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GAUSSIAN ELIMINATION WITH
PIVOTING IS OPTIMAL
by
Narayana Sadananda Kamath, M.S.

Cornell University, 1973

Abstract:

V. Strassen discovered that two matrices of order 2 could be
multiplied using 7 multiplications and 18 additions of numbers and
has shown that two matrices of order n could be multiplied in less
than 4-7 nlog27 operations, an operation béing defined as a multi-
plication, division, subtraction or addition. Also he has shown
that the classical Gaussian elimination is not optimal by giving an
algorithm to compute the inverse of a nonsingular matrix with cer-

; inan E-g4 10927
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operations. In other words, Strassen's algorithm provides no room
for pivoting. J. Bunch and J. Hopcroft have got rid of the above
anomaly and have shown how to obtain the triangular factorization of

a permutation of a nonsingular matrix in less than 2-44 nlog27

1og,7 operations. 1In

operations and the inverse in less than 683 n
this thesis it is shown, using the results of Strassen and Bunch
and Hopcroft, that Gaussian elimination with pivoting is optimal
in the sense that the bound for the number of operations required
to do Gaussian elimination is the least.for "sufficiently large"
systems of.equations. Also expressions are derived for the various

coefficients in the bounds for the various procedures that arise

in solving linear systems of equations with the general assumption

that two matrices of order u could be multiplied in p multiplications

and g additions of numbers.
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Gaussian Elimination with.

Pivoting Is Optimal
CHAPTER I

1.1 INTRODUCTION

This work focuses on the solution of the linear systém
AX = B (1.1.1)

where A is an n x n nonsingular matrix and X and B are matrices of
compatible dimensions. ' .

Gaussian elimination with partial pivoting solves (1.1.1) by
decomposing PA = LU where P is a permutation matrix of.order n, L

is a lower triangular matrix of order n and U is aunit upper tri-

noanlar matriv of order n and computing x As

angular m 4 r
" 1lps

and (1.1.2)

X = v tH ' -

H

A popular computational scheme to do Gaussian elimination is

known as the Crout reduction and an algorithmic statement of the

scheme is given on page 94 of Linear Algebra, Wilkinson and Reinsch,

Springer-vVerlag, 1971. Conditions for the existence and unique-

ness of the triangular factorization can be found in many standard

textbooks on matrix theory or linear algebra such as Matrix Theory,

Franklin, J.N., Prentice-Hall, 1968.
It is well-known that solving {1.1.1) with B nxr and X nxr

N
by Crout reduction takes n(n-1) (n+1) /3 + n“r long operations, a

._1-
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long operation being a multiplication or division. Also familiar
is the fact that computing A-l from its trianguiar factors and solv-
ing the resulting 2n triangular system of equations and computing

X = AilB takes n(n-1) (2n+1) /2 + nzr long operations. Thﬁs it is
obvious that Gaussian elimination saves n(n-1) (4n+l) /6 long opera-
tions as compared to inversion.

In [3], Klyuyev and Kokovkin-Shcherbak assert-that Gaussian elim-

ination is optimal if one restricts oneself to operations on rows

and columné as a whole. Winograd [6] modifies the usual algorithms
for matrix multiplication and inversion and for solving systems of
linearlequations trading roughly half of the multiplications for
additions and subtractions. But still it takes O(n3) long operations
to solve (1.1.1)..

Strassen [5] discovered that -two matrices of order 2 could be
multiplied in 7 multiplications and 18 additions of numbers and
showed how to compute the product of two matrices of order n in less

log,7

than 4-7 n operations, an operation being a multiplication,

division, addition or subtraction. He also showed how to compute

the inverse of a nonsingular matrix of order n in less than

10927

564 n operations. But his inversion algorithm fails if cer-

tain principal submatrices are nonsingular and the computational
scheme admits no pivoting. J. Bunch and J. Hopcroft [1] have cir-

cumvented the anomaly and have shown that for any nonsingular

matrix A, AP = LU can be computed in less than 2-44 nlog27

tions and (AP)-1 = U-l 1

opera-

L © can be computed in fewer than 6-83 n1o927
operations.
In this thesis it is shown, using the algorithms due to

Strassen and Bunch and Hopcroft that Gaussian elimination with pivot-
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-ing is optimal in the sense that the bound for the number of oper-
ations required to do Gaussian elimination is the least for "suffi-

ciently large" systems of equations.

But first we explore Strassen's results.

1.2 FAST MATRIX MULTIPLICATION AND INVERSION

We define algorithm Cnk which multiplies two matrices of or-
1
der m2k by induction on k: %o is the usual algorithm for matrix
14
multiplication requiring m3 multiplicationsband mz(m-l) additions.
The algorithm S being known, define %, k+1 as - follows:
If A and B are matrices of order m2k+l, write
5

A A B

A= 11 212 ’ 5 - 11 B12 '
Ryy By Byy Bay
— -/ - J
C.. C
2B = 11 ©12 '
C1 C22
k

where Aik' Bik and Cik are matrices of order m2”. Then compute

I = (A + Byy) (Byy + Byy)

IT = (A21 + A22) Bll
III = Ay, (By, - Byy)
IV = Ay, (-By; + Byy)

V = (A); + Apy) By,

VI = (-A + A

11 t Ayy) (Byy + B

11 + Byp) .
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VII = (A), = By,) (By; + By))

Cjy = I+ IV -V + VII
Cyy = II + IV
Cip, = III + ¥
C,, = I + III - iI + VI

using “n ok for multiplication and the usual algorithms for addition
. 14
and subtraction of two matrices of order m2k.

Note that in order to compute C it takes 7 multiplications and

18 additions and subtractions of matrices of order m2k.

Lemma 1.2.1l: The algorithm o computes the product of two matri-

m,k

ces of order m2k with m37k multiplications and (5+m)m27k - 6(m2k)2

additions and suptractions of numpbers.

Proof: (by induction on k)
Assume true for k.

For k + 1, in forming I thru VII it requires 7 multiplications

of matrices of order m2k and each multiplication takes m37k multi-

3.k k+1

plications of numbers. Hence it takes 7:m™ 7" = m37 multiplica-

tions of numbers for k + 1. Note that for k = 1 and m = 1 it takes
7 multiplications and for k = o it takes m3 multiplications in com-

pliance with the definition of oot
14

kK _ 6(m2¥)2) additions

In forming I thru VII it takes 7{(5+m)m27
and subtractions of numbers in forming the seven products of matri-
ces of order m2k. In addition it takes 18(m2k)2 additions and

. . k, 2
sqbtractlons of numbers ﬁo form Cik since each Aik' Bik has (m27)

- elements. Hence it requires
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205 + mm27® - 6(m2K) 2} + 18(m2¥)?

k+1 k+1, 2

= (5 + m)m27 - 6(m2 )

additions and subtractions of numbers for multiplying two matrices

of order m2k+l. To complete the proof note that for m =1, k =1,

" it takes 18 additions and subtractions of numbers, and for k = 0

it takes (5 + m)m2 - 6m2 = m2(m - 1) additions and subtractions in

 compliance with the definition of e o° _ [
4

Lemma 1.2.2: The product of two matrices-of order n may be com-

log,7

puted in less than 4-7 n operations.

Proof: Put

k = [log n - 4]

-x (1.2.1)

m=[n2 7] + 1

where [a] denotes the largest integer smaller than or equal to a.

Then n < m2¥. o -

Imbedding matrices A of order n, m2k-'l <n < m2k, as
r m
A (0]
(0] Imzk-n
_ -

where Ij is the identity matrix of order j, our task reduces to
that of estimating the number of operations for an ke
’

By lemma 1.2.1 this number is

k _ 6(m2k)2 + m37k

M(n) (5+m)m27

k

(s+2m)m27K - 6 (m2¥)2

"
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by a convexity argument.

Next we define by induction on k, algorithms Bm X which inverts
r

. k . . - .
matrices of order m27; B is the usual Gaussian elimination algo-
m,o

rithm. Define Bm,k+l from Bm,k as follows:

1

If A is a matrix of order m2k+ to be inverted, write

A1 By

Ry Boa ‘

-6_
< (5+2m)m27k
< (5+2(n2_k+l)) (n2-k+l)7k
¢ (203273 4 1102272 4 1en27K 4 K
. k . k k
3,7 2, 7 16 2, 7 7 2, 7
< 2n ('§—) + 1ln (_E—) + ¢ D (—Z_) +. 5 n“( 7 )
: 16
using (1.2.1)
-k 3 2 k
8 n 7 4 .-k n ) 7
< (2(—7—) K + (11+1+ Egg)(—7—) —;E—
< (2( g )logzn—k + 12-03 ( ; )1og2n—k ) nlogz7
(here we have used nd = Slngn, n? = 4logzn’ and
0(.7k)7.= O(nl°g27) - O(7log2n) .
Letting t = logzn—k we have,
M(n) < (229 % + 12.03(— Y nlo3?7
Using k = [log,n - 4] => 4 < t < 5 we have,
' t log,7
M) < max (2(-89F & 12.03 (2 )
7 7
4<t25 . (1.2.2)
< 4.7 n10927



and B | A = . ’

where Aipr Cik are matrices of order m2k. Then compute

-1
1=2y,
_ -1
II = Ryyhqy
111 = 1A,
IV = A, IIT .
- V=1V-a,
vi=v1l
C12 = JIIT VI
Can = VI II
PAS S
VII = IIT  Cy
€y = I - VII
C,, = -VI .

using ok for multiplication and Bm X for inversion and the usual
4 14

algorithms for addition and subtraction of two matrices of order m2k.

Lemma 1.2.3: The algorithm Bm X computes the inverse of a matrix of
14

: k
order m2k with m2 divisions and less than or egual to

(6/5)m37k - m2k multiplications and less than or eaqual to

(6/5) (5 + m)m27k - 7(m2k')2 additions and subtractions of numbers.

Proof: (by induction on k)
For m = k = 1 it takes 2 divisions, less than or equal to ,

(6/5) 7 - 2, i.e. less than or equal to 6 multiplications and

L e e L B IEL A Y I
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less than or equal to (6/5)+6+7 - 7+4, i.e. less than or equal to
22 additions and subtractions to do inversion of a matrix of order

2 which is true by observation.

Now assume true for k. For k + 1, we need only two inverses

k+1

of matrices of order m2k, i.e. m2 divisions. Also the number of

multiplications required to find the inverse of a matrix of order
k+1 | ‘

2 is
< 2{—g— m37k - m2k} + 6m37k
< il gkl .

The number of additions and subtractions for inverting a matrix

of order m2k+1 is
< 2{—g—(5+m)m27k - 7(m2X1 2y
+ 6{(5+mn?7* - 6 (@2") %)
+ 2(m2%) 2
< —g——(5+m)m27k+l - 7m2kth2 "

Lemma 1.2.4: The inverse of a matrix of order n may be computed

log,7

with fewer than 564 n operations.

Proof: From lemma 1.2.2 and lemma 1.2.3 it follows that the in-

verse of a matrix or order n may be computed with less than

log, 7

(6/5) (4-7) n10g27, i.e. less than 564 n operations. B



CHAPTER II

It is evident from the recursive partitionihg nature of the
above algorithms that the inversion algorithm fails if certain prin-
cipal submatrices are singular.

For example, the algorithm fails for even as simple a matrix as

f R

o O M O
o o o H

 ©o o o
©o ~» o o

C J

In this chapter we explore the algorithms for finding the tri-
angular factorization LU of a nonsingular matrix that overcomes the
above mentioned difficulty, and then compute the inverse as U-lL"1
using Strassen's algorithm for fast matrix multiplication. Natu-
rally, the algorithm involves pivoting (here the word pivoting is
used to mean the interchanging of columns to make certain (sub)ma-
trices nonsingular) .

But before plunging into the details of the algorithm let us
observe the following well-known facts.

Every principal submatrix in every reduced matrix is nonsingu-
lar if it is symmetric positive definite, strictly diagonally domi-
nant, or irreducibly diagpnally dominant. If A is nonsingular, then

there exist permutation matrices Pl’ P2’ Ql' 02 such that APl, QlA’

Q2AP2 have the above property.

2.1 THE BASIC ALGORITHM

The basic algorithm for triangular factorization introducesg

zeros after each iteration as follows:

-9- .
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X X X X Xe.ooX X X X X X X...X
0 X X X X...X 0 X X X XeoeeoseX
X X X X X...X 0 O X X XeeeeeosX
X X X X Xe.o.oX ’ 0 0 X X XeeeoooX ’
X X X X X..ooX X X X X XeoesoesosX
X X X X X.ooX X X X X XeeeeesX
. - . -
r , B — . =
X X X X X...X X
0 X X X X...X X :><:
0 0 X X X...X X
0 0 0 X XeeuX | ,ee-., b S .
WM XN Me..X v
i | i { . |
L L]
X X X X X...X x
. : -~/ _ »

Formally, we describe the algorithm as follows:

For simplicity, let M be of order n = 2k with det M # 0.

Let M0 = M. We shall construct a sequence Pl, P2,...,Pn"1 of per-

mutation matrices so that M = LUP, i.e. Mp ! = LU where P = plp2, . p771

is a permutation matrix, L = Lle...Ln“l is a unit lower triangular ma-
n

trix, U is an upper triangular matrix and det M = det P det U =+ 7 u..

11
1 -1  .n-1 2.1 i=1

Since (PY)™* = P® here, P - = P "...P°P” and

a1 = plgip?

n-1 2.1 -1

pP1 . p2plyl(gn-1)-l 2y-1 -1

e (L7) (L)

i-1

where (L7) = 2I - L.
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We define the algorithm sequentially for 1 < i < n-1 as follows:
‘Consider the binary represéntatiQn of i as a string of 1 and 0.
Let the positions in this string beginning from the right end be
marked 0,1,...,3,.-..,k-1. Let Bi be the set of integers j,
Owi 3 i‘k—l such that the j-th éosition in the string is occupied by

-— ) ] — ] : l . 0

al, i.e. let B, = {j: i.
Let t =max'{j : j €B;}, s =min {j : j € B;} and
r=]t if‘s # t

t-1 if s =t .

Then . ., -
i-1 i-1
My1 P
Ml—l - 0 ,
i-1
i [ M2z 1
M i-1
L 21
-

where Mlll—l is a nonsingular upper triangular matrix of order i-1,

i-1 4o (1 -1) x (n-4d+ 1), 0 is the (2771

i-1

M i+ 1) x (i-1)

i-1

12

zero matrix, M21 is (n - 2r+1) x (1 -1), M22 "is (n - i + 1) x

(n - i+ 1) and MJ'_1 is nonsingular.

Since 2Tl 3 41> 0 and ML s nonsingular there exists a

nonzero element in the first row of M221—1. Hence there exists a
. . i i i-1_i i

permutation matrix P~ such that N© = M ."P7, ng, # 0 and N~ can be

written as

( vt vi ]
o= 1o 3 E%
Gt ut
i X vyt '
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where UL is (i - 25) x (1 - 25, v' is (1 - 2% x (n - i+ 2%,

Ei and Gi are 25 x 2%, Fi and Hi are 25 x (n - i), 0 is the

(251 - i 4+ 25 x (i - 25) zero matrix, X' is (n - 2™y x (1 - 25
and Yi is (n - 1 - 25) x (N -1+ 2%). Further Ui and Ei are non-
singular ubper triangular.

tet 21 = ¢t(el) 7! anda

i-28

n-1

- -

where Ij is the identity matrix of order j.

pefine MI = (ni) Int.
Then
O 7
| i
v
. i i
M= o LE F ,
0 gt
x* vyt
. . 3 . k- —J
where Jl = Hl - ZlFl.

%

At the last step U = is nonsingular and upper triangular.

Examgle
" 7
1 2 1 3
( 2 3 1 2
M= 4 1-1 3
3 3 2 1
L o
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2 1 3
3 1

1
2

4 1 1 3

0

0

Lo o

1 1 3

4

and

H1
L

Ml - (Ll)—lNl

Il

Ml

and
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0 -1 -1 -4

1 1 3

4

1

L3 3 2.

-

1

1 1 3

4

10 0 0)

0

-2 1 0

0 1 0

0

2

0 -1 -1 -4

1 1 3

4

2

3

- o o o
4 J
. 1]
~ {
1 (y ™ %
<« ™ Il
W R — d
I N P
-~ !
N — o
= L
{ raun ]
. i
(9}
l - 1P
=
~ f
< M =4
1} | "
- - - o
— | o
= z
d - ™
= \ I
W I
~ - ™ (N
— (N
= =

and
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0 )

0

1

-4 -7 1 2
-3-3.0

1 0 0 O

7 1 0

4

0 -1 -1 -4

4 19

19

-1 -4
4

(1 2 1

0 -1 -1 -4

3
0 -1

4 1 1

1

-1 -4
4.19
2

0 -1

0

1

-7 1 O
0
Ut

-4
Lf3 -3.

and
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o o —
o o 3‘4
o o
- o o ,
L J
[t}
—
1
3)
© [
]
™M
Y -
I
™
] ( \
e} o o —
[=}
[1\]
o o N
Y o o ™
< A
J —
- O o I
TR J o
[t
o™ ~
jos]
N I
- (32 3
(| =
( ) 1} ]
Y - ot
(| =
U .
. o]
® 8

0 -1 -1 -4

4 19

0

Il

r1 2 1 3

0 -1 -1 -4

19

Therefore we have

0 -1 -1 -4

19

—

1l
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2.2 OPERATION COUNT

Finding the permutation matrices Pi requires at most (n - i)
comparisons, and if pii = 0 then permutation involves n element inter-
changes. Hence at most n(n-1) /2 comparisons and n(n-1) element
interchangesiare required to obtain M = LUP. The computaﬁion'of M-l
would require at most n(n—l) element interchanges.

Let an operation be, as before, a multiplication, division, add-
ition or subtraction. Let M(n), MT(n), and_IT(n) be the number of
operations required to multiply two n x n matrices, .to multiply an
'n x n matrix by an upper triangular matrig, and to invert an n x n‘

nonsingular upper triangular matrix.

From lemma 1.2.1,

m(25) = (5+1)12-7% - 6(1:25)2 + 13.9%
I Ka) Lo T\
\és 0o 0 )
< 7**l for x> 1
Let A = All A12 be a full matrix of order 2k and let
Ay Py
B = Bll B12 be an upper triangular matrix of order 2k with
0 By
k-1
Aik' Bik of order 2 .

Then we have

1)2

MT(2k) 4MT(2k"1) +oam2X Yy 1 202K
' k-1 . )
2 r 43 m¥I
320
< x kKla5 .
(2) 7 L (3)7, using (2.2.1) ,
3=0 . S

-1

A

) (2.2.2)

¢

WS WAIENSN . g L e e
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=17a-
14 k
< (3—) 7 .
We have "
° o a’l _a71a A’J
Al o 11 T8 12022

-1
0 A22

and we have

K, _ k-1 k-1
1,25 = 2 1,025+ 2 w2
k-1 . .
2 23w, (25777
j=0
k-1 .
21 23 4

l) -

(2.2.3)

k-5-1

A

A
N
-~

ol
N?
—~

RN
L
N
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qucalculate the number of operations required to invert all

the El,'lsisp-l, note that the order of E' follows the sequence

1} 2,1; 4,1,2,1; 8,1,2,1,4,1,2,1; 16,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1;

2 1,2,1,4,1,2,1,.00.,2572, 0000002040120,
Therefore, by induction, it is easy to see that the number of

.operations to invert all the E', 1<i<n-1, is

_ k-1 0 k-2 1 k-3 2
= 2 IT(2 ) + 2 IT(2 ) + 2 ;T(Z ) + ...
1 k-2 0. ,.k-1
+ 2 IT(2 ) + 2 IT(Z )
k-1 .
=2kl ;71 1,(29)
j=0 2’
k-1 3j
k-1 ,28 7
<2 I @
J—U
28 k
< (77?) 7

Similarly forming all the multipliers 2%, 1<i<n-1, requires

k-1

2k-1 ) '—];— M(zj)
j=0 27
14 k .
(=) 7 operations.

The number of operations required to form all the reduced

matrices Jl, 1l<i<n-1, neglecting terms of lower that account for

subtractions in gt - ZlFl, is

n—23
k-1 | -3 +1 . .
=5 (2 12k - 2(p+1)271 ) M(2))
2 v , —

BTN QA € e s
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1 k-1 .
< 22(k ll I M 23y
j=0 zj
k-1 3
<th2* i D
. j='
< (%) 7k.
1 2 n-1
Note that the sequence L°, L™ ,...,L has the structure
- . _
1 A (1 A

y ° °

X . ‘_<:> 0 1 <:>
o
1l X X <:> 1
-

~— -/ -

1.2 n-1

and the product L = L'L"...L is just the superposition of Lt

and at the maximum takes O(nz) operations. Therefore, for n = 2k,

triangular factorization takes

28 14 7 k
< (—7—5' + 1—5- + 3) 7
< (%%) 7k operations -

< (3-64) ntod27 operations .

k 1

Inverting U requires < (%%) 7" operations and U-lL— by com-

-1,.n-1,-1 2 -1

puting U (L~ ) ~...(L y " Lah requires

52k kgl M(29)
3=0 223+1
- k-1 . 3
< (%) 22k T (%)
j=0

k

< (l%) 7 operations (2.2.4)
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On the other hand computing L = (L1+...+Ln-1) (n-2)I and

inverting L and then computing g1yt requires
’ k-1 . :

28, -k i k-3-1

< (15)7 + Z.E 2 MT(Z )

j=0
k-1 . .
+ g 23 mEFI
< (%%)7k operations ' . (2.2.5)
1.-1 k

"So we préfer the first scheme to compute U "L ~. Hence for n = 2

inversion takes

28 14 k

91
<(-2—-5- +-i——+—-§)7
< (Z%%) 7k operations

For arbitrary n, 2 <n<2 , let
(— R
M I o]
(0] I
2k+1_n
— -

We can find the triangular factorization of a permutation of M .

1l

and hence of a permutation of ‘M by <(3-64)7k+ , i.e. <25-48 n10927

operations, and the inverse of a permutation ofodz , and hence of

1

permutation of M by <(10-18)7k+ , i.e. <(71.22) nt0927

operations.

2.3 OPTIMIZATION OF THE COEFFICIENTS IN OPERATIONS COUNT --

A MODIFIED ALGORITHM

We can modify the algorithm presented in 2.)] so that the coef-

ey g, S e g e

| Lk £ tL T U
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-ficients of nlogz7.is smaller in operation count. The idea is to
find, for n < m2k, suitable m énd k such that the coefficients are

the least possible. We consider two cases with n = 2¥ and n arbitrary.

Let n = 2t = m2k. Then m = 277K = 25 and M(25) < (5+2m)m‘27k =

s+1)2257—5. Now min f(s) = £(3) = 192 .

f(s_)7r where f(s) 39
O<s<r

(5+2

So we take m = 23 = 8 and k = r - 3 and use regular multiplication

and inversion for 8 x 8 matrices.

192 r+l

)7 instead of 7 . Hence each coefficient

in 2.2 is multlplled by % (igz). Thus triangular factorization re-

quires <z (133) (3-64) nl°g27, i.e. (2-.04) nlog27 operations, and

192

Then M(2 ) < (

log,7

inversion requ1res<-( )(lO .18) nlog27 , i.e. (5-70)n

operations.

Now let n be arbitrary. Taking k [log,n - 4] and m =

1 -

l'_‘\—k‘l . 1 P - - -u') - A B9 2—7"{ AO” 13:—‘;2'
Lo J ' ALy W s ave n S s “esva  \ = ...‘.,‘.".“. N < - n .
From lemma 1.2.1 and (2.2.2) it follows that
k-1 j
MT(mZk) < 2(5+2m)m?7° 3 (%
. j=1
< %(5+2m)m27k X (2.3.1)
From (2.2.3) and (2.3.1) it follows that
k-1 .
IT(mZk) <2 31 232 (se2mym?7RTI7E
o j=1

2.k

<—%§(5+2m)m 7 (2.3.2)

We will now derive the number of operations for triangular
factorization and inversion along the similar lines as in 2.2.

Thus to compute all the E', 1<i<n-1, we need to do
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k-1

Zk-l T 1 IT(mZJ)
§=0 23
k-1 .
<2¥1 757 L 4 (s+2mn?7?, using (2.3.2)
: j=0 27 15 '
——§(5+2m)m27k oéerations T

Similarly forming all the multipliers zt, l<i<n-1, requires

k 1
ok-1 MT(mZJ)
: 3—0 27
k-1 .
<2kl g %(5+2m)m2(-2]1)3, using (2.3.1)
. 3=0 .

<--—i-5—(5+2m)m27k operations.

Forming all the reduced matrices Jl, 1 -1 requires

i
rn-—zr w '
Py | .
k-1 27— | Vo™
T g [2% - (20 + 1)2dy p Hlweo)
=0 =0 27
< p2-1 KT mm2d)
- j=o 243
< —%—(5+2m)m27k operations .

By a similar argument as in 2.2, computing L takes O(nz) oper-
ations and is neglected.

Forming vl takes, from (2.3.2),

—%§(5+2m)m27k operations ,

and forming v takes

eas oy

BT RIQAN e
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k.—
22k ¢

3=0 2

1 m(m29)
23+1

k

< %(5+2m)m27 operations

Therefore triangular factorization could be done in

2 1

R 2_k
< (7§ + 5 + §) (5+2m)m~ 7

k

< (%%- (5+2m)m27 operationé

39) (4'7)n10g27

(55

< 244 n log,7 operations

and inversion could be done in

39 4 2 2_k
< (-'ﬁ + -l—‘_._.;- + 3—) (5+2m)m 7
109 2k
(75— (5+2m)m 7
< (6-83) n log,7 operations .

2.4 GAUSSIAN ELIMINATION IS OPTIMAL

Crout reduction mentioned in 1.1 produces the factors L and U

of PA and X is computed solving the two triangular systems

LH

PB
(2.4.1)
UX = H

Since L and U are nonsingular, Gaussian elimination is thus

equivalent to computing X as

x = vt e) . (2.4.2)

4
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Inverting PA and computing X is equivalent to computing X as

1.-1

X = (UL ")PB (2.4.3)

Computing X as per (2.4.2) réquires

39 4 2 2.k
<(7§ + 2(13) + 2(§)) (542m)m” 7

<(l%% (5+2m)m27k operations

<(11-21) n log, 7 operations, using lemma 1.2.2.

Computing X as per (2.4.3) requires

< (l%% + 1)(5+2m)m27k operations
< l%% (5+2m)m27k operations
< 11«33 n log.7 UpcLaliviis, USing 1CWNa 1.2.2.

Thus Gaussian elimination with pivoting saves us

5 X

. 2
=5 (5+2m)m"~ 7

(0.313) n log, 7 operations, using lemma 1.2.2.

and is optimal as compared tc inversion, unless Strassen's bound

on matrix multiplication is improved.

N I N N R T
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CHAPTER III

In the previous chapters we used 2 x 2 partitioning in devel-

oping algorithms for matrix multiplications and inversion. But in

"general it is possible to use u x u partitioning and then develop

algorithms to do inversion and multiplication. It is not yet known
whether for u > 2 there exist algorithms which are moreveconomical
then Strassen's algorithn. So far, to the author's knowledge,
nobody has come up with a matrix multiplication algorithm or inver-
sion algorithm which is better than Strassen's using partitioning.
The purpose of thls chapter is to derive expr9551ons for the bounds
on the number of operations required to do the precedures of Chap-
ters I and II when u x u partitioning is used.

Suppose two matrices of order n could be multiplied in p mul-

3.] MATRIX MULTIPLICATION

Consider two matrices of order n = uk. As in the previous chap-
ter it is easy to see by ihduction that the number of multiplicé—
tions to compute the natrix product is pk.

Let A(n) denote the number of additions and subtractions re-

quired to multiply two matrices of order n = uk.

2
Then A(n) q(&) + pA(%)

=a®? 4 pa@id? + p'al®)
: : u

n -

=25~



k-1 ~
2 1,2 i,1, 21
= g n" qg(zx)7p (D)
i=0 " “
x 1
2k qu
= q ®
u2 —27 -1
u

(here we have used n2 = u2k)

- 9 k_ g 2
= 2 P 7 v

This expression tallies with the one on page 427, The Art of

Computer Programming, Vol.II, Knuth, D.E., Addison-Wesley, 1971, for
the case u = 2.

Defining a and B8 along the similar lines as in Chapter I,
m,k m,k

we have,

Lemma 3.1.1: The algorithntam Xk computes the product of two matri-
’

ces of order muk with m3pk multiplications and

(—9-—-2 -1+ m)mzpk - —g—z(muk)2
p-u p-u
additions and subtractions of numbers.
The proof by induction follows as in lemma 2.1.1. a

Now we derive an expression of the form C n logy P for the
number of operations M(n) for matrix multiplication.

From lemma 3.1.1

M(n) = (_3_2 -1 + m)mzpk - —H—z(muk)2 + m3pk

p-u p-u

k

< (—9-—2 -1+ 2m)m2p
p-u

YRR A S vt e sy
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Letting m = [nu-k] + 1, where [a] denotes largest integer less than

or equal to ¢,

Min) < (I, - 1 + 2(nu +1)) (nu"K+1) 2pK
p-u ‘
< (—:95 + 1+ 2n0 K (n%u"%k 4+ 2nu” ¥ + l)pk
p-u '
<'{2n3u-3k + 2(—3—5 + 1)nu"k + Znu-k + 4n2um2k
p-u
+ (--3—2 + l)nzu“2k + —9—2 + 1} pk
p-u p-u
<'{2n3u“3k + (5 + -—q—z)nzu"2k + 2(;g—2+ 2)nu'-k
p-u : p-u
+ -9—2 + 1} pk .

p-u

Letting k = log.n - log“2(—g—q + 2), we have 2(—9—0 + 2)uk < n, and

p-—i_*l_" P-—h"‘
M(n) <'{2n3tf3k + (5+—9—--2)n2u-2k + n2u-—2k
p-u
.
g (= v D 2 -2k . k
. p-u n“u }p
4(——35 + 2)2
p-u
| 2 2 -2k
3 -3k A+ 2)%5 + L + 1)n“u
< {2n7u + 4(p_u2 p—u2
4(_q_§ + 2)2
p—u
(_9_2 + 1)
+ P-u n2u--2k } pk
(=L, 2) 2
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2
< f2ndu* 4 (4T,

, + 4, 86+ =)

(p-u”) p-u p-u
*lmmpt D 2 -2k . _k
p-u ' } n“u }p .
y) ,
1—L) + 2
p-u
.3 -2k - ,.,10q° 3
i.e. ~ M(n) < {2n"u + (a2 o+ L _ ) + 96 + 112 -
' : 2.2 7. 3 2
(p-u”) (p-u) p-u
+ (—3—2 + 1) } n2y 2k
p-u } .k
» P
q
4(-2—;)
p-u
_ 2 2 o
< {on3u73K 4 opa(R0e 4 9T ) o+ 97 + 1132 In“u "
, 7.2 7. 3 ~ 2 x
(p—u”) (p-u”) p-u }p
4(—9—2 + 2)2
p—u
1002 3 a
Letting C; = [4( b o ¥ —9—5 5 + 113, + 97]
(p—u”) (p-u”™) p-u

and C2 = 2

and using the identities
3 _ u3 log, n

2 _ u2 1ogu n

and :
0(p¥) = 0(pt®%u ™ = 0% P)-
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we have
~ M(n) < (C (_Bi_)IOQun'k +C (_Ei_ologun~k )nlogup .
1'p 2' p , .
Let t = logu n - k.
Then
u2 t t log. p
M(n) < ( )(c, + Co,u)n ~%% (3.1.1)
P 1 2
2 t
' ’ u_ t log, P
M(n) < max (p ) (Cy+Cyu7)n u
logu2(—-9~—2 + 2) ~
p-u , (3.1.2)
st
1 + log,>2 (—l— + 2) )
p-u

Now we shall not invoke Strassen's convexity argument, for,
without knbwing the values of u, B and g it is not possible to
find the maximum. However, the coefficient of nlo%u P jp (3.1.2)
is a smooth function of t in the neighborhood of the above inter-
§a1. ' ~ .

A bound on tﬁe number of operations to invert a matrix of
order n can be derived as in Chapter I. 1In fact it turns out to be

less than

A -
2
p-u
where p' is the number of multiplications required to invert a

(—P ) M(n)
1

matrix of order u.
The basic algorithms for triangular factorization and inver-
sion similar to the ones in Chapter II could easily be conceived.

The algorithm would be expressed in terms of the expansions of
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integers modulo u. We do. not go into the details of the computa-
tional scheme involved. The following section gives expressions for

bounds_on the number of operations required.

3.2 OPERATION COUNT

Following the notation in 2.2, we shall derive the expressions
k k '
for‘MT(mu ) and IT(mu ) .

First consider MT(muk).

~ R s ’ T

O AmEEE
C J L -

Figure 3.2.1

Let the two matrices, figure 3.2.1, be of order < muk with
sdbmatrices, partitioned as shown, of order muk_l.

(i) Since each of the u upper triangular matrices of order

< muX "1 along the diagonal multiplies u matrices of order mfL,

k, . 2 k-1
MT(mu } involves u MT(mu ).
(ii) There are u(u-1)/2 off-diagonal full matrices of order

muk-l in the first matrix and each of them multiplies u matrices

of order < mut "1 in the second matrix. Hence it takes

2
u (;—1) M (muk_l)

to do MT(muk).

k-1,2

elements and hence the

)

(iii) Each submatrix has (mu

B e
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k-1,2

(mu™ ™) .

2
number of additions required is —2—%E:ll

Therefore

k-1 k-1) + m

M (mu 2

2,
) + u éu—l)

MT(muk) = uzMT(mu

k-1 . .
. (u?) I3

.j=0

u? (u-1)

< 2

(here we have neglected the last term)

2 k-1 . : ' .
< wlu-l) Ty (u?)j (——95— -1+ 2m)m2pk—3-'1

2 J=0 p-u
(here we have used lemma 3.1.1)

k-1 2 3
5 (=)

<
0 P

2
u -1 X 1
(u )p 1

g _ 2
7 B ( 2 1+ 2m)m

p-u j

2
u (uzl) (< -~ 1+ 2m)m2pk .

2{p-u’) P U

<

2u2k(u—l)

Now we consider inversion of an upper triangular matrix of

order < mu®. The computational scheme is illustrated by the fol-

lowing figures:

To compute the inverse of an upper triangular matrix it thus

 takes

— "\_1 - i
-1 -1, -1
Ayjp By A7 TA)1RgoBo0
-1
0 By 0 Ay
B : :
"A A A ’W - f-A—l -a”la a7l A L; | 1y aTio
11 212 Pi3 ~ 11 "211P12202 P11 (B12R22%23%33
| ‘ - -1 -1
0 Ay By = |0 Ry2 AyoRo3has
-1
0 0 Ay 0 0 AL3
- J _ .

-1)
A13A3§)

4
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k

(1) uIT(mu —l) for the u matrices along the diagonal,

(ii)  2(u-1) M, (muk_l) for elements above. the diagonal for

k-1 k-1

+ 2(u-2) MT (mu ) ... 2 above

the (u-1) matrices of order < mu

the diagonal ... (u-2) matrices ... + .... i.e. totally

k-1

2u(u-1) )

5 MT(mu

for forming the off-diagonal elements, and

(iii) (uv2) M (muk—l) for fcrming elements 2 above the diag-
onal
k-1

+ (u-3) M (mu ) ... 3 above ... + ...

i.e. totally

k—l)

(u-1) (u-2) M (mu
2

-

for forming the off-diagonal elements.

Thereliore we nave

IT(muk) = uIT(muk_l) + u(u—l)MT(muk-l) + (u—1)§u~2) Mo (mut L)
k-1 . o IS T .
< u(u-l) = uJMt(muk J l) + (u l%(u 2) 'z ujM(muk J l)
4=0 3=0
k-1 . .2, _ .
< u(u_l) T U.J l.’l_gl_l._l.)_ (_g— - 1 + 2m) mzpk—J 1
: . 2 2
j=0 2(p-u”) p-u
+(u-1) (u-2) ¥71 5 q 2 k-3-1
— g ud ( 5 — 1t 2m)m°p
3=0 p-u
w3 ? o (uel) (um2) q 2k
< { + } (——, - 14+ 2m) _m s
) ) 2 m
2(p-u”) 2 ' p-u p_uz
. 5 2 2
<{ u” - 3u4 + 4u3 + (p-2)u” - 3pu + 2p}( q 2_1 + 2m)(§_u )

2 (p-uz) p-u ,

k



k

(i) 1,025 7 _32-(3) (16)+(4) ()+(5) ()= (N (2 () 7
- (2) (3)

28y 4k . [cf. 2.2] ®

Now we derive expressions for bounds on the number of operations
required for triangular factorization.

Inverting all the Et, 1 <i < n-1, following Chapter II,

requires
' k-1 :
» uk—l )} 14 Im(muj)
j=0 n- -
3 2 2 k-1 .
2(p-u”) p-u 3=0
3 2 2
<qu (u—%) + (u—l)(u—Z)} (-2 , -1+ om) -1 , pk operations
2(p-u") 2 p-u (p-u)
(3.2.1)
Forming all the J%, 1 < i < n-1, requires
n-u?
j+1 3
k-1 u’l . 3
51 3 [oF - (2e+nudyy M)
3j=0 %= 0 » u’
-1y k-1 j
< u2(k 1) 5 gi;g_i
=0 u J
2 (k-1) *71 2 3
<u (-4, -1+ 2mm (B
j=0 p-u u
2 .
< (—ﬂ—z‘— 1 + 2m)- 5 pk operations (3.2.2)

p-u p-u
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Forming all the zt, 1 < i < n-1, requires
k-1
k-1 1
< u E ——J— MT(mu
j—
< o1z 2 u? (u—l) (L -1+ 2m)m2pJ
J 2 2
n 2(p~u”) p-u
w?(u-1) q 2 k |
< (— 5 -1 + 2m)m’p operations (3.2.3)

2(p—u2)(p—u) p-u

Therefore triangular factorization requires

Rdwen? L - (u—z)} 1, 1, wl(u-l)
2 2 2 2
2 (p-u”) (p-u) p-u 2 (p-u”) (p-u)
(_3_2 -1+ 2m)m2pk operations
p-u
< (—9——2 -1 + 2m)m2 s ' ~
g A . .
p-u u” - 4u” + (p+b)u3 - 7pu + 2p(p+l) ‘pk
2 (p-u?) (p-w) 2 J
p p “operations
(3.2.4)
Finding U-lL—l, from U T and Ll,Lz,...,Ln—l, requires
u2k k-1 M(mu?)
5=0 u2]+l
ok X711 g 2 (. py3
< u I3 ( 5 — 1 2m)m” (=)
3=0 p-u u
q 2 u k ~ .
< ( 5 1+ 2m)n” —, P operations (3.2.5)
p-u p-u

Thus inversion requires

(—H——2 —1+2m)m2
< pu <u§-4u4+(p+5)u3—7pu+2p(p+l)> pk
2, 2
2(p-u”) (p-u)
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L -1 21) m2

ptY (w3 - 3u? + 4u
2(p-u”) (p-u) :

3

+ (p—2)u2 - 3pu + 2p!} pk

T+ (—5—2 -1+ 2m)m2 (—2—2) pk operations

P-u . pf-u

(-9, - 1+ 2mn’
< _pP-u
2(p—u2)(p—u)

- e+ (pra)u® - (3pre)u? + (4pro)u’

2

- +(p2~3p)u2 - (p2+9p)u + 4p™ + 2p} pk operations (3.2.5)

CHECK: u=2,p=7, q=18.

(i) Triangular Factorizétion

(3.2.4) gives (5+2m)m2 k

5 {32 - 64 - + 96 - 98 + 112} 7
2:3-5

= 78

— (5 + 2mm’ 7
(2) (3) (57)

_ 39 2 .k
= (75) (5 + 2m) m~ 7

(ii) Inversion

. ) 2 )
(3.2.5) gives (SHIMIL (g4 4+ (11) (32) - (29) (16)
(2) (3) (57)
+ (37)(8) + (28) (4) - (112) (2) + 210 }7°

= (A0 =732 (5 + 2mn?7"

(2) 3¢5

109, - 2 .k
[cf. 2.3]

3.3 GAUSSIAN ELIMINATION VERSUS INVERSTON TO SOLVE AX = B

1 .

To compute X = v 1w 'pB) it requires
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4

< Pou — (u° - au’ + (p+5)w’ - Tpu + 2p(ptD)}
2(p-u”) (p-u)

operations to do triangular factorization,

2(-%-, -1+ 2m) m2

<« 7Y fud - 3t 4+ B

+ (p—u)u2 - 3pu + 2p} pk

2(p-u2)(p-u)2
operations to compute vl ana 17! ana
202 (u-1) , g 2. k
<2l (9 -1+ 2mn’p

2(p—u2) p-u
operations to do two multiplications of a full matrix by a triangular
matrix.

Thus Gaussian elimination requires

4

< _p-u W0 - 4t 4 (p+5)ud - Tpu + 2p(prl)

2 (p-u?) (p-u)

3

+ 2(p-w (00 - 3u? + 40 + (p-2)u® - 3pu + 2p)

+ (2)(p—u)2ﬁ2(u—l)} pk
<, -1 + 2mm?

< _p-u 5 {-2u® + (9+2p)u° ~(14+10p)u” + (2p°+11p+9) u>
2(p-u) " (p~u)

+ Zpu2 - (6p2+llp)u + 6p2 + 2p }pk operations .

, (3.3.1)
To compute X = (U—lL_l)PB it requires
(—g~ -1+ 2m)m2

-u2 ' 6 5 4 3
< B 5 s— {-u® + (pr4)u’ - (Bp+Blu + (4p+9)u

2(p-u”) (p-u)

. ') -
+ (p2 - 3p)u” - (p2+9p)u + 4p2 + 2p} pk .

¢

e P IR
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+ (—g—2 -1+ 2m)m2 pk operations
p-u A

,(_3_2 -1+ 2mn’
< B 2 (~u® + (pra)w’ - (3p+10)u? + (8p+9) u’
-2 (p-u“) (p-u) | N |

k

- (P+P2)u2 - (5p2+9p)u + 2p(p2+2p+l)} p operations.

(3.3.2)

‘Phus Gaussian eliminations saves us

(_3.2 -1+ 2m)m2 : :
P;? 2y (p-u) ° ® - (w4 (7p+a)u? - (2p®+3p)
p-u®) (p-u |

2

- (3P+P2)U2 + (p2+2p)u + 2p3 - 2p }pk - operations

(3.3.3)

CHECK: u=2,p=7, q= 18

(i) (3.3.1) gives us

2
(s+2mm”. 159 4 736 - 1344 + 1472 + 56 - 742 + 294 + 14} 7%
235 |
o (2572 = 2214y (5 . oy m2 7%
235
179 2.k
= (’73 (5 + 2m)m" 7

(ii) (3.3.2) gives us

,
(s+2mm” o4 4 352 - 496 + 520 - 224 - 616 + 896 ) 7%

2 35

2 35

184

k
(=75

(5 + 2m) m2 7

]
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(iii) (3.3.3) gives us

2
1-5’—‘32—“3’2“— (64 - 384 + 848 - 952 - 280 + 126 + 686 - 98 } 7
235 .
_ (1724 -21714) 5+ 2m m2 7%
235 |
=25+ n° 7* . [cf. 2.4]

3.4 OPTIMIZATION OF COEFFICIENTS

Following the arguments of 2.3, in order to optimize the coef-

ficients of pk we should find the minimum of

f(s) = (_9_2 -1+ .’Zus)uzsp_S , 0<s<r
p-u

r k s k . .
where n = uX = mu. = u uw , the order of the matrix under consider-

ation.

Differentiating f(s) and equating to zero, we have

2
- - (9 _ u_
s = logu peuz 1) (1 + 1In D ) (3.4.1)
3
2lnE§

Since s has to be an integer, choose either the ceiling or
the floor of the RHS of (3.4.1) as the value of s. That this choice
does optimize the coefficients follows from a convexity argument

since f(s) has the shape

( q2+1)'/

P-u 4
f(s)

S

[ RTINS
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3.5 OTHER APPLICATIONS

]

_Suppose we know A = LU, n x n, and add on m equations and m

unknowhs:
A B
M= [ , Bisnxm, Cismxn, Dis m x m.
C D
"Then M = LY/ : .
L (0] 8) I Y LU ' LY
X | L o| 0 XU l Xy + LU
\
r“
. A B
C D .
—
We know L, U.
Solve: (1) LY =B
(2z) Xu = C
(3) Multiply XY
(4) Decompose‘iﬁ =D - XY
' . log,p .
(1) - (4) could be done in O(n ) operations as compared to

O(nzm) operations using the classical method.

—~

Also we have

2

1 1

-1 a Lia gy tea™t -A” "BW

M= '
l -1

wlcal W
A _ »
where W = D - ca”ls .

Knowing Anl, M-l could be found in O(n logup) operations.
To choose or not to choose the approach depicted in this thesis

depends on the value of m.
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' 3.6 REMARKS

Nonnegativity and integrality constraints on the coefficients

or a part thereof imply many inequality relations between u, p and

-g. To fish out a few which imply all is a tedious task indeed.
These relations, however, should provide guidance in a search for
new algorithﬁs based on the choice of u. It should be interesting
to know the error bounds that would incur in using the algorithms
described in this thesis.

The main result should be viewed in contrast tq [3].
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