Implementing File Systems and
Object Databases in a
Microstorage Architecture*

Dawson Dean
Richard Zippel

TR 93-1393
October 1993

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

* This research was supported in part by the Advanced Research Projects Agency of
the Department of Defense under Office of Naval Rsearch Contract NOOO14-88-K-
1989, the Office of Naval research through contract NO0014-92-J-1839 and in part by
the U.S. Army Research Office through the Mathematical Science Institute of Cornell
University.

Implementing File Systems and Object Databases in a,
Microstorage Architecture*

Dawson Dean and Richard Zippel
Department of Computer Science
Cornell University, Ithaca, NY 14850
dawson@cs.cornell.edu
rz@cs.cornell.edu

October, 1993

Abstract

A microstorage architecture consists of a microstorage kernel and several storage servers.
Each storage server implements a storage model that defines a client’s view of all the data in
the system, how it is stored, retrieved and manipulated. The storage servers are built on top
of the microstorage kernel and rely on it to perform the actual data storage and retrieval.
The microstorage kernel implements a mechanism and the storage servers each implement
specific policies defined by their storage models. Several different storage servers, each im-
plementing a different storage model, may run concurrently over the microstorage kernel and
all data in the system is concurrently visible to all the different storage servers. Different
application programs, or different parts of the same application program, can use different
storage models, to manipulate the same data. Microstorage architectures provide a flexible
interface and a smooth transition from traditional file systems to more powerful ob ject ori-
ented storage models. Existing applications continue to work correctly unchanged because
they use a storage server that implements a traditional file model while new applications
may gradually adopt more powerful storage models.

1 Introduction

Modern application programs support increasingly rich documents that contain many different
types of data, such as text, pictures, sounds, and simulations. Different programs, written by
different developers, may manipulate a single document, and no single program may understand
all of the data in such a complex document. Different programs, or different parts of the same
program, may organize the contents of a document differently to support different operations.
For example, a database program views a document as a collection of records, and perform
operations on individual records, while a word processor may view the entire document as a
stream of characters.

At the same time, the boundaries between documents are diminishing. Documents may share
common sections, and end users may jump between related sections of different documents. A
single piece of data, such as a component description in a mechanical design, may appear in several

*This research was supported in part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research Contract N00014-88-K-1989, the Office of Naval Research through contract
N00014-92-J-1839 and in part by the U.S. Army Research Office through the Mathematical Science Institute of
Cornell University.

different documents, such as a parts database, an illustration of the design, and a marketing plan.
Increasingly, data in the system is organized according to how people use it, not according to file
boundaries in a traditional file system.

Modern operating systems should provide better support for modern application programs.
They should provide more powerful storage architectures that provide several different views of
the same data and not impose artificial limits on sharing data. Different programs, or different
parts of the same program, should be able to view the same data in a variety of ways, such as
files, objects, or database records. Data should be seamlessly shared between documents and
programs. Operating systems should also provide backward compatibility, so existing programs
may continue to view data as organized in traditional files, while new programs may gradually
adopt more sophisticated models.

Microstorage architectures provide this functionality. Microstorage architectures consist of a
microstorage kernel and several storage servers. Each storage server provides a different view of
all of the data in the system. This paper introduces microstorage architectures, and describes
the Vista microstorage system as a specific example. Section 2 describes the high level design
goals of the system and section 3 describes how these goals might be achieved with different
storage architectures. Microstorage architectures provide a better implementation of these design
goals and section 4 introduces microstorage architectures. Section 5 explains how microstorage
architectures maintain consistency between different storage models. The next sections explore
specific parts of a microstorage architecture: section 6 discusses the microstorage kernel, section
7 discusses a file storage server, and section 8 examines an object storage server. Section 9
reexamines the original design goals, and discusses how they are implemented in a microstorage
architecture. Section 10 discusses related work, and section 11 discusses open questions and
future work.

2 Design Goals

Microstorage architecture are designed to support a new generation of applications that provide
more powerful end user features. Microstorage architecture do not directly implement these end
user features, rather they provide technology that allows applications to easily implement them.
To understand microstorage architectures, it is important to first understand these end user
features. Although most of these can be implemented with a file system, they are not simply
extensions to files. They also apply to other storage models, and some fit more closely with other,
more powerful, models.

2.1 Perform Queries On Any Document

End users should be able to use queries to find information in any document. Currently, database
applications allow end users to query database files, but the same functionality should be available
for all documents and applications. For example, an end user might use a query to find certain
componentsin a CAD document, or certain cells in a spreadsheet, or all blue images in a graphics
document. End users should be able to use a single query language for all documents and all
applications although the specific query interface should not be important. Different end users
may use different query languages and interfaces with the same documents.

End users should be able to use the output of a query to create a new file or extend an existing
file. For example, an end user may query an existing document to find specific bibliography
references and then create a new bibliography file, such as a BIBTEX file, that contains these
references. The new file should behave like any other file, so programs like BIBTEX can use it
without any change to the program or the file. The user may request that the file be continuously
updated, so when new interesting entries are added to the bibliography database they will also
be automatically included in the file.

End users should be able to use queries to locate entire files. For example, an end user should
be able to name a file with the query, “the letter I sent to Bob last week that contained a picture
of the engine design”, rather than be forced to use a file name such as:

/usr/me/letters/old /bob/engdes2.txt

Applications should accept a query anywhere they currently accept a file name.

2.2 Navigational Links

Users should be able to follow links between related sections of documents. For example, an
end user reading a technical paper that contains a reference to a related paper should be able to
open the related paper with a simple gesture, such as clicking on a bibliography entry with the
mouse. The referenced document will be immediately opened and displayed by the appropriate
application, so if the referenced document was created by a CAD program, the CAD program
runs and displays the referenced document. When the referenced document is opened, a specific
section may be highlighted. For example, if an end user follows a link to an entry in an online
encyclopedia, the encyclopedia document opens and scrolls to display the specific entry. Links
between documents should be persistent, so they remain valid even when the referenced document
is edited, moved, or renamed.

Several hypertext applications currently offer this kind of functionality, but it is typically
limited to documents created by that single program. End users should be able to create links
in any program, and link files created by different programs.

2.3 Rich Documents

Documents should be rich, consisting of words, pictures, sounds, movies, simulations and much
more. End users do not want to create separate files for each part of a document, nor do they
want to jump between several different programs to edit a rich document. No single program,
however, can support all possible kinds of data in a way that pleases all users. A word processor
may be good at editing and formatting text, but it may lack the sophisticated drawing features
to correctly render and edit a CAD illustration. As a result, programs may not know the format
or semantics of all parts of the rich documents they display and edit. Instead, programs will
have to cooperate with other programs that understand the various parts of a document. For
example, a word processor may ask a CAD program to edit a design drawing that appears in a
text document. This type of inter-application communication requires both a powerful storage
model and a standard for inter-application communication.

Separate documents should also be able to share a common section. For example, a mechanical
design document and an inventory database may share a section that describes the parts list for
a product. If the shared section is changed in one document, then it should be automatically
changed in all documents. Updates to shared sections should be propagated whenever a file that
contains the shared section is used, whether that file is opened by a user or by another program
such as an agent. This means updates must be propagated by the storage system, and not rely on
user intervention. Moreover, if several files that share a section are currently open, their contents
should be updated immediately. Some applications may go further, and propagate updates to
shared sections even when they have been copied from a file into virtual memory. For example, a
word processor might copy part of a rich document into virtual memory when it is displayed. If
a shared section in that document is changed by another program, then the changes may update
both the copy of the section on disk and the copy in memory.

2.4 Context Sensitive File Contents

A file should be able to adjust its contents to fit different situations. For example, a file may
be opened by various users with various levels of access. Typical file systems grant read and
write access to users and groups for the entire file. If a user can read or write part of a file then
he can read or write the entire file. Files should instead provide more selective access controls
that allow a user to read only portions of the file, or read only a summary of the file contents or
read some parts and write to different parts. For example, a research paper may display review
comments from colleagues when the owner opens the file, but not when other people open it.
Granting access to part of a file is similar to granting access to a view of a database. The access
controls must be implemented in the storage system, not applications, or else a single untrusted
application might fail to enforce them.

Documents may also hide sections that an end user is not currently interested in. For example,
documents may include previous versions, and end users may specify that they want to read a
specific version when they open the file. Documents may also hide or reveal different sections
depending on the application program that opens them. For example, a source code file may
have sections written in different programming languages, or sections built for different operating
systems, or include sections like a drawing of the data structures and a bug database.

An extreme example of context sensitive files is to completely create new file contents every
time it is opened. For example, a file may contain the latest values of a variety of sensors, such as
the load average of several machines or network traffic statistics. Each time the file is opened, a
variety of system and network management programs create the entire file contents by collecting
the latest statistics. Files can also be updated when some event other than opening the file
occurs. For example, when a source code file is changed, the corresponding object file may be
automatically recompiled.

2.5 Compatibility, Extensibility and Smooth Transitions

As the software industry has grown, it has developed a massive installed base of programs that use
traditional file systems. Any storage architecture should be fully compatible with these existing
programs; existing programs should continue to work correctly without change and existing files
should continue to be fully available without change. Programs that use the new features of
a storage architecture should be able to seamlessly share data with existing programs that use
traditional files.

Most programmers are also familiar with traditional file interfaces, so there should be a smooth
transition when adopting the new features of a storage architecture. New programs may continue
to use existing file interfaces, or adopt some new storage features while continuing to use files, or
adopt many new features and abandon the file model. All types of programs should be able to
share data seamlessly.

2.6 Distribution and Heterogeneous Systems

A storage architecture should be able to work in a large distributed environment. This means re-
sources may be stored on different machines, and different machines may have different standards
for data representation and alignment. Some operations, such as distributed garbage collection,
may be costly due to communication delays. The system has to handle more complicated error
cases, such as some machines crashing and rebooting at various times during a long sequence of
operations. Although these are not specific end user features, they do impact the overall utility
of the system and influence the design.

3 Storage Architectures
3.1 Traditional File Systems

Application programs typically store data in files!. When programs implement some of the above
features, such as linking and embedding sections [4,57], they currently do so with traditional file
systems. Unfortunately, files are not the most natural container for the functions described above.
Those functions typically manipulate individual sections of a document: a rich document consists
of different kinds of sections, and operations such as linking and embedding relate sections between
documents. Files, however, store data as a linear sequence of bytes so application programs first
have to parse files into sections and then associate different behavior and semantics with each
section.

A typical file system does not provide any mechanism for persistent and globally unique
section identifiers. For example, a link between sections in different files must uniquely identify
the section in the referenced file, even after both files have been saved to disk and opened again
much later. The task of assigning and storing section identifiers is left to each application program,
and applications that share sections must agree on a standard format for these identifiers. If a
section is shared between files, then there must be some controls on the sharing that protects
individual sections, such as access controls and locking. If users are able to set access controls on
sections, then there must be user-visible names to identify sections and applications will have to
map these names to section identifiers.

Normal file systems do not propagate updates to shared sections, so applications must assume
this responsibility and inform each other of any changes to shared sections. Programs must
communicate and cooperate with each other when they display and edit rich documents that
contain different kinds of sections. For example, a word processor may have to rely on other
programs to draw or edit some sections in a document it created. The word processor must
locate these other programs, send messages they understand, and gracefully pass control to the
other programs while they draw or edit the sections.

A file system does not help programs manipulate sections after they have been copied from a
file into virtual memory. The file system does not convert links to sections on disk into pointers
to sections in memory. The file system does not propagate updates or enforce consistency rules
for sections in virtual memory.

Finally, file systems do not support data translation between different architectures. For
example, Sun and MiPS processors have different representations of integers. This does not
effect a text file whose contents is simply ASCII bytes, but it does effect many other files, such as
any file that contains floating point numbers, 16 or 32 bit integers, or pointers. Without support
from the file system, it is up to the application to convert data to the representation appropriate
to the local processor. For example, if several programs running on different workstations share
a section, they must all perform data translations when they read the section.

Because of the limitations of file systems, application programs must implement many of the
features of an object store on top of a file system. Instead of using the file model, these programs
hide files under their own ad hoc object store and use the file system as little more than a
high level disk interface. This makes applications extremely difficult to build, hurts performance
by adding more layers of software, and makes standards for sharing sections between different
applications difficult to define.

Instead of parsing files into sections, applications instead can implement each document sec-
tion with a separate file and implement documents with directories of files. This is done in
PenPoint [19] and solves the problems of parsing documents into sections and implementing sec-

1Database applications are an important exception and often implement their own private storage architecture,
bypassing the operating system’s file system and directly managing disk storage. Most programs, however, like
word processors, mailers, CAD and multimedia packages use the operating system’s native file system.

Program 1 Program 2 Program 3

Object Store 1 Object Store 2 Object Store 3

File System

Figure 1: Object Storage Built On A File System

tion identifiers. Unfortunately, the resulting rich documents are not compatible with existing
programs; at best the end user runs existing programs like word processors on individual sections
of a document. The system also does not support data translation or support sections in memory.
Such a system really treats the underlying files as objects or disk segments, and thus resembles
an object oriented file system. This is described in the following section.

3.2 Object Oriented File Systems

An alternative design is to implement the file system on top of objects. Each file is implemented
as a collection of objects, and each object stores a different section of a document. For example,
a text file might be implemented as a collection of paragraph objects. Application programs
continue to manipulate files with a traditional file interface, but they may also manipulate the
individual objects that make up a file.

This architecture implements the specific end user features described above, but it may be
unsatisfactory for other unexpected storage features. Different applications may use data models
very different than objects and files. For example, a database application views all data in the
system as records in a table, while an application from the Apple Newton views all data as a
data soup and applications built on segment oriented systems like Multics use a segment model.
Object oriented file systems are biased toward the file model. They specify that data is principally
accessed through files and objects are simply a mechanism for manipulating the contents of files.

4 Microstorage Architectures

Microstorage architectures recognize that files and objects are simply two of many different ways
of viewing data. Each view is appropriate for some operations, and applications may use different
views to perform different operations on the same data. A microstorage architecture consists of a
microstorage kernel and several storage servers. Each storage server implements a storage model

Program 1 Program 2 Program 3

File System

Object Store

Figure 2: Object Oriented File System

that defines a client’s view of the data in the system, how it is stored, retrieved and manipulated.
For example, one storage model might define a traditional file system such as the Unix file system.
This model specifies that data is stored in files that are sequences of bytes. This model also defines
the routines that manipulate files, such as open, close, read and write. Another data model might
specify that data is stored as objects in an object oriented database. This model defines how
objects are typed and bound to methods that enforce encapsulation. Other data models might
specify that data is stored in a semantic net, or define a relational database model, or declare
that data is stored as persistent program variables. Each of these storage models is an abstract
definition, and the corresponding storage server is the actual implementation.

Several different storage servers, each implementing a different storage model, may run con-
currently over the microstorage kernel. All data in the system is concurrently visible to all the
different storage servers, so the same data may be accessed and manipulated through any com-
bination of storage models, such as the file and object models. Different application programs,
or different parts of the same program, may use different storage models to access any data in
the system. For example, a program may use a file system storage server to open and read a file,
and then use an object database storage server to read and write individual objects contained
within the file. In this example, the same data is viewed as both a stream of characters in a file,
and as a group of paragraph objects. Application programs use the most appropriate model for
each operation, even if they share data with applications that use different models.

The storage servers are built on top of the microstorage kernel and rely on it to perform
the actual data storage and retrieval. The microstorage kernel implements the mechanism while
the storage servers each implement specific policies defined by their storage models. The role
of a microstorage architecture in data storage is analogous to the role of a microkernel [62] in
an operating system and microstorage architectures are designed to fit easily in a microkernel
operating system. New storage servers, implementing new storage models and specialized for
different tasks, may be added at any time, so the system can be easily extended and specialized.

Because it concurrently supports several storage models, a microstorage architecture also

Client Application Client Application Client Application

File Storage Server OODB Storage Server Object Storage Server

Micro Storage Kernel

Figure 3: Microstorage Architecture

provides backward compatibility and a smooth transition from traditional file systems to more
powerful object oriented storage models. Existing applications continue to work correctly without
any modification because they use a storage server that implements a traditional file model, such
as the Unix file system. New applications may incrementally use new features from new, more
powerful, storage models while still using a traditional file system. Finally, new applications may
completely abandon a traditional file storage model and exclusively use new storage models. All
of these types of programs may continue to share data seamlessly.

A microstorage architecture, however, does not by itself implement all of the functionality
needed for all of the user features described above. For example, it does not implement inter-
process communication or a standard set of messages used by several cooperating applications to
display a compound document in a window system. These functions are necessary, but they fall
outside the domain of a storage architectures since they describe how applications are structured
and how they communicate. These functions are implemented instead by an application archi-
tecture. A microstorage architecture, however, is an important part of implementing the user
features described above.

5 Consistency Between Models

The storage servers in a microstorage architecture must guarantee that data remains valid in all
data models. For example, if data is read and written as a group of objects in the object model
and as a single file in the file model then it must continue to be both a valid file and a valid
group of objects. The object storage server must not perform operations on individual objects
that would make the data an invalid file and the file storage server must not perform operations
that would make the data invalid objects. The microstorage kernel and individual storage servers
work together to enforce consistency.

Each storage server has a unique 4 byte signature that is assigned either when the server is
compiled or when it is installed in a particular system. Storage servers may attach their signature
to any piece of data in the system and any piece of data may have any number of signatures.
Signatures are persistent and remain with a piece of data even when it is read and written by
different storage servers. For example, a piece of text data may have the signatures of a particular
file storage server and an object storage server. The text data retains these signatures even when
it is viewed and manipulated by other storage servers. Signatures must be explicitly removed
from a piece of data.

Signatures are used to control the way storage servers access data and are similar to access
flags that control how end users access files. When a storage server tries to read or write data that
has attached signatures, the microstorage architecture notices the signatures and intercepts the
access. The kernel locates the storage servers identified by the signatures and obtains permission
from each of them to complete the read or write operation. Storage servers whose signatures are
attached to a particular piece of data are called interested servers and the storage server trying
to read or write the particular piece of data is called the requesting server. The kernel asks each
interested server the following questions:

o Is the requesting storage server allowed to access the data?

e Will the interested server provide a translated copy of the data for the requesting server?
Each data may include optional information describing its current format, such as ASCII
text or portable bitmap. The kernel only asks this question when the requesting server
provides an ordered list of data representations it is willing to accept.

e Is the requesting server allowed to change the format of the permanent copy of the data?
This question is only asked if the requesting storage server wants to change the data and
specifies a new format.

Any interested server may refuse access to data, or it may provide an edited version of the
data that preserves other access controls. Different storage servers will use different criteria to
regulate access. For example, a file storage server may use user access controls and the current
user identity to enforce security. A database storage server may use the same access controls
and user identity, but it may grant access to a restricted view of a database, rather than the
underlying table. An object storage server may ask method procedures to grant access or convert
data representation, which guarantees that the underlying data is only accessed through the
method procedures, and preserves encapsulation.

The kernel implements a basic mechanism and different storage servers use it to implement
very different access control policies for protection, concurrency and encapsulation. Because the
mechanism is implemented by the kernel, it is reliably enforced, so it can be used for access
controls even if some storage servers are not trusted. The kernel only intercepts access to data
that has attached signatures, so there is a performance overhead only when storage servers require
it. The kernel also implements an authentication scheme to prevent servers from impersonating
other servers and prevents a rogue storage server from denying access to all data in the system.
Authentication, and other issues regarding consistency are discussed in more detail in [26].

6 The Microstorage Kernel

The microstorage kernel stores and manipulates the basic unit of data that is used by storage
servers to create files, objects, databases and other data structures. This unit of data is called
a segment and is designed to be independent of any specific storage model so it does not force
policy decisions.

6.1 Segments

A segment is a persistent piece of data that is stored on disk and may be loaded into virtual
memory. When a segment is loaded in memory, it is accessed with a normal pointer and may be
read and written like any other piece of memory. Segments in memory must be explicitly saved
back to disk to save any changes. This is the only way to read or write a segment: first load it
into memory, read or write its contents like any other piece of memory, then save it back to disk
if it has been changed.

When a segment is being loaded into memory, virtual memory is allocated for the entire
segment, so programs may not load individual disk blocks. Segments, however, may or may not
be paged. If a segment is not paged, then all of its contents are copied from disk into memory
when the segment is loaded. If a segment is paged, then disk blocks are only copied into memory
when a client program first tries to read or write each page in memory. Loading a paged segment
is analogous to mapping a file; it sets up system tables and allocates virtual memory but the
actual data is demand paged. Generally paging improves system performance, but there are
good reasons why some segments should not be paged that will be explored in [26]. Any segment
may be individually marked as paged or non-paged, though we will assume in all examples that
segments are paged.

Segments may be virtually any size, ranging from 100 bytes to 1GB. This means storage servers
may use segments for small program variables like structures and arrays or for large things like
a multimedia movie with stereo sound. This wide range of sizes also means the implementation
must be efficient for both very small and very large segments.

Segments are identified by a persistent globally unique identifier. This identifier is an opaque
handle that is used by storage servers to specify a segment to be loaded into memory or to
link segments. An identifier is associated with each segment when the segment is created and
is always valid, even when the segment is loaded in memory. While a segment is loaded in
memory, however, it is usually named by a memory pointer. Segment identifiers are globally
unique so they can specify segments on other networked machines. Kernels on different machines
can communicate, S0 accessing a remote segment appears no different to the storage server or
application program than accessing a local segment.

Segment identifiers are a simple naming mechanism and each storage server may implement its
own name space with its own mechanism for associating names to segment identifiers. Segment
identifiers are location dependent, and include information about the location of the segment
on disk. They resemble an inode number in Unix, which simplifies the microstorage kernel, but
means the microstorage kernel cannot transparently migrate segments. If a particular storage
server needs to implement segment migration, then it must create its own location independent
name space and map those names onto location dependent segment identifiers.

The microstorage kernel implements library procedures that manipulate segments, such as
load, save, create and destroy. There are no methods or types for segments, although a storage
server, the object storage server, implements these features and is discussed below. The micros-
torage kernel is designed to implement a basic mechanism and types and methods require policy
decisions that should be defined by the storage servers.

6.2 Segment Properties

A property is a piece of data that is associated with a segment. There is no limit to the number of
properties a segment may have. Properties are not stored in the memory occupied by a segment
when it is loaded, instead storage servers and client programs use kernel library procedures to
read and write properties. A segment must be loaded into memory before any of its properties
may be accessed, but reading or writing properties does not cause pages of a paged segment to
be swapped into memory. Properties are persistent, so they remain associated with a segment
until explicitly removed, even if the segment is saved to disk and later loaded again into memory.

10

Properties are identified by two 4 byte values, called the property type and property id.
For example, a particular segment might have several properties of the same type that contain
the locations of backup copies of the segment. Each of these properties must have a different
id number to distinguish them. A type-id pair must be unique for a particular segment, so a
segment may have properties with the same type but different id’s, or the same id and different
types. Properties do not have to be unique across segments, so different segments may have
properties with the same type and id.

Most properties are created by the storage servers or application programs that use segments,
but a few special properties, those with type “systemProperty”, are created by the microstorage
kernel when a segment is first created. These system properties contain information used by the
system to maintain segments, such as the size of the segment and when it was created. Although
they are used by the system, these values may also be accessed by storage servers through the
same library routines that manipulate all other properties.

6.3 Segment Links

The microstorage kernel also supports a special type of property called a segment link, or just a
link, that may be attached to any segment. A link is a persistent reference from one segment to
another that survives across loads and saves to disk. For example, if a segment contains a link
to another segment and is saved to disk then loaded again into memory (possibly much later),
the link still refers to the same segment. The microstorage kernel provides library procedures
that allow client programs to create and delete links between segments and to use a link to load
a segment into memory.

Each segment maintains a reference count of the number of links that refer to it so a segment
cannot be deleted while there are links to it. Deleting a segment decrements this count and
when the count reaches zero the segment storage is reclaimed. The microstorage kernel provides
a garbage collector that reclaims garbage segments that have cycles of links and makes sure the
reference count of each segment is accurate.

Storing links as properties allows any program to store and retrieve persistent pointers to
segments. The object storage server, described below, provides a more powerful pointer swizzling
mechanism, but that relies on programs providing type information for a segment. In particular,
the object storage server has to know where the pointers are stored in a segment before it can
update them. Links avoid this problem. Client programs explicitly create links, storing them as
properties, so the kernel and other client programs do not have to read the segment body to read
and write links. This allows the kernel to implement and use links and provide garbage collection
without examining segment bodies, which depend on the data format.

6.4 Segment Attributes

When segments are loaded in virtual memory, they may have memory attributes associated with
them. Memory attributes are a generalization of the concept of paging. When a client program
tries to read a word of memory, the data may be unavailable for several reasons: the page has not
been swapped in from disk, the page is part of shared memory and the latest version of the page is
in another address space or on another machine, another process has locked that page while it is
in its critical section, or the page contains a future that is the result of an asynchronous procedure
call that has not yet returned. Memory attributes allow all of these conditions and many more
to be cleanly implemented and used by the kernel, storage servers and client programs.
Memory attributes may be associated with an entire segment in virtual memory or any page
of virtual memory. Each segment and page may be valid or invalid with respect to a particular
attribute. For example, suppose that there is an attribute that signifies that the page contents
have been swapped in from disk. A page is valid with respect to this attribute if its contents

11

have been swapped in. Another attribute may signify that a page is unlocked by cooperating
processes so any process may read or write it. A segment is valid with respect to this attribute if
it is unlocked and available for use. Before any program may reference a word in virtual memory,
all attributes associated with the segment and page that contain that word must be valid. If any
of these attributes are invalid, then a pager procedure associated with each invalid attribute is
called.

There is a single pager procedure for each attribute and the pager makes the attribute valid.
For example, the pager for the attribute that signifies that a page has been swapped in from
disk just copies the page data from disk. The pager for the distributed shared memory attribute
will consult a system dictionary, find the latest version of a page and copy it in from the correct
remote machine. A pager procedure for a lock attribute may just wait until the lock is released,
causing the program to block until the process that holds the lock releases it. Vista defines
several attributes and their pager procedures, but storage servers and client programs may define
their own attributes and provide their own pager procedures. Attributes enforce a constraint
before every access to memory, so they are a powerful mechanism for defining protocols for
sharing segments in memory between programs. Storage servers may use attributes to maintain
consistency when data is simultaneously being updated in several different models.

When an attribute is initially defined, it specifies whether it applies to individual pages of
memory or to entire segments that may be several pages long. For example, an attribute that
specifies demand paging disk blocks may apply to individual pages. After the pager for this
attribute completes, the rest of the pages of the segment are still invalid, and the pager will be
called again if the client program tries to read and write to any of those other pages. Other
attributes, like the lock attribute, may apply to an entire segment. Once a shared segment is
unlocked, then the entire segment is unlocked, and a client program may access any other page of
the segment. In general, most attributes apply to the entire segment and only low level attributes
(typically those provided by Vista) are aware of the underlying storage and page layout and can
manipulate individual pages of a segment.

Attributes apply to a segment only when it is loaded in virtual memory, so attributes are not
preserved across saves to disk. When a segment is saved to disk, its updated contents must be
read from virtual memory and copied back to disk. By definition, all attributes must be valid
before a segment may be read, so reading the segment makes all attributes valid.

7 The File Storage Server

The file storage model is important because it provides backward compatibility with existing
applications, and because it provides block IO operations that allow separate pieces of a file to
be individually loaded into memory. With block 10, applications can read and write files one
piece at a time so they can read and write very large files, like multimedia files, that are larger
than virtual memory.

The Vista file storage server implements files similar to Unix files, and provides standard
library routines like creat, open, close, read, and write. Other storage servers could implement
different file interfaces, such as the Macintosh, Windows, Amoeba, or Cedar file systems.

7.1 File Interfaces

The Vista file storage server implements files on top of the microstorage kernel so files do not
exist by themselves, but are stored as trees of segments. The file server maps each file name
onto a single segment and a segment that has an associated file name is called a file segment.
Any segment may have a file name, and segments with file names may still be manipulated by
normal segment operations just like any other segment. Typically, file segments will contain links

12

myFile: Segment A

112 314 516
Segment B Segment C
A|B|C d|e|f

Figure 4: File Made of Segments

to other segments, although this is not necessary. If a file segment does contain links to other
segments, then the contents of the file if the sum of the contents of all segments that are directly
or indirectly linked to the file segment. A file is the entire tree of segments rooted at the file
segment.

The file storage server implements file system routines such as read and write that find data
in various segments and create the illusion that the file data is a seamless byte stream. These
routines treat a segment similar to a disk block in a traditional file system such as Unix [6,51],
and a segment loaded in memory is similar to a disk block in a block cache. The only difference
between implementing a file out of segments rather than disk blocks is segments consist of multiple
disk blocks, so the Vista file system loads several blocks at a time when it loads each segment
into memory. In effect, the only difference is the Vista file system prefetches and loads clusters
of disk blocks into cache while a traditional file system loads one block at a time.

For example, suppose that the file storage server implements a particular file with three
segments: a file segment and two linked segments (see Fig. 4). A client program could access
this data as segments by first loading the segments into memory and then navigating the links.
Alternatively, a program could open myFile, which maps to segment A, and read the same data
as a serial stream of bytes. Because this serialization occurs in the file storage server, applications
cannot tell the difference between a file that is made up of segments and a normal file made up
of disk blocks in a traditional file system.

This stream could be in several forms, depending on the order in which the linked segments
are traversed. In this example, the contents of segments B and C could appear in the byte stream
in three places depending on the traversal order.

Pre-Order Before the contents of segment A. The stream would look like: ABCdef1l
23456

In-Order At the link position, that is in the middle of the contents of A. The stream
would look like: 12 ABC34def56

Post-Order After the contents of A. The stream would look like: 123456 ABCdef

Intuitively, the in-order traversal order is the most natural, but different programs and different
files may prefer different formats. The default is in-order, but programs may override this when
they open the file and specify a traversal order. Notice that the link to segment B appears before
segment C in the file segment, so segment B always preceded segment C.

13

myFile: Segment A

Not Swapped In

Figure 5: File In Memory After Load

myFile: Segment A

Figure 6: File In Memory After First Read

7.2 An Example

Consider a simple example of a program reading myFile described above. For this example, the
segments are marked as paged, although they could be marked otherwise. Initially, no segments
are loaded into virtual memory. When the application opens the file with the command:

fd = open(“myFile”, RDONLY);

the file storage server initializes some internal state and loads the file segment. Because the file
segment is paged, none of its contents have been swapped in from disk yet.
Next, the client program reads the first two bytes of the file with the command:

result = read(fd, buffer, 2);

The file storage server tries to read these bytes in the file segment and this causes a page fault.
To service this page fault, the microstorage kernel swaps the first page of the file segment from
disk into memory. The file segment is only a page long, and it consists of the text, “123456”.

The file attributes specify in-order serialization of the segments contents, so the file storage
server starts to read from the file segment. The file segment also contains two links, and the file
storage server uses the type and id of the links to decide where the linked segments should appear
in the byte stream. For example, the link id could be interpreted as a byte position. This first
read operation, however, does not require that linked segments be loaded into memory. The file
storage server reads the requested bytes, “12” from the file segment and returns.

The program then reads the next 2 bytes, that includes text from the first linked segment,.
The file storage server loads the first linked segment into memory. The linked segments are also
paged, so the file storage server causes a page fault when it first tries to read segment B. The
microstorage kernel services this page fault and swaps in the text for segment B. The file storage
server completes reading this segment and returns the text.

The client program reads the rest of the file and the storage server returns the remainder of
the segments in a similar manner. The file storage server reads segments, and the microstorage
kernel pages in their contents as they are read.

14

myFile: Segment A

Segment B

A|B|C

Figure 7: File In Memory After Second Read

7.3 Creating and Manipulating Files

A client program may create a file in one of two ways: declare an existing segment to be a file
segment, or use file operations such as the Unix creat system call. The first method only requires
that the client program identify a segment and provide a name and directory for the file. The
segment becomes a file segment, and appears in the file storage server name space as a file. A
single segment may appear in the file name space in several places, and, like links in the Unix file
system, all of these file names refer to the same segment, not copies of the segment. A segment
is never deleted until all file names and links that refer to it have been removed.

Identifying segments as files requires a system routine not normally found in traditional file
systems. The file storage server provides several such special routines that may be used to manage
the segments that make up a file. A normal application program does not have to use any of
these special routines; they are provided only for programs that wish to manipulate individual
segments. These routines include making a segment into a file segment, making a file segment
into a normal (non-file) segment, and returning a pointer to the segment associated with a file
name. A program that uses these routines will also likely use other routines provided by the
microstorage kernel or other storage servers to manipulate segments.

When application programs create files through the standard file interface, the file storage
server must create these files out of segments. Segments may be any size, so it is possible to
create a file out of a single segment. Reading or writing a segment, however, requires that the
entire segment be loaded into virtual memory so segments should not be too large. Files may
realistically be very large, up to several hundred megabytes for files such as multimedia movies,
and this will often be too large to load into virtual memory. To solve this problem, when a
file is created with a file operation, the file storage server always stores the file data in a tree
of segments. Segments at the leaves of the tree contain the actual file data and are limited to
a reasonable maximum size. The internal tree nodes are segments that contain links to other
internal nodes and leaf segments. This organization treats segments like disk blocks, and the file
segment is similar to a Unix inode.

8 Object Storage Server

The object storage server implements a storage model that organizes all data into objects. Each
object is implemented by a single segment, but it includes type information and is manipulated by

15

method procedures. Objects resemble data in an object oriented programming language; objects
are typed in a class hierarchy, objects are only manipulated by method procedures, methods are
bound to objects at runtime and methods support operator overloading and inheritance. Objects
are designed to provide a more powerful interface for application programs that manipulate
individual segments. They are more powerful because they enforce the policy decisions of a
specific storage model. Of course, no application program must use this model, it is simply one
of several storage models that programs may use.

8.1 Classes and Formats

Object types perform two functions: they describe the semantics of an object and they describe
the representation of an object. Object semantics define the concept an object models, such as a
list of numbers or an employee record. The semantics do this by defining which operations may
be performed on each object, effectively binding method procedures to a class of objects. The
object representation describes how the contents of an object is represented in terms of primitive
data types such as integer and character. Some, but not all, semantics may infer a representation,
for example employee records may always have the same format.

Typing objects lets the object storage server perform some powerful functions on behalf of
client programs, but it may also be unreasonable to require a program to type all of its data.
For example, consider typing every byte in every file in a typical file system serving a commu-
nity of users. Even though application programs do not have to use objects at all, the model
should be flexible enough to encourage their use. Moreover, some objects may also change their
representation every time they are stored, yet still maintain the same object semantics and use
the same operations. For example, some graphic objects are really bags of tagged data, and two
different objects may have very different contents and internal representations even though they
are manipulated by the same procedures.

Because of these issues, object types are designed to be flexible and non-obtrusive. Each
object has two separate pieces of type information: the class, that describes the operations that
may be performed on the object, and the format, that describes the actual representation of the
object. Every object must have both a class and a format, but the object storage server provides
simple defaults for both. Besides convenience, separating type and format preserves abstraction.
A program does not have to know the internal representation of an object to use it or call its
methods.

8.2 Object Classes

Classes are organized in a hierarchy, as they are in most object oriented programming languages,
although each class must have exactly one parent, enforcing single inheritance. The object storage
server provides some standard classes, and client programs may define new object classes by
calling library routines. Each method is identified by its name and the classes of it arguments, so
a single method name may be defined differently for different classes. Classes inherit methods from
parent classes, so an object of a particular class may be manipulated by a generic method from
an ancestor class. When a method is applied to an object, the object storage server dynamically
locates the appropriate method definition using the class of the object, the method name and
the class hierarchy. If there is a method with the specified name that takes an argument of the
object’s class, then that method is invoked. Otherwise, the method with the same name that
takes an argument of the nearest ancestor class is used.

Methods are stored locally on each machine that uses the object storage server, even if the
actual data is stored remotely on a central server in a distributed system. Many distributed
systems contain machines with different architectures and different versions of different operating
systems. Each machine will need its own implementation of the object methods that works

16

with its processor and operating system. These are then made available to the clients running
on each machine. If methods were stored with the data, as they are in many object oriented
databases, then the objects could only be used by the particular architectures and operating
systems supported by the methods. Installing new methods in a central store to support each
different client is difficult, especially in a large rapidly changing system.

Instead, each client loads a local copy of the methods it uses. There is no global namespace for
classes or methods, so each client may have a different version of the same methods or completely
different methods. For example, one client running on a Sun workstation may have a length
method defined for stacks, while another client on a DecStation may not. Because classes are
stored in a local name space, each client must also create its own class hierarchy. The local
name space is also volatile, so client programs must recreate it every time they run. Typically,
clients install classes and methods by loading a precompiled library, like the utility libraries in any
operating system, and these libraries add to the local class hierarchy as part of their initialization.
The number or types of methods in a class is not fixed, so new methods may be dynamically
defined at any time.

Application programs should also use methods when they need help from other programs to
display or edit data in a rich document. For example, a text file may contain an embedded CAD
illustration. A word processor could ask the operating system to run a CAD program and send
the program a message asking it to draw the illustration. The CAD program, however, would
have to behave differently than if it were launched by a user. In particular, the CAD program
would not display its own user interface, such as a document window, or do all of the expensive
state initialization, when it is only being asked to display a small illustration. For example,
LATEX should not run, with all the associated overhead, every time a program asks LATEX to
locate a paragraph in a LATEX object.

Application programs should instead call method procedures that manipulate embedded data.
For example, a CAD program may define a class called “CADillustration”, and provide method
procedures that display and edit objects of this class. Other programs, such as a word processor,
may either load this class into their local name space, or else call a central dispatch program that
has loaded the libraries for several different classes. Methods support overloading and inheritance,
so generic methods may manipulate objects of descendent classes and different programs may
supply different methods for a single class. Method libraries also cleanly separate the functionality
of manipulating individual objects from the functionality of manipulating entire documents in the
main application program. Commercial software companies may distribute a runtime package,
that simply installs the methods for manipulating embedded objects separately from their main
application program. This means users do not have to own the main program to perform simple
operations on objects managed by that program. Companies can also enforce software licenses,
since each program may have to install a local copy of each method library.

8.3 Object Formats

Object formats specify the representation of an object, and allow the object storage server to
perform byte swapping and other conversions when an object is copied between disk and mem-
ory. These operations guarantee that the object contents are correctly represented in the local
architecture and programming language. For example, Sun and MiPS processors use different
representations for 32 bit integers while the Motorola 68000 and 601 processors align 32 bit
integers differently. Besides byte swapping, object pagers may also recursively load in linked
segments. Object formats can include a type for persistent pointers, which specify segment links
that are converted to pointers every time an object is loaded into memory. Converting a link
into a pointer means loading the linked segment, and storing its pointer somewhere in the body
of the object that contained the persistent pointer. The effect is a pointer to a segment that
is always valid, even when both segments are saved to disk and loaded again later. The object

17

format specifies which link to use for each persistent pointer, as well as where the pointers belong
in the object body.

The object storage server stores the format description with the object, so it is available
whenever the object is loaded into memory. Some systems, like Sun’s XDR, may use format
information to translate data as it is passed between networked machines, but then discard the
format information when the data reaches its destination. Storing the format with the object on
disk means programs do not have to declare the format to load an object, which speeds loading
and preserves abstraction. Saving the format on disk also makes the secondary storage behave
like a tagged architecture. Any program may read the contents of any object on disk, even an
object it did not create and, for example, find all pointers or all floating point numbers.

A storage server or an application program declares an object’s format when the object is
created or its format changes. The object storage kernel provides a collection of library procedures
to define formats, similar to the XDR procedures in SunOS [70]. Each routine is used to declare
a different primitive data type in the object; the routines take as an argument a pointer to the
location of the primitive data type in the object. For example, if a client program is defining the
format of an employee record that consists of three integer fields and a character array, it would
call the integer library procedures three times with pointers to each of the integer fields, then the
string type procedure for the character array. Classes and application programs may also use the
declaration routines to define an object schema, which is a template that defines the format of
objects like an abstract type in programming languages. When an object is defined, its format
may be specified by an existing schema instead of using the type declaration procedures.

Different object stores use different mechanisms, such as formal grammars, for declaring for-
mats. No one strategy is optimal and each will please some application programmers and displease
others. The Vista object storage server uses a mechanism similar to XDR because it is familiar
to many programmers and it makes it easy to create many different types if many objects have
unique formats. It is also not difficult to parse commands written in a data definition language
or format grammar and compile the specification into calls to the library procedures. Finally,
different object storage servers may use different strategies.

8.4 Standard Object Methods

Although each object must have both a class and format, the object storage server provides
convenient defaults that can be used for each. The default format is an array of characters, so
the object is treated as a sequence of bytes like a Unix file. The default class is called object
and is the ancestor of all client-defined classes. This default class provides methods that perform
basic operations on an object. Because methods may be overloaded, other classes may define
more specialized versions of these standard methods. In fact, several methods for the object class
do little by themselves and are intended to be overloaded by each new class.

The methods for class object fall into three categories: low, medium, and high level. The low
level methods include routines to create, duplicate and delete an object. These methods treat an
object as a sequence of bytes, and actually just call corresponding microstorage kernel routines.
Middle level methods include loading and saving objects. Depending on the object’s format,
these methods convert the object between its representation on disk and its representation in
memory, which may include byte swapping and pointer swizzling. The high level methods include
parse, display and edit, which have different semantics for each class. Parse converts an object
into different representations, such as changing between graphics standards, and is used when
different storage servers want an object stored in different representations. The display operation
draws an object on an output device and is designed for displaying rich documents in a window.
The edit method processes user actions, and creates an embedded editor for an object so different
objects in a rich document may be edited differently.

Finally, the object class includes a method for enumerating objects that is a generalization of

18

the query mechanism in most object oriented databases. Besides supporting query, enumeration
is used for such tasks as garbage collection and backup. First, an enumeration specifies a set of
input objects. This can be:

All objects of a specified class that are stored on a specified machine. This may be
the local or a remote machine.

All objects that are directly or indirectly pointed to by an object. This means all
objects that are descendents of a top level object. Typically, this top level object will
be a file segment, meaning it implements a file in the Vista file system. In that case,
this is the same as all objects of a specified class in a specified file.

All objects in an index. Object indexes are implemented as a special class of object
that is provided by Vista.

Next, the enumeration performs some action on some object of the input set. A simple
query may specify calling a predicate method for every object, while other routines, like garbage
collection, may mark the object as live, or backup the object or call some other method. Finally,
the enumeration may, depending on the result of the action performed on the object, place the
object in the output set. The output set is an object that contains links to all the member
objects. This output is also a legal input to another query, so queries may be nested.

9 Implementing End User Features

Microstorage architectures are designed to support a new generation of applications that pro-
vide end user functions like those described earlier. It is useful to review how a microstorage
architecture implements those specific functions.

To implement each of these functions, an application program first uses a file name to locate
a file segment and then manipulates the file segment and other segments in the file as objects. If
the objects belong to the object class, then the methods perform simple operations. For example,
a query on an object of class object searches for byte patterns in the object. Existing programs
that create files with Unix file operations are not aware of objects or segments, so they create files
that consist of object objects. New applications will use segments and objects, and can create files
of objects that belong to richer classes. For example, a word processor may create a document of
paragraph objects, and a database program may make a document of record objects. Methods
on these richer objects will be more powerful. For example, a query may find all resistors in a
circuit design that have a specific resistance.

Rich Documents Documents are trees of segments, and different segments may corre-
spond to objects of different classes. To display a rich document, a program invokes
the display method on each object. New applications and segment types are easily
accommodated.

Navigational Links Segments contain links to other segments, so end users can easily
follow links between documents. An application program can graphically represent a
link, and the user follows that link with some command, such as clicking on the link
with the mouse. The application program asks the kernel to load the linked segment,
and then asks the file system to open the file that contains that segment.

Context Sensitive File Contents The display and parse methods may filter the con-
tents of an object depending on the current application, user, access controls or other
conditions. An application may explicitly call the display and parse methods on seg-
ments. If an application instead views data as a file, the microstorage kernel still

19

guarantees consistency between models. The kernel may still call the object server
as an interested server, so all data is still be filtered through the parse and display
methods.

Perform Queries On Any Document File sections are implemented by segments, so
to find interesting sections in a file, an application program submits a query to the
object server, asking it to find all matching segments that are directly or indirectly
linked from the file segment. To create a file from the output of a query, an application
creates a file segment that contains links to all segments returned by a previous query.
To find a file with a query, an application performs a query on all segments in the file
system, and returns the files that contain matching segments.

Compatibility and Extensibility Segments and objects may still be viewed as streams
of bytes in a file, so data is backward compatible.

Distribution and Heterogeneous Systems The microstorage kernel supports remote
segments, and they appear no different than local segments. The object storage
server performs byte swapping and alignment and pointer swizzling when an object
includes format information.

10 Related Work

Microstorage architectures and the Vista system in particular support a variety of different storage
servers and some of these resemble other storage systems, such as research and commercial
object oriented databases, file systems, and object stores. Vista should be seen not as a specific
alternative to these systems, but rather as an architecture in which these systems might be
implemented as storage servers. If they were implemented as storage servers, then these systems
would be able to use various features of Vista and seamlessly share data with other storage servers
supporting different models.

10.1 Object Oriented Databases

There is not yet widespread consensus on which specific features must be included in an object
oriented database, but there does seem to be some agreement [5] that it should combine the
features of an object store and a traditional database system. In particular, this means its
storage model should define data as objects that are organized in a hierarchy of classes and are
bound to methods at runtime. It should also support data definition and manipulation languages
and transactions. There have been several such systems built [8,9,31,43,44,59).

A microstorage architecture like Vista is an excellent platform for object oriented databases.
The microstorage kernel implements segments that provide the storage for persistent objects. An
object oriented database might also use the facilities of the Vista object storage server, which
implements object classes and formats, late method binding, inheritance, operator overloading,
and a general query mechanism. The type system in Vista’s object storage server is flexible,
and the separation of class and format is similar to the distinction between types and classes in
systems such as O2. An object oriented database system would still have to implement additional
policy decisions on top of Vista, however, such as the semantics and syntax of data definition
and manipulation languages, as well as implementing transaction support.

10.2 Related Object Stores

There have been many different objects stores, and different systems use objects to address dif-
ferent problems. Some object stores, such as LOOM [42], provide a persistent storage mechanism

20

for programming languages. LOOM implements a persistent object base for Smalltalk that runs
on a Xerox Dorado. LOOM was designed to provide a large virtual address space for objects
and focuses on memory management issues, such as compacting physical memory. Each LOOM
object has a unique 32 bit object identifier, even though the Dorado has a smaller address space.
Clients only access objects with references that behave like a pointers and LOOM intercepts every
read or write to a reference. This allows LOOM to load objects from disk into memory when
they are first accessed and relocate objects once they are in memory.

LOOM provides a large address space on a machine with a small memory, but other object
stores provide programming languages with persistent storage that has different design goals.
Some object systems implement an object model with a compiler and attack problems in parallel
and distributed programming [12,17,55]. For example, the Eden operating system [15,48], written
in the Eden language, and the Emerald [16,41], and Amber [20] languages as well as Distributed
Smalltalk [11] use this approach to implement distributed objects. Eden, Emerald, and Amber
define strongly typed objects and operations on objects are performed by sending a message to
the object. All three languages identify objects with global persistent identifiers that are location
independent. Objects may migrate through the system and an object invocation mechanism in
the languages will find the (local or remote) object and invoke a method associated with it. These
systems solve problems in distributed computing such as remote execution, concurrency control,
and migration.

Still other object stores are not associated with any language, but instead resemble a sim-
ple database without sophisticated data definition and manipulation languages or transaction
support. For example, the Apple Newton implements an global object store that is used by all
applications that run on each Newton. Programs use this as a general data store instead of a file
system. Unfortunately, there is no way to seamlessly share data between a Newton data soup
and Macintosh files. A microstorage architecture would provide this seamless connection, by
implementing both files and Newton data objects, called frames, with different storage servers.

10.3 Application Architectures

Application architectures implement protocols for inter-application communication that allow
several cooperating programs to display and edit a compound document and propagate updates
between files that share sections. For example, Microsoft’s OLE [57] supports rich documents
with object linking and embedding and allows documents to share sections. Similarly, the Apple
Macintosh Edition Manager [4] allows documents to share sections. Neither system, however,
includes a storage architecture so neither addresses how the data that is shared between files
or applications is actually identified and stored. Currently, both systems are built on top of a
traditional file system; OLE on the Windows file system and Edition Manager on the Macintosh
file system.

Application architectures such as these are excellent candidates to work with a microstorage
architecture. The microstorage architecture provides a mechanism for storing, retrieving and
manipulating persistent segments and storage servers can implement various file systems, such
as the Macintosh or Microsoft file systems, or new file systems that directly implement object
linking and embedding. Existing programs continue to access files through a traditional file
system interface, while new programs directly manipulate the individual segments in a file either
as segments or objects.

10.4 Related File Systems

As the Vista file storage server demonstrates, a microstorage architecture easily implements tra-
ditional file systems like the Unix file system. Microstorage architectures are also well suited
for implementing more sophisticated file models, such as the PenPoint file system [19], that sup-

21

port embedding and navigational links. A user document in PenPoint may contain embedded
objects, such as a movie inside a text document. Like OLE, PenPoint implements an application
architecture, which PenPoint calls an application framework, but PenPoint also implements a
storage architecture. PenPoint documents are implemented as DOS directories and the docu-
ment contents are stored in individual DOS files. An embedded document in PenPoint is just a
subdirectory in the parent document’s directory. PenPoint uses DOS files in the way Vista files
use segments. Vista could implement DOS files and directories, or PenPoint could be changed to
directly embed objects with explicit link properties.

Other file systems, such as the Amoeba file service [58], save old versions of file blocks so
previous versions of the file remain available. The Amoeba file service also supports optimistic
concurrency control, and implements each file as a tree of pages. This closely resembles a tree
of segments, and suggests both that the Amoeba file service could be easily implemented as a
storage server and that microstorage architectures may use the ideas of optimistic concurrency
control.

Several files systems, like the Intelligent File System [33], support locating files based on their
contents and attributes. The intelligent file system then creates virtual directories comprised of
all files that meet certain criteria. The intelligent file system, however, relies on file transducer
programs that parse files and determine whether certain attributes apply. Like application ar-
chitectures, this uses the standard flat file architecture and relies on parsing a file to implement
new functionality. Finally, the GOOSE operating system [7] implements a form of dynamic file;
files can have a program associated with them that is run when the file is opened normally. This
program can dynamically generate the contents of the file or perform any related function. This
is similar to opening a program in Plan 9 [61] through a file interface.

10.5 Related Segment Architectures

Multics [13, 24,27, 60], implements a general purpose segment architecture. In Multics, client
programs create persistent segments and access their contents with memory pointers. Segments
do not have to be explicitly loaded into memory, because Multics implements a single level store.
This means all stored data, whether it is in memory or on disk, is in the same global address
space; a pointer to a segment is always valid even if the segment is on disk. Links between
segments can simply be pointers, and since pointers are always valid there is no need for pointer
swizzling. More importantly, access controls in a single level store are applied to segments so
programs can share data and enforce access controls even when data is in memory. Multics
does not implement some of the more modern ideas of object oriented programming like type
hierarchies and operator overloading but it does support runtime binding of segment pointers
and many more ideas in operating systems.

The Opal operating system [21] also implements a single level store, but it runs on 64 bit
processors and uses 64 bit addresses as persistent global identifiers. Opal supports threads that
execute in a protection domain, which is like an address space. Threads may attach segments
to a protection domain, which is like mapping a segment into an address space. Programs may
just use threads and segments, but Opal also supports an object model on top of the segment
architecture.

Both Multics and Opal rely on hardware support for segmentation, and it would be difficult
to port them to different architectures®. In Multics, for example, segments are demand loaded
into virtual memory when a pointer to a segment is first dereferenced. Once the Multics segment
has been loaded, the contents of the segment may be paged, so each is swapped in when it is first
referenced. Vista can use memory attributes to page segments after they have been loaded into
memory, but it cannot intercept every pointer access and demand load segments into memory
without hardware support. Memory attributes are applied to a specific piece of memory, not any

2Multics uses segment registers, which are found in some of the most popular microprocessors.

22

uninitialized pointer and memory attributes have no means of mapping an uninitialized segment
pointer to a segment identifier. Despite this limitation, Vista’s object storage server resembles
a single level store. Objects are persistent and memory resident and may contain persistent
pointers that are valid across saves and loads.

10.6 Related Memory Management

Managing data in memory is an important part of a microstorage architecture, and there have
been many related projects [71]. Memory attributes have been independently developed in several
projects [3,29] as a general purpose memory management tool. MENTAT [35,36] implements
futures for objects but did not define general client pagers. Mach [1, 32,62,64, 74] supports a
notion of user level pagers that handle all page faults in a designated area. In Mach, client
programs may associate any section of virtual memory with a user level pager procedure. Of
course, Mach’s most important influence on Vista is the idea of building a simple kernel that can
support different policies in servers. This idea was also explored in systems such as Amoeba, [72],
V [22,75], and Hydra [52,78].

11 Current Status and Future Work

Vista is currently under development on a collection of Sun workstations under SunOS 4.x. The
memory attributes are implemented with Unix memory management facilities, but the rest of
the system is extremely portable and could be easily moved to systems as diverse as Macintosh,
NT, DOS, Windows, VMS, and PenPoint. At the time of this writing, the microstorage kernel is
running and work is underway on a file storage server that compatible with the Unix file system.
Vista will support an NFS server, so workstations running Unix can use files stored on Vista
without changing their local operating system. This works well for development, but Vista is
designed to eventually replace the local file system.

To demonstrate its full potential, Vista needs several more storage servers, such as ones that
implement a persistent programming language, a semantic net, a relational database, and a
complete object oriented database. Each of these introduce open questions in their respective
domains, as well as questions of how they work with a microstorage and other storage servers.

The object storage server also has open issues. For example, it currently locates methods in in
the class hierarchy using only the the class of the object a method is applied to. This resembles
C++ but another language, CLOS, might use a more suitable method. CLOS uses the classes of
all the arguments to a method to find the most closely matching inherited method. For example,
suppose that a program applies the insert method to arguments of type stack and boolean. CLOS
may find two methods named insert, one that takes arguments of type set and integer and another
that takes arguments of type set and list. Stack is a subtype of set and boolean is a subtype of
integer, not list, so CLOS calls the first method. This is a flexible mechanism for inheritance and
is currently under investigation.

The object storage server also does not currently support remote object invocation. The kernel
can load and save remote objects, so programs can invoke local methods on remote objects, but
they cannot invoke remote methods on local or remote objects. Remote method invocation
would resemble a remote procedure call [14] and could use object format information to marshal
arguments. There are also a number of different issues when objects are paged in a heterogeneous
computing environment. Different processors and programming languages have different rules for
data format and alignment, and this means that data on disk will have different sizes and formats
in the memory of different systems. That makes it difficult to predict how large data will be when
it is paged in, so it is difficult to locate where the data for a specific memory page is stored on
disk. There are several possible solutions under consideration, including providing more elaborate
format information and not paging typed objects.

23

Finally, there are several open issues that effect the microstorage kernel. A microstorage
architecture may support many links throughout a large internet of computers, some of which may
be disconnected at any time. This makes distributed garbage collection difficult. A microstorage
architecture also shares design issues with microkernels, such as the performance penalty from
crossing address spaces if several servers implement a single system call. Microkernels have begun
to address this question, but more work needs to be done. Finally, fault tolerance has not been
addressed, but it is essential in a storage architecture. Ideally, a microstorage architecture will
provide a mechanism, and different storage servers implement various guarantees as individual
policies. Fault tolerance typically has a performance penalty, and often adds implementation
complexity, so it should be left to each storage server how to support it.

12 Summary and Conclusions

Current operating systems separate storage policy from mechanism by supporting a simple file
system that makes few assumptions about how application programs use their data. A user docu-
ment seldom looks like the stream of bytes that is stored in a file, so different programs implement
their own data storage architecture on top of files. The result is each application program be-
comes an isolated world with its own private data representation and storage architecture, and
it is difficult to move and share data between programs.

Each program has different storage needs, but common themes emerge. Instead of providing
one simple mechanism, the operating system can support many different applications by providing
many different policies. A microstorage architecture implements multiple storage servers, each
implementing the policies of a different storage model, on a common mechanism, the microstorage
kernel. This provides more powerful data storage tools for application programs, and makes the
system extensible since new storage servers can be added at any time. Multiple storage models
also support sharing between programs, since different programs, that perform different functions
and use different storage models, may use the same data. Multiple storage models also provide
a smooth transition from a file based view of data to an object based view.

References

[1] M. Accetta. Mach: A new kernel foundation for Unix development. In Proceedings of the
Summer 1987 USENIX Conference. USENIX, 1987.

(2] R. Ananthanarayanan, Sathis Menon, Ajay Mohindra, and Umakishore Ramachandran. On
the integration of distributed shared memory and virtual memory management. Technical
Report GIT-CC-90/40, Georgia Institute Of Technology, 1990.

(3] A. Appel and K. Li. Virtual memory primitives for user programs. In Proceedings of the
Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, 1991.

[4] Apple Computer. Inside Macintosh, Volume VI, chapter The Edition Manager. Addison-
Wesley, 1991.

[5] Malcolm Atkinson, Francois Bancilhon, David DeWitt, Klaus Dittrich, David Maier, and
Stanley Zdonik. The object-oriented database system manifesto. In Proceedings of the First
DOOD Conference, December 1989.

[6] M. Bach. The Design of the Uniz Operating System. Prentice-Hall, 1986.

24

[7] K. Bailey, L. Boynton, P. McKenney, G. Oliver, and D. Regan. User defined files. Operating
Systems Review, 15(4), October 1981.

[8] F. Bancilhon. Object oriented database systems. Proceedings of the Seventh Symposium on
Principles of Database Systems, 1988.

[9] Francois Bancilhon, Claude Delobel, and Paris Kanellakis, editors. Building an Object-
Oriented Database System. Morgan Kaufmann, 1992.

[10] Gilles Barbedette. Lisp O2: A persistent object-oriented lisp. In Proceedings of the 2nd
EDBT Conference, March 1989.

[11] John Bennett. The design and implementation of distributed Smalltalk. In ACM SIGPLAN
Notices, Proceedings OOPSLA 1987. ACM SIGPLAN, 1987.

[12] E. Bensley, T. Brando, and M.J. Prelle. An execution model for distributed object-oriented
computation. In ACM SIGPLAN Notices, Proceedings OOPSLA 1988, pages 316-322. ACM
SIGPLAN, 1988.

[13] A. Bensoussan, C.T. Clingen, and R.C Daley. The Multics virtual memory: Concepts and
design. Communications of the ACM, 15(5):308-318, May 1972.

[14] Andrew Birrell and Bruce Nelson. Implementing remote procedure calls. ACM Transactions
on Computer Systems, 2(1):39-59, February 1984.

[15] Andrew Black. Supporting distributed applications: Experience with Eden. In Proceedings
of the Tenth Symposium on Operating System Principles, pages 181-193. ACM SIGOPS,
1985.

[16] Andrew Black, Norm Hutchinson, Eric Jul, and Henry Levy. Object sructure in the Emerald
system. ACM SIGPLAN Notices, Proceedings OOPSLA 1986, pages 78-86, 1986.

[17] J.D. Bos and C. Laffra. PROCOL a parallel object language with protocols. In ACM
SIGPLAN Notices, Proceedings OOPSLA 1989, pages 35-47. ACM SIGPLAN, 1989.

[18] B. Caplinger. An information system based on distributed objects. In ACM SIGPLAN
Notices, Proceedings OOPSLA 1987. ACM SIGPLAN, 1987.

[19] R. Carr and D. Shafer. The Power of PenPoint. Addison-Wesley, 1991.

[20] Jeffrey Chase, Franz Amador, Edward Lazowska, Henry Levy, and Richard Littlefield. The
Amber system: Parallel programming on a network of multiprocessors. In Proceedings of the
Twelfth Symposium on Operating System Principles, pages 147-158. ACM SIGOPS, 1989.

[21] Jeffrey Chase, Henry Levy, Edward Lazowska, and Miche Baker-Harvey. Lightweight shared
objects in a 64-bit operating system. In ACM SIGPLAN Notices, Proceedings OOPSLA
1992, pages 397-413. ACM SIGPLAN, 1992.

[22] David Cheriton. The V distributed system. Communications of the ACM, 31(3):313-333,
March 1988.

[23] Helen Custer. Inside Windows NT. Microsoft Press, 1993.

[24] Robert Daley and Jack Dennis. Virtual memory, processes, and sharing in MULTICS.
Communications of the ACM, 11(5):306-312, May 1968.

25

[25] Partha Dasgupta, R Ananthanarayanan, Sathis Menon, Ajay Mohindra, and Raymond Chen.
Distributed programming with objects and threads in the Clouds system. Technical Report
GIT-CC-91/26, Georgia Institute Of Technology, 1990.

[26] Dawson Dean and Richard Zippel. The vista object storage server. Technical Report In
Preparation, Cornell University, 1993.

[27] Jack Dennis. Segmentation and the design of multiprogrammed computer systems. Journal
of the ACM, 12(4):589-602, October 1965.

[28] J. Dion. The Cambridge file server. Operating Systems Review, 14(4), October 1980.

[29] D. Edelson. Fault interpretation: Fine-grain monitoring of page accesses. In Proceedings of
the Winter 1993 USENIX Conference, 1993.

[30] David Redell et. al. Pilot: an operating system for a personal computer. Communications
of the ACM, 23(2):81-91, February 1980.

[31] O. Deux et al. The story of 02. In Transactions on Knowledge and Data Engineering, March
1990.

[32] Alessandro Forin, Joseph Barerra, Michael Young, and Rick Rashid. Design, implementation,
and performance evaluation of a distributed shared memory server for Mach. In Proceedings
of the Winter 1988 USENIX Conference. USENIX, 1988.

[33] David Gifford and J. O’Toole. Intelligent file systems for object repositories. In Proceedings
on the International Workshop on Operating Systems of the 90s and Beyond, Munich, 1991.
Springer-Verlag.

[34] 1. Greif and S. Sarin. Data sharing in group work. ACM Transactions On Information
Systems, April 1987.

[35] Andrew Grimshaw. An introduction to parallel object oriented programming with Mentat.
Technical Report TR-91-07, University of Virginia, 1991.

[36] Andrew Grimshaw and Jane Liu. MENTAT: An object oriented macro data flow system. In
ACM SIGPLAN Notices, Proceedings OOPSLA 1987, pages 35-47. ACM SIGPLAN, 1987.

[37] Sabine Habert and Laurence Mosseri. COOL: Kernel support for object-oriented environ-
ments. ACM SIGPLAN Notices, Proceedings OOPSLA 1990, 1990.

[38] Robert Hagman. Reimplementing the Cedar file system using logging and group committ.
In Proceedings of the Eleventh Symposium on Operating System Principles. ACM SIGOPS,
1987.

[39] Robert Halstead. MultiLisp: A language for concurrent symbolic computation. ACM Trans-
actions On Programming Languages And Systems, 7(4), October 1985.

[40] Michael Jones and Rick Rashid. Mach and Matchmaker: Kernel and language support for
object-oriented distributed systems. ACM SIGPLAN Notices, Proceedings OOPSLA 1986,
21(11):67-77, 1986.

[41] Eric Jul, Henry Levy, Norm Hutchinson, and Andrew Black. Fine grained mobility in the
Emerald system. In Proceedings of the Eleventh Symposium on Operating System Principles.
ACM SIGOPS, 1987.

26

[42] T. Kaehler. Virtual memory on a narrow machine for an object-oriented language. ACM
SIGPLAN Notices, Proceedings OOPSLA 1986, 1986.

[43] W. Kim. Research directions in object-oriented database systems. In Proceedings of the
Ninth ACM Symposium on Principles of Database Systems, 1990.

[44] W. Kim, N. Ballou, H. Chou, and J. Garza. Integrating an object-oriented programming
system with a database system. In ACM SIGPLAN Notices, Proceedings OOPSLA 1988,
pages 142-153. ACM SIGPLAN, 1988.

[45] W. Kim, J. Banerjee, H. Chou, J. Garza, and D. Woelk. Composite object support in an
object-oriented database system. In ACM SIGPLAN Notices, Proceedings OOPSLA 1987.
ACM SIGPLAN, 1987.

[46] S.R. Kleiman. Vnodes: An architecture for multiple file system types in Sun Unix. In
Proceedings of the Summer 1986 USENIX Conference. USENIX, June 1986.

[47] Butler Lampson. Hints for computer system design. In Proceedings of the Ninth Symposium
on Operating System Principles. ACM SIGOPS, 1983.

[48] Edward Lazowska, Henry Levy, G. Almes, M. Fisher, R. Folwer, and S. Vestal. The archi-
tecture of the Eden system. In Proceedings of the Eighth Symposium on Operating System
Principles. ACM SIGOPS, 1981.

[49] Rodger Lea. COOL: an object support environment co-existing with Unix. Proceedings of
the AFUU Convention Uniz 1991, 1991.

[50] C. Lecluse, P. Richard, and F. Velez. 02, an object-oriented data model. In Proceedings of
the ACM SIGMOD Conference. ACM, June 1988.

[61] Samuel Lefler, Marchall McKusick, M. Karels, and John Quarterman. The Design and
Implementation of the 4.3BSD Unixz Operating System. Addison-Wesley, 1989.

[52] Roy Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism separation
in Hydra. In Proceedings of the Fifth Symposium on Operating System Principles. ACM
SIGOPS, 1975.

[53] Barbara Liskov. Preliminary design of the Thor object-oriented database system. Proceedings
of the Software Technology Conference 1992, 1992.

[54] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation. USENIX, 1988.

[55] Steven Lucco. Parallel programming in a virtual object space. In ACM SIGPLAN Notices,
Proceedings OOPSLA 1987. ACM SIGPLAN, 1987.

[56] Marshall McKusick, William Joy, Samuel Leffler, and Robert Fabry. A fast file system for
Unix. ACM Transactions on Computer Systems, 2(3):182-197, August 1984.

[67] Microsoft. Windows Programmer’s Reference. Microsoft Press, 1992.

[58] S. Mullender. A distributed file service based on optimistic concurrency control. In Proceed-
ings of the Tenth Symposium on Operating System Principles, pages 51-62. ACM SIGOPS,
1985.

27

[59] J. Orenstein, S. Haradhvala, B. Margulies, and D. Sakahara. Query processing in the Ob-
jectStore database system. Proceedings of the 1992 ACM SIGMOD International Conference
on Management of Data, 1992.

[60] Elliot Organick. The Multics System: An Ezamination of its Structure. The MIT Press,
1972.

[61] Bob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan 9 from bell labs. In
Proceedings of the Summer 1990 UKUUG Conference, July 1990.

[62] Rick Rashid. From RIG to Accent to Mach: The evolution of a network operating system.
In Proceedings of the ACM/IEEE Computer Society 1986 Fall Joint Computer Conference.
ACM, 1986.

[63] Rick Rashid and G. Robertson. Accent: A communication oriented network operating
system kernel. In Proceedings of the Fighth Symposium on Operating System Principles,
pages 64-75. ACM SIGOPS, 1981.

[64] Rick Rashid, Avadis Tevanian, Michael Young, David Young, Robert Baron, David Black,
William Bolosky, and Jonathan Chew. Machine-independent virtual memory management
for paged uniprocessor and multiprocessor architectures. IEEE Transactions on Computer
Systems, August 1988.

[65] L. G. Reed and P.L. Karlton. A file system supporting cooperation between programs. In
Proceedings of the Ninth Symposium on Operating System Principles. ACM SIGOPS, 1983.

[66] David Rosenthal. Evolving the Vnode interface. In Proceedings of the Summer 1990 USENIX
Conference. USENIX, June 1990.

[67] J. Saltzer. File Indezing and Backup. Springer-Verlag, Munich, 1991.

[68] Singleton and Bennett. A single model for files and processes. Operating Systems Review,
20(1), January 1986.

[69] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mass., 1986.

[70] Sun Microsystems, Inc., 2550 Garcia Ave., Mountain View, CA 94043. Network Program-
ming, 1990.

[71] Ming-Chit Tam, Jonathan Smith, and David Farber. A taxonomy-based comparison of
several distributed shared memory systems. Operating Systems Review, 24(3):40-67, July
1990.

[72] Andrew Tanenbaum and S. Mullender. An overview of the Amoeba distributed operating
system. Operating Systems Review, 15(3), July 1981.

[73] A. Tannenbaum. Operating Systems: Design and Implementation. Prentice-Hall, 1987.

[74] Avadis Tevanian, Rick Rashid, David Golub, David Black, Eric Cooper, and Michael Young.
Mach threads and the Unix kernel: The battle for control. In Proceedings of the Summer
1987 USENIX Conference. USENIX, 1987.

[75] M. Thiemer, K. Lantz, and David Cheriton. Preemptable remote execution facilities for the

V system. In Proceedings of the Tenth Symposium on Operating System Principles, pages
2-12. ACM SIGOPS, 1985.

28

[76] Robbert van Renesse, Hans van Staveren, and Andrew Tanenbaum. Performance of the
world’s fastest distributed operating system. Operating Systems Review, 22(4), October
1988.

[77) Paul Wilson. Uniprocessor Garbage Collection Techniques. Springer-Verlag, Munich, 1992.

[78] W. Wulf, Roy Levin, and C. Pierson. Overview of the Hydra operating system development.
In Proceedings of the Fifth Symposium on Operating System Principles. ACM SIGOPS, 1975.

[79] Michael Young, Avadis Tevanian, Rick Rashid, David Golub, Jeffrey Eppinger, Jonathan
Chew, D. Bolosky, David Black, and Robert Baron. The duality of memory and commu-
nication in the implementation of a multiprocessor operating system. In Proceedings of the
Eleventh Symposium on Operating System Principles, pages 63-76. ACM SIGOPS, 1987.

[80] Roberto Zicari. A framework for schema updates in an object-oriented database system. In
Proceedings of the Tth IEEE International Conference on Data Engineering, April 1991.

29

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif

