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fShstract

Issues relating to initializing a simulation program are
discussed, and suggested procedures for handling this source of srror
are reviewed. We examine academic and practical aspects of simulation

initialization. A biblicgraphy is provided.



i. Introduction

When a simulation program is run on a computer, initial values
for all variables must be specified. If the simulation is such that
appropriate initial conditions are krnown or are fixed factors in an
experiment, then this causes no problem. However, the experimenter
typically does not know what values are appropriate for all of the
variables in the program. As a matter of convenience, these initial
conditions are often selected in a rather arbitrary manner. In this
case, the initial conditions can potentialliy have a significant
influence on the outcome of the experiment. 1+ the setting of the
jnitial conditions for a run has a major but unrecognized effect, then
the results from the run can be misleading. Thus, initialization can
be a seriocus source of error in simulation experiments. In section 2
of this paper, some simple examples of zimulation initialization
effects are presented. This is followed by a discussion of the
mathematical aspects of initializing a simulation program in section
3. Suggested procedures for handling this source of error are
reviewaed in section 4 along with some of the academic and practical

issues. A4 bibliography is included.



2. Some examples

By considering some simple examples, we illustrate some of the
problems that can arise when initializing a simulation. If a
simulation of a new factory is initiated with no work in progregs,
then the production of finished goods will be relatively low early in
the run. Products simply have not had time to flow through the
system. In addition, there will be little congestion in the system
until it fills up with work in progress. A naive statistical analysis
of the data from such a simulation might conclude that the production
is positively correlated with congestion on the factory floor. This
correlation is an artifact caused by the way in which the experiment
Was rung the correlation is not a natural characteristic of the
system being studied. Neverthelesss, the study might suggest that one
way to increase production is to make the factory more congested. Low
observed machine utilizations (perhaps again due to the simulated
factory being initially empty) could lead the analyst to recomm=nd
that fewer machines than originally planned be installed.
Unfortunately, the use of fewer machines could then result in ssvere
system bottlenecks as production incresases.

Another examples illiustrates the problem of visually detecting
initialization sffects in estimators of system performance. Figure 1
is the output {customer waiting times) of a simulated gqusueing svstem
which was initially started with no customers in the system. The
initial portion of the run does not appear to differ radically from
the rest of the run. However, the average waiting time +or the +irst
50 customers is 10 minutes. The average waiting time for the first

500 customers is 27 minutes — almost three times the value for the
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first 50 customers! Obviously, the relatively low cbserved waiting
times for early customers are due in part to the empty and idle
initialization of the system.

We continue with the above gueueing example. It may be that the
system closes each svening and re—opens the next morning with no
customers waiting in line (in which case starting the system empty is
appropriatel. However, customers might return the next morning if
they are not served by closing time. Thers would then be a
backlogging of demand Fram’day to day. In this case, =ach day is not
independent; starting the simulation with the same initial condition
of no demand is not appropriate. Such a simulation should have each
day started with an initial demand that is dependent on the demand
level from the end of the previous day.

an example from an actual simulation study [Schwarz (1974)1 shows
how secondary correlation of output measures with the initial
conditions can lead to errors. The following discussion is not
intended to be a criticism of this study. The purpose of the study
was to investigate short-term behavior of different inventory
policies. (0f course, if the purpose had been to estimate the long-
term average performance of the different policies, then
initialization effects could have produced seriocus Srrors.)

In this simulation, three alternative inventory stocking policies
were considered. Each alternative was simulated several times. In
pach run, the stock levels were the same;j there were initially no
backorders or backlogged demand. The measure of performance of the
different policies was total unsatisfied demand {(measured in
‘backorder days’) over a period of time. The specific measure of

system performance is not actually important to our discussion. When



the simulation was run for three years (simulated time) there were no
marked differences in the performances of the policies. This was in
spite of the fact that the systems were allowed to ‘warm—up’ for two
yvears before data were collected. After five years of operation,
there were significant differences in policy performances. The early
similarity in performance of the policies was largely due to the fact
that all of the simulation runs started with the same initial
conditions.

Since we are trying to detect differences in policies it is good
experimental practice to control other sources of difference (here,
the initial conditions) by holding these sources at the same value.
Indesd, in this problem, having the same initial conditions was
apparently the right thing to do from an experimental design
viewpoint. This reduces the variance of the estimator for the
difference in policy performance. However, the difference estimator
is typically biased by the initial conditions. In the problem at
hand, differences in policies were underestimated since the policies
behaved in a similar manner over the initial portion of each run. A
common result of undersstimation of the differences in the
performances of systems is to retain the current system. This favors
the status quo over potential new systems and policies that may in
fact be superior.

Unfortunately, actual simulation initialization errors are not as
transparent as in the above examples. Problems of bias (e.g.
underestimated machine utilizations) and spurious secondary
correlations in multiple cutput measures due to correlations with the

initial conditions {e.g. congestion correlated with production) can be

difficult to recognize.



0f course, there are situations where initialization effects are
not of major concern. Examples of such cases are models where the
initial conditions are known completely {e.g. certain elementary
combat models) or in which there is no serial dependency in the output
(and hence no dependency on the initial conditions of the model). The
assumptions that the initial conditions of a model are known a priori
or that the output has no serial dependency must be recognized as Just
that - model assumptions. They should be subijected to the same
scrutiny asz any cother modeling assumption: Is the mathematicalk
benefit gained in simplifying the analysis worth any loss in model
accuracy due to the assumption?

In many models, careful examination will indicate that the
assumptions necessary to ignore initialization effects are not easily
supported. For instance, a simulation of a walk-in medical clinic may
start each simulated day with no patients waiting for examinations.
This may be equivalent to assuming that no appointments are taken and
no patients are told to return for follow-up exams. Clearly, the
first day’'s operation {(with no patient backlog) of a real clinic is
different than futurs days’ operations. Starting each simulated day
with no patients in the system is an assumption that may or may not be
Jjustifiable.

Initialization error is often thought not to be a problem in
military combat simulation. Certainly, the strengths of the opposing
forces are factors in the experiment. However, troop deployments,
operational readiness, etc. should also be considered. That is, there
are initial conditions that may have greater effects on the simulated

combat than force strengths.
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=. Mathematical effects of initialization

The output from a simulation can be modeled as a sample from a
distribution conditioned on the manner in which the simulation is
initialized. Denote this distribution function as FY{I(y!i)’ whers
the multivariate random variables I and Y are the initial conditions
and output, respectively. 1f somehow the initial conditions could be
chosen by ‘nature,’ they would have the distribution function FI(i).
1f estimates of the characteristics of the unconditional distribution

are desired, then we wish to sample from

F ty) = f Fy g (Y11dF (.

The problem is that we do not know FI(i). Estimates for moments {of
¥) will be based on data from FY{I(y;i) and not from FY(y). In
general, the expected value of an estimator that uses the conditional
data will not be equal to the expected value of the corresponding
unconditional estimator. This is commonly mislabelled as
‘initialization bias. It is the output that is ’“biased,’ not the
estimator. Also, thes above expression for FY{y} suggests that 1 be
included in the design of a simulation experiment, possibly randomized
or sampled from a known FI(i}. The inclusion of I as an experimental
factor is discussed later.

As an example, consider the familiar M/M/1 gueue with traffic
intensity lessz than 1.0. Let Yi denote the waiting time of the i-—th
customer, i=1,2,... Suppose that the initial waiting time is
YO = 0. Denote Xj as the average of the first j customer waiting

times, j=1,24...



Law (1983) plots the theoretical values for E[XjE of an M/M/1 gueue as
a function of i, the number of customers served. Further, he plots
an actual realization of the Xj process. The two graphs appear to be
quite different {(aside from the fact that both start at the (0,0
coordinate). See Figure 2 of this paper for a similar example. SHome
interesting work concerning the M/M/1 gueue is also contained in Duket
(1974).

The initial conditions alsc have an effect on the variance of
estimators. Again, consider the output sequence YG=0,Y1,Y2,... of an
M/M/1 queus. It is noteworthy that the variance of early output
observations is actually smaller than the variance for later
observations. I.e., Var(YSlYO=0) < Var(Yt!V0=0), where s is ‘small’
and t is “large.” This phenomenon is iliustrated in Figure 3, where
we run a number of replications of an M/M/1 gueue, each of which is
started empty {(typically, only a pseudo—random number seed is
changed.) The simulated system simply has not had time to change from
the initial state early in the run. This variance aeffect is perhaps
more properly viewed as a secondary carrelation af the output with the
initial conditions.

A popular measure that accounts for both bias and variance of an
estimataor is the mean sgquared error (squared bias plus variance) . The
cffect of initial conditions on the mean squared error (m.s.2) of the
sample mean for a first-order autoregrassive process,

Y, = u + al¥

£ w) + €

t-1 t

{where {Et’ iz a sequence of constant mean and variance
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Figure 2: Cumulative average waiting times of first J customers in
an M/M/1 queue.

E[XJ] = theoretical expected cumulative average waiting times

XJ = a realization of the cumulative average waiting times
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Figure 3: Some realizations of an M/M/1 queue waiting time process.
Notice that V(Ysl YO=O)'< V(Ytl YO=O) when s is 'small' and

t is 'large.'



uncorrelated random variables),
iz examined in Fishman (1972). The lag j serial correlation for this
process is,

corr(Yi,Yi+j) = qa -
The first—order autoregression is a useful model for illustrating many
of the issues in simulation initialization. In his paper, Fishman
demonstrates that the common practice of letting the simulation warm
up before beginning the collection of data (known as output
truncation) is not necessarily advisable {(from a mean squared error
point of view).

Suppose we have two independent output series from a first-order
autoregressive process. Suppose also that one series has been
truncated and that one series has not been truncated. Snell and
Schruben (1979) give the conditions for which the non—truncated series
has a Iowmer m.s.e than the truncated series. Several points in that
paper are worth mentioning. First, consider the space formed by the

possible values for a, Var(et), ¥,. (the initial obserwvation), and

Q
certain other factors. If the run is rather long, there will be a
large region of this space where no truncation is called for.
However, no matter how long the series is run, there are initial
conditions that are so atypical that truncation will reduce the
m.s.2. OFf course, the benefit is reduced as the series becomes
longer, but truncation is still of value in some cases. This
contradicts the notion that truncation is not beneficial 1f a
simulation is run a very long time [see Madanski (1974)1. It can be
less costly to truncate some initial data than to overwhelm poor

initial conditions with a long run.

The second point is that, from a m.s.e. viewpoint, positive and



negative serial correlations have much the same effect. The region
whers no truncation is optimal is larger for positive & than for
negative a {(because for negative a the sign of the serial correlation
alternates with lag). For the same magnitude of «, the amount of
positive correlation in the series is greater when this cosfficient is
positive than the amount of negative correlation when this coefficient
is negative.

Data truncation can be vieswed as a special case of weighting the
output from a simulation. The weight on an observation is zero iF it
is truncated and one if it is retained for analysis. In their paper,
Snell and Schruben also derive optimal weightings of mean estimators
for the first—order autoregressive process. Least squares estimators
(both ordinary and weighted) of the process mean are presented.
Expressions are given for finding optimal truncation points for
several different estimator performance criteria (in particular, for
minimizing the m.s.e.)}

The mathematical effect of secondary correlations among ocutput
variables can be illustrated by considering jointly normal estimators,
Hl,ﬁz,...,ﬁg, of parameters vl,vz,...,up. For sxample, the Mi’s might
be sample means of different output series that are long esnough to
justify applying the central l1imit theorem. Consider two situations:
uncorrelated {(here, implying independent) estimators and correlated
estimators.

Suppose we form joint confidence ellipses for the unknown vi‘s.
The volumes of these =llipses are inversely proportional to the
determinant of the dispersion matrix (variance—-covariance matrixz?} of
the estimators. The sffect of correlation on orthogonal estimators is

to reduce the volume of the confidence ellipses {see the proof of



Ltemma 1 in Schruben and Margolin (1978)1. The sign of the correlation
is not material.

Assume for simplicity of argument that two normally distributed
estimators are unbiased and have a common variance, 62. Then
correlation between the estimators is beneficial if it is properly
taken into account in the analysis [see Schruben (197%31. When the
correlation is not accounted for, then confidence ellipses may be too
small. These confidence regions will be less likely to cover the

unknown parameters, vi,vz,...,up, than anticipated.



4., The problems of initialization

The simulation literature contains many papers on “the
initialization bias problem’ {(ses the bibliography at the end of this
paper.} Probably as much has been written about this issues as any
other single area of simulation output analysis. There does not seem
to be any definitive solution to the problem. Indeed, there is not
any universally accepted definition of the problem. No attempt at
such a definition will be presented in this paper. We offer the
suggestion that there is not just a single issue in initialization of
simulations: rather, there are several.

At the highest level, there are issues that can be loosely
referred to as academic issues and practical issues. The two sets are
closely related, but they are not the same. Different approaches are
neseded.

The academic focus has been on obtaining accurate (low bias) and
precise {(low variability) estimators of a measure of simulated system
performance. There is a basic trade—off between these two
objectives. Meanwhile, the practical concern is that the effects of
initialization do not lead to erronsous esxperimental conclusions. A
‘significant’” (in the statistical sense) initialization effect for the
academic is somewhat arbitrary. A ‘significant’ initialization effect
for the practitioner is one that indicates a wrong decision. A closer
look at the academic question will be followed by a discussion of the

practical question.

fcademic issues:

The academic question involves estimating what is often called



the "steady state’ performance of a simulated system. The concept of
a steady state for a stochastic process is inherited from queueing
theory where it has great mathematical utility. Steady state analysis
may or may not have particular interest in practical systems studies.

Say that the output at simulated time t, Y has a distribution

t!

function denocted by F The problem is to estimate properties (e.g.

£"

moments, gquantiles) of the limiting distribution,

F = 1lim F

t——>o t
The difficulty is that in many simulations {(e.g. the M/M/1 queue), the
limiting distribution is asymptotic. None of the data in the output
series will be sampled from the distribution function F. Thus, the
problem has characteristics similar to forecasting problems [see
Kimbler, et. al. (1979) and Snell (1980)1. Also, note that the
problems of initialization are closely related to the decision of how
long to run a simulation program. Truncation will not actually
eliminate initialiration bias in such ‘asymptotic’ systems no matter
how long the run.

If the simulation run is very short, good estimation is not
possible, regardless of the truncation procedure which we choose to
use. The objectives of procedures for dealing with this problem have
varied (and have often been only heuristic). In general, one tries to
obtain as good an estimator as possible recognizing that without gata
from the population of interest, compromise will be necessary. Some
af the criteria for judging the performance of various procedures for
dealing with this problem are presented in Gafarian, st. al. (19773 .
Thers are two popular estimators of interest when considering the

sffectiveness of a simulation initialization bias control procedure.



One is the point estimator (for the parameter in questionl; the other
is an interval estimator or confidence interval. We desire an
initialization bias control procedures which yields ‘good’ point
estimates and/or confidence intervals.

In point estimation, accuracy (measured by bias) and precision
{measurad by variance) have been considered important. There is
usually a trade—off between estimator bias and variance; decreasing
one often means that the other will increase. As mentioned earlier,
mean squared error is a popular {(but more or less arbitrary) criterion
for combining the bias and variance of an estimator into a singlé
quantity [see, for example, Blomgvist {1970), Fishman {1972}, Law
{1982y, and Wilscn and Fritsker {(1%78a)l.

There have been two general approaches to this problem of point
estimation. By far the most attention has been given to weighting of
the data. As discussed previously, data truncation is a special case
of weighting. In fact, truncation simply allows the simulation to
warm up before data are retained for analysis. Many “truncation
rules’ have been proposed and studied [see, for example, Gafarian, et.
al. (1978), Kelton (1980), Morisaku (19746), SBargent (1979), and Wil=son
and Pritsker {(1978a,1978b)1. The consensus is that simple truncation
rules do not in general perform well in all situations.

The second approach is to directly model the transient mean
function. In Snell (1980), economic growth models are used for this
purpose. In Narasimhan, =t. al. (1982) and Richards (1983), so-called
‘intervention time series’ models are used. More experience is needed
with both of these transient models before their merits can be judged.

We now consider the problem of confidence interval estimation for

some parameter of interest. In the recent simulation literature,



confidence interval estimator performance has been measured using the

following criteria [see, e.g., Schmeiser (1982)1:

1) observed interval coverage frequency (of the parameter in
question) for a sample of confidence intervals that use the
procedura,

2) interval width, typically measured by the sample average
half-width of interval estimators using the procedures, and

%) interval stability, typically measured by the sample variance
of the observed interval half-widths.

Some authors use the coefficient of variation {c.v.) of the interwval
half-width as another criterion. This can be misleading: the c.v.

might be reduced {(an apparent improvement) by merely increasing the

interval width (not an improvement).

Clearly, initialization bias may result in poor confidence
interval performance in terms of all of the above criteria. The
effect of bias on interval coverage can be seen using the coverage
function in Schruben (1980). The trade—off between interval hal+-
width and coverage for various confidence interval estimators can be
studied using a graphical technigue developed in Kang and Schmel ser
(1983). They suggest plotting the upper confidence interval bounds
against the lower confidence interval bounds for a sample of several
interval estimates. A 45° rotation of this plot would be a graph of
the observed confidence interval center points against the chserved
half-widths in a sample of confidence interval estimators. See Figure
4. Coverage frequency, estimator bias, half-width bias, as well as
dependencies between the center point estimator and interval half—

width estimator can also be seen from such a plot.



Figure L4: Kang and Schmeiser!s scatter diagram technique for a
sample of 30 confidence interval estimators,

UB = observed unper confidence bound

LB = observed lower confidence bound

CP = observed confidence interval center point
HY = observed confidence interval half-width



It is not too surprising that truncation rules do not in gensral
produce good confidence interval coverage for some of the systems
tested in the literature. The most popular systems for testing
simulation procedures have been simple gueueing systems. These
systems only asymptotically reach steady state and can have persistent
serial dependence [see Schruben (1%278) in his reply to Fox {1978) 1.
None of the data is from the {(steady state) population that is
actually being studied. See Fox (1978), Kleiinen (1979}, and Schruben
{1978) for lively but inconclusive discussions of same of the issues

concerning initialization effscts.

Practical issues:

The practical aspects of simulation initialization all relate to
the purpose of the simulation study. I system performance estimation
is an objective, then the same academic issues discussed earlier
apply. However, many simulation models are used as aids in system
design and evaluation. Here, simulation initialization effects must
be considered in the context of a decision problem. In design
studies, the concern is whether a better design could be possible if
initialization errors were not preszent. In evaluation studies, the
guestion is whether or not the presence of initialization errors
favors other than the best of several alternatives that are being
studied. In short, does the presence of initialization effects
potentially result in an incorrect decision?

The authors are not aware of any definitive research that ties
initialization error control directly with problems in decision and
design. Perhaps the paper by Adlakha and Fishman {(1979) is an

exception. There it is suggested that oversstimating system



congestion is preferred to underestimating system congestion in
gueusing systems; simulations of such systems should be initialized
accordingly. Adlakha and Fishman did not explicitly relate their work
to decision making. Naturally, if system service level is the
paramount consideration, then underestimating system congestion is
again undesirable. Alternatively, if system cost is important, then
oversstimation of system congestion may result in an expensive, over-—
designed system.

& straightforward approach for controlling simulation
initialization effects in practical studies is to sequentially
truncate various amounts of the initial data and simply see if this
changes the decisions indicated by the full ocutput data set. This can
be impractical in large simulation studies. A sequential procedure
similar to that suggested in Kelton (1780) might be adapted
effectively in a decision making context. Kelton tested the slope of
the output regressed on simulated clock time for a zero slope.

The tests for initialization effects suggested in Schruben
(1981,1982) and Schruben, Singh, and Tierney (1982) appear to be more
powerful and robust than the regression slope test used by Kelton. In
these tests, a quality control viewpoint is taken (to control for
inconsistent ‘quality’ in the simulation output data). Goldsman and
Schruben (1983) give generalizatiocns of these tests.

Another approach is to treat simulation initialization effects as
a nuisance factor in the design of simulation experiments. For
example, the various initial values might be considered as a factor 1in
an ANOVA analysis. Several possible initial states might be run for
each set of experimental factors. One might block such experiments on

the initial conditions or regress the output on the initial conditions



to try to control this source of error. Indsed, consider the
heneficial effects in terms of variance reduction that might result
from blocking on the initial conditions: Estimators based on the
outputs from runs with the same initial conditions could be expected
to be positively correlated. Also, estimators from runs with
radically different initial conditions might be supected to have
negative correlations. See Schruben and Margolin (1978) and Schruben
(1979) Ffor a discussion of the relationships among blocking,
correlation of the outputs, and variance reduction.

The experimental design approach probably deserves more attention’
than it has received. It may still be of limited practical value
since there are usually a large number of variables to be initialized

in a simulation model.

State of practice:

Current practice seems to be to simply look at plots of the
output to try to visually detect any initialization effects. {In any
event, one should look at the plots of the ocutput, if feasible.)
However, this can be very time consuming in large scale simulation
experiments involving many runs. Also, visually scanning the output
might not actually be of much benefit (recall Figure 1 of this
paper). The smoothed oukput (a moving average, say) of several pilot
runs as suggested in Sargent (1979) and Welch (1981) makes visual
analysis easier. Averaging observations across several runs (i.e.,
the first observations from each run are averaged, the second
observations are averaged, and so forth) also helps in the detection
of initialization effects upon the mean of the output series. The

‘CUSUM” type plots in Schruben (197%9) are particularly sensitive to



changes in the mean of a data series; these plots can be most useful
in detecting initialization effects.

in Heidelberger and Welch (1982), an automatic test for
initialization bias based on Schruben (1782) was included in a
confidence interval procedure. This resulted in improved performance
aver an esarlier version of the procedure that did not have any
initialization error control [see Heidelberger and HWelch (1281)1.
However, automatic statistical procedures for initialization error
control will probably not perform as well as an experienced analyst
looking at a plot of the output. Such procedures and tests for
initialization bias are useful when there is a large amount of data to
analyze. The analyst simply does not have the time to plot and look
at all of the data. OFf course, the condensation of information
contained in data {so that it can be understood more pasily) is one of
the purposes of statistics. The better the information is condensed,
the closer the decisions based on sample statistics will be to those

based on the e=ntire data set.



Conclusionss:

Initialization bias has been recognized as a difficult problem
involving many issues. Much progress has been made in dealing with
this question. Indeed, simple "truncation rules’ are being replaced
by sesquential procedures such as those given in Kelton (1980) and
Heidelberger and Welch (1782). More attention should be given to the
problem in the decision making and sxperimental design contexts.
Also, we note that different issues may be involved in simulation
experiments with a single system {(or single performance measure) vs.
experiments with multiple systems {(or multiple performance measures).
Finally, simulation initialization errors may have different effects
depending on whether the simulations are used for design,
optimization, evaluation, selection, or feasibility decisions. The
problems of initializing a simulation program are important, and the

issues are not at this time completely understood.
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