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Abstract

Markov random walks are discrete time versions of Markov additive processes. We
present some basic theory of the Markov random walk (MRW) viewing it as a family of
embedded standard random walks. We give a comprehensive discussion of the problem
of degeneracy. The properties of the time-reversed MRW are studied. Using the
semirecurrent sets associated with the MRW, we obtain a complete description of
the fluctuation behaviour of the nondegenerate MRW. We also derive a Wiener-Hopf
factorization of the measures based on these sets. The case where the increments of

the MRW have finite means is then investigated. Finally, we study the problem of exit
of the MRW from a bounded interval.

"On leave from the Department of Industrial and Systems Engineering, National University of Singapore.
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1 Introduction

Markov random walks (MRW) have been studied by several authors; see in particular, Miller
[7, 8], Presman [11] and Arjas and Speed [1, 2, 3]. In the earlier papers the treatment was
purely analytical while the later authors adopted a probabilistic approach. The primary
focus of attention of all these papers was the derivation of some sort of transform identities,
rather than the study of the probabilistic structure of the MRW. Newbould [9] dealt with
some aspects of ‘degeneracy’, but his main interest was in the fluctuation behaviour of
nondegenerate MRW’s with a finite state ergodic Markov chain.

In this paper, we aim to provide further insights into the probabilistic structure of the
MRW. In section 2, we define an MRW {(S,, J,,);n > 0} as a Markov process with the first
component S, having an additive property, J, being a Markov chain on a countable state
space £. We observe at the outset that the MRW is a family of embedded (standard) random
walks. This enables us in section 3 to investigate the problem of degeneracy of the MRW in a
broader framework and obtain more significant results than those obtained by Newbould [9].
We also study in section 2 the structure of time-reversed MRW. In particular, we establish
a simple yet useful result (Lemma 1) connecting the probability measures associated with
the given MRW and its time-reversed counterpart. A special case of this result (Lemma 3),
recently published by Asmussen ([5], Theorem 3.1) was already known to us.

The fluctuation theory of the MRW is developed in section 4. Our approach is based on
the theory of semirecurrent phenomena given by Prabhu [10]. For the MRW the semirecur-
rent sets correspond to the observed ranges of the Markov renewal processes given by the
sequences of ascending and descending ladder points. In the case of a nondegenerate MRW
with an irreducible and persistent J, it turns out that its fluctuation behaviour is exactly

the same as in the standard random walk (Theorem 8). This is an extension of a result
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obtained by Newbould [9] for the special case of a finite state ergodic J. For a degenerate
MRW the situation is very different; here the process oscillates between (finite or infinite)
bounds, except in the trivial case where S; = Sy = --- = 0 for any initial state Jo = j
(Theorem 4). We believe that our results concerning the fluctuation behaviour of the MRW
are much more comprehensive than those previously established.

Section 4 continues with a Wiener-Hopf factorization of the MRW in terms of positive
Borel measures based on the associated semirecurrent sets. It turns out that this factorization
is really a property of these measures. We show that the Fourier transforms of these measures,
if necessary, can be derived and lead to the standard form of the factorization more familiar
in the literature, expressed in terms of the transforms of ladder points. The earliest result
of this type is due to Miller [7] and the one demonstrated here is due to Presman [11]. Arjas
and Speed [2, 3] derived various results for such factorizations using heavily analytical tools
involving operators. Our approach is probabilistic and brings out the essential simplicity of
the factorization.

The fluctuation theory developed in section 4 does not assume the existence of means.
In section 5 we investigate the case where the increments of the MRW have bounded means.
Our approach is again based on the family of standard random walks embedded in the MRW.
These results are analogous to those for bounded additive functionals defined on a Markov
chain; see for example Chung ([6], part I, section 14).

In the final section 6 we study the problem of exit of the MRW from a bounded interval,
the classical version of which occurs in sequential analysis. For the nondegenerate MRW with
J persistent nonnull, we obtain results analogous to those in sequential analysis concerning

the exit time.

Finally, we would like to point out that the idea behind the proof of Theorem 2 is due
to Arnold H. Buss.



2 Definitions and Basic Properties

Suppose that we are given a probability space (Q, F, P). We denote R = (—o0,0) and £ =

countable set.

Definition 1 A Markov Random Walk (S,J) = {(Sn,Jn),n > 0} is a Markov process on

the state space R x £ whose transition distribution measure is given by

P{(Sm+"7']m+n) € Ax{k}l(smv']m) = (377])} = P{(Sm-'rn‘—sma*]m-’rn) € (A—J))X{k}fjm = .7}

(1)
Vi, k € £ and a Borel subset A of R.

We shall only consider the time-homogeneous case where the second probability in (1) does

not depend on m. We denote this probability as QEZ){A — z}, so that

QW{A} = P{(Sn,Jn) € A x {k}|Jo = j}. (2)

It is seen that the transition distribution measure Q satisfies the conditions

QW{A} 20, S YR} =1 (3)

k€&

and the Chapman-Komolgorov equations

Q=T [ Qi) (-}, Ym0, )

le€” ™

where

QW{4} = 1 ifj=ko0cA

= 0 otherwise. (5)

The initial measure is given by

= 0 otherwise. (6)



From (2) and (6) the finite dimensional distributions of the process are given by

P{(Sn,, Jn) € {A} x {k}, (1 <t <)}

=T QU {da, QU™ {daz — 21} - QU iy {da, — 2,1} (7)

jeE {.’L‘cEAt 1<t< )}

for any Borel sets A;, Aq,..., A, of R.

If the distribution of {S,} is concentrated on [0,c), then the Markov random walk
(MRW) defined above reduces to a Markov Renewal Process (MRP). On the other hand,
the MRW is the discrete time analogue of Markov-additive processes (MAP). From (1) and
(2) we see that the marginal porcess J(oo) = {J,, n > 0} is a Markov Chain on £ with the

transition probabilities given by
Py = Q' (R}, (8)
We shall write J for J(oo). Also we shall denote the conditional probabilities and expecta-
tions given Jy = j as P; and E; respectively. As usual, we write Qi for Qg}c)
To exploit the structure of the MRW, it is useful to consider some randbm walks embedded

in the process as follows. Denote the successive hitting times of state 7 € £ as
i =min{n >7/_, : (S, ) € {R} x {j}} (r=1), =0 (9)
and the number of such hits (visits) as
N? = maz{r: 7} <n}. (10)

Also on 77 < oo we define

SI=5, (r>0). (11)

Tr

We note that although the processes {S’

io 2 0} and {S7,r > 0} have different index sets

which affects their evolution, their observed ranges remain identical. In section 5, we shall
obtain the limit behaviour of these processes and relate them to that of the MRW. First we

make a simple observation arising from the properties of the embedded processes.

Proposition 1 {(7/,S?),r > 0}is a random walk on the state space (Ry x R).



Proof: The sequence {77} constitutes an embedding renewal process, and the result follows
from the strong markov property of (S, J). a
We need a classification of the set £; this is essentially based on the recurrence properties

of the marginal chain J, but it seems more appropriate to consider the two dimensionai

random walk {77, 57} rather than {77}.
Definition 2 j € £ is persistent if {7}, 57} has a proper distribution, ie.

Pi{r] < 00,|S8| < o0} =1 (12)
and transient otherwise.

Proposition 2 .
(a) If j is transient, then the random walk {r?,S?} is terminating.
(b)Suppose j is persistent and P;{S] = 0} < 1. Then {S?} either (i) drifts to +oo0 ; (i)

drifts to —oo; or (i) oscillates a.s..

Proof: (a) If j is transient then {7/} is a terminating renewal process.
(b) It is clear that the marginal process {S7} is a random walk and the result follows from

the fact that any random walk that is nondegenerate at zero belongs to one of the 3 types

indicated. ]

Next we consider a time-reversed version of the MRW. The importance of this will be

apparent in a later section. We first give the following definition.

Definition 3 {(5,,J,),n > 0} is defined to be a time-reversed MRW induced by (S, J) if

its transition probability measure s given by

Qild} = FQui{4} Vkjeg (13)
J

where Qi;{-} is the transition probability measure of (S, J), {m:} ts a sequence of real numo: s

and A is any Borel subset of R.



By setting A = R in the above equation, we see that
Wjﬁjk = 7 P,

which shows that {;} is necessarily the stationary measure of both J and J.
Henceforth, ( -) will denote the counterpart of (-) for the time-reversed MRW.
The following result relates the given MRW to its time-reversed counterpart; in particular,

it will lead us to the n'*-step transition probability measure for the time-reversed MRW.

Lemma 1 We have
PefAui T = j} = 2P { Ani Ju = ) (14)
k

VA, € o(Xy, -, Xn), where A, = {w : (Xp(w), -, X1(w)) € Au}; de. A, is the corre-
sponding set for the time-reversed MRW and X, = S, — S,_; (r > 1) are the increments of
the MRW.

Proof: We first consider the special case where
A, ={w: Xi(w) e A;,i=1,...,n}
the A}s being Borel subset of R. We have

Pi{AnJa =37} = P{Xi€Ani=1,...,n;Jo=j}

= ) - Z/ /an{dﬂfl}“-Qin_u{d%}

€€ ~1E€E
7(',1

= X X [ [ Qe e T Qu{dm)

el tn.1 €€

= W] Z > /n"'/,h Qjinr {dzn} - Qui{dz1}

n€e€ in_1€E

= f-lpj{A,,; Jn =k}
Tk

The collection of sets for which the above equality holds is a A—system and we have
shown (14) for the collection of A, which is a 7—system. The Dynkin 7-) theorem implies

that the desired identity holds for all 4, € o(X1,---, X,). d



As a special case of Lemma 1 we obtain the nt*-step transition probability of the time-
reversed MRW as follows. Another special case will be treated in section 4 (see Lemma

3).

Theorem 1 We have
A{n T n
Qi {4} = —Qif {4} Va1 15)
J

Proof: In view of the above lemma, we only need to define a correct form of A, and find the
corresponding A,,. Let

A ={w: X; +---+ X, € A}

Since §, = S,, we have
A, ={w: 5, € A} = A,.
Therefore
QA = a4y,
m|
To obtain a classification of the MRW similar to that of the standard random walk, we
need to consider the case where S, neither drifts nor oscillates. This special case seems to
have been overlooked by Asmussen[4] who gave a classification of {S,} under the conditions

E;(|X1]) < oo Vj with J persistent nonnull. Here is a counter example. Let

1 ifae A

0 otherwise

Fo){A} = {

and
0 Fn{A} 0
Q{4} = 0 1/2Fq{A} 1/2F{A}
Fiy{A} 0 0

Note that J is persistent nonnull with transition matrix

0 1 0
P=1{|o0 1/2 1/2
1 0 0



Then it is clear that the observed range of {S,} is {~1,0,1}. This shows that this MRW
does not fluctuate as in the standard random walk.

This motivates the discussions in the next section.

3 Degenerate Markov Random Walks

In the case of a standard random walk, degeneracy is the trivial case where P(S; =0) = 1.
In the case of the MRW, the conditions for degenaracy were investigated by Presman [11]
and Newbould [9] who restricted J to be ergodic and to have finite state space. Here we

shall start with the following definition.

Definition 4 The MRW is said to be degenerate at j € £ if {S?} is degenerate at zero, ie.
Pi(§]=0)=1. (16)

According to this definition j is persistent whenever the MRW is degenerate at j.

We shall show that degeneracy is a class property which will lead us to a natural way of

defining degeneracy for the MRW.

Theorem 2 Suppose that the MRW is degenerate at j and ng){R} > 0 for some n. Then
the MRW is also degenerate at k € £. In particular, if J is irreducible, then either all the

embedding random walks are nondegenerate or all are degenerate.

Proof: As noted above if (16) holds for j € £, then j is persistent. Given that ng){R} >0

for some n, k is also persistent, from the theory of Markov Chains. On {Jy = k} let
™ =min{n>o* T, =4} i>1
o =min{n > :J, =k} 1>1

Then it is clear that {T,-kj + afk,i > 1} is a renewal process with alternating components Tikj

and o7*. Since both j and k are persistent with ng){R} > 0, we have

1 kj :
ol* <o a.s. and 77 < oo a.s. Vil



It follows from the strong Markov property that

S ik — Srkj 2 dek — Srkj Vi>1
; ; 1 1

o

which in turn implies that

d .
S e = Saffl = ST‘g‘j —_ Sr.kj Vi > 1.

e tl

Therefore, if j satisfies (16), then
Pe{S si—S. =0}=1 Vi>1
{ te]

would imply that
Pk{Sm;k — Sa_?'k =0}=1 Vi>1
so that
P{SF=0}=1 Vi>1.
It follows from irreducibility of the J-chain that if (16) holds for some j € £, it holds for

all j € €. o

Motivated by the above theorem, it seems reasonable to define degeneracy of the MRW

as follows.

Definition 5 The MRW is degenerate if all the embedded random walks are degenerate; ie.
(16) holds Vj € £.

Note that this definition would imply that for a degenerate MRW, J is a persistent chain.
The following theorem reveals the full implication of the term degeneracy, namely, that
in a degenerate MRW, the increment between any transition j — k in J is deterministic,

depending on j and k.

Theorem 3 Suppose that J is irreducible. Then the MRW is degenerate iff there exist
constants b; < oo  Vj € & having the property that Qg’,:){A} is comcentrated on by — b;

whenever ng){R} > 0.
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Proof: (i) Suppose there exist constants b; with the stated properties. Then since Qg’;) >0
for n = 7{, we must have §} = 0 a.s..

(i1) By the definition of degeneracy, we have Vr > 1,
Srg—Srsz a.s.

regardless of Jy. Consider the epochs m and m+n at which J,, = 7 and Jn4n = k. At
these epochs, we must have S,, = Srg' = b; and Sp4n = S',.f = b for some r > 0,5 > O.
Accordingly,

Sntm — Sm =S5 — Sqx = b — bj;

which shows that QSZ) > 0 implies that ng){A} is concentrated on by — b;. a

The fluctuation aspect of degenerate MRW can be briefly summarized as follows.
Theorem 4 For a degenerate MRW we have the following.
— o0 < lin}‘inf S, <0< limnsup Sp < 400 a.s. Pj. (17)
i.e. these limits depend on Jy. If, in addition, £ is finite then it is uniformly bounded i.e.
—00 < mkin(bk —b;) = liminf §, <0 < limnsup Sp = mf,x(bk —b;) < +© a.s. P;

Proof: By definition of degeneracy, we have P;{S? = 0} =1 Vr > 0. As J is persistent in

this case, we have S,, = 0 7.0. a.s.. which proves our assertion. If £ is finite it follows from

Theorem 3 that
sup |S,| = rrzapclbk — bj] < oo.
n 2J

O

Remark 1 It should be noted that for a degenerate MRW the only possible limit of {Sn}, if

it exists, is zero. This corresponds to the case where
Otherwise, the MRW ‘oscillates’.
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We conclude this section by the following simple but useful result.
Lemma 2 If an MRW with J persistent is uniformly bounded then it ts degenerate.

Proof: If the MRW is uniformly bounded, then each embedded random walk is also unifromly
bounded since 77 < oo a.s.. This means that all these embedded random walks are degenerate
so that the MRW is degenerate. O

In view of Theorem 4, the converse of this lemma need not be true .

4 Semirecurrent Sets, Fluctuation Theory and Wiener-
Hopf Factorization

In this section we give a classification of the additive component of a nondegenerate MRW
which is parallel to that of a standard random walk. The classification will be based on the
maximal and minimal functionals and the corresponding semirecurrent sets. Throughout

this section, we shall assume that J is irreducible and persistent. As in the classical setup,

we denote
M, = o?kag)i Sk, mp= Orsr}cisx-ln Sk, n > 0; (19)
and
¢ ={(nJ): Sa=Ma, Ju =3}, (T ={(n,)): Sn=mn,Jn =7} (20)

We note that M,, > 0 and m,, < 0. Also {M,} is a nondecreasing sequence while {m,}

is a nonincreasing sequence. Therefore by monotone convergence theorem,
M, - M< o0, m,—>m>—-00 a.s. (21)

The following result was proved by Prabhu [10] as an example of semirecurrent phenom-

ena.

Theorem 5 The sets (* and (~ are semirecurrent sets.
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Proof: Let
Zni = 1{(npyec+}- (22)
Then from the definition of (*, it follows that P{Zy; = 1} = P{Jo = j}, and for 0 = ngo <

ny<ng <<y (r21)

P{Znt, = Zogty =+ = Zyu, = U Zo; = 1} = wjp, (n1)ug i, (n2 — n1) - - wr,_y,.(ny — np_q)
(23)
where
uje(n) = Pi{Zu =1} = P{S, < Sp (0 <7 <n), Jo =k} (24)

This verifies that {Z,;} is a semirecurrent phenomenon and the set {* is a semirecurrent set.
Similar remarks apply to (. , O

We also observe that ¢(* and (~ are sets with the following elements:
¢t = {(To, J0), (Tv, J1)s -}, ¢ = {(To, Jo)s (Tr, I7y)5 - - -} (25)
where
Ty = min{n > Tk_1 : S, = S1,_,}, Ti = min{n > Tk_y : Sn < S7,_, } (26)
with Ty = Ty = 0. We then have the following.

Theorem 6 The processes {(St,, Tk, Jr,), k > 1} and {(=Sr,, Tk, J1,): &k > 1} are Markov

Renewal Processes on the state space Ry x Ny x &.
Proof: Since the T} are stopping times for the MRW, we have by the strong Markov property,
P{(ST,, Te, J1,) € A x {n} X {j}(5T0, Trm» 1) = (Tms lmy Jm ), 0 S < K — 1}
= P{(ST;, — STk_17Tk - Tk—l)JTk) S {A - xk——l} X {Tl - nk-—l} X {j}‘JTk_l = jk-—l}
= ij—-l{(STl’Tl’JTl) € {A - Ik—-l} x {n - nk—l} X {]}}
which shows that the process considered is a Markov Renewal Process. The proof for
{—S71,, Tk, J7,} is similar. o
Before we provide a classification of the MRW, we give a result concerning the limit

behaviour of S, in relation to M and m which is identical to that of a standard random

walk.
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Theorem 7 For a nondegenerate MRW with J irreducible and persistent it is impossible for
both M and m to be finite. Furthermore, we have the following.

(i) If M, — +00, mp, — m > —00 a.s., then S, — 400 a.s. .

(it) If M, - M < 400, mp — —00 a.s., then S5, — —0 a.s. .

(1i1) If M,, — +o00, mp, — —00 a.s., then —oo = liminf, S, < limsup, S, = +c0 a.s. .

Proof: Since sup |S,| = max{M, —m}, by Lemma 2 the MRW cannot be bounded. Accord-
ingly we need consider only cases (1)-(iii).
(1)From the Markov property and from (26) that M7, = St,, we have
PJO{H;i%l Sy — Mp, € I|Sm, Jm; 0 <m < T} = PJO{H;iII} Sp — S, € I|S1,, J1,}
n2ly nZig
= PJ’I‘k {EZHTE S"“Tk € I}
= PJTk {m € I}.
So for a,b > 0,

PJO{H;iTIl Sp > a} > P]O{MTk >a -+ b}PJTk {m > —b}.
n2>Ty

Since M,, — +00, m, — m > —00 a.s., given a and €, we can find some sufliciently large

b and k so that
Pip{Mr,>a+b}>1~¢ and Py {m>-b}>1—c¢
Therefore
Pi{minS, >a} > (1 —€)* > 1 — 2¢,
n>Ty

which shows that S,, — +o00 a.s. .
(i1) This follows from (i) by symmetry.
(iii)From (26) My, = Sg, — 400 and my, = Sy, — —oo which give us two divergent

sequences that prove our assertion. a
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Theorem 8 For a nondegenerate MRW with J irreducible and persistent it is impossible for
both (* and (~ to be terminating. Furthermore, we have the following.

(1) ¢t is nonterminating and (= is terminating <& M = +oo,m > —oc0 < lim, S, = 00 ;

(1t) (T is terminating and (~ is nonterminating & M < +oo,m = —o0 & lim, S, = —oc0 ;
(111) C* and (~ are both nonterminating < M = +oo,m = —o0 & limsup, S, = oo,liminf, S5, =
—00 .

Proof: We first show that for the given MRW
(a) ¢* is terminating iff M < co, and (b) (~ is terminating iff m > —oo.

By symmetry it suffices to show (a). Note that

(*is terminating = 3N < 20 :5, < Sy, n < N and S, < Sy, Yn> N

N
= M =Sy = Z.X;’ < o0 a.s..
i=1

Conversely suppose M < co. By Lemma 2 the MRW is unbounded so m = —oo. But from

Theorem 7

M <o, m=—o00=1limS, = —oo = (1 is terminating
n

as there is a last epoch n for which S, € Ry. From this result we conclude that

(i) ¢* is nonterminating and (~ is terminating <& M = +o00,m > —o0,

(ii) ¢* is terminating and (™ is nonterminating & M < +oo,m = —00,
(iii) ¢* and ¢~ are both nonterminating <& M = +oo,m = —oc.
The second implication concerning S, follows from Theorem 7 for these cases. a

Next we obtain a factorization in terms of measures by considering the semirecurrent
sets similar to those defined in (20). To begin with, we derive the following result which is

a direct consequence of Lemma 1.

Lemma 3 For every finite interval I we have
Pe{Sm <0 (0<m <n),S, € I,Jn =}

=-2LP{S, - 5,.m <0 (0<m<n),8,€I,J, =k} (27)



Proof: Let
.A.n = {w . 51 S_O,Sg S O,...,Sn SOSn € I}
For the time-reversed MRW (5., J,) we have

~

Spm=8,—8,.m form=1,....n; S,=358 J,=k; Jo=7
so the set A, corresponding to A, in Lemma 1 is given by
Av={w:8,-8,_, <0 (0<m<n),5, €I}

The desired result follows form Lemma 1. a

With a slight change in notation, let (*({*) denote the strong ascending ladder set of
the MRW (time-reversed MRW); thus

(" ={(n,j): Sn = Mn, Jn = j, pn =7} (28)

where p,, is the first epoch to attain M,,.

For fixed s € (0,1), we define the following matrix-valued measures pf, fi; and p, as

follows:
pi{I} = {(#h)exe : {1} = i Ei(s";(n,j) €T, Sn € I, Ja=j)} (29)
n=0
py{I} = {(@5)exe : {1} = }E E(s™(n,j) € (5 eI, Ja=75)} (30)

I} = {m)exe - pstI} = 30 s"QE{I} } (31)

n=0
for every finite interval I. Note that each of these measures is finite, a simple bound being

(I — sP)™', where P is the transition probability matrix of J. We then have the following

result.
Theorem 9 We have
L = /,t:' * v, (32)
and in particular,
U(s)V(s) = (I-sP)™! (33)

16



where

vy, = {(v5)exe vy = ’;ﬂij} (34)

U(s) py{(0,00)}, V(s) = vy {(—00,0]} (35)

i

Proof: First we note that
QUNI} = S Plpn=1,dp =k Sa€l,Jy=j}
ke€ =0

= ZZ/ P{Sm< S (0<m<I—1),Ji=k,5 € dz}
ke 1=0
P{Smn <SS (I<m<n),Jn=7,5. €IlSi=z,Ji =k}

The second term in the last expression turns out to be
P{Sn <0 (0<m<n-10),Joy=780€l—z}
and by Lemma 3 this equals

gpj{&, S S0 (0<m<n=1),5, €T —x,Tuy =k}
k

= ffp,.{(n —Lkyel, 8 el Joy =k}

s

It follows that

20

wii{I} = 3 5”1}

n=0

- S ZZ/ P{(l,k) € C*,Ji = k, 5 € dz}

nz=0 ke& =0
7r el - o~
ZP{(n=1k) €0\ Sus € I =2, Jp = k)

= Y uh* ’ﬁ,‘k = uk * v

kes ke&

This establishes the main factorization (32). As a special case we have

peo{R} = u7 {Ry}r7 {R_} = U(s)V(s).

17



On the other hand,

4{R} = 3 s"QW{R}

n=0

= Y s"P" = (I-sP)™".

n=0
-
As a direct consequence of Theorem 9 we arrive at a Wiener-Hopf factorization obtained

in terms of transforms by Presman [11] who called it the basic factorization identity. Let

XFs,w) = {[xh(s,w)lexe : Xfi(s,w) = Ej(sTe™T, Jr = k)} (36)
X (s,w) = {Ixals,w)lexe s YGls,w) = E;(sTe™51 Jp = k)} (37)
where T = T, and T = T} and, as usual, {*(s,w) and {~(s,w) denote the counterparts for

the corresponding time-reversed MRW. The following result is a consequence of Theorem 6

stating that {St,, Tk, Jr,} and {—Sp,, Tk, J7,} are Markov Renewal Processes.

Lemma 4 We have

(i) Ej(sTemir, =k) = [X"(s,0)]i (38)
(i) Ej(sTe™Stidr, = k) = [x7(s,w)]5 (39)
O

The above lemma provides us enough machinary to write down a factorization in terms

of transforms. Define

2(w) = {[B@lexe : 6(w) = [ e Qulda} }.

-0

We have then the following.

Theorem 10 For the MRW with J having a stationary probability distribution {7} we have
I-5@(w)=D'[I- 5 (s,w)/ Dl = x"(s,w)] ()

where D, = diag(w) and the prime denotes the transpose.
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Proof: We have

> [ QUi dz) = 3 5B = [T sB(w)]!

n=0"" n=0

From Lemma 4, the transform of uf; is

/ ec’wzu;g-k{dm} - ZEj(STreinTr; Jr, = k) = Z[X+(S’w)];k
—00 =0 r=0

so that
| et {da} = [L— x*(s.)] ™
Similarly the transform of iy is [I— g~ (s,w)]™ .
From (34), an easy manipulation gives the transform of v as [D7'[I— X~ (s,w)]TD«]"'. The

desired result follows by trivial algebraic rearrangement. a

5 The Case Where Means Exist

In this section we consider the case where
sup E;|Xi| < o (41)
j€€
where Xy = Sk — Sk—1 (k > 1) are the increments of the MRW. With this assumption, we
obtain some elementary results concerning the Ceséro limits of the additive component of a
MRW and its embedded random walks. We then give a classification of the MRW based on

its mean. First, we have
Lemma 5 If the condition (41) holds, then

Ej(S)) =Y PLE«(X:) Vj€E (42)
ke&

*

where P, = T00_o Pi(Jm = F, i > m). In the case where the stationary probability measure

{7k, k € E} of the marginal chain J ezists, (42) reduces to
E;(SH) = v M’E.(.‘.)_(l.). (43)

keE 5
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Proof:

Ei(S) = 3 Ei(Xm)lism

m=1 k€€
= Y E(X1) Y Pi(Jm =ki7{ >m)
ke€ m=0
= ) PiE(Xy).
kef
O
Theorem 11 Let j € € be persistent. If E;(|S]]) < oo then
59 7
lim N’J’:E(S)<oo a.s. (44)
=TT B
If the stationary probability measure {7, k € E} exists, (44) reduces to
j ;
lim —2& = Z rkEk ) (4:5)

n—oo N, ke

Proof: From the elementary renewal theorem we have

NJ 1
im —& = .
R T B

where Ej(r{) < occ. Also, since j is persisent, N7 — oo a.s. as n — 00, and so it follows

from the Strong law of large numbers that S7/r — E;(S}). Therefore,

SI
]\7]] (ST a.s.
and
Su_Sw M E,(SY)
S s m—— e 3 a.s
n Na n E;(r{)

a

With these preliminary results we are now ready to consider the additive component
{S.}.
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Lemma 6 We have

-1
E;[Sni Jy = K] Z S PME (X L =11P5T™ (46)
m=0 | l'cg

in the sense that both sides of the equation are finite or infinite together.
Proof: We have

E;[SwiJa=k = ZE it} I = K]

m=0

= Z Z E m+17 - lvjm-{—l = ll]Elll{ank}
m=0 | g

= Z S PUEX; g =P,

m=0 |/ ecg

O

Theorem 12 Assume that the condition ({1) holds and the stationary probability distribu-

tion {my, k € £} ezists. Then S,/n converges a.s., and also in L'. Thus

(z) lim L > mE(X1) a.s. (47)
and
(12) lim Ej( =Y mE(X (48)

Proof: (i) Since for each fixed j € £, the {r} are stopping times for {(S,,J),n > 0} they
form a convenient choice of an embedding renewal process. Therefore {S,.} is a regenerative
process. Also since the stationary distribution of J exists, Ej(rlj ) =77 < oo Vj. In view

of (41) we find from Lemma 5 that E;(|SJ|) < oc. Using the regenerative property of the
{S.} we find that

lim Sn E(value in a cycle)
n—oo 7 E(cycle length)




and the desired result follows from (43).

(i1) Using Lemma 6 we obtain
S P
m=0le&

Using (41) and applying dominated convergence theorem we find that

n—1
Jim nE Z,}L@o;lg Z X] =3 meE(X).

le€ ke

The above results yields the following.

Theorem 13 Suppose that stationary distribution of J exists and (41) holds. Then {S.}
either (i) drifts to oo; (i) drifts to —co or; (iii) osicillates in the sense of (17) according as

Ykee TER(X1) (3) > 0;(32) < 05 (iiz) = 0.

Proof: The results (i) and (ii) follow directly from Theorem 12, while (iii) corresponds to
the case where the limit is zero which is always the case for degenerate MRW (From (43)).
Hence by Theorem 4 the result follows for degenerate MRW. In the case of nondegenerate
MRW, at least one of the embedded random walks is nondegenerate and the result follows

from the fact that
limsup S,, > limsup Sf =oc and liminfS§, < 1imrinf Sf = —00.
O

Remark 2 It can be seen that the above result is almost a complete analogue to that of the

standard random walk ezcept that in the case of degenerate MRW, limsup, S,, liminf, S,
may be finite.
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6 First Exit Time from an Interval

We have seen that the fluatuation behaviour of a non-degenerate MRW with J persistent is
similar to that of a standard random walk. It is then interseting to investigate the corre-
sponding results for the first exit time from a finite interval. Let I = (—a,b) with a,b > 0

and

N =min{n : S, € I°}

so that IV is the first time that the additive component of the MRW exits the interval I. In
the case of a standard random walk, it is known that (i)P{N > n} is geometrically bounded
and hence P{N = oo} = 0 and (ii) the moment generating function of N exists. We derive

these analogous results for the MRW.

Lemma 7 Suppose that the MRW is nondegenerate with J persistent. Then there ezists a
decreasing sequence {B,,n > 0} where B, € [0,1] such that

P{N>n}<B, n>0 (49)
regardless of Jo.
Proof:

P,-{N>n} = Pj{SgEI,iZl,...,n}
< P{Siel,r=1,...,N}}

where N7 is the number of visits to j up to time n. Since 57 is an nonterminating standard

random walk for each j, we have by Stein’s lemma
Ejllinsm N3 = mj] < 4;677" (50)
where A; > 0 and 0 < §; < 1. Taking expectation on both sides of (50) we find that

Pi{N > n} < A;E[§*H].
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Since N7 increases with n, it is clear that E[

i .
5?"“] decreases with n.

Now let B, = inf; A;E [65\7'1;“]. The desired result follows from the fact that
Bn S Bn—-l- (]

Theorem 14 Suppose that the MRW is nondegenerate with J persistent. Then we have
(i) N < a.s.;
(it)if in addition the stationary distribution of J exzists, E;[N®] < 0o for a > 0; Vj€ &;

t.e. N has a proper distribution with finite moments of all orders.

Proof: (i) We only need to show that B,, — 0 as n — oco. Since J is persistent, NJ — oo as

n — oo V) € £. This proves our assertion in view of Lemma 7.

(i1) We have
Ej[N*] = Y n°Pi{N =n} <> n*P{N >n}
j j
< YontAE 8] < 3T A B[],
We may choose ¢ > 0 such that /™ §; < 1 which is possible since 7; > 0 Vj € £. With

this choice of t, for sufficiently large n, the n** term is less than A;67¢ for some € > 0. The

result follows as the sum is convergence since 6% < 1. Formally, for each j € £ choose
t < —(7; — 2¢)log 6;.
Since N2 /n — 7; a.s., M, such that Vn > Mj,
4
l—;;— - 7T)I < €.
So each term in the sum becomes
Bilens)*] < Ej{(1/8) 508}

Ej[é;-nWj+2ne+N,J-,] < Ej[é‘;zrj+2ns+n(7rj-—e)] - 6?6

Il
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