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We present and analyze minimal models for three social phenomena: the devel-

opment of two-sided conflicts, interactions between conformists and contrarians,

and pair formation between individuals seeking mates. In all three cases, the phe-

nomena can be viewed as processes occurring on the node or edge values of a graph

with fixed topology. Together, these three case studies illustrate that mathemati-

cal analysis of simple models may give us mechanistic insight into how real social

systems behave.
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CHAPTER 1

INTRODUCTION

In the following chapters, we study how local behavior relates to global behav-

ior for several models of social behavior. Although we will be focused primarily

on mathematical questions, these local-to-global relationships might be useful for

experiments and correlative studies on real social systems. In particular, they

may be helpful for understanding the mechanisms giving rise to complex observed

behaviors that are not easily resolved by traditional statistical techniques.

In addition, from a mathematical perspective, all the models we study take

the form of graphs with dynamically changing node or edge attributes. Hence

the techniques we use to analyze them may be useful for analyzing other model

systems with similar sociological relevance.

More broadly, our research here falls within a growing body of work on the

mathematical study of social dynamics. For physicists, a recent review of the

relevant physics literature is given by Castellano et al. [13]. For those from other

backgrounds, references range from the ground-breaking tome of Wasserman and

Faust [82] to smaller and more modern books like Social Dynamics by Durlauf and

Young [21].

Readers wanting to know more about social networks might take a look at the

recent textbooks, Networks, Crowds, and Markets by Easley and Kleinberg [25]

and Networks: An Introduction by Newman [56], although older reviews such as

“Exploring complex networks” by Strogatz [71] and “The structure and function

of complex networks” by Newman [55] still remain classic reading in the field.
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1.1 Two-sided conflict per structural balance theory

We begin our study of social behavior in Chapter 2 with the consideration of

two-sided conflicts. In human populations, such conflicts appear in many con-

texts, including warfare, religious controversies, competition between groups of

companies, two-party political systems, and divided juries. One mechanism for

the development of these two-faction states is given by a framework from social

psychology known as structural balance theory. In its mathematical form, as it

was first described by Frank Harary, it considers a population coarsely modeled

as a signed graph, with positive edges denoting friendly relationships and nega-

tive edges denoting unfriendly ones. It starts from the assumption that cycles in

the graph with an even number of unfriendly edges are stable in time (or “bal-

anced”) whereas cycles with an odd number of unfriendly edges are comparatively

short-lived (“unbalanced”). The rationale is essentially an extension of the logic

of friendship that “the enemy of my enemy is my friend,” “the enemy of my friend

is my enemy,” and so on.

Harary proved that the nodes of any signed graph containing only balanced

cycles can be partitioned into two factions such that all edges between the sides

are unfriendly and all edges internal to either side are friendly. These maximally

balanced signings may be thought of as the global minima in a landscape of signings

of the underlying graph, where landscape elevation (or energy) is identified with

the number of unbalanced triangles in the signing. When the underlying graph is

complete, this landscape also has metastable states, or jammed states as they are

called in the literature on structural balance.

In Chapter 2, we find a strict upper bound on the energy of a jammed state.

Interestingly, it is easy to show that this strict upper bound is an upper bound
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but significantly harder to show that it is strict. The networks that we use to

prove the latter—that is the jammed states with the maximum allowed unbalanced

triangles—are in fact modified Paley graphs. Additionally, we prove that any

signed network can be partitioned into a set of balanced cliques (to be defined

later), and we find empirically that commonly encountered jammed states have a

relatively small number of such cliques. Finally, we show that the more cliques a

jammed state has, the higher is its allowed range of energies.

We then analyze a continuous model of structural balance, showing that it is

free of the metastable states of the discrete model. Our results for this second

model include a closed-form solution of the model system and a proof that initial

states drawn from a continuous distribution evolve to a two-faction state with

probability one. This proof constitutes the first demonstration in literature than

any dynamical system of structural balance actually achieves structural balance.

1.2 Conformists and contrarians per coupled oscillators

In Chapter 3, we consider a coupled oscillator model for how idealized conformists

and contrarians in a population may interact. The mathematical structure for this

model is reminiscent of the original coupled oscillator model proposed by Yoshiki

Kuramoto, which consisted only of a population of free-running phases with all-

to-all sinusoidal coupling:

dφj
dt

= ωj +
K

N

N∑
k=1

sin(φk − φj) for j = 1, . . . , N. (1.1)

Here the phase of the kth oscillator is denoted by φj and its natural frequency by

ωj. N is the number of oscillators, and K is their coupling strength. The ωj’s are

generally assumed to be distributed according to a unimodal density g(ω). The
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sine terms drive the system toward synchrony, while the variance in the ωj’s has a

desynchronizing effect.

Our work starts with a demonstration that for a particular system involving

identical coupled oscillators (all ωj’s equal), the N -dimensional phase space can be

foliated into three-dimensional leaves. This result resolves several problems that

had remained open in the literature on coupled oscillators for over fifteen years.

In the course of demonstrating our result, we make an intriguing connection to

pure mathematics: under a change of variables, the general equation of motion for

identical coupled oscillators can be reexpressed as the group action of the Möbius

group, the same group responsible for transformations between circles and lines in

the complex plane.

We then move on to consider a simple application of these results to a model

of conformists and contrarians (which we assume for simplicity are sinusoidally

coupled to each other). In this model, conformists are assigned a positive coupling

constant K1 and contrarians a negative coupling constant K2. Fixed point and

stability analysis of this model suggest (loosely speaking) that when conformists

are more intense or more numerous, contrarians generally tend to be more cohe-

sive. Additionally the analysis implies that when the average of all the coupling

constants is less than zero, complete asynchrony is stable.

In the final section of Chapter 3, we prove that this condition in fact holds for

an arbitrary distribution of coupling constants. This may have implications for

biological systems that need to remain at least somewhat asychronous for sustain-

able functioning (e.g. large-scale electical activity in the brain, mating patterns in

certain species, mitosis in certain cell populations).
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1.3 Pair formation per randomized greedy matching

Finally in Chapter 4, we consider pair formation between adjacent nodes on a

network. This has at least one obvious sociological interpretation: monogamous

mating. We first look at pair formation along a simple path of n nodes via a

randomized selection of edges. The most natural “greedy” algorithms for this

leave isolated nodes. A natural question is therefore what is the expected fraction

of remaining unpaired nodes (out of n) in the limit of large n?

We discuss the fragmented literature from separate fields on this problem. For

example, in computer science, it is known as randomized greedy matching on a

path. In physics it is one-dimensional random sequential absorption (or, more

exotically, the density of bosons in a TonksGirardeau gas). In material science it is

the one-dimensional sphere packing problem or dimer filling on a one-dimensional

lattice. We conclude this discussion with a demonstration of the historical result

(first given by the Nobel Laureate chemist Paul Flory) that the expected fraction

of unpaired nodes is in fact e−2.

We then move on to consider the modestly more realistic case of pair forma-

tion on a two-dimensional grid. We start by outlining a new model for matching

that handles regular network topologies in a more analytically tractable manner

than traditional algorithms. This model also has a new feature inspired by real

social systems: it allows for the assignment of a quality factor to each node which

influences which matches that node may form.

Our mathematical analysis of this model involves a demonstration that a large

number of the interesting quantities of the model can be easily estimated by hand.

This has the advantage of simplicity over methods of truncation common in statis-

5



tical physics literature. We conclude by evaluating the accuracy of our estimates

with Monte Carlo simulations, and by proving an upper bound on the grid for the

fraction of unpaired nodes obtained by any model of pair formation using only a

single quality factor.
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CHAPTER 2

TWO-SIDED CONFLICT 1

In Section 2.1 of this chapter, we model a close-knit community of friends and

enemies as a complete graph with positive and negative signs on its edges. A

framework from social psychology called structural balance theory proposes that

certain sign patterns on the graph are more stable than others. This notion of social

“balance” allows us to define an energy landscape for such networks. However its

structure is complex: numerical experiments reveal a landscape dimpled with local

minima at widely varying elevations. We derive rigorous bounds on the energies

of these local minima and prove that they have a modular structure that can be

used to classify them.

In Section 2.2, we consider a continuous model of structural balance theory

given by the dynamical system Ẋ = X2, where X is a matrix of the friendliness

or unfriendliness between pairs of nodes in the network and the overdot represents

differentiation by time. Krzysztof Ku lakowski, the first to propose this model, per-

formed simulations that suggested only two types of behavior are possible for this

system: either all relationships become friendly, or two hostile factions emerge.

We prove that for generic initial conditions, these are indeed the only possible

outcomes. Our analysis yields a closed-form expression for faction membership as

a function of the initial conditions, and implies that the initial amount of friend-

liness in large social networks (started from random initial conditions) determines

whether they will end up in intractable conflict or global harmony.

1Much of the material in this chapter is drawn from S. A. Marvel, S. H. Strogatz, and
J. M. Kleinberg. Energy landscape of social balance. Physical Review Letters, 103:198701,
2009. and S. Marvel, J. M. Kleinberg, R. D. Kleinberg, and S. H. Strogatz. Continuous-time
model of structural balance. Proceedings of the National Academy of Sciences, 108:1771, 2011.
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2.1 Discrete structural balance

The shifting of alliances and rivalries in a social group can be viewed as arising from

an energy minimization process. For example, suppose you have two friends who

happen to detest each other. The resulting awkwardness often resolves itself in one

of two ways: either you drop one of your friends, or they find a way to reconcile.

In such scenarios, the overall social stress corresponds to a kind of energy that

relaxes over time as relationships switch from hostility to friendship or vice versa.

This notion, now known as balance theory, was first articulated by Heider [38,

39] and has since been applied in fields ranging from anthropology to political

science [77, 53]. Cartwright and Harary converted Heider’s conceptual framework

to a graph-theoretic model and characterized the global minima of the social energy

landscape [12]. Their tidy analysis gave no hint that the energy landscape was

anything more complicated than a series of equally deep wells, each achieving the

minimum possible energy. Recently, however, Antal, Krapivsky and Redner [5]

observed that the energy landscape also contains local minima, which they called

jammed states.

Jammed states are important to understand because they can trap a system

as it moves down the energy landscape. Yet little is known about their allowed

energies, their structure, or how they depend on the size of the network. Even the

maximum possible energy of a jammed state is not obvious: a simple argument

(see below) shows that jammed states cannot be located more than halfway up the

energy spectrum, but it is hard to see whether this upper bound can be achieved.

In this section we prove that for arbitrarily large networks, there do indeed exist

jammed states all the way up to the midpoint energy using a construction based
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balanced triangles unbalanced triangles

Figure 2.1: Socially balanced and unbalanced configurations of a triangle. Solid
edges represent friendly (+) relationships, and dashed edges hostile (−) relation-
ships.

on highly symmetric structures first discovered by Paley in his work on orthogonal

matrices [62]. We also show that jammed states have a natural modular structure.

This allows us to organize the jammed states encountered by simulation and to

explain why high-energy jammed states must be structurally more complex than

low-energy ones.

More broadly, our work here is part of a growing line of research that employs

tools from physics to analyze models of complex social systems [4, 18, 55]. Theories

of signed social networks form an appealing domain for such techniques, as they

are naturally cast in the framework of energy minimization.

We begin by modeling a fully connected social network as a signed complete

graph on n nodes. Each edge {i, j} of the network is labeled with either a plus

or minus sign, denoted by sij, corresponding to feelings of friendship or animosity

between the nodes i and j.

Up to node permutation, there are four possible signings of a triangle (Fig. 2.1).

We view the two triangles with an odd number of plus edges as balanced configu-

rations, since both satisfy the adages that “the enemy of my enemy is my friend,”

“the friend of my enemy is my enemy,” and so on. Since the two triangles with an

even number of plus edges break with this logic of friendship, we consider them

9
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Figure 2.2: The energy landscapes of signed complete social networks on (a) 3
and (b) 4 nodes. For simplicity, each set of sign configurations identical up to
node permutation is represented by a single configuration; the number above each
configuration indicates its multiplicity. Lines between circles join networks differing
by a single sign flip. No jammed states occur for these small networks; they appear
only when n = 6 or n ≥ 8. Strict jammed states occur when n = 9 and n ≥ 11 [5].

unbalanced.

The product of the edge signs is positive for a balanced triangle and negative

for an unbalanced triangle. If we sum the negative of these products and divide by

the total number of triangles, we obtain a quantity U that represents the elevation,

or potential energy, of a social network above the domain of all its possible sign

configurations (Fig. 2.2). Explicitly,

U = − 1(
n
3

)∑ sijsjksik (2.1)

where the sum is over all triangles {i, j, k} of the network.

The configuration in which all node pairs are friends has the lowest possible

energy: U = −1. Hence, no additional structure is necessary to define the global
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minima; they are just the sign configurations for which U = −1. Cartwright

and Harary [12] identified all such ground states, finding that they consist of two

warring factions: internally friendly cliques with only antagonistic edges between

them. (The all-friends configuration represents the extreme in which one clique is

the empty set.)

To define the concept of a local minimum, however, we need to specify what

it means for two states to be adjacent. The most natural choice is to define two

sign configurations to be adjacent if each can be reached from the other by a single

sign flip. Then a jammed state, as defined by Antal et al., is a sign configuration

for which all adjacent sign configurations have higher energy [5]. Here, however,

we will slightly vary their terminology by calling this a ‘strict jammed state,’

reserving the term ‘jammed state’ for the weaker concept of a sign configuration

with no adjacent sign configurations of lower energy.

Our first result is that jammed states cannot have energies above zero. To

see this, note that every edge of a jammed state takes part in at least as many

balanced triangles as unbalanced triangles. It is therefore found in (n − 2)/2

unbalanced triangles if n is even and (n − 3)/2 unbalanced triangles if n is odd.

Thus, summing over all edges and dividing by three to avoid triple counting yields

U ≤ −1
3

(
n
2

)[(
n− 2− n−2

2

)
− n−2

2

]
/
(
n
3

)
= 0 if n is even and U ≤ −(n− 2)−1 if n is

odd.

Are there jammed states that achieve this upper bound on U? One possible way

to address this question is through computational searches. For example, suppose

that from a random initial configuration, we select and switch single signs uniformly

at random from the set of unbalanced edges (an edge is defined as unbalanced if

more than half the triangles that include it are unbalanced). We continue switching

11



signs until the network reaches a local minimum of U . Extensive searches of this

form reveal only two small examples of zero-energy jammed states: a configuration

on 6 nodes, consisting of a 5-cycle of positive edges and all other edges negative,

and a more complex configuration on 10 nodes. Even on 10 nodes, only about 7 in

108 searches end up at zero-energy jammed states, and no such states were found on

larger numbers of nodes. The failure of this approach to produce even moderately-

sized examples is consistent with findings of Antal et al. [5], who showed that such

local search methods reach jammed states with a probability that decreases to 0

extremely rapidly as a function of the network size n.

With only these data, the chances of finding a larger collection of jammed

states at U = 0 may seem slim. However, we now show how an infinite collection

of zero-energy jammed states can be identified through a direct combinatorial

construction. This construction is motivated by the two small examples found

through computational searches: when we re-examined the zero-energy jammed

states on 6 and 10 nodes, we noticed that the positive edges formed so-called

Paley graphs [10] on 5 and 9 nodes. This beautiful connection turns out to be

general: a family of arbitrarily large jammed states with U = 0 may be derived

from the undirected Paley graphs.

Briefly, an undirected Paley graph Pq can be constructed on a set of q nodes,

where q is a prime of the form q = 4k+1 for some integer k. To do so, we index the

nodes with the integers 0, . . . , q−1 and then connect each v and w in this node set

with an edge if there is an x in {0, . . . , q− 1} such that (v−w) mod q = x2 mod q.

To construct the jammed state with U = 0 from Pq, we give plus signs to the edges

of Pq and minus signs to the edges of its complement. We then add a node vn,

where n = q + 1, and link it to all nodes of Pq with negative edges. (Paley graphs

12



also exist if q is a prime power, but then one needs to work over the finite field of

order q.)

We now show that this new signed complete graph has zero energy. Clearly, this

is equivalent to the condition that each edge is in exactly n−2
2

balanced triangles.

To check the latter claim, we make use of two known properties of Paley graphs:

(i) Pq is 2k-regular, and (ii) for any two nodes v and w of Pq, there are k nodes

adjacent to v but not w, and k nodes adjacent to w but not v [10].

Now, if {v, w} is a negative edge in Pq, then it forms balanced triangles with

all nodes x in Pq that are linked by a positive edge to exactly one of v or w.

By property (ii), there are 2k = q−1
2

= n−2
2

such nodes, so {v, w} is in exactly

n−2
2

balanced triangles. Similarly, if {v, w} is a positive edge in Pq, then it forms

unbalanced triangles with all nodes x of Pq that are linked via a positive edge

to exactly one of v or w. Again, these nodes account for 2k = n−2
2

unbalanced

triangles, so {v, w} is in exactly n−2
2

balanced triangles. Finally, since Pq is 2k-

regular, there are exactly 2k nodes in Pq adjacent via positive edges to each node w

of Pq. Hence, each negative edge {vn, w} is also in exactly n−2
2

balanced triangles.

The above construction is related to a result by Seidel regarding two-graphs [68].

Using the theory of two-graphs, one can also construct infinite families of strict

jammed states that approach U = 0 from below as n grows large. Such construc-

tions can be carried out using bilinear forms modulo 2 [68], and projective planes

in finite vector spaces [76].

Given the conceptual complexity of these constructions of high-energy jammed

states, and the computational difficulty in finding such states via search, it is

natural to ask why it is harder to construct jammed states closer to U = 0 than at
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lower energies. We now explain this by formulating a measure of the complexity

of different jammed states. This will establish a precise sense in which higher-

energy jammed states are structurally more complex than lower-energy jammed

states, through a result showing that every signed complete graph has a natural

decomposition into internally balanced modules.

The statement of this edge balance decomposition is as follows. Consider the

subgraph K consisting of all nodes in the network, together with those edges that

appear only in balanced triangles. Then (i) K is a union of disjoint cliques {Ca}

(possibly including single-node cliques), and (ii) for every pair of cliques Ca and

Cb, every edge between Ca and Cb is involved in the same number of balanced

triangles. In the spirit of (i), we call each clique of the partition a balanced clique.

To prove part (i) of the decomposition, one can show that if some connected

component of K is not a clique, then this component contains edges {i, j} and

{i, k} sharing a node i that are both found only in balanced triangles, and such

that {j, k} is in at least one unbalanced triangle (involving a fourth node `). But

then the set of four nodes {i, j, k, `} would have three of its four triangles balanced,

which is not possible for any sign pattern.

To prove part (ii) of the decomposition, one can show that if there were cliques

Ca and Cb such that two different edges between them were involved in different

numbers of unbalanced triangles, then there would be two such edges {i, j} and

{i, k} sharing a node i in Ca, such that for some other node `, the triangle {i, j, `}

is balanced but the triangle {i, k, `} is not. But since {j, k} is inside the clique

Cb, all the triangles involving it are balanced, and so the four-node set {i, j, k, `}

would have three of its four triangles balanced, which again is not possible for any

sign pattern.
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We now return to the question that we posed above: why is it harder to con-

struct jammed states near U = 0 than at substantially lower energies? We can

close in on an elementary answer by computing an upper bound on the allowed

energy of a jammed state as a function of the number of balanced cliques it con-

tains. We find that as the energy approaches U = 0 from below, the number of

cliques in the decomposition must grow unboundedly in n, the number of nodes in

the network.

First observe that for a fixed number of balanced cliques m, the fewest num-

ber of edges are in balanced cliques—and hence the most edges are available for

inclusion in unbalanced triangles—when the n nodes of the network are equally

distributed among the m balanced cliques. We can verify this using Lagrange mul-

tipliers: we seek to minimize
∑

i

(
ci
2

)
relative to the constraints

∑
i ci = n, ci > 0,

where ci is the number of nodes in the ith balanced clique. This implies d
dci

(
ci
2

)
= λ

for all ci, where λ is some constant. The derivative of the gamma function exten-

sion of
(
ci
2

)
is monotone increasing on ci > 0, so we invert it to find all ci equal to

the same function of λ.

Hence, no jammed state with n nodes and m balanced cliques can have greater

energy than one in which the nodes are equidistributed among the balanced cliques

and each edge spanning two balanced cliques participates in n−2
2

unbalanced tri-

angles. This implies an upper bound on U of

UUB
n (m) = −1 + 2

1
3

(
m
2

)
( n
m

)2 n−2
2(

n
3

) = − n−m
m(n− 1)

. (2.2)

For example, limn→∞ U
UB
n (3) = −1/3, whereas the corresponding tight upper

bound (also verified by Lagrange multipliers) is limn→∞ U = − limn→∞[(
(
n
2

)
−

(n
3
)3)− (n

3
)3]/
(
n
3

)
= −5/9.

We can see directly from Eq. (2.2) that as we approach U = 0 from below,
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Figure 2.3: Jammed states for networks with n = 26 nodes, distinguished according
to their energy, frequency of occurrence, and clique structure. The different data
symbols show the number of balanced cliques in a given state (see inset for key).
We find that jammed states with higher energies are not only rarer (as shown by
Antal et al. [5]), but also more structurally complex, as measured by their number
of balanced cliques. To find these states, we evolved 108 social networks to energy
minima via the Markov process described in the text, assuming that each edge was
initially unfriendly. For simplicity, only jammed states with eight or fewer balanced
cliques are shown (these comprised > 99.99% of all jammed states found). Jammed
states with two and four balanced cliques are impossible. Analogous distributions
for other n and other initial sign patterns are similar, and increasing the number
of trial networks does not significantly change the distribution.

jammed states with n nodes and m or fewer balanced cliques no longer appear

above UUB
n (m). In other words, jammed states disappear as the energy is raised in

order of least to greatest complexity. Finally, at U = 0, the condition UUB
n (m) = 0

implies that m = n, as we would expect since every edge must be in exactly n−2
2

balanced triangles.

In addition to illuminating a fundamental progression within the energy spec-

trum of the jammed states, the edge balance decomposition also provides a par-

tition of the set of 2(n2) possible sign configurations which proves useful for classi-
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fying jammed states. Consistent with Antal et al. [5], our numerical simulations

of small networks (generally n < 210) turned up an enormous number of three-

clique jammed states. Less frequently, we encountered jammed states with five,

six and seven cliques, and rarely did we find jammed states with more than seven

cliques (Fig. 2.3). This numerical evidence leads us to suspect that the most com-

mon jammed states found in sign patterns arising from local search have only a

few balanced cliques and hence would be easily classified by the edge balance de-

composition. (That said, it is possible to construct strict jammed states with m

balanced cliques for all odd m in the large-n limit; whether such a construction

exists for even m > 6 remains open.)

In future work, it could be interesting to explore the model above using tools

from other parts of physics, such as spin glasses [29, 16], generalized Ising models

[85], and Z2 gauge theories [28]. For example, the social balance model that we’ve

considered here may be viewed as a generalized Ising model [85, 28] on the complete

graph, and is similar to spin-glass models [29] where nodes in a network are likewise

joined by edges of mixed signs, and U measures the average frustration of the

system. This line of work includes results on spin-glass systems with three-way

interactions [31], such as occur in Eq. (2.1). One potential obstacle to making

this link is that in spin-glass models, adjacency between configurations is defined

by changes in the signs of nodes (due to spin flips) while edge signs remain fixed;

whereas here it is the signs of edges that vary as one moves across the landscape.

This could possibly be addressed using transformations that interchange the roles

of nodes and edges; however, when the complete graph is transformed in this way,

the resulting network has a complex structure that may render analysis difficult.

Taken together, the results presented here yield a first look at the energy land-
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scape for completely connected social networks in which opportunities for greater

relational consistency and cooperation are the driving forces for change. For now,

our understanding of the landscape is confined to a few results about its local

and global minima. The challenge for the future is to understand its large-scale

structure, perhaps even including a characterization of the pathways leading out

of the deepest minima—those corresponding to the most entrenched conflict—and

toward states of reconciliation.

2.2 Continuous structural balance

The dynamical system that we want to study in this section is best understood as

an outgrowth of structural balance theory [82]. So let’s begin with a brief review

of what this theory says.

Consider three individuals: Anna, Bill and Carl, and suppose that Bill and

Carl are friends with Anna, but are unfriendly with each other. If the sentiment

in the relationships is strong enough, Bill may try to strengthen his friendship

with Anna by encouraging her to turn against Carl, and Carl might likewise try to

convince Anna to terminate her friendship with Bill. Anna, for her own part, may

try to bring Bill and Carl together so they can reconcile and become friends. In

abstract terms, relationship triangles containing exactly two friendships are prone

to transition to triangles with either one or three friendships.

Alternately, suppose that Anna, Bill and Carl all view each other as rivals. In

many such situations, there are incentives for the two people in the weakest rivalry

to cooperate and form a working friendship or alliance against the third. In these

cases, a single friendship may be prone to appear in a relationship triangle that
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initially has none.

These two thought experiments suggest a notion of stability, or balance, that

can be traced back to the work of Heider [38]. Heider’s theory was expanded

into a graph-theoretic framework by Cartwright and Harary [12], who considered

graphs on n nodes (representing people, countries or corporations) with edges

signed either positive (+) to denote friendship or negative (−) to denote rivalry.

If a social network feels the proper social stresses (those felt by Anna, Bill and

Carl in the examples above), then Cartwright and Harary’s theory predicts that in

steady state the triangles in the graph should contain an odd number of positive

edges—in other words, three positive edges or one positive edge and two negative

edges. We refer to such triangles as balanced, and triangles with an even number

of positive edges as unbalanced. Finally, we call a graph complete if it contains

edges between all pairs of nodes, and we say that a complete graph with signs on

its edges is balanced if all its triangles are balanced. (All graphs in this chapter

will be complete.)

As it turns out, these local notions of balance theory are closely related to the

global structure of two opposing factions. In particular, suppose that the nodes of

a complete graph are partitioned into two factions such that all edges inside each

faction are positive and all edges between nodes in opposite factions are negative.

(One of these factions may be empty, in which case the other faction includes all

the nodes in the graph, and consequently all edges of the network are positive.)

Note that this network must be balanced, since each triangle either has all three

members in the same faction (yielding three positive edges) or has two members

in one faction and the third member in the other faction (yielding one positive

edge and two negative ones). In fact, a stronger and less obvious statement is
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true: any balanced graph can be partitioned into two factions in this way, with

one faction possibly empty [12]. As a result, when we speak of balanced graphs,

we can equivalently speak of networks with this type of two-faction structure.

Structural balance is a static theory—it posits what a “stable” signing of a

social network should look like. However its underlying motivation is dynamic,

based on how unbalanced triangles ought to resolve to balanced ones. This situa-

tion has led naturally to a search for a full dynamic theory of structural balance.

Yet finding systems that reliably guide networks to balance has proved a challenge

in itself.

A first exploration of this issue was conducted by Antal et al. [5] who considered

a family of discrete-time models. In one of the main models of this family, an edge

of the graph is examined in each time step, and its sign is flipped if this produces

more balanced triangles than unbalanced ones. While a balanced graph is a stable

point for these discrete dynamics, it turns out that many unbalanced graphs called

jammed states are as well [5, 50].

Thus, the natural problem became to identify and rigorously analyze a sim-

ple system that could progress to balanced graphs from generic initial configura-

tions. A novel approach to this problem was taken by Ku lakowski, Gawroński, and

Gronek [45], who proposed a continuous-time model for structural balance. They

represented the state of a completely connected social network using a real sym-

metric n× n matrix X whose entry xij represents the strength of the friendliness

or unfriendliness between nodes i and j (a positive value denotes a friendly rela-

tionship and a negative value an unfriendly one). Note that for a given X, there

is a signed complete graph with edge signs equal to the signs of the corresponding

elements xij in X. We will call X balanced if this associated signed complete graph
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is balanced.

Ku lakowski et al. considered variations on the following basic differential equa-

tion, which they proposed as a dynamical system governing the evolution of the

relationships over time:

dX

dt
= X2. (2.3)

Remarkably, simulations showed that for essentially any initial X(0), the system

reached a balanced pattern of edge signs in finite time.

Writing Eq. (2.3) directly in terms of the entries xij gives a sense for why this

differential equation should promote balance:

dxij
dt

=
∑
k

xikxkj. (2.4)

Notice that xij is being pushed in a positive or negative direction based on the

relationships that i and j have with k: if xik and xkj have the same sign, their

product guides the value of xij in the positive direction, while if xik and xkj have

opposite signs, their product guides the value of xij in the negative direction. In

each case, this is the direction required to balance the triangle {i, j, k}. Note also

that Eq. (2.4) applies for the case that i = j. While this case is harder to interpret,

the monotonic increase of xii implied by Eq. (2.4) might be viewed in psychological

terms as an increase of self-approval or self-confidence as i becomes more resolute

in its opinions about others in the network.

For a network with just three nodes, it can be easily proved that a variant

of these dynamics generically balances the single triangle in this network; such a
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three-node analysis has been given by Ku lakowski et al. [45], and we describe a

short proof in Appendix A. What is much less clear, however, is how the system

should behave with a larger number of nodes, when the effects governing any one

edge {i, j} are summed over all nodes k to produce a single aggregate effect on xij.

It has therefore been an open problem to prove that Eq. (2.4) or any of the

related systems studied by Ku lakowski et al. will bring a generic initial matrix

X(0) to a balanced state. It has also been an open problem to characterize the

structure of the balanced state that arises as a function of the starting state X(0).

We resolve these two open problems. We first show that for a random initial

matrix (drawn from any absolutely continuous distribution), the system reaches a

balanced matrix in finite time with a probability converging to 1 in the number of

nodes n. In addition, we provide a closed-form expression for this balanced matrix

in terms of the initial one; essentially, we discover that the system of differential

equations serves to “collapse” the starting matrix to a nearby rank-one matrix. We

also characterize additional aspects of the process, giving for example a description

of an “exceptional” set of matrices of probability measure converging to 0 in n for

which the dynamics are not necessarily guaranteed to produce a balanced state.

We then analyze the solutions of the system for classes of random matrices in

the large-n limit—in particular, we consider the case in which each unique matrix

entry is drawn independently from a distribution with bounded support that is

symmetric about a number µ (the mean value of the initial friendliness among the

nodes). In this case, we find a transition in the solution as µ varies: when µ > 0,

the system evolves to an all-positive sign pattern, whereas when µ ≤ 0, the system

evolves to a state in which the network is divided evenly into two all-positive cliques

connected entirely by negative edges. We end by discussing some implications of
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the model and the associated transition between harmony and conflict, including

an evaluation of the model on empirical data and some potential connections to

research on reconciliation in social psychology.

Behavior of the Model: Evolution to a Balanced State

Suppose we randomly select the xij(0)’s from a continuous distribution on the real

line. Then the xij(t)’s found by numerical integration generally sort themselves in

finite time into the sign pattern of two feuding factions. To reformulate this obser-

vation as a precise statement and explain why the behavior holds so pervasively,

we now solve Eq. (2.3) explicitly.

Solution to the model. The initial matrix X(0) is real and symmetric by as-

sumption, so we can write it as QD(0)QT where D(0) is the diagonal matrix with

the eigenvalues of X(0), denoted λ1 ≥ λ2 ≥ · · · ≥ λn, as diagonal entries ordered

from largest to smallest, and Q is the orthogonal matrix with the correspond-

ing eigenvectors of X(0), denoted ω1, ω2, . . . , ωn, as columns. The superscript T

signifies transposition.

The differential equation Eq. (2.3) is a special case of a general family of equa-

tions known as matrix Riccati equations [2]. The analysis of the full family is com-

plicated and not fully resolved, but we now show that the special case of concern

to us, Eq. (2.3), has an explicit solution with a form that exposes its connections to

structural balance. We proceed as follows. First, we observe that by separation of

variables, the solution of the single-variable differential equation ẋ = x2 (overdot

representing differentiation by time) with initial condition x(0) = λk is
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`k(t) =
λk

1− λkt
. (2.5)

Therefore the diagonal matrix D(t) = diag(`1(t), `2(t), . . . , `n(t)) is the solution

of Eq. (2.3) for the initial condition X(0) = diag(λ1, λ2, . . . , λn).

Moreover Y (t) = QD(t)QT is also a solution of Eq. (2.3) since Ẏ = QḊQT =

Q(D2)QT = (QDQT )2 = Y 2. But Y (t) has the same initial condition asX(t) in our

original problem: Y (0) = QD(0)QT = X(0). So by uniqueness, Y (t) = QD(t)QT

must be the solution we seek.

Our solution X(t) can also be written in a different way to mimic the solution

of the one-dimensional equation ẋ = x2. Since xij(t) =
∑n

k=1 qik`k(t)qjk, where qij

is the (i, j)th entry of Q, we can expand the denominators of the `k(t) functions

in powers of t to rewrite X(t) as X(0) +X(0)2t+X(0)3t2 + · · · , or more concisely,

X(t) = X(0)[I − tX(0)]−1. (2.6)

(Note that the matrices X(0) and [I −X(0)t]−1 commute.) This equation is valid

when t is less than the radius of convergence of every λk, that is when t < 1/λ1

(assuming λ1 > 0).

Finally we note that the above method of solving Eq. (2.3) contains a reduc-

tion of the number of dynamical variables of the system from
(
n+1

2

)
to n. The

(
n
2

)
constants of motion generated by this reduction are just the off-diagonal elements

of QTX(t)Q = D(t), or
∑n

k=1

∑n
`=1 qkixk`(t)q`j = 0 for all 1 ≤ i < j ≤ n. Further-

more, the procedure for reducing X(t) can be easily generalized to any system of

the form Ẋ = f(X) where f is a polynomial of X.
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Behavior of the solution. Let’s now examine the behavior of our solution X(t)

to see why in the typical case it splits into two factions in finite time. It turns out

that this is the guaranteed outcome if the following three conditions hold (and as

we will see below, they hold with probability converging to 1 as n goes to infinity):

1. λ1 > 0,

2. λ1 6= λ2 (and hence λ1 > λ2), and

3. all components of ω1 are nonzero.

To see why these conditions imply a split into two factions, observe from Eq. (2.5)

that each `k(t) diverges to infinity at t = 1/λk. Since xij(t) =
∑n

k=1 qik`k(t)qjk, all

xij’s diverge to infinity when the `k with the smallest positive 1/λk does. Under

the first and second conditions, this `k is `1, so the blow-up time t∗ of Eq. (2.3)

must be 1/λ1. To show that the nodes are partitioned into two factions as X(t)

approaches t∗, let X(t) = X(t)/||X(t)|| on the half-open interval [0, t∗), where

||X(t)|| denotes the Frobenius norm of X. The matrix X(t) has the sign pattern

of X(t), and as t approaches t∗ it converges to the rank-one matrix

X∗ = Q diag(1, 0, 0, . . . , 0) QT = ω1ω
T
1 . (2.7)

Now let ω1k denote the value of the kth coordinate of ω1, and let S = {k : ω1k > 0}

and T = {k : ω1k < 0}. Then S and T partition the node indices 1, 2, . . . , n by

our condition that ω1 has no zero components. From Eq. (2.7), this partition

must correspond to two cliques of friends joined by a complete bipartite graph of

unfriendly ties.
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The three conditions. We now return to the three conditions above. We first

show that the second and third hold with probability 1. We then show that the

first condition holds with probability converging to 1 as n goes to infinity. Lastly,

we analyze the behavior of the system in the unlikely event that the first condition

does not hold. The fact that the conjunction of all three conditions holds with

probability converging to 1 as n grows large justifies our earlier claim that the

behavior described above holds for almost all choices of initial conditions.

First we show why the second and third conditions hold with probability 1 so

long as the (joint) distribution from which X(0) is drawn is absolutely continuous

with respect to Lebesgue measure—in other words, assigns probability zero to any

set of matrices whose Lebesgue measure is zero. Our arguments below make use

of the following two basic facts:

i. the set of zeros of a nontrivial multivariate polynomial has Lebesgue measure

zero, and

ii. the existence of a common root of two univariate polynomials P and Q is

equivalent to the vanishing of a multivariate polynomial in the coefficients of P and

Q (specifically, it is equivalent to the vanishing of the determinant of the Sylvester

matrix of P and Q, also called the resultant of P and Q).

To show that λ1 6= λ2 with probability 1, let P denote the characteristic poly-

nomial of X(0), and let Q denote the derivative of P . Then X(0) has a repeated

eigenvalue if and only if P has a repeated root, which it does if and only if P and

Q have a common root. This condition is equivalent to the vanishing of the resul-

tant of P and Q, which is a multivariate polynomial in the entries of X(0). The

polynomial cannot be zero everywhere, because there is at least one symmetric
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Figure 2.4: Representative large-n plots of the model for (a) µ > 0 (µ = 3/10 in
the plot shown), (b) µ = 0, and (c) µ < 0 (µ = −3 in the plot shown). For all
three plots, σ = 1 and n = 90. To reduce image complexity, only one randomly
sampled fifth of the trajectories is included. In the second plot, t∗ denotes the
time at which the system diverges, and ε denotes a sufficiently small displacement.
The white curves superimposed on the three plots are the large-n trajectories
xij(t) = xij(0) − µ + µ/(1 − µnct) for xij(0) = µ, µ ± 3σ/2, where c represents
a rescaling of time. Since we want to fix the blow-up time t∗ near 1 and since
ct∗ = 1/λ1 as found in the text, we choose c = 1/(µn+ ν − µ+ σ2/µ) for (a) and
c = 1/(2σ

√
n) for (b) and (c) using estimates of λ1 taken from Ref. [32]. The black

dotted lines mark the blow-up times t∗ = 1/(cλ1).

matrix that does not have a repeated eigenvalue. So the set of matrices having a

repeated eigenvalue has Lebesgue measure zero.

Similarly, to show that all components of ω1 are nonzero, let P denote the

characteristic polynomial of X(0) and Pi the characteristic polynomial of the (n−

1) × (n − 1) submatrix Xi(0) obtained by deleting the ith row and ith column

of X(0). It is easy to check that if any eigenvector of X(0) has a zero in its ith

component, then the vector obtained by deleting that component is an eigenvector

of Xi(0) with the same eigenvalue. Consequently, P and Pi must have a common

root, implying that the resultant of P and Pi vanishes. This resultant is once again

a multivariate polynomial in the entries of X(0), and once again it must be nonzero

somewhere because there is at least one symmetric matrix whose eigenvectors all
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have nonzero entries. Hence, the set of matrices having an eigenvector with zero

in its ith component has Lebesgue measure zero.

Finally, to determine the likelihood of the first condition, we first must say a bit

more about the way that X(0) is selected. Suppose that the off-diagonal xij(0)’s

are drawn randomly from a common distribution F and the on-diagonal xii(0)’s are

drawn randomly from a common distribution G. All selections are independent

for i ≤ j. (For i > j, we let xij(0) = xji(0), so that X(0) is symmetric.) For

this construction of X(0), Arnold [6] has shown that with the remarkably weak

additional assumption that F has a finite second moment, Wigner’s semicircle law

holds in probability as n grows to infinity. This in turn implies that λ1 > 0 in

probability in the same limit.

Moreover, suppose we are in the low-probability case that λ1 ≤ 0. In this case,

the analysis above shows that all the functions `i(t) converge to 0 as t→∞. Thus,

limt→∞D(t) = 0, and since X(t) = QD(t)QT , we also have limt→∞X(t) = 0.

Although the entries of X(t) converge to zero when λ1 ≤ 0, one might still

want to know if the sign pattern of X(t) is eventually constant (i.e., remains

unchanged for all t above some threshold value) and, if so, what determines this

sign pattern. It is possible to answer this question, again assuming the second

and third conditions. By expanding the function `i(t) = λi/(1− λit) in powers of

u = 1/t, we obtain the asymptotic series

`i(t) = −u− u2λ−1
i −O(u3), (2.8)

which implies
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X(t) = QD(t)QT = −uI − u2X(0)−1 −O(u3). (2.9)

In the limit of small u, the leading order term of the diagonal entries of X(t) is

the linear term, which has negative sign. For the off-diagonal entries of X(t), the

leading-order term as u tends to zero is the quadratic term, whose sign matches

the sign of the corresponding off-diagonal entry of the matrix −X(0)−1.

Behavior of the Model: From Factions to Unification

The analysis in the previous subsection tells us how to find both the blow-up

time t∗ and final sign configuration of a network if we know its initial state X(0).

However we might also want to know whether we can characterize the behavior of

X(t) in the large-n limit in terms of statistical parameters of X(0). This could,

for example, help us forecast the behavior of groups of individuals when collecting

complete relationship-level data is not feasible. Clearly if the underlying network

is a complete graph, it is not realistic to consider n that are too large, but we

find fortunately in simulations that the asymptotic behavior we will derive in this

section becomes apparent even for moderate values of n (less than 100). As a result,

these large-n results are perhaps most usefully viewed as an approximate guide to

what happens in medium-sized groups that are large enough to show predictable

collective behavior but for which a completely connected set of relationships is still

feasible to maintain.

In this section, we show that there is a transition from final states consisting of

two factions to final states consisting of all positive relations as the “mean friend-

liness” of X(0) (the mean of the distributions used to generate the off-diagonal
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entries of X(0)) is increased from negative to positive values. This is consistent

with the numerical simulations shown in Fig. 2.4; as noted above, the asymptotic

behavior we are studying is already clear in these simulations, which are performed

for n = 90.

Before discussing the details, we describe how X(0) is selected in this section.

We start by adopting the procedure of Füredi and Komlós [32]: the elements

xij(0) are drawn independently from distributions Fij with zero mass outside of

[−K,K]. The off-diagonal Fij’s have a common expectation µ and finite variance

σ2, while the on-diagonal Fii’s have a common expectation ν and variance τ 2. In

addition, we require that each off-diagonal distribution Fij be symmetric about µ.

Random matrix models of this type have attracted considerable recent interest (see

e.g. Refs. [81, 75]), but we need only the basic results of Füredi and Komlós [32]

for our purposes, and so we use these in the development below. We consider the

three cases of positive, zero and negative µ.

Case 1: µ > 0. The results of Füredi and Komlós [32] show that when µ > 0, the

deviation of ω1 from (1, 1, . . . , 1)/
√
n vanishes in probability in the large-n limit.

Hence the final state of the system consists of one large clique of friends containing

all but at most a vanishing fraction of the nodes. Moreover, by assuming a bound

on σ we can strengthen this statement further: if σ < µ/2, then the findings of

Füredi and Komlós imply that the final state consists of a single clique of friends,

with no negative edges. These observations are consistent with the representative

numerical trial shown in Fig. 2.4a. Moreover, Füredi and Komlós show that the

asymptotic behavior of λ1 grows like µn+O(1), and hence the blow-up time scales

like 1/(µn).
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We can gain insight into the behavior of the system for small t using an informal

Taylor series calculation: if we rescale time in Eq. (2.3) by inserting a 1/n before the

summation, compute the Taylor expansion of xij(t) term-by-term and then take the

expectation of each term, we obtain the geometric series x(t) = µ+µ2t+µ3t2 + · · · ,

or

x(t) =
µ

1− µt
. (2.10)

With significantly more work, it can be proved that every trajectory xij(t) has this

time dependence on [0, 1/K) in the large-n limit with probability 1 (see Appendix

A), so we may write

lim
n→∞

xij(t) = xij(0)− µ+
µ

1− µt
with prob. 1 (2.11)

for all t in [0, 1/K). Observe that this limit has a blow-up time t∗ of 1/µ. Since

our rescaling of time represents a zooming in or magnification of time by a factor

of n, this t∗ corresponds to a blow-up time asymptotic to 1/(µn) for the unrescaled

system, consistent with the results of Füredi and Komlós.

Case 2: µ = 0. In the event that the network starts from a mean friendliness of

zero, numerical experiments indicate that the system ends up with two factions of

equal size in the large-n limit (Fig. 2.4b). We now prove this to be the case. For

the remainder of this discussion, we will abbreviate X(0) as A and xij(0) as aij.

Since the off-diagonal entries of A have symmetric distributions by assumption,

we have for any off-diagonal aij and any interval Sij on the real line that P (aij ∈
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Sij) = P (−aij ∈ Sij). Now let D be a diagonal matrix with some sequence of +1

and −1 along its diagonal (where the ith diagonal entry is denoted by di). Then

the random matrices A and B = DAD are identically distributed, as we will now

show.

To say that A and B are identically distributed means that for every Borel set

of matrices S, P (A ∈ S) = P (B ∈ S). To prove this, it suffices to consider the case

in which S is a product of intervals Sij, since these product sets generate the Borel

sigma-algebra. The entries of A are independent, so P (A ∈ S) = Πi≤jP (aij ∈ Sij).

Similarly, P (B ∈ S) = Πi≤jP (diaijdj ∈ Sij). By the symmetry of the off-diagonal

distributions, Πi≤jP (aij ∈ Sij) = Πi≤jP (diaijdj ∈ Sij), which gives us P (A ∈ S) =

P (B ∈ S) as desired. (Note that when i = j, the factor didj is 1 so the on-diagonal

distributions need not be symmetric.)

Now consider the set S of matrices with an ω1 consisting of all positive com-

ponents. The above demonstration implies that the probability of choosing an A

in this set is the same as choosing an A such that B is in this set. Regarding

the later event, A(Dωi) = λi(Dωi) implies Bωi = λiωi, so the λ1 eigenvector of

the A used to compute B is Dω1. This demonstrates that all sign patterns for

the components of ω1 are equally likely. In other words, the distribution of the

number of positive components in ω1 is the binomial distribution B(n, 1/2) and

the fraction of positive components in ω1 converges (in several senses) to 1/2 as n

grows large.

Additionally, we can consider how λ1 varies with n in the case that µ = 0 to

determine when the blow-up will occur. Füredi and Komlós [32] found for this case

that λ1 ∈ 2σ
√
n+O(n1/3 log n) with probability tending to 1, so with probability

tending to 1 the blow-up time shrinks to zero like 1/
√
n, an order of

√
n slower
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than in the µ > 0 case.

Case 3: µ < 0. For this final case, Füredi and Komlós [32] found that λ1 <

2σ
√
n + O(n1/3 log n) with probability tending to 1. The semicircle law gives a

lower bound: λ1 > 2σ
√
n+ o(

√
n) in probability. So the blow-up time goes to zero

like 1/
√
n in the unrescaled system.

Note also that if we define a new matrix C = −A where A is now the initial

matrix X(0) of Case 3, then C satisfies the condition of Case 1, µ > 0. Thus

the distance between the top eigenvector of C and (1, 1, . . . , 1)/
√
n declines to

zero in probability just as in Case 1. Furthermore, every other eigenvector of

C is orthogonal to the largest one. Hence if σ < |µ|/2, then with probability

tending to 1, every other eigenvector acquires a mixture of positive and negative

components in the large-n limit, including the bottom eigenvector of C, which is

the top eigenvector of A. This establishes that in the case that µ < 0 and σ < |µ|/2,

the system ends up in a state with two factions with probability converging to 1

for all finite n.

Numerical simulations of the case that µ < 0 suggest the conjecture that the two

factions are approximately equal in size for large n. Furthermore, the derivation

of Eq. (2.11) is in fact valid for all µ, so each trajectory rapidly decays from xij(0)

toward xij(0)− µ on [0, 1/K) (Fig. 2.4C). This transient decay appears to extend

beyond t = 1/K in numerical simulations. So, for example, if time is rescaled

by 1/
√
n instead of 1/n, we would hypothesize that (i) each trajectory makes a

complete jump from xij(0) to xij(0)−µ in the large-n limit, and that (ii) from this

point onward, the system behaves like an initial configuration of the µ = 0 case

and so separates into two equal factions en route to its blow-up at 1/(2σ).

33



0 1 2
-15

0

15

0 1 2
-50

0

50

(b) (c)(a)

0 0.1 0.2 0.3

t

xij

Figure 2.5: Tests of the model of Ku lakowski et al. (Eq. (2.3) with a t → t/n
rescaling of time) against two existing data sets. (a) The evolution of the model
starting from Zachary’s capacity matrix with the capacity of each relationship
reduced by 0.58. This is the minimal downward displacement necessary (to two
significant figures) for the resulting separation to be correct for all but 1 of the
34 club members. For reasons described by Zachary [89], this is basically the
best separation we can expect. (b) The evolution of the model from Zachary’s
capacity matrix with the capacity of zero between the two club leaders replaced
by −11; the resulting factions are identical to those in (a). Substituted values less
than −11 yield the same two factions, while greater values produce less accurate
divisions. (c) The evolution of the model starting from Axelrod and Bennett’s 1939
propensity(i, j) · size(i) · size(j) matrix for the 17 countries involved in World War
II (by Axelrod and Bennett’s definition). The model finds the correct split into
Allied and Axis powers with the exceptions of Denmark and Portugal. Axelrod
and Bennett’s own landscape theory of aggregation does slightly better—its only
misclassification is Portugal.

Discussion

Our first result above was a demonstration that the model forms two factions in

finite time across a broad set of initial conditions. As noted at the outset, similar

demonstrations have not been possible for dynamic models of structural balance

in earlier literature because these models contained so-called jammed states that

could trap a social network before it reached a two-faction configuration [5, 50].

The model of Ku lakowski et al. by contrast has no such jammed states for generic

initial conditions and hence provides a robust means for a social network to balance

itself.
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The second major result of this section is the discovery and characterization

of a transition from global polarization to global harmony as the initial mean

friendliness of the network crosses from nonpositive to positive values. Similar

transitions have been observed in other models of structural balance but so far

none has been characterized at a quantitative level. For example, Antal et al. [5]

found a nonlinear transition from two cliques of equal size to a single unified clique

as the fraction of positively signed edges at t = 0 was increased from 0 to 1 (see

Fig. 5 of Ref. [5]). The authors provided a qualitative argument for this transition,

but left open the problem of its quantitative detail. Our results both confirm the

generality of their observations and provide a quantitative account of a transition

analogous to theirs.

To complement the theoretical nature of our work and get a better sense of how

the model behaves in practice, we can numerically integrate it for several cases of

empirical social network data where the real-life outcomes of the time-evolution

are known. Our first example is based on a study by Zachary [89] who witnessed

the break-up of a karate club into two smaller clubs. Prior to the separation,

Zachary collected counts of the number of social contexts in which each pair of in-

dividuals interacted outside of the karate club, with the idea being that the more

social contexts they shared, the greater the likelihood for information exchange.

These counts, or capacities as Zachary called them, can be converted to estimates

of friendliness and rivalry in many different ways. For a large class of such con-

versions, Eq. (2.3) predicts the same division that Zachary’s method found, which

misclassified only 1 of the 34 club members (Fig. 2.5a,b).

A second example can be constructed from the data of a study by Axelrod and

Bennett [9] regarding the aggregation of Allied and Axis powers during World War
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II. If we simply take the entries of their propensity(i, j) · size(i) · size(j) matrix to

be proportional to the friendliness felt between the various pairs of countries in

the war, then running the model gives the correct Allied-Axis split for all countries

except Denmark and Portugal (Fig. 2.5C).

Nevertheless, the model clearly contains several strong simplifications of the un-

derlying social processes. The first of these is inherent to structural balance theory

itself; it is a framework restricted to capture a particular kind of social situation, in

which the need for consistency among one’s friendships and rivalries brings about

the emergence of two factions. Extensions of the theory have considered models

in which it is possible to have multiple mutual enemies and hence more than two

factions [15], and also networks that are not complete graphs [12]. However, our

focus here has been on the basic theory, since as we have seen, obtaining a sat-

isfactory dynamics even for this simplest form of structural balance has been an

elusive challenge. Moreover, the basic version of structural balance that we have

considered here, with a complete graph of relationships and constraints leading to

two factions, is relevant to a range of different situations. These span the kinds

of settings discussed earlier in this section, including clubs, classrooms, and small

organizations [17], as well as international relations during crisis (where a large set

of nations can all mutually maintain friendly or unfriendly diplomatic relations)

[9, 52].

Another consequence of the particular model studied here that has no direct

analogue in real social situations is the divergence to infinity of the the relation-

ship strengths xij. However, since the purpose of the model is to study the pattern

of signs that emerges, our main conclusions are based not on the actual magni-

tudes of these numbers but on the fact that the sign pattern eventually stabilizes
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at a point before the divergence. This stabilization of the sign pattern is our

primary focus, and one could interpret the subsequent singularity as simply the

straightforward and unimpeded “ramping up” of values caused by the system once

all inconsistencies have been worked out of the social relations—the divergence

itself can be viewed as taking place beyond the window of time over which the

system corresponds to anything real. Alternately, one can imagine that as the

community completes its separation into two groups, other social processes take

over. For example, individuals with differing ideological views or social prefer-

ences may self-segregate, breaking the all-to-all assumption of the model. In other

cases, mounting tensions may erupt into violence, reflecting a sort of bound on the

relationship intensity achievable for pairs of nodes in the network.

Finally, we note that there is a large body of work in social psychology that

studies issues such as the formation and reconciliation of factions from a much

more empirical basis; see for example Refs. [64, 65]. It is an interesting open

problem to determine the extent to which the strictly mathematical development

of the models here can be combined with the perspectives in this empirical body of

literature, ultimately leading to a richer theory of these types of social processes.
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CHAPTER 3

CONFORMISTS AND CONTRARIANS 1

Systems of N identical phase oscillators with global sinusoidal coupling are

known to display low-dimensional dynamics. Although this phenomenon was first

observed about 20 years ago, its underlying cause has remained a puzzle. In

Section 3.1, we expose the structure working behind the scenes of these systems

by proving that the governing equations are generated by the action of the Möbius

group, a three-parameter subgroup of fractional linear transformations that map

the unit disc to itself. When there are no auxiliary state variables, the group

action partitions the N -dimensional phase space into three-dimensional invariant

manifolds (the group orbits). The N − 3 constants of motion associated with

this foliation are the N − 3 functionally independent cross ratios of the oscillator

phases. No further reduction is possible, in general; numerical experiments on

models of Josephson junction arrays suggest that the invariant manifolds often

contain three-dimensional regions of neutrally stable chaos.

After assembling a general framework for studying systems of identical coupled

oscillators in Section 3.1, we consider in Section 3.2 a simple coupled oscillator

model for the interaction between conformists and contrarians in a population.

This model can be analyzed using the techniques demonstrated in Section 3.1. For

the special case in which both the conformists and contrarians are distributed like

Poisson kernels, we obtain a complete characterization of the long-time behavior

of the system. This implies that when conformists are more numerous or intense,

contrarians in general become more unified in their opposition to the conformist

1Much of the material in this chapter is drawn from S. A. Marvel, R. E. Mirollo, and S. H. Stro-
gatz. Identical phase oscillators with global sinusoidal coupling evolve by Möbius group ac-
tion. Chaos, 19:043104, 2009. and S. Marvel, H. Hong, and S. H. Strogatz. Stability of asynchrony
among identical coupled oscillators. Physical Review E, in preparation.
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position. Conversely when the conformists are either sufficiently sparse or suffi-

ciently dispassionate, the state of complete asychrony (where both conformists and

contrarians are uniformly spread around the complex unit circle) becomes stable.

This final observation is equivalent to the statement that the asynchronous

state is stable just when the average of all conformist and contrarian coupling

constants is negative. In Section 3.3, we show that this condition not only holds

for the simple case in which the conformist and contarian subpopulations each

have a single coupling constant, but also for the case of an arbitrary (integrable)

distribution of coupling constants.

3.1 Identical oscillators and Möbius group action

When a nonlinear system shows unexpectedly simple behavior, it may be a clue

that some hidden structure awaits discovery.

For example, recall the classic detective story [43] that began in the 1950s with

the work of Fermi, Pasta, and Ulam [27, 86, 87]. In their numerical simulations

of a chain of anharmonic oscillators, Fermi et al. were surprised to find the chain

returning almost perfectly, again and again, to its initial state. The struggle to

understand these recurrences led Zabusky and Kruskal [88] to the discovery of

solitons in the Korteweg–de Vries equation, which in turn sparked a series of results

showing that this equation possessed many conserved quantities—in fact, infinitely

many [51]. Then several other equations turned out to have the same properties.

At the time these results seemed almost miraculous. But by the mid-1970s the

hidden structure responsible for all of them—the complete integrability of certain

infinite-dimensional Hamiltonian systems [90]—had been made manifest by the

inverse scattering transform [34, 1] and Lax pairs [47].
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Something similar, though far less profound, has been happening again in non-

linear science. The broad topic is still coupled oscillators, but unlike the con-

servative oscillators studied by Fermi et al., the oscillators in question now are

dissipative and have stable limit cycles. This latest story began around 1990,

when a few researchers noticed an enormous amount of neutral stability and seem-

ingly low-dimensional behavior in their simulations of Josephson junction arrays—

specifically, arrays of identical, overdamped junctions arranged in series and cou-

pled through a common load [79, 80, 74, 36, 57]. Then, just a year ago, Antonsen

et al. [44] uncovered similarly low-dimensional dynamics in the periodically forced

version of the Kuramoto model of biological oscillators [46, 70, 3]. This was par-

ticularly surprising because the oscillators in that model are non-identical.

As in the soliton story, these numerical observations then inspired a series

of theoretical advances. For the case of identical coupled phase oscillators (the

subject of this section), these included the discovery of constants of motion [83, 84],

and of a pair of transformations that established the low-dimensionality of the

dynamics [83, 84, 35, 59, 66, 60]. But what remained to be found was the final

piece, the identification of the hidden structure. Without it, it was unclear why

the transformations and constants of motion should exist in the first place.

In this section we show that the group of Möbius transformations is the key

to understanding this class of dynamical systems. Our analysis unifies the pre-

vious treatments of Josephson arrays and the Kuramoto model, and clarifies the

geometric and algebraic structures responsible for their low-dimensional behavior.

One spin-off of our approach is a new set of constants of motion; these generalize

the constants found previously, and hold for a wider class of oscillator arrays.

The section is organized as follows. To keep the treatment self-contained and
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to establish notation, Subsection 3.1 reviews the relevant background about cou-

pled oscillators and the Möbius group. In Subsection 3.1 we show how to use

Möbius transformations to reduce the dynamics of identical oscillators with global

sinusoidal coupling, the type of coupling that appears in both the Josephson and

Kuramoto models. The reduced flow lives on a set of invariant three-dimensional

manifolds, arising naturally as the so-called group orbits of the Möbius group.

The results obtained in this way are then compared to previous findings (Subsec-

tion 3.1) and used to generate new constants of motion via the classical cross ratio

construction (Subsection 3.1). We explore the dynamics on the invariant mani-

folds in Subsection 3.1, and show that the phase portraits for resistively coupled

Josephson arrays are filled with chaos and island chains, reminiscent of the pictures

encountered in Hamiltonian chaos and KAM theory.

Background

Reducible systems with sinusoidal coupling. The theory developed here

was originally motivated by simulations of the governing equations for a series array

of N identical, overdamped Josephson junctions driven by a constant current and

coupled through a resistive load. As shown in Tsang et al. [79], the dimensionless

circuit equations for this system can be written as

φ̇j = Ω− (b+ 1) cosφj +
1

N

N∑
k=1

cosφk (3.1)

for j = 1, . . . , N . The physical interpretation need not concern us here; the im-

portant point for our purposes is that this set of N ordinary differential equations

(ODEs) displayed low-dimensional dynamics. The same sort of low-dimensional

behavior was later found in other kinds of oscillator arrays [36] as well as in Joseph-

son arrays with other kinds of loads [80, 74, 57].
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Building on contributions from several teams of researchers [79, 80, 74, 36, 57],

Watanabe and Strogatz [84] showed that the system Eq. (3.1) could be reduced

from N ODEs to three ODEs, in the following sense. Consider a time-dependent

transformation from a set of constant angles θj to a set of functions φj(t), defined

via

tan

[
φj(t)− Φ(t)

2

]
=

√
1 + γ(t)

1− γ(t)
tan

[
θj −Θ(t)

2

]
(3.2)

for j = 1, . . . , N . By direct substitution, one can check that the resulting func-

tions φj(t) simultaneously satisfy all N equations in Eq. (3.1) as long as the three

variables Φ(t), γ(t) and Θ(t) satisfy a certain closed set of ODEs [84].

Watanabe and Strogatz also noted that the same transformation can be used

to reduce any system of the form

φ̇j = feiφj + g + f̄ e−iφj (3.3)

for j = 1, . . . , N , where f is any smooth, complex-valued, 2π-periodic function of

the phases φ1, . . . , φN . (Here the overbar denotes complex conjugate. Also, note

that g has to be real-valued since φ̇j is real.) The functions f and g are allowed

to depend on time and on any other auxiliary state variables in the system, for

example, the charge on a load capacitor or the current through a load resistor for

certain Josephson junction arrays. The key is that f and g must be the same

for all oscillators, and thus do not depend on the index j. We call such systems

sinusoidally coupled because the dependence on j occurs solely through the first

harmonics eiφj and e−iφj .

Soon after the transformation Eq. (3.2) was reported, Goebel [35] observed

that it could be related to fractional linear transformations, and he used this fact

to simplify some of the calculations in Ref. [84]. At that point, research on the

reducibility of Josephson arrays paused for more than a decade. The question
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of why this particular class of dynamical systems Eq. (3.3) should be reducible

by fractional linear transformations was not pursued at that time, but will be

addressed in the subsection Möbius Group Reduction.

Ott-Antonsen ansatz. Ott and Antonsen [59, 60] recently reopened the issue

of low-dimensional dynamics, with their discovery of an ansatz that collapses the

infinite-dimensional Kuramoto model to a two-dimensional system of ODEs.

To illustrate their ansatz in its simplest form, let us apply it to the class of

identical oscillators governed by Eq. (3.3), in the limit N → ∞. (Note that this

step involves two simplifying assumptions, namely, that N is infinitely large and

that the oscillators are identical. The Ott-Antonsen ansatz applies more generally

to systems of non-identical oscillators with frequencies chosen at random from a

prescribed probability distribution—indeed, this generalization was one of Ott and

Antonsen’s major advances—but it is not needed for the issues that we wish to

address.) In the limit N → ∞, the evolution of the system Eq. (3.3) is given by

the continuity equation

∂ρ

∂t
+
∂(ρv)

∂φ
= 0 (3.4)

where the phase density ρ(φ, t) is defined such that ρ(φ, t)dφ gives the fraction of

phases that lie between φ and φ+ dφ at time t, and where the velocity field is the

Eulerian version of Eq. (3.3):

v(φ, t) = feiφ + g + f̄ e−iφ. (3.5)

Our earlier assumptions about the coefficient functions f and g now take the form

that f and g may depend on t but not on φ. The time-dependence of f and g

can arise either explicitly (through external forcing, say) or implicitly (through

the time-dependence of the harmonics of ρ or any auxiliary state variables in the
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system).

Following Ott and Antonsen [59], suppose ρ is of the form

ρ(φ, t) =
1

2π

{
1 +

∞∑
n=1

(
ᾱ(t)neinφ + α(t)ne−inφ

)}
(3.6)

for some unknown function α that is independent of φ. (Our definition of α is,

however, slightly different from that in Ott and Antonsen [59]; our α is their ᾱ.)

Note that Eq. (3.6) is just an algebraic rearrangement of the usual form for the

Poisson kernel:

ρ(φ) =
1

2π

1− r2

1− 2r cos(φ− Φ) + r2
(3.7)

where r and Φ are defined via

α = reiΦ. (3.8)

In geometrical terms, the ansatz Eq. (3.6) defines a submanifold in the infinite-

dimensional space of density functions ρ. This Poisson submanifold is two-dimen-

sional and is parametrized by the complex number α, or equivalently, by the polar

coordinates r and Φ.

The intriguing fact discovered by Ott and Antonsen is that the Poisson subman-

ifold is invariant: if the density is initially a Poisson kernel, it remains a Poisson

kernel for all time. To verify this, we substitute the velocity field Eq. (3.5) and

the ansatz Eq. (3.6) into the continuity equation Eq. (3.4), and find that the am-

plitude equations for each harmonic einφ are simultaneously satisfied if and only if

α(t) evolves according to

α̇ = i
(
fα2 + gα + f̄

)
. (3.9)

This equation can be recast in a more physically meaningful form in terms of

the complex order parameter, denoted by 〈z〉 and defined as the centroid of the
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phases φ regarded as points eiφ on the unit circle:

〈z〉 =

∫ 2π

0

eiφρ(φ, t)dφ. (3.10)

By substituting Eq. (3.6) into Eq. (3.10) we find that 〈z〉 = α for all states on the

Poisson submanifold. Hence, 〈z〉 satisfies the Riccati equation

˙〈z〉 = i(f〈z〉2 + g〈z〉+ f̄). (3.11)

When f and g are functions of 〈z〉 alone, as in mean-field models, Eq. (3.11)

constitutes a closed two-dimensional system for the flow on the Poisson submani-

fold. More generally, the system will be closed whenever f and g depend on ρ only

through its Fourier coefficients. We will show this explicitly in Subsubsection 3.1,

by finding formulas for all the higher Fourier coefficients in terms of α, and hence

in terms of 〈z〉. (However, as we will see, things become more complicated for

states lying off the Poisson submanifold. Then 〈z〉 no longer coincides with α and

the closed system becomes three dimensional, involving ψ as well as α.)

The work of Ott and Antonsen [59] raises several questions. Why should the set

of Poisson kernels be invariant? What is the relationship, if any, between the ansatz

Eq. (3.6) and the transformation Eq. (3.2) studied earlier? Why does Eq. (3.2) re-

duce equations of the form Eq. (3.3) to a three-dimensional flow, whereas Eq. (3.6)

reduces them to a two-dimensional flow?

As we shall see, the answers have to do with the properties of the group of

conformal mappings of the unit disc to itself. Before showing how this group arises

naturally in the dynamics of sinusoidally coupled oscillators, let us recall some of

its relevant properties.
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Möbius group. Consider the set of all fractional linear transformations F :

C→ C of the form

F (z) =
az + b

cz + d
, (3.12)

where a, b, c and d are complex numbers, and the numerator is not a multiple of the

denominator (that is, ad− bc 6= 0). This family of functions carries the structure

of a group. The group operation is composition of functions, the identity element

is the identity map, and inverses are given by inverse functions.

Of most importance to us is a subgroup G—which we refer to as the Möbius

group—consisting of those fractional linear transformations that map the open unit

disc D = {z ∈ C : |z| < 1} onto itself in a one-to-one way. These transformations

and their inverses are analytic on D and map its boundary (the unit circle S1 =

{z ∈ C : |z| = 1}) to itself. All such automorphisms of the disc can be written [69]

in the form

F (z) = eiϕ
α− z
1− ᾱz

, (3.13)

for some ϕ ∈ R and α ∈ D. The Möbius group G is in fact a three-dimensional

Lie group, with real parameters ϕ, Re(α), and Im(α).

However, it turns out that a different parametrization of G will be more no-

tationally convenient in what follows, in the sense that it simplifies comparisons

between our results and those in the prior literature. Specifically, we will view a

typical element of G as a mapping M from the unit disc in the complex w-plane

to the unit disc in the complex z-plane, with parametrization given by

z = M(w) =
eiψw + α

1 + ᾱeiψw
(3.14)

where α ∈ D and ψ ∈ R. Note that the inverse mapping

w = M−1(z) = e−iψ
z − α
1− ᾱz

(3.15)
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has an appearance closer to that of the standard parametrization Eq. (3.13).

A word about terminology: our definition of the Möbius group is not the con-

ventional one. Usually this term denotes the larger group of all fractional linear

transformations (or bilinear transformations, or linear fractional transformations),

whereas we reserve the adjective Möbius for the subgroup G and its elements.

Thus, from now on, when we say Möbius transformation we specifically mean an

element of the subgroup G consisting of analytic automorphisms of the unit disc.

Möbius Group Reduction

In this subsection we show that if the equations for the oscillator array are of the

form Eq. (3.3), then the oscillators’ phases φj(t) evolve according to the action of

the Möbius group on the complex unit circle:

eiφj(t) = Mt(e
iθj), (3.16)

for j = 1, . . . , N , where Mt is a one-parameter family of Möbius transformations

and θj is a constant (time-independent) angle. In other words, the time-t flow map

for the system is always a Möbius map.

Incidentally, this result is consistent with a basic topological fact: we know

that different oscillators cannot pass through each other on S1 under the flow, so

we expect the time-t flow map to be an orientation-preserving homeomorphism of

S1 onto itself—and indeed any Möbius map is.

We begin the analysis with an algebraic method similar to that in Goebel [35].

Then, in Subsections 3.1 and 3.1, we adopt a geometrical perspective and show

that it answers several questions left open by the first method.
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Algebraic method. Parametrize the one-parameter family of Möbius trans-

formations as

Mt(w) =
eiψw + α

1 + ᾱeiψw
(3.17)

where |α(t)| < 1 and ψ(t) ∈ R, and let

wj = eiθj . (3.18)

To verify that Eq. (3.17) gives an exact solution of Eq. (3.3)—subject to the con-

straint that the Möbius parameters α(t) and ψ(t) obey appropriate ODEs, to be

determined—we compute the time-derivative of φj(t) = −i logMt(wj), keeping in

mind that wj is constant:

φ̇j =
ψ̇eiψwj − iα̇
eiψwj + α

+
(i ˙̄α− ᾱψ̇)eiψwj

1 + ᾱeiψwj
. (3.19)

From Eq. (3.15), we get

eiψwj =
eiφj − α
1− ᾱeiφj

(3.20)

which when substituted into Eq. (3.19) yields

φ̇j = Reiφj +
ψ̇ + iᾱα̇− α(i ˙̄α− ᾱψ̇)

1− |α|2
+ R̄e−iφj (3.21)

where R = (i ˙̄α− ᾱψ̇)/(1− |α|2).

Note that Eq. (3.21) falls precisely into the algebraic form required by Eq. (3.3).

Thus, to derive the desired ODEs for α(t) and ψ(t), we now subtract Eq. (3.21)

from Eq. (3.3) to obtain N equations of the form 0 = C1e
iφj + C0 + C−1e

−iφj , for

j = 1, . . . , N . If the system contains at least three distinct oscillator phases, then

C1, C0, and C−1 must generically be zero. Explicitly,

f =
i ˙̄α− ᾱψ̇
1− |α|2

, g =
ψ̇ + iᾱα̇− α(i ˙̄α− ᾱψ̇)

1− |α|2
. (3.22)
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Eq. (3.22) can be algebraically rearranged to give

α̇ = i(fα2 + gα + f̄) (3.23a)

ψ̇ = fα + g + f̄ ᾱ. (3.23b)

Eqs. (3.23a) and (3.23b) have been derived previously; they appear as Eqs.(10)

and (11), respectively, in Pikovsky and Rosenblum’s work [66], where they were

derived by applying the transformation Eq. (3.2). Both their approach and the one

above are certainly quick and clean, but they require us to guess the transformation

ahead of time, and reveal little about why this transformation works.

Incidentally, observe that under the change of variables zj = eiφj , Eq. (3.3)

becomes

żj = i(fz2
j + gzj + f̄). (3.24)

Eq. (3.24) is a Riccati equation with the form of Eq. (3.23a)—another coinci-

dence that seems a bit surprising when approached this way. In the following

subsubsection, we will see how these Riccati equations emerge naturally from the

infinitesimal generators of the Möbius group.

Geometric method of finding α̇. Now we change our view of Möbius maps

slightly. Instead of thinking of M as a map from the w-plane to the z-plane, we

view it as a map from the z-plane to itself. This requires a small and temporary

change in notation, but it makes things clearer, especially when we start to discuss

differential equations on the complex plane.

We begin by recalling some basic facts and definitions. Suppose the coupled

oscillator system contains just three distinct phases among its N oscillators. Then

by a property of Möbius transformations, there exists a unique Möbius transfor-
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mation from any point z1 = (eiθ1 , eiθ2 , eiθ3) to any other point z2 = (eiφ1 , eiφ2 , eiφ3)

in the phase space S1 × S1 × S1. If the system instead contains only one

or two distinct phases, many Möbius transformations will take z1 to z2, so we

can still reach every point of the phase space from every other point. However,

if the system contains more than three distinct phases, say N , then there is not

in general a Möbius transformation that transforms z1 = (eiθ1 , eiθ2 , eiθ3 , . . . , eiθN )

to z2 = (eiφ1 , eiφ2 , eiφ3 , . . . , eiφN ); only some points are accessible from z1, while

others are not.

In the language of group theory, we say that z2 is in the group orbit of z1 if

there exists a Möbius map M such that z2 = M(z1). Then, as a direct consequence

of the fact that Möbius maps form a three-parameter group G under composition,

the group orbits of G partition the phase space into three-dimensional manifolds

(when the phase space is at least three dimensional).

To compute infinitesimal generators for G, we compute the time derivatives of

the three one-parameter families of curves corresponding to the three parameters

of G: ψ, Re(α) and Im(α). Each of the three families is obtained from the Möbius

transformation by setting two of the three parameters to zero, and leaving the

remaining parameter free. For example, if we set t = 0 at z = (z1, . . . , zN), these

three families may be written as

M1(z) = eitz

M2(z) =
z − t
1− tz

M3(z) =
z + it

1− itz

(3.25)

where M1(z) is written in place of (M1(z1), . . . ,M1(zN)) and likewise for M2(z)

and M3(z). We continue using this shorthand in subsequent equations, writing

h(z) in place of (h(z1), . . . , h(zN)) for any one-parameter function h.
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The time derivatives of the curves in Eq. (3.25) evaluated at t = 0 then give a

set of infinitesimal generators for G:

v1 = iz

v2 = z2 − 1

v3 = iz2 + i.

(3.26)

Note that these three generators point out into the full N -dimensional complex

space CN , as expected.

Meanwhile, if we substitute f = −ih1 +h2 (where h1 and h2 are real functions)

into the original Riccati dynamics Eq. (3.24), we can rewrite this equation of

motion in terms of the three infinitesimal generators:

ż = izg + (z2 − 1)h1 + (iz2 + i)h2. (3.27)

The implication of the rewritten form Eq. (3.27) is then given by a theorem from

Lie theory: if L is a Lie group acting on a submanifold with linearly independent

infinitesimal generators v1, . . . ,vn, and v is a vector field of the form v = c1v1 +

· · · + cnvn where the coefficients ck depend only on time t, then the trajectory of

the dynamics ż = v from any initial condition z0 can be expressed in the form

{At(z0)} for a unique family {At} ⊂ L parameterized by t. Since the Möbius group

is a complex Lie group, this result can be applied directly to conclude Eq. (3.27)

has the solution z(t) = Mt(z0) where {Mt} is a unique one-parameter family of

Möbius transformations.

Although we have so far assumed that the components zk of z lie on the complex

unit circle, both Eq. (3.17) and Eq. (3.27) extend naturally to all of CN . This

implies that z0 = 0 must evolve as z(t) = Mt(0) for some family {Mt}. However,

Eq. (3.17) shows that M(0) = α for all M ∈ G. So z(t) = Mt(0) = α for all
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t, meaning that α(t) satisfies Eq. (3.27). Since Eq. (3.27) is just a rewriting of

Eq. (3.24), the dynamics Eq. (3.23a) for α that we derived earlier are now placed

in a geometrical context. This approach reveals that α(t) is just the image of the

origin under a one-parameter family of Möbius maps, applied to any one complex

plane of CN .

It is even more illuminating to compute the infinitesimal generators within the

N -fold torus TN of phase values, i.e., the quantities uk = −i d
dt

logMk(e
iφ)|t=0.

These turn out to be

u1 = (1, . . . , 1)

u2 = 2 sinφ

u3 = 2 cosφ.

(3.28)

When expressed in terms of these infinitesimal generators, the equation of motion

Eq. (3.27) becomes

φ̇ = g + (2 sinφ)h1 + (2 cosφ)h2 (3.29)

which is precisely what we earlier referred to as a sinusoidally coupled system

Eq. (3.3), and whose solution must therefore be of the form φt = −i logMt(e
iθ)

for some Mt ∈ G.

This calculation finally clarifies what is so special about sinusoidally coupled

systems Eq. (3.3): they are induced naturally by a flow on the Möbius group. This

fact underlies their reducibility and all their other beautiful (but non-generic)

properties.

Geometric method of finding ψ̇. We turn next to the dynamics of ψ. As

we will show in the next section, the action of the Möbius transformation involves

a clockwise rotation of the oscillator phase density ρ(φ, t) by arg(α) − ψ and a
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counterclockwise rotation by arg(α). Hence, ψ(t) may be viewed as the overall

counterclockwise rotation of the distribution at time t relative to the initial distri-

bution at t = 0.

To support this interpretation, we show here that ψ̇ equals the average value

of the vector field on the circle, given by

〈φ̇〉 =
1

2π

∫
S1

φ̇ dθ. (3.30)

Observe the right side of the integrand Eq. (3.19) has two terms:

R1(w) =
ψ̇eiψw − iα̇
eiψw + α

R2(w) =
(i ˙̄α− ᾱψ̇)eiψw

1 + ᾱeiψw
.

(3.31)

By Cauchy’s formula,

1

2πi

∫
S1

R2(w)
dw

w
= R2(0) = 0. (3.32)

So 〈φ̇〉 simplifies to

〈φ̇〉 =
1

2πi

∫
S1

R1(w)
dw

w
. (3.33)

Note that R1(w) has a pole in the unit disc, so we make the change of variables

w → w−1 to move this pole outside the circle. Evaluating the resulting integral

yields

1

2πi

∫
S1

R1(w)
dw

w
=

1

2πi

∫
S1

ψ̇ − iα̇e−iψw
1 + αe−iψw

dw

w
= ψ̇ (3.34)

which completes the demonstration that 〈φ̇〉 = ψ̇.

We can now go back and evaluate the average vector field in a different way to

find the differential equation that governs ψ(t). Differentiating φ = −i logMt(w)

with respect to time and substituting the result into ψ̇ = 1
2π

∫
S1 φ̇ dθ, we obtain

ψ̇ =
1

2πi

∫
S1

Ṁt(w)

Mt(w)

dw

iw
. (3.35)
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Since Mt obeys the Riccati equation, we can eliminate Ṁt in the numerator above

to get

ψ̇ =
1

2πi

∫
S1

(fMt(w) + g + f̄Mt(w)−1)
dw

w
. (3.36)

There are three integrals to evaluate here. The third one involves a term Mt(w)−1

which has a pole inside the unit circle, so we do the same change of variables

as before, w → w−1, to move the pole outside. The corresponding integral then

simplifies to

1

2πi

∫
S1

Mt(w)−1dw

w
=

1

2πi

∫
S1

e−iψw + ᾱ

1 + αe−iψw

dw

w
= ᾱ (3.37)

where the final integration follows from Cauchy’s formula. Similiarly, we use

Cauchy’s formula to integrate the first and second terms of the integrand in

Eq. (3.36), and thereby obtain the desired differential equation for ψ, thus red-

eriving Eq. (3.23b) found earlier.

Connections to Previous Results

Relation to the Watanabe-Strogatz transformation. It is natural to ask

how the trigonometric transformation Eq. (3.2) used in earlier studies [83, 84,

66] relates to the Möbius transformation Eq. (3.17) used above. As we will see,

Eq. (3.2) may be viewed as a restriction of Eq. (3.17) to the complex unit circle.

First, by trigonometric identities, we have

tan

[
φ− Φ

2

]
= i

1− ei(φ−Φ)

1 + ei(φ−Φ)
. (3.38)

To connect this to Möbius transformations, consider what happens when we apply

the map defined by Eq. (3.17) to a point w = eiθ on the unit circle. Since the

image is also a point on the unit circle, it can be written as M(eiθ) = eiφ for some
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angle φ. Next let α = reiΦ and divide both sides of Eq. (3.17) by eiΦ. Thus

ei(φ−Φ) =
ei(θ−Θ) + r

1 + rei(θ−Θ)
(3.39)

where Θ = Φ−ψ. Substitution of Eq. (3.39) into the right side of Eq. (3.38) gives

tan

[
φ− Φ

2

]
=

1− r
1 + r

(
i
1− ei(θ−Θ)

1 + ei(θ−Θ)

)
. (3.40)

By the identity Eq. (3.38), Eq. (3.40) is equivalent to Eq. (3.2) with γ = −2r/(1 +

r2).

We can now see how the Möbius parameters α and ψ operate on the set of

eiθ in C. From the relationships between Θ, γ, Φ and the Möbius parameters,

the initial phase density is first rotated clockwise around S1 by arg(α) − ψ, then

squeezed toward one side of the circle as a function of |α|, and afterwards rotated

counterclockwise by arg(α). The squeeze, which takes uniform distributions to

Poisson kernels, can be thought of as a composition of inversions, dilations and

translations in the complex plane.

Invariant manifold of Poisson kernels. In the subsection Ott-Antonsen

ansatz, we used the Ott-Antonsen ansatz Eq. (3.6) to show that systems of identical

oscillators with global sinusoidal coupling contain a degenerate two-dimensional

manifold among the three-dimensional leaves of their phase space foliation. This

two-dimensional manifold, which we called the Poisson submanifold, consists of

phase densities ρ(φ, t) that have the form of a Poisson kernel. We now rederive

these results within the framework of Möbius transformations.

Let T denote one instance of the transformation Eq. (3.2); in other words, fix

the parameters Φ, γ and Θ and let φ = T (θ). Let µ denote the normalized uniform
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measure on S1; thus

dµ(θ) =
1

2π
dθ. (3.41)

The transformation T maps µ to the measure T∗µ, and, by the usual formula

for transformation of single-variable measures, we have d(T∗µ)(φ) = 1
2π
T−1(φ)′dφ,

where the prime denotes differentiation by φ. From this equation it follows that

d(T∗µ)(φ) has the form of the Poisson kernel, because the inverse of the Möbius

transformation Eq. (3.17) is

M−1(z) = e−iψ
z − α
1− ᾱz

(3.42)

which implies

T−1(φ) = −ψ − i log(eiφ − α) + i log(1− ᾱeiφ). (3.43)

Then by differentiation and algebraic rearrangement, we obtain

T−1(φ)′ =
1− r2

1− 2r cos(φ− Φ) + r2
. (3.44)

The integral of T−1(φ)′ over [0, 2π) is 2π, so d(T∗µ)(φ) is indeed a normalized

Poisson kernel.

Finally, if the phase distribution d(T∗µ)(φ)/dφ ever takes the form of a Poisson

kernel with parameters r = r0 and Φ = Φ0, then we can set r(0) = r0, Φ(0) = Φ0

and dµ(θ) = 1
2π
dθ, and the above calculation shows that d(T∗µ)(φ)/dφ remains a

Poisson kernel for all future and past times. Hence, the set of normalized Pois-

son kernels constitutes an invariant submanifold of the infinite-dimensional phase

space.

The above demonstration also reveals that the Poisson submanifold has dimen-

sion k + 2 where k is the number of state variables besides α, ψ and the oscillator
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phases. More concretely, it implies that when the system lies on the Poisson sub-

manifold, we can write α̇ as depending only on α; it is not possible to require α̇ to

depend on ψ in any real coupling scheme.

To see this, we first consider the case in which the system is closed and there

are no additional state variables. Suppose α̇ does not depend only on α. Then

some of the phase space trajectories cross when projected onto the unit disc of

α values. At the point of any crossing, the phase density ρ(φ, t) has multiple α̇

values. But by Eq. (3.44), the phase density depends only on α, so there is nothing

in the phase space that can distinguish between the different α̇ values at that point.

Hence, α̇ must be expressible in terms of α alone. By an analogous argument, α̇

is also independent of ψ on the Poisson submanifold when there are k other state

variables besides the oscillator phases and Möbius parameters.

On the other hand, if the time-dependence of α̇ arises only via a dependence on

α, then r and Φ decouple from ψ and the dynamics are two dimensional regardless

of whether the system is evolving on the Poisson submanifold or not. Observe that

we can always force ψ-independence for α̇ by throwing away enough information

about the locations of the other phases. For instance, in the extreme, we may

simply make f and g constant.

Finally, even when α̇ does not depend solely on α, the dynamics still may be

two dimensional. For example, in the case of completely integrable systems [83],

the variables r and Φ − ψ decouple from Φ to foliate the phase space with two-

dimensional tori.
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Characteristics of the Motion

Cross ratios as constants of motion. The reduction of Eq. (3.3) by the

three-parameter Möbius group suggests that the corresponding system of coupled

oscillators should have N − 3 constants of motion. As we will see, these conserved

quantities are given by the cross ratios of the points zj = eiφj on S1. Recall from

complex analysis [14] that the cross ratio of four distinct points z1, z2, z3, z4 ∈

C ∪ {∞} is

(z1, z2, z3, z4) =
z1 − z3

z1 − z4

· z2 − z4

z2 − z3

(3.45)

This quantity is conserved under Möbius transformations: for all α and ψ, (M(z1),

M(z2),M(z3),M(z4)) = (z1, z2, z3, z4). Hence, theN !/(N−4)! cross ratios of theN

oscillator phases remain constant along the trajectories in phase space. We denote

the constant value of (z1, z2, z3, z4) as λ1234. Of course, we could have defined

the cross ratio for four-tuples of non-distinct points as well, but these quantities

are trivially conserved regardless of the dynamics and hence do not reduce the

dimension of the phase space.

To show that exactly N−3 of the cross ratios are independent, consider the se-

quence: {(z1, z2, z3, z4), (z2, z3, z4, z5), . . . , (zN−3, zN−2, zN−1, zN)}. Each cross ratio

in the sequence includes a new point not in the cross ratios preceding it and there-

fore must be independent of them. Hence, there are at least N − 3 independent

cross ratios. With a bit more work (see Appendix B), we can also confirm that the

rest of the cross ratios are functionally dependent on these N − 3 integrals.

Since the phase space of the phases is an N -fold torus of real variables, we

expect that each of the constants of motion can be expressed in terms of real

functions and variables. Indeed, if z1, z2, z3, z4 lie on the unit circle, then the

cross ratio (z1, z2, z3, z4) lies on R ∪ {∞}. We see this explicitly by pulling out
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e
i
2

(φ1+φ3) from the factor (eiφ1 − eiφ3) of (eiφ1 , eiφ2 , eiφ3 , eiφ4), and likewise for the

other three factors, and then canceling the factors e
i
2

(φ1+φ2+φ3+φ4) in the numerator

and denominator to find

(eiφ1 , eiφ2 , eiφ3 , eiφ4) =
S13S24

S14S23

(3.46)

where

Sij = sin

[
φi − φj

2

]
. (3.47)

This way of writing the cross ratio also suggests a relationship with the con-

stants of motion reported by Watanabe and Strogatz [83, 84] for completely inte-

grable systems (those with f = 1
2
eiδ〈z〉 and g = 0, where 〈z〉 is the phase centroid

Eq. (3.10)). These constants of motion, which we will call WS integrals, take the

form

I = S12S23 · · ·S(N−1)NSN1 (3.48)

where any permutation of the indices generates another WS integral. As previously

demonstrated [84], exactly N − 2 of the N ! index permutations of Eq. (3.48) are

functionally independent.

As we might anticipate, the WS integrals imply that the cross ratios are

constants of motion: consider two distinct WS integrals I = SikSklSljΠ and

I ′ = SilSlkSkjΠ, where Π denotes the remaining product of factors. Assume Π

is the same for both I and I ′. Then I/I ′ = −λijkl. Since i, j, k, l are arbitrary,

we can generate all cross ratios via this procedure.

Additionally, if a single WS integral holds for a system in which the cross

ratios are invariant, then all WS integrals hold, since we can arbitrarily permute

the indices of the first WS integral by sequences of transpositions of the form

I = −λijklI ′ in which l and k are interchanged.
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Fourier coefficients of the phase distribution. When we introduced f and

g in Subsection 3.1, we required that they depend on the phases only through the

Fourier coefficients of the phase density ρ(φ, t). Since the centroid Eq. (3.10) is the

Fourier coefficient corresponding to the first harmonic e−iφ, this condition is met

by standard Kuramoto models, Josephson junction series arrays, laser arrays and

many other well-studied systems of globally coupled oscillators.

Our goal now is to show that this condition implies the closure of Eq. (3.23),

in the sense that α̇ and ψ̇ depend only on α and ψ. To do so, we will show that

the Fourier coefficient of all higher harmonics e−imφ for any integer m may be

expressed in terms of α and ψ.

For a fixed measure µ(θ) on [0, 2π) and a transformation T (θ) = −i logM(θ)

of this measure via the Möbius map M , the Fourier coefficient of e−imφ is given by

〈zm〉 =

∫
S1

eimφd(T∗µ)(φ) =

∫
S1

M(eiθ)mdµ(θ). (3.49)

We use the notation 〈zm〉 as a reminder that 〈z〉 is the phase centroid.

We assume that we can take a Fourier expansion of µ(θ), so

dµ(θ) =
1

2π

∞∑
n=−∞

cne
inθdθ (3.50)

where the constants cn are independent of θ. Since the phase distribution must be

real and normalized, we know that c−n = c̄n and c0 = 1, so we can write

dµ =
1

2πi

(
1 + P (w) + P (w)

)
dw

w
(3.51)

where w = eiθ and P (w) =
∑∞

n=1 cnw
n. The formula for 〈zm〉 then becomes:

〈zm〉 =
1

2πi

∫
S1

M(w)m
(

1 + P (w) + P (w)

)
dw

w
. (3.52)
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Now, M(w)m(1+P (w)) is analytic on the open disc D and M(0)m(1+P (0)) = αm.

Meanwhile, the remaining term of the integrand of Eq. (3.52) has the complex

conjugate

M(w)
m
P (w)

w
=

(
1 + ᾱeiψw

eiψw + α

)m
P (w)

w
(3.53)

which features an order-1 pole at w = 0 and an order-m pole at w = −e−iψα. The

first residue evaluates to zero, while the second is given by

e−imψ

(m− 1)!

dm−1

dwm−1

[
(1 + ᾱeiψw)m

P (w)

w

]∣∣∣∣
w=−e−iψα.

(3.54)

Therefore, 〈zm〉 is equal to αm added to the complex conjugate of this second

residue:

〈zm〉 = αm +
m−1∑
k=0

(1− |α|2)k+1

k!

∞∑
n=0

(−1)n
(n+ k)!

n!
c̄n+k+1e

i(m+n)ψᾱn. (3.55)

For example, the centroid may be written in terms of α and ψ as

〈z〉 = α + (|α|2 − 1)
∞∑
n=1

(−1)nc̄ne
inψᾱn−1. (3.56)

This calculation reveals what is so special about the Poisson submanifold. Re-

call from Subsection 3.1 that Poisson kernels arise when we take µ to be the uniform

measure. Then cn = 0 for all n 6= 0 and 〈z〉 = α. In this exceptional case, the

centroid simply evolves according to the Riccati equation (3.11) and the dynamics

of α and ψ decouple in Eqs. (3.23a), (3.23b). (A similar observation about the cru-

cial role of the uniform measure here was made by Pikovsky and Rosenblum [66].

The centroid evolution equation Eq. (3.23a) on the Poisson submanifold was first

written down by Ott and Antonsen; see Eq.(6) in Ref. [59].)

But for the generic case of states lying off the Poisson submanifold, 〈z〉 is no

longer equal to α and the reduced dynamics become fully three dimensional, due

to the coupling between α and ψ induced by Eq. (3.56) and the dependence of f
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Figure 3.1: The qualitative trend of chaos observed in the first quadrant of the
b-Ω parameter plane is indicated by the shaded gradient. As the shade darkens
near the bifurcation curve Ω = b, chaos fills increasingly larger regions of the
submanifolds containing the sinusoidal initial distributions. Points (A) and (B)
are chosen as (1/20, 3/4) and (17/10, 1), respectively. Representative Poincaré
sections for these points are shown in Fig. 3.2 and Fig. 3.3. The region b < 0 is
grayed out to represent that negative values of b are not physical.

and g on 〈z〉 and the higher Fourier coefficients. In the next subsection we will

explore some of the possibilities for such three-dimensional flows.

Chaos in Josephson Arrays

Although the leaves of the foliation imposed by the Möbius group action are only

three dimensional, they often contain chaos for commonly studied f and g [36, 84].

In this section, we showcase this phenomenon by specializing to the case of a

resistively-loaded series array of overdamped Josephson junctions.

In several previous studies of sinusoidally coupled oscillators in the continuum
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(a) (b) (d)(c)

(e) (f) (h)(g)

(i) (j) (k)

. . .

Figure 3.2: Poincaré sections of α at ψ (mod 2π) = 0 for a resistively-loaded series
array of Josephson junctions with b = 1/20,Ω = 3/4 (pt. (A) in Fig. 3.1). The
initial distributions are sinusoidal with wavenumber n, where n is (a) 1, (b) 2, (c)
3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, (i) 16, (j) 32, and (k) ∞, i.e. on the Poisson
submanifold. In (j) and (k), the complete trajectories are plotted instead of the
intersections with the plane ψ (mod 2π) = 0.

limit, it was found that under certain conditions, the Fourier harmonics of the

phase density ρ(φ, t) evolved as if they were decoupled, at least near certain points

in phase space [72, 36, 73]. In the spirit of these observations, we can get a sense for

how individual harmonics contribute to the chaos by starting the system Eq. (3.23)

from sinusoidal phase densities with different wavenumbers n.

To be more precise, we choose an initial density

ρ(φ, 0) =
1

2π
(1 + cosnφ). (3.57)

At t = 0, we choose α = ψ = 0 so that Mt in Eq. (3.17) is simply the identity
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(a) (b) (d)(c)

(e) (f) (h)(g)

Figure 3.3: Poincaré sections of α at ψ (mod 2π) = 0 for a resistively-loaded series
array of Josephson junctions with b = 17/10,Ω = 1 (pt. (B) in Fig. 3.1). The
initial distributions are sinusoidal with wavenumber n, where n is (a) 1, (b) 2, (c)
4, (d) 8, (e) 16, (f) 32, (g) 64, and (h) ∞, i.e. on the Poisson submanifold. In (g)
and (h), the full trajectories are plotted.

map, and the time-dependent change of variables eiφ = Mt(e
iθ) reduces to φ = θ,

initially. Thus, the corresponding density of θ is

σn(θ) =
1

2π
(1 + cosnθ). (3.58)

This density is independent of time, just as the angles θj were in the finite-N case.

Next we flow the density forward by eiφ = Mt(e
iθ), where the Möbius param-

eters α(t), ψ(t) satisfy the reduced flow Eq. (3.23). Then, by our earlier results,

the resulting density ρ(φ, t) automatically satisfies Eq. (3.4) and Eq. (3.5). The

three-dimensional plot of Re(α(t)), Im(α(t)) and ψ(t) indicates how such a single-

harmonic density evolves in time, revealing for example whether it exhibits chaos,

follows a periodic orbit, or approaches a fixed point.

To ease the notation, from now on we write α in Cartesian coordinates as

α = x+ iy. (3.59)
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Then the reduced flow Eq. (3.23) becomes

ẋ = −uy + Im(f)(1− x2 − y2)

ẏ = ux+ Re(f)(1− x2 − y2)

ψ̇ = u

(3.60)

where

u = 2xRe(f) + g − 2y Im(f). (3.61)

We immediately see that for every fixed point of this system, |α| = 1 and ψ is

arbitrary. If for some change of state variables ζ(x, y, ψ), η(x, y, ψ), and ξ(x, y, ψ),

the ODEs ζ̇ and η̇ constitute a closed two-dimensional system and ξ̇ receives all of

its t-dependence through ζ and η, then there could be other fixed points for the

physical system, namely where ζ̇ = η̇ = 0 but ξ̇ 6= 0. Examples of the second type

of fixed point include the splay states found on the Poisson submanifold [79, 73].

As discussed in Subsection 3.1, series arrays of Josephson junctions with a

resistive load have dynamics given by Eq. (3.1), Eq. (3.4), and Eq. (3.5), with

f = −(b + 1)/2 and g = Ω + Re〈z〉, where b and Ω are dimensionless combina-

tions of certain circuit parameters [79, 49] and 〈z〉 is the complex order parameter

Eq. (3.10). The dynamics of x, y and ψ are given by substitution into Eq. (3.60):

ẋ = −uy

ẏ = ux− b+ 1

2
(1− x2 − y2)

ψ̇ = u

(3.62)

with u = Ω + Re〈z〉 − (b + 1)x. From Eq. (3.56) and Eq. (3.58), Re〈z〉 = x +

(−1)n 1
2
(x2 + y2 − 1)(x2 + y2)(n−1)/2 cos[nψ − (n− 1) tan−1(y/x)].

We can now plot the phase portrait for Eq. (3.62) on the cylinder {(x, y, ψ)|x, y, ψ ∈

R, x2 + y2 ≤ 1}. In the simple case where α decouples from ψ, trajectories can
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be projected down onto the α-disc without intersecting themselves or each other.

However, in the more typical case that α and ψ are interdependent, we use Poincaré

sections at ψ (mod 2π) = 0 to sort out the structure. In these Poincaré sections,

quasiperiodic trajectories (ideally) appear as closed curves or island chains, peri-

odic trajectories appear as fixed points or period-p points of integer period, and

chaotic trajectories fill the remaining regions of the unit disc.

First, however, we must choose an appropriate b and Ω. To do so, we consider

their definitions in terms of the original circuit parameters: b = R/(NRJ) and

Ω = bIb/Ic, where N is the number of junctions, Ib the source current, R the load

resistance, Ic the critical current of each Josephson junction, and RJ the intrinsic

Josephson junction resistance [79, 49]. Because the resistances must be positive

in the physical system, we examine only b > 0 in our simulations. Additionally,

Ic represents a positive current magnitude, while Ib reflects both a source current

magnitude and direction. Since the circuit is symmetric with respect to reversal of

the source circuit (see Fig. 1 of [49]), the corresponding dynamical system is left

unchanged by the reflection Ω → −Ω, x → −x. Hence, we also restrict our study

to positive values of Ω.

If b/Ω > 1, Eq. (3.62) implies there are fixed points at x∗ = Ω/b, y∗ =

±
√

1− Ω2/b2 for arbitrary ψ. In numerical experiments, the negative-y∗ line of

fixed points appears to attract distributions, while the positive-y∗ line repels them.

Along the bifurcation curve Ω = b, the two rows of fixed points merge at x = 1,

and we find computational evidence that a splay state (for which ẋ = ẏ = 0)

emerges from their union and moves inside the unit disc along the x-axis toward

the origin as b is decreased or Ω is increased. We can see from Eq. (3.62) that

any such state must lie on the x-axis for all parameter values, as it did in previous
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characterizations of the Poisson submanifold [49].

For the submanifolds we examined, chaos only appeared in the portion of the

first quadrant in the b-Ω plane that did not contain the fixed points, and the chaos

became more widespread as b/Ω→ 1. This is illustrated schematically in Fig. 3.1;

the gradient of increasing darkness represents increasingly pervasive chaos. In

submanifolds where the chaos was not widespread, the dynamics on the Poincaré

sections were reminiscent of a Kolmogorov-Arnold-Moser Hamiltonian system with

hierarchies of islands enclosing nested sets of closed orbits. Alternatively, the

sections had the appearance of “quasi-Hamiltonian” dynamics [78], and reflected

the time reversibility common to such systems: under the transformation t →

−t, y → −y, ψ → −ψ, Eq. (3.62) remains unchanged. Nevertheless, we do not have

an explicit Hamiltonian for Eq. (3.1) as we do for its averaged counterpart [83].

The increase in chaotic behavior is clearly visible in Figs. 3.2 and Fig. 3.3, which

show sequences of Poincaré sections corresponding to the points (A) and (B) in

Fig. 3.1. Point (A) lies at (b,Ω) = (1/20, 3/4), about 1/2 unit from the bifurcation

curve Ω = b, while point (B) lies at (b,Ω) = (17/10, 1), about 1/3 unit from Ω = b.

As an example of the pattern of escalating chaos, observe that Figs. 3.3(a),(b),(c)

have larger, more dramatically overlapping chaotic regions than the corresponding

plots (a),(b),(d) of Fig. 3.2.

Although not shown, the chaotic trajectories that produced the scattered points

in the Poincaré sections are phase coherent: they cycle smoothly and unidirection-

ally around the splay states throughout each period of ψ. When the splay states

are moved toward the edge of the unit disc by increasing b or decreasing Ω, these

trajectories appear increasingly less prone to return to the same neighborhoods in

the Poincaré sections, resulting in the observed amplification of chaotic behavior.
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It is also possible to interpret the association between the parameter values

and the intensity of the chaos in terms of the underlying physical parameters. In

terms of these parameters, the limit b/Ω→ 1− translates to Ic/Ib → 1− or Ib → I+
c ,

which predicts that chaos should appear in real series arrays of Josephson junctions

if the source current is reduced to near the critical current of the junctions.

Even though the Poincaré sections in Fig. 3.2 and Fig. 3.3 show differing degrees

of chaos, both series of plots depict a trend of decreasing chaotic behavior with

increasing n. This stems from the dependence of g on the phase centroid 〈z〉,

which in turn arises because the oscillators are coupled only through their effect

on the first harmonic of the phase density. For a coupling of this type, a sinusoidal

phase density with a very short period and rapid oscillations (high n) “looks” nearly

identical (in the Riemann-Lebesgue sense) to a uniform density. Hence, in the limit

of large n, we see α decoupling from ψ, just as it does on the Poisson submanifold

(recall that the Poisson submanifold corresponds to a uniform density in θ, as

shown in Subsection 3.1). From this perspective, then, chaos becomes increasingly

dominant as we move “away” from the Poisson submanifold, down toward small

n.

Finally, we point out a surprising feature in the Poincaré sections of (A) that

was common in other simulations we performed. Starting at n = 5, we see promi-

nent sets of period-(n − 1) islands which appear for n up to 8 in Fig. 3.2. This

ring of islands appears for higher n as well and forms an increasingly larger and

thinner band as n is increased. Inside the dilating band, a set of nested orbits

resembling the corresponding neutrally stable cycles of the Poisson submanifold

grows, filling the unit disc and approaching coincidence with the trajectories on

the Poisson submanifold. We are currently unclear on why exactly (n− 1) islands
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emerge from the Möbius group action on Eq. (3.58), but pose this as an open

question for future study.

Although it is tempting to try to extrapolate our numerical results to the case of

non-identical oscillators, Ott and Antonsen [60] have recently demonstrated that

such systems contain a two-dimensional submanifold (the generalization of the

simpler Poisson submanifold studied here) that carries all the long-term dynamics

of the phase centroid 〈z〉. Their results hold for the common case in which g is

a time-independent angular frequency with some distribution of values among the

oscillators, and f is a function of time, independent of oscillator variability. Our

numerical experiments, together with this new result, indicate that the widespread

neutral stability in systems of identical, sinusoidally-coupled phase oscillators is a

consequence of their special symmetries and underlying group-theoretic structure.

3.2 Conformists and contrarians: a simple case

While achieving synchrony is a critical function for many biological oscillators

(pacemaker cells, snowy tree crickets, smooth muscle cells during peristalsis, etc.),

achieving asynchrony is just as critical for many others. For example it would

be maladaptive to have synchronized mitosis, and synchrony in the brain to the

point of epileptic seizure is not biologically acceptable. Similarly, synchrony along

wildlife corridors could exaccerbate swings in population density which could lead

to species extinctions [24].

Examples like these motivate the general problem of understanding better the

conditions necessary and sufficient for stable asynchrony. In this section, we con-

sider a system of coupled oscillators with a mix of attractive and repulsive inter-
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actions with the mean field. In the context of a complete characterization of the

fixed points of this system, we determine when the incoherent state is stable. We

finish with a natural generalization to the case of arbitrary coupling.

The specific model we consider in this section is

φ̇j = ω +
Ks

N

N∑
k=1

sin(φk − φj), j = 1, . . . , N (3.63)

where φj(t) is the phase of the jth oscillator at time t and ω is its natural frequency.

Ks is the coupling constant of this oscillator, which is a positive constant K1 if

the oscillator is conformist and a negative constant K2 if it is contrarian. N is the

total count of oscillators in the system.

Eq. (3.63) is just the classic Kuramoto model with individual natural frequen-

cies ωj replaced by a unanimous natural frequency ω and the single positive cou-

pling constant K replaced by a two-valued coupling constant Ks. A recent paper

considered the case in which ωj was kept heterogeneous [42]. As we will see here

however, the long-time dynamics are actually more complicated for the homoge-

neous case (see Refs. [59, 60] for more about this).

The average phase of the system at any time is given by the centroid of the

phases:

Z = ReiΦ =
1

N

N∑
k=1

eiφk . (3.64)

R is the magnitude (on [0, 1]) and Φ is the phase. Stepping into a rotating frame

of angular speed ω, we can simplify Eq. (3.63) using the centroid variables R and

Φ:

φ̇j = KsR sin(Φ− φj), j = 1, . . . , N. (3.65)

This rewriting indicates that all oscillators are at equilibrium if and only if either

R = 0 or Φ − φj = 0, π. Furthermore, from the phase diagrams of Eq. (3.65), we
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can see that the latter condition is only stable if φj = Φ for the conformists and

φj = Φ+π (mod 2π) for the contrarians. If we define p as the fraction of oscillators

that are conformist, then from the definition of Z we have that Z = peiΦ−(1−p)eiΦ,

or R = 2p− 1. So the π-state can only be stable for p ≥ 1/2. This however is not

the only requirement for π-state stability, as we will soon see.

Reduction via Möbius Group Action

We jump from these preliminary observations to a complete solution of Eq. (3.63)

using the framework presented in Section 3.1. This will provide us with a high-level

understanding of the overall structure of the system. As shown in Section 3.1, the

dynamics of Eq. (3.63) can be reduced to a six-dimensional system by the group

action of the Möbius transformation. To explain how this is done, suppose the pN

conformists are indexed first and rewrite Eq. (3.65) as

φ̇j = F1e
iφj + F̄1e

−iφj , j = 1, . . . , pN,

φ̇j = F2e
iφj + F̄2e

−iφj , j = pN + 1, . . . , N,

(3.66)

where F1 ≡ iK1Z̄/2 and F2 ≡ iK2Z̄/2. If we now parameterize the Möbius

transformation as

Ms(w) =
eiψsw + αs
1 + ᾱseiψsw

(3.67)

with αs on the (closed) complex unit disk and ψs real, then Eq. (3.65) is solved by

eiφj(t) = M1(eiφj(0)), j = 1, . . . , pN,

eiφj(t) = M2(eiφj(0)), j = pN + 1, . . . , N,

(3.68)

where α1, α2, ψ1, ψ2 are all set to zero at t = 0 and evolved according to

α̇s = i(Fsα
2
s + F̄s), s = 1, 2, (3.69a)

ψ̇s = Fsαs + F̄sᾱs, s = 1, 2, (3.69b)
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for future and past times (see Ref. [48] for a verification of this). In addition to

expressing a deep mathematical connection between Eq. (3.63) and group action,

this solution foliates the N -dimensional phase space into six-dimensional invariant

submanifolds.

Although the foliation provides a conceptual simplification, the behavior of

Eq. (3.69) is still complicated, with regions of quasiperiodic orbits interspersed

with regions of chaos. The quasiperiodicity resembles that of Kolmogorov-Arnold-

Moser Hamiltonian systems, with Poincaré sections showing a fractal-like hierarchy

of island chains separating nested sets of closed orbits from chaotic domains (see

Ref. [48] for pictures of a related system and Ref. [41] for an informal description of

the fractal formed by the quasiperiodic orbits). Even trajectories perturbed slightly

off the Poisson submanifold do not in general converge back to it or imitate its

behavior after long times. Rather their behavior is consistent with the analogy to

perturbed systems of neutral stability.

The Poisson Submanifold

There is however a special degenerate leaf of the foliation that is only four-dimen-

sional and has tractable dynamics. Within this leaf, the conformists and contrar-

ians are each distributed like Poisson kernels. Thus the oscillator density on this

invariant submanifold has the form

f(φ) = pf1(φ) + qf2(φ), (3.70)

where q ≡ 1− p and

fs(φ) =
1

2π

1− r2
s

1− 2rs cos(φ− ϕs) + r2
s

(3.71)
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for both the conformists (s = 1) and contrarians (s = 2). The presence of this

manifold is suggested by recent work of Ott and Antonsen [59, 60] showing that

if the distribution of oscillators in the Kuramoto model initially has the form of a

Poisson kernel, then it will continue to be so distributed for all time. In our system

here, we call this invariant set of states the Poisson submanifold.

The normalized Poisson kernel, Eq. (3.71), is 2π-periodic, unimodal and sym-

metric about its one peak. The parameters rs and ϕs give the magnitude and

phase respectively of the centroid of its density, so rs reflects the pointedness of

the peak and ϕs its angle around the complex unit circle. Even though the den-

sities of conformists and contrarians remain Poisson kernels for all time on the

Poisson submanifold, the parameters r1, r2, ϕ1, ϕ2 may vary widely in time.

We now find the four-dimensional dynamics on the Poisson submanifold in

terms of these variables, r1, r2, ϕ1, ϕ2. Eq. (3.69) above gives the six-dimensional

dynamics on any one leaf of the foliation, so we might expect some reduction of this

system on the Poisson submanifold. Indeed, it turns out that only the equation

for αs is necessary to describe the state of the system in this region.

To show this, we start by considering the large-N (or continuum) limit of

Eq. (3.64):

Z(t) =

∫ 2π

0

eiφf(φ, t)dφ. (3.72)

On the Poisson submanifold, each density function fs is a Poisson kernel, which

has the Fourier expansion

fs =
1

2π

{
1 +

∞∑
k=1

[
ᾱkse

ikφ + αkse
−ikφ]} (3.73)

where αs ≡ rse
iϕs . Substitution of Eq. (3.70) and then Eq. (3.73) into Eq. (3.72)
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yields

Z = pα1 + qα2. (3.74)

We can then substitute our definition of Fs (that is, Fs ≡ iKsZ̄/2) into Eq. (3.69a)

to obtain

α̇s =
Ks

2
(Z − Z̄α2

s) s = 1, 2, (3.75)

and proceed with a substitution of Eq. (3.74) to conclude that

α̇s =
Ks

2
[pα1 + qα2 − (pᾱ1 + qᾱ2)α2

s] s = 1, 2. (3.76)

Eq. (3.76) gives the complete dynamics on the Poisson submanifold. The equa-

tion of motion for ψs is not necessary to identify the system state in this subregion

because the state anywhere on the Poisson submanifold can be uniquely identified

by r1, r2, ϕ1, ϕ2, and α1, α2 specify these values uniquely through α1 = r1e
iϕ1 and

α2 = r2e
iϕ2 . (For a more extensive mathematical explanation of this issue, consult

§V.B. of Ref. [48].)

By substituting α1 = r1e
iϕ1 and α2 = r2e

iϕ2 into Eq. (3.76), we can write this

system in terms of real variables as

ṙ1 = C(1− r2
1)(pr1 + qr2 cos δ),

ṙ2 = −D(1− r2
2)(pr1 cos δ + qr2),

ϕ̇1 = qC sin δ
(r2

r1

+ r1r2

)
,

ϕ̇2 = pD sin δ
(r1

r2

+ r1r2

)
,

(3.77)

where we have rescaled time by t → 2t/(K1 + |K2|) and let δ ≡ ϕ2 − ϕ1, C ≡

K1/(K1 + |K2|) and D ≡ 1 − C. We can further reduce the dimension of the
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dynamics by considering only relative phase:

ṙ1 = C(1− r2
1)(pr1 + qr2 cos δ),

ṙ2 = −D(1− r2
2)(pr1 cos δ + qr2),

δ̇ = sin δ

[
pD
(r1

r2

+ r1r2

)
− qC

(r2

r1

+ r1r2

)]
.

(3.78)

Note that since ϕ1 and ϕ2 appear only through δ in ϕ̇1 and ϕ̇2, any fixed point

of Eq. (3.78) that is not a fixed point of Eq. (3.77) will have constant ϕ̇1 and ϕ̇2

and hence move around the complex unit circle at constant speed. As we will

demonstrate, the only state of this kind is a traveling wave state.

Preview of Stable States

As we will see, a fixed point analysis of Eq. (3.78) uncovers four possible equilibrium

states (Fig. 3.4):

(a) the incoherent state, in which both the conformists and contrarians are uni-

formly distributed around the complex unit circle (i.e. r1 = r2 = 0),

(b) the π-state, in which the conformists and contrarians are completely syn-

chronized into two antipodal delta functions (i.e. r1 = r2 = 1),

(c) a blurred π-state in which the conformists and contrarians are each only

partially synchronized with peaks separated by a phase of π, and

(d) a traveling wave state in which the conformists and contrarians exhibit full

and partial synchrony respectively and are offset by an angle less than π.

Per our discussion following Eq. (3.65), the oscillators in the incoherent state

and π-state must be at equilibrium. As we will see, pr1 = qr2 for the blurred π-

states, so for them, Z = pr1e
iϕ1 − qr2e

iϕ1 , or R = 0. So the oscillators in this state
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Figure 3.4: Oscillator phase densities that lie on the Poisson submanifold and are
stable (unchanging in time up to a constant rotation). Conformists are shown in
blue and contrarians in red. By name, the states are the (a) incoherent state, (b)
π-state, (c) blurred π-state and (d) traveling wave state.

are also at rest. However the conformists in the traveling wave state cannot remain

at a fixed phase as neither R = 0 nor φj = Φ for them. So this configuration must

be in a perpetual state of revolution around the complex unit circle.

Fixed Point Analysis

Each of the three equations in Eq. (3.78) has two factors on the left-hand side

that may be zero, so there are at most eight types of fixed points that we need

to consider. Three of these possibilities end up being special cases of a fourth, so
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Eq. (3.78) has just five types of fixed points:

r1 = r2 = 1; δ = 0, π, (3.79a)

r1 = r2 = 1;C = p, (3.79b)

pr1 = qr2; δ = π, (3.79c)

r1 = 1; r2 = (2V − 1)−1/2; cos δ = −qr2/p, (3.79d)

r1 = (2/V − 1)−1/2; r2 = 1; cos δ = −pr1/q, (3.79e)

where V ≡ (q/p)(C/D). We can see immediately that the first type is the π-state,

the second is a special case that lies only on the line C = p, the third must include

both the incoherent state and the blurred π-states, and the fourth and fifth must

be traveling wave states. We now determine where these five classes of fixed points

exist and are stable on the p-C unit square.

For each fixed point, we can analyze its form to determine where it exists and

its Jacobian to determine where it is stable (with r1, r2, δ treated as Cartesian

coordinates). This yields the following information: The π-state (which exists for

all p and C) is stable for δ = π when p > max{C, 1/2} and unstable otherwise.

The special line of fixed points along C = p is stable on the segment with endpoints

given by cos δ = −q/p when p > 1/2 and unstable elsewhere. With respect to the

blurred π-states, which exist along the line pr1 = qr2, all are stable when both

p < 1/2 and C < 1 − 2pq and some are stable when C < q. Specifically, in the

region 1− 2pq < C < q the stable blurred π-states are found from r1 = 0 to

r1 =

√
Dq/p− C
C −Dp/q

, (3.80)

and in the region 1/2 < p < D the stable blurred π-states are located between

r2 = 0 and

r2 =

√
D − Cp/q
D − Cq/p

. (3.81)
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Figure 3.5: The p-C parameter plane partitioned into the ten regions with quali-
tatively distinct three-dimensional phase portraits, together with these ten phase
portraits. Black and white points and lines denote fixed points and lines of fixed
points of Eq. (3.78). Isolated fixed points are colored black when they are stable—
i.e. when all of their eigenvalues have negative real parts. The black lines of fixed
points are also stable; they have one zero eigenvalue and two eigenvalues with nega-
tive real parts. All other fixed points are unstable. The dotted lines indicate either
back edges of the unit cube or important nullclines, or both. The (p, C) points
for the shown phase portraits are (a) (1/4,1/2), (b) (1/4,1/4), (c) (3/8,1/4), (d)
(5/8,1/4), (e) (3/4,8/31), (f) (3/4,1/2), (g) (3/4,3/4), (h) (5/8,3/4), (i) (3/8,3/4),
and (j) (1/4,23/31).

These observations suggest that the incoherent state (r1 = r2 = 0) is stable when

C < q, which can be verified by rewriting Eq. (3.76) in terms of Cartesian coordi-

nates and diagonalizing the Jacobian. A less obvious and more elegant calculation

is given in the next section. Lastly, the traveling wave state (3.79d) exists and is

stable on C ≥ max{p, 1 − 2pq}, while the traveling wave state (3.79e) exists and

is unstable on C < min{p, 2pq}.
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Combining the results of this analysis, we obtain Fig. 3.5. This figure suggests

a variety of conclusions. For instance, it appears that the the traveling wave

states are born in a pitchfork bifurcation and die when they merge with the line

at r1 = r2 = 1. This can be confirmed with a center manifold calculation. The

collective picture also indicates that the central point (p, C) = (1/2, 1/2) is an

organizing center for the dynamics; it is a point of intersection for the boundaries

of all ten qualitatively unique regions of the parameter space.

3.3 Stability of complete asynchrony for arbitrary coupling

As an additional conclusion, Fig. 3.5 implies that the incoherent state (r1 = r2 = 0)

is stable for C < q and unstable otherwise. The C < q condition is interesting

because we can rewrite it as 〈K〉 < 0 where 〈K〉 is the mean K (K = pK1 + qK2).

This raises the question of whether it might be true that the incoherent state is

stable when 〈K〉 < 0 for an arbitrary density Γ(K).

To prepare for the general calculation, let us first see how it might work for our

current system. Suppose |α1| � 1 and |α2| � 1, where |·| denotes the complex

modulus. Then Eq. (3.76) approaches the linear system

α̇s =
Ks

2
(pα1 + qα2) s = 1, 2. (3.82)

Multiplying α̇1 by p and α̇2 by q, and summing corresponding sides of Eq. (3.82)

for s = 1, 2, gives by Eq. (3.74)

Ż =
1

2
〈K〉Z, (3.83)

where 〈K〉 ≡ pK1 + qK2, i.e. 〈K〉 is the mean coupling strength. In polar coordi-
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nates, Eq. (3.83) is the system

Ṙ =
1

2
〈K〉R,

Φ̇ = 0.

(3.84)

So if 〈K〉 < 0, then R vanishes exponentially fast, while if 〈K〉 > 0, R grows rather

than vanishing.

The above reasoning can be generalized to any continuous distribution of cou-

pling constants Γ(K) as follows. To do so, we start by considering Z for the case

of both a continuous distribution of oscillator phases and a continuous distribution

of coupling constants:

Z(t) =

∫ ∞
−∞

(∫ 2π

0

eiφf(φ,K, t)dφ

)
Γ(K)dK. (3.85)

Here f is the continuous joint probability distribution of φ and K as a function of

time t (that f is continuous for all times is an assumption). If for each t and K,

f has the form of a Poisson kernel, then we can write it as

f =
1

2π

{
1 +

∞∑
k=1

[
ᾱ(K, t)keikφ + α(K, t)ke−ikφ

]}
. (3.86)

Substituting this into Eq. (3.85) yields

Z(t) =

∫ ∞
−∞

α(K, t)Γ(K)dK. (3.87)

By a method introduced by Ott and Antonsen [59],

α̇(K) =
K

2
(Z − Z̄α2), (3.88)

which is the continuous-K analog of Eq. (3.75). For |α| � 1, this has the linear

approximation, α̇ = KZ/2. We can compute Ż for this approximation by taking

a time derivative of both sides of Eq. (3.87) and then substituting in α̇ = KZ/2

to obtain

Ż =
1

2
〈K〉Z, (3.89)
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where 〈K〉 is now the mean of Γ(K): 〈K〉 ≡
∫∞
−∞KΓ(K)dK. In terms of this

generalization, our preliminary calculation simply considers the special case of

Γ(K) = pδ(K −K1) + qδ(K −K2).

Although these results are, strictly speaking, only applicable to the Poisson

submanifold of sinusoidally coupled identical oscillators, there might be ways of

generalizing them to the case of nonidentical oscillators, perhaps even to the case

of nonsinusoidal coupling. Recent work by Ott and Antonsen [60] has shown

that for a Lorenzian distribution of natural frequencies for the oscillators (that

is, for nonidentical oscillators of a particular type), all trajectories approach the

equivalent of our Poisson submanifold in long time. Thus a statement regarding

the stability of the incoherent state on this submanifold for this case of nonidentical

oscillators would apply to all trajectories, not just those starting on the Poisson

submanifold. Whether such generalizations exist remains an open problem for

future work.
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CHAPTER 4

PAIR FORMATION

At school, students may often find themselves pairing off for a formal dance or

laboratory course. However in cultures where monogamy is the norm, the process

of pair formation is frequently of more than minor consequence: it can be critical

for social or reproductive success. Outside of social contexts, matching processes

occur naturally in many fields, including organic chemistry, statistical physics, and

computer science. In Section 4.1, we give a brief overview of the corresponding

literature and its main results.

In Section 4.2, we examine the classic derivations of Flory and Page to illus-

trate how matching processes can be studied mathematically. The techniques used

in these calculations are generally useful only for the case of a simple path and

several other idealizations. However they help to provide an indication of why it

is challenging to accurately analyze more realistic network topologies.

To address the challenge of studying pair formation on a broader class of net-

works, we introduce a new model for matching on the two-dimensional grid graph

in Section 4.3. This model involves heterogeneous agents distinguished from each

other by a “quality factor.” We show that this model has an approximative analy-

sis that is substantially simpler than that needed for the current two-dimensional

lattice models, and we perform simulations to demonstrate the accuracy of our

derived estimates. We conclude by providing a short proof of a new upper bound

on the maximum possible fraction of isolated nodes on the grid graph. To our

knowledge this bound is better than all previous bounds in literature.
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4.1 Many fields, a common problem

The first analysis of the pair formation problem was provided by Flory in 1939 [30].

He began his paper with a description of a chemistry experiment by Carl Shipp

Marvel (this author’s second cousin three times removed) involving aldol conden-

sation between pairs of adjacent side chains on a long polymer of methyl vinyl

ketone. After 24 hours, 15% of the substituents remained unreacted. By formu-

lating the problem in terms of difference equations, Flory was able to show that

the expected fraction of isolated substituents was e−2, or about 13.53%.

The next appearance in literature of a related problem came with Alfred Rényi’s

statement and analysis of the parking problem [67]: if cars are parked uniformly at

random in the available space along a curb, what is the fraction of unoccupied space

remaining when no more cars can be parked? Rényi’s original solution involved

an integral which could be solved numerically to yield a fraction of about 25.2%.

Alternative approaches that reach the same percentage have since been proposed

by Gonzalez et al. [37], Hemmer [40], and Evans [26].

More recently, matching algorithms have been analyzed in computer science lit-

erature. The earliest of this literature focuses on algorithms for obtaining maximal

or near maximal matchings (see for example Mulmuley et al. [54] and Galil [33]).

This work was followed by studies of randomized greedy matching, with results in-

cluding a tight lower bound on the expected fraction of matched nodes in trees [22],

and a demonstration that for an arbitrary graph there exists an ε > 0 such that

the expected fraction of matched nodes is at least 1/2 + ε of the maximum possi-

ble [7]. Dyer et al. [23] and Aronson et al. [8] have also characterized the asymptotic

behavior of randomized greedy matching on sparse random graphs.
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In physics literature, pair formation has been studied as random sequential

adsorption and its cooperative generalizations [26]. This has applications for

chemisorption in one- and two-dimensional systems, as well as for other reaction

and deposition processes. There is also a substantial body of literature on “sphere

parking” in which a space of given dimension is partially filled by inserting balls

of the same dimension uniformly at random into spaces where they will fit. The

analytical methods used here rely heavily on recursion techniques, hierarchical

rate equations, and dynamical Markov formulations [58]. Evans [26] provides an

exhaustive review of the literature prior to 1993.

More recent work has been focused in several specialized areas. Mathemat-

ical papers such as Penrose and Yukich [63] analyze sphere parking with tools

from probability. In physics literature, D’Orsogna et al. [19] has examined the

successive binding of two particle types onto a single one-dimensional lattice, and

D’Orsogna et al. [20] has analyzed a molecular ratchet driven by random sequential

absorption (perhaps the main biophysical mechanism for driven translocation of

polymers through pores). Variants of the conventional models involving reversible

deposition, size effects of deposited particles, and particle sliding have also been

explored.

4.2 Randomized greedy matching on a line

The one-dimensional case of randomized greedy matching (or dimer deposition,

or discrete sphere parking) is particularly instructive and can—unlike randomized

greedy matching in higher-dimensional cases—be solved exactly. The standard

randomized greedy matching algorithm on a graph G = (V,E) is as follows [22]:
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begin

M ← ∅;

while E(G) 6= ∅ do

begin

A: Choose e = {u, v} ∈ E uniformly at random

G← G\{u, v};

M ←M ∪ {e}

end;

Output M

end

Here we initialize M , the set of matchings, to be the empty set ∅. We then select an

edge from E uniformly at random, remove its nodes from V and all edges involving

them from E, and add the selected edge to M . We repeat these steps until E is

empty, and finish by returning the final matching M .

When G is a simple path of n nodes, we can calculate that this process leaves

an average of e−2 single nodes in the large-n limit [30]. To do this, we start by

observing that the probability of any one edge being chosen as the first edge is

1/(n − 1), and no matter which edge is chosen, the algorithm will separate the

path into two disjoint paths of k and (n− 2− k) nodes each, where k may range

from 0 to (n− 2). Hence if we let In represent the expectation of the final number

of the single nodes for the path of length n, In satisfies the recurrence relation:

In =
1

n− 1

n−2∑
k=0

(Ik + In−2−k) (4.1)

with initial conditions I0 = 0 and I1 = 1 obtained directly from the definition of

In. Formally, this equation follows from a general property of the expectation of
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random variables:

E(X) =
∑
y∈Y

E(X|Y = y)P (Y = y), (4.2)

where Y is the set of all possible values for y. Returning to Eq. (4.1), we have by

reindexing,

(n− 1)In = 2
n−2∑
k=0

Ik. (4.3)

If we replace n in Eq. (4.3) with (n− 1) and subtract the result from the original

Eq. (4.3), we obtain

(n− 1)In − (n− 2)In−1 = 2In−2. (4.4)

In simplify this recurrence relation, let Jn = In−In−1 and J0 = I0, so In =
∑n

k=0 Jk.

We can then rewrite Eq. (4.4) as

(n− 1)Jn = −Jn−1 +
n−2∑
k=0

Jk. (4.5)

If we again replace n in Eq. (4.5) with (n − 1) and subtract the result from the

original Eq. (4.5), we find

(n− 1)Jn − (n− 2)Jn−1 = −Jn−1 + 2Jn−2. (4.6)

By rearrangement, this becomes (n − 1)(Jn − Jn−1) = −2(Jn−1 − Jn−2), so by

defining Kn = Jn − Jn−1 and K0 = J0, we have that Kn = −2Kn−1/(n− 1), or

Kn =
(−2)n−1

(n− 1)!
. (4.7)

Retracing our steps, Jn =
∑n

k=0Kk and so In =
∑n

k=0

∑k
j=0Kj, which by a triangle

summation is In =
∑n

k=0(n+ 1− k)Kk. Further rearrangement yields In = nJn +

2Jn−1. So by the usual expansion of ea:
∑∞

k=0 a
k/k!, the fraction of isolated single

nodes in the large-n limit (or the singles fraction as we will call it from now on) is

just

lim
n→∞

In
n

= e−2. (4.8)
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Although this approach works well for the path, one dimension turns out to be

special; calculating singles fractions for randomized greedy matching in higher di-

mensions is generally infeasible [26]. This is due to the loss of a shielding property

that is present in one dimension but incomplete in higher dimensions. To illus-

trate the property with a calculation of Page [61], consider the related problem

of computing the probability P (k, n) that the kth node in a path of n nodes is

single. This is equivalent to the probability that the kth node is single for both the

path of nodes 1, . . . , k and the path of nodes k, . . . , n, which are two independent

conditions in one dimension. So we may write P (k, n) as

P (k, n) = P (k, k)P (n− k + 1, n− k + 1). (4.9)

This reduces our work to computing P (1, n). To do the latter, we first observe

that

P (1, n) =
1

n− 1

n−2∑
k=1

P (1, k). (4.10)

We can then replace n by (n− 1) in this equation and subtract the result from the

original to obtain

(n− 1)(P (1, n)− P (1, n− 1)) = −(P (1, n− 1)− P (1, n− 2)). (4.11)

This implies

P (1, n)− P (1, n− 1) =
(−1)n−1

(n− 1)!
, (4.12)

which tells us that

P (1, n) =
n−1∑
k=0

(−1)k

k!
. (4.13)

So

P (k, n) =
k−1∑
r=0

(−1)r

r!

n−k∑
s=0

(−1)s

s!
. (4.14)

As expected, this is consistent with the e−2 result in the double limit that both k

and n are taken to infinity.
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The above derivation works because the probabilities that a node is single in

the two paths on either side of it are independent of each other. In higher dimen-

sions, individual nodes do not break down the space into statistically independent

regions in the same way. As explained by Evans [26], this lies at the heart of the

analytical intractability of dimer filling on higher-dimensional grids. For two- and

three-dimensional problems, for example, the best available method for approxi-

mating the singles fraction involves truncation of large systems of equations; see

the references in Evans [26] for the details of this approach.

4.3 Pair formation on a grid

Since we are concerned with social systems, we have an interest in network topolo-

gies with higher connectivity than the simple path or cycle. Yet as Evans [26]

describes, exact analysis of random greedy matching on such networks is generally

infeasible (and even good approximations challenging). Moreover, individuals in

real social networks are heterogeneous, and this heterogeneity plays an important

role in matching processes. For example, certain individuals are sometimes viewed

as more desirable partners than others and this influences the choice of who part-

ners with whom. Yet the standard algorithm for randomized greedy matching

treats nodes as distinguishable only by their location in the network if at all.

Motivated by these concerns, we introduce a model of pair formation that offers

a solution to both problems at once: it allows for the assignment of different “qual-

ity factors” to different nodes, with matchings restricted by these quality factors,

and it affords an easy method of deriving estimates for many of the quantities of

interest in the model, including the singles fraction. Although we will consider only
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Figure 4.1: The matching process that we propose takes place on an m×n grid with
helical boundary conditions, meaning that the kth rightward pointing endpoint is
attached to the (k + 1)th leftward pointing endpoint. Here m = n = 30, but m
and n are usually larger. We assign a quality factor of high (H) or low (L) to
each of the nodes independently and with equal probability. These assignments
are shown in gold and blue respectively. We then proceed through the nodes in
dictionary order, matching each node with an adjacent node of like quality if one is
available. (If more than one is available, we choose a partner for the node uniformly
at random.)

the case of two quality factors and the topology of a two-dimensional grid graph,

our analysis generalizes to an arbitrary set of quality factors and potentially any

regular graph topology.

We start with the two-dimensional m × n grid graph with helical boundary

conditions: the right end of the kth row is contiguous with the left end of the

(k+ 1)th row for all k = 1, . . . , n− 1 (Fig. 4.1). This allows us to index the nodes

in a natural way from 1 to mn, starting at the leftmost node of the top row (node

89



1) and proceeding left-to-right across the rows and down the spiral until we reach

the rightmost node in the mth row (node mn). We assign to each node a high

(H) or low (L) quality factor to represent an objective score of the individual’s

desirability as a partner or mate. (We assume that such a score is a meaningful

quantity.) Each assignment is statistically independent of other assignments, and

each value has an equal probability of being assigned to any given node.

The pair formation process then consists of running through the nodes in dic-

tionary order (1 through mn) and pairing each unpaired node with an adjacent

node having the same quality factor if any are available. If none is available then

the node remains unpaired, and if more than one is available then a partner is cho-

sen from the available options uniformly at random. We assume m is long enough

that boundary effects in the column direction are negligible.

It is worth noting that this model is essentially a combination of site percolation

and greedy matching. A current estimate for the site percolation threshold pc on

the grid graph (the Z2 lattice in percolation parlance) is pc ∈ [0.592, 0.593] with

99.9999% confidence [11]. Hence both the high and the low quality nodes are below

percolation threshold if the H and L assignments are made with equal probability.

Simulation Results

Monte Carlo simulations of this matching process were performed for m = n = 104.

A patch from a typical run is shown in Fig. 4.2. The singles fraction from 10

such runs, where nodes 1 through 107 were discarded as an initial transient, was

0.19424±0.00004 (where the error corresponds to one standard deviation from the

mean). This singles fraction was almost identical for runs with m = n = 103 where

the first 105 nodes were discarded, although of course more runs were necessary to

90



Figure 4.2: A 30×30 node square from a 104×104 node Monte Carlo simulation of
the matching process described. High quality nodes and pairs are shown in gold,
while low quality nodes and pairs are shown in blue. The resulting singles fraction
is 0.19424±0.00004 for both quality factors. Since the nodes are gold or blue with
equal probability, about 6.25% of the nodes remain single simply because none of
the four nodes to which they are connected have their same quality factor. The
balance are single because other nodes of equal quality paired with their potential
partners before they could.

achieve the same error.

Further testing indicated that discarding an initial transient as described was

enough to essentially eliminate boundary effects, and that the singles fraction and

other measured parameters were insensitive to changes in n over a wide range.

Furthermore, we performed the simulations using both the default pseudo-random

number generator provided in the MATLAB software suite and the Mercenne

Twister generator developed by Matsumoto and Nishimura. The results were

nearly identical, with all numerical values reported here taken from the Mercenne
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Twister simulations.

As we will see in the following subsection, the value from the analysis is a little

lower, at 5 − 2
√

29/5, or about 0.18336. This is due to a single (clearly marked)

approximation made in the course of the analysis. Refining this approximation

could potentially increase the accuracy of the method arbitrarily, but here we keep

our treatment as simple as possible to demonstrate the approach.

Derivation of Singles Fraction

Suppose we have considered for matching nodes 1 through (v−1) and are preparing

to consider node v for matching. At this point, the nodes of the helical grid graph

may be partitioned into four regions: (1) nodes that have neither been considered

directly for matching nor as partners to other nodes directly considered (this region

is composed of nodes (v+n) and beyond), (2) nodes that have been considered as

a potential partner once before (nodes (v+ 1) through (v+n− 1)), (3) nodes that

have been considered twice as a potential partner (node v only), and (4) nodes that

have been considered twice as a potential partner and also directly for matching

(nodes preceding node v).

v

w

xy

z

¾
3

¾
2

¾
4

¾
2

¾
1

Figure 4.3: The nodes of the grid graph (with helical boundary conditions) may
be partitioned into four regions of fixed probabilistic density, as indicated by the
dotted lines. The σ’s denote the probabilities that the nodes in the corresponding
regions are single, and the v, w, x, y and z label the indicated nodes.
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If we assume that the probability that any one node in these regions is at

equilibrium, then we can denote these fixed probabilities of being single for the

regions (1), (2), (3) and (4) as σ1, σ2, σ3 and σ4, respectively. Clearly, σ1 = 1 and

our remaining task is determine the values of the other three σ’s.

First, we make a key observation: when v is in region (3) and single, it cannot

be matched with y or z, because this would require that y or z be single, in which

case they would have paired with v if they could when they were in region (3).

Thus we only need to consider w and x as potential partners for v. Letting u

denote either w of x, we introduce several definitions:

f : the probability that u has the same quality factor as v

pu : the probability that u and v can bond, assuming v is single (i.e. that u is

single and u and v have the same quality factor)

bu : probability that u and v do bond, assuming v is single

By the pair bonding algorithm, we pick uniformly at random between w and x

if both are single and have the same quality factor as v. So we can write bw and

bx in terms of pw and px as follows:

bw = pw(1− px) + pwpx/2, (4.15a)

bx = (1− pw)px + pwpx/2. (4.15b)

Using the fact that σ3 is the probability that v is single, and bw and bx are con-

ditional on this probability, we can use these quantities to relate the σ’s to each
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other:

σ2 = σ1 − σ3bw, (4.16a)

σ3 = σ2 − σ3bx, (4.16b)

σ4 = σ3 − σ3(bw + bx). (4.16c)

Finally, since σ1 = 1, we know that pw = f , and for equal assignment of H and L

quality factors, f = 1/2. This leaves us with five equations and six unknowns: px,

bw, bx, σ2, σ3 and σ4. We solve this system for σ4, the singles fraction, in terms of

px. After doing so, we will discuss approximations for relating px to f and σ1 in

order to obtain a numerical value for σ4.

First we add the corresponding sides of Eq. (4.16a) and Eq. (4.16b) to obtain

σ3 = σ1 − σ3(bw + bx). (4.17)

By rearranging this to be an expression of σ3 and substituting into Eq. (4.16c) for

σ3, we obtain an expression of σ4 in terms of bw and bx:

σ4 = σ1
1− bw − bx
1 + bw + bx

. (4.18)

Second, adding the corresponding sides of Eq. (4.15a) and Eq. (4.15b) gives

bw + bx = pw(1− px) + (1− pw)px + pwpx. (4.19)

The right-hand side of this equation is just 1 − (1 − pw)(1 − px), so Eq. (4.18)

reduces to

σ4 = σ1
(1− pw)(1− px)

2− (1− pw)(1− px)
(4.20)

or, for our constants (σ1 = 1 and pw = f = 1/2),

σ4 =
1− px
3 + px

. (4.21)
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This is an exact expression without approximations for the singles fraction. For

example, if we substitute in the value for px found in the Monte Carlo simulations

described above: px = 0.34944± 0.00008, we obtain 0.19423± 0.00002, consistent

with the Monte Carlo singles fraction of σ4 = 0.19424 ± 0.00004. The challenge,

though, is to express px in terms of the unknowns that we already have, and

determining how to do so is a nontrivial problem that we will not fully address

here.

However, there is a natural two-step approximation that we do want to explore.

Observe that we can write px without approximation as

px = Pr(A|B ∩ C) Pr(B|C) (4.22)

where A = {v and x have the same quality factor}, B = {v is single} and C =

{x is single}. If we then assume that B is approximately independent of C,

i.e. that Pr(B|C) ≈ Pr(B), and that A is approximately independent of B and C,

i.e. Pr(A|B ∩ C) ≈ Pr(A), then we can write

px ≈ fσ2 (4.23)

since Pr(A) = f and Pr(B) = σ2. We emphasize that neither of these approxima-

tions is exact: from simulation we find that Pr(B|C) = 0.77456 ± 0.00005 while

Pr(B) = 0.75360 ± 0.00004, and from the same numerical data we can compute

that Pr(A|B ∩ C) = px/Pr(B|C) = 0.4511 ± 0.0002, compared with the exact

value for Pr(A) of 0.5.

Yet if we adopt this approximation, we can solve the above equations in closed

form for the singles fraction σ4: first observe again that the right side of Eq. (4.19)

is 1− (1− pw)(1− px). This reduces Eq. (4.16c) to

σ4 = σ3(1− pw)(1− px). (4.24)
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In parallel, we subtract Eq. (4.17) from Eq. (4.16c) to obtain

2σ3 = σ1 + σ4 (4.25)

and then substitute this into Eq. (4.24) to obtain

2σ4 = (σ1 + σ4)(1− pw)(1− px). (4.26)

Third, by substituting Eq. (4.15a) into Eq. (4.16a) and then substituting the result

into our approximation Eq. (4.23), we find that

px ≈ f(σ1 − σ3(pw(1− px) + pwpx/2)). (4.27)

By rearrangement, Eq. (4.27) is

px ≈
pw(1− fσ3)

1− pwfσ3/2
. (4.28)

If we then substitute Eq. (4.25) into Eq. (4.28), and substitute the result into

Eq. (4.26), we arrive at

2σ4 ≈ (σ1 + σ4)(1− pw)

(
1− pw(1− f(σ1 + σ4)/2)

1− pwf(σ1 + σ4)/4

)
. (4.29)

Simplifying this equation gives a quadratic in σ4: aσ2
4 +bσ4+c ≈ 0, with coefficients

a = pwf(3− pw)/4 (4.30a)

b = −1− 2pw + 2p2
w − p3

w/2 (4.30b)

c = (1− pw)(1− pw + p2
w/4) (4.30c)

Our estimate of the singles fraction σ4 is then given by the root

σ4 ≈
−b−

√
b2 − 4ac

2a
. (4.31)

since only this root lies on in the unit interval. For σ1 = 1 and f = 1/2, the

estimate of σ4 is 5− 2
√

29/5 or about 0.18336.
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While the accuracy of this estimate is modest, the derivation is significantly

simplier than comparable calculations of dimer filling on the two-dimensional lat-

tice. In particular, the confinement of the approximation to the single question

of how to approximate px leaves open the possibility of improving the accuracy of

the estimate while keeping the calculation manageable.

New Upper Bound for Worse Case Matching on the Grid

As one looks, one encounters many interesting and (to our knowledge) unsolved

problems regarding pair formation on graphs. One of the simplest regards the max-

imum possible value of the singles fraction for dimer filling on the two-dimensional

grid. It is clear that there are configurations in which the singles fraction is zero—

e.g. forming pairs end-to-end in each row. And it is also clear that the singles

fraction can be as large as 1/3—see Fig. 4.4a for an example of such a scheme.

However it is unclear whether 1/3 is the true maximum.

In this section we make progress on this question by giving a simple proof

that the maximum singles fraction can be no more than 5/12, and so must lie

on the interval [4/12, 5/12]. To our knowledge, this new bound beats all previous

bounds in literature, and it is conceivable that our method could be expanded with

computer automation to achieve increasingly better bounds.

To demonstrate this new upper bound, consider the cross-shaped tile shown in

Fig. 4.4b. We can see by inspection that, up to rotation, the four nodes at the

center of this tile may be either single (s) or matched (m) in three configurations:

m m

m m
(4.32a)

s m

m m
(4.32b)

s m

m s
(4.32c)
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(a) (b)

Figure 4.4: (a) A dimer filling that achieves a singles fraction of 1/3. The 3 × 3
box shown tessellates the plane. (b) A cross-shaped tile used to demonstrate an
upper bound of 5/12 for the maximum singles fraction on the grid graph.

However now consider the four pairs of edge nodes of the cross-shaped tile. Any

one pair can contain at most one single node—otherwise the two single nodes could

form a match with each other, so the first and second configurations, Eq. (4.32a)

and Eq. (4.32b), cannot exceed a singles fraction of 5/12. For the third configura-

tion, Eq. (4.32c), each of the two central matched nodes must have a match among

the edge nodes, and the two central single nodes must have all matched neighbors,

so this tile has a maximum singles fraction of 1/3.

Now index the set of crosses in the plane with k (e.g. such that they spiral out

from the origin) and rewrite the singles fraction of the plane (S) as the mean of

the singles fractions of these crosses (Sk):

S = lim
n→∞

1

n

n∑
k=1

Sk. (4.33)

Since none of the Sk are greater than 5/12, neither can be the mean. Hence,

the maximum of the singles fraction for a two-dimensional grid topology lies on

[4/12, 5/12].

Although the question appears to remain open, we conjecture that the true

maximum singles fraction is 1/3. Hopefully future studies will provide the answer.
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APPENDIX A

PROOFS REGARDING Ẋ = X2

In Section 2.3, we assert that a variant of the dynamics proposed by Ku lakowski

et al. [45] generically balances an isolated triangle. We explain what we mean here.

Theorem 1. The system ẋ12 = x13x23, ẋ13 = x12x23, ẋ23 = x12x13 achieves

balance when the initial values x12(0), x13(0) and x23(0) are all unequal.

Proof. Multiplying each ẋij by xij yields x12ẋ12 = x13ẋ13 = x23ẋ23. Integrating

these equalities gives the constraints x2
12 − x2

13 = C1 and x2
12 − x2

23 = C2 which

partition the three-dimensional space of (x12, x13, x23) into trajectories (with the

direction of flow given by the original dynamical system). Examination of this flow

reveals that each initial condition (x12(0), x13(0), x23(0)) with distinct coordinates

flows into one of the four octants on which Heider balance holds, that is where

x12x13x23 > 0. Furthermore, these octants each act as separate trapping regions:

once a trajectory enters, it cannot leave. Hence, the theorem follows. �

The next theorem regards the main system of Section 2.3 with a rescaling

of time: Ẋ = n−1X2, where X is a real symmetric n × n matrix. Recall that

xij(t) denotes the (i, j)th element of the solution matrix X(t) subject to the initial

condition X(0). In the following, we will abbreviate X(0) as A and xij(0) as aij.

Suppose that the aij, i ≤ j, are drawn independently from distributions Fij with

zero mass outside [−K,K], and the off-diagonal distributions Fij have common

expectation µ and variance σ2.
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Theorem 2. limn→∞ xij(t) = aij − µ + µ/(1 − µt) with probability 1 for t ∈

[0, 1/K).

Proof. Regard each step of the limit n → ∞ as a selection and concatenation

of elements {ain}1≤i≤n−1, {anj}1≤j≤n−1, ann to the elements {aij}1≤i,j≤n−1 selected

in preceding steps. Now consider the partial sum of the Taylor series expansion of

xij(t):

xijnN(t) =
N∑
k=0

αknt
k where αkn =

1

k!

dkxij
dtk

∣∣∣∣
t=0

. (A.1)

The first step of the proof of Theorem 2 consists of proving that limN→∞ limn→∞

xijnN(t) converges to aij−µ+µ/(1−µt) with probability 1 on [0, 1/|µ|) (see Lemma

1). The second step of the proof consists of proving that limN→∞ limn→∞ xijnN(t) =

limn→∞ xij(t) with probability 1 on [0, 1/K) (see Lemma 2). Since we can write

limn→∞ xij(t) as limn→∞ limN→∞ xijnN(t), this amounts to showing that the two

limits can be exchanged on [0, 1/K). The above theorem then follows trivially by

a union bound. �

Lemma 1. Under the assumptions of Theorem 2, limN→∞ limn→∞ xijnN = aij −

µ+ µ/(1− µt) with probability 1 for t ∈ [0, 1/|µ|).

Proof. For the sake of generality, we present a proof with more mild assumptions

than those of Theorem 2: we only require that the moments of the Fij distributions

be finite (and off-diagonal distributions to have mean µ), not that the aij values

be bounded by K with probability 1.

Define αk∞ = limn→∞ αkn (merely shorthand—we do not assume the limit
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exists). By a union bound, we have

Pr
( ∞⋂
k=1

[αk∞ = µk+1]
)
≥ 1−

∞∑
k=1

[1− Pr(αk∞ = µk+1)]. (A.2)

So if we can show that Pr(αk∞ = µk+1) = 1 for all k ≥ 1, then Pr(
⋂∞
k=1[αk∞ =

µk+1]) = 1. In this case, limN→∞ limn→∞ xijnN has the convergent Taylor series

aij +
∑∞

k=1 µ
k+1tk on [0, 1/|µ|) with probability 1, which proves the lemma.

So our task reduces to showing that Pr(αk∞ = µk+1) = 1 for each k ≥ 1.

In order to do this, we need to compute the leading behavior of αkn in n. To

calculate the k time derivatives of xij in the formula for αkn (see Eq. (A.1)), we

alternate between applying the chain rule of differential calculus and substituting

in the right-hand side of ẋij = n−1
∑

k xikxkj (our system Ẋ = n−1X2 written in

element-wise fashion). This gives

αkn = n−k
n∑

m1=1

n∑
m2=1

· · ·
n∑

mk=1

aim1am1m2 · · · amkj (A.3)

where the factor n−k comes from the k factors of n−1 introduced by the k deriva-

tives, and the factor 1/k! in the formula for αkn cancels with a factor k! that arises

from repeated applications of the chain rule. In Eq. (A.3), the dominant term is

a sum of the edge value products of all simple length-(k + 1) paths between i and

j. This sum contains (n − 2)!/(n − 2 − k)! terms. All other paths include fewer

immediate nodes and thus have at least a factor of n fewer terms in their sums.

Our goal then for the remainder of the proof is to show that the first term

of Eq. (A.3) is the only term that remains after taking n to infinity, and that it

converges to µk+1 with probability 1. To simplify notation, let ` denote the product

of the edge values aij along a particular path of length k+1 (not necessarily simple)

from i to j, and let L denote the set of all such products on paths with the same

configuration, or pattern of connectivity. Denote the set of all L by {L}, and let
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S denote the one L in {L} consisting of simple paths of length k + 1 from i to j.

Now observe that ∩L[limn→∞ n
−k∑

`∈L ` = 0] ∩ [n−k
∑

`∈S ` = µk+1] ⊂ [αk∞ =

µk+1]. So by another union bound,

Pr(αk∞ = µk+1) ≥ 1− Pr

(
lim
n→∞

n−k
∑
`∈S

` 6= µk+1

)
−
∑
{L}\S

Pr

(
lim
n→∞

n−k
∑
`∈L

` 6= 0

)
. (A.4)

Hence, we are done if we can show that (i) Pr(limn→∞ n
−k ∑

`∈S ` = µk+1) = 1 for

S and (ii) Pr(limn→∞ n
−k∑

`∈L ` = 0) = 1 for all other L. Although
∑

`∈L ` is in

general a sum of correlated random variables, it is possible to adapt a standard

proof of the strong law of large numbers for uncorrelated random variables to prove

both items. We do this next.

Let’s prove (ii) first. For brevity, let Sn =
∑

`∈L ` and choose v to denote

the number of nodes in the path configuration of L. For any positive ε and r =

1, 2, . . . , Markov’s inequality gives Pr(|Sn| ≥ (nε)k) ≤ E(|Sn|r)/(nε)kr. So if we

can find an r such that E(|Sn|r)/(nε)kr ≤ C/n2 for some constant C (dependent

on ε), then
∑

n Pr(|Sn| ≥ (nε)k) converges, and by the first Borel-Cantelli lemma,

Pr(|n−k
∑

`∈L `| ≥ ε i.o.) = 0 for all ε > 0 (where i.o. stands for infinitely often).

Careful reflection reveals that ∪ε[|n−k
∑

`∈L `| ≥ ε i.o.] (for, say, all rational ε) is

the complementary event of [limn→∞ n
−k∑

`∈L ` = 0], and so we have arrived at

the desired result (ii).

Hence, in order to actually show (ii), we need to find an r such that E(|Sn|r)

/(nε)kr ≤ C/n2. Consider r = 2: E(S2
n) =

∑
E(`x`y), where each index of the sum

ranges independently over L. There are (n− 2)!/(n− 2− v)! paths ` in L, so there

are fewer than n2v terms in
∑
E(`x`y), and E(S2

n) ≤ Dn2v for some constant D.

Since v < k for all L other than S, we have E(|Sn|2)/(nε)2k ≤ Dn2v/(nε)2k ≤ C/n2
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where C = Dε−2k, and the proof of (ii) is complete.

Finally, to prove (i), start by replacing each factor axy in ` with bxy + µ, where

bxy = axy −µ. Now expand the result and cancel µk+1 from both sides of n−kSn =

µk+1 to obtain n−kS ′n = 0, where S ′n is a sum over S of a polynomial Q with

2k+1 − 1 terms, each of the form µµ · · ·µbuvbwx · · · byz where at least one of the

factors is a bxy and the total number of factors in the term is k+1. Note that each

place of Q corresponds to a particular set of bxy’s from the original simple path,

e.g. the 14th place of Q might have bxy’s corresponding to the 1st, 4th, 5th, and

7th edges of the path, and µ’s for the other edges. Now let mq denote the number

of nodes (excluding i and j) among the subscripts of the bxy’s in a given term. The

remaining k−mq nodes of the path not found in the term (supplanted by the µ’s)

can take any of (n− 2−mq)!/(n− 2− k)! permutations. Hence, there are no more

than nk−mq identical copies of any one term in S ′n from the same place in Q.

Now consider one of the (2k+1 − 1)4 ways that terms in the 2k+1 − 1 places of

Q can be multiplied together in S ′4n . Note that this can produce no more than

n4k−
∑4
q=1mq identical copies of the same term. Second, since the bxy’s each have

expectation zero, every bxy in the final term must appear to at least a power of two

or the whole term has expectation zero. This implies that for each nonvanishing

term, there must be some pattern of matching between the bxy’s. The number of

possible matchings is clearly a function of k and not n (it certainly is not more

than the number of partitions of 4(k + 1) edges), so consider one of these possible

matchings. Now observe that if, as we stated above, we consider only one of the

(2k+1−1)4 ways that terms in the 2k+1−1 places of Q can be multiplied together in

S ′4n , then no more than n
∑4
q=1mq/2 distinct nonvanishing terms can be constructed

per matching for any such way of combining terms. This holds because each bxy
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needs at least one match, and so the number of free nodes cannot exceed half the

total number of bxy’s in the final term. Thus we have shown the highest order

of n possible for E(S ′4n ) is given by the maximum value of n
∑4
q=1mq/2n4k−

∑4
q=1mq .

Since mq ≥ 1 for each q = 1, . . . , 4, this can at most be n4k−2, which by the above

reasoning completes the proof of (i) and hence the full theorem. �

Lemma 2. Under the assumptions of Theorem 2, limn→∞ limN→∞ xijnN =

limN→∞ limn→∞ xijnN with probability 1 for t ∈ [0, 1/K).

Proof. We need three ingredients for this proof. We will first describe the three

ingredients and then show how they together prove Lemma 2. Throughout the

following, all statements hold with probability 1 unless stated otherwise.

As we found in the course of the proof of Lemma 1, the limits limn→∞ αkn

exist for all k and are µk+1 on [0, 1/|µ|), so limn→∞
∑N

k=0 αknt
k exists under the

same conditions, and we call it xij∞N(t). This gives us the first ingredient: (i)

limn→∞ xijnN(t) = xij∞N(t) for t ∈ [0, 1/|µ|) and any N . Additionally, from

Lemma 1 we know that limN→∞ xij∞N(t) exists and is aij − µ + µ/(1 − µt) on

[0, 1/|µ|). We call this limit xij∞∞(t), and write the second ingredient as (ii)

limN→∞ xij∞N(t) = xij∞∞(t) for t ∈ [0, 1/|µ|).

Finally, as we saw in the proof of Lemma 1, αkn = n−k
∑
aim1am1m2 · · · amkj

(by definition, not just with probability 1), where the k indices mx each range

independently from 1 to n. Since each |aij| < K, we must have that |αkn| ≤

Kk+1, which implies |xijn∞(t) − xijnN(t)| ≤ K(Kt)N+1/(1 −Kt). So if |Kt| < 1,

then for any ε > 0, there is a sufficiently large N1 independent of n such that

|xijn∞(t) − xijnN(t)| ≤ ε for all N ≥ N1. This constitutes our third ingredient,
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that xijnN(t) converges uniformly to xijn∞(t): (iii) for every ε > 0, there exists an

N1 such that for all N ≥ N1 and all n, |xijn∞(t)− xijnN(t)| < ε.

To complete the proof of Lemma 2, we need to show that limn→∞ xijn∞(t)

exists and is just xij∞∞(t) on [0, 1/K). Start by picking an ε > 0. Then by

(iii), there exists an N1 such that if N > N1 then |xijn∞(t) − xijnN(t)| < ε for

all n. Similarly, (ii) implies that there exists an N2 such that if N ≥ N2, then

|xij∞∞(t) − xij∞N(t)| < ε. Finally, let N3 = max{N1, N2}. Then by (i), we may

choose an n1 such that if n ≥ n1, then |xij∞N3(t)− xijnN3(t)| < ε. Now define the

following events:

E1 = [|xij∞∞(t)− xij∞N3(t)| < ε],

E2 = [|xij∞N3(t)− xijnN3(t)| < ε],

E3 = [|xijnN3(t)− xijn∞(t)| < ε],

E4 = [|xij∞∞(t)− xijn∞(t)| < 3ε].

(A.5)

Observe that, in similar form to Eq. (A.4), (E1 ∩ E2 ∩ E3) ⊂ E4, so Pr(E4) ≥

Pr(E1 ∩E2 ∩E3) = 1−Pr(E ′1 ∪E ′2 ∪E ′3) ≥ 1−Pr(E ′1)−Pr(E ′2)−Pr(E ′3) = 1 for

all n ≥ n1. Thus, |xij∞∞(t)− xijn∞(t)| < 3ε for all n ≥ n1 and t ∈ [0, 1/K). �
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APPENDIX B

INTERDEPENDENCE OF CROSS RATIOS

We show that the N !/(N−4)! cross ratios of the oscillator phases are function-

ally dependent on the N − 3 cross ratios {λ1234, λ2345, . . . , λ(N−3)(N−2)(N−1)N}. To

do so, we use the fact that the 4! cross ratios corresponding to the 4! permutations

of zi, zj, zk, zl can be written as elementary functions of λijkl:

λijkl = λjilk = λklij = λlkji,

λijlk = 1/λijkl,

λiklj = 1/(1− λijkl),

λikjl = 1− λijkl,

λilkj = λijkl/(1− λijkl),

λiljk = (λijkl − 1)/λijkl.

(B.1)

Additionally, we can obtain new cross ratios from existing ones by multiplication:

λijklλjmkl = λimkl. (B.2)

Using these facts, we need to show that we can write λPQRS for any distinct

P,Q,R, S ∈ {1, 2, . . . , N} in terms of elements from {λ1234, λ2345, . . . , λ(N−3)(N−2)(N−1)N}.

First, note that we can rewrite (B.2) as a function Fj which takes two cross ra-

tios λijkl and λjklm (with indices in order), permutes the indices as necessary to

eliminate zj, executes the multiplication and returns the product with its indices

in order:

Fj(λijkl, λjklm) = λiklm (B.3)

Observe, however, that Fj is just short-hand for a composition of elementary func-

tions from (B.1):

Fj(λijkl, λjklm) =
1

1− λijkl(λjklm − 1)/λjklm
. (B.4)
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We can also define the analogous functions Gk and Hl:

Gk(λijkl, λjklm) = λijlm,

Hl(λijkl, λjklm) = λijkm.

(B.5)

These functions have their own compositions like that of Fj in (B.4).

Let λpqrs correspond to the permutation of λPQRS in which the indices are in

order. We can write λPQRS in terms of λpqrs using one of the functions in (B.1).

Thus, the problem reduces to showing that we can obtain λpqrs from the elements

of {λ1234, λ2345, . . . , λ(N−3)(N−2)(N−1)N} by elimination of the indices between p, q,

r, s using the operations Fj, Gk, Hl.

If there are one or more indices between i and j, we say there is a gap between

i and j. Now observe that we can obtain the first gap between p and q using

only λijkl with no gaps; we grow this gap iteratively one index at a time by the

operation: Fk(λpk(k+1)(k+2), λk(k+1)(k+2)(k+3)) = λp(k+1)(k+2)(k+3). We can then grow

the second gap between q and r to its full size using only λijkl that have no gaps

between j and k or k and l (each of which could be made from λijkl with no

gaps) using the operation: Gk(λpqk(k+1), λqk(k+1)(k+2)) = λpq(k+1)(k+2). Finally, we

can create the third gap between r and s using only λijkl with no gaps between

k and l (which could be made from λijkl with fewer gaps) using the operation:

Hk(λpqrk, λqrk(k+1)) = λpqr(k+1).

Since each λijkl (with i < j < k < l) can be built up from λijkl with fewer gaps,

the proof is complete: all N !/(N − 4)! cross ratios are dependent on the elements

of {λ1234, λ2345, . . . , λ(N−3)(N−2)(N−1)N}.
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