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1. Introduction. Translating a matrix algorithm from a dense setting to a sparse
setting may involve more than just generalizing indices and using lists instead of dense
arrays. For example, a column-oriented Gaussian elimination algorithm computes the inner
product of two vectors for each element of the matrix. If the vectors are sparse, some of the
component multiplications are unnecessary. However, since it may be necessary to pivot
based on previously updated elements, a sparse Gaussian elimination algorithm cannot
know the exact nonzero structure of these vectors in advance of all numerical computation.
This paper addresses the problem of predicting enough of the nonzero structure in advance
to avoid any unnecessary computation.

For Cholesky factorization (that is, Gaussian elimination on a symmetric positive defi-
nite matrix with no pivoting), there are techniques to avoid unnecessary computation that
use a graph-theoretic characterization of the nonzero structure of the Cholesky factor in
terms of the original matrix [9]. These techniques break the computation into two stages.
The first stage predicts the nonzero structure of the factor, which takes time proportional
to its size. The second stage uses this structure in a clever way to avoid unnecessary
arithmetic or data manipulation; see George and Liu [4] for a full description.

This two-stage approach is not possible for general Gaussian elimination, because piv-
oting makes it impossible to predict the nonzero structure of the factors from that of the
matrix. The solution we propose is to break the computation of each column of the factors
into a symbolic and a numeric stage. That is, each column of the factorization is computed
by first predicting its nonzero structure, and then using this information to limit the nu-
merical factorization to necessary arithmetic. Note that the number of operations used to
predict the structure cannot be allowed to dominate the number of arithmetic operations.

Gaussian elimination performs exactly the same element multiplications as does matrix
multiplication, except that divisions replace the multiplications by diagonal elements of
the upper triangular factor. This can be seen by rewriting the decomposition A = LU,
with L unit lower triangular and U upper triangular, to give expressions for the elements
of L and U:
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The elements of L and U can be determined in column major order using the equations
above. If L and U are dense, this requires 2n3/3+0(n?) multiplications.! If they are sparse,
some of these multiplications are unnecessary because at least one of the multipliers is zero.
Our goal in this paper is to develop an algorithm whose total running time, including
manipulation of data structures, is proportional to the number of nonzero multiplications,
for every nonsingular matrix A.

and

1 We use the following asymptotic notation: f(n) = O (g(n)) means there are constants
¢ and m such that n > m implies |f(n)| < |cg(n)|; f(n) = o(g(n)) means for all ¢ > 0
there exists an m such that n > m implies |f(n)| < |cg(n)|; and f(r) = O (g(n)) means

f(n) = O (g(n)) and g(n) = O (f(n)).



We are only interested in getting an optimal algorithm to perform Gaussian elimina-
tion, not an optimal algorithm to find an LU factorization. It is possible to perform dense
LU factorization in o(n3) time by using the fast recursive matrix multiplication algorithms
of Strassen and others [2, 11], but such algorithms seem to be practical only for very large
dense problems (if at all).

We present the theoretical justification and development of the algorithm in section 2.
In section 3, we discuss some of the details of the implementation. In section 4, we compare
our implementation with some well-known sparse partial pivoting codes. We conclude by
summarizing the key ideas of this paper and proposing some improvements and open
questions for future research.

2. Theoretical results.

Terminology. For matrices or vectors X and Y, define flops(XY) to be the num-
ber of multiplications of nonzero elements performed while computing the product XY
by conventional matrix multiplication. Gaussian elimination uses ©(flops(LU)) nonzero
arithmetic operations to factor A as L times U, and our goal in this section is to de-
velop an algorithm for Gaussian elimination (with partial pivoting) that requires total
time O(flops(LU)) to factor an arbitrary nonsingular matrix A as PA = LU.

The parameters of the time analysis are as follows: n is the dimension of the matrix A;
m is the number of nonzeros in A; m* is the number of nonzeros in the factorization
(formally, in L — I + U); flops(LU) is the number of nonzero multiplications performed.
For any nonsingular A,

n<m<m'<n? and m* < flops(LU) < n®.

For dense matrices, m = m* = n? and flops(LU) = ©(n3); for sparse matrices, a typical
case is a two-dimensional mesh problem with m = ©(n), m* = ©(nlogn), and flops(LU) =
©(n3/2) [8]. Notice that flops(LU) is likely to be o(n?), so our algorithm must not spend
as much as ©(n) time per column manipulating sparse data structures.

The algorithm. The basis for our algorithm is column-oriented LU factorization.
We use the following notation: j is the index of the column of L and U being computed.
Unprimed variables mean the part of a matrix or vector above row j; primed variables

mean the part at or below row j. Thus a; = (ay;,... ,a]-_l,]-)T, a;. = (ajj, .- .,a,,j)T,
i - 0 ljl . lj,j—l
Li={ + . i |, I=[: -~ ],
lj—l,l . lj—l,j—l la ... ln,j—l

L= (L dag)T, and u; = (uyj,...,u;-1;)T. (Note that I;; = 1.) Also we use b; =
(b_,-J-,...,b,,j)T as an intermediate result. Figure 1 is a sketch of column j of L and U
overwriting column j of A.
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Figure 1. Computing column j of L and U.

{ Column-oriented LU factorization: }
for j :=1tondo
{ Compute column j of U and L as follows. }
Solve Lju; = a; for uj;
bj ;= a’; — L'u;;
Pivot: Swap b;; with the largest-magnitude element of b;;
ujj = bjij;
lj :=bj/ujj
od

XN W= O

Although partial pivoting was the motivation for all of this work, the pivoting itself is
the simplest part of the algorithm.

We shall represent a column vector as a linked list of records, each containing a value
and a row index. The row indices need not be in increasing order. We shall represent a
matrix as an array of column vectors indexed from 1 to n.

Lemma 1. The triangular system in step 3 of the algorithm can be solved in
O(flops(L;u;)) time on a RAM.

Proof. Observe that flops(L;u;) is the total number of nonzeros of L in columns that
correspond to nonzeros of u;. The algorithm has two steps: It first determines the positions
of the nonzeros in u; and the order in which to solve for them, and then does the numeric

computation.
Let G = G(L;) be the directed graph that has j —1 vertices, with an edge from vertex k
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to vertex ¢ iff l;; # 0. Consider the nonzero positions of a; as a set of vertices of G, and
the nonzero positions of u; as another set of vertices. By Theorem 5.1 of Gilbert (7], the
nonzero positions of u; are the vertices reachable from the vertices of a; by paths in G.
(The graph in that theorem is actually the reverse of G.) We can find those vertices
by doing a depth-first search from the vertices of a;. The data structure for L; is an
adjacency-list representation of G, so the search takes time proportional to the number of
edges traversed, which is O(flops(L;u;)).

Normally, we would solve for the unknowns in increasing order of row number. The
depth-first search may not find the nonzero positions of u; in this order, however, and there
is not time to sort the positions into order. (Even a bucket sort would take ©(n) time, which
would be ©(n?) for the whole factorization.) However, since row s of L; has nonzeros only
in those columns k for which (k,) is an edge of G, it is possible to solve for u;; as soon as
all such u; have been computed. That is, the values of u; can be solved in any topological
order; increasing row order is just one possible topological order. An easy topological order
to find during the depth-first search is reverse postorder [1, Problem 5.7(d)]: The linked
list representing column vector u; is initially empty. Each time the depth-first search
backtracks from a vertex, that vertex is added to the head of the list. When the search is
complete, the list consists of the nonzero positions of u; in topological order.

Computing the values of u;, then, is just a standard column-oriented lower triangular
solve, in the topological order determined in the previous step:

1. Copy a; into a dense vector to represent u;;

2. for each k with u; # 0 (in topological order) do
3. u; o= u; — ugi(lig,. . ,l_,,-_l,k)T;

4 od,;

5. Copy the dense vector u; into the sparse vector u;

We compute u; as a dense n-vector, so that in step 3 we can subtract a multiple of
column k of L; from it in constant time per nonzero in that column. Since we know
the nonzero structure of u; before we start, we need only initialize and manipulate the
positions in this dense vector that correspond to nonzero positions; thus the whole thing
still takes only O(flops(L;u;)) time.

The one remaining issue is that the depth-first search must mark the vertices it has
reached, to avoid repeating parts of the search. These marks are normally kept in an array
indexed from 1 to n, but if flops(L;u;) < n there is not time to initialize this array to
“unmarked.” We could avoid initializing the array by a trick spelled out in Problem 2.12
of Aho, Hopcroft, and Ullman [1]. For our purposes, however, it suffices to initialize the
array once at the beginning of the whole LU factorization, and then unmark only the
marked vertices at the end of each column computation. §

Lemma 2. The computation of b; in step 4 of the algorithm can be done in
O(flops(L’u;)) time on @ RAM.
Proof. This looks just like the second part of the computation of u; above: Copy a;-

into a dense vector to represent b;, then subtract an appropriate multiple of a column of L;-
from it for each nonzero in u;. §



Theorem 1. The entire algorithm for LU factorization with partial pivoting can be
implemented to run in O(flops(LU)) time on a RAM.

Proof. By Lemmas 1 and 2, steps 3 and 4 take total time O(flops(LU)) plus O(n)
to initialize the mark array for the depth-first search. Steps 5 and 7 each examine every
nonzero in L once, so they take time O(m*) overall. Step 6 takes O(n) time overall, so the
total is O(flops(LU)). »

8. Implementation details. We have implemented the partial pivoting algorithm
in Fortran and in Lisp. This section describes the Fortran implementation, and section 4
compares that implementation with several Fortran partial pivoting codes in the literature.
The Lisp implementation will be described elsewhere.

The call to the subroutine is
call lufact (pivot, n, a, arow, acolst, maxlu, lastlu, lu, lurow,

lcolst, ucolst, perm, dense, found, parent, child, error).

The boolean argument pivot is set .true. to perform partial pivoting and .false. to
perform no pivoting. The integer n is the dimension of the matrix. The arrays a, arow, and
acolst are the matrix to be factored, in the format described in the next paragraph. The
variable max1lu is the maximum number of nonzeros allowed in L—I+U, which is the size of
arrays lu and lurow. The subroutine returns P, L, and U such that PA = LU as follows:
The integer lastlu is m*, the number of nonzeros in L — I + U. The arrays lu, lurow,
lcolst, and ucolst are L and U in the format described in the next paragraph. The
array perm is the pivoting matrix P represented as an array of n integers; if perm(r) = s
then row r of A is in position s of PA. The implementation sets error to O to indicate
success, 1 if a pivot was zero, and 2 if there was not enough space. The arrays dense,
found, parent, and child are used for working storage.

Sparse column vectors are represented not as linked lists but as paired arrays of val-
ues and row subscripts, similar to the data structures used in Sparspak [4]. Thus a(1)
through a(m) are the nonzero values of A with the nonzeros in each column contiguous
but not necessarily in increasing row order; arow(s) is the row index of the nonzero a(1);
acolst () is the index in a and arow of the first nonzero in column j; and acolst(n +1)
is m + 1, the index one past the last element in a and arow. The columns of L — I and
U are interspersed, so lu contains all the nonzeros in L — I + U, with lurow giving the
row indices; lcolst and ucolst are the indices of the beginnings of columns of L and U
respectively.

The blocks L; and L;- of L above and below the current row are not stored separately.
The depth-first search in Lemma 1 examines entire columns of L (instead of just columns
of L;), but it only continues the search from nonzeros in rows lower than j. This does not
increase the asymptotic complexity of the algorithm. Storage in the sparse data structure
for u; is allocated (in topological order) during the depth-first search. Then storage is
allocated for the nonzeros of I; that are nonzero in A. Then the numeric computations
of u; and b; are done together, traversing an entire column of L for each nonzero of u;.
When a nonzero of b; is found that was zero in A, storage is allocated for the corresponding
nonzero of I;.

When the routine copies a completed column from the dense vector into the sparse
data structure, it checks for exact zeros (which arise from “lucky” cancellation that could
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not have been predicted from the structure of the problem) and does not copy them. Our
experience is that this test adds only a few percent to the running time (formally, it adds
O(m*) time, which is not the leading term) on most problems, but it saves a great deal
of time and storage on a few problems that have extensive “lucky” cancellation. The final
factorization, therefore, stores no zero values at all.

When rows are exchanged during a pivot step, the only actual data movement is to
swap one value from I; to u; and to record the swap in pern. In fact, the routine keeps the
rows numbered according to their original position in A until the very end, so it actually
computes P, PTL, and PTU; after the factorization, it uses O(m*) time to renumber so
that it returns P, L, and U.

For testing our implementation, we coded routines 1solve and usolve to solve Ly =
Pb and Uz = y. They run in total time O(m*)—that is, as usual, they use each nonzero
element of L and U once. It would be possible to use the ideas of Lemma 1 to make these
routines run in time O(flops(Ly)) and O(flops(Uz)) respectively, but we did not do so.

All working arrays are passed to lufact by the user; the routine does not declare any
local array storage. The sizes of the arrays used are as follows.

a m reals

arow m integers

acolst, ucolst n+ 1 integers

lu m* reals (maximum is maxlu, actual is lastlu)
lurow m* integers

lcolst, perm, parent, child n integers

dense n reals

found n booleans

If the same array is passed to a and 1lu, then 1u and lurow will overwrite a and arow. In
this case the total array storage is m* + n reals and m* + 7n integers and booleans.

4. Comparison with other algorithms. Some of the existing algorithms to solve
sparse linear systems, although in theory dominated by data manipulation costs, have im-
plementations that display very efficient behavior on real-world problems. For comparison
with our implementation, we chose Iain Duff’s MA28 [3], Andrew Sherman’s NSPIV [10]
and the code of Alan George and Esmond Ng [5, 6], referred to here as NG.

The NG code uses a heuristic to predict the nonzero structures of the factors before
doing any numerical factorization. It pre-allocates storage for every position that could
possibly be nonzero in some pivotal sequence. No dynamic storage allocation is neces-
sary during numeric factorization, but some unnecessary storage may be pre-allocated. A
factorization can be re-used with different right-hand sides. Pre-allocated storage can be
re-used by a sequence of matrices with identical structure. The columns of the original ma-
trix must be ordered to reduce fill in the predicted structure for this method to effectively
exploit sparsity. The authors recommend a minimum degree order.

The NSPIV code solves by row using column partial pivoting, obtaining the factoriza-
tion AQ = LU. It makes updates on the basis of the following rows, and allocates storage
for fill dynamically. It does not save the lower triangular factor, so that a factorization
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cannot be re-used with a different right-hand side. Since there is no pivoting for sparsity,
the user must supply appropriate row and column orders for the matrix.

The MA28 code does row and column permutations to maintain numerical stability and
preserve sparsity simultaneously. The user sets a threshold value for pivoting to balance
the stability and sparsity considerations. Block lower triangular pre-ordering is available
(and recommended) since only the diagonal blocks need to be factored. A factorization
can be re-used with different right-hand sides. A matrix that is identical in structure and
pivot sequence to a previously factored matrix can use the information from the latter to
allocate the required storage in advance and avoid some unnecesary arithmetic.

Our test problems, described in Table 1, were nine finite element problems and seven
other problems. We pre-ordered the columns of each matrix by minimum degree. For
the finite element problems, we chose random numerical values. In all cases, we chose
the right-hand side to make the correct solution be (1,1,...,1)T. We compared the codes
on a Symbolics 3675 Lisp Machine with a floating point accelerator, using the Symbolics
Fortran 77 compiler, with single precision arithmetic.

For these tests, we selected a representative sample of sparse matrix problems and
codes to determine whether our theoretical expectations would be realized in practice. We
do not claim to have made a comprehensive survey of sparse Gaussian elimination codes,
nor do we claim to have represented all types of real-world problems in our experiments.

Table 2 gives the results. The column headed M* is the number of nonzeros in the
factors (in U alone, for NSPIV). Column T is the time in seconds for factorization plus one
forward- and back-solve. (A call to NSPIV always includes a solution; in the other codes,
the solution time is invariably only a small fraction of the total.) The next two columns
measure space: Column R + I is the total array space used, assuming a real number and
an integer are the same size (which was the case for these experiments), and column 2R+ 1
is array space, assuming a real number to be twice as large as an integer (which would be
the case for double-precision versions of the codes). The final column is the error in the
computed solution, in the infinity norm.

Table 3 gives the same results as Table 2, with the results for each problem normalized
so that the best result is 1. Table 4 gives averages of these normalized results (with all
16 problems weighted equally). We omitted NSPIV from the normalized results because
it only stores the upper triangular factor.

We now discuss the results, considering each code in turn.

Since MA28 uses different pivoting criteria than the other codes, we give separate
results for each of two settings of the threshold parameter u. The setting 4 = 0.1 is meant
to reflect the “well-tuned” behavior of MA28. The setting ¥ = 1.0 is meant to be an
approximation to partial pivoting, although M A28 will still break ties for sparsity. The
storage we report for MA28 is the minimum storage needed to solve the problem. In fact,
we granted the routine some extra “elbow room” to allow it to run efficiently. Duff [3] and
George and Ng [5] discuss MA28’s elbow room requirements. The new code was usually
substantially faster than either version of MA28, and used about the same amount of array
storage.

Since NSPIV pivots on columns rather than rows, we pre-ordered the columns of A
by minimum degree, and then factored AT. This presents NSPIV with the same pivoting
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choices at each major step as those faced by NG and the new code. (Incidentally, this made
NSPIV perform much better than it did when factoring A with no row pre-ordering.) It is
difficult to compare NSPIV directly with the other codes. Because it discards L, it saves
considerable storage and some data manipulation time, and the factorization can only be
used once. On most of the problems, NSPIV used less storage and somewhat less time
than the new code. Discarding L probably accounts for all of the storage advantage; it is
not clear whether it also accounts for the time advantage.

The NG code generally produced the same actual fill as the new code, which is to
be expected since both pivot within columns. It saves overhead storage by a subscript
compression technique, but uses extra storage because it can overestimate potential fill.
In the end, its total storage requirement was very close to that of the new code; usually
NG was better in single precision and the new code was better in double precision. The
new code generally ran somewhat faster.

6. Conclusions and future work. The theoretical contribution of this paper is
an algorithm to perform sparse LU factorization in which data structure manipulation
does not dominate necessary arithmetic, even in the worst case. The key idea is a lower
triangular solver that uses depth-first search and topological ordering to take advantage
of sparsity in the right hand side. Implementation of this idea requires only simple data
structures, and it gives a code that is competitive with and often superior to existing sparse
LU codes.

Avoiding O(n) overhead time per column is not merely a theoretical nicety. When we
added a debugging loop to check after each column that every element of the dense vector
was set to zero, running time increased enormously.

It appears that data manipulation does often dominate the running times of existing
algorithms. By forcing the total number of operations to be proportional to the number of
nonzero flops, we achieved running times that were faster, on average, than codes without
this constraint.

Several possible improvements could be made to this code. We mention some of them
here.

The code’s overhead storage requirement is dominated by the row numbers of the
nonzeros in L and U. Ng’s code [6] reduces this requirement, often by more than half, by
using a compressed data structure to overlap the row numbers of consecutive columns with
similar nonzero patterns. This would not work in our code because the columns are not
kept in increasing row order, and sorting them one column at a time would be too slow. We
could build up the columns, unsorted, in an uncompressed data structure, and then sort
them into a compressed structure efficiently at the end; however, the intermediate storage
would be just as large as at present. A compromise approach is to build up unsorted and
uncompressed columns, stopping periodically to sort and compress them. If we stop to
sort and compress after every ©(n) nonzeros are generated, the total time for sorting is
only O(m*) (with a suitable lexicographic bucket sort [1, Problem 3.16]) and the storage
is only O(n) more than the fully compressed data structure. We plan to experiment with
this approach in the future.

Another way to save space is to do threshold pivoting: Instead of pivoting on the
element of largest magnitude in the column, choose an element on the basis of sparsity
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from among those elements whose magnitude is at least some threshold factor u < 1 times
the maximum. An appropriate choice might be that element whose row contains the fewest
nonzeros to the right of the active column. We plan experiments here as well.

There are also some open theoretical questions about this algorithm. Since the algo-
rithm computes the factors column by column, it does not have available the values of
the partially factored matrix to the right of the active column. Therefore, it cannot do
complete pivoting (that is, pivoting on the element of largest magnitude in the remaining
partially eliminated submatrix) or any kind of dynamic column pivoting for sparsity (for
example, the Markowitz method of pivoting on the element that will cause the smallest
update to the partially eliminated submatrix). Is there an LU factorization algorithm that
runs in O(flops(LU)) time and makes the partially eliminated submatrix available at each
step? The hard part of such an algorithm would be to compute the update A := A — vwT
for sparse A, v, and w in time proportional to arithmetic operations.

Lemma 1 gives an algorithm to solve a lower (or upper) triangular system Lz = b
in O(flops(Lz)) time if L is represented by columns. Is there a similar algorithm if L is
represented by rows? This seems unlikely. However, perhaps there is such an algorithm
for the special case where L is the Cholesky factor of a symmetric, positive definite matrix
(and therefore is the adjacency matrix of a chordal graph [9]).

Finally, there are applications that require Az = b to be solved for many different b
with the same A, but that only require some of the elements of z for each b. (See Gilbert (7]
for a reference to one such application.) It would be interesting to investigate the number
of operations necessary in factorization and solution of such systems, and to develop sparse
algorithms that run within the theoretical time bounds.
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pated in numerous discussions of the implementation and gracefully endured the long wait
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providing a stimulating environment during the fall of 1985.
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Prob N M Remarks

1 113 655 Matrix pattern supplied by Morven Gentleman.

2 199 701 Matrix pattern supplied by Willoughby.

3 130 1282 Matrix from laser problem (A.R. Curtis).

4 663 1712 Basis from linear programming problem.

5 363 3279 Basis from linear programming problem.

6 822 4841 Basis from linear programming problem.

7 541 4285 Facsimile convergence matrix.

8 936 6264 Finite element mesh — a hollow square (small hole).
9 1009 6865 Finite element mesh — a graded-L.

10 1089 7361 Finite element mesh — a plain square.

11 1440 9504 Finite element mesh — a hollow square (large hole).
12 1180 7750 Finite element mesh — a +-shaped domain.

13 1377 8993 Finite element mesh — an H-shaped domain.

14 1138 7450 Finite element mesh — three holes.

15 1141 7465 Finite element mesh — six holes.

16 1349 9101 Finite element mesh — a pinched hole.

Table 1.
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Prob N M Code M* T R+I 2R+1 Error
1 113 655 New 1349 0.52 3604 5066 2.43—-4
NG 1349 0.58 3859 5986 1.04—4
NSPIV 348 0.23 3026 4368 3.37-4
MA28,—=0.1 698 0.62 4018 5078 2.78—4
MA28,—1.0 861 1.05 4356 5585 2.56—4
2 199 701 New 2432 0.87 6458 9089 2.18—-4
NG 2433 1.17 7415 11612 6.64—4
NSPIV 960 0.58 5116 7374 1.00-2
MA28y—0.1 1443 1.20 6684 8581 1.42-3
MA28,—-1.0 2053 3.40 7936 10459 1.17-3
3 130 1282 New 9158 12.02 19358 28646 7.42-2
NG 9158 12.93 17510 33195 8.59-2
NSPIV 7402 21.17 18541 27615 6.09-3
MA28,—-0.1 1180 1.18 6064 7740 7.81-2
MA28,-1.0 1180 1.18 6064 7740 7.81-2
4 663 1712 New 2263 0.65 9832 12758 0.00+40
NG 2090 1.63 23857 36438 0.00+0
NSPIV 612 0.29 10618 14931 0.00+0
MA28,—0.1 663 0.75 15081 18119 0.00+0
MA28,=1.0 663 0.77 15081 18119 0.00+0
5 363 3279 New 6370 2.83 15646 22379 1.17-3
NG 6370 3.60 19149 30492 9.21-4
NSPIV 2217 1.97 14262 20847 5.71-4
MA28,—0.1 3012 4.13 17616 22788 1.60—4
MA28,=1.0 3311 5.20 18200 23664 1.11-4
6 822 4841 New 17546 8.07 41670 60038 4.09-3
NG 17557 27.16 96461 169879 5.711-3
NSPIV 8568 10.13 34219 50094 2.39-4
MA28,—0.1 3282 3.78 28641 36020 5.78—-4
MA28,-1.0 3539 4.36 29177 36824 3.68—4
7 541 4285 New 15337 7.79 35004 50882 3.41-2
NG 15331 11.48 40618 67298 3.41-2
NSPIV 6989 6.04 27420 40317 6.13-1
MA28,—0.1 15439 36.89 47212 64385 5.94-2
MA28,-1.0 13734 34.75 42699 58149 5.66—-2
8 936 6264 New 46695 42.73 100880 148511 3.98-2
NG 46652 54.06 84138 147638 4.26-2
NSPIV 19807 33.90 60569 89448 1.54-2
MA28,—0.1 41646 250.79 111687 155463 1.31-1
MA28,—1.0 50000 484.63 132443 184565 7.84-3

Table 2. (Problems 1-8)
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Prob N M Code M* T R+I1 2R+1 Error
9 1009 6865 New 64724 79.47 137522 203255 2.68-3
NG 64724 92.47 110600 197723 2.15-2
NSPIV 27924 64.23 78662 116478 5.41-3
MA28;—0.1 52307 282.95 140688 195290 1.19+1
MA28,=1.0 68891 1022.70 184034 255262 1.08-2
10 1089 7361 New 58285 58.73 125284 184658 8.24-5
NG 58284 74.03 104377 184967 9.41-5
NSPIV 25490 47.05 75506 111624 1.21-4
MA28,—0.1 55718 324.02 149199 207441 2.28-2
MA28,=1.0 65780 813.83 174756 243075 8.92-5
11 1440 9504 New 60035 43.23 131592 193067 6.65—5
NG 60027 55.23 114594 198203 2.19-4
NSPIV 25383 33.91 82737 121944 5.83—-4
MA28,—0.1 54250 374.95 147089 204447 6.24-2
MA28,=1.0 62790 730.37 169459 235388 2.81-4
12 1180 7750 New 33533 16.55 76508 111221 5.64—-5
NG 33534 22.22 73320 122660 1.50-4
NSPIV 14454 12.30 55031 80775 7.96-5
MA28,—0.1 33983 105.28 98874 135362 1.44-2
MA28,=1.0 38349 200.88 109729 150632 7.36—5
13 1377 8993 New 35549 15.97 82116 119042 1.89-4
NG 35555 24.18 79167 130954 1.53—-4
NSPIV 14932 11.65 60246 88302 2.95—-4
MA28,—0.1 34892 90.15 104313 142098 9.58-2
MA28,-1.0 40641 244.70 117716 161253 1.17—4
14 1138 7450 New 44480 30.97 98066 143684 1.47—4
NG 44481 40.61 85879 147213 5.99-5
NSPIV 18607 24.27 62359 91830 5.87-5
MA28,—0.1 41621 273.82 113511 157657 1.35-2
MA28y—1.0 48976 395.09 130842 182381 5.15-5
15 1141 7465 New 47249 37.15 103628 152018 2.09-4
NG 47246 47.02 90550 155473 1.32—-4
NSPIV 20075 29.35 65352 96315 6.88—5
MA28,—0.1 45143 292.45 122223 169877 5.60-1
MA28,=1.0 53859 476.95 142162 198611 1.65—4
16 1349 9101 New 77853 82.92 166500 245702 9.66—5
NG 77852 103.56 136734 243843 1.02—-4
NSPIV 33302 66.82 96950 143400 4.77-5
MA28,—0.1 71135 786.78 187345 261495 2.08-2
MA28,=1.0 92049 1719.43 238323 333481 1.17—-4

Table 2. (Problems 9-16)
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Prob N M Code M* T R+I 2R+1

1 113 655 New 1.93 1.00 1.00 1.00
NG 1.93 1.12 1.07 1.18
MA28,-0.1 1.00 1.19 1.11 1.00
MA28,=10 1.23 2.02 1.21 1.10

2 199 701 New 1.69 1.00 1.00 1.06
NG 1.69 1.34 1.15 1.35
MA28,-0.1 1.00 1.38 1.03 1.00
MA28,=10 1.42 3.91 1.23 1.22

3 130 1282 New 7.76 10.19 3.19 3.70
NG 7.76 10.96 2.89 4.29
MA28,-0.1 1.00 1.00 1.00 1.00
MA28,=10 1.00 1.00 1.00 1.00

4 663 1712 New 3.41 1.00 1.00 1.00
NG 3.15 2,51 2.43 2.86
MA28,-0.1 1.00 1.15 1.53 1.42
MA28,=10 1.00 1.18 1.53 1.42

) 363 3279 New 2.11 1.00 1.00 1.00
NG 2.11 1.27 1.22 1.36
MA28y-0.1 1.00 1.46 1.13 1.02
MA28,=10 1.10 1.84 1.16 1.06

6 822 4841 New 5.35 2.13 1.45 1.67
NG 5.35 7.19 3.37 4.72
MA28,=0.1 1.00 1.00 1.00 1.00
MA28,-10 1.08 1.15 1.02 1.02

7 541 4285 New 1.12 1.00 1.00 1.00
NG 1.12 1.47 1.16 1.32
MA28,-01 1.12 4.74 1.35 1.27
MA28,-10 1.00 4.46 1.22 1.14

8 936 6264 New 1.12 1.00 1.20 1.01
NG 1.12 1.27 1.00 1.00
MA28,=0.1 1.00 5.87 1.33 1.05
MA28,=10 1.20 11.34 1.57 1.25

Table 3. (Problems 1-8)
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Prob N M Code M* T R+I1 2R+1
9 1009 6865 New 1.24 1.00 1.24 1.04
NG 1.24 1.16 1.00 1.01
MA28,-0.1 1.00 3.56 1.27 1.00
MA28,-10 1.32 12.87 1.66 1.31
10 1089 7361 New 1.05 1.00 1.20 1.00
NG 1.05 1.26 1.00 1.00
MA28,-0.1 1.00 5.52 1.43 1.12
MA28,-10 1.18 13.86 1.67 1.32
11 1440 9504 New 1.11 1.00 1.15 1.00
NG 1.11 1.28 1.00 1.03
MA28,-0.1 1.00 8.67 1.28 1.06
MA28,-10 1.16 16.89 1.48 1.22
12 1180 7750 New 1.00 1.00 1.04 1.00
NG 1.00 1.34 1.00 1.10
MA28,-0.1 1.01 6.36 1.35 1.22
MA28,-10 1.14 12.14 1.50 1.35
13 1377 8993 New 1.02 1.00 1.04 1.00
NG 1.02 1.51 1.00 1.10
MA28,-0.1 1.00 5.64 1.32 1.19
MA28,-10 1.16 15.32 1.49 1.35
14 1138 7450 New 1.07 1.00 1.14 1.00
NG 1.07 1.31 1.00 1.02
MA28,-0.1 1.00 8.84 1.32 1.10
MA28,-10 1.18 12.76 1.52 1.27
15 1141 7465 New 1.05 1.00 1.14 1.00
NG 1.05 1.27 1.00 1.02
MA28,-0.1 1.00 7.87 1.35 1.12
MA28,-10 1.19 12.84 1.57 1.31
16 1349 9101 New 1.09 1.00 1.22 1.01
NG 1.09 1.25 1.00 1.00
MA28,-0.1 1.00 9.49 1.37 1.07
MA28,-10 1.29 20.74 1.74 1.37

Table 3. (Problems 9-16)
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Code M* T R+1 2R+1
New 2.07 1.65 1.25 1.22
NG 2.05 2.34 1.39 1.65
MA28,-0.1 1.01 4.61 1.26 1.10
MA28,-10 1.17 9.02 1.41 1.23
Table 4.
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