SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-3801

TECHNICAL REPORT NO. 954

January 1991

KANBANS, GENERALIZED SEMI-MARKOV
PROCESSES AND ANTI-MATROIDS

by

Sridhar R. Tayur

This work was supported in part by National Science Foundation Grant DDM-8819542.



Kanbans, Generalized Semi-Markov Processes and Anti-Matroids

Sridhar R. Tayur
School of Operations Research and Industrial Engineering

Cornell University, Ithaca, NY 14853

Abstract

In this paper we show some structural results of a kanban system by con-
necting GSMP’s with anti-matroids. The main results from this connection
are: Dominance, Partition, Consistency and Convexity. Dominance deals with
the allocation of kanbans to cells and Partition with the formation of cells.
Consistency deals with the derivatives of performance measures with respect to
the system parameters, and convexity with the dependence of throughput on
processing times. Furthermore, we show concavity of throughput with respect
to number of kanbans in a special setting using coupling methods. Although
some of the results developed here were obtained previously by sample path
arguements, the proofs here are slick and generalize the earlier results. The
second-order properties for kanban lines are new. These form a basis for re-
sults in multi-product lines where proofs by sample paths tend to become a

notational annoyance.

Key Words: Optimal Design, Production Lines, Stochastic Comparisons, Coupling

Methods.



1 Introduction

Recently, much research has concéntrated in studying structural properties of com-
plex systems and has moved away from tractable (for unrealistically simple settings)
markovian mathematics; for example, see [3], [4], [8]. We are interested in the anal-
ysis of a kanban controlled serial production line in a general setting— general, in
the sense that we do not assume a particular distribution of the processing times on
the machines, or restrict the total number of machines or kanbans. Consequently,
we do not expect an exact analytic solution. Rather, we are interested in studying
the structure of the line to develop theoretical results that help in understanding the
effects of variability on the optimal design of serial lines, in stochastic optimization,

in simulation and in developing heuristics for particular cases (see [8}).

We show the following: one, a large number of candidate kanban allocations need
a0t be considered at all in determining the optimal design of serial lines; two, the
optimal partition of the line is insensitive to the nature of the variabilities if the
objective is to minimize the number of kanbans in the system (while meeting the
desired throughput);three, the Inﬁnitisimal Perturbation Analysis yields a consistent
estimate of the derivative of the throughput with respect to the processing times
on the machines; four, the throughput is convex in processing times and five, the
throughput is concave in number of kanbans. Thus, second order properties are proved
which coupled with derivatives provide us with a tool for stochastic optimization that

is theoretically correct. The above results emerge by considering the Generalized
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Semi-Markov Process that defines the kanban system and a resulting anti-matroid
(with repetition). The structural results also form the basis of a heuristic to analyze
serial lines; this heuristic (see [8] for details) is easy to code, is very quick, can handle
large problems and is found to be very accurate.

To make the exposition self-contained, we begin with an introduction to a kanban

system, and a brief description of GSMP’s and anti-matroids.

2 The Kanban Model

We study a serial manufacturing system that uses a general kanban control mecha-
nism. Processing times are variable, machine breakdowns are possible, rework may
be required and vield is not perfect (the yield at any processing step is random).
The undesirable effects of randomness include reducing throughput capacity, missing
delivery dates and limiting the effectiveness of planning and scheduling activities. By
buffering a production line (by safety time or safety stock) most of the undesirable
effects of uncertainty can be mitigated. The larger the buffers, the greater the pro-
tection against uncertainties; but, this protection is not without expense. Apart from
the dollar value of inventory that is tied up due to large buffers, other costs include
the inability to respond quickly to changes in demand (due to long lead times) and
to identify poor quality of products (as it takes time to identify the problem that
caused defects). It is also well known that by locating inventory in different places

in a line— different buffering strategies— the system performance can be altered con-
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siderably. Consequently, it is important to identify the best places at which to buffer
a line. Thus, the trade-off lies in balancing the benefits of buffering with the costs
of inventory. A kanban or pull system has two attractive qualities for line manage-
ment: (1) there is a clear control of the amount of inventory at each location, and (2)
the kanban mechanism reacts dynamically and immediately to a yield loss and other
sources of variability. Because of these attributes, many variants of the mechanism

discussed here have already been successfully implemented around the world.

The serial production line we will study consists of M machines arranged in a series
(or in tandem). These M machines are partitioned into N cells. Each cell consists
of a set of machines grouped together such that the total number of kanbans for this
group is fixed. Thus, a cell is simply a kanban loop. A cell partition is a collection
of non-overlapping and collectively exhaustive groups of consecutive machines. If
all the M machines are in the same cell, we have a CONWIP (CONstant Work In
Process) type control system; if,.on the other hand, there are a total of M cells,
each cell containing exactly one machine, we have a traditional kanban control system
(TKCS). To formalize our ideas and to make our exposition precise, we introduce the

following (mathematical) description of a control system.

We will use N/(M, ..., Mn)/(C1,...,Cn) to denote a serial production line with
N cells, M; machines in cell ¢, and C; kanbans in cell ¢, e = 1 ... N. By allocation
we mean the vector (Cy,...,Cx), and by partition we mean (M ... My). The set

{N/(My,...,Mx)/(Cy,.. s Cn): B M= M, M; > 1,305, Ci=C,Ci 21N <
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M} contains all possible configurations for a line with M machines and C kanbans.
Using this notation, we see that CONWIP is 1/(M)/(C) system, and TKCS is a
M/(1,...,1)/(C4,...,Cn) system. All other configurations giverise to other possible
designs within this famaly of controls. Henceforth, we will refer to the general control
scheme as kanban control.

We briefly describe the essentials of a single-product kanban controlled system.

This is an extension of the model by [6]. As shown in Figure 1, a cell consists of

1. machines in tandem; the processing times on the machines are stochastic, and

all parts go through each machine exactly once.

2. an output hopper, in which batches of material that have completed all opera-
tions in the cell (and have not suffered a complete loss) wait for withdrawal by

the successor cell.

3. a bulletin board, where requests are posted for material from the predecessor

cell, in the form of kanbans.

The product moves through the line in batches, which can be of size one. The
service discipline is first-come, first-served, and each machine can process only one
part at a time. No preemptions are allowed. The parts completed in cell £ —1 become
the input material for cell k, for k=2,..., N. In this study we assume that raw material
needed by cell 1 is immediately available, and that demand for the output of cell N

is infinite (these assumptions are not required for the structural results to hold, but
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largely simplify the details). In cell k there are Cy kanbans (cards) and My machines.
A batch must acquire one of these cards in order to enter the cell, and must continue
to hold it throughout its stay in that cell. After a batch has been completed in cell &,
it waits in the output hopper with its kanban, awaiting admission into the next cell.
If there is a complete yield loss at a particular machine in a cell (say in cell k, all items
in the batch are destroyed), then the batch is thrown away and the kanban that was
attached to this (rejected) batch is placed on the bulletin board of cell k, signalling a
need for replenishment. This immediate pull response to a yield loss is an attractive
quality of this mechanism. (If at the end of a processing step, if a batch contains at
least one good item, then it is sent to the next processing stage. The determination
of the number of non-defective items in a batch is made at the end of the processing
of the batch.) Both rework and méchine breakdowns are accommodated by a suitable

change to the form of the processing time distribution at a machine.

Note that the mechanism is pull between cells, and push within a cell. Also note
that it is not possible for both the output hopper of cell k and the bulletin board
of cell k+1 to be simultaneously non-empty. If a kanban is present on the bulletin
board of cell k + 1, and a batch is available in the output hopper of cell k, the batch
would be moved to the queue in front of the first machine in cell £+ 1 along with the
kanban from the bulletin board of cell k£ + 1. Thus, the maximum inventory possible
in cell k is Cy batches, and no inventory can sit between adjacent cells. This is how

kanbans control inventory. When a completed part is withdrawn to the next cell (cell
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k+1) the kanban of cell k stays within the cell, and is posted on the bulletin board of
cell k. This is a signal to the preceding cell, cell k-1, that cell £ needs a part. Thus
kanbans also serve as an information system that controls material transfer between

successive cells.

This paper is a part of a stream of research ( [8], [9], [10], [11]) with the following
objectives:(a) to provide understanding into the working of these lines, in particular
to the interactions between various design parameters (such as the effect card count
in one cell has on its neighbors), (b) to provide theoretical results that provide com-
putational relief in simulation experiments, (c) to develop heuristics that are efficient
to solve large problems, (d) to provide theoretical support for stochastic optimization,
and (e) to understand the effects of various designs on the overall performance of the
line (cycle time, average inventory, and throughput). The primary purpose of this &
paper is to use the state-of-the-art mathematical results to provide the theoretical

support required for analysis of kanban lines.

We need the following definitions.

The capacity of the line is defined as the expected departure rate from the last station

when there is an infinite supply of raw material.

Non-negative random variables X, Y are ordered stochastically, represented by X <,

Y,if P(X >a) < P(Y > a)Va>0.
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The decisions to be made while designing a serial line can be divided into the

following categories:

1. Given a sequence of machines, is there any benefit of grouping some machines

together from an operational point of view? This is the partitioning issue.

2. Given a partition of the line and a target throughput, how many kanbans are
required, and how many should be placed in each cell? This is the allocation

issue.

We will first consider the allocation issue, and then the partition issue. Before we

prove our results we provide a brief overview of GSMP’s and anti-matroids.

3 Generalized Semi-Markov Processes

We borrow heavily from [3]. A generalized semi-markov scheme is a mathematical
description of a system that evolves due to discrete events at random points in time.
We first describe a scheme with deterministic routing, and this corresponds to a kan-
ban model with no yield losses. The scheme is described by (S, A, ¢,p, P,r), where
S is the state-space, A is the set of possible events, € : 5 — 24 is a mapping that
vields the set of active events in a state (thus, e(s) for s € S is the event list for s).
(A= {a,...an} is the finite set of event types. Note that €(s) C A.) For a generic

s € 5, and a € €s), ¢(s,a) is the state to which the system moves from state s
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due to event . The input to the scheme is {wa(n) : @ € A,n = 1,2...}; wa(n) is
the nth clock sample for a. This input drives the system, and gives rise to outputs
T = {Tu(n) : a € A,;n =1,2...},and D = {Daft) : @ € At 2 0}, where T,(n)
is the epoch of the nth occurence of o and Dy(t) the number of occurences of a in
[0,¢]. If the initial state is So, then the system evolves through states si,..., where

sk = (sp_1, 8%71), with (%1 € e(sg_1) being the event that occured.

Example 1 In a 2/(1,1)/(C1, Cy) system, we have A = {1,002}, where o; corre-
sponds to the end of service on machine 1. The states are {Cy,...,—C3}. The states
are the difference between the contents of the output hopper of cell 1 and the bul-
letin board of cell 2. Also, e(C1) = {a},e(—C3) = {on}, and e(z) = {a1, e}, for

z€{C,—1,...,—Cy+1}. Finally, for ezample, ¢(Cy, ) = Cy — 1.

At time ¢ = 0, clocks are set for all events in €(so); if @ € €(so), the clock for « is
wa(1). The first event happens at t; = min{wa(1) : @ € €(s0)} = wgo(1). The other
clocks keep running (non-interruptive GSMP), and new clocks may need to be set (at
time #;) for state s; (=9(s0,°))-

For a probabilistic routing, we have for a € €(s), p(.; s, ) a probability mass func-
tion on S. To be clear, p(s';s, ) is the probability of being in state s’ due to the
occurence of event «, given that you are now in state s. P is a probability law that

governs the sequence of new clocks for each event. Finally, r is the set of clock speeds.
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Example 2 If there were yield losses at each machine with probability ¢1 at machine
1, and g at machine 2, then p(—Cy; —Cy, 1) = q1, and p(—Ca+1; —Cy, a)=1—aq1.
Note that g, would not affect the state changes, only whether or not a good part was

produced on machine 2.

4 Anti-matroids, with repetition

We (again) borrow from [3] [4]. By viewing A as a set of symbols, every feasible out-
come of a GSMP is a string, and the collection of all such strings can be thought of
as a language (£) over A. L satisfies some basic properties, and this makes it an anti-
matroid with repetition. It so happens that many of the properties of the GSMP can
be obtained by studying the properties of £ (see [3] , a fascinating paper). Thus, in
this work we demonstrate that the GSMP that describes a kanban line gives rise to a
language £ that has the following properties: (M), (CX), (C), (PM), and (PC). These
properties are stated below. First, define for o € £, N(o) = (Nay(0),.- -, Nayn(0)),
the score function that keeps track of the numbér of times an event(a;) has occured

n o.

(M) If 61,04 € £, and N(o1) > N(02) then

6(¢(37 Gi)) - Adwz - 6(¢(S, 02))’

where A0, = {0 : Nolo1) > Na(o2)}
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(CX) If 01,049,053 € L, then
N(o3) > N(o1) AN(02) = [e(6(s5,01)) N e(4(s,02))] — A C e(8(s, 03)),

where A = {a : Ny(o3) > Na(al)/\N(ag)}.

(C) If {O{,ﬂ} € 6(3) then ¢(8,0fﬁ) = ¢(37/Ba)‘

The conditions (PM) and (PC) are probabilistic versions of the conditions (M) and
(C) respectively (these help in the case when there are yield losses). We have, from

[4] [3], (C) = (M), and (PC) = (PM).

5 Allocation

Our first result is on the allocation of kanbans to cells in a N cell line with one
machine in each cell. Our objective is to mazimize the capacity of the line among all
feasible allocations with a fixed total number of kanbans. This is called the dominance
theorem. The processing times on each machine is stochastic, the machines are subject
to breakdowns, rework may be required, and there may be yield losses at any step

(The fs are used to denote the second system in the comparisons).

Theorem 1 Given (C;,..Cn) and (C’;,,.C]/V), forall2< k< Nandall j < k-1, let

C(j;k) =¥, Ci and

12



C(j;k) =Tk, Ci
Then, if
C(j;k) = C(3;k) Vi, k

we have

T(n)<aT'(n), Vn2=1.

Proof We need to show that £ satisfies (PM). We show (in theorem 4) that £ satisfies
(PC) which implies that it satisfies (PM). The key is to observe that S’ C S, and

p(;s,0) = p'(;;s,a)Va € ¢(s) and Vs € SN 5"
Q.E.D.

If the hypothesis of theorem 1 holds, we say that the allocation (Cj,...Cy) is dom-
inated by the allocation (Ci,...Cy). Note that T(n) <y T'(n) implies that the
expected throughput rate due to allocation (Ci,...Cn) is greater than or equal to

the expected throughput rate due to allocation (Cy,...Cx).

Example 3 Consider a five cell line with a total of 11 cards to be allocated. Consider
the following five feasible allocations:

(5,2,2,2,2), (2,3,2,2,2), (2,5,2,3,1), (1,4,2,2,2) and (1,4,2,3,1).

It is casily verified that (1,4,2,3,1) dominates the rest in the sense of theorem
1. This implies that whatever be the five machines in the line, allocation (1,4,2,3,1)

yields the highest mean throughput rate among the above five candidates.
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The intuitive explanation of the above result is as follows. Unlike the traditional
buffered serial line, a kanban can buffer both upstream and downstream of a given
machine. For this reason, we need to consider two and three consecutive machines at
a time.

Six corolaries are immediate.

Corollary 1 Increasing the number of kanbans in any cell increases capacity.

Corollary 2 Increasing the total number of cards to be allocated increases optimal

capacity.

Corollary 3 A uniform allocation of kanbans to cells is dominated.

Corollary 4 In systems with three or more cells, there exists an optimal allocation

that has ezactly 1 card in each of the two end cells.

Corollary 5 In a two cell system every allocation with a total of C cards yields the

same capacity.

Corollary 6 In a three cell system the only non-dominated allocation for C cards is

1,C-2,1.

The first two corollaries provide a short term solution to meeting target through-
put. A successful long term strategy is to improve the performance of the line by

reducing the variance of processing times, losses 1n yield and machine downtimes so
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that the target throughput can be achieved with fewer cards. This is because the
throughput of the line is monotone with respect to the above parameters (see [2]).
The Japanese method has been to first remove a card from a line that is currently
meeting the target and improve the processes until the target is met again. Another
card is then removed, and the improvement is again achieved. Continuing in this
manner, the ideal situation in which every cell has exactly one card is eventually

attained.

Corollaries 3-6 can be counter-intuitive at first glance. Consider the case when
the first machine has a highly variable processing time, or large downtimes, or high
yield losses. Is it still best to give only one card to the first cell? The answer is
an emphatic YES. If additional cards are needed in the short run, they should be
allocated to the second cell. The reason for this is that a card in the second cell can
buffer between first and second cells, or between second and third cells as required
in a dynamic manner. A card allocated to the first cell can only buffer between first

and second cells.
The main strength of the above theorem is the following.

An important fact: The above theorem and its corollories hold for all distri-
butions of processing times and yield losses. The processing times on the different
machines for a given job need not be independent, nor need the consecutive processing
times on the same machine be independent. In fact, the processing times on a given

machine need not arise from a fixed distribution, but can vary from job to job in any
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way. Thus many realistic cases of dependence between processing times and between
yield losses are handled by the dominance theorem. It is this strength of the result
that helps us group different sources of variability together. The optimal allocation
a,lwa,yé has one card in the end cells (if the number of cells are greater than 2), and
the only parameter to determineis C, the total number of cards, which is determined
by the variability and other parameters of the system.

A useful by-product of the above theorem is the computational saving as only
certain allocations need to be evaluated, namely only those with exactly one card in

each of he end cells.

Similar results hold for N/(My, ..., My)/() lines, namely

Theorem 2 (a) For a 2/(1, M) / (Cy,C3) system with the total number of kanbans
= C, T(n) is stochastically minimized when Cy = 1, and Cy = C - 1.

(b) For an N/(1,Ma,...,Mnx_1, 1) /(Ch,.. ., Cn ) system with the total number of
kanbans = C, T(n) is stochastically minimized when Cy =Cy = 1.

(c) In an N/ (M, .. . My)/(C,...,Cn) line, increasing C; in any cell 1 decreases

T(n) stochastically.

6 Partition

Given a sequence of machines, we are interested in grouping consecutive machines
to achieve the efficient frontier. If our objective is to minimize the the mazimum

inventory in the system (equivalently minimize the total number of kanbans), it turns

16



out that all the machines should be grouped together in one cell. This is a CONWIP

type configuration. This is stated in the following theorem.

Theorem 3 Let L = { N/(My,...,Mn)/(C1,...,Cn): N<M, SN, C=C,C; > 1,
SN M; = M, M; > 1} be the set of possible consecutive partitions and kanban
allocations for a given serial line with M machines and C kanbans, and let L* be

the configuration that yields the stochastically smallest departure epoch (for every nth
good output) out of the system. Then, L* = 1/(M)/(C).

Proof Here, it suffices to compare 1/M/C with 2/(M;, M2)/(C1, C2) with My + M, =
M and Cy + C, = C. We can map the states of 2/(My, Ma)/(Ch, C,) to a subgraph of
the states of 1/M/C. Next, it is easily verified that €'(s) C €(s)Vs € S’ 5. Combining

the above with the fact that £ satisfies (PM), the desired result is obtained.

Q.E.D.

Observe that Theorem 3, like Theorems 1 and 2, holds in good generality. The
structure of the optimal partition for the objective of minimizing the total number
of kanbans is insensitive to the particular set of parameters or sources of variability.
In fact, the throughput of any N/(Mi,...,My)/(C1,...,Cn) line with a total of
C kanbans and M machines, is bounded above by the throughput of a 1/(M)/(C)
configuration. (A lower bound in the same generality is developed in [12]).

There is a catch to the comparison made in Theorem 3, namely, that the average

inventory is not the same in all of the configurations. When an attempt is made to
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maximize mean throughput among all configurations of equal average inventory, then
1/(M)/(C) may not be the best strategy. Extensive simulation shows that the con-
figuration that provides the best capacity versus average inventory is N/(1,...,1)/()-
This is shown in [7], from which Figure 2 is reproduced here as an example.
Graph Set 2: We demonstrate the efficient frontiers for all the four partitions in a
three-machine line in Figure 2. Note the uniform superiority of TKCS over CONWIP
when looking at average inventory as the objective. This is in strong contrast to
Theorem 8, where TKCS is uniformly inferior to CONWIP when the objective s
to minimize the maximum inventory. Also note that the other two partitions are
sandwiched between CONWIP and TKCS. The observations made here are not limited
to a three-machine line.

Discussions related to the selection of the objectives, and the optimal partitions

corresponding to different objectives can be found in [7].

7 Second Order Properties

We now present results that justify gradient search procedures in stochastic optimiza-

tion.

Theorem 4 The Infinitisimal Perturbation Analysis (IPA) estimate for the gradient

of throughput with respect to processing rates is consistent.
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Proof It suffices to show that £ satisfies (C) in case there are no yield losses. To
do this, consider a N/(1,...1)/(Ci,...Cn) line, currently in state s = (as,. . LAN_1),
where a; is the difference between the contents of the output hopper of cell ¢ and
the bulletin board of cell i + 1. We show that ¢(s,aras) = ¢(s,cuan) where c; for
j =1...N is the end-of-service event at machine 7.

Without loss of generality, assume [ > k. Then, B(s, caren) = P(P(s, ), ) =
#(s',aq) = s", where s’ = (by, . .. by_1), and 8" = (c1,...cn-1). Note that b; = a;Vj >
k+1, by = ar + 1 and b = ai+ I (aip1 < 0,k — ¢ odd)+ Z (aig1 > 0,k — even)
Vi < k—1. (T (x) = -1 if z is true, and 0 otherwise). Similarly, ¢; = bVy > 141,
aq="b+1,and ¢; = b+ T (biy1 <0,k —2 odd) + 7 (bj41 > 0,k —ieven) Vi <1 —1.

We can write the state ¢(s, ajax) in the same manner. A straight forward com-
parison of terms will show that (C) is satisfied. In a similar manner, (PC) can be
verified too (to account for yield losses). The same procedure can be used for the

general N/(M,... My)/(Cy, ... Cy) lines.

Q.E.D.

Theorem 5 The departure epochs out of the line are stochastically convez and in-

creasing with respect to the processing times on the machines.

Proof It suffices to show that (CX) is satisfied by £. Since (PM) is satisfied (because
(PC) = (PM)), it is sufficient to show that the score function is min-closed. Again,

consider a N/(1,...,1)/(C1,...Cy) line. We have, for a feasible score x (this is a
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vector in Z¥ , with subscripts o; for 1 =1... N corresponding to end of service event

on machine ¢),

IN

T,

b

Loy, /\(xoz,'.H + Cz + Ci+1) /\(5Eag+2 -+ Ci -+ Ci+1 + Ci+2) (1)

To; <

2

Loi_y- (2)
Now if x and y satisfied (1) and (2), so does x A y. This completes the proof.

Q.E.D.

8 Concavity of Throughput with respect to num-
ber of Kanbans

In this section we show that the throughput is stochastically concave with respect to
number of kanbans in a given cell. It is possible to prove the result by uniformization
arguments and anti-matroid properties that were developed earlier. However, for the
sake of variety, we show the result for the case of exponential machines using sample-
path arguements and coupling methods (see [1]). An alternative method, following
[5] is shown in [12]. For ease of exposition, we will restrict to one machine per cell
and assume no yield losses.

The basic idea is to construct three processes corresponding to the following three
systems, where we fix m, m € {1,..., M}. System 0 has C kanbans in cell m, system

1 has C+1 kanbans in cell m, and system 2 has C +2 kanbans in cell m. All other cells
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have one card in them. Let DM(t) be the number of outputs out of system ¢ upto time
t,i=20,1,2, and t > 0. We need to show that DM(t) — DM(t) <4 DM(t) — D} (¢),
V¢ > 0. The crux of the proof rests on the fact that it is possible to construct a virtual
(S7") service process for each server, and have them be synchronous across the three
systems. Recall that this process is simply a poisson process, and a customer departs
from a queue only if the queue was non-empty. Thus, it is sufficient to look at the
system only at times {r,}={57}. The proof is by induction.

We need some notation. Let N7(t) be the number of customers in front of machine
j in system ¢ at time ¢, and H! (t) be the number in the output hopper of cell j in
system ¢ at time 2.

Define for : = 0,1,2 and t > 0,

Xi(t)= DM(t)+ M (NP()+HP'(Y) j=1...M

2

XM(1) = DM (1)

2

The inductive hypothesis is, for j =1...M +1land k=0...n,
Aj(r) = X{(n) - Xi(n) < M(m) = X{(n) = X5(m)

At 7o = 0, the inductive hypothesis is trivially satisified. Let us now suppose that it
is true at 7,. If it is not true at 7,41, we have the following cases to consider (and

each will yield a contradiction).
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1. Tap1 = S{,VI  Then the contradiction can occur only at M + 1. We have
DY(7,) — DM(r,) = D} () — Dg' ()
and NM(7,) > 0,and NM(7,) = 0(= HM-Y(1,) = 0). Then,

XM (r) = XM(ra) = AVH(5) + NY(ra) — N (ra) + HY' 7 () = HY'7H (7).

XM(ra) = XM (r) = AVF(5) + NP (7) = No' (1) + HY 7 (ma) = Ho" ™ (i)
which is a contradiction.
% Tup1 =S, j € {m+1,...M —1}. We have
A () = ATT(m)
and Ni(7,) > 0(= Hi(r,) = 0),and N{ (7,) = 0. Then,

Xg(Tn) - X{(Tn) = AgH(Tn) + Ng(Tn) - N{(Tn) + H‘gﬁl(Tn) - H{_l (n)
X{(Tn) - Xg(Tn) = A{H(Tn) + Nlj("'n) - Ng(Tn) + Hf_l (Tn) — Hgd(Tn)
If HI7'(r,) = 0, then we are done. Else, if Hi'(r,) > 0(= Hi(r,) = 1), we
have
X (r) = Xi¥ () = AF(r) + NP (1) = N{¥ () + H(7) = Hi(7)
X (r) = X3 (ra) = AI(m) + N{P(m) = Ng(ma) + Hi(ra) — H(7a)

and this will take you to stage j + 1. Continuing this way, we will reach stage

M, which will yield a contradiction.
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3. Tuyr = Sp*. This would imply, as before,
Apti(r) = A7)
and NI (1) > 0(= H' (1) < C + 1),and N/*(7,,) = 0. This means,

Xp(ra) = XP(12) = APF(r) + NP (ra) = N () + H' ™ (7) = HP' ' ()

XD (1) = X0 (ra) = APF(r) + N'(7) = N (7a) + H*7 () = HE' ™ (70)

As before, if H""'(r,) = 0, we have an immediate contradiction. Else, if

H""Y(1,) > 0(= H"(m,) = C + 1), we have

XpH(r) — X0 (r,) = APT(ra) + Ny (ra) = Ny (m) + Hy'(7a) — Hi"(7a)

X7 (r) = Xt (r) = APT2(ra) + N (r) = No(m) + HY (1) — Ho'(7n)
and this will yield a contradiction by appealing to a previous case.

4. Tpy1 = Sg,j € {1,...m — 1}. The same procedure as the above two cases will

provide the desired result.

The case with yield losses can also be obtained by the same method but involves

more detailed notation. We thus have,

Theorem 6 The throughput of the line is stochastically concave and increasing in

the number of kanbans in a given cell.
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