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ABSTRACT 

 

The enhanced metal accumulation and tolerance properties found in the Salix species 

have generated interest in using these plants in phytoremediation applications.  

However, little is known about the mechanisms behind these traits. Many aspects 

await elucidation, such as the molecular basis of metal uptake, tolerance and 

accumulation.  

 In this investigation an attempt is made to shed light on a possible ligand 

involved in metal sequestration in willow plants.   Polyphenols, abundant in willows, 

are examined as potential candidates. Already known for their roles in plant growth, 

development and defense, these compounds might be a part of the metal tolerance 

mechanism.   

 In the first phase of the investigation, the potential role of polyphenols as 

ligands is explored by confirming their ability to chelate metals, namely Zn and Cd.  

Modeling exercises with representative phenolic moieties indicated that molecules 

with vicinal oxygens are more suitable chelators due to their ability to complex metal 

cations in a bidentate manner.  A combination of acid titrations and infrared spectral 

analysis confirmed the ability of a representative polyphenol, tannic acid, to bind Zn 

and Cd over a physiologically relevant pH range.   

 In the second phase of the investigation, the effect of metal exposure on 

phenolic levels in plants is explored; the hypothesis being that if phenols are a part of 

the mechanism that confers enhanced metal tolerance in Salix, metal exposure will 

induce an upregulation of these compounds as part of a defensive response. 

A total of 20 plants from three willow species, S. alba, S. viminalis and S-301, 

were subjected to one of two Zn and Cd treatments in a hydroponic setting for a period 

of two weeks.  Leaf tissue was then harvested for analysis. 



  

Metal levels were determined via a methanol extraction of fresh leaf tissue and 

analysis with atomic absorption spectroscopy (AAS).  Colorimetric methods were 

performed on dried leaf tissue to ascertain gross phenolics as well as levels of 

condensed tannins and leucoanthocyanins.   

Results showed that metal levels increased in plants as exposure concentrations 

increased but metal exposure appeared not to have a significant effect on the phenolic 

status of plants.  However, these results do not necessarily disprove the above 

hypothesis.  Small sample sizes as well as the considerable variations known to occur 

both between and within species could have obscured metal-induced changes in 

phenolic levels.  Therefore, further investigation is warranted.  More plants should be 

exposed to metals for longer periods of time with metal and phenol status assessed 

along the way. Moreover, assays should be employed to assess the levels of phenolics 

such as salicylates and hydrolyzable tannins. 

Pursuing additional avenues of investigation aside from phenolic quantification 

would also be sensible.  A combination of size exclusion chromatography techniques 

coupled with UV-VIS or other detectors and X-ray absorption spectroscopy could go a 

long way to solving the mystery of which plant constituents are responsible for 

enhanced metal tolerance.     

In summary, while this examination did not yield conclusive results it provides 

a solid foundation for further investigation.  The next steps briefly outlined above will 

determine if polyphenols involved in metal tolerance.  If they are ruled out, the focus 

can shift to other compounds, such as organic acids.  However, if it is shown that 

polyphenols do figure into the process then science will be one step closer to sorting 

out the metal tolerance mechanism in Salix.  
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BIOGRAPHICAL SKETCH 

 

I am not someone who sits still well.  Nor am I someone who will ever be satisfied 

with the conventional.  Instead of accepting what life hands me, I prefer to create my 

own destiny.  Hand me lemons and I will make the best damn lemonade you have ever 

had- and I don’t even like lemons.   

These past few years have seen me wandering about the planet as I try to sort 

out my place in this world and capture the solace that comes from that.  In the course 

of that journey, I have discovered that campaigning and crusading for a safer, cleaner 

planet is work that fulfills me in a way that nothing else does.   

Several years into my first job I decided to go back to school.  By studying 

Environmental Toxicology, I was trying to become a better advocate for the 

environment.  However, I underestimated how hard it would be to take a hiatus from 

work; leaving my job meant stepping out of the game for a while and watching from 

the sidelines. The experience was just shy of torture but now that I am back on the 

field, I see how my time away is paying off.  I may be a treehugger but I know what I 

am talking about.   

It has taken almost four years to finish this degree.  But with this thesis 

representing the final crossing of t’s and dotting of i’s for my Masters of Science from 

Cornell University, I can now say that I am really done and can now fully and 

completely get back to saving the planet. 
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CHAPTER 1 

 

REVIEW CHAPTER 

Introduction 

Plants are adapted to a wide range of environmental conditions that include 

drought, temperature extremes, flooding, salinity, nutrient imbalances and deficiencies 

in soils as well as exposure to toxic compounds.  In this investigation, the interaction 

between plants and heavy metals is of greatest interest, as metal concentrations exist in 

excess of plant requirement in some soils as a result of anthropogenic activities such 

as mining, manufacturing, energy production and agriculture, potentially becoming 

toxic to plants (Wieshammer et al., 2007). The extent to which enhanced metal levels 

adversely affect plant growth largely depends upon soil characteristics, as they control 

the bioavailable fraction of the metals in soils.  

In the plant kingdom, metals can be divided into two distinct classes- essential 

and non-essential.  Essential metals are micronutrients that have structural and 

catalytic roles in proteins involved in metabolism and development. Zinc (Zn), iron 

(Fe), and copper (Cu), for example, are required for healthy plant growth and 

development (Haydon and Cobbett, 2007).  On the other hand, non-essential metals, 

such as cadmium (Cd), lead (Pb), and nickel (Ni), serve no biological function and can 

be toxic to plants at very low any does.  

The phytotoxic effects of metals are numerous and stem from their ability to 

disrupt cellular processes.  Excessive concentrations of any metal generates harmful 

reactive oxygen species; non-essential metals displace endogenous metal co-factors 

causing enzyme malfunction or inactivation; and toxicity of the certain metals is owed 

often times to their reactivity with sulfur (S) and nitrogen (N) atoms in amino acid side 

chains.   
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Mechanisms of Tolerance 

In plants, homeostatic mechanisms are responsible for maintaining 

concentrations of metals within physiologically acceptable limits.  They manage the 

transportation, delivery and distribution of metals throughout the plant.  Beyond 

homeostatic-mediated responses, plant exposure to elevated and potentially toxic 

metal levels elicits in one of three reactions: unrestricted uptake, exclusion or 

accumulation.   

Unrestricted metal uptake is essentially a non-reaction that allows as much 

metal into a plant as is available for uptake.  This usually results in phytotoxicity and 

death.  An exclusion response can involve the initial uptake and subsequent efflux of 

metals out of cells or the exudation of compounds that complex with metals thereby 

preventing entry into root cells.  In Arabidopsis, for example, Pb2+ toxicity is mediated 

by the ATP-binding cassette transporter, AtPDR12, which utilizes ATP to actively 

pump out Pb2+ that has accumulated in root cells (Lee et al., 2005).  In certain strains 

of wheat, Aluminum III stems from an Al-stimulated release of organic acids that 

complex with Al, rendering it unavailable for uptake (Delhaize et al., 1993).  These 

methods keep metal levels in excluding plants low and permit survival on soils with 

high metal concentrations.  

In contrast to the above, accumulation allows metal uptake and mitigates 

toxicity by chelating and/or sequestering metals once they are in the plant cells.  This 

prevents their interference with metabolic processes.  Chelating agents are plant and 

metal specific, but include metallothioneins, phytochelatins, histidine and glutathione.  

On the extreme end of the accumulation spectrum are hyperaccumulators- plants 

capable of amassing exceedingly high metal concentrations without showing visible 

symptoms to suggest metal toxicity.  
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The term “hyperaccumulator” was introduced by Brooks et al. in 1977 in 

reference to plants that accumulate more than 1 mg of Ni per gram of dry weight in 

their shoots under natural conditions.  To date, more than 400 species of 

hyperaccumulators have been identified (McGrath and Zhao, 2003).  This trait is 

generally observed with Ni, Zn, Co and Se, although accumulators of Mn, Cd, As and 

Pb have been also characterized (Clemens, 2001).  Perhaps the best-known 

hyperaccumulator is Thlaspi caerulescens.  Certain ecotypes of this plant can have 

respective concentrations of Zn and Cd of 30,000 and 1,000 ppm, without exhibiting 

signs of toxicity. Compare this to non-accumulating plants, where Zn is generally 

toxic between 300-500 ppm and Cd has been shown to cause harm at levels as low as 

20 ppm (Boominathan and Doran, 2002).   

The physiological processes responsible for hyperaccumulation are largely 

unknown.  Current research efforts to elucidate the mechanisms concerned are being 

driven primarily by the potential to use hyperaccumulating plants to clean-up metal 

contaminated soils.   

Plants as Remediators 

An abundance of metal-contaminated soils exist in the United States, a 

testament to anthropogenic activities that regard land as an expendable and disposable 

commodity.  The legacy of this myopic view of the lithosphere has resulted in the 

designation of more than 30,000 sites for hazardous waste treatment services by the 

United States Environmental Protection Agency’s Comprehensive Environmental 

Response Compensation Liability Information System (Raskin, et al., 2000).  The 

need to protect public health and the environment drives the efforts to restore the 

safety and integrity of such sites.   

Current soil remediation practices rely on a variety of technologies such as 

excavation and landfilling, chemical washing and mechanical/pyromettallurgical 
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separation.  These techniques are efficient but are expensive (Gardea-Torresdey et al., 

2004) and often times destroy soil structure, leaving it biologically inactive (McGrath, 

2001).  The search for less costly and more desirable soil clean-up methods has put the 

spotlight on plants with metal accumulating properties.   

The use of plants to clean up contaminated soils is referred to broadly as 

phytoremediation (Salt et al., 1998).  Phytoextraction is a specific type of 

phytoremediation where plants remove metals from soils and concentrate them in their 

aboveground parts. This practice is relatively new and still emerging in many respects, 

but field trials have demonstrated its feasibility and potential for wider application.   

The advantages of phytoextraction are many.  Economics perhaps provides the 

most compelling case for its further development.  Excavating and landfilling 

contaminated soils can cost upwards of $400 per cubic meter while phytoextraction of 

similarly contaminated soils costs about one-tenth that amount.  Other advantages 

include minimal disturbance of the natural environment is minimal and soil structure 

and integrity is preserved.  

However, several downsides to phytoremediation exist.  The first is the length 

of time needed for clean-up: traditional techniques require 6-9 months whereas plant 

driven methods can take years.  In some instances, plant-based remediation of less 

polluted land may be achievable in a timeframe of 18-60 months (Raskin, et al., 2000). 

However, this is likely to be the exception rather than the rule.  As an example, Felix 

(1997) calculated in his experiment that Salix viminalis would need 77 years to lower 

soil Cd concentrations to acceptable levels (Pulford and Watson, 2003) .   

Another limitation is that phytoextraction might not work for all metals.  For 

instance, Pb is notoriously difficult to phytoremediate; its strong affinity for the 

organic and mineral components limiting both solubility and bioavailability 

(Hettiarachci and Pierzynski, 2004).  Issues such as these are not insurmountable but 
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might limit the effectiveness of plant-based techniques.  Chelators can be employed to 

enhance metal solubility and combining phytoremediation with other techniques could 

also help (Raskin, et al., 2000).  

Plants best suited for phytoextraction are high biomass producers that are easy 

to handle, have established cultivation practices and are genetically characterized 

(Raskin, et al., 2000).  Unfortunately, this combination of traits is rarely found 

hyperaccumulators.  Plants like Thlaspi caerulescens are excellent metal extractors but 

have low biomass yields and slow growth rates (McGrath and Zhao, 2003).  To 

overcome this, scientists are exploring ways to exploit the impressive accumulation 

properties of this plant by transferring these traits to faster growing, higher biomass 

producing plant species (Lasat, 2002).  It is not certain if that will be feasible, 

however, as multiple traits are required for metal accumulation and tolerance.  In the 

meantime, certain trees species are being looked at as possible alternatives 

(Wieshammer et al., 2007).  While no commercially important trees are known to 

hyperaccumulate, they hold promise as a “low-cost sustainable and ecologically sound 

solution to the remediation of heavy metal contaminated land, especially when it is 

uneconomic to use other treatments or there is no time pressure on the reuse of the 

land” (Pulford and Watson, 2003).   

One genus that has garnered significant interest from the scientific community 

is Salix.  This genus of plants includes the ever-popular weeping willow, as well as 

350 other species.  It is one of the most taxonomically and ecologically diverse genera 

in the Northern Hemisphere (Punshon and Dickinson, 1997).  Willow trees are easy to 

propagate, metal tolerant, perennial crops that possess extensive root systems and high 

evapotranspiration rates that aid in the stabilization of pollutants (Mertens et al., 

2006).  They possess the combination of enhanced metal accumulation and tolerance 
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traits, fast growth rates and high biomass production necessary for phytoextraction 

(Vervaeke et al., 2003).  

Any disadvantages associated with using lower metal accumulators such as 

willow is more than offset by the sheer volume of biomass they produce- willow trees 

can actually remove more metals from soils than hyperaccumulating plants even 

though they accumulate at lower levels.  For example, T. caerulescens yields 2.5 

t/ha/yr of dry shoot matter (McGrath and Zhao, 2003) but the average yield for 

willows is between 10-15 t/ha/yr (Pulford and Watson, 2003).  For Cd, high biomass 

production in willow can mean metal removal rates that are five times higher that of 

hyperaccumulators such as T. caerulescens and Alyssum morale (Pulford and Watson, 

2003). 

An ancillary benefit of using willows as remediators is that they hold promise 

as a renewable energy crop (Pulford et al., 2002, Keoleian and Volk, 2005).  

Harvested willow biomass from contaminated land can subsequently be burned for 

energy production, resulting in a two-birds-with-one-stone approach that makes the 

economics of phytoremediation even more attractive (Mirck et al., 2005, Tlustoš et al., 

2006).  Harvesting metal from combusted plant tissue for resale could provide 

additional revenue streams.   

Avenues of Investigation 

The discovery of hyperaccumulators revealed that plants have the genetic 

potential to clean up contaminated soils (Lasat, M., 2002).  Harnessing that potential is 

now contingent upon the determination of how accumulation works and identifying 

the genes involved in the process.  Beginning with the translocation of the metal cation 

from the soil solution into the root cell, continuing to vascular loading and unloading 

and ending with the sequestration of a metal-ligand complex in a vacuole or trichome, 

the specifics of accumulation await elaboration.  In recent years, science has been able 
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to settle certain key pieces of the puzzle and bring us closer to understanding the 

whole story. 

More specifically, research has been able to shed light on the role of 

transporters in metal hyperaccumulation as well as ligands responsible for binding to 

and shuttling metals from the apoplast to the cytoplasm and across the tonoplast into 

vacuoles. Unfortunately, as is often the case with science, there is no one-size-fits-all 

pathway for hyperaccumulation.   Evidence suggests that the biochemical mechanisms 

behind hyperaccumulation are both species and metal specific (Lasat, M., 2002).  To 

complicate matters even further, it appears that metal-ligand speciation is dynamic, 

varying not only between species but during developmental stages and within plants as 

metals are shuttled between tissues and subcellular compartments.  A quick survey of 

the current state of knowledge surrounding the biochemistry of T. caerulescens with 

respect to Zn hyperaccumulation is illustrative of this.   

A constitutive upregulation of a ZIP family transport protein, ZNT1, is 

implicated as the first link in the accumulation chain.  Hyperaccumulation is correlated 

to a stimulation of Zn influx into root cells (Pence et al., 2000).  In non-accumulating 

species, such as T. arvense, root cell vacuolar sequestration prevents Zn translocation 

to the shoots but this mechanism is disabled in T. caerulescens (Lasat, 2000).  Zinc is 

ultimately sequestered in the leaf cell vacuoles but metal speciation as well as the 

tonoplast transporters involved have eluded identification.  With regard to ligands, S 

and P compounds have been all but ruled out (Kupper et al., 1999).  X-ray absorption 

spectrometry (XAS) and extended X-ray absorption fine structure (EXFAS) analysis 

have revealed citrate as the primary ligand for Zn followed by histidine. However, it is 

believed that the Zn-citrate complexes are relevant only for vacuolar sequestration 

while histidine is involved in chelating Zn in developing and older leaf tissues 

(Haydon and Cobbett, 2007). 
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Ultimately, unraveling the pathways involved in metal accumulation will allow 

for identification and isolation of the genes responsible for the hyperaccumulation 

(Lasat, M., 2002).  Characterization efforts for plants such as T. caerulescens are well 

underway, although a great deal of work remains.  But what is the current state of 

knowledge for metal accumulation in willow?  Even if this plant is not a 

hyperaccumulator in a technical sense, it clearly meets the biomass criterion necessary 

for phytoextraction. A better understanding of the physiology and biochemistry behind 

its metal accumulation would allow for additional augmentation of these traits.  

Willows 

Research has shown that willow could be most useful in the removal of Cd and 

Zn from moderately contaminated soils (Vysloužilová et al., 2003, Mertens, et al., 

2006, Dos Santos Utmazian et al., 2007).  However, the success of Salix plants as 

phytoextractors depends on more than just their ability to pull metals out of the soil.  

Biomass production and metal partitioning are equally important factors (Riddell-

Black, 1994).   

Much of the research to-date has focused on screening various willow species 

for metal uptake, tolerance and accumulation to determine which plants might be 

useful for remediating polluted sites (Pulford et al., 2002).  A range of approaches has 

been taken in this regard that include field trials, greenhouse pot experiments and 

hydroponic tests (Dos Santos Utmazian et al., 2007).   

The body of knowledge amassed, while not extensive, does reveal that there is 

broad divergence amongst plants in the Salix genus and not all tree species would be 

suitable for phytoextraction (Landberg and Greger, 1996).  Considerable variation 

exists both between and within species but the factors responsible remain unclear.  It 

could be due, in part, to the widely divergent conditions under which willow species 

have been examined in different experiments.  Evidence indicates that any number of 
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factors from plant age, growing conditions and experiment length to metal exposure 

levels and combinations, soil conditions and pre-treatments can influence a study’s 

outcomes (Landberg and Greger, 1996, Landberg and Greger, 2002, Dos Santos 

Utmazian et al., 2007).   

However, these sorts of dissimilarities cannot explain away the significant 

differences found within clones in the same experiment. For example, a study by 

Landberg and Greger (1996) revealed that the Cd concentrations in collected plant 

material for clones of S. viminalis and S. daphnioides varied by a factor of up to 25.  In 

this experiment, ranges for metal accumulation within species were greater than 

between species. A similar investigation found that the Cd uptake capacity of 70 Salix 

genotypes differed as much as 43 times between clones with the highest and lowest 

values (Greger 1999).  Even further, metal uptake and accumulation does not appear to 

be related to tolerance- resistance to heavy metal toxicity seems to be clone or hybrid 

specific.  

 The paucity of data regarding the mechanisms responsible for the enhanced 

metal acquisition and tolerance traits found in some willow plants means that efforts to 

explain these results are little more than educated guesses.  These knowledge gaps 

hinder the realization of the full potential of Salix plants as part of an effective soil 

remediation strategy (Punshon and Dickinson, 1997).   

Pieces of the puzzle 

To contribute to the existing body of knowledge, this investigation will attempt 

to identify potential molecular mechanisms that play a role in enhanced metal uptake 

and tolerance in Salix species.  As noted above, any number of starting places exist to 

determine the molecular basis of metal uptake, tolerance and accumulation- all three 

things must be operational in a plant if it is to be adequate as a phytoextractor.  That 

means a mechanism for enhanced uptake of metals via root cells, enhanced root-to-
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shoot transport via reduced sequestration in root vacuoles or increased xylem loading 

and enhanced tolerance via internal detoxification which likely involves some form of 

metal complexation and/or sequestration.   

 For this study, internal metal detoxification is the primary focus, more 

specifically, an attempt to shed light on a possible ligand involved in metal 

sequestration in willow plants.   Research related to metal distribution in willows 

shows that a large proportion of metals end up in the aerial portions of the plant.  A 

study by Vysloužilová et al (2003) on willow clones revealed that Cd and Zn are 

accumulated in higher concentrations in the leaves of plants than the twigs.  Work 

undertaken by Hammer et al. (2003) and specifically examining Cd found that while 

the leaves from a field test involving Salix viminalis constituted 15-19% of total plant 

biomass, they contained 34-37% of the total amount of Cd extracted.   

While the eventual cellular repository for metals in willow leaves remains a 

mystery, Mertens et al. (2006) showed that foliar Cd and Zn concentrations are well 

correlated; this points to a similar translocation mechanism for these elements and 

possible comparable sequestration fates in the leaves.  It is already known that in many 

accumulating plants, such as T. caerulescens, Zn and Cd are sequestered in the 

vacuoles away from vital cell components and processes.  For example, Ma et al. 

(2005) exposed T. caerulescens to Zn and Cd in a hydroponic setting and found that 

91% of total Cd and 77% of total Zn was translocated to the protoplasts of mesophyll 

tissue.  Of that, all of the Cd in the protoplasts was compartmentalized in vacuoles 

while 90% of Zn was similarly localized.  Vacuoles could also serve as the final metal 

repositories in willow leaves. 

Although any numbers of molecules are likely candidates as a metal ligand in 

leaves, one group of compounds that warrant attention are polyphenols, a class of 

secondary plant constituents well known for their antioxidant activity (Larson, 1988; 
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Bors and Michel, 2002).  Polyphenols are synthesized by all higher plants (Levin, D., 

1971) and include pharmacologically active compounds such as flavonoids, tannins 

and glycosides (Weber and Konieczy�ski, 2003) as well as anthocyanins, which 

function as pollinator attractants (Levin, D., 1971) and are responsible for coloration 

in wines and musts (Salinas et al., 2004).  They display tremendous structural 

heterogeneity, but are based on a six-carbon aromatic ring (Levin, D., 1971).  A 

representative molecule, catechin, is shown below (Figure 1).  
 
 
 
 
 
 
 
 

 
 Figure 1: Catechin 

 

Polyphenols have multiple biological tasks.  They are important for normal 

plant growth and development but also serve a defensive role, protecting against 

infection and injury (Kähkönen et al., 1999).  For example, plant phenolics act as 

feeding deterrents, growth inhibitors and are toxic to herbivorous insects (Lindroth at 

al., 1988; Hakulinen and Julkunen-Tiitto, 2000; Nyman and Julkunen-Tiitto, 2000).  

More relevant to this investigation is the metal chelation potential for this class of 

compounds (Kähkönen et al., 1999). Anthocyanins and tannins are known to complex  

metals such as Fe, Cu, Al and Mg (Esparza et al., 2005) and the ability of flavonoids 

to chelate metals has been widely reported in the literature (Hider et al., 2001; Bodini 

et al., 2001).  Esparza et al. (2005) demonstrated Zn and Cu complexation with 

flavonoid ligands catechin, quercetin and rutin and there is evidence of Zn binding 

with hydroxyflavones (Lapouge et al., 2006).  Additionally, Zn-polyphenol binding in 

medicinal plant extracts has been documented by Weber and Konieczy�ski (2003).   
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Polyphenols occur in great abundance in willows, with the total phenolic 

content in most species exceeding 5% (Nyman and Julkunen-Tiitto, 2000).  On the 

extreme end, it can be even greater, as is the case with S. phylicifolia.  Total phenolic 

content in this species is more than 15% of dry weight. (Julkunen-Tiitto, 1986).  

Phenolic composition is highly species-specific; however, substantial differences 

occur even within a species and plant parts (Julkunen-Tiitto, 1989).   

Given all of the above, it is reasonable to postulate that metal tolerance in Salix 

may depend partly on willow phenolic levels and composition.  Phenols could serve as 

ligands that simply bind any excess metals within willow leaves to prevent 

interference with metabolic processes, and they could also function as one of a variety 

of complexing agents responsible for shuttling metals from the cytoplasm to vacuole.  

This investigation proposes to examine a possible association between plant phenolics 

and metal tolerance in Salix.  To achieve this, a preliminary study will first confirm the 

metal chelation potential of representative phenolic compounds found in willow.  

Secondarily, experiments will be run on several willow species known to tolerate 

higher metal levels to determine what effect, if any, metal exposure has on phenol 

levels in willow leaves.  The hypothesis is that if phenols are a part of the mechanism 

that confers enhanced metal tolerance in Salix, metal exposure may induce an 

upregulation of these compounds as part of a defensive response. 
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CHAPTER 2 

 

PRELIMINARY ANALYSIS OF CHELATION BY POLYPHENOLS 
 

Introduction 

Metal-phenolic complexation could serve as a basis for heavy metal tolerance 

in willow trees.  However, before this hypothesis can be explored the affinity of 

phenols for various metal cations should be established.  Of interest to this 

investigation is how well polyphenols complex with zinc and cadmium cations at 

physiologically relevant pHs. 

The relationship between polyphenol complexation for a range of metals has 

been widely reported in the literature.  As a class, they tend to be good metal 

complexing agents.  Anthocyanins and tannins bind readily to metals such as Fe, Cu, 

Al and Mg (Ross et al., 2000, Salinas et al., 2004, Esparza et al., 2005, Castañeda-

Ovando et al., 2009) and flavonoids have been shown to bind to a number of metal 

cations (Pletta, P 1988, Birjees Bukhari, S. et al., 2009, Castañeda-Ovando et al., 

2009).  The consequences of these interactions are themselves interesting avenues of 

investigation.  It is known, for example, that metal-tannin binding alters wine 

properties such as taste and color (Esparza et al., 2005), while metal binding in 

medicinal plants is thought to influence the pharmacological effects of natural drugs 

(Weber and Konieczy�ski, 2003).  

Metal cation binding occurs through the phenolic oxygen atoms attached to the 

aromatic rings of polyphenolic compounds.  Even though the pKa value of most 

phenols is in the region of 9.0-10.0, certain metal cations displace phenolic protons at 

much lower pH levels (Hider et al., 2001).  Nevertheless, it is the structure of 

polyphenols that ultimately determines their effectiveness as complexing agents as 

well as the number of metal cations they can bind.  Binding ratios vary depending on 
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the molecules involved.  As an example, a study by Fernandez et al. (2002) showed 

binding ratios of 1:1, 1:2, 2:2 and 2:3 for metal-flavonoid complexes and established 

that the preferred binding site for flavones and the flavanone naringenin was at the 5-

hydroxyl and 4-oxo groups.   

For binding configurations, bidentate ligands are more effective complexers 

than monodentate ligands (Hider et al., 2001).  Therefore, phenolics possessing the 

structural elements necessary to form bidentate complexes with metals would be 

expected to be good metal chelators.  The catechol moiety with its vicinal hydroxy 

groups, found in many polyphenols, lends itself well to bidentate binding. Hence, 

catechol is predicted to be a better chelator than salicylate.   

Polyphenols are already known to have an affinity for Zn cations (Bodini et al., 

2001, Weber and Konieczy�ski, 2003, Salinas et al., 2004, Esparza et al., 2005, 

Lapouge et al., 2006).  Le Nest et al. (2004a, 2004b) demonstrated Zn2+ chelation by 

quercetin in solutions buffered at pH 7, reporting the most probable binding site to be 

the catechol moiety.  In work done by Esparza et al. (2005), binding ratios for Zn with 

catechin, quercetin and rutin were found to be 1:1, 1:2 and 1:3, respectively.  

Quercetin was shown to be linking two metal atoms through its catechol and 4-oxo-5-

hydroxyl moieties, while rutin was able to chelate a third metal cation in the 3-

rutinoside.   

The binding affinity between Cd and phenols is perhaps less well 

characterized.  While studies have shown, for example, that salicylic acid pretreatment 

confers protection against Cd toxicity in barley (Metwally et al., 2003) and soybean 

plants, (Drazic and Mihailovic, 2005), metal chelation is not considered the reason for 

this effect.  Rather than concentrating on Cd-phenol interactions, much of the research 

has instead focused on phytochelatin-mediated detoxification, a major mechanism for 

Cd resistance in plants (Cobbett and Goldsbrough, 2002, Mendoza-Cózatl et al., 
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2008).  For that reason, the following chapter explores metal-phenolic interactions and 

provides confirmation of the binding relationship of the metal cations Zn and Cd with 

phenolic compounds representative of those found in willow trees.    

Materials and Methods 

Initial modeling 

Binding of Zn and Cd with representative phenolic moieties, catechol and salicylate, 

was calculated using the CHEAQS1 modeling program.  This exercise was performed 

to demonstrate metal cation binding with different phenolic structures.  Catechol 

possesses vicinal hydroxy groups on its aromatic ring while salicylate does not (see 

Figure 2).  If bidentate binding is the manner in which Zn and Cd species complex 

with polyphenols, it was expected that catechol would be a more effective chelator.   
 
 
 
 
 
 
 
 

Results of this preliminary analysis were used to select a polyphenol compound for a 

titration assay evaluating binding efficiencies for Zn and Cd. In the end, tannic acid 

was chosen as the model polyphenol compound as it is structurally representative of 

many of the polyphenols found in willow plants.   

Titration assay 

To assess the binding efficiencies of Zn and Cd with tannic acid, a classical pH 

titration was performed.  This involves titrating, with base, solutions of tannic acid, 

                                                 
1 CHEAQS is a free Windows program for calculating equilibria in aquatic systems.  
Available at: http://home.tiscali.nl/cheaqs/index.html 
 

Figure 2: Catechol (left) and Salicylate (right) 
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with and without the metal present, and recording the change in pH with increasing 

base addition.  The data are then graphed and analyzed. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

The shift in the pH of the titration curve for tannic acid with the metals present 

indicates binding.  In the case of phenolic complexation with cations such as Zn2+ and 

Cd2+, binding is presumed to be largely bidentate, with two oxygens on adjacent 

carbons binding one metal ion; the implication being that for every bound metal ion, 

two hydrogens are displaced or M2+ + LH2                ML + H2. 

The pH meter used for this assay was the Orion 2 STAR pH benchtop meter by 

Thermo Electric Corporation. After each titration, the data was collected and graphed.  

Results are presented below. 

Control solution titration curve:  The control solution was 0.01 M tannic acid 

in 0.01 M KNO3, whose pH was adjusted initially to 3 by adding approximately 0.5 

mL of 0.01 M HNO3 prior to commencement of the titration.  The solution was titrated 

with a 0.1M KOH solution in 0.5 mL increments and the pH recorded after each 

Figure 3: Structure for Tannic Acid, 
C76H52O46 
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addition of base.  This process was continued until the pH of the control solution 

reached 10.   

Zn titration curve: The Zn solution consisted of tannic cid (0.01 M) with 

0.005 M ZnSO4 added.  It was prepared with an approximate 2:1 ratio of potential 

bidentate binding site to moles of metal. The pH was adjusted to 3 by adding 0.1M 

KOH prior to commencing the titration, as the Zn addition had lowered the initial pH. 

The solution was titrated in the same manner as described for the control solution 

above.    An additional solution containing only Zn (a 0.23 M ZNSO4) was also 

prepared and titrated in the manner described above. 

Cd titration curve: The Cd solution consisted of tannic acid (0.01 M) with 

0.005 M CdNO3.  It was prepared with an approximate 2:1 ratio of potential bidentate 

binding site to moles of metal.  The pH was adjusted to 3 by adding 0.1M KOH prior 

to commencing the titration. The solution was titrated in the same manner as described 

above.   

Spectral analysis 

To confirm and examine the nature of binding for Zn and Cd with tannic acid, spectral 

analysis was performed on freeze-dried samples of the control (tannic acid) solution 

and the solutions containing Zn and Cd.  This was done after they had been titrated to 

a pH of 7 in the manner described above.  Freeze drying was achieved by transferring 

approximately 15 mL of each solution to separate containers, covering and freeze-

drying over the course of a week.  Spectral analysis was subsequently performed as 

detailed below. 

Infrared analysis: Freeze-dried materials of each solution were separately 

analyzed via infrared spectroscopy.  Approximately 50 mg of sample was ground into 

a KBr matrix and analyzed, with the spectra from the control (tannic acid) solution 
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serving as the baseline.  The IR spectrophotometer utilized was a Mattson Galaxy 

5020 system. 

NMR analysis:  Of all the NMR techniques, solid state NMR was perhaps best 

suited to analyze freeze-dried material.  However, the necessary equipment was not 

available so an attempt was made to analyze the samples with solution state NMR.  

Freeze-dried material was mixed with methanol d-4 to dissolve and prepare the 

samples for analysis.  Total volume for each prepared sample was 0.6 mL.  In the end, 

the attempt to analyze the samples via solution state NMR was unsuccessful.  The 

spectra obtained from each sample revealed nothing- as if the samples run were 

blanks.  As a result, no useable spectral data were obtained.  One possible explanation 

is that the tannic acid aggregated with freeze-drying and was not truly in solution 

when the analysis was conducted.   

Results and Analysis 

Modeling 

The results of the CHEAQS modeling analysis are summarized in the tables and 

graphs below.  They reveal a pronounced difference in metal binding levels between 

the phenol moieties, favoring metal complexation by catechol.  As postulated above, it 

is likely that this is due to the vicinal hydroxyl groups, which bind metal cations in a 

bidentate fashion.  Such binding is not possible with salicylate, and the carboxylate 

group is a weaker ligand for the metal than the phenolate.  

The CHEAQS modeling program predicted that complexation levels would be 

highest for catechol at a pH of 9 and 10 for Zn and Cd, respectively.2  Comparing the 

two metal cations, it calculated that catechol would bind more readily to Zn than Cd 

regardless of the pH. 
 
 

                                                 
2 The metal and ligand concentrations in the CHEAQS modeling exercises were 0.001 M. 
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Table 2: Percent binding levels for Cd with ligands 
 

 
Cd-catechol  

complexation 
 

Cd-salicylate 
complexation 

 
pH % binding pH % binding 
5 0 5 0 
6 0 6 0 
7 0.27 7 0.03 
8 17.68 8 0.32 
9 80.1 9 2.86 
10 94.38 10 12.29 

 

 
Zn-catechol 

complexation 
 

Zn-salicylate 
complexation 

 

pH % binding pH % binding 

5 0 5 0.01 

6 0.04 6 0.06 

7 3.89 7 0.63 

8 59.48 8 4.98 

9 73.08 9 4.96 

10 25.53 10 0.61 

Zn Ligand Titration
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Figure 4: Zn ligand titration.  Predicted binding levels for zinc with 
catechol and salicylate over a pH range of 5 to 10. 

Table 1: Percent binding levels for Zn with ligands 
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Given these results, it seemed most logical to evaluate the metal binding 

abilities of a polyphenol compound with catechol moieties.  Tannic acid, which is 

structurally representative of many polyphenols found in willow plants, has abundant 

vicinal hydroxyl groups that could serve as potential binding sites for metal cations.  

As such, tannic acid was selected as the modeled compound to further investigate the 

binding of Zn and Cd by polyphenol compounds. 

Titration assay 

The results of the titration assay clearly show the binding of tannic acid with both 

metal cations (see Figures 6 and 7), as indicated by the shift in pH between the tannic 

acid solution and tannic acid with Zn and Cd present.  Metal cations displace H+ ions, 

thereby requiring the addition of greater levels of base in order to raise the pH of the 

solution.  The data show that both metals displaced a similar amount of H atoms at the 

various pH levels.  A greater shift in the curve for the excess added Zn shows that 

higher the metal level, the more base is needed to counteract the release of H+ by 

metal cations.  Table 3 summarizes the additional release of H+, measured in 

micromoles (�moles) per liter of base, for the metal solutions. 
 

Cd Ligand Titration
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Figure 5: Cd ligand titration.  Predicted binding levels for 
cadmium with catechol and salicylate over a pH range of 5 to 10. 
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Infrared Analysis: Spectra of tannic acid, both uncomplexed and complexed to 

Zn and Cd at pH 7, were compiled and analyzed (see Figures 8, 9 and 10).  In 

�moles H/liter of base 
Metal solution 

pH5 pH6 pH7 

Zn Standard 450 1000 1000 

Zn Excess 4550 7450 16300 

Cd Standard 100 900 900 

Figure 6: Zn-tannic acid titrations 

Figure 7: Cd-tannic acid titration 

Table 3: �moles of H released/liter of base  
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comparison to the tannic acid spectrum, a somewhat diminished -OH peak (around 

3500 cm-1) is apparent in the Zn-tannic acid spectra.  The same peak is much more 

dramatically decreased in the Cd-tannic acid spectra.  Also, the two strong peaks 

around 1300 and 1200 cm-1 in tannic acid, attributable to phenolic –OH deformation 

and C-O stretch, are strongly perturbed in the metal-tannic acid spectra.  This gives 

further evidence that tannic acid is binding the metal cations by displacing H+ from the 

phenolic groups.  The differences in the –OH peaks between the metal spectra could 

be due to metal hydroxide formation, as zinc is more likely to form hydroxides than 

cadmium because of the lower solubility of Zn(OH)2. 

Another peak of interest is carboxylic acid, located at around 1700 cm-1.  It is 

quite clearly present in the tannic acid spectrum, less pronounced in the Zn-tannic acid 

spectrum and even more diminished in the Cd-tannic acid spectrum.   While tannic 

acid itself does not have carboxylic acid groups, the commercial tannic acid used in 

this experiment is comprised of a heterogeneous mixture of compounds that are likely 

to possess carboxylic acid side groups.  Regardless, these results lend credence to the 

supposition that tannic acid can and does chelate metal species in vitro.  

 

 

 

 

 

 

 

 

 

 
Figure 8: IR Spectrum of tannic acid.  A pronounced –OH peak is visble around 3500. 
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Conclusion 

The CHEAQS modeling analysis showed that ligands with catechol 

(biphenolic) moieties are likely to be strong chelators for Zn and Cd cations over a 

physiologically relevant pH range, with carboxylate functional groups being less 

effective.  In practice, the titration assay confirmed phenolic affinity for both metal 

cations.    The degree to which H+ was displaced by both metals was almost identical, 

with Cd2+ displacing slightly less micromoles of H+ than Zn2+.  In IR spectral analysis, 

binding of metal cations to tannic acid was evident through diminishment of peaks for 

Figure 9: IR Spectrum of Zn complexed with tannic acid.  

Figure 10: IR Spectrum of Cd complexed with tannic acid.  
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–OH and carboxylic acid vibrations.   It should be noted, however, that CHEAQS 

predicted complexation of Cd2+ and Zn2+ to only become important at pH levels 

greater than 7 and the titration data and infrared spectra indicated significant metal ion 

complexation to be occurring at much lower pH levels than this.  The discrepancy can 

be attributed to the ‘cage effect’ of more than two ligands cooperatively binding metal 

cations in a chelate involving multidentate bonding. 

These results point to the potential of tannic acid to serve as a metal chelator 

and perhaps explain metal tolerance in willow trees.  Based on this preliminary 

analysis, it is reasonable to proceed with plant-based experiments to determine if 

heavy metal exposure impacts the level of polyphenols in selected willow species. 

 It is however, important to note that what the above modeling exercises and 

assays do not directly show is the exact nature of the binding between tannic acid and 

the metal cations.  To elucidate the precise binding configuration as well as the 

binding ratios, additional experiments would need to be performed.  Further 

theoretical modeling studies could be conducted and their results confirmed with 

methods that include the use of differential pulse anodic stripping voltammetry 

(Esparza et al., 2005), UV-vis (Lapouge et al., 2006), Job’s method (continual 

variation method) (Bukhari et al., 2009) and electrospray mass spectrometry 

(Fernandez et al., 2002). 
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CHAPTER 3 

 

PHENOLIC ANALYSIS OF WILLOW LEAF TISSUE 

Introduction 

The phytochemistry involved in metal transport and storage varies considerably 

depending on the metal and plant species involved.  For plants with enhanced Zn and 

Cd tolerance, it was initially postulated that sulfur rich compounds, such as 

phytochelatins, were responsible for binding and shuttling cations into plant cell 

vacuoles.  It is already known that phytochelatins are responsible for Cd resistance in 

many plants (Cobbett and Goldsbrough, 2002, Mendoza-Cózatl et al., 2008).  

However, in the case of hyperaccumulator Thalspi caerulescens at least one study 

indicates that S-containing compounds, such as phytochelatins, are unlikely to serve 

that role (Kupper et al., 1999).  

 This might also be the situation with Salix.   Landberg and Greger (2004) 

failed to detect phytochelatins when clones of S. viminalis were exposed to Zn and Cd.  

A preliminary analysis for this project also failed to detect phytochelatins in any of the 

metal-exposed willow plants (data not shown).3 Considering this, it seems reasonable 

to investigate the role that other compounds might play in the enhanced metal 

tolerance found in willow species. 

As previously discussed, polyphenols present an interesting case:  a broad 

range of polyphenolic compounds are present in willow trees in more or less species 

specific arrays.  They are an abundant, varied class of compounds that play a role in 

plant growth and development and function as defensive agents, protecting against 

infection and injury (Kähkönen et al., 1999).    What’s more, they are known as 

                                                 
3 See Appendix A for further details on the phytochelatin assay. 
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effective metal chelators- this characteristic having been confirmed in the previous 

chapter (Hider et al., 2001, Bodini et al., 2001, Esparza et al., 2005).   

To be examined here is what impact metal exposure has on polyphenolic levels 

in willows.  Given the diversity within this class of compounds, it might very well be 

the case that only a certain sub-group contributes to enhanced metal tolerance; 

accounting for that as part of the experimental design means looking at overall 

phenolic levels but also assessing changes in different sub-groups.   As such, 

additional analysis will be performed to assess the levels of flavonols, specifically 

leucoanthocyanins and condensed tannins.  These sorts of compounds, such as 

quercetin, rutin and (+)-catechin, possess the catechol moieties that lend themselves 

well to bidentate binding.   

If polyphenols are part of the mechanism that confers enhanced metal tolerance 

in Salix, the hypothesis is that their levels will rise in response to elevated plant tissue 

levels of Zn and Cd.  Should this hypothesis be confirmed, it could serve as a basis for 

further investigation into how exactly polyphenols prevent the harmful effects of 

otherwise toxic metals levels.  

Materials and methods 

Plant material  

Three species of willow- S. alba (herein ‘Pseudo’), S. purpurea (herein ‘Hotel’) and 

the hybrid species S-301(S. eriocephala x S. exigua) (herein ‘301’) - were chosen 

based on a preliminary screening of willow cultivars for Zn tolerance and potential for 

Zn phytoaccumulation.  A total of 20 cuttings were taken and rooted in the lab for two 

weeks.  They were then transferred to a hydroponic set up in a climate-controlled 

greenhouse.  Plants were potted 1-3 plants per square plastic pot in a non-soil medium 

(perlite) and then placed in one of three troughs.  Each trough received a different 

solution continuously fed from large plastic containers via OK-PVC tubing and an 
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electric pump.  This set up was based on the home-made version of the multiple 

reservoir method as detailed by Watson et al. (2003). 

Treatments 

Plants were divided into three groups- control, half-metal treatment and full-metal 

treatment.  Metal concentrations in the growing medium for exposed groups were 

based on work done by Watson et al. (2003). The treatment solutions were as follows: 

Control- ¼ strength Hoagland’s nutrient solution; 

Half-metal- 100 �moles Zn and 5 �moles Cd  and ¼ strength Hoagland’s 

nutrient solution; and  

Full metal- 200 �moles Zn and 10 �moles Cd  and ¼ strength Hoagland’s 

nutrient solution.  

These solutions were kept in large plastic containers and replenished on an as-

needed basis.  Metal treatment commenced 7 days after the initial plant set up and 

continued for a period of 14 days.  After that time, plant tissue was harvested and 

analyzed.   The harvesting consisted of cutting the shoots from each plant and 

allowing them to air dry in the lab.  Leaves were then manually removed from stems 

and prepared for further analysis. 

Leaf metal extraction and quantification 

An acid extraction method was used to release metals from fresh leaf tissue into 

solution.  Preliminary studies had shown that this method extracts around 70% and 

85% of Zn and Cd in the willow leaves, respectively.  These extraction efficiencies are 

assumed here in the estimations of tissue metal concentrations.   

Approximately 0.25 grams of freshly ground tissue was placed into an Erlenmeyer 

flask with 50 mL of 1M HNO3, covered and agitated for one hour.  The solution was 

then processed through filter paper, Whatman No. 42, and analyzed for metal content 

with AAS.   
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The AAS equipment used was a Buck Scientific 210AA Model 210VCG Atomic 

Absorption Spectrophotometer with acetylene flame.  Zn and Cd standards at 

concentrations of 0.10, 0.25, 0.50 and 1 ppm provided a standard curve for 

comparison.  The matrix of the standards was matched with that of the extract 

solutions to avoid matrix errors as well as over or underestimation of metal levels.  

The analysis for Zn was performed by taking 1 mL of the extract solution and 

diluting to 5 mL with 1M HNO3 so that the metal levels were in the range of standard 

solutions used to calibrate the AAS.  For the Cd analysis, this dilution step was not 

required.  Solutions analyzed for Zn content had an overall dilution factor of 1000, 

while solutions analyzed for Cd content had a dilution factor of 200.  

Phenol extraction and determination 

To extract phenolic constituents, dried leaf tissue was mixed with pure methanol at a 

1:20 ratio in an Erlenmeyer flask, covered and agitated for one hour at room 

temperature.  After extraction, the solution was processed through filter paper, 

Whatman No. 42, and analyzed with a spectrophotometer after performing several 

colorimetric assays.  The spectrophotometer used was a Perkin-Elmer Hitachi 200.   

Total Phenolic Determination: Gross polyphenol levels were determined using 

the Prussian Blue assay developed by Price and Butler (1977).  The principle behind 

this assay is the reduction of ferric iron to ferrous iron by phenolics that results in a 

ferricyanide-ferrous color complex known as Prussian Blue.  For this assay, 1 mL 

samples of plant extract were pipetted into plastic test tubes, after which 2 mL of 

0.008 M FeCl3 in 0.008 N HCl and 10 mL of 0.0015 M K3Fe(CN)6 were added.  

Absorbance at 720 nm was read on the spectrophotometer 30 seconds after adding the 

final reagent.  Each plant sample was analyzed in triplicate with an average taken of 

the readings in the final analysis.  The background (blank) determination was made by 

preparing a NaCl solution sample in the same manner and subtracting the absorbance 
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from the sample readings.  The standard curve was prepared by adding the reagents to 

1, 0.10, 0.05 and 0.01 mM solutions of tannic acid.  Results are reported in tannic acid 

equivalents (mmoles) per ml of leaf extract. 

Condensed Tannin Determination:  The procedure for condensed tannins 

measurements followed the method outlined by Julkunen-Tiitto (1985).  For this 

assay, 50-250 �L samples of plant extract were pippetted into plastic test tubes 

wrapped in aluminum foil.  Three milliliters of the reagent, 4% vanillin (w/v) in 

methanol (Broadhurst and Jones, 1978) was added to each tube and then shaken for 

about 10 seconds. Then 1.5 mL of concentrated HCl was added and the tubes were 

shaken once more.  Samples were allowed to stand for 20 minutes at room 

temperature, after which absorbance readings were taken at 500 nm. Each plant tissue 

was analyzed in triplicate and the average of the readings reported in the final 

analysis.4 A background (blank) determination was made by preparing a sample 

without the vanillin and subtracting the absorbance from the sample readings.  The 

standard curve was prepared by adding the reagents to 1, 0.10, 0.05 and 0.01 mM 

solutions of (+)-catechin, and measuring the absorbance by the same method.  Results 

are reported in catechin equivalents (mmoles) per ml of leaf extract. 

Leucoanthocyanin Determination: The procedure for leucoanthocyanin 

measurements followed the method outlined by Julkunen-Tiitto (1985).  For this 

assay, 100 �L samples of plant extract were pippetted into glass test tubes and 95:5 

butanol:concentrated HCl (Bate-Smith, 1981) was added to bring the volume up to 4 

mL.  The samples were shaken for 2 hours at 95-98oC to allow for hydrolysis, cooled 

in the dark to room temperature and adjusted  back to 4 mL with butanol-concentrated 

HCl.  Absorbance readings were taken at 550 nm.  Each plant tissue was analyzed in 

                                                 
4 Except in the case of Hotel plants 3 and 20.  Due to a shortage of plant material, the assay for plant 3 
was only run once and for plant 20 it was run twice. 
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triplicate and the average of the readings was reported in the final analysis.5  The 

background (blank) determination was made by preparing a sample with the reagent 

but not hydrolyzing it, and measuring absorbance in the same manner.  The standard 

curve was prepared using 1, 0.10, 0.05 and 0.01 mM solutions of cyanidin in place of 

tissue extracts.  Results are reported in cyanidin equivalents (mmoles) per ml of leaf 

extract . 

Results and analysis 

Overall plant health and biomass 

A total of 20 plants from three willow species were included in the willow hydroponic 

experiment, with at least one plant from each species in each treatment group (see 

Table 4).  After two weeks of Zn and Cd exposure, most plants were relatively 

healthy.  Biomass production was not impaired by metal exposure in 301 or Hotel but 

was in Pseudo.   Of all the plant species, Hotel was the lowest biomass producer in 

each group.  Also worth noting is that in the full metal treatment, all 3 species 

exhibited signs of metal stress.  Yellow coloration was visible on leaves of each plant, 

presumably evidence of chlorosis.  

Metal accumulation 

 Before examining the impact that metal exposure might have on phenol levels, leaf 

metal accumulation levels were determined.  This was done using an acid extraction to 

remove metals from ground leaf tissue and then analyzing the solutions by AAS.   

 Unsurprisingly, the higher metal concentrations plants were exposed to, the 

greater their concentrations were in plant tissue.  Plant tissue metal concentrations 

varied both within treatment groups and between individual species; no one plant 

species consistently accumulated high metal concentrations in comparison to others. 

                                                 
5 Except in the case of Hotel plants 3 and 20.  Due to a shortage of plant material, the assay for plant 3 
was only run once and for plant 20 it was run twice. 
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Table 4: Leaf biomass by plant and 
treatment group 

 

Hotel was the best accumulator in the half metal treatment but a 301 plant in the full 

metal treatment had the highest metal levels in the experiment (see Table 5). 

 On the individual plant level, the greatest intra-species variation for plants in 

the same treatment occurred amongst Pseudo plants 7 and 8.  As Table 6 shows, the 

metal levels for these plants differed by 34% for zinc and 71% for cadmium.  No 

explanation for this is readily available as these genetically identical plants were 

exposed to the same metal solution under the same conditions.   However, variations 

such as these with willow plants are not uncommon as previously explained (see 

Chapter 1). It is beyond this scope of this investigation to speculate the reasons as to 

why this may be so. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment 
group 

Species-
Plant No. 

Leaf  
biomass (g) 

301-1 8.4 
301-2 7.41 

Hotel-3 3.55 
Pseudo-4 18.9 
Pseudo-5 16.85 

Control 

Pseudo-18 6.96 
301-17 6.2 
301-19 6.92 

Pseudo-15 26.7 
Pseudo-16 17.2 

Half 

Hotel-20 4.8 
301-11 8.72 
301-12 11.64 
301-13 4.75 

Pseudo-6 5.94 
Pseudo-7 6.71 
Pseudo-8 9.28 
Pseudo-9 1.73 
Pseudo-10 4.5 

Full 

Hotel-14 5.62 
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Table 5: Average metal accumulation (ppm) 

Table 6: Individual plant metal levels- Pseudo 

 

 

 

 

 

 

 

 

 

 

 

 

Plant phenolic levels 

The assays performed in this investigation offer a “snapshot” of the polyphenolic 

levels for each plant at the time of harvest.  In doing so, they provide evidence for 

whether or not metal exposure and uptake in willows yields any change in the amounts 

of these compounds in plant leaf tissue.  

 The assay assessing total phenolics, which broadly takes account of oxidizable 

substrates, shows virtually no difference between plant species and treatments.  A 

statistical analysis of the results confirms that the treatment and species differences 

were not significant (For 301: ANOVA, df=6, F-value=4,209, p=0.104; For Pseudo: 

ANOVA, df=9,F-value= 0.494, p=0.630).6 However, given that there are a great many 

phenolic constituents in willow; changes in the levels of specific types of polyphenols 

could easily be masked by a non-specific evaluation of total phenols such as this.   

                                                 
6 A statistical analysis for Hotel was not performed as the n for the control and each treatment was 1. 

Treatment 
group Species Zn conc.  Cd conc.  

301 28.4 bd* 
Hotel 4.05 bd Control 

Pseudo 25.7 bd 
301 134 66.4 

Hotel 235 84.2 Half 
Pseudo 177 60.7 

301 612 138 
Hotel 365 104 Full 

Pseudo 507 129 

Treatment Species Zn Conc. Cd Conc. 
Psuedo-7 361 52.8 Full 
Pseudo-8 544 185 

*bd= below AA detection limit 
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 It is for that reason that two additional colorimetric tests were performed.  Both 

sought to measure a sub-group of polyphenols called flavanoids.  The first assay, 

condensed tannin determination, quantified the levels of (+)-catechin-like polyphenols 

while the second assay, leucoanthocyanin determination, focused on levels of 

cyanidin-like compounds.  Results are presented below. 

Condensed Tannin Determination. The results of this assay show no 

discernable trend across treatments.  For 301, cultivar levels of condensed tannins 

were lower in the half and full metal treatments in comparison to the control group.   

 

 

 

 

 

 

 

 

 

 

 

 

However, interpreting these results in light of the levels found in 301 control 

plants should be done with caution.  Although the average levels in the control are 

higher than in either the half or full metal treatments, this difference may not in fact be 

significant.  

There was a wide variation in levels of condensed tannins for the two 301 

plants in the control treatment. Plant 301-1 registered the highest levels of (+)-catechin 

Figure 11: Average levels of phenols in plant extracts (mmoles/mL) for all 
metal treatments (control, half and full metal) and Salix cultivars.   
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equivalents, 146 mmoles, of any plant in the experiment.  Plant 302-2 had a 

substantially lower level of 79.5 mmoles.  While experimental error might be a factor 

here, it is interesting to note that plant 301-1 also contained much higher levels of 

foliar Zn, Cd and leucoanthocyanins than its control group counterpart (as detailed 

below).  The reason for substantial differences between the replicate plants 301-1 and 

301-2 is unclear, but the variability necessitates careful interpretation of data in light 

of this fact. 

Amongst Pseudo plants, the results for condensed tannins are similar to those 

found for 301.  Condensed tannins decline by about 53% in the half metal treatment 

but are actually slightly higher then control levels in the full metal treatment.  With 

Hotel, the scenario is different.  Condensed tannin levels dropping from an average of 

18.77 moles to almost zero in the half metal treatment, a fall in levels of 99%.  They 

levels are much the same in the full metal treatment. 

 

 

 

 

 

 

 

 

 

 

 

For the Pseudo cultivar, the pattern for condensed tannins in response to metals 

is similar to those found for 301.  Condensed tannins decline by about 53% in the half 

Figure 12: Average level of (+)-catechin equivalents per mL of 
willow foliar extract 

Condensed Tannin Determination

0
20
40
60
80

100
120
140
160
180

301 Hotel Pseudo

Species

(+
)-c

at
ec

hi
n 

eq
. (

m
m

ol
e)

Control

Half

Full



 

35 

Table 7: Average levels of 
condensed tannins (mmoles)/mL 

metal treatment but are actually slightly higher than control levels in the full metal 

treatment.  For Hotel, the pattern is different, with condensed tannin levels dropping 

from an average of 18.8 mmoles to almost zero in the half and full metal treatment, a 

decrease of about 99%. 

 

 

 

 

 

 

 

 

From these initial results, no uniform trend for the different cultivars emerges 

to show if zinc and cadmium exposure tends to change condensed tannin production.  

For the Hotel cultivar, it does seem reasonable to conclude that the heavy metal 

exposure suppressed levels of condensed tannins.  However, the same conclusion 

cannot necessarily be drawn for 301 or Pseudo.  In the case of 301, the situation is 

confounded by the seemingly aberrant performance of 301-1.  For both cultivars, it 

could be that lower metal levels suppress (+)-catechin-like polyphenols through some 

sort of mechanism that is not triggered at higher metal exposure levels.  This would 

explain why there appears to be a drop in condensed tannins at the half but not the full 

metal treatment.  Nevertheless, the differences seen here could also be due merely to 

the wide variation in biological responses found among willow species, cultivars and 

individual plants in many experiments conducted previously (see Chapter 1). 

Treatment Species Average 
301 112.76 

Pseudo 17.06 Control 
Hotel 18.77 
301 50.71 

Pseudo 7.95 Half 
Hotel 0.32 
301 71.19 

Pseudo 20.09 Full 
Hotel 0.14 
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Table 8: Average levels of 
leucoanthocyanins (mmoles)/mL of 

plant leaf extract 
 

A statistical analysis of this assay’s results shows that the variations in 

condensed tannin levels for each species at the half and full metal treatments are not 

significant (For 301: ANOVA, df=5, F-value=2.299, p=0.248; For Pseudo: ANOVA, 

df=9, F-value=0.620, p=0.565). But given the small sample size, additional testing on 

a larger number of plants over a longer time frame is warranted in order to better 

determine if metal exposure does in fact elicit any changes in condensed tannin levels. 

Leucoanthocyanin determination.  As with the condensed tannins analysis, 

there is no discernable trend across metal treatments for leucoanthocyanins, as shown 

in Table 8 and Figure 13.  For 301, plants in the half and full metal treatments saw 

respective declines in their levels of cyanidin-like compounds of 43% and 31%.  In the 

case of Pseudo, levels of cyanidin-like compounds started low, around 3 mmoles, and 

stayed low.  Levels in the half metal treatment were about the same as in the control, 

and lower in the full metal treatment.   

 

 

 

 

 

 

 

 

 

For Hotel, the lack of replicates may have given the appearance of a large 

increase in leucoanthocyanins levels in the half metal treatment.  The assay was 

performed in duplicate on the one Hotel plant in the half metal treatment, but the 

values obtained for the  

Treatment Species Average 
301 9.39 

Pseudo 3.11 Control 
Hotel 0.72 
301 16.6 

Pseudo 3.61 Half  
  Hotel 5.39 

301 13.7 
Pseudo 1.08 Full 
Hotel 0.54 
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two readings were very different.  The first yielded an absorbance of 0.124, which 

translates into a cyanidin equivalent of 0.00 mmoles.  The second yielded an 

absorbance of 0.81, which equals a cyanidin equivalent value of 10.8 mmoles.  This 

suggests that there was an error in the assay, and one of these two readings is invalid.  

A lack of sufficient leaf tissue prevented retesting. 

As with the other assays, the differences among the metal treatments are not 

significant. (For 301: ANOVA, df=6, F-value=0.785, p=0.516; For Pseudo: ANOVA, 

df=9, F-value=2.511, p=0.151 ). 7 But again, given the small sample size, additional 

testing is prudent before making definitive conclusions. 

Individual Plants. Given the wide variation found in individual willow plants, 

aggregate analyses, such as the ones performed above, risk overlooking trends 

occurring at the plant specific level.  A review of the data at the individual plant level 

indicates that this is not the case here (see Appendix B).  There is no apparent 

correlation between metal and phenolic levels for invidual willow plants.   

 

 

 

 

 

 

 
 
 

 

 

Figure 13: Average level of  leucoanthocyanin equivalents per mL of 
willow foliar extract  

                                                 
7 A statistical analysis for Hotel could not be performed as the n for the control and treatments was 1. 
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Conclusion 

The hypothesis being tested here is whether or not metal exposure elicits a 

change in polyphenol levels.  The results from this initial round of experiments are 

inconclusive.  Statistical analysis showed no significant change in these polyphenols 

in response to higher tissue Cd and Zn.  It is possible that small sample sizes in 

combination with the considerable variations known to occur both between and 

within species obscured metal-induced changes in phenolic levels.  Therefore, further 

investigation is warranted. A larger sample size of plants should be exposed to metals 

for longer periods of time with their metal and phenol status assessed over time, rather 

than at a single time point.  Moreover, assays should be employed to assess the levels 

of other classes of phenolics such as salicylates and hydrolyzable tannins. 

 Should another round of experiments yield results similar to the ones obtained 

in this investigation, it would not mean that polyphenols are not part of the metal 

tolerance mechanism in Salix.  It could very well be that the already high levels of 

phenolics found under natural conditions in willow plant tissue form a ready pool of 

defensive agents, and that their detoxification role does not require further 

augmentation.  It should also be pointed out that willows are not hyperaccumulators, 

and toxic effects of Zn are seen at foliar concentrations around 1000 mg/kg. 

 Pursuing additional avenues of investigation aside from phenolic quantification 

would also be sensible.  Size exclusion chromatography techniques coupled with UV-

VIS or other detectors afford the opportunity to characterize metal species and shed 

light on which compounds are serving as ligands (Weber and Konieczy�ski, 2003).  In 

situ techniques, such as X-ray absorption spectroscopy, would provide information on 

the coordination chemistry of metal complexes (Gardea-Torresdey et al., 2004).   

These techniques in combination could go a long way to solving the mystery of which 

plant constituents are behind enhanced metal tolerance. 
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In summary, while this examination did not yield conclusive about the role of 

polyphenols in metal detoxification, results it provides a solid foundation for further 

investigation.  The next steps briefly outlined above will determine if polyphenols 

involved in metal tolerance.  If they are ruled out, the focus can shift to other 

compounds, such as organic acids.  However, if it is shown that polyphenols do figure 

into the process, then science will be one step closer to sorting out the metal tolerance 

mechanism in Salix.  
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APPENDIX A 
 
 

PHYTOCHELATIN DETERMINATION 

 

A modified Bradford assay with subsequent HPLC and UV-VIS analysis was 

run on several samples of fresh willow tissue to determine if metal exposure in 

willows triggered the production of phytochelatins.  The results of the assay showed 

no phytochelatins in any of the plants samples examined, regardless of the treatment 

group.  While this could lend further evidence that phytochelatins are not involved in 

metal tolerance in Salix, these results should only be considered preliminary, as an 

adequate control was not used to confirm the robustness of the experimental design.  A 

plant such as Arabidopsis would be sufficient in this respect as it is known to 

synthesize phytochelatins.   

Detailed below are the steps used to perform the initial analysis. In order to 

confirm the results obtained from this assay, the experiment should be re-run with a 

proper control to verify the results and confirm that Zn and Cd exposure does not lead 

to phytochelatin synthesis in the species examined.  Additionally, running this assay at 

different time points once metal exposure has commenced would further substantiate 

that this class of compounds is not involved.   

Protein extraction and analysis 

The procedure for protein extraction used is based on the method outlined by Jones et 

al. (1989).  For protein extraction, 100 mg of fresh leaf tissue in liquid nitrogen is 

ground with a mortar and pestle.  The N2 is allowed to evaporate and then a ratio 1 mL 

of 0.1 N NaOH per 10 to 100 mg of leaf tissue is added and mixed with a mortar and 

pestle.  Only about 25% of the initial volume of NaOH is used for grinding with the 

remaining volume saved to wash the plant material into a centrifuge tube.  Once in the 
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centrifuge tube, samples are agitated for 3 seconds on a vortex mixer and left to 

extract for 30 minutes at room temperature. 

Samples are then agitated for another 3 seconds and centrifuged for 5 minute at 

high speed (>5000g) on a bench centrifuge.   The supernatant is decanted and agitated 

for 3 seconds more.   Then 5 �L of the extraction is mixed with 795 �L of 0.1N 

NaOH.  Added to that is 200 �L of the 1:4 diluted Bradford dye reagent, prepared 

according to the Bio-Rad Laboratories Manual (Bio-Rad Laboratories, 1985), and 

modified with 3 mg/mL soluble polyvinylpyrollidone (PVP) (MW ~ 40,000).   

Samples are agitated and left to sit for 5 minutes, after which time they are ready for 

HPLC and UV-VIS analysis. 

HPLC analysis: An aliquot of each sample is taken and placed in centrifuge 

tubes.  To that, 20 �L of 50% 5-sulfosalicylic acid is added to precipitate out proteins 

and leave in solution only those non-protein peptides, among which are low molecular 

weight thiols such as phytochelatins.  Varying amounts of 0.1 N NaOH are also added 

so that final volumes of each sample are 150 �L.  Samples are iced for 5 minutes and 

then centrifuged for 10 minutes at 13.2 rpm at 4oC.  The supernatant is transferred to a 

clean centrifuge tube prior to injection into the C18 RP-HPLC column (Econosphere 

C18, 150 x 4.6 mm reverse phase column (Alltech)) for analysis.  Acetonitrile with 

0.05% phosphoric acid is used to cleanse the column between each analysis. 

UV-VIS analysis: The HPLC analysis deposits a fractioned solution into 20 

separate HPLC tubes.  The fractions are collected and 500 �L of 0.8 mM 5,5’-

dithiobis(2-nitrobenzoic acid) (DTNB) dissolved in 250 mM potassium phosphate 

buffer, pH 7.6 is added to each tube.  After five minutes, readings are taken at 412 nm.  

The background determination is made by taking a sample of 800 �L 0.1 N NaOH, 

adding 200 �L Bradford dye reagent with PVP and measuring the absorbance.  A 

calibration curve is prepared by using bovine serum albumin (BSA) as the standard 
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protein.  The BSA is prepared at a concentration of 1 �g/ �L and 2, 4, 8 and 10 �L 

solutions are prepared.  To each, 200 �L of the Bradford dye reagent are added along 

with 0.1 N NaOH so that the final volume for each sample is 1000 �L. To that the 

DTNB reagent is added and readings are taken after five minutes. 

Preparation of 250 mM potassium phosphate buffer, pH 7.6: Dissolve 34 

grams of KH2PO4 (potassium phosphate monobasic, MW 136.09) in 1000 mL of de-

ionized water.  Adjust the pH with K2HPO4 (potassium phosphate dibasic anhydrous, 

MW 174.18).
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APPENDIX B 

 

INDIVIDUAL PLANT DATA 

 

This appendix provides a summary of the experimental results obtained for individual 

plants.  Data from the metal extractions as well as the condensed tannin and 

leucoanthocyanins assays has been provided.  As these results show, there is no 

apparent correlation between plant metal and phenolic levels. 

 

Table 9: Individual plant metal, condensed tannin and leucoanthocyanins levels 

Treat-
ment 

Species- 
Plant No. 

Condensed 
Tannin 

Average 
St Dev 

Leucoantho
-cyanin 
Average 

St Dev Zn Conc. Cd Conc. 

301-1 145.99 9.722 13.92 1.11 48.71 bd* 
301-2 79.53 3.99 4.85 0.244 8.11 bd 

Hotel-3 18.77 0 0.72 0 4.05 19.35 
Pseudo-4 13.03 1.85 1.48 0.546 4.05 10.98 
Pseudo-5 22.54 3.05 2.17 0.214 60.89 70.63 

Control 

Pseudo-18 15.62 1.12 5.68 0.376 12.17 6.79 
Pseudo-15 7.76 0.61 3.58 0.537 170.52 55.98 
Pseudo-16 8.14 0.58 3.64 1.09 182.7 65.4 

301-17 40.92 4.78 21.38 12.98 150.22 65.4 
301-19 60.49 19.47 11.71 1.97 117.74 67.49 

Half 

Hotel-20 0.32 0.31 5.39 7.63 235.48 84.23 
Pseudo-7 32.04 0.605 2.06 0.317 361.35 52.84 
Pseudo-8 8.141 0.583 0.109 0.189 544.05 184.7 

301-11 60.966 9.364 10.33 1.32 686.16 134.47 
301-12 81.414 3.577 17.03 5.4 507.51 131.33 

Full 

Hotel-14 0.138 0.782 0.54 0.725 365.41 104.12 

*bd= below AA detection limit. 
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Figure 14: Individual plant data for 301.  Levels of Zn, Cd, condensed tannins 
and leucoanthocyanins in individual 301 plants across treatment groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Individual plant data for Pseudo.  Levels of Zn, Cd, condensed tannins 
and leucoanthocyanins in individual Pseudo plants across treatment groups 
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Figure 16: Individual plant data for Hotel.  Levels of Zn, Cd, condensed tannins 
and leucoanthocyanins in individual Hotel plants across treatment groups 
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