β(1))+ dz

=
2

β
t

2+β−α
β

∫ ∞

0
x
− 2+β−α

β E(1 − x−1S1/β(1))+ dx

=
2

β
t

2+β−α
β

∫ ∞

0
x−

2+β−α
β
−1
∫ x

0
P(S1/β(1) ≤ z) dz dx

=
2

2 + β − α
t

2+β−α
β

∫ ∞

0
z−

2+β−α
β P(S1/β(1) ≤ z) dz. �

Lemma 6.6 In the notation of Subsection 5.1.1

lim
n→∞

I1,2(n) = 0.
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Proof. By the independence of K and N0 we have

I1,2(n) ≤
n

b2
n

E

(
1{K+1>ǫbn}

∫ λnt

0
N0 [0, u]2 du

)
=

n

b2
n

P(K + 1 > ǫbn)

∫ λnt

0
E(N0 [0, u]2) du.

Thus,

I1,2(n) ≤
n

b2
n

P(K + 1 > ǫbn)

∫ λnt

0

∫ ∞

0
P(N0 [0, u]2 > x) dx du

≤ 2
n

b2
n

λntP(K + 1 > ǫbn)

∫ ∞

0
zP(T⌊z⌋ ≤ λnt) dz.

By (6.3),

I1,2(n) ≤ C1
n

b2
n

λntP(K + 1 > ǫbn)

∫ ∞

0
ze−⌊z⌋F (λnt) dz

≤ C2
n

b2
n

λnP(K + 1 > ǫbn)F (λn)−2

= C2
P(K > ǫbn − 1)

P(K > F (λn)−1)

n→∞
−→ 0

by Potter’s inequality and (6.1). �

Lemma 6.7 In the notation of Subsection 5.1.1

lim
n→∞

I2,1(n) = 0.

Proof. Suppose ǫ = 1. The independence of K and N0 results in

I2,1(n) = nP(K + 1 > bn)

∫ λnt

0
P(N0 [0, u] > bn) du = nP(K + 1 > bn)

∫ λnt

0
P(T⌊bn⌋ ≤ u) du.

As in (6.3) we obtain

I2,1(n) ≤ nP(K + 1 > bn)

∫ λn

0
e−⌊bn⌋F (u) du

≤ nP(K + 1 > bn)λne−(bn−1)F (λn)

=
P(K + 1 > bn)

P(K > F (λn)−1)
(F (λn)bn)2e−(bn−1)F (λn) n→∞

−→ 0,

since bnF (λn)
n→∞
−→ ∞ by Lemma 6.1. �

Lemma 6.8 In the notation of Subsection 5.1.1

lim
n→∞

I2,2(n) = 0.

Proof. Suppose ǫ = 1 and t = 1. Then

I2,2(n) = n

∫ ∞

1
P(K + 1 > bnx)

∫ λn

0
P(N0 [0, u] > bnx) du dx

= n

∫ ∞

1
P(K + 1 > bnx)

∫ λn

0
P(T⌊bnx⌋ ≤ u) du dx.
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Again as in (6.3) we obtain by (6.1),

I2,2(n) ≤ n

∫ ∞

1
P(K + 1 > bnx)

∫ λn

0
e−⌊bnx⌋F (u) du dx

≤ nλn

∫ ∞

1
P(K + 1 > bnx)e−(bnx−1)F (λn) dx

≤ e1nλn

∫ ∞

1
e−bnxF (λn) dx

≤ e1nλn(bnF (λn))−1e−bnF (λn)

≤ e1(n
1
2 λ

H− 1
β

n )
max{2, 1

H−1/β
}
(bnF (λn))−1e−bnF (λn)

≤ C1(bnF (λn))
max{2, 1

H−1/β
}−1

e−bnF (λn) n→∞
−→ 0,

which is the result. �

6.2 Auxiliary Results for the Proofs of Subsection 5.1.2

The next several results deal with the convergence of ξ−

n
in Subsection 5.1.2.

Lemma 6.9 In the notation of Subsection 5.1.2

lim
n→∞

nλn

b2
n

H(1)
n (w) = E((I(w + t) − I(w))2I(w + t)−α).

Proof. We divide H
(1)
n in three parts and define

An,w = {N0 (λnw, λn(w + t)] ≤ ǫbn,K > N0 (0, λn(w + t)]}.

For M > 0 let

H(1,1,M)
n (w) = E

(
N0 (λnw, λn(w + t)]2 1{M−1≤F (λn)N0(0,λn(w+t)]≤M} 1An,w

)
,

H(1,2,M)
n (w) = E

(
N0 (λnw, λn(w + t)]2 1{F (λn)N0(0,λn(w+t)]<M−1} 1An,w

)
,

H(1,3,M)
n (w) = E

(
N0 (λnw, λn(w + t)]2 1{F (λn)N0(0,λn(w+t)]>M} 1An,w

)
,

so that

H(1)
n (w) = H(1,1,M)

n (w) + H(1,2,M)
n (w) + H(1,3,M)

n (w). (6.10)

Note that (
N0 (0, λnw]

F (λn)−1
,
N0 (0, λn(w + t)]

F (λn)−1

)
n→∞
=⇒ (I(w), I(w + t))

(cf. Meerschaert and Scheffler (2004), Theorem 3.2). Furthermore, regularly varying functions

converge uniformly on compact sets (cf. Bingham et al. (1987), Theorem 1.5.2). Thus,

nλn

b2
n

H(1,1,M)
n (w) = E

(
N0 (λnw, λn(w + t)]2

F (λn)−2
1{N0(λnw,λn(w+t)]≤ǫbn,M−1≤F (λn)N0(0,λn(w+t)]≤M}

×
P(K > N0 (0, λn(w + t)] |F0)

P(K > F (λn)−1)

)

n→∞
−→ E((I(w + t) − I(w))2 1{M−1≤I(w+t)≤M} I(w + t)−α), (6.11)
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where F0 = σ(N0). For the second summand of H
(1)
n we have for large n by Potter’s inequality

nλn

b2
n

H(1,2,M)
n (w)

= E

((
N0 (λnw, λn(w + t)]

F (λn)−1

)2
1{K>N0(0,λn(w+t)]}

P(K > F (λn)−1)
1{N0(0,λnw]6=N0(0,λn(w+t)]<F (λn)−1M}

)

≤ C1E

((
N0 (0, λn(w + t)]

F (λn)−1

)2−α2

1{N0(0,λnw]6=N0(0,λn(w+t)]<F (λn)−1M}

)

≤ C1M
α2−2 M→∞

−→ 0. (6.12)

By Potter’s inequality the last term of H
(1)
n has the upper bound

nλn

b2
n

H(1,3,M)
n (w)

≤
nλn

b2
n

E

(
N0 (0, λn(w + t)]2 1{F (λn)N0(0,λn(w+t)]≥M} P(K > N0 (0, λn(w + t)] |F0)

)

≤ C2E

((
N0 (0, λn(w + t)]

F (λn)−1

)2−α1

1{N0(0,λn(w+t)]≥F (λn)−1M}

)

= C2

∫ ∞

M2−α1

P

((
N0 (0, λn(w + t)]

F (λn)−1

)2−α1

> y

)
dy

+C2M
2−α1P

((
N0 (0, λn(w + t)]

F (λn)−1

)2−α1

> M2−α1

)
.

The first term in the right hand side above can be bounded as follows. For some constant C2 > 0

we obtain as in (6.3) that

∫ ∞

M2−α1

P

((
N0 (0, λn(w + t)]

F (λn)−1

)2−α1

> y

)
dy

= (2 − α1)

∫ ∞

M
z1−α1P(N0 (0, λn(w + t)] > zF (λn)−1) dz

≤ (2 − α1)

∫ ∞

M
z1−α1P(T⌊zF (λn)−1⌋+1 ≤ λn(w + t)) dz

≤ (2 − α1)

∫ ∞

M
z1−α1 exp(−zF (λn)−1F (λn(w + t))) dz

≤ C−1
3

∫ ∞

M
z1−α1e−C3(ω+t)

− 1
β1 z dz −→ 0 as M → ∞.

Similarly,

M2−α1P

((
N0 (0, λn(w + t)]

F (λn)−1

)2−α1

> M2−α1

)
−→ 0 as M → ∞.

Hence, the result follows. �

26



Lemma 6.10 In the notation of Subsection 5.1.2

lim
n→∞

nλn

b2
n

H(2)
n (w) = E

(
α

2 − α
I(w + t)2−α +

2α

α − 1
I(w)I(w + t)1−α

)

−E

(
I(w)2I(w + t)−α +

2

(2 − α)(α − 1)
I(w)2−α

)
.

Proof. We define

An,M = {M−1 ≤ F (λn)N0 (0, λnw] ≤ F (λn)N0 (0, λn(w + t)] ≤ M,N0 (λnw, λn(w + t)] ≤ ǫbn}

and

AM = {M−1 ≤ I(w) ≤ I(w + t) ≤ M}.

By Karamata’s theorem and the uniform convergence of regularly varying functions on compact

sets we have

E

(
K2 1{K≤N0(0,λn(w+t)]}−1{K≤N0(0,λnw]}

F (λn)−2P(K > F (λn)−1)
1An,M

)

n→∞
−→

α

2 − α
E
(
(I(w + t)2−α − I(w)2−α)1AM

)
, (6.13)

and

E

(
N0 (0, λnw]

F (λn)−1
K

1{K>N0(0,λnw]}−1{K>N0(0,λn(w+t)]}

F (λn)−1P(K > F (λn)−1)
1An,M

)

n→∞
−→

α

α − 1
E
(
I(w)(I(w)1−α − I(w + t)1−α)1AM

)
. (6.14)

Further,

E

(
N0 (0, λnw]2

F (λn)−2

1{K>N0(0,λnw]}−1{K>N0(0,λn(w+t)]}

P(K > F (λn)−1)
1An,M

)

n→∞
−→ E

(
I(w)2(I(w)−α − I(w + t)−α)1AM

)
. (6.15)

Thus, (6.13)-(6.15) give us

lim
M→∞

lim
n→∞

nλn

b2
n

E

(
Nc (λnw, λn(w + t)]2 1{N0(0,λnw]<K≤N0(0,λn(w+t)]} 1An,M

)

=
α

2 − α
E
(
I(w + t)2−α − I(w)2−α

)
− 2

α

α − 1
E
(
I(w)(I(w)1−α − I(w + t)1−α)

)

+E
(
I(w)2(I(w)−α − I(w + t)−α)

)
.

The integral over the complement of the event An,M vanishes in the limit, as M → ∞, in the

same way as in Lemma 6.9. �

The following theorem is the last major piece needed to establish the convergence of ξ−

n
.
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Theorem 6.11 In the notation of Subsection 5.1.2, there exists a non-negative measurable func-

tion g : R+ → R+ such that
∫∞
0 g(w) dw < ∞ and for every n ∈ N

nλn

b2
n

E(Nc (λnw, λn(w + 1)]2) ≤ g(w) ∀w > 0.

Proof. The existence of the required function on the interval (0,M ] for an arbitrary M > 0

follows from Lemma 6.15 below, so we only need to construct a required function on the interval

(M,∞). We define

An,w = {N0 (0, λnw] 6= N0 (0, λn(w + 1)]},

Bn,w = {N0 (0, λn] = N0 (0, λnw]} ∩ An,w,

Cn,w = {N0 (0, λn] 6= N0 (0, λnw]} ∩ An,w.

We have for w > M

nλn

b2
n

E(Nc (λnw, λn(w + 1)]2) ≤
nλn

b2
n

E(Nc (λnw, λn(w + 1)]2 1Bn,w)

+
nλn

b2
n

E(N0 (λnw, λn(w + 1)]2 1{K>N0(0,λnw]>0} 1Cn,w)

=: J2,1(n,w) + J2,2(n,w). (6.16)

Potter’s inequality and Lemma 6.2 result in

J2,2(n,w)

≤ E

(
N0 (λnw, λn(w + 1)]2

F (λn)−2

[
C1

(
N0 (0, λnw]

F (λn)−1

)−α1

+ C2

(
N0 (0, λnw]

F (λn)−1

)−α2
]
1Cn,w

)

≤ E

(
(N0 (0, λn] + 1)2

F (λn)−2

)
E

([
C1

(
N0 (0, λnw]

F (λn)−1

)−α1

+ C2

(
N0 (0, λnw]

F (λn)−1

)−α2
]
1Cn,w

)
.

By (6.3) we have for large n

E

(
N0 (0, λn]2

F (λn)−2

)
=

1

F (λn)−2

∫ ∞

0
P(N0 (0, λn]2 > x) dx

≤
2

F (λn)−2

∫ ∞

0
yP(T⌊y⌋+1 ≤ λn) dy

≤
2

F (λn)−2

∫ ∞

0
ye−yF (λn) dy

= 2

∫ ∞

0
ze−z dz < ∞. (6.17)

Hence, (6.16), (6.17) and Proposition 6.12 below show that J2,2(n,w) is uniformly in n bounded

from above by an integrable on [M,∞) function. The fact that the same is true for J2,1(n,w)

follows from Lemma 6.16 below. �
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6.3 Auxiliary Results for the Proof of Theorem 6.11

The following proposition is the first ingredient in the proof of Theorem 6.11.

Proposition 6.12 Let η > 1 and M > 1, and suppose that the assumptions of Theorem 3.1

hold. Then there exists a non-negative measurable function g : R+ → R+ such that
∫∞
M g(w) dw <

∞ and for every n ∈ N

E

((
N0 (0, λnw]

F (λn)−1

)−η

1{N0(0,λn] 6=N0(0,λnw]6=N0(0,λn(w+1)]}

)
≤ g(w) ∀w ≥ M.

The statement follows from Lemma 6.13 and Lemma 6.14 below.

Lemma 6.13 Let η > 1 and M > 1, and suppose that the assumptions of Theorem 3.1 hold.

Then there exists a non-negative measurable function g : R+ → R+ such that
∫∞
M g(w) dw < ∞

and for every n ∈ N

E

((
N0 (0, λnw]

F (λn)−1

)−η

1{N0(0,λn(w−1)] 6=N0(0,λnw]}

)
≤ g(w) ∀w ≥ M.

Proof. Let w ≥ M and n so large such that λ−1
n ≤ 2−1. We have

J1(n,w) := E

((
N0 (0, λnw]

F (λn)−1

)−η

1{N0(0,λn(w−1)] 6=N0(0,λnw]}

)

=

∫ λnw

λn(w−1)
F (λnw − y)

∞∑

j=1

(
j

F (λn)−1

)−η

P(Tj ∈ dy)

=

[∫ λnw−2

λn(w−1)
+

∫ λnw

λnw−2

]
F (λnw − y)

∞∑

j=1

(
j

F (λn)−1

)−η

P(Tj ∈ dy)

=: J1,1(n, ω) + J1,2(n, ω).

Now,

J1,1(n, ω) ≤

⌈λnw−2⌉−1∑

k=⌊λn(w−1)⌋−1

F

(
λn

(
w −

k + 1

λn

)) ∞∑

j=1

(
j

F (λn)−1

)−η

[P(Tj ≤ k + 1) − P(Tj ≤ k)] .

Since F is regularly varying of index −1/β, by Potter’s inequality there exists a constant 0 ≤

C1 < ∞ such that

J1,1(n, ω) ≤ C1

⌈λnw−2⌉−1∑

k=⌊λn(w−1)⌋

(
w −

k + 1

λn

)− 1
β1 F (λn)1−η

kF (k)1−η
kF (k)1−η

∞∑

j=1

j−η [P(Tj ≤ k + 1) − P(Tj ≤ k)] .

Using Lemma 4.3, we obtain

J1,1(n, ω) ≤ C2

⌈λnw−2⌉−1∑

k=⌊λn(w−1)⌋

(
w −

k + 1

λn

)− 1
β1 F (λn)1−η

kF (k)1−η
.
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Taking again the regular variation of F and Potter’s Theorem into account yields

J1,1(n, ω) ≤ C3

⌈λnw−2⌉−1∑

k=⌊λn(w−1)⌋

(
w −

k + 1

λn

)− 1
β1 1

k

(
k

λn

) 1−η
β1

= C3

⌈λnw−2⌉−1∑

k=⌊λn(w−1)⌋

1

λn

(
w −

k + 1

λn

)− 1
β1

(
k

λn

) 1−η
β1
−1

≤ C4

∫ w

w−1
(w − z)

− 1
β1 z

1−η
β1
−1

dz

≤ C5w
1−η
β1
−1

, (6.18)

which is an integrable function on [M,∞) since η > 1.

Finally, using, once again, Lemma 4.3, we obtain

J1,2(n, ω) ≤ F (λn)−η
∞∑

j=1

j−η [P(Tj ≤ λnw) − P(Tj ≤ λnw − 2)]

≤ C6F (λn)−η 1

λnw
F (λnw)η−1

≤ C7
1

λnF (λn)
w

1−η
β1
−1

,

which is uniformly bounded by an integrable function. �

Lemma 6.14 Let η > 1 and M > 1, and suppose that the assumptions of Theorem 3.1 hold.

Then there exists a non-negative measurable function g : R+ → R+ such that
∫∞
M g(w) dw < ∞

and for every n ∈ N

E

((
N0 (0, λnw]

F (λn)−1

)−η

1{N0(0,λn] 6=N0(0,λn(w−1)]=N0(0,λnw]6=N0(0,λn(w+1)]}

)
≤ g(w) ∀w ≥ M.

Proof. As in the previous lemma,

J1(n,w) := E

((
N0 (0, λnw]

F (λn)−1

)−η

1{N0(0,λn]6=N0(0,λn(w−1)]=N0(0,λnw]6=N0(0,λn(w+1)]}

)

=

∫ w−1

1
[F (λnw − y) − F (λn(w + 1) − y)]

∞∑

j=1

(
j

F (λn)−1

)−η

P(Tj ∈ λn dy)

≤

⌈λn(w−1)⌉−1∑

k=⌊λn⌋

[
F (λnw − k − 1) − F (λnw + λn − k)

]

×
∞∑

j=1

(
j

F (λn)−1

)−η

[P(Tj ≤ k + 1) − P(Tj ≤ k)] .

By Lemma 4.3 we have for n large

J1(n,w) ≤ C1

⌈λn(w−1)⌉−1∑

k=⌊λn⌋

F (λnw − k − 1) − F (λnw + λn − k)

F (λn)

F (λn)1−η

kF (k)1−η
.
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Note that for every k in the above sum by Assumption A

F (λnw − k − 1) − F (λnw + λn − k) ≤

⌈λn⌉−1∑

j=−1

[
F (λnw − k + j) − F (λnw − k + j + 1)

]

≤ C2

⌈λn⌉−1∑

j=−1

F (λnw − k + j)

λnw − k + j
≤ C3λn

F (λnw − k − 1)

λnw − k − 1
.

We conclude by Potter’s Theorem that for large n and all k as above

F (λnw − k − 1) − F (λnw + λn − k)

F (λn)
≤ C4

(
w −

k + 1

λn

)− 1
β2
−1

.

Hence, we obtain

J1(n,w) ≤ C4

λn(w−1)−1∑

k=λn

(
w −

k + 1

λn

)− 1
β2
−1 F (λn)1−η

kF (k)1−η
.

Similar calculations as in (6.18) result in

J1(n,w) ≤ C5

∫ w−1

1
(w − z)

− 1
β2
−1

z
1−η
β2
−1

dz ≤ C6w
− η−1

β2
−1

,

as an easy computation shows. This is an integrable on [M,∞) function. �

The final two lemmas needed for the proof of Theorem 6.11 follow.

Lemma 6.15 Let M > 0, and suppose that the assumptions of Theorem 3.1 hold. Then there

exists a positive constant C < ∞ such that for every n ∈ N

nλn

b2
n

E(Nc (λnw, λn(w + 1)]2) ≤ C ∀w ≤ M.

Proof. It is clearly enough to establish the required bound for n large enough. By Potter’s

inequality and Karamata’s theorem, we obtain for all n large enough and 0 < w ≤ M

nλn

b2
n

E(Nc (λnw, λn(w + 1)]2)

≤
nλn

b2
n

E(Nc (0, λn(M + 1)]2)

=
nλn

b2
n

E

(
N0 (0, λn(M + 1)]2 1{K>N0(0,λn(M+1)]>0}

)
+

nλn

b2
n

E
(
K2

1{K≤N0(0,λn(M+1)]}

)

≤ C1E

((
N0 (0, λn(M + 1)]

F (λn)−1

)2−α1
)

+ C2E

((
N0 (0, λn(M + 1)]

F (λn)−1

)2−α2
)

.

The right hand side is bounded for n large enough by computations similar to (6.17). �
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Lemma 6.16 Let M > 1 and suppose that the assumptions of Theorem 3.1 hold. Then there

exists a non-negative measurable function g : R+ → R+ such that
∫∞
M g(w) dw < ∞ and for

every n ∈ N

nλn

b2
n

E

(
Nc (λnw, λn(w + 1)]2 1{N0(0,λn]=N0(0,λnw]6=N0(0,λn(w+1)]}

)
≤ g(w) ∀w ≥ M.

Proof. We define Bn,w := {N0 (0, λn] = N0 (0, λnw] 6= N0 (0, λn(w + 1)]} for w ≥ M . Notice

that by Lemma 6.2,

nλn

b2
n

E(Nc (λnw, λn(w + 1)]2 1Bn,w) ≤
nλn

b2
n

E

(
min

(
N0 (0, λn] ,K

)2)
P(Bn,w). (6.19)

Note that

E

(
min

(
N0 (0, λn] ,K

)2)
= 2

∫ ∞

0
t P
(
N0 (0, λn] > t

)
P(K > t) dt

= 2
[∫ F (λn)−1

0
+

∫ ∞

F (λn)−1

]
t P
(
N0 (0, λn] > t

)
P(K > t) dt.

Since by Karamata’s theorem, as n → ∞,
∫ F (λn)−1

0
t P
(
N0 (0, λn] > t

)
P(K > t) dt ≤

∫ F (λn)−1

0
tP(K > t) dt

∼ C1

(
F (λn)−1

)2
P
(
K > F (λn)−1

)

and by (6.17)
∫ ∞

F (λn)−1

t P
(
N0 (0, λn] > t

)
P(K > t) dt ≤ C2P

(
K > F (λn)−1

)
E

(
N0 (0, λn]2

)

≤ C3

(
F (λn)−1

)2
P
(
K > F (λn)−1

)
,

we have the bound

E

(
min

(
N0 (0, λn] ,K

)2)
≤ C4

(
F (λn)−1

)2
P
(
K > F (λn)−1

)
.

On the other hand, by Assumption A and the same arguments as in (6.17),

P(Bn,w) = P (N0 (0, λn] = N0 (0, λnw] 6= N0 (0, λn(w + 1)])

=
∞∑

j=0

∫ λn

0

[
F (λnw − y) − F (λnw + λn − y)

]
P(Tj ∈ dy)

≤
[
F (λnw − λn) − F (λnw + λn)

]
E(N0 (0, λn])

≤

⌊λn⌋∑

k=0

[
F (λnw − λn + k) − F (λnw + k + 1)

][
C5F (λn)−1

]

≤ C6F (λn)−1

⌊λn⌋∑

k=0

F (λnw − λn + k)

λnw − λn + k

≤ C7F (λn)−1λn
F (λnw − λn)

λnw − λn

≤ C8w
−1 F (λnw)

F (λn)
. (6.20)
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We conclude that

nλn

b2
n

E(Nc (λnw, λn(w + 1)]2 1Bn,w) ≤ C9w
−1 F (λnw)

F (λn)
≤ C10w

−1−1/β2 ,

which is an integrable function on [M,∞). �
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