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Exploratory model selection was used to find a response model that accounted for 
the spatial variability present in the experimental results from four examples of spatially 
designed field experiments. It was found that the class of differential gradients within 
incomplete blocks was useful for finding a response model that accounted for the spatial 
variability present in the first example. The class of orthogonal polynomial regressions 
of response on row and column position and interactions of the regressions was useful for 
discovering an appropriate response model for the data of examples two, three, and four. 
The results obtained from the selected response model were compared with standard 
textbook analyses. Considerable differences in residual mean squares, coefficients of 
variation, and F-values for treatment to residual mean squares were found. The increase 
in replication for the selected response model over the textbook response model is 
demonstrated. The increase can be many fold. 
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INTRODUCTION 

Data from four different examples involving field experiments were examined to 
determine an appropriate response model that accounted for the variability present in the 
experimental results. An experimenter selects an experiment design plan that is thought 
appropriate for a forthcoming field experiment. Then the experiment is laid out in a field. 
It should be noted that the selected experiment design and the actual field layout 
determine the design for an experiment as far as spatial variation in an experiment is 
concerned. Also, events that occur during the conduct of an experiment need to be taken 
into account when analyzing the data. The direction of the spatial variation may not 
coincide with blocking pattern used for the experiment. Several types of events can 
occur during the course of an experiment that determines the pattern of variation. Since 
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an experimenter is not blessed with the knowledge of the spatial variation patterns in an 
experiment, it is necessary to attempt to find a response model that accounts for the 
variability present in an experiment. In exploratory model selection, the data analyst sets 
up a class of plausible response models and then selects one that best accounts for the 
spatial variation present in the experiment. This needs to be done for each characteristic 
measured in an experiment as a different response model may be appropriate for each 
one. 

The first example is an incomplete block experiment design arrangement with the 
incomplete blocks laid one below the other to form an 8-row by 15-column layout within 
each complete block (replicate). Examples two and three were laid out in a 15-row by 
12-column arrangement. The fourth example was designed as a randomized complete 
block experiment design but laid out in an 8-row by 7-column arrangement. In the first 
example two classes of response models were examined for the character weight of grain. 
These were differential gradients within incomplete blocks and orthogonal polynomial 
regression of response on row and column position and interaction of row and column 
regressions. Since the latter did not account for the variation in grain weight, the 
differential regression method was used for the other six characters measured in this 
experiment. The class of orthogonal polynomial regressions for rows, columns, and 
interactions was appropriate for finding a response model for the data of examples two, 
three, and four. 

A standard textbook model and analysis takes the blocking in the selected 
experiment design into account. To illustrate, for a Latin square experiment design, the 
model is row effect plus column effect plus treatment effect plus error (residual). For an 
incomplete block experiment design, the model is replicate (complete block) effect plus 
treatment effect plus incomplete block within replicate effect plus error. The differential 
regression method for an incomplete block, say, considers the model to be replicate effect 
plus treatment effect plus incomplete block within replicate effect plus regression for 
trend within each incomplete block. That is, the trend regressions of response on position 
in the incomplete blocks are considered to vary from incomplete block to incomplete 
block. There is no basis to consider that the regressions are the same over an entire 
experiment or even over each replicate. Spatial variation is seldom that patterned in field 
experiments, especially those on farmers' fields. The orthogonal polynomial regression 
method replaces a row effect with polynomial regressions of response (dependent 
variable) on position (independent variable) of the response, i. e., functions of row 
effects. Fitting a row effect with r rows is equivalent to fitting an r- 1 th regression model, 
hence any comments about fitting high ordered polynomials are not well conceived in the 
context of explaining spatial variation. The procedure is to compute all r - 1 regressions 
and select a subset to take account of the variation present. Those not selected are 
relegated to the residual (error). 

INCOMPLETE BLOCK EXPERIMENT DESIGN EXAMPLE 

An incomplete block design experiment design example was obtained from Dr. 
Matthew Reynolds, International Center for Maize and Wheat Improvement (CIMMYT). 
There were v = 120 wheat genotypes arranged in b = 15 incomplete blocks of size k = 8 
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in each of r = 2 replicates. Seven different responses were obtained for each of the wheat 
genotypes. They were weight of grain (grainwt), rust infection index, grain weight per 
meter squared (grm2), maturity, anthesis, total green weight (TGW), and CTD X. Two 
types of response models for accounting for the spatial variation present in the 
experiment were examined. These were trend analyses using orthogonal polynomial 
regression coefficients for response on position in row and in column and interactions of 
these regressions (regression method) and differential orthogonal polynomial regressions 
on position within the incomplete blocks (differential gradient method). The first method 
was used only for weight of grain owing to the fact that the differential gradient method 
was so much more effective in accounting for the spatial variation present in the 
experiment. This means that there were spatial trends within each of the incomplete 
blocks and that the trends varied from incomplete block to incomplete block. 

For the response weight of grain per plot (experimental unit), the standard textbook 
analysis for an incomplete block design (IBD) resulted in a residual (error) mean square 
of 52,395 and a coefficient of variation of 10.9%. The residual mean square was 
associated with 91 = 240 - 1 (correction for mean) - 1 (replicate) - 119 (genotype or 
treatment) - 28 (incomplete block within replicate) degrees of freedom. Since the 
experiment was laid out in a 15-row (block) by 8-column arrangement within each 
complete block (replicate), orthogonal polynomial regression coefficients of grain weight 
on position in row and in column were obtained. Also, the interactions of row and 
column regressions were examined. The Bozivich, Bancroft , and Hartley (1956) rule 
used by Federer, Crossa, and Franco (1998) to select those regression to retain as 
blocking variables determined which regressions to retain as blocking variables. The rule 
is to keep the regressions whose F-value exceeds the 25% level and relegate the others to 
the residual effect. This resulted in the following response model 

Grainwt =mean+ replicate +genotype+ C2 + Rl + R3 + R6 +RIO+ R12 +Cl *R12 + 
Cl *R14 + C2*R2 + C2*R6 + C2* RlO + C3*R3 + C3*R4 + C3*R5 + C3*R7 + C3*R13 
+ C4* R4 + C4*R6 + C4*R7 + C4*R8 + C5*R1 + C5*R4 + C5*R5 + C5*R8 + C5*R9 + 
C6*R10 + C6*R13 + C6*R14 + C7*R6 + C7*R7 + C7*R13 +error 

where Ri is the ith orthogonal polynomial regression coefficient of grain weight on row 
position and Cj is the /h orthogonal polynomial regression coefficient of grain weight on 
column position. The asterisk denotes an interaction as used in SAS codes. The residual 
mean square for the above response model was 54,678 with 88 = 240 -1 -1 -119 - 31 (one 
for each of the 31 regressions or interaction of regressions) degrees of freedom and a 
coefficient of variation of 11.2%. Thus the best regression model using the selection rule 
resulted in a residual mean that was larger than the textbook analysis for an incomplete 
block experiment design. 

The differential regression method was effective in accounting for more of the 
spatial variation than the above as shown below. Using the response model for weight of 
grain 

grainwt =mean+ replicate+ genotype+ block(replicate) + Cj*block(replicate) +error, 

the following results (with the minimum listed in bold type) for j = 1 to 7 were obtained 



C1 
41,604 
9.7% 

C2 
50,477 
10.7% 

C3 
53,058 
11.0% 

C4 
65,257 
12.2% 

C5 
54,811 
11.2% 

C6 
52,640 
11.0% 
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C7 
48,207 
10.5% 

where the first row is Cj, the second row is residual mean square, and the third row is the 
coefficient of variation. Adding the term C1 *block(replicate) to the incomplete block 
response model was effective in accounting for a sizeable portion of the residual 
variation. These residual mean squares are associated with 61 = 91 - 30 (one for each of 
the 30 regressions in each of the 30 incomplete blocks) degrees of freedom. Since there 
are sufficient degrees of freedom to search further, a second term of Ch*block(replicate) 
for h not equal to j, is added to the above response model equation. All possible pairs 
were investigated. The residual mean square results with the associated coefficient of 
variation obtained are (the minimum listed in bold type) 

C2 C3 C4 C5 C6 C7 
C1 42,504 38,645 54,444 36,558 43,316 31,546 

9.8% 9.4% 11.1% 9.1% 9.9% 8.5% 
C2 52,368 69,244 56,841 42,918 43,292 

10.9% 12.6% 11.4% 9.9% 9.9% 
C3 72,965 61,546 55,971 43,834 

12.9% 11.8% 11.3% 10.0% 
C4 72,202 71,772 68,543 

12.8% 12.8% 12.5% 
C5 57,240 58,136 

11.4% 11.5% 
C6 46,811 

10.3% 

Adding the term C7*block(replicate) to the response model resulted in a residual mean 
square of 31,546 (listed in bold type) and a coefficient of variation of 8.5%. The ratio of 
this mean square to the IBD mean square is 31,546/52,395 = 0.602, which is 40% smaller 
than the standard textbook incomplete block analysis residual mean square. The addition 
of this term over the C1 *block(replicate) term is sizeable, i.e., 31,546/41,604 = 0.758, or 
a 24% reduction. Using the textbook analysis for the incomplete block design (ffiD) 
would require 52,395/31,546 = 1.66 times. more replication than the differential gradient 
model with two terms in the response model. Also, even with allocating an additional 30 
degrees of freedom to spatial variation, there are still 31 degrees of freedom associated 
with the residual mean square. 

For the response rust index, the ffiD response model gave a residual mean square 
of 0.239664 and a coefficient of variation of 24.6%. Adding Cj*block(replicate) to the 
ffiD response model resulted in the following mean squares and coefficients of variation 

C1 
0.181704 

C2 
0.227638 

C3 
0.199817 

C4 C5 C6 
0.310642 0.241341 0.257496 

C7 
0.268095 
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21.4% 24.0% 22.4% 28.0% 24.7% 25.5% 26.0% 

From all possible pairs for rust index, adding the pair of the C1 *block(replicate) and 
C3*block(replicate) terms to the IBD response model for resulted in a residual mean 
square of 0.128184 and a coefficient of variation of 18.0%. This resulted in a 100(1 -
0.128184/0.239664) = 46.5% decrease in the residual mean square. The additional term 
of C3*block(replicate) resulted in a decrease of 100(1 - 0.128184/0.181704) = 29.5%. 
Using the two terms C3*block(replicate) and C7*block(replicate) and the IBD response 
model resulted in approximately the same residual mean square as C1 *block(replicate) 
and C3*block(replicate). 

The IBD response model for total green weight, TOW,· was 2.63540 and the 
coefficient of variation was 6.5%. Adding Cj*block(replicate) to the IBD response 
model resulted in the following: 

C1 
1.99125 
5.6% 

C2 
2.30948 
6.1% 

C3 
2.83428 
6.7% 

C4 
3.03865 
7.0% 

C5 
2.68701 
6.5% 

C6 
2.36558 
6.1% 

C7 
2.48401 
6.3% 

Adding the term C1 *block(replicate) reduced the residual mean square from 2.63540 for 
the IBD response model to 1.99125 for a 24.4% reduction. Adding the terms 
C2*block(replicate) and C7*block(replicate) to the IBD model reduced the residual mean 
square to 1.55874 for a 40.9% reduction over that for the IBD residual mean square. 

The residual mean square for grain weight per meter squared, grm2, using the 
IBD response model was 802,741 and the coefficient of variation was 10.8%. Adding the 
term Cj*block(replicate) to this response model resulted in the following residual mean 
squares and coefficients of variation: 

C1 
666,921 
9.8% 

C2 
719,217 
10.2% 

C3 
865,894 
11.2% 

C4 
960,822 
11.8% 

C5 
848,408 
11.1% 

C6 C7 
834,343 652,584 
11.0% 9.7% 

Adding the two terms C1 *block(replicate) and C7*block(replicate) to the IBD response 
model for grm2 resulted in a decrease in the residual mean square of 100(1 -
518,515/802,741) = 35.4%. The term C7*block(replicate) resulted in a decrease in the 
residual mean square of 100(1- 518,515/666,921) = 22.3%. 

For the character anthesis, the IBD response model resulted in a residual mean 
square of 10.55307 and a coefficient of variation of 5.6%. When the term 
Cj*block(replicate) was added to the IBD response model, the following residual mean 
squares and coefficients of variation were obtained: 

C1 
2.74642 
2.8% 

C2 
11.76045 
5.9% 

C3 
11.25254 
5.8% 

C4 C5 C6 
11.39026 11.95179 13.41503 
5.8% 5.9% 6.3% 

C7 
11.95456 

5.9% 

A comparison of all possible pairs added to the IBD response model resulted in selecting 
C1 *block(replicate) plus C2*block(replicate) as the response model. Despite the small 
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coefficient of vanatwn, 5.6%, for the IBD model, the addition of the two terms 
Cl *block(replicate) and C2*block(replicate) to the IBD response model resulted in a 
decrease in the residual mean square of 100(1 - 1.39405110.55307) = 86.8%. The 
addition of C2*block(replicate) resulted in a decrease of 100(1 - 1.39405/2.74642) = 
49.2% in the residual mean square. 

The IBD response model for the character maturity resulted in a residual mean 
square of 0.746855 and a coefficient of variation of 4.2%. Adding the term 
Cj*block(replicate) to the IBD response model resulted in the following residual mean 
squares and coefficients of variation: 

Cl 
0.776706 
4.3% 

C2 
0.642376 
3.9% 

C3 
0.759444 
4.2% 

C4 
0.826918 
4.4% 

C5 C6 C7 
0.845985 0.684042 0.764738 
4.4% 4.0% 4.2% 

Comparing all possible pairs of Cj*block(replicate) to the IBD response model resulted in 
adding C3*block(replicate) and C6*block(replicate) to the IBD model. Adding the term 
C2*block(replicate) to the IBD response model reduced the residual mean square to 
0.642376 from 0.746855, or a reduction of 14.0%. Adding the two terms 
C3*block(replicate) and C6*block(replicate) further reduced the residual mean square to 
0.607233, or a reduction of 18.7% over that obtained for the IBD response model. 

The IBD response model for the character CTD X resulted in a residual mean 
square of 0.146648 and a coefficient of variation of 13.8%. Adding Cj*block(replicate) 
to the IBD response model resulted in the following residual mean squares and 
coefficients of variation: 

C1 
0.119556 
12.4% 

C2 
0.096373 
11.2% 

C3 
0.177238 
15.1% 

C4 
0.162421 
14.5% 

C5 C6 C7 
0.170596 0.155586 0.163766 
14.8% 14.2% 14.5% 

Adding C2*block(replicate) decreases the residual mean square by 100(1 -
0.096373/0.146648) = 34.3%. Adding the pair C2*block(replicate) and 
C4*block(replicate) decreased the residual mean square by 100(1- 0.068188/0.146648) 
= 53.5% with the C4*block(replicate) term accounting for 100(1- 0.068188/0.096373) = 
29.2% of the decrease. 

The response models resulting in minimum residual mean squares for each of the 
seven characteristics reported in this experiment are given below: 

Grainwt = replicate + genotype + block(replicate) + C1 *block(replicate) + 
C7*block(replicate) + error 

Rust = replicate + genotype + block(replicate) + C1 *block(replicate) + 
C3*block(replicate) +error 

TGW = replicate + genotype + block(replicate) + C2*block(replicate) + 
C7*block(replicate) +error 
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grm2 = replicate + genotype + block(replicate) + C1 *block(replicate) 
C7*block(replicate) + error 

anthesis = replicate + genotype = block(replicate) + C1 *block(replicate) 
C2*block(replicate) +error 

maturity = replicate + genotype + block(replicate) + C3*block(replicate) + 
C6*block(replicate) + error 

CTDX = replicate + genotype + block(replicate) + C2*block(replicate) + 
C4*block(replicate) +error 

The above demonstrates that the response model that best explains the spatial variation 
present in an experiment must be determined for each characteristic measured. One size 
may not fit all! The same response model was obtained for weight of grain and for grain 
weight per meter squared as it should be since they are essentially the same. It also 
demonstrates that there is no ordering of polynomial regressions when it comes to 
explaining spatial variation in experiments. The so-called "hierarchical principle" 
discussed by Federer (2000) used in this context is misguided and inappropriate. 

The data for the above example are available upon request. A SAS GLM code for 
the final models of the above example is described by Federer and Wolfinger (1998, 
2002). If the blocking variables in the model are considered to be random effects and 
inter-effect information is to be recovered (and it should be), this is easily accomplished 
using the SAS codes. 

A 15-ROW BY 12-COLUMN EXPERIMENT DESIGN EXAMPLE 

At another site, the 120 wheat genotypes in the preceding example were included 
in a 15-row by 12-column design along with two check genotypes each replicated 30 
times. The 120 genotypes occurred once in the experiment. The experiment design was 
an augmented row-column experiment design. The polynomial regression method 
described above is appropriate for this type of layout. For the 60 responses from the two 
checks, not all row, column, and check effects have non-zero solutions. The rank of the 
design matrix is three less than required for solution of these effects, i. e., three of the 
effects of a variable are set equal to zero in order to obtain a fixed effects solution. It is 
possible to obtain an analysis of variance, ANOV A, using SAS PROC GLM but not least 
squares means. Performing this operation resulted in 

Source of variation Degrees of freedom Mean square 
Type I: Row 14 35,559 

Column 11 58,885 
Genotype 119 18,630 
Residual 35 14,820 

Type Ill: Row 12 18,171 



Column 
Genotype 

9 
119 

18,839 
18,630 

8 

Note that the degrees of freedom for genotype in the Type I (nested analysis where 
confounding effects are eliminated for all effects above a given one) and Type Til 
(confounding effects eliminated for all other variables) ANOV As should have been 121 
for genotype as there were 122 genotypes in the experiment. Owing to the fact that the 
rank was three less than needed for solutions for all effects, this shows up in the Type Til 
ANOV A as well as in the last line of a Type I analysis. The coefficient of variation for 
this analysis is 12.8% and the F-value for genotype to residual mean squares is 1.26. 

To obtain genotype means, some functions of row and column effects are 
required. Use is made of polynomial regression of responses on position, R1 to R12, and 
of column responses on position, C1 to C10, and interactions of these regression 
coefficients. Federer, Reynolds, and Crossa (2001) considered only interactions through 
quartic regressions. The response model given by them is 

Grain weight= C1 + C4 + ClO + R2 + C1 *R1 + Cl *R3 + C2*R2 + C2*R4 + C3*R2 + 
C3*R4 + C4*R3 + C4*R4 +genotype+ error 

This response model resulted in a residual mean square of 6,088 with 46 = 180 -1 -121 -
12 (12 regressions) degrees of freedom. The coefficient of variation is 8.2% and the F­
statistic for genotype to residual mean squares is 3.34. 

However, if the entire range of row regression by column regression interactions 
is examined, considerably more of the spatial variability in this experiment can be taken 
into account. Using the response model 

Grain weight= C1 + C4 + C10 + R2 + C1 *R1 + C1 *R3 + C1 *R9 + C2*R2 + C2*R4 + 
C2*Rll + C3*R2 + C3*R4 + C4*R3 + C3*R4 + C4*R6 + C5*R5 + C5*R10 + C5*R12 
+ C6*R5 + C6*R7 + C8*R5 + C8+R11 + C9*R12 + C10*R6 +genotype+ error, 

resulted in a residual mean square of 1,810 with 34 = 180 -1 - 121 - 24 (24 regressions) 
degrees of freedom. Interactions of high degree polynomials are required to account for 
the spatial variation in this experiment. The coefficient of variation is 4.5% and the F­
value for genotype over residual mean squares is 11.5, a considerable change over the 
previous two response models. The selection of the above response model resulted in 
14,820/1,810 = 8.2 times more replication to obtain the same standard error of a mean 
than would have been obtained using the textbook row-column-genotype response model. 
Federer, Reynolds, and Crossa (2001) should have considered higher than fourth degree 
polynomial regression interactions. The above model resulted in 6,088/1810 = 3.4 times 
more replication than limiting interactions to fourth degree. A SAS PROC GLM and 
MIXED code for the above response models is given by Federer and Wolfinger (2002a). 

A SECOND 15-ROW BY 12-COLUMN EXPERIMENT DESIGN EXANPLE 

The 120 wheat genotypes discussed in the above two examples were grown in a 
15-row by 12-column experiment design at a third site. The weight of grain for this 
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example has been given in Federer (1998). As in the preceding example the experiment 
design was such that not all row, column, and genotype effects have solutions as the rank 
is three less than required. If two row or two column contrasts such as R13 and R14 or 
ClO and Cll are set equal to zero (eliminated from the model), then solutions for effects 
may be obtained. However, as pointed out above, the SAS PROC GLM code will do this 
automatically for an ANOV A. Doing this the residual mean square was 5,630.7 with 35 
degrees of freedom and a coefficient of variation of 8.5%. The F-ratio of genotype to 
residual mean squares was 1.47. Limiting consideration to row-column interaction 
regressions to fourth degree polynomials as Federer, Crossa, and Franco (1998) did, the 
residual mean square was 3,449.1 with 44 degrees of freedom and a coefficient of 
variation of 6.7%. The F-statistic for genotypes was 2.44. Their response model was 

grainwt = Cl + C2 + C3 + C4 + C6 + C8 + Rl + R2 + R4 +RIO+ Cl *Rl + C2*Rl + 
C3*Rl + genotype + error, 

where Cj is the jth polynomial regression coefficient of grain weight on column position 
and Ri is the ith polynomial regression of grain weight on row position. If interactions of 
all column regressions by row regressions are screened by the rule used above, the 
resulting response model equation is 

grainwt = Cl + C2 + C3 + C6 + C8 + Rl + R8 +RIO+ Cl *Rl + 
C2*Rl + C3*Rl + C2*R5 + C3*R7 + C4*R9 + C5*R10 + 
C6*R12 + C7*R3 + C7*Rll + C8*R2 + C9*Rl +genotype + error 

Using this response model resulted in a residual mean square of 1,081.4 with 38 degrees 
of freedom and a coefficient of variation of 3.7%. The genotype F-ratio increased to 
8.04. Thus, the preceding response model resulted in a residual mean square with 38 
degrees of freedom and 5,630.7/1,081.4 = 5.2 times more replication than the textbook 
row-column-genotype response model and 3,449.111,081.4 = 3.2 times more replication 
than the Federer, Crossa, and Franco (1998) response model. It is to be noted that the 
more patchy the spatial variation, the higher will be the degree of the polynomial 
regression interactions required to account for this. The above response model used 
fewer degrees of freedom, 20, for blocking variables than did the row-column-genotype 
response model, 23. 

AN 8-ROW BY 7-COLUMN EXPERIMENT DESIGN 

An experiment described in Federer and Schlottfeldt (1954) was designed as a 
randomized complete block experiment design (RCBD) with v = 7 treatments and r = 8 
complete blocks. However, the experiment was laid out in an 8-row by 7-column 
arrangement, RCD. Owing to several sandy patches in the experimental area and to 
unfavorable moisture conditions, there was considerable spatial variation present in the 
experiment. The RCBD ANOV A resulted in a residual man square of 30,228.2 with 42 = 
56- 1-7- 6 degrees of freedom, a coefficient of variation of 17.2%, and an F-value for 
treatments of 1.51. The RCD ANOVA produced a residual mean square of 7,351.8 with 
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36 degrees of freedom, a coefficient of variation of 8.5%, and an F-value for treatments 
of 2. 71. The response model 

Y = C1 + C2 + C3 + C5 + R1 + R2 + R3 + R5 + R6 + R7 + C1 *R1 + C2*R1 + C2*R3 + 
C3*R4 + C4*R1 + C4*R2 +treatment+ error 

as used by Federer, Crossa, and Franco (1998) and limiting the investigations to 
interactions of fourth degree row and column regressions, produced a residual mean 
square of 4,204.5 with 33 degrees of freedom, a coefficient of variation of 6.4%, and an 
F-value for treatments of 6.36. Considering interactions of all polynomials resulted in the 
following response model equation: 

Y = C1 + C2 + C3 + C5 + R1 + R2 + R3 + R5 + R6 + R7 + C1 *Rl + C2*R1 + C2*R3 + 
C3*R4 + C4*R1 + C4*R2 + C1 *R5 + C3*R5 + C3*R7 + C4*R5 + C4*R7 + 

C5*R4 + C5*R7 + C6*R2 + C6*R7 +treatment+ error. 

That is, nine interaction terms were added to the previous model. The resulting residual 
mean square is 1,320.4 with 24 degrees of freedom. The coefficient of variation is 3.6% 
and the F-value for treatments is 20.49. As may be observed, tremendous differences 
exist between the analyses for the different response models. A standard textbook 
approach would use the RCBD analysis, and consideration of the spatial layout of the 
experiment would use the RCD analysis. Consideration of differential gradients would 
result in the response model 

Y =row+ treatment+ C2*row + C3*row + C4*row +error. 

The residual mean square for this model was 11,309.9 with 18 degrees of freedom, a 
coefficient of variation of 10.5%, and an F-value for treatments of 3.78. This model used 
31 = 7 + 3(8) degrees of freedom for blocking variables, leaving only 18 for the residual. 
Furthermore, it was not as effective as the row-column-treatment model for controlling 
spatial variation. Using the next to last model above, was quite effective in accounting 
for the spatial variation in this experiment and effectively resulted in 30,228.2/1,320.4 = 
22.9 times more replication than the RCBD analysis and 7,351.8/1,320.4 = 5.6 times 
more replication than the RCD analysis. A SAS PROC GLM and PROC MIXED code 
for the above models is given by Federer and Wolfinger (2002b). 

DISCUSSION 

The above examples utilized a fixed effects approach to exploratory model 
selection. Federer and Wolfinger (2000) have presented two random effects procedures 
for model selection. A comparison of resulting models using the three procedures with 
above examples could be made. It is fairly certain that the resulting models would differ. 
Until the properties of the random effects selection procedures are known, this will not be 
done. It is known that the Bozivich, Bancroft, and Hartley (1956) procedure has only a 
small effect on the Type I error. It is possible that Fat the 25% level is not optimal for 
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reducing the effect on Type I errors. With present computing power, this could be 
investigated. 

The model selection procedure utilized the fixed effects analyses. When 
obtaining treatment means, one should recover the information from the random blocking 
effects. As noted from remarks by several anonymous referees, they have a difficult time 
thinking of regression and gradient coefficients as random blocking effects. They appear 
to have no difficulty with considering row, column, and block effects as random, but they 
appear to fail to appreciate the fact that the regressions and gradients are merely functions 
of row and column effects that are random effects. Hence, in obtaining adjusted 
treatment means, all blocking effects should be considered as random effects and the 
information contained in them needs to be recovered in order to utilize efficient 
procedures. 

Different models were obtained for each of the characters analyzed in the first 
example. This means that an experimenter should perform exploratory model selection 
for each characteristic being analyzed. Use of computer programs such as those given in 
the references, make this is relatively simple matter. 

The fixed methods of regression and gradients used in this investigation have 
known degrees of freedom for the various parameters used in a response model. Several 
other procedures such as smoothing, Kriging, nearest neighbor, and autoregression have 
been proposed for spatial analyses (See Federer, Newton, and Altman, 1997, e.g.). The 
degrees of freedom for each of the parameters used in these methods are usually 
unknown. Hence, it is difficult to compare their ability to explain spatial variation in 
comparison to regression and gradient procedures. 

Orthogonal polynomial regression was used in the above analyses. This involves 
using centered values for the independent (covariate) variable, position. It should be 
noted that interactions of non-centered covariates will not be the same as those from 
centered covariates. Also, instead of using orthogonal polynomial regressions, Fourier 
regression may be more appropriate in some situations, i.e., when the spatial variation is 
cyclical in nature. 

Some statisticians, e.g., Gilmour (2000), appear to believe that the above 
exploratory model investigation is "post blocking that has gone too far." If the variation 
can be accounted for and if there are sufficient degrees of freedom, say 20-30, associated 
with the residual mean square, there should be no reason why a data analyst should not 
use procedures such as those described herein. Others believe that regression coefficients 
and gradients should always be considered as fixed effects. They appear to fail to realize 
that as used herein, they are functions of random variable effects and hence should be 
considered to be random effects. In field layouts, there are no valid reasons to consider 
that there will be a single regression and that all variation follows an orderly and 
systematical pattern. Even though an experimenter may try to select a uniform area in 
which to conduct the experiment, this is not always possible, e.g., conducting 
experiments on farmer's fields. 
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