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Abstract

This paper reviews the impact of some recent results on the research paradigms in
structural complexity theory.

On a paper submitted by a physicist colleague:
“This isn’t right. This isn’t even wrong.”
— Wolfgang Pauli

1 Introduction

Computational complexity theory studies the quantitative laws which govern computing,.
It seeks a comprehensive classification of problems by their intrinsic difficulty and an un-
derstanding of what makes these problems hard to compute. The key concept in classifying
the computational complexity of problems is the complexity class which consists of all the
problems solvable on a given computer model within a given resource bound.

Structural complexity theory is primarily concerned with the relations among various
complexity classes and the internal structure of these classes. Figure 1 shows some major
complexity classes. Although much is known about the structure of these classes, there
have not been any results which separate any of the classes between P and PSPACE. We
believe that all these classes are different and regard the problem of proving the exact
relationship between these classes as the Grand Challenge of complexity theory.

The awareness of the importance of P, NP, PSPACE, etc, has lead to a broad inves-
tigation of these classes and to the use of relativization. Almost all of the major results
in recursive function theory also hold in relativized worlds. Quite the contrary happens in
complexity theory. It was shown in 1975 [BGST75] that there exist oracles A and B such
that

P4 = NP4 and PB # NPB.

tThis research was supported in part by NSF Research Grant CCR 88-23053.
tSupported in part by an IBM Graduate Fellowship.
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Figure 1: Some standard complexity classes.



This was followed by an extensive investigation of the structure of complexity classes under
relativization. An impressive set of techniques was developed for oracle constructions and
some very subtle and interesting relativization results were obtained. For example, for a
long time it was not known if the Polynomial-time Hierarchy (PH) can be separated by or-
acles from PSPACE. In 1985, A. Yao [Yao85] finally resolved this problem by constructing
an oracle A, such that

PH” # PSPACEA.

These methods were refined by Ko [Ko88] to show that for every k£ > 0 there is an oracle
which collapses PH to exactly the k** level and keeps the first k£ — 1 levels of PH distinct.
That is, for all k, there exists an A such that

EE’A ‘-Ié Z)ll:.’A 7é e # EE,A and EE, Ek-}-n 1 2> 0.

Another aspect of relativized computations was studied by Bennett and Gill who de-
cided to count the number of oracles which separate certain complexity classes. They
showed that P4 £ NP4 for almost all oracles. More precisely, they showed that for ran-
dom oracles the following separations occur with probability 1 [BG81]:

Proby[ P4 # NP4 #£ co-NP4 | =1
Prob,[ SPACEA[logn] # P4 ] =1
Prob,[ PSPACEA #£ EXP4 | =1

Proby[ PA = RP# = BPP4 | =1.

Many other interesting probability 1 results followed [Cai86,Cai87, KMR89):

Prob,[ BH is infinite | = 1
Prob,[ PHA ¢ PSPACE” | =1

Prob[ Under relativization the Berman-Hartmanis Conjecture fails | = 1.

The last result asserts that there exist non-isomorphic many-one complete sets for NP4
with probability 1. It was conjectured that all NP many-one complete sets are polynomial-
time isomorphic [BHT77].

Surveying the rich set of relativization results, we can make several observations. First,
almost all questions about the relationship between the major complexity classes have
contradictory relativizations. That is, there exist oracles which separate the classes and
oracles which collapse them. Furthermore, many of our proof techniques relativize and
cannot resolve problems with contradictory relativizations. Finally, we have unsuccessfully
struggled for over twenty years to resolve whether P =? NP =? PSPACE.

These observations seemed to support the conviction that problems with contradictory
relativizations are extremely difficult and may not be solvable by current techniques. This
opinion was succinctly expressed by John Hopcroft [Hop84]:

This perplexing state of affairs is obviously unsatisfactory as it stands. No
problem that has been relativized in two conflicting ways has yet been solved,
and this fact is generally taken as evidence that the solutions of such problems
are beyond the current state of mathematics.

3



How should complexity theorists remedy “this perplexing state of affairs”? In one
approach, we assume as a working hypothesis that PH has infinitely many levels. Thus,
any assumption which would imply that PH is finite is deemed incorrect. For example,
Karp, Lipton and Sipser [KL80] showed that if NP C P/poly, then PH collapses to X¥.
So, we believe that SAT does not have polynomial sized circuits. Similarly, we believe that
the Turing-complete and many-one complete sets for NP are not sparse, because Mahaney
[Mah82] showed that these conditions would collapse PH. One can even show that for
any k > 0, PSATI — PSATI+1] jmplies that PH is finite [Kad88]. Hence, we believe that
PSATIK] £ PSATIk+1] for all k > 0. Thus, if the Polynomial Hierarchy is indeed infinite, we
can describe many aspects of the computational complexity of NP.

A second approach uses random oracles. Since the probability 1 relativization results
agree with what complexity theorists believe to be true in the base case and since ran-
dom oracles have no particular structure of their own, it seemed that the probability 1
behavior of complexity classes should be the same as the base case behavior. This lead
Bennett and Gill to postulate the Random Oracle Hypothesis [BG81] which essentially
states that whatever holds with probability 1 for relativized complexity classes holds in
the unrelativized case—i.e., the real world.

In the following, we will discuss a set of results about interactive proofs which provide
dramatic counterexamples to the belief that problems with contradictory relativizations
cannot be resolved with known techniques. They also add a striking new counterexample
against the Random Oracle Hypothesis. There have been other counterexamples in the lit-
erature [Kur82,Har85], but none as compelling. Thus, contradictory relativizations should
no longer be viewed as strong evidence that a problem is beyond our grasp. We hope that
these results will encourage complexity theorists to renew the attack on problems with
contradictory relativizations.

2 A Review of IP

The class IP is the set of languages that have interactive proofs or protocols. IP was
first defined as way to generalize NP. NP can be characterized as being precisely those
languages for which one can present a polynomially long proof to certify that the input
string is in the language. Moreover, the proof can be checked in polynomial time. It is
this idea of presenting and checking the proof that the definition of IP generalizes.

Is there a way of giving convincing evidence that the input string is in a language
without showing the whole proof to a verifier? Clearly, if we do not give a complete proof
to a verifier which does not have the power or the time to generate and check a proof,
then we cannot expect the verifier to be completely convinced. This leads us to a very
fascinating problem: how can the verifier be convinced with high proba.bzhty that there is a
proof? and how rapidly can this be done? :

This problem has been formulated and extensively studied in terms of interactive pro-
tocols [Gol89]. Informally, an interactive protocol consists of a Prover and a Verifier. The
Prover is an all powerful Turing Machine (TM) and the Verifier is a TM which operates in
time polynomial in the length of the input. In addition, the Verifier has a random source
(e.g., a fair coin) not visible to the Prover. In the beginning of the interactive protocol



the Prover and the Verifier receive the same input string. Then, the Prover tries to con-
vince the Verifier, through a series of queries and answers, that the input string belongs
to a given language. The Prover succeeds if the Verifier accepts with probability greater
than 2/3. The probability is computed over all possible coin tosses made by the Verifier.
However, the Verifier must guard against imposters masquerading as the real Prover. The
Verifier must not be convinced to accept a string not in the language with probability
greater than 1/3—even if the Prover lies.

Definition IP: Let V be a probabilistic polynomial time TM and let P be an arbitrary
TM. P and V share the same input tape and communicate via a communication tape. P
and V forms an interactive protocol for a language L if

1. z € L => Prob[ P-V accepts z ] > 2.
2. z ¢ L => VP*, Prob[ P*-V accepts z ] < 3.
A language L is in IP if there exist P and V which form an interactive protocol for L.

Clearly, IP contains all NP languages, because in polynomial time the Prover can give
the Verifier the entire proof. In such a protocol, the Verifier cannot be fooled and never
accepts a string not in the language. To illustrate how randomness can generalize the
concept of a proof, we look at an interactive protocol for a language not known to be in
NP. Consider GNI, the set of pairs of graphs that are not isomorphic. GNI is known to
be in co-NP and it is believed not to be in NP. However, GNI does have an interactive
protocol [GMW86]. For small graphs, the Verifier can easily determine if the two graphs
are not isomorphic. For sufficiently large graphs, the Verifier solicits help from the Prover
to show that G; and G, are not isomorphic, as follows:

1. The Verifier randomly selects G; or G; and a random permutation of the selected
graph. This process is independently repeated n times, where n is the number of
vertices in G;. If the graphs do not have the same number of vertices, they are clearly
not isomorphic. This sequence of n randomly chosen, randomly permuted graphs is
sent to the Prover. Recall that the Prover has not seen the Verifier’s random bits.
This assumption is not necessary, but simplifies the exposition.

2. The Verifier asks the Prover to determine, for each graph in the sequence, which
graph, G; or Gj, was the one selected. If the Prover answers correctly, then the
Verifier accepts.

Suppose the two original graphs are not isomorphic. Then, only one of the original graphs
is isomorphic to the permuted graph. The Prover simply answers by picking that graph.
If the graphs are isomorphic, then the Prover has at best a 2" chance of answering all n
questions correctly. Thus, the Verifier cannot be fooled often. Therefore, GNI € IP.

Note that GNI is not known to be complete for co-NP. So, the preceding discussion
does not show that co-NP C IP. For a while, it was believed that co-NP is not contained in
IP, because there are oracle worlds where co-NP ¢ IP [FS88]. In fact, the computational
power of interactive protocols was not fully appreciated until Lund, Fortnow, Karloff and
Nisan [LFKN89] showed that IP actually contains the entire Polynomial Hierarchy. This
result then led Shamir [Sha89] to completely characterize IP by showing that
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IP = PSPACE.

Very recently, Babai, Fortnow and Lund [BFL90] characterized the computational power
of multi-prover interactive protocols

MIP = NEXP.

In both cases, it is interesting to see that interactive proof systems provide alternative
definitions of classic complexity classes. Thus, they fit very nicely with the overall classifi-
cation of feasible computations. Furthermore, both of these problems have contradictory
relativizations [FS88]. That is, there exist oracles A and B such that

IPA = PSPACE* and IPB # PSPACE?,

and similarly for the multi-prover case. Thus, these results provide the first natural coun-
terexamples to the belief that problems with contradictory relativizations are beyond our
proof techniques.

3 The Random Oracle Hypothesis ...

In this section we observe that the proof of IP = PSPACE does not relativize and show
that for almost all oracles the two relativized classes differ:

Prob,| IPA # PSPACEA | = 1.

It is easily seen that
[PPSPACE _ pgpA CEPSPACE

and using standard methods [BGS75] one can construct an A such that
IPA £ PSPACEA.

This shows that the IP =? PSPACE problem has contradictory relativizations and that
the IP = PSPACE proof does not relativize. Similarly, we can see that the MIP =? NEXP
problem has contradictory relativizations. In the following we show that these theorems
also supply counterexamples to the Random Oracle Hypothesis.

3.1 ...it isn’t right ...
Theorem 1 Prob,[ PSPACEA ¢ IPA | =1. .

Proof: For each oracle A, define the language:
L(A) = {1" : |A7"|is odd}.

Clearly, £(A) € PSPACE? for all A. We will show that for any verifier V, the set
C = {A:V4is an IP verifier for £(A)}
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has measure zero. (C stands for “correct”.) Let p(n) be an upper bound on the running

time on V. Fix n to be large enough so that p(n) < 552" and let P be the power set of

£<P(), Since u(C) < |C N P|/|P|, we can concentrate on counting the finite sets in P.
Define the following classes of oracles:

ODD ={A € P : |A="|is odd},
EVEN = {A € P : |A="| is even},
So=0DDNC,

S; =EVENNC.

ODD is the set of oracles where V should accept 1*; and EVEN the set where V should
reject. Sp is the set of oracles where V should accept and does; S; the set oracles where V
should reject but does not.

The idea of the proof is simple. We show that 0.99 - |So| is a lower bound on the size
of S;. This means that the number of oracles where V' messes up is bounded below by
roughly one-half of all the oracles in P, because

|PNC| = |ODDNC|+ |Si]
> |ODDNC|+0.99 - |So|
> 0.99-(|ODDNC|+ |ODD N CJ)

0.495 - |P|.

Thus, |P N C| < 0.51|P| which tells us that the probability (over A) that V4 is part of an
IP protocol for £(A) is less than 0.51. By repeating this proof for larger and larger n, we
can drive the probability down to zero.

So, all we need to show now is that 0.99 - |Sp| is a lower bound on the size of S;. For
every oracle A € Sy, there is some prover P, which convinces V4 to accept in two thirds
of the computation paths. From P and A we can construct many oracles A’ such that
A’ € EVEN but P still convinces V4’ to accept in at least one third of the computation
paths. (This implies A’ € S;.) To construct such an A’ we simply add or remove a single
string z from A. If P convinces V4’ to accept 1" in less than one third of the computation
paths, then z must have appeared in more than one third of the computation paths of the
V4(1") computation. However, the number of strings queried in at least one third of the
computation paths is bounded by 3p(n). So, we can construct 2" —3p(n) > 0.99-2" oracles
n Sl.

Formally, define the function n : ODD — EVEN by

A-{z} ifz€A
7)(A’z)={ALJ{:.f} if z¢ A. .

For each A € Sy define the set R4 to be
Ry={z : |z| =n, n(4,z) € S1}.

We claim that |[R4| > 0.99 - 2". To see this, let r = 2" — |R4|. As mentioned before,
if |zl = n and z € R4, then z must be queried in at least one third of the computation
paths of V(42 So, the total number of queries to strings not in Ry is at least %rZ”(").
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However, the total number of queries in the entire computation tree is at most p(n)2p(").
Thus, r < 3p(n). Since we assumed that p(n) < 552", |[R4| > 0.99 - 2"
Now, define
D= U {(A’z) l z € RA}'
A€Sy

Clearly, |D| > 0.99 - 2"|So|. For each (A,2) € D, n(A,z2) € S;. However, 7 is not a one to
one function, so |D| is not a lower bound on |S;|. In any case, notice that |p~1(A’)| < 2",
because n(A, z) = A’ implies that A and A’ differ at only one string of length n and there
are only 2" strings on length n. Now, let’s consider the total number of distinct oracles in
S; constructed.

D'={A" : 3(A,z) €D, n(A,z)=A).

An easy lower bound on |D'| is |D|/2". So, we get |D'| > 0.99 - |So|. Since D’ C i,
151] > 0.99 - |So)- O

Using standard techniques [BGS75,BG81,FS88], the proof of Theorem 1 can be modified
to yield the following theorems. For the sake of brevity, we omit the proofs.

Theorem 2 Proby[ co-NP4 ¢ IPA | =1.
Theorem 3 Proby[ NEXP4 ¢ MIP4 | =1.

3.2 ...it isn’t even wrong.

The IP = PSPACE and MIP = NEXP results provided natural examples against the
Random Oracle Hypothesis. To give a more complete understanding of the behavior of
these classes with random oracles, we define a less restrictive acceptance criterion for
interactive protocols and denote the class of such languages by IPP. (See also [Pap83]).
We show that

VA, IPPA = PSPACE".

Using the theorem in the previous section, we can provide both an example and a coun-
terexample to the Random Oracle Hypothesis.

Probs[ IPA # PSPACE* | =1 and Proby[ IPPA = PSPACE” | =1.

This severely damages the already battered hypothesis because it shows that the Random
Oracle Hypothesis is sensitive to small changes in the definition of icomplexity classes.
Thus, it cannot be used to predict what happens in the real world.

Definition IPP: Let V be a probabilistic polynomial time machine and'let P be an arbi-
trary TM. P and V share the same input tape and they communicate via'a communication
tape. V forms an unbounded interactive protocol for a language L if

1. z € L => Prob[ P-V on z accept ] > 1.
2. ¢ ¢ L => VY P*, Prob[ P*-V on z accept | < 3.

A language L is said to be in the class IPP if it has an unbounded interactive protocol.



procedure CHECKCOMP(C4,Cs, s) ;

{ This procedure tries to detect if M4 can reach configuration C, from configuration C;
in s steps. }
begin
if s =1 then
{ This may involve querying the oracle. }
if C; — C; in one step then
accept
else
reject
else
Ask the prover for the middle configuration C3 between C; and C,.
Toss a coin.
if the coin toss is heads then
CHECKCOMP(C4, Cs,5/2)
else
CHECKCOMP(Cs, C,,5/2)
end { procedure }

Figure 2: Pseudo-code for procedure CHECKCOMP.

Theorem 4 For all oracles A, IPPA = PSPACE“.

Proof:

IPPA C PSPACE*: Let L be a language in IPPA. Using standard techniques [GS86,
Con87], it can be shown that IPP? with private coins is the same as IPPA with public
coins. Protocols with public coins are easy to simulate because the responses from the
prover can be guessed. In fact, a PSPACE” machine can traverse the entire probabilistic
computation tree and compute the acceptance probability. Thus, a PSPACE4 machine
can determine if there is a prover which makes the verifier accept in more than half of the
computation paths. So, IPPA C PSPACE”.

PSPACE* C IPPA: This proof is similar to the proof that NP C PP [Gil77]. Let L be a
language in PSPACE”. Then there is a machine M4 accepting L which runs in space p(n)
and halts in exactly 29" steps for some polynomials p and q. We claim that the following
verifier V forms an unbounded interactive protocol for L. Given input xfwhere |z|] = n do
the following:

1. Toss g(n) + 1 coins. If all of them are “heads”, then goto step 3.
2. Toss another coin. If “heads” then reject; otherwise, goto step 3.

3. Let I and F be the unique initial and final configurations of M*4(z).
Run CHECKCOMP(I, F,2(™),



In order to prove the correctness of the protocol, we need the following lemma.

Lemma: Let WRONG(C,, C2, s) be the proposition that configuration C, does not follow
from configuration C; in exactly s steps. Then,

WRONG(C], 02,3) =
Vu, 0 <u<s, C3, WRONG(C,Cs,u) YV WRONG(C3,Cy, s — u).

Now, if £ € L, then with the prover that always tells the truth, the probability of
acceptance is the same as the probability that the verifier reaches step 3, which is greater
than 1/2. On the other hand, if z ¢ L, then Prob[ V rejects z | V reaches step 3] > 2-9("),
(This follows from the lemma.) In this case,

Prob [ V rejects ] = Prob|V rejects = at step 2 |
+ Prob[ V reaches step 3 |
- Prob[ V rejects z | V reaches step 3 ]
> (% - 2-q(n)—2) + (% + 2—q(n)—2) . 92—q(n)
>

(ST

Therefore, Prob[ V accepts ] = 1 - Prob[ V rejects z ] < 1. O

4 Conclusion

We have shown that probability 1 results do not reliably predict the base case behavior of
complexity classes. On the other hand, the meaning of probability 1 results for random
oracles needs to be clarified and remains an interesting problem. It would be very inter-
esting to know if there are identifiable problem classes for which the probability 1 results
do point in the right direction.

In addition, we would like to note that the IP = PSPACE and MIP = NEXP results
demonstrated equality in the base case. In many other problems with contradictory rela-
tivizations, we expect the unrelativized complexity classes to be different (e.g., we expect
that P # NP # PSPACE, etc). The next big challenge for complexity theorists is to resolve
one of these problems and separate—if not P and NP—any two classes with contradictory
relativizations. '
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