
THE GEOMETRY OF GENERALIZED

LAMPLIGHTER GROUPS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Margarita Amchislavska

August 2014



c© 2014 Margarita Amchislavska

ALL RIGHTS RESERVED



THE GEOMETRY OF GENERALIZED LAMPLIGHTER GROUPS

Margarita Amchislavska, Ph.D.

Cornell University 2014

This work examines geometric properties of generalized lamplighter groups.

The thesis contains two parts. The first part gives an elementary account of

Bartholdi, Neuhauser and Woess’s result that the Cayley graphs of a family of

metabelian groups can be realized as 1-skeleta of horocyclic products of trees,

extends the result to a wider family of groups (including an infinite valence case,

like Z ≀ Z), and makes the translation between the algebraic and geometric de-

scriptions explicit. The second part examines important geometric properties of

Baumslag and Remeslennikov’s metabelian group Γ2 = 〈a, s, t | [a, at] = 1, [s, t] =

1, as
= aat〉. We show that the Cayley 2-complex of a suitable presentation of

Γ2 is a horocyclic product of three infinitely branching trees. We prove that the

subgroup generated by a is undistorted in Γ2. Finally, we reduce the question of

finding an upper bound on the filling length function of Γ2 to a combinatorial

question about propagating configurations on a two-dimensional rhombic grid.
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CHAPTER 1

INTRODUCTION

Our conventions throughout will be [a, b] = a−1b−1ab and anb
= banb−1 for group

elements a, b and integers n. Our group actions are on the right.

The contents of Section 1.10, Chapter 2 and Chapter 3 are based on the article

[1] written in collaboration with Tim Riley.

1.1 The simplest lamplighter group

The most basic example of a lamplighter group is the wreath product (Z/2Z) ≀ Z

which in this thesis we will refer to as Γ1(2). As an abelian group the

ring (Z/2Z)[x, x−1] is isomorphic to the additive group
⊕

i∈Z(Z/2Z) of finitely

supported sequences of zeros and ones. So Γ1(2), which by definition is
⊕

i∈Z(Z/2Z) ⋊ Z, can also be expressed as (Z/2Z)[x, x−1] ⋊ Z and this latter def-

inition provides a convenient description of the action of the Z-factor, namely a

generator of the Z-factor acts on (Z/2Z)[x, x−1] by multiplication by x.

Elements
(∑

j∈Z f jx j, k
)
∈ Γ1(2) can be visualized as a street (the real line) with

lamps at all integer locations, a lamplighter located by lamp k, and, for each

f j = 1, the lamp at j is lit. We will call this the lamplighter model for Γ1(2).

The identity element (0,0) corresponds to all lights being turned off and the

lamplighter at location 0. Figure 1.1 illustrates (x−4
+ 1+ x + x3,5) ∈ Γ1(2).

1



0 1 2 3 4 5 6 7 8−1−2−3−4−5−6· · · · · ·

Figure 1.1: An element (x−4
+ 1+ x + x3,5) of Γ1(2). The lamps at positions

−4,0,1 and 3 are turned on and the lamplighter is standing by

the lamp at location 5.

As we will show in Section 2.1, one possible presentation for Γ1(2) is

Γ1(2) =
〈

a, t
∣∣∣∣ a2
= 1,
[
a, atk
]
= 1 (k ∈ Z)

〉
.

Elements of Γ1(2) expressed using this presentation can be visualized on the

lamplighter model above by starting with the model for the identity element,

reading off one letter at a time: upon reading t we move the lamplighter one

unit to the right (hence upon reading t−1 we move one unit to the left), and upon

reading a we flip the switch on the lamp at which the lamplighter is currently

located. For example, some ways to express the element pictured on Figure 1.1

using this presentation are t−4at4atat2at2 or at−1at4at−7at3at2at4.

1.2 Cayley graphs

The Cayley graph of a group G with respect to a generating set A is the graph

which has elements of G as its vertex set and, for every g ∈ G and a ∈ A, has

a directed edge labeled a from g to ga. A presentation complex of a finitely

presented group G = 〈A | R〉 denoted by PG is a 2-dimensional cell complex

which has a single vertex, one loop at the vertex for each generator of G and one

2-cell for each relation in the presentation glued along the corresponding edge-

2



loop. The universal cover P̃G of PG is called the Cayley 2-complex of G, and the

1-skeleton of P̃G gives the Cayley graph of G with respect to this presentation.

For example, the Cayley graph of a free group F2 = 〈a, b〉 is an infinite tree whose

vertices are 4-valent (one direction for each of the a, b, a−1, b−1 elements). Since

there are no relations between the generators, the Cayley 2-complex of F2 is just

its Cayley graph.

Another example is the Cayley graph of a free abelian group on two generators,

Z
2
= 〈a, b | [a, b] = 1〉which can be seen as a 1-skeleton of a plane tiled by squares.

Figure 1.2 shows a sketch of a piece of the Cayley graph, where the arrows

facing right correspond to the generator a, while the arrows facing upwards

correspond to b.

Figure 1.2: A piece of the Cayley graph of Z2.

The presentation 2-complex of Z2 is a torus, so the Cayley 2-complex is the plane

tiled by squares.

3



1.3 A primer on horocyclic products of trees

An example of a binary tree TZ/2Z with a height function h is shown on Fig-

ure 1.3. The most basic example of a horocyclic product of trees is constructed

from the product of two copies of TZ/2Z by taking the subset of TZ/2Z × TZ/2Z :

H1(Z/2Z) :=
{
(p0, p1) ∈ T 2

Z/2Z

∣∣∣ h(p0) + h(p1) = 0
}

We will generalize this construction to products of n+1 trees by taking the subset

of (n + 1)-tuples of points in the tree whose heights sum to zero. We will give

precise definitions in Chapter 3.

0 1 0 1 0 1 0 1

0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

0 1

0

1

2

−1

−2

Height

a

b c

d e f g

h i j k l m n p

q r s u v

Figure 1.3: A part of an infinite binary tree with a height

function. Some of the vertices in H1(Z/2Z) are

(d, d), (d, e), (d, f ), (e, d), ( j, c), (v, a), (a, u). Some of the edges

inH1(Z/2Z) are
{
(d, e), (h, b)

}
,
{
(d, e), (b, k)

}
, and

{
(u, a), (i, c)

}
.

This striking generic construction turns out to give a Cayley graph of Γ1(2) –

Proposition 1.3.1. The Cayley graph of Γ1(2) with respect to the generating set {a, at}

isH1(Z/2Z).
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This result, which is the starting point for the first half of this thesis, originates

with P. Neumann and R. Möller in 2000. They noticed that, with respect to a

suitable generating set, the Cayley graph of Γ1(2) = (Z/2Z) ≀ Z is a highly-arc-

transitive digraph constructed by Möller in [37], which is the horocyclic product

H1(Z/2Z) of two infinite binary trees [39] (see also [4, 15, 46] for this result).

This result is a special case (with n = 1 and R = Z/2Z) of our Theorem 1 which

identifies Cayley graphs of generalized lamplighter groups with the 1-skeleta of

horocyclic products of trees (defined in detail in Chapter 3).

1.4 What are generalized lamplighter groups?

Another group we can consider is Z ≀ Z which we denote by Γ1. Again, as an

abelian group the ring Z[x, x−1] is isomorphic to the additive group
⊕

i∈Z Z of Z-

indexed finitely supported sequences of integers. So Γ1 can also be expressed as

Z[x, x−1] ⋊ Z where a generator of the Z-factor acts on Z[x, x−1] by multiplication

by x. The model for Γ1 is similar to that of Γ1(2), except each lamp has Z-worth of

brightness levels. A presentation for Γ1 is Γ1 =

〈
a, t
∣∣∣∣
[
a, atk
]
= 1 (k ∈ Z)

〉
, which

is similar to that of Γ1(2) except that a has infinite order.

Similarly, for any commutative ring with unity R, we can construct a group

Γ1(R) = R[x, x−1] ⋊ Z and consider the model where the lamps have |R|-worth of

brightness levels. In this notation, Γ1(2) = Γ1(Z/2Z) and Γ1 = Γ1(Z). The case

where n = 1 of Theorem 1 states that the horocyclic product of two R-branching

trees H1(R) (defined in Section 3.1) is the Cayley graph of Γ1(R) with respect to

a suitable generating set (proved in Section 3.3).

5



We can generalize these constructions further. The group Γ2 is a celebrated ex-

ample of Baumslag [5] and Remeslennikov [41]

Z

[
x, x−1, (1+ x)−1

]
⋊ Z

2

where, if the Z2-factor is 〈t, s〉, the actions of t and s are by multiplication by x

and (1 + x), respectively. It was the first example of a finitely presented group

with an abelian normal subgroup of infinite rank — specifically, the derived

subgroup [Γ2,Γ2]. We will show in Proposition 2.1.3 that one of the presentations

for Γ2 is
〈

a, s, t
∣∣∣ [a, at] = 1, [s, t] = 1, as

= aat
〉
, which plays an important role

in the second part of the thesis. An analogous lamplighter model for general

Γ2(R) = R
[
x, x−1, (1+ x)−1

]
⋊ Z

2 will be discussed in Section 2.2. Restricting to the

case where n = 2, Theorem 1 states that the 1-skeleton of the horocyclic product

of three R-branching trees H2(R) is the Cayley graph of Γ2(R) with respect to a

suitable generating set (proved in Section 3.4).

We can generalize these constructions even further to obtain the family of

groups Γn(R) that figure in Theorem 1 defined as follows.

For n = 1,2, . . ., let An(R) be the polynomial ring

R
[
x, x−1, (1+ x)−1, . . . , (n − 1+ x)−1

]
.

For h = (h0, . . . , hn−1) ∈ Zn and f ∈ An(R), define

f · h := f xh0(1+ x)h1 · · · (n − 1+ x)hn−1.

Then Γn(R) := An(R)⋊Zn where the group operation is ( f ,h)( f̂ , ĥ) = ( f + f̂ ·h,h+ĥ).

This definition can be conveniently repackaged as:

Γn(R) �




xk0(1+ x)k1 · · · (n − 1+ x)kn−1 f

0 1



∣∣∣∣∣∣∣∣∣
k0, . . . , kn−1 ∈ Z, f ∈ An(R)


,

6



where the matrix multiplication naturally realizes the semi-direct product struc-

ture of the group.

For brevity, define Γn := Γn(Z) and Γn(m) := Γn(Z/mZ).

It will prove natural for us to index the coordinates of Zn by 0, . . . , n−1. Accord-

ingly, we use e0, . . . , en−1 to denote the standard basis for Zn.

In higher rank, the examples originate with Baumslag, Dyer, and Stammbach in

[7, 8]. Bartholdi, Neuhauser and Woess [3] studied the family including Γn(m) for

n = 1,2, . . . and m ∈ N such that 2,3, . . . , n−1 are invertible in Z/mZ. And recently,

Kropholler and Mullaney [36], building on Groves and Kochloukova [32], stud-

ied Γn(Z[1/(n − 1)!]) ⋊ Z where a generator of the Z-factor acts as multiplication

by (n − 1)! on the An(Z[1/(n − 1)!])-factor in Γn(Z[1/(n − 1)!]) and trivially on the

Z
n-factor. To put it another way, these groups are An(Z[1/(n−1)!]) ⋊Zn+1, defined

like Γn(Z[1/(n − 1)!]), but with a generator of the additional Z-factor acting on

An(Z[1/(n − 1)!]) by multiplication by (n − 1)!.

1.5 Why are lamplighter groups metabelian?

By definition a group is metabelian if its commutator subgroup is abelian.

Another definition is that a group G is metablelian if and only if it has an

abelian normal subgroup H such that the quotient group G/H is abelian. The

groups that we are working with are clearly metabelian since for G = Γn(R) =

R[x, x−1, (1 + x)−1, . . . , (n − 1 + x)−1] ⋊ Zn we can let H be the first factor, which is

an abelian normal subgroup of G and considering the homomorphism that kills

7



off the first factor, by the first isomorphism theorem we get that G/H � Zn.

1.6 Basic definitions

1.6.1 Geometric action

A group acts geometrically on a metric space if the action is cocompact, by isome-

tries, and properly discontinuous (that is, every two points have neighborhoods

such that only finitely many group elements translate one neighborhood in such

a way that it intersects the other). For example, the action of a group G on it-

self by right-multiplication naturally extends to a geometric action on a Cayley

graph that is defined using a finite generating set.

1.6.2 Equivalence relation of functions

Throughout this thesis we will discuss functions such as filling length and sub-

group distortion. These functions are studied up to an equivalence relation.

For functions f , g : N → [0,∞), we say f 4 g if there exists C > 0 such that

f (n) ≤ C · g(Cn +C) +Cn + n for all n ∈ N. If f 4 g and g 4 f , we say that f and g

are equivalent and write f ≃ g.

8



1.6.3 Quasi-isometry

We will often study functions that correspond to various group invariants up to

quasi-isometry. For finitely presented groups, knowing that the ≃-equivalence

class of functions is invariant up to quasi-isometry allows us to define group

invariants that do not depend on the group presentation.

Definition 1.6.1. Given two metric spaces (M1, d1) and (M2, d2) a function f is a

quasi-isomtery from (M1, d1) to (M2, d2) if there exist constants C ≥ 1 and C′ ≥ 0

such that both of the following are satisfied

• ∀x, x′ ∈ M1,
1
C d1(x, x′) −C′ ≤ d2( f (x), f (x′)) ≤ Cd1(x, x′) +C′,

• ∀y ∈ M2,∃x ∈ M1 such that d2(y, f (x)) ≤ C′.

If there exists a quasi-isometry from (M1, d1) to (M2, d2), then we say that these

two metric spaces are quasi-isometric. Quasi-isometry is an equivalence relation

on metric spaces. For a finitely presented group, its Cayley graphs under differ-

ent generating sets viewed as metric spaces (where the length of each edge is 1)

are quasi-isometric to each other. Hence, the quasi-isometry class of the Cayley

graph is a group invariant.

1.7 Examples of group invariants

One of the major developments in group theory was the realization that groups

are often best thought of as geometric objects. Geometric Group Theory

9



emerged as a result of the transformative work of Gromov and his ensuing pro-

gram of understanding discrete groups up to quasi-isometry. A major theme

in this development is the study of properties invariant under quasi-isometries

(and hence independent of the presentation used for a group). The Dehn func-

tion of a finitely presented group, the number of ends of a group, asymptotic

cones, finiteness properties and the solvability of the word problem are some

such invariants that have received much attention. Here are some results that

are known for these invariants.

Let G = 〈A | R〉 be a finitely presented group. For w representing identity in G

define Area(w) to be the minimal N such that w =
N∏

i=1

u−1
i riui in F(A) for some

words ui ∈ G and ri ∈ R±1. Then define the Dehn function for a finitely presented

group G, Dehn : N→ N by

Dehn(n) := max{Area(w) | w = 1 in G and |w| ≤ n } .

A free nilpotent group of class c on 2 letters has a Dehn function nc+1. The Dehn

function of a group is bounded above by linear function if and only if the group

is hyperbolic. And if a group has subquadratic Dehn function, then in fact the

Dehn function for that group must be bounded above by a linear function. The

word problem for a finitely presented group is solvable if and only if the Dehn

function of the group is recursive [29].

The number of ends of a finitely generated group G is the supremum over the

number of infinite connected components remaining when any finite collection

of edges is removed from a Cayley graph of G. The ends of finitely generated

groups are well-understood. A finitely generated group can have {0,1,2,∞}

ends, where the group has zero ends if and only if it is finite. Stallings’ theorem

10



states that a finitely generated group has more than one end if and only if the

group admits a nontrivial decomposition as an amalgamated free product or an

HNN-extension over a finite subgroup.

There are many results about solvability of the word problem in groups.

Novikov (1955) showed that there exists a finitely presented group with un-

decidable word problem. Automatic, combable and 1-relator groups are known

to have solvable word problem.

1.8 What is distortion?

Consider a finitely generated group G, let CG be its Cayley graph and dG the

word metric. Let H be a finitely generated subgroup of G with Cayley graph CH

and word metric dH.

Definition 1.8.1. The distortion function of H in G is given by

δGH(n) := max
{

dH(1G, h)
∣∣∣ h ∈ H, dG(1G, h) ≤ n

}
.

Subgroup distortion function compares the size of an element in a Cayley graph

of G with its size in a Cayley graph of H.

If H is undistorted in G, then δGH(n) ≃ n. Subgroup distortion is an invariant in

a sense that up to ≃, δGH(n) is independent of the choice of the finite generating

sets for H and G. Distortion has proved to be an important invariant. For ex-

ample, if H is an undistorted subgroup of a hyperbolic group G, then H is itself

hyperbolic.
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1.9 What is filling length?

While the above mentioned invariants have been studied extensively, the fill-

ing length function of a group, which is a natural “space” analog of the Dehn

function, has not been studied to the same extent.

To simplify notation, we will frequently use the following terminology:

Definition 1.9.1. For a group G = 〈A | R〉, we will say that w ∈ G is a trivial word

if w is a word on A±1 representing the identity in G. We will use ǫ to denote the empty

word.

The filling length of a trivial word w in a finitely presented group G = 〈A | R〉

is the minimal integer L such that w can be converted to the empty word ǫ

through words of length at most L by applying defining relations and freely

reducing/expanding. More precisely, FL(w) is the minimal L such that there ex-

ists a finite sequence {wi} starting with w and ending in ǫ in which each wi+1 is

obtained from wi by either

• applying a relator to wi = xuy to get wi+1 = xvy, where a cyclic conjugate of

uv−1 ∈ R±1 and x, y ∈ G

• freely reducing wi = xaa−1y to get wi+1 = xy, where a ∈ A±1 and x, y ∈ G

• freely expanding wi = xy to get wi+1 = xaa−1y, where a ∈ A±1 and x, y ∈ G

and |wi| ≤ L for all i.
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Definition 1.9.2. The filling length function FLG : N → N for a finitely presented

group G is defined by

FLG(n) := max
{

FL(w)
∣∣∣ w = 1 in G and |w| ≤ n

}
.

A van Kampen diagram D for a trivial word in a finitely presented group 〈A | R〉 is

a connected and simply connected planar finite cell complex with each one-cell

directed and labeled by a letter in A, one zero-cell on the boundary specified

as a base-vertex, and such that the boundary of each two-cell reads off a word

which is a cyclic permutation of an element of R±1.

The filling length function for a trivial word w can be described using van Kam-

pen diagrams by considering elementary homotopies that reduce the boundary

word w to the empty word ǫ at the base point [by successively collapsing either

1-cells (free reduction) or 2-cells (applying a cyclic permutation of an element in

R±1)] and picking the one that keeps the maximal perimeter of the diagrams as

small as possible. The details are in [12].

The filling length is one of several group invariants of finitely presented groups

that can be defined via van Kampen diagrams – some others are Dehn func-

tion (number of 2-cells in D), diameter (maximal distance between vertices in 1-

skeleton of D), and gallery length (diameter of the dual graph of the 1-skeleton

of D), where D is a van Kampen diagram for trivial words in the group [12].

These invariants came out of consideration of the word problem for finitely

presented groups since van Kampen diagrams illustrate geometrically how the

trivial word can be decomposed into relations given in the presentation of the

group.
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Filling length of a trivial word w can also be defined topologically as the minimal

length L such that there is a basepoint-preserving combinatorial null-homotopy

of the boundary of a van Kampen diagram for w through loops of length at

most L. Some variants of filling length function include free filling length (FFL)

function (which is defined similarly, but the null-homotopy is not required to

be basepoint-preserving), and free and fragmenting filling length (FFFL) (which

further allows the loops to bifurcate).

In [13], Bridson and Riley constructed a finitely presented group with the prop-

erty that for any N, there exists a trivial word w of length N for which FL(w) and

FFL(w) differ dramatically. They also proved that the filling length function as

well as the two generalizations (FFL and FFFL) are quasi-isometry invariants.

On the level of Turing machines we can think of filling length as a space func-

tion, while Dehn function corresponds to time. For details see [12].

In [43], Sapir, Birget and Rips showed that every Dehn function of a finitely pre-

sented group is equivalent to the time function of some (not necessarily deter-

ministic) Turing machine. They also showed that for most Turing machines their

time complexity function is equivalent to the Dehn function of some finitely

presented group. More precisely, if D4 is the set of all Dehn functions of finitely

presented groups that are at least quartic, T4 is set of functions which are equiv-

alent to time functions of Turing machines, and T 4 is the set of superadditive

functions which are fourth powers of time functions, then T 4 ⊆ D4 ⊆ T4.

In a recent paper [40], Olshanskii showed that the space complexity of an ar-

bitrary deterministic Turing machine is equivalent to the free and fragment-
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ing filling length function of some finitely presented group (hence providing

a space analog of the Sapir, Birget and Rips result). So, there exist examples of

groups with a wide variety of filling length functions. However, an understand-

ing of filling length for standard classes of groups such as finitely presentable

metabelian, polycyclic or solvable groups, remains elusive.

It is known that groups having at most quadratic Dehn function (for example,

CAT(0) groups) necessarily have linear filling length [42]. All combable groups

and nilpotent groups have linear filling length [12].

In 1981, Kharlampovich [35] constructed an example of a finitely presented solv-

able group with an unsolvable word problem. Therefore, the filling length func-

tion of this group must be huge; that is, it is not bounded above by any recursive

function.

There are many groups for which the filling length function is not known. It is

possible to construct examples of groups with various filling length functions,

but for commonly encountered groups with known filling length function, it is

either linear, exponential or super-exponential.

My goal is to find a well-known group whose filling length function grows

faster than linear, but slower than exponential. An example that seems promis-

ing in this context is Baumslag and Remeslennikov’s metabelian group, Γ2 – a

2-dimensional version of the lamplighter group. If we allow an extra torsion

relation, we obtain the group Γ2(m), which is known to have quadratic Dehn

function, and so it has linear filling length [21]. The Dehn function for the

non-torsion version of Baumslag and Remeslennikov’s group, Γ2, was recently
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proved to be exponential by Kassabov and Riley [34]. This implies that FLΓ2

is at most exponential. We conjecture that the filling length function for Γ2 is

quadratic.

Conjecture 1. The filling length function of Γ2 is quadratic.

In Chapter 5, we work toward proving a quadratic upper bound on the filling

length function for Γ2.

1.10 Significance of lamplighters

Here are some of the applications, properties, and cousins of the groups Γn(R).

Instances of the family Γn(R) and the related horocyclic products have featured

in some major breakthroughs. Baumslag and Remeslennikov’s construction of

Γ2 precipitated their theorem that every finitely generated metabelian group em-

beds in a finitely presented metabelian group [6, 41].

Grigorchuk, Linnell, Schick, and Żuk showed that the L2-Betti numbers of Rie-

mannian manifold with torsion-free fundamental group need not be integers

(answering a strong version of a question of Atiyah [2]) by constructing a 7-

dimensional such manifold with fundamental group Γ2(2) and third L2-Betti

number 1/3 in [31].

Diestel and Leader in [22] put forward the horocyclic product of an infinite 2-

branching and an infinite 3-branching tree as a candidate to answer a question

of Woess as to whether there is a vertex-transitive graph not quasi-isometric to
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a Cayley graph. Eskin, Fisher and Whyte [27] verified this. (Accordingly, the 1-

skeleta ofHn(Z/mZ) of Section 3.2 are termed Diestel–Leader graphs in [3].) Woess

recently wrote an account of this breakthrough and its history [47].

Eskin, Fisher and Whyte [27] also classified lamplighter groups up to quasi-

isometry. Dymarz [23] used lamplighter examples to show that quasi-isometric

finitely generated groups need not be bilipshitz equivalent. In both cases, the

horocyclic product view-point was essential to their analyses.

A number of properties of these groups have been identified.

Bartholdi and Woess [4] studied the asymptotic behaviour of the N-step return

probabilities of a simple random walk on a horocyclic product of two regular

(finitely) branching trees. Woess [46] described positive harmonic functions in

terms of the boundaries of the two trees. Bartholdi, Neuhauser and Woess [3]

identified the ℓ2-spectrum of the simple random walk operator and studied the

Poisson boundary for a large class of group-invariant random walks on horo-

cyclic products of trees.

A group G is of type Fn if there exists a K(G,1) (an Eilenberg–Maclane space —

a CW-complex whose fundamental group is G and which has contractible uni-

versal cover) with finite n-skeleton. All groups are F0, being finitely generated

is equivalent to F1, and being finitely presentable is equivalent to F2. Bartholdi,

Neuhauser and Woess [3] showed that Hn(Z/mZ) is (n − 1)-connected but not

n-connected and deduced that Γn(m) is of type Fn but not of type Fn+1 when

1, . . . , n − 1 are invertible in Z/mZ. Kropholler and Mullaney [36] used Bieri–

Neumann–Strebel invariants to prove that Γn(Z[1/(n − 1)!]) ⋊ Z (as defined in

17



Section 1.1) is of type Fn but not of type Fn+1. The Bieri–Stallings groups [11, 44]

exhibit the same finiteness properties, and bear close comparison with the fam-

ily Γn(2) in that both are level sets in products of trees (just the height functions

concerned differ).

Cleary and Taback [20] showed that, with respect to a standard generating set,

Γ1(2) has unbounded dead-end depth: there is no L > 0 such that for every group

element g, there is a group element further from the identity than g that is within

a distance less than L from g. (Cf. Question 8.4 in [10], which Erschler ob-

served can be resolved using Γ1(2).) Cleary and Riley [19] exhibited Γ2(2) as

the first finitely presentable group known to have the same property. By find-

ing a combinatorial formula for the word metric, Stein and Taback [45] showed

that, with respect to generating sets for which the Cayley graphs are horocyl-

cic products, Γn(m) have no regular language of geodesics and have unbounded

dead-end depth. We understand that Cleary has unpublished work and Davids

and Taback have work in progress on whether or not almost convexity holds for

Γ2(2) with respect to certain generating sets.

De Cornulier and Tessera showed that the Dehn function of Γ2(2) grows

quadratically [21], and Kassabov and Riley [34] showed that the Dehn function

of Γ2 grows exponentially.

The horocyclic product construction can be applied to any family of spaces with

height functions. A fruitful alternative to TZ/mZ (as defined in Section 3.1) is

the hyperbolic plane H2, viewed as the upper half of the complex plane, with

height function given by logq(Im z) for some fixed q > 1. The horocyclic product

of n copies of H2 (each with the same q > 1) is a manifold Sol2n−1. (Varying
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q is a dilation.) The horocyclic product of TZ/pZ and H2 with parameter q is

termed treebolic space in [9]. When p = q it is shown to be a model space for the

Baumslag–Solitar group 〈a, b | b−1ab = ap〉— that is, the group acts on the space

cocompactly by isometries.

These constructions and their parallels have been pursued particularly by

Woess and his coauthors [3, 4, 9, 14, 16, 46], focusing on stochastic processes,

harmonic maps, and boundaries. He gives an introduction in [47]. Addition-

ally, the boundaries of these various horocyclic products admit similar analyses,

which is why the work of Eskin, Fisher and Whyte [25, 27, 26, 28] encompasses

both Sol3 and lamplighter groups. Dymarz [24] also exploits the parallels.

Strikingly, most Γn(m) are automata groups as set out in [3, Remark 4.9] (building

on the n = 1 case in [38]).

1.11 Outline of the results

The main theorem which we prove in full generality in Section 3.6 is:

Theorem 1. For n = 1,2, . . ., if 2, . . . , n − 1 are invertible in R, then the 1-skeleton of

Hn(R) is the Cayley graph of Γn(R) with respect to the generating set

{
(r, e j), (r, e j)(r, ek)

−1
∣∣∣ r ∈ R, 0 ≤ j, k ≤ n − 1 and j < k

}
.

In particular, if |R| < ∞, then Γn(R) acts geometrically onHn(R).

For R finite, this theorem is due to Bartholdi, Neuhauser and Woess [3]. (In-

stead of working with An(R) and insisting that 2, . . . , n − 1 are invertible in R,
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they work more generally with polynomials R[x, (ℓ0 + x)−1, . . . , (ℓn−1 + x)−1] such

that the pairwise differences ℓi − ℓ j are all invertible. Our treatment could be ex-

tended to this generality if desired.) We aim here to give as elementary, explicit

and transparent a proof as possible for general Γn(R). The proof in [3] proceeds

via manipulations of formal Laurent series. We will work with ‘lamplighter

models’ as far as possible — the cases n = 1 and n = 2 — and use these models

to illuminate a proof in the general case which involves suitably manipulating

polynomials.

In Section 2.1, we discuss various presentations for Γ1 and Γ2, including the one

which reflects the horocyclic product structure. That presentation then features

in this embellishment of an n = 2 case of Theorem 1 with R = Z (which we prove

in Section 3.5):

Theorem 2. H2(Z) is the Cayley 2-complex with respect to this presentation of Γ2:

〈
λi, µi, νi (i ∈ Z)

∣∣∣ λi = νiµi, λi+ j = µiν j (i, j ∈ Z)
〉
.

In Section 2.1, we also show that another way to present Γ2 is

〈
a, s, t

∣∣∣ [a, at] = 1, [s, t] = 1, as
= aat

〉
.

And in Chapter 4 we prove —

Theorem 3. The subgroup 〈a〉 is undistorted in Γ2.

In Chapter 5, we work toward an upper bound on the filling length function of

Γ2. We conjecture that the filling length is quadratic and reduce the question of

finding an upper bound on the filling length of Γ2 to a combinatorial question

about configurations (Theorem 5 and Open Question 5.1.3).
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CHAPTER 2

BACKGROUND ON RANK-1 AND RANK-2 LAMPLIGHTERS

2.1 Presentations

In this section we give some presentations of Γ1, Γ1(m) and Γ2 including the one

that reflects their descriptions as horocyclic products of trees. Our presentations

for Γ2 include the one which we will prove in Section 3.5 to have Cayley 2-

complexH2(Z).

Recall that our conventions are that [a, b] = a−1b−1ab and anb
= banb−1 for group

elements a, b and integers n. Our group actions are on the right.

Proposition 2.1.1. Presentations for the group

Γ1 = Z ≀ Z � Z[x, x−1] ⋊ Z =




xk f

0 1



∣∣∣∣∣∣∣∣∣
k ∈ Z, f ∈ Z[x, x−1]



include

(i)
〈

a, t
∣∣∣∣
[
a, atk
]
= 1 (k ∈ Z)

〉
,

(ii)
〈
λ, µ
∣∣∣∣ λk
(
λ−1µλ−1

)k
= µkλ−k (k ∈ Z)

〉
,

(iii)
〈
λi (i ∈ Z)

∣∣∣ λi
kλ j
−k
= λ− j

kλ−i
−k (i, j, k ∈ Z)

〉
.

These are related via λ = t, µ = at, and λi = ait.

Proof. As an abelian group,

Z[x, x−1] =
⊕

i∈Z
Z = 〈 ai (i ∈ Z) | [ai, a j] = 1 ∀i, j 〉.
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So Z[x, x−1] ⋊ Z = 〈 t, ai (i ∈ Z) | tait−1
= ai+1, [ai, a j] = 1 ∀i, j 〉, which simplifies

with a = a0 to give (i).

For (ii), it suffices to show that
〈

a, t
∣∣∣∣
[
a, atk
]
= 1 (k ∈ Z)

〉
can be re–expressed as

〈
a, t
∣∣∣ tk(t−1a)k

= (at)kt−k (k ∈ Z)
〉
,

since the latter becomes (ii) via λ = t and µ = at. Well, tk(t−1a)k and (at)kt−k

freely equal (tk−1at−(k−1)) . . . (tat−1) a and a (tat−1) . . . (tk−1at−(k−1)), respectively, and

a straight–forward induction shows that the family
{
atka = aatk

}
k∈Z

is equivalent

to
{

atk · · · ata = aat · · · atk , at−k · · · at−1
a = aat−1 · · · at−k }

k>0
.

Finally we establish (iii). If λi = ait then λi must correspond to


x i

0 1

 and so

λi
k to


xk i(1+ · · · + xk−1)

0 1

 and λi
−k to


x−k −i(x−k

+ · · · + x−1)

0 1

. From there it

is easy to check that the relations λi
kλ j
−k
= λ− j

kλ−i
−k correspond to valid matrix

identities


xk i(1+ · · · + xk−1)

0 1




x−k − j(x−k

+ · · · + x−1)

0 1

 =


1 (i − j)(1+ · · · + xk−1)

0 1

 =


xk − j(1+ · · · + xk−1)

0 1




x−k i(x−k

+ · · · + x−1)

0 1

 ,

and so must be consequences of the relations
[
a, atk
]
= 1 (k ∈ Z).

Conversely, given that λ0 = λ = t and λ1 = µ = at, we find that λ−1 = a−1t = λµ−1λ,

and so the relations λk
(
λ−1µλ−1

)k
= µkλ−k of (ii) are λi

kλ j
−k
= λ− j

kλ−i
−k in the case

i = 0 and j = −1. �
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On introducing torsion, adding the relation am
= 1 to presentation (i) of Propo-

sition 2.1.1, we get presentations for Γ1(m). These can be reorganized in the

manner of presentations (ii) and (iii), and in the case m = 2 can be simplified

significantly:

Proposition 2.1.2.

Γ1(2) = (Z/2Z) ≀ Z =
〈
λ, µ
∣∣∣∣
(
λkµ−k

)2
= 1 (k ∈ Z)

〉
,

Γ1(m) = (Z/mZ) ≀ Z

=

〈
λ0, . . . , λm−1

∣∣∣∣ λi
kλ j
−k
= λ− j

kλ−i
−k,
(
λi

kλ j
−k
)m
= 1 (i, j ∈ Z/mZ, k ∈ Z)

〉
,

where m ≥ 2, λ = t, µ = at, and λi = ait.

Proof. The presentation for Γ1(2) comes from simplifying presentation (ii) of

Proposition 2.1.1 using the relation a2
= 1, which is equivalent to λ−1µλ−1

= µ−1.

The family λk(λ−1µλ−1)k
= µkλ−k becomes the family (λkµ−k)2

= 1. The case k = 1

provides the relation a2
= 1.

For Γ1(m), consider adding the family of relations
(
λi

kλ j
−k
)m
= 1 for all i, j, k ∈ Z to

presentation (iii) of Proposition 2.1.1. In particular this adds the relation am
= 1,

which is the case:
(
λ1λ0

−1
)m
=

(
at t−1

)m
= 1. In the resulting group λi = λ j when

i = j modulo m since then ait = a jt because am
= 1. This group must be Γ1(m)

because all the remaining added relations hold in Γ1(m), after all when k > 0

(and similarly when k < 0),

(
λi

kλ j
−k
)m
=

(
(ait)k(a jt)−k

)m

=

(
ai(tait−1) · · · (tk−2ait−(k−2))(tk−1ai− jt−(k−1))(tk−2a− jt−(k−2)) · · · (ta− jt−1)a− j

)m

which is 1 because
(
atp
)m
= 1 and atp

and atq commute in Γ1(m) for all p, q ∈ Z. �
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Proposition 2.1.3. Presentations of

Γ2 =




xk(1+ x)l f

0 1



∣∣∣∣∣∣∣∣∣
k, l ∈ Z, f ∈ Z

[
x, x−1, (1+ x)−1

]


include

(i)
〈

a, s, t
∣∣∣ [a, at] = 1, [s, t] = 1, as

= aat
〉
,

(ii)
〈
µ, ν, c, d

∣∣∣ [µ, ν] = 1, µ−1c2ν = c, ν−1d2µ = d
〉
,

(iii)
〈
λi, µi, νi (i ∈ Z)

∣∣∣ λi = νiµi, λi+ j = µiν j (i, j ∈ Z)
〉
.

These are related by

a 7→


1 1

0 1

 , t 7→


x 0

0 1

 , s 7→


1+ x 0

0 1

 ,

µ = s, ν = t−1s, c = at, d = t−1a, and λi = ait, µi = ais (and hence νi = λiµi
−1
=

aits−1a−i).

The generators λi, µi, and νi := λiµi
−1 agree with those employed in Section 3.4.

After all,

λi = ait 7→


x i

0 1

 and µi = ais 7→


1+ x i

0 1

 ,

which are alternative ways of expressing (i, e0) and (i, e1).

Presentation (i) and the given matrix representation are due to Baumslag in [5]

and our proof below that they agree is an embellishment of the argument in

his paper. Presentation (ii) is striking as it shows that Γ2 maps onto a free–

product with amalgamation of two BS(1,2) groups (via identifying µ and ν).
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The generators of presentation (iii) are those we will use in Sections 3.4 and 3.6

to relate Γ2 to a horocyclic product of trees. In Section 4 of [33], presentations of

similar matrix groups are given (e.g. in Section 4.3.1) using techniques that are

similar to those that follow and are based on ideas in [5] and [17].

In the course of proving Proposition 2.1.3 we will also establish:

Lemma 2.1.4 (Normal form). Elements g in Γ2, presented as (i), are represented by a

unique word

wg = am1tk1 · · · amK tkK an1 sl1 · · · anL slL sltk (2.1)

with k1, . . . , kK , l1, . . . , lL, l, k, L,K ∈ Z and m1, . . . ,mK , n1, . . . , nL ∈ Z r {0} satisfying

k1 < · · · < kK and l1 < . . . < lL < 0.

Proof of Proposition 2.1.3 and Lemma 2.1.4. Let us establish the existence part of

Lemma 2.1.4. Suppose w is any word on a, s, t representing g. First convert w

to a word of the form
∏

i aspi tqi sltk by inserting suitable words on {s±1, t±1} after

each a and then using the relation [s, t] = 1. Then eliminate all the positive pi

by expressing aspi as a product of terms like at j
using the relation as

= aat. In Γ2,

[a, atn ] = 1 for all n ≥ 0 as can be seen by an induction via

1 =
[
a, atn
]s
=

[
as, (as)tn

]
=

[
aat, atnatn+1]

=

[
a, atn+1]

.

(We see here that the relation as
= aat, which Baumslag calls mitosis, is the key

to coding the infinite family of defining relators
[
a, atn
]
= 1 (n ∈ Z) in a finite

presentation.) So, as asi
can be expressed as a product of terms of the form at j

( j ∈ Z), elements of the set
{
asi
, at j
, | i, j ∈ Z

}
pairwise commute in Γ2. So we can

rearrange terms to get the form of wg.

Next we observe that the map φ from the group presented by (i) to the given
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matrix group, defined for a, s and t as indicated in the proposition, is well-

defined and is a homomorphism: the defining relations correspond to identities

which hold in the matrix group. It maps a group element g represented by the

word wg of Lemma 2.1.4 to


1 f

0 1




xk(1+ x)l 0

0 1

 =


xk(1+ x)l f

0 1

 , (2.2)

where

f = m1xk1 + · · · + mK xkK + n1(1+ x)l1 + · · · + nL(1+ x)lL .

So φ is surjective. We will show in Remark 2.3.4 of Section 2.2 that
{
xi, (1+ x) j | i, j ∈ Z, j < 0

}
is a basis for Z[x, x−1, (1 + x)−1]. So φ is also injective

and the normal form words of Lemma 2.1.4 each represent different group ele-

ments. So (i) is a presentation of Γ2.

The translation between presentations (i) and (ii) comes from that the relations

[s, t] = 1 and [µ, ν] = 1 are equivalent, and, in the presence of that commutator,

µ−1c2ν = c and ν−1d2µ = d are equivalent to as
= aat and as

= ata, respectively.

Presentations (i) and (iii) agree as follows. When i = j = 0, the relation λi+ j = µiν j

becomes [s, t] = 1, and, in the presence of [s, t] = 1, when i = − j = 1, it gives as
=

ata, and when −i = j = 1, it gives as
= aat. Moreover, in terms of a, s, t the relation

λi+ j = µiν j is ai+ jt = aisa jts−1a− j, which holds in Γ2 because aisa jts−1a− jt−1a−i− j
=

ai(sas−1) jta− jt−1a−i− j
= ai(aat) ja− jta−i− j

= ai+ ja jta− jta−i− j
= 1. �

For presentations of the groups Γn(m) in general see Theorem 4.7 in [3].
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2.2 A lamplighter model for Γ2(R)

Recall that

Γ2(R) = R
[
x, x−1, (1+ x)−1

]
⋊ Z

2

where, if the Z2-factor is 〈t, s〉, the actions of t and s are multiplication by x and

1+ x, respectively.

We will use a lamplighter description of Γ2 developed from [3] and [19]. A lamp-

lighter is located at a lattice point in a skewed rhombic Z2
= 〈t, s〉 grid, as in

Figure 2.1. (The lattice points are the vertices of the tessellation of the plane by

unit equilateral triangles.) Each vertex has six closest neighbors — one in each

of what we will call the s-, s−1-, t-, t−1-, st−1- and s−1t-directions — and can be

specified using t- and s-coordinates. A configuration K is a finitely supported

assignment of an element of R to each lattice point.

1

1

1

1

11

11

1 1

1

1

1

1

11

1

2

2

22

2

2

33

44

5

5

55

6

6

7 10

−1

−2

−2 −3−3−3−3−3

−3−3

−3−3

−3

−4

−4

−4 −6−6−6

−6

ttt

ttt

sss

sss(1) (2) (3)

(4) (5) (6)

Figure 2.1: An example of propagation to a configuration supported on

L0,0 (namely, the t-axis and the negative half of s-axis).
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Figure 2.1 shows six examples of configurations where R = Z. Vertices where

no element of R is shown should be understood to be assigned zeros. As an

example of the terminology in action, the integer at (−2,1) in grid (5) is 4 and its

neighbors in the s-, s−1-, t-, t−1-, st−1- and s−1t-directions are 0, 2, 6, 1, 0, and −4,

respectively.

We define an equivalence relation ∼ on configurations by setting K ∼ K ′ when

there is a finite sequence of configurations starting with K and ending with

K ′ in which each configuration differs from the next only in one triangle of

adjacent ring elements which is b
a

c in one and is b+r
a−r

c+r for some r ∈ R in the

other. The six integer-configurations shown in Figure 2.1 are all equivalent, for

example. A trivial configuration is a configuration that is equivalent to the all-

zero configuration Kǫ .

An element f =
∑

i, j∈Z ni, jxi(1 + x) j of R
[
x, x−1, (1+ x)−1

]
corresponds to the con-

figuration which has ni, j at (i, j) for all i, j ∈ Z. A motivating result for these

definitions is—

Lemma 2.2.1. Two such polynomials represent the same element of R
[
x, x−1, (1+ x)−1

]

if and only if their corresponding configurations are equivalent.

Proof. The relations in R
[
x, x−1, (1+ x)−1

]
are generated by (1+ x) being the sum

of the terms 1 and x in a manner that corresponds to the relations between con-

figurations being generated by altering triangles of entries. Indeed, multiplying

(1+ x) = 1+ x through by rxi(1+ x) j gives rxi(1+ x) j+1
= rxi(1+ x) j

+ rxi+1(1+ x) j,

which corresponds to b
a+r

c ∼ b+r
a

c+r at a suitably located triangle of entries in a

configuration. �
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The element g = ( f , (k, l)) ∈ Γ2(R) corresponds to the lamplighter being located

at (k, l) and the configuration being that associated to f .

A word on a, s, t as per presentation (i) of Proposition 2.1.3 for Γ2 represents

a group element whose lamplighter description can be found as follows. Start

with the lamplighter located at (0,0) and the configuration entirely zeros. Work-

ing through w from left to right, increment the integer at the lamplighter’s loca-

tion by ±1 on reading an a±1, move the lamplighter one step to the right or left

(the t- or t−1-direction) on reading a t or t−1, respectively, and move the lamp-

lighter one step to the adjacent vertex in the s- or s−1-direction on reading an s

or s−1, respectively. We will denote the resulting configuration Kw and say that

Kw is the configuration associated to the word w ∈ Γ2.

The normal-form words of Lemma 2.1.4 read off lamplighter descriptions of

group elements in which the configurations are supported on L0,0 (that is, the

t-axis and the negative half of the s-axis). If a group element g positions the

lamplighter far from L0,0, then the configuration supported on L0,0 representing

g will differ dramatically from that representing ga±1, since the effect of propa-

gating ±1 toward L0,0 compounds in the manner of Pascal’s triangle.

An appealing feature of this model is how it elucidates the way in which Γ1(R)

sits inside Γ2(R) (for example, Z ≀ Z sits inside Γ2) as the elements for which the

lamplighter is on the t-axis and the configuration is equivalent to one that is

supported on the t-axis.
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2.2.1 An invariant when R = Z

It is worth pointing out that the way that the lamplighter model and the equiv-

alence of configurations are defined leads to a natural invariant on the configu-

rations. We considered this invariant as a potential tool for resolving the open

questions of Section 5.1 (but without success).

For a configuration f : Z × Z → Z (that is, a finitely supported assignment of

integers to the vertices of the rhombic grid), define

S ( f ) :=
∑

j∈Z 2j∑
i∈Z f (i, j).

In other words: sum the entries in each row, then sum the results for the rows

after multiplying by 2row height.

This is an invariant in that if f and g are equivalent configurations, then S ( f ) =

S (g), the reason being that subtracting 1 from somewhere and adding 1 to each

of the two numbers immediately below does not change the quantity.

2.2.2 Norm of a configuration

Definition 2.2.2. The norm of a configurationK is the sum of the absolute values of

the entries in K , denoted by |K| = ∑i, j∈Z | f (i, j)|.

This is not an invariant: two equivalent configuration may have different norms.
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2.3 Half-planes and propagation

We now give a few definitions and some properties which we will use in Sec-

tion 3.4 to prove Theorem 1 when n = 2.

Definition 2.3.1. Using t- and s-coordinates, define the half-planes

H∞m := {(p, q) | p + q ≥ m} ,

H0
m := {(p, q) | p ≤ m} ,

H1
m := {(p, q) | q ≤ m} .

For example, Figure 2.2 displays H∞h0+h1
, H0

h0−1 and H1
h1−1.

Our analyses will involve finding opportune representatives in the equivalence

classes of given configurations. Indeed, we will in some instances (in Sec-

tion 3.4) be concerned only with the part of a configuration in some half-plane.

The following definition will then be useful.

Propagating to level ℓ in H∞m means converting a configuration to an equivalent

configuration such that the only non-zero entries in H∞m are on the line with

s-coordinate ℓ. This can always be done by moving the entries in H∞m that

are above that line by using b
a

c ∼ a+b
0

a+c and moving those below by using

b
a

c ∼ b−c
a+c

0. Propagating to level ℓ in H0
m means converting to an equivalent

configuration such that the only non-zero entries in H0
m are on the line with

s-coordinate ℓ. This can be done using b
a

c ∼ a+b
0

a+c and b
a

c ∼ 0
a+b

c−b for entries

above and below the line, respectively. And propagating to level ℓ in H1
m means

converting to an equivalent configuration such that the only non-zero entries in

H1
m are on the line with t-coordinate ℓ. This can be done using b

a
c ∼ 0

a+b
c−b and
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b
a

c ∼ b−c
a+c

0 for entries on the left and the right of the line, respectively.

In each case, propagation produces a finitely supported sequence, namely the

entries on level ℓ of the half-plane concerned. For example, in Figure 2.1 prop-

agating the integer-configuration (1) to level 0 in H∞0 , H0
−1 and H1

−1 yields con-

figurations which can be read off (6), specifically, 10,5,−2,−6,−3,0,0, . . . in H∞0 ,

6,7,1,0,0, . . . in H0
−1, and 5,0,1,0,0, . . . in H1

−1. And in Figure 3.5, the config-

uration in the centre grid propagated to level 0 yields 5,3,4,2,0,0, . . . in H∞3 ,

18,5,1,0,0, . . . in H0
0, and 2,3,0,1,0,0, . . . in H1

1.

s

th0

h1

h0 + h1

h0 + h1

a∞a0

a1

b∞b0

b1

H∞h0+h1
H0

h0−1

H1
h1−1

Figure 2.2: Propagation in the half-planes H∞h0+h1
, H0

h0−1 and H1
h1−1. Propa-

gation to levels h1, h1 and h0, respectively, is illustrated using

lighter colors. Propagation to level 0 in each half-plane is illus-

trated using darker colors.

The following properties of propagation may at first seem surprising because it

is not immediately apparent that the entries outside H∗m are of no consequence

for the sequence produced by propagation.

Lemma 2.3.2. For ∗ = ∞,0,1 and for all ℓ, ℓ′ ∈ Z the following hold.
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(i) Any two equivalent configurations which are both zero everywhere in H∗m aside

from level ℓ, are in fact equal on level ℓ in H∗m. (So propagation of a configuration

to level ℓ in H∗m determines a unique sequence and propagating any two equivalent

configurations to level ℓ in H∗m produces the same sequence.)

(ii) If propagating a configurationK to level ℓ in H∗m produces the sequence a1, a2, . . .,

then ap, for p = 1,2, . . ., depends only on the restriction of K to



H∞m+p−1 if ∗ = ∞

H0
m−p+1 if ∗ = 0

H1
m−p+1 if ∗ = 1.

(iii) The following defines a bijection on the set of finitely supported integer sequences.

Given such a sequence, take the configuration which is everywhere-zero aside from

level ℓ of H∗m where one reads the sequence, and obtain a new sequence by propa-

gating to level ℓ′ in H∗m. Indeed, this map is inverted by propagating back to level

ℓ.

Proof. We will explain only the case ∗ = ∞. The cases ∗ = 0,1 are similar.

For (i), recall that the equivalence relation on configurations is generated by

equivalences in which a triangle of only three adjacent entries is altered. Such

alterations do not change the sequence obtained by propagating to level ℓ in H∞m

by moving those above the level using b
a

c ∼ a+b
0

a+c and moving those below by

using b
a

c ∼ b−c
a+c

0. Consideration of the directions in which entries are moved

by these two types of equivalences leads to (ii). For (iii) observe that the result

is true when |ℓ − ℓ′| = 1. �
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Corollary 2.3.3. For all k, l ∈ Z, each configuration is equivalent to a unique configu-

ration supported on

Lk,l := { (i, l) | i ∈ Z } ∪ { (k, l − 1), (k, l − 2), . . . } ,

specifically, that obtained by simultaneously propagating to level l in H∞k+l and H0
k−1 and

to level k in H1
l−1.

(k, l)

Figure 2.3: Propagation toward Lk,l (in blue).

Figure 2.3 shows the strategy for pushing entries toward Lk,l.

Figure 2.1 shows an example of such a propagation with k = ℓ = 0, and the

transition from the central grid to the top grid in Figure 3.5 is an example with

k = 1 and ℓ = 2.

Remark 2.3.4. In the light of Lemma 2.2.1, Corollary 2.3.3 with k = l = 0 states

that
{

1, x j, x− j, (1+ x)− j
∣∣∣ j = 1,2, . . .

}

is a basis for R[x, x−1, (1+ x)−1] over R. (This is a special case of Lemma 3.6.1.)

34



CHAPTER 3

HOROCYCLIC PRODUCT OF TREES

This chapter is devoted to proving Theorem 1 and Theorem 2. First, we give a

precise definition of horocyclic product of trees, then in Sections 3.3 and 3.4 we

give a geometric proof of Theorem 1 in rank-1 and rank-2 cases. In Section 3.5

we give a proof of Theorem 2. We then proceed to proving Theorem 1 in the

general case in Section 3.6.

As was mentioned in the introduction, for higher-rank torsion cases, Γn(m), the

theorem is due to Bartholdi, Neuhauser and Woess [3]. The aim here is to give

a proof of their theorem and extend it to other rings including the general non-

torsion case, Γn. We seek to give as elementary and transparent a treatment as

possible. We work with lamplighter models in the rank-1 and rank-2 cases, and

use these to illuminate a proof in the general case which uses polynomials and

partial fractions.

3.1 R-branching trees

We let TR denote the R-branching tree. This is the simplicial tree in which every

vertex has 1 + |R| neighbors. Equip TR with the natural path metric in which

every edge has length one. Any choice of infinite directed geodesic ray ρ : R →

TR with Z ⊆ R mapping to the vertices along the ray determines a height (or

Busemann) function h : TR → R by

h(p) = ρ−1(q) + d(p, q)
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where q is the point on the ray closest to p. Figure 3.1 gives some examples of

calculations of heights.

−1

0

1

2
ρ

p

q

p′

q′

Figure 3.1: The tree TR with an infinite geodesic ray ρ determining a height

function h. For example, h(p) = ρ−1(q) + d(p, q) = −1+ 3 = 2 and

h(p′) = ρ−1(q′) + d(p′, q′) = 0+ 2 = 2.

Label the edges emanating upwards from any given vertex in TR by the ele-

ments of R in such a way that the edges traversed by ρ are all labeled 0. Then

we can specify a unique address for each vertex in TR as follows.

Lemma 3.1.1 (Addresses of vertices in TR). Vertices v in TR are in bijective corre-

spondence with pairs consisting of an integer (the height of v) and a finitely supported

sequence of elements of R (the labels on the edges that a downwards path starting at v

follows).

Proof. Given a vertex v in TR, let the pair corresponding to it be given by the

integer height of v and the sequence of elements of R obtained by reading off

the edge-labels on the path that follows successive downwards edges starting

at v. The sequences are finitely supported because the downwards path be-

comes confluent with ρ after the last non-zero entry in the sequence (if q is the
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point on the ray closest to v, then there are at most d(v, q) non-zero entries in the

sequence). �

Another way to see the identification between the vertices in TR and their ad-

dresses is by labeling the vertices by cosets of polynomials in the form f +xkR[x],

where k is the height of the vertex and the coefficients of xk−1, xk−2, . . . in f give

the finitely supported sequence of edge labels. Note that at each height, the

coset labels at that height provide a partition of polynomials in R[x]. Figure 3.2

shows a branching at a vertex of TR located at height k with the address given

by the coefficients of xk−1, xk−2, . . . in f = g + mxk−1.

g +mxk−1 + C · xk + xk+1R[x]

g +mxk−1 + xkR[x]

g + xk−1R[x]

Figure 3.2: A branching at a vertex (g + mxk−1, k) of TR, for a given k ∈ Z,

m ∈ R, g ∈ R[x, x−1] such that the coefficients of xi in g are zero

for all i ≥ k−1. There is a single branch upwards for each C ∈ R

labeled g + mxk−1
+C · xk

+ xk+1R[x].
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3.2 The horocyclic product of R-branching trees

The horocyclic product of n + 1 copies of TR is

Hn(R) :=

 (p0, . . . , pn) ∈ T n+1
R

∣∣∣∣∣∣∣

n∑

i=0

h(pi) = 0

 .

It is naturally an n-complex: (p0, . . . , pn) is in the k-skeleton if and only if

| {i | h(pi) ∈ Z}| ≥ n − k.

Equivalently, if we view T n+1
R as a cubical complex in the natural way, then the

k-cells ofHn(R) are the intersections of the (k + 1)-cells of T n+1
R withHn(R).

Figure 3.3 shows a horocyclic product of two 3-branching rooted trees of depth

2, and so a portion of H1(Z/3Z). Nine upwards- and nine downwards-3-

branching trees are apparent in this graph.

Figure 3.3: A portion ofH1(Z/3Z), after a figure by Dymarz in [23].

In the article [1], we describe the cell-structure ofHn(R).
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3.3 Proof of Theorem 1 in the case n = 1

Theorem 1 in the case n = 1 states thatH1(R) is the Cayley graph C of Γ1(R) with

respect to the generating set {λr := (r,1) | r ∈ R}. This generating set is, in fact,

profligate—{λ0, λ1} suffices to generate Γ1(R). This case includes Γ1 = Z ≀ Z and

lamplighters Γ1(m) = (Z/mZ) ≀ Z.

Proof of Theorem 1 for n = 1. (cf. [4, 15, 46]). An element of Γ1(R) = R[x, x−1] ⋊ Z is

a pair ( f , k) where k ∈ Z and f =
∑

f jx j with each f j ∈ R and only finitely many

are non-zero. Recall from Lemma 3.1.1 that vertices in TR are uniquely specified

by their addresses—pairs consisting of a finitely supported sequence of elements

of R (the edge-labels on the path proceeding downwards from the vertex) and

an integer (the height).

Let Φ be the bijection between Γ1(R) and the vertices of H1(R) that sends

( f , k) to the pair of vertices (u, v) with addresses (( fk, fk+1, fk+2, . . .),−k) and

(( fk−1, fk−2, fk−3, . . .), k), respectively. So, in effect, Φ splits the bi-infinite sequence

of coefficients of f apart at k to give two infinite sequences as shown in the mid-

dle of Figure 3.4. The sequence at the locations shaded pink give the address of

u and that shaded green gives the address of v.

In C, the edge labeled λr emanating from ( f , k) leads to ( f , k)λr = ( f +

rxk, k + 1), which is mapped by Φ to (u′, v′) where u′ and v′ have addresses

(( fk+1, fk+2, . . .),−k − 1) and (( fk + r, fk−1, fk−2, . . .), k + 1), respectively—see the top

of Figure 3.4. So, as r varies over R, (u′, v′) varies over all the vertices adjacent

to (u, v) that are reached by moving along the (unique) downwards edge in TR

emanating from u and moving along one of the R-indexed edges that emanate
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upwards from v.

The inverse of λr = (r,1) is (−rx−1,−1) since

(r,1)(−rx−1,−1) = (r + (−rx−1)x1,1− 1) = (0,0).

So, similarly, the family ( f , k)λr
−1
= ( f − rxk−1, k − 1) with r ranging over R, is

mapped byΦ to (u′′, v′′) where u′′ and v′′ have addresses (( fk−1−r, fk, fk+1, . . .),−k+

1) and (( fk−2, fk−3, . . .), k−1), respectively—see the bottom of Figure 3.4. These are

the vertices obtained by moving along the one downwards edge in TR from v

and moving from u upwards along one of the R-indexed family of edges.

So, vertices that are joined by an edge in C are mapped by Φ to vertices that are

joined by an edge inH1(R). Moreover, every pair of vertices that are joined by an

edge inH1(R) can be reached in this way. So Φ extends to a graph-isomorphism

C → H1(R), completing our proof. �
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fk−5
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fk−3

fk−3

fk−3
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fk + r
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fk+3

fk+4

fk+4
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fk+5

fk+5

fk+5

t

t

t
g:

λr

λ−1
r

gλr:

gλ−1
r :

Figure 3.4: Here we use the lamplighter description of Γ1(R) to illustrate

right-multiplication by the generators λr and their inverses.

The middle line represents g = ( f , k) and the top and bottom

represent gλr and gλ−1
r , respectively.

Remark 3.3.1. Perhaps the one subtlety in the above proof is that the edge in TR

from v to v′ is labeled by fk + r. The first guess one might make is that it would
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be the edge labeled r. But that would not work because (u′, v′) has to have some

“memory” of fk, else there would be no way for Φ−1((u′, v′)λ−1
r ) to equal Φ−1(u, v).

Remark 3.3.2. In this rank-1 case we could use any group G in place of the

ring R, and identify a Cayley graph of the (restricted) wreath product G ≀ Z as a

horocyclic product. Specifically, view elements of G ≀Z as pairs (p, k) where k ∈ Z

and p is a finitely supported function Z→ G, and let pg denote the map sending

1 7→ g and i 7→ 1G for all i , 1. Then the Cayley graph of G ≀ Zwith respect to the

generating set
{
λg := (pg,1) | g ∈ G

}
is the horocyclic product of two G-branching

trees. This appears to break down in higher rank where we would need G to be

abelian (e.g. to define the lamplighter description in Section 2.2).

3.4 Proof of Theorem 1 in the case n = 2

In this section we will prove Theorem 1 when n = 2: the 1-skeleton of H2(R) is

the Cayley graph of Γ2(R) with respect to the generating set

{
λr := (r, e0), µr := (r, e1), νr := λrµr

−1
∣∣∣ r ∈ R

}
.

This case includes Baumslag and Remeslennikov’s metabelian group, which is

Γ2. By presentation (iii) of Proposition 2.1.3 we know that {λr, µr, νr | r ∈ Z} form

a generating set for Γ2. A similar proof shows that {λr, µr, νr | r ∈ Z/mZ} form a

generating set for Γ2(m).

We will denote a vertex inH2(R) by a triple of vertices in TR, each designated by

their addresses in the sense of Lemma 3.1.1. First we will establish a bijection

Φ from Γ2(R) to the vertices of H2(R), defined by sending g = ( f , (h0, h1)) ∈ Γ2(R)
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to the vertex ((a∞, h∞), (a0, h0), (a1, h1)) found as follows. Represent f using the

lamplighter model as some configuration K . Let h∞ = −h0 − h1. Let a∞, a0, and

a1 be the sequences obtained by (independently) propagating K to level 0 in

the half-planes H∞h0+h1
, H0

h0−1, and H1
h1−1, respectively—see Figure 2.2 for a general

illustration and Figure 3.5 for a particular example.

Here is why Φ is a bijection. Let K ′ be the configuration of Corollary 2.3.3 that

is equivalent to K and is supported on Lh0,h1. As that corollary points out, K ′

is determined by the sequences b∞, b0, and b1 obtained from K by propagating

H∞h0+h1
and H0

h0−1 to level h1, and H1
h1−1 to level h0. But, given h0 and h1, the bijection

of Lemma 2.3.2(iii) tells us that b∞, b0, and b1 are determined by (and determine)

a∞, a0, and a1, respectively. So, given any vertex v = ((a∞, h∞), (a0, h0), (a1, h1)) in

H2(R), there is a unique g = ( f , (h0, h1)) such that Φ(g) = v: specifically, take the f

corresponding to K ′. (This is a special case of Proposition 3.6.9.)

Next we claim that for all r ∈ R,

Φ(gλr) =
( ( (

a∞2 , a
∞
3 , . . .

)
, h∞ − 1

)
,

( (
r + α, a0

1, a
0
2, . . .
)
, h0 + 1

)
,

(
a1, h1

) )
,

Φ(gλr
−1) =

( ( (−r + α′, a∞1 , a
∞
2 , . . .

)
, h∞ + 1

)
,

( (
a0

2, a
0
3, . . .
)
, h0 − 1

)
,

(
a1, h1

) )
,

Φ(gµr) =
( ( (

a∞2 , a
∞
3 , . . .

)
, h∞ − 1

)
,

(
a0, h0

)
,

( (
(−1)h0r + β, a1

1, a
1
2, . . .
)
, h1 + 1

) )
,

Φ(gµr
−1) =

( ( (−r + β′, a∞1 , a
∞
2 , . . .

)
, h∞ + 1

)
,

(
a0, h0

)
,

( (
a1

2, a
1
3, . . .
)
, h1 − 1

) )
,

Φ(gνr) =
( (

a∞, h∞
)
,

( (
r + γ, a0

1, a
0
2, . . .
)
, h0 + 1

)
,

( (
a1

2, a
1
3, . . .
)
, h1 − 1

) )
,

Φ(gνr
−1) =

( (
a∞, h∞

)
,

( (
a0

2, a
0
3, . . .
)
, h0 − 1

)
,

( (
(−1)h0r + γ′, a1

1, a
1
2, . . .
)
, h1 + 1

) )

where α, α′, β, β′, γ, and γ′ depend only on g (and not on r).

As we will see, much of the explanation for these equations is contained in Fig-

ure 3.6. The central grid represents g: the lamplighter is at (h0, h1) and the se-
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Figure 3.5: An example of a calculation of Φ(g), where g is the element of

Γ2 represented on the central grid. The lamplighter is at (1,2),

so h∞ = −1 − 2 = −3, h0 = 1, and h1 = 2. The right, left, and

lower grid illustrate the calculation of a∞ = (5,3,4,2,0,0, . . .),

a0
= (18,5,1,0,0, . . .), and a1

= (2,3,0,1,0,0, . . .), respectively,

by propagation to level 0 in H∞3 , H0
0, and H1

1. The upper

grid illustrates a configuration which is supported on L1,2,

is equivalent to that of the central grid, and yields the se-

quences b∞ = (3,1,0,2,0,0, . . .), b0
= (11,3,1,0,0, . . .), and

b1
= (−6,−4,−1,−1,0,0, . . .), which feature in our proof of case

n = 2 of Theorem 1.

quences a∞, a0, a1, b∞, b0, and b1 associated to f are obtained from the locations

indicated (in the manner set out earlier). On right-multiplying g by λr, λ
−1
r , µr,

µ−1
r , νr, or ν−1

r , the lamplighter moves as shown and r is added to or subtracted
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Figure 3.6: Obtaining Φ(gλr), Φ(gλ−1
r ), Φ(gµr), Φ(gµ−1

r ), Φ(gνr), and Φ(gν−1
r )

fromΦ(g) = ((a∞, h∞), (a0, h0), (a1, h1)). The sequences associated

to the former are denoted here by a∞, a0, a1, b
∞

, b
0
, and b

1
. The

central grid represents g and the six outer grids represent gλr,

gλ−1
r , gµr, gµ−1

r , gνr, and gν−1
r , as indicated.

from one entry in the configuration (also as shown). The locations from which

the sequences a∞, a0, a1, b
∞

, b
0
, and b

1
associated to the new configurations are

obtained also shift as shown.

Here is the justification for the first coordinates on the righthand sides of the six

equations above.
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Here is why the first coordinate of Φ(gλr) is
( (

a∞2 , a
∞
3 , . . .

)
, h∞ − 1

)
. Since

gλr = ( f + r · (h0, h1), (h0, h1) + e0) = ( f + rxh0(1+ x)h1, (h0 + 1, h1)),

the representation of gλr in the lamplighter model is obtained from that of g by

adding r to the entry in K at (h0, h1) and moving the lamplighter to (h0 + 1, h1).

The second entry is h∞−1 because (h∞−1)+ (h0+1)+h1 = 0, and a∞ is
(
a∞2 , a

∞
3 , . . .

)

by Lemma 2.3.2(ii), since the sequence obtained by propagating H∞h0+h1+1 to level

0 is the same as that obtained by propagating H∞h0+h1
to level 0 and discarding

the first entry.

The first coordinate of Φ(gµr) can be identified likewise.

Similarly, since

gλ−1
r = ( f , (h0, h1))(−r · (−e0),−e0)

= ( f − r · (h0, h1) · (−e0), (h0, h1) − e0)

= ( f − rxh0−1(1+ x)h1, (h0 − 1, h1)),

the representation of gλr
−1 is obtained by moving the lamplighter left to (h0 −

1, h1) and subtracting r from the entry there. We claim that Φ(gλr
−1) has first

coordinate

( (−r + α′, a∞1 , a
∞
2 , . . .

)
, h∞ + 1

)

where α′ depends only on g. The second entry is h∞ + 1 because (h∞ + 1)+ (h0 −

1)+ h1 = 0. All but the first entry of the sequence a∞ can again be identified by

using Lemma 2.3.2(ii). In propagation in H∞h0+h1−1, entries on the boundary line

(that through (h0 + h1 − 1,0) and (0, h0 + h1 − 1)) advance only along that line:

they are unchanged as they propagate and they do not affect any other entries
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in the resulting sequence. So the r subtracted from the entry at (h0−1, h1) moves,

undisturbed to (h0 + h1 − 1,0). The α′ is the first entry in the sequence when the

portion of K in H∞h0+h1−1 is propagated to level 0. So it depends only on g.

The first coordinate of Φ(gµr
−1) can be identified likewise.

Since νr = λrµr
−1, the representation of gνr is obtained by adding r to the entry in

K at (h0, h1), moving the lamplighter to (h0 + 1, h1), then moving the lamplighter

to (h0+ 1, h1− 1), and then subtracting r from the entry at (h0+ 1, h1− 1). Equiva-

lently, it is obtained by moving the lamplighter to (h0+ 1, h1− 1) and adding r to

the entry at (h0, h1−1). So the first coordinate of Φ(gνr) is (a∞, h∞): the second en-

try is h∞ because h∞+(h0+1)+(h0−1) = 0 and a∞ = a∞ because a∞ and a∞ are both

obtained by propagating in H∞h0+h1
, and the altered entry in the configuration is

outside H∞h0+h1
.

The first coordinate of Φ(gνr
−1) is (a∞, h∞) likewise.

The entries in the second and third coordinates are explained analogously ex-

cept for Φ(gµr) and Φ(gν−1
r ), where there is an added complication. When, in the

case of Φ(gµr), the r added at (h0, h1) is propagated to (0, h1) it changes sign with

each step and so becomes (−1)h0r. Similarly, for Φ(gνr
−1), the r subtracted from

(h0 − 1, h1) changes sign with each step as it propagates to (0, h1), and so also

becomes (−1)h0−1(−r) = (−1)h0r.

Finally, we explain why Φ extends to an isomorphism from the Cayley graph C

to the 1-skeleton ofH2(R).

Suppose g ∈ Γ2(R). The set of vertices V in H2(R) that are reached by travel-
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ing from Φ(g) along a single edge partitions into six subsets: travel along the

unique downwards edge in one coordinate-tree, travel upwards along one of

an R-indexed family of edges in another, and remain stationary in the last. Since

α, α′, β, β′, γ, and γ′ only depend on g, each of gλr 7→ Φ(gλr), gλr
−1 7→ Φ(gλr

−1),

gµr 7→ Φ(gµr), gµr
−1 7→ Φ(gµr

−1), gνr 7→ Φ(gνr), and gνr
−1 7→ Φ(gνr

−1) is a map onto

one such subset, and together they give a bijection from the neighbors of g in C

toV.

There are no double-edges and no edge-loops in either graph: for the 1-skeleton

ofH2(R) this is straightforward from the definition, and it therefore follows from

the above for the Cayley graph. So Φ extends to an isomorphism between the

two graphs, and this completes our proof.

Remark 3.4.1. It may be tempting to try to express directly the group multipli-

cation in Γ2(R) in terms of the representations of elements as triples of addresses

of vertices in TR. It is striking how spectacularly awkward this turns out to be,

as the following special case of multiplication by a generator ζ ∈
{
λ±1

r , µ
±1
r , ν

±1
r

}

illustrates.

We have Φ(g) = ((a∞, h∞), (a0, h0), (a1, h1)). To find Φ(gζ) we call on the se-

quences b∞, b0 and b1. Since the propagation (of the bijection established in

Lemma 2.3.2(iii)) in a half-plane proceeds in the manner of Pascal’s triangle, we
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can explicitly express a∗ in terms of b∗ and b∗ in terms of a∗:

a∗p =



m∑

i=0

(−1)δb∗p+i



m

i


if m ≥ 0

∞∑

i=0

(−1)ǫb∗p+i



i − 1− m

i


if m < 0,

b∗p =



−m∑

i=0

(−1)δa∗p+i



−m

i


if m ≤ 0

∞∑

i=0

(−1)ǫa∗p+i



i − 1+ m

i


if m > 0,

when ∗ = ∞,0 and m = h1, ǫ = i, and δ = 0, and when ∗ = 1, and m = h0, ǫ = |h0|,

and δ = i + |h0|. The infinite sums make sense since all but finitely many entries

of the sequences a∗ and b∗ are zero.

These formulae could be used to express α, α′, β, β′, γ, and γ′ in terms of a∞, a0,

a1, h0 and h1: obtain b∞, b0, and b1 using the second formula, then shift them

and add or subtract r appropriately to get the b
∞

, b
0

and b
1

associated to Φ(gζ),

and finally obtain α, α′, β, β′, γ, and γ′ using the first formula.

For example, to calculate α′ first obtain b∞ and b0
1 from a∞ and a0 using the

second formula with m = h1, then let b
∞
= (b0

1 − r, b∞1 , b
∞
2 , b

∞
3 , . . .), then obtain a∞

from b
∞

using the first formula with m = h1, and then, as −r + α′ = a∞1 , we have

found α′.

The complexity of the formulae that would result stands in marked contrast to

the “ fk + r” in our proof in Section 3.3 of Theorem 1 in the case where n = 1.

Remark 3.4.2. Given that equivalence classes of configurations correspond to
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elements of R[x, x−1, (1+ x)−1], the above analysis can all be rephrased in terms of

polynomials—the point-of-view we will take in the next section. In the light of

Lemma 2.2.1, Corollary 2.3.3 amounts to the statement that for each pair (k, l) ∈

Z
2,

{
xk+i(1+ x)l

∣∣∣ i ∈ Z
}
∪
{

xk(1+ x) j+l
∣∣∣ j = −1,−2, · · ·

}

is a basis for R
[
x, x−1, (1+ x)−1

]
over R.

The sequence a∞ lists the coefficients of x0, x1, . . . in xh∞ f , when expressed as a

linear combination of the basis

{
xi
∣∣∣ i ∈ Z

}
∪
{

(1+ x) j
∣∣∣ j = −1,−2, · · ·

}
.

Likewise, a0 lists the coefficients of x−1, x−2, . . . in x−h0 f , and a1 lists those of (1+

x)−1, (1+ x)−2, . . . in (1+ x)−h1 f .

If we multiply f by x−h0(1 + x)−h1 to give f̂ (in effect, shifting the origin from

(0,0) to (h0, h1)), then b∞ lists the coefficients of x0, x1, . . . in f̂ , and b0 lists the

coefficients of x−1, x−2, . . ., and b1 lists those of (1+ x)−1, (1+ x)−2, . . ..

3.5 H2(Z) as a Cayley 2–complex

In this section we show thatH2(Z) is the Cayley 2-complex of

Γ2 =
〈
λi, µi, νi (i ∈ Z)

∣∣∣ λi = νiµi, λi+ j = µiν j (i, j ∈ Z)
〉
,

proving Theorem 2.

Identify the Cayley graph (the 1-skeleton of the Cayley 2-complex) with the 1-

skeleton ofH2(Z) as per the n = 2 case of Theorem 1 (proved in Section 3.4).
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First we show that every 2-cell inH2(Z) is bounded by an edge-loop which cor-

responds to a defining relation of Γ2. Suppose a point p = (p0, p1, p2) ∈ H2(Z) is

in the interior of a 2-cell X. Then each p j is in the interior of an edge I j of the

tree TZ. Let ℓ j = minu ∈ I j h(u) and x j = h(p j) − ℓ j for j = 0,1,2. It follows from

h(p0) + h(p1) + h(p2) = 0 and 0 < x j < 1 that ℓ0 + ℓ1 + ℓ2 is either −1 or −2. So

x0+ x1+ x2 is 1 or 2. Say X is of “type 1” or “2” accordingly. Examples are shown

in Figure 3.7 (with the vertices of the triangles labeled by (x0, x1, x2)-coordinates).

Type 1 example with (ℓ0, ℓ1, ℓ2) = (−1,0,0) Type 2 example with (ℓ0, ℓ1, ℓ2) = (0,−1,−1)

p

p

11

00

−1−1
p0 = − 3

4

p1 =
1
4

p2 =
1
2

p0 =
3
4

p1 = − 1
4 p2 = − 1

2

(1,0,0)

(0,1,0)

(0,0,1)

(0,1,1)

(1,0,1)

(1,1,0)

λi+ j

µi

µi

ν j
νiλi

Figure 3.7: Examples of 2-cells of type 1 and 2 inH2(Z).

Consider moving p within X as parametrized by (x0, x1, x2). It is on an edge in ∂X

when one of the pi is at an end of Ii and is on a vertex when two (and hence all

three) are at an end of Ii. So if X is of type 1, it has vertices, (x0, x1, x2) = (1,0,0),

(0,1,0), and (0,0,1), and ∂X is traversed by following the edges (1 − r, r,0)0≤r≤1,

then (0,1 − r, r)0≤r≤1, and then (r,0,1 − r)0≤r≤1. If X is of type 2, it has vertices,

(x0, x1, x2) = (0,1,1), (1,0,1), and (1,1,0), and ∂X is traversed by following (r,1−

r,1)0≤r≤1, then (1, r,1− r)0≤r≤1, and then (1− r,1, r)0≤r≤1.

Now, ∂X corresponds to a length-3 relator in Γ2, and matching the changes in

heights as ∂X is traversed with the height-changes indicated in the family of six
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displayed equations in our proof of the n = 2 case of Theorem 1 in Section 3.4,

that relator must be λkν j
−1µi

−1 for type 1, and λ−1
i ν jµk for type 2, for some i, j, k ∈

Z.

The workings of lamplighter model illustrated in Figure 3.6 allow us to see that

λkν
−1
j µ
−1
i = 1 in Γ2 if and only if k − j − i = 0 since λkν

−1
j µ
−1
i does not move the

lamplighter and increments the lamp at the lamplighter’s location by k − j − i.

That is, the relation is λi+ j = µiν j for some i, j ∈ Z. Similarly, λ−1
i ν jµk = 1 in Γ2 if

and only if i = j = k since λ−1
i ν jµk does not move the lamplighter and transforms

a triangle of numbers 0
0

0 7→ j
−i

k (with the lamplighter being located to the right

of the −i). That is, the relation is λi = νiµi for some i ∈ Z. So around ∂X we read

one of the defining relations in the presentation given in the theorem.

Finally, we show that every edge-loop inH2(Z) which corresponds to a defining

relation bounds a 2-cell. So suppose ρ : S 1 → H2(Z), given by r 7→ ρ(r) =

(p0(r), p1(r), p2(r)), is a loop in the 1-skeleton ofH2(Z) and around ρwe read one

of the defining relations. Then for each j, such are the defining relations, the

image of the loop r 7→ p j(r) is in a single edge I j of TZ and, by a similar analysis

to that above,

{
(u0, u1, u2) ∈ T 3

Z

∣∣∣ u j ∈ I j and h(u0) + h(u1) + h(u2) = 0
}

is a 2-cell ofH2(Z) with boundary circuit ρ.

So, as no edge-loop in either H2(Z) or in the Cayley 2-complex is the boundary

of two 2-cells, the result it proved.
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3.6 The general case of Theorem 1

The standing assumptions in this section are that n is any fixed positive integer

and R is any commutative ring with unity in which 2, 3, . . . , n − 1 are invert-

ible. We will prove Theorem 1 in full generality: the 1-skeleton of Hn(R) is the

specified Cayley graph.

3.6.1 Preliminaries

Recall that

An(R) = R
[
x, x−1, (1+ x)−1, . . . , (n − 1+ x)−1

]
.

The following lemma generalizes Corollary 2.3.3 and is vital to the proof of

Theorem 1. Baumslag and Stammbach [8] prove a very similar result as do

Bartholdi, Neuhauser and Woess [3, Section 3]. We include a proof for complete-

ness and because this and the lemmas that follow are where the hypothesis that

2,3, . . . , n − 1 are invertible is used.

Lemma 3.6.1 (adapted from Baumslag and Stammbach, Lemma 2.1 in [8]).

{
1, x j, x− j, (1+ x)− j, . . . , (n − 1+ x)− j

∣∣∣ j = 1,2, . . .
}

is a basis for An(R) over R.

Proof. First we show that the given set spans.

Suppose S ⊆ {0,1, . . . , n − 1}.
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For l ∈ S , let

λl :=
∏

i∈Sr{l}
(i − l)−1,

understanding this product to be 1 when S r{l} = ∅. This is well defined because

2,3, . . . , n − 1 are invertible. Then, by induction on n,

∏

l∈S
(l + x)−1

=

∑

l∈S
λl(l + x)−1

in An(R), the crucial calculation for the induction step being that

(l + x)−1(m + x)−1
= (m − l)−1(l + x)−1

+ (l − m)−1(m + x)−1

for all m ∈ {1,2, . . . , n − 1} and l ∈ {0,1, . . . ,m − 1}. So
∏

l∈S (l + x)−1 is in the span.

Next consider xh0(1+ x)h1 · · · (n− 1+ x)hn−1 where each hi is a non-positive integer.

We show it too is in the span by inducting on
∑n−1

i=0 |hi|. The base case is imme-

diate and the previous paragraph gives the induction step: let S = {i | hi < 0}

and

εi =



1 if i ∈ S

0 if i < S .

for each i, then

xh0(1+ x)h1 · · · (n − 1+ x)hn−1

=

(
xh0+ε0(1+ x)h1+ε1 · · · (n − 1+ x)hn−1+εn−1

)∏

l∈S
(l + x)−1

=

(
xh0+ε0(1+ x)h1+ε1 · · · (n − 1+ x)hn−1+εn−1

)∑

l∈S
λl(l + x)−1.

To complete the proof that the given set spans it is enough to show that p(x)(m+

x)−k is in the span whenever p(x) ∈ R[x], m ∈ {0, . . . , n − 1}, and k > 0. After

all, any element of An(R) is an R-linear combination of products of powers of
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x, (1+ x), . . . , (n − 1+ x) and so by the previous result is an R-linear combination

of some such p(x)(m + x)−k. Well, write p(x) = (m + x)q(x) + s for some q(x) ∈ R[x]

and s ∈ R. Then

p(x)(m + x)−k
=

(
q(x) + s(m + x)−1

)
(m + x)−k+1

which by induction on |k| is in the span.

For linear independence, suppose

0 =
d∞∑

j=0

µ jx
j
+

n−1∑

i=0

di∑

j=1

λi, j(i + x)− j

in An(R) for some µ j, λi, j ∈ R. Multiplying through by xd0(1+ x)d1 · · · (n − 1+ x)dn−1

and comparing coefficients we see that 0 = µ0 = µ1 = · · · = µd∞ . The constant

term on the right hand side is λ0,d0 · 1d1 · 2d2 · . . . · (n − 1)dn−1. As 2, . . . , (n − 1) are

invertible in R, we must have λ0,d0 = 0. Repeatedly dividing through by x and

analyzing the constant term gives λ0, j = 0 for all j. Viewing the resulting poly-

nomial as a polynomial in x − 1 rather than x and applying the same technique

yields λ1, j = 0 for all j. Then viewing it as a polynomial in x − 2, then x − 3, and

so on, gives λi, j = 0 for all i, j. �

In the light of this lemma we will, in the remainder of this section and the next

talk about the (∗+ x)− j or the x j coefficient of a p ∈ An(R), meaning the coefficient of

that term when p is expressed as a linear combination of the basis established

in Lemma 3.6.1.

Lemma 3.6.2. Suppose ∗ ∈ {0,1, . . . , n − 1} and q0, . . . , qn−1 ∈ Z, and q∗ = 0. Given

λ∗,1, λ∗,2, . . . in R, all but finitely many of which are zero, take p to be any element of

An(R) such that the coefficients of (∗+ x)−1, (∗+ x)−2, . . . are λ∗,1, λ∗,2, . . .. Let λ′∗,1, λ
′
∗,2, . . .
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be the coefficients of (∗ + x)−1, (∗ + x)−2, . . . in

p′ := xq0(1+ x)q1 · · · (n − 1+ x)qn−1 p.

Then λ′∗,1, λ
′
∗,2, . . . depend only on λ∗,1, λ∗,2, . . . and

(λ∗,1, λ∗,2, . . .) 7→ (λ′∗,1, λ
′
∗,2, . . .)

is a bijection from the set of finitely supported sequences of elements of R to itself. More-

over, if 0 = λ∗,2 = λ∗,3 = · · · , then

(λ′∗,1, λ
′
∗,2, λ

′
∗,3, . . .) =

λ∗,1
∏

i∈{0,...,n−1}r{∗}
(i − ∗)qi , 0, 0, . . .

 .

Proof. It is enough to prove this in the special case p′ = (i + x)p where one of

q0, . . . , qn−1, denoted qi, is 1 and all others are 0, for a general instance can be

reached by composing a suitable sequences of instances of this special case (and

its ‘inverse’). Note that i , ∗, and so we will be able to invert (i − ∗).

Express

p =
∞∑

j=0

µ jx
j
+

n−1∑

l=0

∞∑

j=1

λl, j(l + x)− j, (3.1)

p′ =
∞∑

j=0

µ′jx
j
+

n−1∑

l=0

∞∑

j=1

λ′l, j(l + x)− j (3.2)

where each µ j, µ
′
j, λl, j, λ

′
l, j ∈ R (and only finitely many are non-zero)—that is, as

a linear combinations of the basis established in Lemma 3.6.1. We prove the

special case by calculating (µ′0, µ
′
1, . . .) and (λ′l,1, λ

′
l,2, . . .).

For i, l ∈ {0, . . . , n − 1},

(i + x)
∞∑

j=0

µ jx
j
= iµ0 + (µ0 + iµ1)x1

+ (µ1 + iµ2)x2
+ · · ·
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and, as (i + x)(l + x)− j
= (l + x)− j+1

+ (i − l)(l + x)− j,

(i + x)
∞∑

j=1

λl, j(l + x)− j
=

∞∑

j=1

λl, j(l + x)− j+1
+

∞∑

j=1

λl, j(i − l)(l + x)− j

= λl,1 +

∞∑

j=1

(
λl, j+1 + λl, j(i − l)

)
(l + x)− j. (3.3)

So

(λ′∗,1, λ
′
∗,2, . . .) =

(
λ∗,2 + λ∗,1(i − ∗), λ∗,3 + λ∗,2(i − ∗), . . .

)
,

and evidently the only coefficients from (3.1) this depends on are λ∗,1, λ∗,2, . . ..

Also we find that if 0 = λ∗,2 = λ∗,3 = · · · , then

(λ′∗,1, λ
′
∗,2, λ

′
∗,3, . . .) =

(
λ∗,1(i − ∗), 0, 0, . . .

)
,

which leads to the final claim. To see that

(λ∗,1, λ∗,2, . . .) 7→ (λ′∗,1, λ
′
∗,2, . . .)

is invertible when i , ∗, consider any m such that λ′∗,q = 0 for all q > m. Then

0 = λ∗,m+1 = λ∗,m+2 = · · · as otherwise the sequence λ∗,1, λ∗,2, . . . would not be

finitely supported. And

λ∗,m = (i − ∗)−1λ′∗,m

λ∗,m−1 = (i − ∗)−1(λ′∗,m−1 − λ∗,m)

...

λ∗,1 = (i − ∗)−1(λ′∗,1 − λ∗,2).

�

Lemma 3.6.3. Suppose q0, . . . , qn−1 ∈ Z and
∑

i qi = 0. Given µ0, µ1, . . . in R, all

but finitely many of which are zero, take p to be any element of An(R) such that the

coefficients of x0, x1, . . . are µ0, µ1, . . .. Let µ′0, µ
′
1, . . . be the coefficients of x0, x1, . . . in

p′ := xq0(1+ x)q1 · · · (n − 1+ x)qn−1 p.
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Then µ′0, µ
′
1, . . . depend only on µ0, µ1, . . . and

(µ0, µ1, . . .) 7→ (µ′0, µ
′
1, . . .)

is a bijection from the set of finitely supported sequences of elements of R to itself. More-

over, if 0 = µ1 = µ2 = · · · , then (µ′0, µ
′
1, µ
′
2, . . .) = (µ0,0,0, . . .).

Proof. We follow a similar approach to our proof of Lemma 3.6.2. This time, as

∑
i qi = 0, it is enough to prove the result in the special case p′ = x−1(i+ x)p where

q0 = −1, qi = 1 and all q j = 0 for all j , 0, i.

Again, consider p and p′ expressed as in (3.1) and (3.2). The crucial calculations

this time are that

x−1(i + x)
∞∑

j=0

µ jx
j
= iµ0x−1

+ (µ0 + iµ1)x0
+ (µ1 + iµ2)x1

+ · · ·

and for l ∈ {0,1, . . . , n − 1}, using (3.3),

x−1(i + x)
∞∑

j=1

λl, j(l + x)− j
= λl,1x−1

+

∞∑

j=1

(
λl, j+1 + (i − l)λl, j

)
x−1(l + x)− j

which has no x0, x1, . . . terms when written as a linear combination of the basis

elements since, by induction on j and when l , 0,

x−1(l + x)− j
= l− jx−1 − l− j(l + x)−1 − l− j+1(l + x)−2 − · · · − l−1(l + x)− j.

So

(µ′0, µ
′
1, . . .) = (µ0 + iµ1, µ1 + iµ2, . . .),

and the final claim of the lemma is evident. To see that

(µ0, µ1, . . .) 7→ (µ′0, µ
′
1, . . .)
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is invertible, recall that i ∈ {1,2, . . . , n − 1} (so i is invertible), and consider any m

such that µ′q = 0 for all q > m. Then 0 = µm+1 = µm+2 = · · · as otherwise we would

have µq+1 = −i−1µq for all q > m and so the sequence µ0, µ1, µ2, . . . would not be

finitely supported. So

µm = µ
′
m

µm−1 = µ
′
m−1 − iµm

...

µ0 = µ
′
0 − iµ1.

�

Corollary 3.6.4. If k∗ = 0, then the coefficients of (∗ + x)−1, (∗ + x)−2, . . . in xk0(1 +

x)k1 · · · (n − 1+ x)kn−1 are all zero.

Proof. This is the final statement of Lemma 3.6.2 in the special case p = 1 (and

hence λ∗, j = 0 for all j), and ql = kl for all l. �

Corollary 3.6.5. If k∗ = −1, then the coefficient of (∗+x)−1 in xk0(1+x)k1 · · · (n−1+x)kn−1

is
∏

i∈{0,...,n−1}r{∗}
(i − ∗)ki .

Proof. This is the final statement of Lemma 3.6.2 in the special case p = (∗ + x)−1

(so λ∗,1 = 1 and λ∗, j = 0 for all j , 1), q∗ = k∗ + 1 = 0 and ql = kl for all l , ∗. �

Corollary 3.6.6. If k∞ := −∑n−1
i=0 ki > 0, then the coefficients of x0, x1, . . . in xk0(1 +

x)k1 · · · (n − 1+ x)kn−1 are all zero.
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Proof. This is the final statement of Lemma 3.6.3 with q0 = k0 + k∞ and qi = ki

for all other i (so
∑n−1

i=0 qi = 0 as required) in the special case p = x−k∞ (and since

k∞ > 0, we have µ j = 0 for all j). �

Corollary 3.6.7. If
∑n−1

i=0 ki = 0, then in x−k0(1+ x)−k1 · · · (n − 1+ x)−kn−1 the coefficient

of x0 is 1 and the coefficients of x1, x2, . . . are all zero.

Proof. This is the final statement of Lemma 3.6.3 in the special case p = 1 (so

µ0 = 1 and µ j = 0 for all j , 0) and qi = −ki for all i. �

Lemma 3.6.8. For p ∈ An(R),

(i) the coefficients of x0, x1, . . . in p equal those of x1, x2, . . . in xp,

(ii) the coefficients of (∗ + x)−1, (∗ + x)−2, . . . in (∗ + x)p equal those of (∗ + x)−2, (∗ +

x)−3, . . . in p.

Proof. Calculate in the manner of our proof of Lemma 3.6.2. The crucial point

for (i) is that x(l + x)− j
= (l + x)− j+1 − l(l + x)− j has no x1, x2, . . . terms when j ≥ 1.

The crucial points for (ii) are that (∗ + x)(l + x)−i
= (l + x)−i+1

+ (∗ − l)(l + x)−i and

(∗+x)x j
= ∗x j

+x j+1 have no (∗+x)−1, (∗+x)−2, . . . terms when l ∈ {0,1, . . . , n − 1}r{∗}

and i ≥ 1 and when j ≥ 0. �

3.6.2 The bijection Φ between Γn(R) and the vertices ofHn(R)

Define a map Φ from Γn(R) = An(R) ⋊ Zn to the vertices ofHn(R) by

( f , (h0, . . . , hn−1)) 7→ ((a∞, h∞), (a0, h0), . . . , (an−1, hn−1))
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where h∞ := −h0 − · · · − hn−1 and the sequences a∞, a0, . . . , an−1 will be defined as

follows (guided by Remark 3.4.2). They list the coefficients of elements of An(R),

expressed as linear combinations of the basis from Lemma 3.6.1, specifically, for

∗ = 0, . . . , n − 1,

• a∞ lists the coefficients of x0, x1, . . . in xh∞ f , and

• a∗ lists the coefficients of (∗ + x)−1, (∗ + x)−2, . . . in (∗ + x)−h∗ f .

Our proof that Φ is a bijection will involve

f̂ := x−h0(1+ x)−h1 · · · (n − 1+ x)−hn−1 f

and further sequences b∞,b0, . . . ,bn−1 defined by:

• b∞ lists the coefficients of x0, x1, . . . in f̂ , and

• b∗ lists the coefficients of (∗ + x)−1, (∗ + x)−2, . . . in f̂ .

Proposition 3.6.9. Φ is a bijection.

Proof. Suppose v = ((a∞, h∞), (a0, h0), . . . , (an−1, hn−1)) is a vertex of Hn(R) and so

h∞ = −h0 − · · · − hn−1. We will explain that there is a unique g = ( f , (h0, . . . , hn−1))

with Φ(g) = v.

The idea is to find the sequences b∞, b0, . . . , bn−1, for then we can recover f̂ (and

therefore f ) from them since they list all its coefficients when expressed as a

linear combination of the basis from Lemma 3.6.1.

For ∗ = ∞, this is possible (and unique) by Lemma 3.6.3 applied with p = xh∞ f

and p′ = f̂ (and so q0 = −(h∞ + h0), and qi = −hi for i = 1, . . . , n − 1). It establishes
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a bijection taking (µ0, µ1, . . .) = a∞, which lists the coefficients of x0, x1, . . . in xh∞ f ,

to b∞ = (µ′0, µ
′
1, . . .), which lists the coefficients of x0, x1, . . . in f̂ . Likewise, for

∗ = 0,1, . . . , n − 1, apply Lemma 3.6.2 with p = (∗ + x)−h∗ f and p′ = f̂ (and so

qi = −hi for i = 0,1, . . . , n − 1 except that q∗ = 0). It establishes a bijection taking

(λ∗,1, λ∗,2, . . .) = a∗, which lists the coefficients of (∗+ x)−1, (∗+ x)−2, . . . in (∗+ x)−h∗ f ,

to b∗ = (λ′∗,1, λ
′
∗,2, . . .), which lists the coefficients of (∗ + x)−1, (∗ + x)−2, . . . in f̂ . �

3.6.3 Extending Φ

Next we show that Φ extends to a graph-isomorphism from the Cayley graph C

of Γn(R) with respect to the generating set

{
(r, ei), (r, e j)(r, ek)

−1
∣∣∣ r ∈ R, 0 ≤ i, j, k ≤ n − 1 and j < k

}

to the 1-skeleton ofHn(R).

Recall that we denote the standard basis for Zn by e0, . . . , en−1. So, if h =

(h0, . . . , hn−1) ∈ Zn, then h + ei = (h0, . . . , hi−1, hi + 1, hi+1, . . . , hn−1). Recall that

for such h and for f ∈ An(R),

f · h = f xh0(1+ x)h1 · · · (n − 1+ x)hn−1.

(Warning: f ·0 = f and f · (h+h′) equals ( f ·h) ·h′, and not in general f ·h+ f ·h′.)

Also recall that the group operation on Γn(R) is ( f ,h)( f̂ , ĥ) = ( f + f̂ · h,h + ĥ).

Suppose g = ( f ,h) ∈ Γn(R) where f ∈ An(R) and h ∈ Zn. We show below that post-

multiplying g by the elements of the generating set and their inverses gives
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g(r, e j) =
(

f + r · h, h + e j

)
, (3.4)

g(r, e j)
−1
=

(
f − r · (h − e j), h − e j

)
, (3.5)

g(r, e j)(r, ek)
−1
=

(
f + (k − j)r · (h − ek), h + e j − ek

)
, (3.6)

g(r, ek)(r, e j)
−1
=

(
f + ( j − k)r · (h − e j), h + ek − e j

)
(3.7)

for all r ∈ R and all j, k ∈ {0, . . . , n − 1}. The explanation is that (3.4) is immediate

from how group multiplication is defined, (3.5) uses that

(r, e j)
−1
= (−r · (−e j),−e j),

the key calculation for (3.6) is that

r · h − r · (h + e j − ek) = r
(
1− j + x

k + x

)
· h = r

k − j
k + x

· h = (k − j)r · (h − ek),

and (3.7) is immediate from (3.6).

Suppose

Φ(g) = ((a∞, h∞), (a0, h0), . . . , (an−1, hn−1)).

We claim next that Φmaps

g(r, e j) 7→
( ( (

a∞2 , a
∞
3 , . . .

)
, h∞ − 1

)
, . . . ,

( (
α j + rβ j, a

j
1, a

j
2, . . .
)
, h j + 1

)
, . . .

)
,

g(r, e j)
−1 7→

( ( (
α′j − rβ′j, a

∞
1 , a

∞
2 , . . .

)
, h∞ + 1

)
, . . . ,

( (
a j

2, a
j
3, . . .
)
, h j − 1

)
, . . .

)
,

g(r, e j)(r, ek)
−1 7→

(
. . . ,

( (
α jk + rβ jk, a

j
1, a

j
2, . . .
)
, h j + 1

)
, . . . ,

( (
ak

2, a
k
3, . . .
)
, hk − 1

)
, . . .

)
,

g(r, ek)(r, e j)
−1 7→

(
. . . ,

( (
a j

2, a
j
3, . . .
)
, h j − 1

)
, . . . ,

( (
α′jk + rβ′jk, a

k
1, a

k
2, . . .
)
, hk + 1

)
, . . .

)
,

where the pairs indicated by ellipses are unchanged from the corresponding

(ai, hi) in Φ(g), and in terms of linear combinations of the basis established in

62



Lemma 3.6.1,

α j is the coefficient of ( j + x)−1 in ( j + x)−h j−1 f ,

α′j is the coefficient of x0 in xh∞+1 f ,

α jk is the coefficient of ( j + x)−1 in ( j + x)−h j−1 f ,

α′jk is the coefficient of (k + x)−1 in (k + x)−hk−1 f ,

β j =

∏

i∈{0,...,n−1}r{ j}
(i − j)hi , the coefficient of ( j + x)−1 in ( j + x)−h j−1 · h,

β′j = 1, the coefficient of x0 in xh∞+1 · (h − e j),

β jk =

∏

i∈{0,...,n−1}r{ j}
(i − j)hi , the coefficient of ( j + x)−1 in (k − j)( j + x)−h j−1 · (h − ek),

β′jk =
∏

i∈{0,...,n−1}r{k}
(i − k)hi , the coefficient of (k + x)−1 in ( j − k)(k + x)−hk−1 · (h − e j).

(The values of the coefficients β j, β jk and β′jk are as stated as a consequence of

Corollary 3.6.5 and β′j as a consequence of Corollary 3.6.7.)

Here is why. First note that the second entries (those involving h∞, h1, . . . , hn−1)

of all the coordinates are correct: they can be read off the vectors in the second

coordinates of the righthand sides of (3.4)–(3.7). Secondly, note that the case

of Φ(g(r, e j)(r, ek)−1) is identical to that of Φ(g(r, ek)(r, e j)−1), save that j and k are

interchanged. So we will only address the former.

Here is why the (ai, hi) indicated by ellipses in the above four equations are in-

deed the same as the corresponding (ai, hi) in Φ(g). We compare the (∗+ x)−1, (∗+

x)−2, . . . coefficients of the appropriate polynomials.

Case Φ(g(r, e j)). The polynomials in question are (∗+ x)−h∗( f + r ·h) and (∗+ x)−h∗ f .
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The relevant coefficients agree when ∗ < {∞, j} since those of

(∗ + x)−h∗r · h = r
∏

l∈{0,1,...,n−1}r{∗}
(l + x)hl

are all zero by Corollary 3.6.4.

Case Φ(g(r, e j)−1). Similarly, the relevant coefficients of

(∗ + x)−h∗(−r · (h − e j)) = −r( j + x)−1
∏

l∈{0,1,...,n−1}r{∗}
(l + x)hl

are all zero when ∗ < {∞, j} by the same corollary.

Case Φ(g(r, e j)(r, ek)−1). Similarly, when ∗ < {∞, j, k} the relevant coefficients of

(∗ + x)−h∗(k − j)r · (h − ek) are all zero. And, for the ∗ = ∞ case, the coefficients of

x0, x1, . . . in xh∞(k − j)r · (h − ek) are all zero by Corollary 3.6.6 (with k0 = h∞ + h0,

kk = hk − 1 and kl = hl for all other l) since h∞ + h0 + · · · + hn−1 − 1 = −1 < 0.

Now we turn to the coordinates which differ after multiplication by a generator.

Why the ∞-coordinate of Φ(g(r, e j)) is
( (

a∞2 , a
∞
3 , . . .

)
, h∞ − 1

)
. We need to determine

the coefficients of x0, x1, . . . in xh∞−1( f + r · h). Those of xh∞−1r · h are all zero by

Corollary 3.6.6. Lemma 3.6.8(i) tells us that the coefficients of x0, x1, . . . in xh∞−1 f

equal those of x1, x2, . . . in xh∞ f , and so are a∞2 , a
∞
3 , . . . by definition.

Why the j-coordinate of Φ(g(r, e j)−1) is
( (

a j
2, a

j
3, . . .
)
, h j − 1

)
. The ( j+ x)−1, ( j+ x)−2, . . .

coefficients of ( j + x)−h j+1( f − r · (h − e j)) are a j
2, a

j
3, . . . since those of ( j + x)−h j+1r ·

(h − e j) = ( j + x)−h jr · h are all zero by Corollary 3.6.4 and those of ( j + x)−h j+1 f

equal the ( j + x)−2, ( j + x)−3, . . . coefficients of ( j + x)−h j f by Lemma 3.6.8(ii).

Why the k-coordinate of Φ(g(r, e j)(r, ek)−1) is
( (

ak
2, a

k
3, . . .
)
, hk − 1

)
. The (k + x)−1, (k +
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x)−2, . . . coefficients of (k+ x)−hk+1( f + (k− j)r · (h− ek)) are ak
2, a

k
3, . . . similarly to the

previous case.

Why the j-coordinate ofΦ(g(r, e j)) is
( (
α j + rβ j, a

j
1, a

j
2, . . .
)
, h j + 1

)
. We need to check

that the ( j+x)−1, ( j+x)−2, . . . coefficients of ( j+x)−h j−1( f +r ·h) are α j+rβ j, a
j
1, a

j
2, . . ..

The ( j + x)−2, ( j + x)−3, . . . coefficients are a j
1, a

j
2, . . . since those of ( j + x)−h j−1r · h =

( j + x)−1(( j + x)−h jr · h) are all zero by Corollary 3.6.4 and those of ( j + x)−h j−1 f

equal the ( j+ x)−1, ( j+ x)−2, . . . coefficients of ( j+ x)−h j f by Lemma 3.6.8(ii) for the

same reasons as in earlier cases. Its ( j + x)−1-coefficient is α j + rβ j by definition.

Why the∞-coordinate ofΦ(g(r, e j)−1) is
( (
α′j − rβ′j, a

∞
1 , a

∞
2 , . . .

)
, h∞ + 1

)
. The x0, x1, . . .

coordinates of xh∞+1( f − r · (h − e j)) are α′j − rβ′j, a
∞
1 , a

∞
2 , . . . for similar reasons.

Why the j-coordinate of Φ(g(r, e j)(r, ek)−1) is
( (
α jk + rβ jk, a

j
1, a

j
2, . . .
)
, h j + 1

)
. The ( j +

x)−1, ( j+ x)−2, . . . coefficients of ( j+ x)−h j−1( f +(k− j)r ·(h−ek)) are α jk+rβ jk, a
j
1, a

j
2, . . .

likewise.

The set of vertices V in Hn(R) that are reached by traveling from Φ(g) along a

single edge partitions into (n + 1)n subsets: travel along the unique downwards

edge in one of the n + 1 coordinate-trees, travel upwards along one of an R-

indexed family of edges in another, and remain stationary in the rest.

As we have seen, for each element x of the generating set

{
(r, ei), (r, e j)(r, ek)

−1
∣∣∣ r ∈ R, 0 ≤ i, j, k ≤ n − 1 and j < k

}

the location of Φ(gx) and Φ(gx−1) falls in one of these subsets. Thereby the union

of this generating set together with the set of the inverses of its elements has

(n + 1)n subsets which correspond to the (n + 1)n subsets of V. Indeed, each
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subset contains one R-indexed family of generators or inverse-generators.

Since α j and β j do not depend on r and β j is invertible (since 2,3, . . . , n − 1 are

invertible), for fixed j, the map r 7→ α j + rβ j is a bijection R → R. So g(r, e j) 7→

Φ(g(r, e j)) is a bijection between a subset of the neighbors of g in the Cayley

graph C and one of these subsets ofV.

Likewise, because β′j, β jk, β
′
jk are invertible (since 2,3, . . . , n − 1 are invertible),

r 7→ α′j − rβ′j,

r 7→ α jk + rβ jk,

r 7→ α′jk + rβ′jk

are all bijections R → R. So as α′j, α jk, α
′
jk, β

′
j, β jk, and β′jk do not depend on r,

there are similar bijections between subsets of neighbors of g and subsets of V.

Combined, these bijections give a bijection from the neighbors of g in C to the

neighbors of Φ(g) inV.

There are no double-edges and no edge-loops in either graph: for the 1-skeleton

ofHn(R) this is straightforward from the definition, and it therefore follows from

the above for C. So Φ extends to an isomorphism from C to the 1-skeleton of

Hn(R), completing our proof.
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CHAPTER 4

DISTORTION IN Γ2

Throughout this chapter we will use the presentation

〈
a, s, t

∣∣∣ [a, at] = 1, [s, t] = 1, as
= aat

〉

of Γ2.

In [18], Cleary showed that the subgroup Γ1 = 〈a, t〉 is exponentially distorted in

Γ2. For completeness, we include a short proof of this result in Section 4.2. Then

in Section 4.3 we show that, in contrast, the subgroup 〈a〉 is undistorted in Γ2.

4.1 Motivation

Our original motivation for studying distortion came from trying to show a

quadratic upper bound for the filling length function of Γ2. If the distortion

were to occur, it would lead to ‘shortcut diagrams’ (see Section 5 of [30] for

details) which could be useful tools in the construction of small van Kampen

diagrams. If the subgroup 〈a〉 were to be exponentially distorted, the shortcut

diagrams could have been helpful to show that the filling length of Γ2 grows at

most quadratically.

We were able to show that, in fact, the subgroup 〈a〉 is undistorted in Γ2, which

is a nice result on its own, but it fails to lead to an upper bound on filling length

using shortcut diagrams.

In Chapter 5, we work towards showing that there is a quadratic upper bound
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for the filling length function of Γ2 modulo a combinatorial open question about

propagating configurations.

4.2 The subgroup Γ1 = 〈a, t〉 is exponentially distorted

It is well-known and not hard to see that the subgroup Γ1 is exponentially dis-

torted in Γ2. Recall the lamplighter model discussed in Section 2.2 and consider

a word wn = asn ∈ Γ2 whose configuration Kwn has zeros at all the lattice points,

except at (0, n) where the entry is 1. Using the relation as
= aat, we can re-

write it as an element in 〈a, t〉 by propaging this configuration to the t-axis. This

gives a configuration Kw′n that is zero everywhere except at points (i,0) where

the entries are
(

n
i

)
for 0 ≤ i ≤ n. Thus, w′n = a(n

0)ta(n
1)ta(n

2)t · · · ta(n
n)t−n ∈ Γ1 and so

|w′n| = 2n +
∑n

i=0

(
n
i

)
= 2n + 2n. From Corollary 2.3.3 it can be seen that, in fact, this

is a shortest word in the subgroup Γ1 representing wn since the lamplighter must

flip the switches at least 2n times and must travel at least a distance of 2n to get

to the lamp at location (n,0) and back to the origin. But as an element of Γ2, wn

has length |wn| = |asn | = 2n + 1. So, the subgroup Γ1 is exponentially distorted in

Γ2.

4.3 The subgroup 〈a〉 is undistorted

We first prove the following result, which is used in the proof of Theorem 4,

which is in turn used to prove Theorem 3.

Proposition 4.3.1. Suppose K is a configuration equivalent to Kǫ . If M is the entry
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0

0 0

0 -1 0

1 0 0 1

0 0 -2 0 0

0 2 0 0 2 0

-3 0 0 -1 0 0 -3

0 0 2 0 0 2 0 0

0 -2 0 0 -2 0 0 -2 0

3 0 0 3 0 0 3 0 0 3

0 0 -2 0 0 80 0 0 -2 0 0

0 2 0 0 3 0 0 3 0 0 2 0

-1 0 0 -2 0 0 -1 0 0 -2 0 0 -1

0 0 2 0 0 1 0 0 1 0 0 2 0 0

0 -1 0 0 0 0 0 -1 0 0 0 0 0 -1 0

0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0

0 0 0 0 0 -1 0 0 -2 0 0 -1 0 0 0 0 0

Figure 4.1: Trivial configuration with norm 160and maximum value of 80.

with maximum absolute value inK , then |M| ≤ |K|−|M|. (In other words, the maximum

of the absolute values of the entries in K is less than or equal to the sum of the absolute

values of all other entries in the configuration.)

Figure 4.1 shows a trivial configuration K with the maximal value M = 80 and

80 = |M| = |K| − |M| = 160− 80. This shows that the bound in Proposition 4.3.1

cannot be improved. (Other simpler examples exist.)

Using Proposition 4.3.1, we will prove:

Theorem 4. If a configuration K is equivalent to a configuration where all entries are

zeros except for one entry which is M, then K has norm |K| ≥ |M|.

Proof of Proposition 4.3.1. Without loss of generality, assume that the maximal el-

ement appearing in the configuration K is positive and is located at (0,0).
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Let r0 = 1, r1 =
−1+i

√
3

2 and r−1 =
−1−i

√
3

2 be the three cube roots of unity. Note that

|r0| = |r1| = |r−1| = 1 and r0 + r1 + r−1 = 0.

The idea behind the proof is to realize the equivalence between K and Kǫ as a

sequence of basic moves consisting of adding (or subtracting) a translate of the

triangle −1
1
−1, and to construct an invariant that remains zero after each basic

move.

From the definition of the equivalence of configurations and the fact that K

is equivalent to Kǫ , we know that there is a finite sequence of configurations

starting withKǫ and ending withK in which each configuration differs from the

next only in one triangle of adjacent integers which is b
a

c in one and is b+z
a−z

c+z for

some z ∈ Z in the other. Hence, we can obtain K from the all-zero configuration

by adding zi, j times −1
1
−1 for some zi, j ∈ Z to the triangle located at (i, j−1)

(i, j)
(i+1, j−1)

for each (i, j) ∈ Z2 where only finitely many of zi, j are non-zero.

Thus, the entry at each location (i, j) in K is di, j = zi, j − zi−1, j+1 − zi, j+1.

Consider a new configuration K ′′ obtained from K in two steps: first multiply

those integers at every even row by −1 (so we can associate this configuration

to the one obtained from all-zero configuration by adding ±zi, j times 1
1

1 to the

triangle located at (i, j−1)
(i, j)

(i+1, j−1) for each (i, j) ∈ Z2 where only finitely many of

zi, j are non-zero), and then multiply the whole grid pointwise by
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...

. . . r0 r1 r−1 r0 r1 r−1 r0 . . .

. . . r1 r−1 r0 r1 r−1 r0 r1 r−1 . . .

. . . r0 r1 r−1 r0 r1 r−1 r0 . . .

. . . r1 r−1 r0 r1 r−1 r0 r1 r−1 . . .

. . . r0 r1 r−1 r0 r1 r−1 r0 . . .

. . . r1 r−1 r0 r1 r−1 r0 r1 r−1 . . .

...

where any r0 is at (0,0). Denote the resulting entries at points (i, j) by ci, j. Note

that these operations did not change the complex norm of the numbers that we

started with. Each addition of 1
1

1 corresponds to the addition of either

r1
r0

r−1 or r−1
r1

r0 or r0
r−1

r1

Since r0+ r1+ r−1 = 0, adding 1
1

1 at any lattice point keeps the sum (regular sum,

not in an absolute value) of all the entries at zero. Hence,
∑

i, j∈Z ci, j = 0 and

|M| = |c0,0| =
∣∣∣∣∣∣∣
∑

i, j∈Zr(0,0)

ci, j

∣∣∣∣∣∣∣
≤
∑

i, j∈Zr(0,0)

|ci, j|,

which is exactly the sum of the norms of all other elements in the original con-

figuration as claimed. �

Remark 4.3.2. Note that in the last inequality, equality occurs if and only if the

non-zero ci, j’s are complex numbers with the same argument and sign. Equiva-

lently, the entries in K are non-zero only at locations corresponding to r0’s and

even rows have negative entries, while odd rows have positive entries.

Note that the non-zero entries in Figure 4.1 are in columns as predicted by Re-

mark 4.3.2 and that the entries in the rows (if we disregard M) alternate signs.
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Proof of Theorem 4. Without the loss of generality, assume that M is located at

(0,0) in the second configuration.

First, let us assume that the entry at location (0,0) in K is zero. Then consider

configuration K ′ which is obtained from configuration K by subtracting M at

location (0,0) (obtaining −M at that location). Clearly, the resulting configura-

tion K ′ is equivalent to Kǫ . If M is not the largest entry in absolute value, then

|K| ≥ |M| and we are done. If M is the maximal value appearing in K ′ then by

Proposition 4.3.1, |M| ≤ |K ′| − |M| = |K| and we are done.

Now if the entry at (0,0), call it c0,0, in K were non-zero, we can use the above

proof where we replace K by the same configuration but with a zero at location

(0,0), call itK , and replace M by M = M − c0,0. The above proof gives |K| ≥ |M| =

|M − c0,0|, so |K| = |K| + |c0,0| ≥ |M − c0,0| + |c0,0| ≥ |M|. �

We are now ready to prove Theorem 3, which says that the subgroup 〈a〉 of Γ2 is

undistorted in Γ2.

Proof of Theorem 3. Suppose we have an element aM ∈ 〈a〉 which can be repre-

sented in Γ2 by some word w with the configuration Kw. We know that for any

word, |w| ≥ |Kw| and by Theorem 4, |Kw| ≥ |M|. Hence, for all M ∈ Z, aM cannot

be expressed as a word of length less than |M| in Γ2. �
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CHAPTER 5

FILLING LENGTH

Recall from Section 1.9 that the filling length of a trivial word w in a finitely pre-

sented group, is the minimal integer L such that w can be converted to the empty

word through words of length at most L by applying relators and freely reduc-

ing/expanding. The filling length function FL : N → N, for a finitely presented

group Γ, is defined by

FLΓ(n) = max
{

FL(w)
∣∣∣ w = 1 in Γ and |w| ≤ n

}
.

Recall that Γ2 has the presentation

Γ2 =
〈
a, s, t

∣∣∣ [a, at] = 1, as
= aat, [s, t] = 1

〉
.

and can be viewed using the two-dimensional model involving the combina-

torics of Pascal’s triangle.

Our conjecture is that the filling length of Γ2 is quadratic. In this chapter, we

work toward finding an upper bound for this function. We are able to show the

upper bound modulo a combinatorial open question on the configurations. One

would also need to find a quadratic lower bound on the filling length function

of Γ2 to prove the conjecture.

5.1 Open questions on pushing configurations

Recall the rhombic grid model for Γ2 introduced in Section 2.2. The job of finding

an upper bound on the filling length of Γ2 can be broken into two components:

73



bounding the number of times the lamplighter flips switches and bounding the

length of the lamplighter’s path. In Section 5.2, we show that we can bound

the lamplighter’s path. Here we pose some open questions, which if answered

would give us a bound on the switch-flips, and hence a bound on the filling

length.

Definition 5.1.1. Let BN =
{
(i, j)

∣∣∣ |i| + | j| ≤ N
}

denote the ball of size N around the

origin in the lamplighter model.

Remark 5.1.2. In the model, the ball BN looks like a tilted rectangle. See Fig-

ure 5.1 for switches located in B4. For any N, the ball BN contains N2
+ (N + 1)2

lattice points (in particlar, there are ≤ 5N2 lattice points in BN).

t

s

Figure 5.1: The dark points show elements of B4.

Next, we consider a special (systematic) way of altering the switches (in a con-

figuration) that the lamplighter presses, while not changing the word that the

configuration represents, called propagating row-by-row.

Given a configuration for a word w lying entirely above the t-axis, we can prop-

agate it row-by-row toward the t-axis via the following:
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• consider the top row which has non-zero entries

• work from left to right replacing each integer in that row by a zero by

using the equivalence

x
z
y 7→ x+z

0
y+z

• repeat

See Figure 5.2 for an example of propagating row-by-row.

s

t

(2)s

t

(1) s

t

(3)

s

t

(5)s

t

(4) s

t

(6)

-1

1
5

2
-1 1

-1 -1

1
5

2
-1 1

-2 -1
5

2
-1 1

-1 1
2
-2 2 -1

-1 1
1 -1

Figure 5.2: Example of propagating row-by-row.

Open Question 5.1.3. Does there exist a constant C such that for any trivial word

w in Γ2 with configuration Kw whose support lies above the t-axis, when we propagate

the configuration Kw row-by-row to the t-axis the norm of each of the intermediate

configurations is at most C · |Kw|?

Or a less restrictive question,

Open Question 5.1.4. Does there exist a constant C such that given any trivial word

w ∈ Γ2 whose configuration is supported on BN for some N ∈ Z, there exists a sequence
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of configurations K1,K2, . . . ,K p with K1
= Kw and K p

= Kǫ , each K i is supported

within BC·N , and |Ki| ≤ C · |Kw| for all i.

Note that in the Open Question 5.1.3, if |w| = N then w ∈ BN and all the con-

figurations that we encounter while propagating w row-by-row stay inside BN .

Since w represents a trivial word supported above the t-axis, when we reach the

t-axis, we must have all zeros in the configuration.

Clearly, a positive answer to the Open Question 5.1.3 implies a positive answer

to the Open Question 5.1.4 since we can force the sequence of the configurations

to be the ones we encounter by propagating row-by-row.

5.2 How our open questions relate to the filling length of Γ2

In this section, we will show how a positive answer to either one of the above

questions leads to an upper bound on the filling length of Γ2. A positive an-

swer to the Open Question 5.1.3 leads to a quadratic upper bound on the filling

length, while a positive answer to the more general question leads to a cubic up-

per bound. In fact, any “systematic-enough” way of propagating a configura-

tion (such as propagating row-by-row) would lead to a quadratic upper bound

on the filling length of Γ2.

Theorem 5. Assume there exists a constant C such that given any trivial word w in Γ2

whose support lies above the t-axis, when we propagate its configurationKw row-by-row

to the t-axis the norm of each of the intermediate configurations stays at most C · |Kw|.

Then FLΓ2(n) 4 n2.
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To prove the theorem, we need to consider any trivial word w written in 〈a, t, s〉,

and exibit an algorithm that would transform this word to an empty word ǫ

through the words of length at most quadratic in |w|. We will prove Theorem 5

in two steps:

(i) We show that we can restrict our attention to the trivial words w, where

the lamplighter only visits the first quadrant.

(ii) We show that after each application of x
z
y ∼ x+z

0
y+z, we can re-write w to be

in the form w′ =
∏

acn,m sntm for some integers cn,m, where the product is in

lexicographic order of the pairs (n,m): for each consecutive pair asni tmi asn j tm j
,

we have ni ≤ n j and if ni = n j, then mi < m j, while increasing the length of

the word at most quadratically.

5.2.1 Proof of Theorem 5

The first part can be seen from the following: Given a trivial word w with |w| = N.

Let w′ = tN sNws−Nt−N . Then clearly, w′ is a trivial word that lies entirely in the

first quadrant. The length of w′ is linear in the length of w, since |w′| ≤ 5N = 5|w|.

Thus, if we show that the filling length of each trivial word lying entirely in the

first quadrant is some function F(N), it will imply that the filling length of all

trivial words is ≃ F(N) as well.

The second part follows from a few lemmas below.

Lemma 5.2.1. The filling length of [a, atn ] is at most quadratic with respect to n.

Namely, FL([a, atn ]) ≤ 46n2.
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Proof. Let us first only consider n > 0. We will prove the lemma by inducting

on n. As the base case, we know that FL([a, at]) = 8. For n > 1, we can transform

[a, atn+1
] to a trivial word using the following moves (see Figure 5.3).

[a, atn+1
] = a−1a−tn+1

aatn+1

= a−1a−tn+1
aa−1a−tnaatnatn+1

FL([a, atn ]) + 4n + 8

= a−1a−tn+1
a−tnaatn tt−1atn+1

8n + 12

= a−1a−tn+1
a−tnaatn taatna−1a−tn t−1atn+1

FL([a, atn ]) + 8n + 12

= a−1a−tn+1
a−tnaatnatatn+1

a−ta−tn+1
atn+1

12n + 22

= a−1a−tn+1
a−tnaatnattt−1atn+1

a−t 12n + 22

= a−1a−tn+1
a−tnaatnatta−1a−tn−1

aatn−1
t−1atn+1

a−t FL([a, atn−1
]) + 8n + 18

= a−1a−tn+1
a−tnaatnata−ta−tnatatnatn+1

a−t 12n + 24

= a−1a−tn+1
a−tnaatatnatn+1

a−t 12n + 24

= a−1a−tn+1
a−tnaatatnatn+1

a−t 8n + 16

= a−1sa−tn s−1sas−1satn s−1a−t 8n + 16

= a−1sa−tnaatn s−1a−t 4n + 13

= a−1sa−tnaatna−tna−1atnas−1a−t FL([a, atn ]) + 4n + 9

= a−1sas−1a−t 8n + 13

= a−1aata−t 8

= 1.

For each line, the expression on the right hand side gives an upper bound on the

length of the intermediate words we encounter while transforming the word

from the line just above to the word on that line.

We see that at each step, the length of the intermediate words never exceeds
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FL([a, atn ]) + 12n + 24. So

FL([a, atn+1
]) ≤ FL([a, atn ]) + 12n + 24

≤ FL([a, atn−1
]) + 12(n − 1)+ 24+ 12n + 24

≤ . . . ≤

≤ FL([a, at]) + 12+ 24+ 12 · 2+ 24+ . . . + 12n + 24

≤ 8+
12n(n + 1)

2
+ 24n = 6n2

+ 30n + 8 ≤ 44n2.

a

a
t
n

a
t

a
t
n+1

a
t
n+1

a
t

a
t
n

a
t

a

a
t
n

a
t
n+1

a

a
t
n

a
t
n

a a

s

s

s

s

2

3

1
8

4

5

7

6

Figure 5.3: A sketch of a van Kampen diagram for [a, atn+1
].

Figure 5.3 shows a sketch of a van Kampen diagram for the word [a, atn+1
]. The

purple numbers inside the cells indicate the order in which we collapse these

cells. We are able to collapse the green cells by induction — cells 1, 2 and 7 cost

FL([a, atn ]) to collapse, while cell 3 costs FL([a, atn−1
]).

Now for n < 0, we get a similar bound by
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[a, at−|n| ] = a−1a−t−|n|aat−|n|

= a−1t−|n|a−1t|n|at−|n|at|n|

= t−|n|t|n|a−1t−|n|a−1t|n|at−|n|at|n|

= t−|n|[at|n| , a]t|n|

= t−|n|t|n|

= 1.

Thus, FL([a, atn ]) ≤ 46|n|2 for all n ∈ Z. �

Lemma 5.2.2. The filling length of [a, asn
] is at most quadratic with respect to n.

Namely, FL([a, asn
]) ≤ 46n2.

Proof. The proof is similar to that of Lemma 5.2.1 (see Figure 5.4). Using the

relation at
= a−1as, we see that (asn

)t
= (at)sn

= (a−1as)sn
= a−sn

asn+1
(so some of the

arrows in the figure are flipped). �

Lemma 5.2.3. The filling length of [a, asmtn ] is at most quadratic with respect to |n|+ |m|.

Namely, FL([a, asmtn ]) ≤ 48(|n| + |m|)2.

Proof. First, let us consider only n ≥ 0. For a given m, we will induct on n. The

previous lemma gives the base case since we showed that FL([a, asm
]) ≤ 46|m|2.

See Figure 5.5 and calculations below for details of the induction on n. We use

the fact that (asmtn)s
= (as)smtn

= (aat)smtn
= asmtnasmtn+1

.

80



a

a
s
n

a
s

a
s
n+1

a
s
n+1

a
s

a
s
n

a
s

a

a
s
n

a
s
n+1

a

a
s
n

a
s
n

a a

t

t
t

t

Figure 5.4: A sketch of a van Kampen diagram for [a, asn+1
].
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Figure 5.5: A sketch of a van Kampen diagram for [a, asmtn+1
].
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More explicitly,

[a, asmtn+1
] = a−1a−smtn+1

aasmtn+1

= a−1a−smtn+1
aa−1a−smtnaasmtnasmtn+1

= a−1a−smtn+1
a−smtnaasmtnasmtn+1

= a−1a−smtn+1
a−smtnaasmtnatasmtn+1

a−ta−smtn+1
asmtn+1

= a−1a−smtn+1
a−smtnaasmtnatasmtn+1

a−t

= a−1a−smtn+1
a−smtnaasmtnata−ta−smtnatasmtnasmtn+1

a−t

= a−1a−smtn+1
a−smtnaatasmtnasmtn+1

a−t

= a−1a−smtn+1
a−smtnaatasmtnasmtn+1

a−t

= a−1sa−smtn s−1sas−1sasmtn s−1a−t

= a−1sa−smtnaasmtn s−1a−t

= a−1sa−smtnaasmtna−smtna−1asmtnas−1a−t

= a−1sas−1a−t

= a−1aata−t

= 1.

As in the proof of Lemma 5.2.1, we see that at each step, the length of the current
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word is ≤ FL([a, asmtn ]) + 12(|m| + n) + 24. So

FL([a, asmtn+1
]) ≤ FL([a, asmtn ]) + 12(|m| + n) + 24

≤ FL([a, asmtn−1
]) + 12(|m| + n − 1)+ 24+ 12(|m| + n) + 24

≤ . . . ≤

≤ FL([a, asmt0]) + 12 · |m| + 24+ . . . + 12(|m| + n) + 24

≤ 46m2
+ 12(|m|)(n + 1)+

12n(n + 1)
2

+ 24(n + 1) ≤

≤ 46m2
+ 12|m|n + 12|m| + 24+ 6n2

+ 30n ≤

≤ 46m2
+ 48|m|n + 36n2 ≤ 46(|m| + n)2.

Now for n < 0, we get a similar bound by

[a, asmt−|n| ] = a−1a−smt−|n|aasmt−|n|

= a−1smt−|n|a−1t|n|s−masmt−|n|at|n|s−m

= smt−|n|t|n|s−ma−1smt−|n|a−1t|n|s−masmt−|n|at|n|s−m

= smt−|n|[as−mt|n| , a]t|n|s−m

= smt−|n|t|n|s−m

= 1.

Thus, FL([a, asmtn ]) ≤ 46(|m| + |n|)2
+ 2(|m| + |n|) ≤ 48(|m| + |n|)2 for all n,m ∈ Z. �

Lemma 5.2.4. For n,m, n′,m′ ∈ Z, FL([asmtn , asm′ tn
′
]) ≤ 50(|n| + |m| + |n′| + |m′|)2.

Proof. Notice that

[asmtn , asm′ tn
′
] = smtna−1sm′−mtn′−na−1tn−n′ sm−m′asm′−mtn′−natn−n′ sm−m′ s−mt−n

= smtn[a, asm′−mtn
′−n

]s−mt−n
= 1.
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By Lemma 5.2.3, FL([a, asm′−mtn
′−n

]) ≤ 48(|m′ − m| + |n′ − n|)2. So FL([asmtn , asm′ tn
′
]) ≤

48(|m′ −m|+ |n′ − n|)2
+ 2(|m|+ |n|) ≤ 48(|m′|+ |m|+ |n′|+ |n|)2

+ 2(|m|+ |n|) ≤ 50(|m′|+

|m| + |n′| + |n|)2. �

Lemma 5.2.5. For n,m, n′,m′, cnm, cn′m′ ∈ Z,

FL([acnm smtn , acn′m′ s
m′ tn

′
]) ≤ 51

∣∣∣∣[acnm smtn , acn′m′ s
m′ tn

′
]
∣∣∣∣
2
.

Proof. This can be done by induction on the powers cnm and cn′m′ of a. We

explain the case where cnm and cn′m′ are positive, the other cases are done

similarly. The idea is that we pass one of the a−smtn through all but one of

the a−sm′ tn
′

and we pass one of the asm′ tn
′

through all but one of the asmtn . By

Lemma 5.2.4, we know that each exchange increases the length of the word to at

most
∣∣∣∣[acnm smtn , acn′m′ s

m′ tn
′
]
∣∣∣∣+50(|n|+ |m|+ |n′|+ |m′|)2, but once the exchange is done the

word returns to its original length of
∣∣∣∣[acnm smtn , acn′m′ s

m′ tn
′
]
∣∣∣∣. Finally, once we have

[asmtn , asm′ tn
′
] inside our word, we can collapse it (by Lemma 5.2.4) using words of

length at most
∣∣∣∣[acnm smtn , acn′m′ s

m′ tn
′
]
∣∣∣∣+50(|n|+ |m|+ |n′|+ |m′|)2 ≤ 51

∣∣∣∣[acnm smtn , acn′m′ s
m′ tn

′
]
∣∣∣∣
2

to get a word [a(cnm−1)smtn , a(cn′m′−1)sm′ tn
′
] of length less than

∣∣∣∣[acnm smtn , acn′m′ s
m′ tn

′
]
∣∣∣∣. Re-

peating this process gives the result. Here is how the word changes through one

step of the process:

[acnm smtn , acn′m′ s
m′ tn

′
] = a−cnm smtna−cn′m′ s

m′ tn
′
acnm smtnacn′m′ s

m′ tn
′

= a−(cnm−1)smtna−smtna−(cn′m′−1)sm′ tn
′
a−sm′ tn

′
asmtna(cnm−1)smtnasm′ tn

′
a(cn′m′−1)sm′ tn

′

= a−(cnm−1)smtna−(cn′m′−1)sm′ tn
′
a−smtna−sm′ tn

′
asmtnasm′ tn

′
a(cnm−1)smtna(cn′m′−1)sm′ tn

′

= a−(cnm−1)smtna−(cn′m′−1)sm′ tn
′
[asmtn , asm′ tn

′
]a(cnm−1)smtna(cn′m′−1)sm′ tn

′

= a−(cnm−1)smtna−(cn′m′−1)sm′ tn
′
a(cnm−1)smtna(cn′m′−1)sm′ tn

′

= [a(cnm−1)smtn , a(cn′m′−1)sm′ tn
′
].

�
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We are now ready to complete the proof of Theorem 5.

Proof of Theorem 5. Consider a trivial word w ∈ Γ2 with |w| = N supported above

the t-axis. Consider the path traveled by the lamplighter on the lamplighter

model while reading off the letters of w and the configuration Kw associated to

w. Use the relation [s, t] = 1 to re-write w (without increasing its length) in the

form w0 = sl′0tk′0
∏

i

aci sl′i tk′i with l′i , k
′
i ∈ Z for all i. Now inserting suitable words

on {t±1, s±1} (namely, t−
∑i

j=0 k′j s−
∑i

j=0 l′j s
∑i

j=0 l′j t
∑i

j=0 k′j) after each aci , we can rewrite w0

as w1 =

∏

i

aci sli tki . Note that we added less than 2N many letters from the set

{t±1, s±1} after each aci . Hence |w1| < 2N2 and the configuration corresponding

to w1 is the same as that for w. Finally permute consecutive aci sli tki as needed so

that (li, ki) are in lexicographic order (li ≤ li+1 and if li = li+1 then ki < ki+1) to get

w2 =

∏

j

ac j s
l j tk j

. Note that at each step we re-rewrite a word z = uacn sln tkn acm slm tkm v

with |z| < 2N2 by the word z′ = uacm slm tkm acn sln tkn v (of the same length), where

u, v ∈ Γ2. But for each pair (n,m), we know that |acn sln tkn acm slm tkm | ≤ 2N and so

Lemma 5.2.5 says that throughout this process the words we encounter are of

the length ≤ 2N2
+ 51(2N)2

= 206N2. Hence, this permutation can be achieved

encountering words of length at most ≤ 206N2 and the resulting word is of the

same length as w1, so |w2| < 2N2.

So we re-wrote w as a word w2 =

∏

j

ac j s
l j tk j

with (l j, k j) in lexicographic order.

Note that since we did not alter the configuration associated to w throughout the

re-writing process, we have Kw2 = Kw, so in particular, w2 is supported above

t-axis and |Kw2| = |Kw|. Recall that we assumed that there exists a universal con-

stant C such that when we propagate the configuration for w2 row-by-row to the

t-axis the norm of the intermediate configurations stays at most C ·Kw2. Suppose
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that the configurations we encounter after propagating one row at a time are

Kw2,Kw3, . . . ,Kwn = Kǫ . Our assumption guarantees that |Kwp | ≤ C · |Kw2| = C · |Kw|

for all p. We show below that if we re-write the word wp to be in the form

wp =

∏

j

acp, j s
lp, j tkp, j

with (lp, j, kp, j) in lexicographic order after propagating each

row, we reduce w2 to the trivial word, while keeping the length of the words we

encounter less than 464C2 · N2. Here is why.

Throughout the propagation, the sum of the absolute values of powers of a stay

less than C · N by assumption of the open question. The lamplighter only needs

to walk within the triangle bounded by the initial entries, so he will visit at most

N entries in a given row. Note that since propagation row-by-row alters values

one row at a time, the path that the lamplighter takes will always be shorter than

2N2
+2N2, where the first 2N2 accounts for his walk below the row being altered

(the beginning piece of the word w2) and second 2N · N counts the walk from

the origin to each element in the row being altered and back. So the total length

of the word we get after propagating a row is less than (C + 4)N2. Now to get

the word in the desired form, notice that since each subword acnm smtnacn′m′ s
m′ tn

′
has

length at most (C + 2)N, Lemma 5.2.5 guarantees that exchanging these powers

of a keeps the length of the intermediate words we encounter less than (C +

4)N2
+ 51 · (C + 2)2 · N2 ≤ 464C2 · N2. So, after propagation of each entry, we

can re-write the words so that the powers of a are in lexicographic order, while

keeping the length of the words we encounter smaller than 464C2 ·N2. Since the

initial configuration propagates to all-zero configuration on the t-axis, the final

word that we encounter is the empty word, so the filling length of w is at most

quadratic. �

Remark 5.2.6. If we were able to solve Open Question 5.1.4, then we would get a
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cubic upper bound on the filling length of Γ2. The proof is similar to that above,

except if we allow any propagation within BC·N , we can only guarantee that the

path of the lamplighter is less than 2N2
+ 10C2N3, where the first 2N2 accounts

for unchanged part of the word as before and 2N · (5C2N2) accounts for the walk

from the origin to and from all the points inside the ball BC·N (see Remark 5.1.2).

5.3 Reformulations and related questions

One approach we took while trying to prove a polynomial upper bound on the

filling length of Γ2 was to reduce the types of configurations that we need to

consider. We already saw that we can restrict our attention to those configura-

tions that are supported on the first quadrant. Proposition 5.3.2 shows that we

can further restrict our attention to the configurations in the first quadrant that

have just one positive entry above all the negative entries.

Definition 5.3.1. For an integer M ≥ 0, let ∆M be the equilateral triangle whose ver-

tices are (0,0), (M,0) and (0,M). In other words, the triangle bounded by the t-axis,

s-axis and the line where the s− plus t−coordinate equals M.

Proposition 5.3.2. Given any configuration K supported in the first quadrant, we

can use the equivalence relations 1
0

0 → 0
1
−1, and 0

0
1 → −1

1
0 to iteratively rewrite

K = K0 → K1 → . . . → Kr such that each consecutive pair of Ki’s differs in one of

the relations above, |Ki| ≤ |w|2 for all i and such that Kr either has an empty support

or there exists an integer M ≥ 0 such that Kr is supported on ∆M and the only positive

entry is at (0,M).

Proof. Consider a configurationKw for a word w supported in the first quadrant.
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Let N = |w| and let M be the maximal distance of a non-zero element of Kw from

the origin. Then Kw is supported on ∆M. We can raise the positive entries in the

configuration line-by-line while keeping its support inside ∆M via the following:

• Consider the line with t-coordinate zero. Work from the bottom up in

order of increasing s-coordinate from (0,0) to (0,M−1) replacing each pos-

itive integer along the way by two integers of the same magnitude using

the equivalence

1
0

0 7→ 0
1
−1.

Stop when there are no more positive integers on the line t = 0, except

possibly at (0,M).

• For 0 < i < M repeat this process: for the line with t-coordinate equal to i,

work along the line from (i,0) to (i,M − i − 1) and use the equivalence

1
0

0 7→ 0
1
−1

to push the positive entries up. Stop when there are no more positive

integers on the line t = i, except possibly at (i,M − i).

• Finally, consider the line where the s− plus t−coordinate equals M (which

at this point should contain all the positive entries in the configuration).

Work along the line from (M,0) to (1,M − 1) and replace each positive in-

teger along the way by two integers of same magnitude using the equiva-

lence

0
0

1 7→ −1
1

0.

Stop when there are no more positive integers on this line, except possibly

at (0,M), so at the top of ∆M.
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Figure 5.6: Example of raising a configuration row-by-row.

See Figure 5.6 for an example of raising a configuration line-by-line, where (1)

has the initial configuration K , (2) and (3) show the movement along the line

t = 0, (4) shows the result of moving along the line t = 1, (5) shows the result of

moving along the line t = 2 and t = 3 (since there is no positive entries on the

line t = 3), and finally (6) shows the result of moving along the line whose t−

and s−coordinates add up to M = 6.

Note that each of the initial positive integers, z, moves at most M many times

up during this procedure and so it deposits at most M many −z’s along the way.

So the norm of all the intermediate (and the resulting) configurations is at most

M · |Kw| ≤ N2
= |w|2, since M ≤ N by definition. �

Remark 5.3.3. Note that we can also restrict our attention to vertically symmet-

ric configurations since given a configuration in the form of Proposition 5.3.2,

we can add it to its reflection about the vertical line passing through the point

(0,M) to obtain a vertically symmetric configuration (while at most doubling

the length of the word).
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5.4 Consequences of the Pascal’s triangle relation

In trying to solve the Open Question 5.1.3, we considered the combinatorics of

propagation. Specifically, how introducing the integers on the lattice points ef-

fects the overall picture. Proposition 5.4.1 explores the propagation when there

are no new integers introduced. It shows that if the numbers occurring dur-

ing the propagation are bounded, then the maximum will persist through the

propagation unless we introduce new integers to cancel it out.

Proposition 5.4.1. Consider a configuration consisting of integers ai, j at locations (i, j)

of the rhombic grid A2 (not necessarily finitely supported). Suppose the configuration

satisfies the Pascal’s triange relation at each location (i.e. ai, j = ai−1, j+1+ai, j+1). Suppose

m := max|ai, j| is finite, then the configuration must be

...

. . . -m m-x x -m m-x x -m . . .

. . . x-m -x m x-m -x m x-m -x . . .

. . . -m m-x x -m m-x x -m . . .

. . . x-m -x m x-m -x m x-m -x . . .

...

for some 0 ≤ x ≤ m.

Proof. For now, assume that the maximum m is realized by a non-negative entry.

Around m, the configuration must be:
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−x − m + z m − z z −y − z

−x m −y

m − x m − y

2m − x − y

for some x, y, z ∈ Z and all other entries shown are forced by the Pascal’s triangle

relation.

Notice that

• In order to have m − x ≤ m and m − y ≤ m, we must have x, y ≥ 0. Since

m is the maximum of the absolute values of the entries, we must have

0 ≤ x, y ≤ m.

• Since m − z ≤ m, we have z ≥ 0.

• Since 2m − (x + y) ≤ m, we have x + y ≥ m.

• Since | − (y + z)| ≤ m and y, z ≥ 0, we have y + z ≤ m.

• Combining the last two inequalities, gives x + y ≥ m ≥ y + z, so x ≥ z.

• Since x ≥ z, we have m + (x − z) = | − m − (x − z)| = | − x − m + z| ≤ m which

implies −x − m + z ≥ −m which in turn implies that x ≤ z. So x = z and we

can re-write our configuration as:

−m m − x x −y − x

−x m −y

m − x m − y

2m − x − y
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• Looking at the upper right position, we notice that | − (x + y)| ≤ m with

x, y ≥ 0, implies 0 ≤ x+ y ≤ m, but we had above that x+ y ≥ m, so x+ y = m.

So using y = m − x, we can re-write the configuration around m as

−m m − x x −m

−x m x − m

m − x x

m

Repeating this argument with signs reversed, shows that if the maximum value

is attained at a negative entry, say −m for some m > 0, then the configuration

around −m must look like

m x − m −x m

x −m m − x

x − m −x

−m

for some 0 ≤ x ≤ m. So we can cover the whole grid A2 by covering the areas

around each m and −m in turn, leading to the claimed configuration. �
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