A STUDY OF SAMPLING ERROR IN AN AREA-SEGMENT SAMPLE OF NEW YORK STATE FARMERS

by
D.S. Robson

BU-36-M Apri1 1953

A survey study entitled "New York Farmers' Knowledge of. Participation in. and Suggestions on Agriculturel Programs" was conducted in the Fall of 1951 through the cooperative efforts of the Extension Service, the Experiment Station of the New York State College of Agriculture, and the Bureau of Agricultural Education of the New York State Education Department. The general purpose of the study is indicated by its title and the mala results now appear in Cornell Extension Bulletin 864 . "New York Farmers' Opinions on Agricultural Programs" by Edward O. Moe. The present study. consisting of an investigation into the sampling variability inherent in a survey such as this is intended as an aid to investigators who may in the future conduct opinion surveys of New York State farmers. Most of the results which follow will apply only to surveys of similar design and only to studies of "full time farmers"; i.e., those who obtain at least half of their annual income from operating a farm.

The design employed in this survey is commonly known as the "stratified area-segment sample"; here the individual counties formed the strata and the the Master Sample segments formed the area-segments within each county. The number of sample segments for a county was determined by applying a constant sampling rate to the total number of Master Sample segments in the county: segments were then randomly selected with the aid of the Master Sample maps. Interviewers were given maps on which the sample segments were outlined and were instructed to interview all full time farmers in these designated areas. A total of 754 segments were selected in this manner with an aim to obtaining roughly 2000 interviews; earlier studies indicated that Master Sample segments in New York State contained an average of three full time farmers. The actual returns amounted to 1530 interviews and a known additional 179 eligible farmers were not interviewed. Information was also obtained on number of census farms and non-farm occupied dwelling units in each sample segment.

In the first presentation of the survey results the accuracy of the estimates was appraised by means of binomial probability theory; 1.e., the
stratified area-segment sample was rogarded as equivalent to a simple randon somple of fixed size 1.530 from a single binomial population. It is not imediately clear whether this approximation would lead to an overestinato or an underestimate of sampling error: the stratification of the sample would tend to reduce sampling error below binomial variance; the clustoring of the population elements within area sogments ropresents an opposing force which tends to increase sampling orror; tho fact that sample size was in fact a chance guantity instead of fi:cd as in the binomial approximation has an unknow effect upon sampling orror. In estimate of " the anount and direction of bias in the binomiol apmorimation was obtained by computing as a more procise estimatc of sampling error the variance of a ratio of chance quantities. Tablo 1 and Figuro 1 prosent a comparison of these two estimates of sampling crror for 7 questions fron different content areas of the questionnaire; the variencos are compared on the basis of the confidence intervals which they fenorate undor the normal approximation. Figure 1 reveals that the binomial approxiration tended to uncerostimatc sampling error to some cxtent, though the bias is nogligible from a practical point of viow. This is a hoartoning rosult in light of the fact that, due to its oxtreme simplicity, the binomial approximation is widely applicd in practice.

The information on number of farm and non-farm occupicd dwelling units in cach sample segment provides a check on the prosent day cocuracy of the liastor Sarplo maps when the man count is compared to the obscrved count. Figures ?-b show contrasts between the frequency distributions of observod counts and map counts, revealing that the indicated number of census farms on the liaster Semple mans tends to be largor than the number of census farms actually found in the segments; likewisc, the map count undercstimates the number of non-farm occupied dwelling units whilo fairly close agroconent oxists between mop count and observod count of the total number (farm and non-farm) of occupied dwelling units por sognent. The moans of those distributions are:

	Map	Survev
avorage number of census farms per segment	5.33	3.67
average number of non-farms nor sogment	3.53	6.18
avcrage number of occupicd dwelling units	3.96	9.85

Table 1

95% Confidence Limits
 Computed from
 Istimated Sampling Error

Question	Estimated Percent Favorable	Binomial Variance 1)	$\begin{aligned} & \text { Variance } \\ & \text { of a } \\ & \text { Ratio } \end{aligned}$	Pool.ed Variance of a
	p	$\frac{\mathrm{pq}}{\mathrm{n}}$		
11	70.78	68.51-73.06	68.38-73.19	68.32-73.24
13	29.41	27.13-31.70	26.83-31.99	26.95-31.87
16	44.51	42.02-47.00	$41.90-47.12$	$4.10 \cdot 32-1.7 .20$
34	83.27-	81.40-85.14	81.05-85.49	81.25-85.29
42	63.40	60.98-65.81	60.76-66.04	60.80-66.00
48	58.76	56.29-61.22	56.03-61.48	56.10-61. 4 ?
49	95.23	94.16-96.30	94.06-96.39	$94.06-96.39$
51	33.73	31.36-36.09	31.22-36.23	31.17036 ? ${ }^{\text {a }}$
57	70.33	58.04-72.62	67.77-72.88	67.36-72.80
59	29.35	27.06-31.63	26.83-31.87	26. 99.31
66	85.12	83.66-87.19	83.61-87.2.4	83.51-87.33
86	96.73	95.34-97.62	95.97-97.50	95.77-97.69
90	61.96	59.53-64.39	59.21-64.71	59.34 .064 .53
97	60.46	58.01-62.91	58.13-62.78	57.82-63.10

1) The limits are computed from $p \neq 1.96 \sqrt{p q}$
where $n=1530$ and $p=\frac{\text { number of favorable responses in the sample }}{1530}$
2) The limits are computed from $p \pm 1.96 \sqrt{\hat{\mathrm{~V}}(\mathrm{p})}$
where $\hat{V}(p)=r(1-r) \frac{p^{2}}{n^{2}} \sum_{i=1}^{k} N_{i}\left(s_{y i}^{2}+\frac{s_{x i}^{2}}{p^{2}}-2 \frac{\hat{\rho}_{i} s_{y i} s x_{i}}{p}\right)$
where $r=.0282+=$ the sampling rate
$k=56=$ the number of strata or countios in the samplc
$N_{i}=$ the number of Master Sample segments in the i^{\prime} th county
$y_{i j}=$ the number of farms, or interviews, in the j^{\prime} th segment of the i'th county
$x_{i j}=$ the number of favorable responses among the $y_{i j}$ inter-
views in the ij'th segment
$s_{y i}^{2}=$ the sample variance of $y_{i j}$ within the i^{\prime} th stratum
$s_{x i}^{2}=$ the sample variance of $x_{i f}$ within the i^{\prime} th stratum
$\hat{\rho}_{1}=$ the sample correlation between $y_{i j}$ and $x_{i j}$ within the
i'th stratum
3) The limits are computed from the least squares curve fitted to the points in Figure 1
length of Confidence Interval in Perceint

Figure 2. A comparison oit titc frccuency distribution of the number of all farms per segment as incicetcd on the Mestar Semple maps and the number enumerated by a personal visit to the segment. Tutcij number of segments $=407$

Figure 3. 4 rometiso Ge thr forme cistributions of the number non-farm ocupicd dwolliac unt por sugmont as indicatod on the Master Samplo maps and the numion emarated by a personal visit to the segment.

Figure 4. A sopraes a tre comorey citetribution of the total
 or: the lisuc, emeto an ance the numbor onumerated by parsonal visit.

Total number of occupicd dwelling units per segment emmorated by personal visit
 number of forme por segmont as indicated on Iastor Sample maps - number of farms anumerated by personal visit, and number 25 of non-farms per scement as indicated on liaster Sample maps -

 The difference: number of occunisd, detinuerits pox segnont is indicated on Master Sample maps - number enumerated by a personal visit. .1

The close agrecment between the binomial variance and the variance of a ratio suggests that the binomial approximation may bo uscd satisfactorily in evaluating the accuracy of similar survey studies in the future. Iilrowise, binonial probability theory might bo used to determine the sarple size necossary to insuro any spocificd degroc of accuracy in the survoy rosults. The accuracy of an cstimate \hat{p} is, however, moasured by the variance $p q / n$ which cannot be known in advance even when the sample size n is spocificd. Furthormore, the somple sizo n, monsured in torms of number of intorviows, is not under the completc control of the invostigator; the number of samplo sognents may be spocificd in advance but the resulting number or intorviows is a chanco quantity and honce cannot be prodicted with cortainty. In gonornl, however, one may sefely assume that among the itons on his questionnaire there is at least on for which the population splits roughly 50-50, where the quantity pq is meximized. Choosine a samplo size to insure a spocificd dogroc of accuracy for such a question automatically insures on oven groator dogroc of accurney for other questions whore the population split is difforent from 50-50. Thus, for cxample, the investigator nay wish to know the number of sample segments to use in ordor to insure that when the population proportion is $p=I / 2$ his ostimeto \dddot{p} will Iic within the intorvel. $0775 \hat{p}<.525$ with probobility at least -95; in other words, he might wish to lnow the number of samplo sogrents to use in ordor to insuro with probobility at loast .95 that his ostimate will lio within $27 / 2$ percontage points of tho population percentage which ho is ostimating. This requirod numbor of samplo sogeonts may be ostimated quito accuratcly with the aid of the distribution of number of intorviows por sognont (Figure 7) obtaince in this studye

Let 15 denote number of sogents in the sample and $N_{1 s}$ donote the number of intervicws obtcincd from k samplo sogents; N_{k} is thon a chanco quantity, and wo shall approximato its distribution by tho normol distribution with mean 2.171: and stendard deviation $1.78 / \sqrt{k}$. Likowiso, undor large sample theory wo have that the scmplo proportion \hat{p} is normally distributod with mean $1 / 2$ and standerd doviation $\frac{1}{2 \sqrt{n}}$. Then we choose the smallest k : Cor which

$$
P[.175<\hat{p}<.525 i k]>P\left[.475: \hat{p}<.525 / N_{k}=n, 1 k\right] \cdot P\left[N_{k}: n!k\right]=.95
$$

whore

$$
P\left[.475<\hat{p}<.525 \mid N_{k}=n, k\right]=P[2 \sqrt{n}(.475-.5)<t<2 \sqrt{n}(.525-.5)]=a_{n}
$$

where

$$
t=\frac{\hat{p}-1 / 2}{1 / 2} / n
$$

is normally distributed with mean zero and variance 1 ; and, likewise,

$$
P\left[N_{k}>n \mid k\right]=P\left[t>\frac{n-2.11 k}{1.78 \sqrt{k}}\right]=a_{k}, a_{n} a_{k}=.95 .
$$

Letting $t_{a_{n}}, t_{a_{k}}$ be such that

$$
\begin{aligned}
& P\left[-t_{a_{n}}<t \leqslant t_{a_{n}}\right]=a_{n} \\
& P\left[t>t_{a_{k}}\right]=a_{k}
\end{aligned}
$$

we have that

$$
2 \sqrt{n}(.525-.5)=t_{a_{n}}
$$

or

$$
\mathrm{n}=\frac{\mathrm{t}_{a_{n}}^{2}}{.0025}
$$

and

$$
\frac{n-2.11 k}{1.78 \sqrt{k}}=t_{a_{k}}
$$

hence

$$
2.11 k+1.78 t_{a_{k}} \cdot \sqrt{k}-n=0
$$

or

$$
k=\left[\frac{-1.78 t_{a_{k}}+\sqrt{3.17 t_{a_{k}}^{2}+.0211 t_{a_{n}}^{2}}}{4.22}\right]^{2} .
$$

The problem then is to determine the values of a_{n} and a_{k} which produce the smallest value of k. Perhaps the simplest procedure to follow is the iterative method which in this case gives the minimum $k=808$ for $a_{n}=.950$ and $a_{k}=.9979$.

We may in addition, present the investigator with a range on the number of interviews he may expect if he uses $k=808$ sample segments; we may calculate two numbers \underline{n} and \bar{n} such that

$$
P\left[\underline{n}<N_{k}<\bar{n} \mid k\right]=.95
$$

which for $k=808$ has a solution

$$
\begin{aligned}
& \underline{n}=2.11(808)-1.96(1.78) \sqrt{808}=1606 \\
& \bar{n}=2.11(808)+1.96(1.78) \sqrt{808}=1804
\end{aligned}
$$

Table 2 presents additional results for various degrees of accuracy. The table applies only to survey studies of full time farmers in New York State where the survey design is identical to the one described here.

Table 2

Minimum number of sample segments required to assure with probability at least .95 that the estimate $\hat{\mathrm{p}}$ lies within $\alpha / 2$ percentage points of the population proportion p.

$i: \quad \alpha$	Number of Sample Segments	95\% Range on Number of Interviews	Expected Number of Interviews
1\%	18,747	39, c78-40,034	39,556
2	4,776	9,836-10.320	10,077
3	2,164	4,403-4.729	4,566
4	1,241	2,496-2.742	2,618
5	808	1,606-1.804	1,704
6	573	1,125-1.293	1,209
7	427	829- 973	901
8	334	641- 769	705
9	269	511- 625	568
10	221	434- 518	466
11	186	345- 440	393
12	159	292- 380	336
13	138	251- 332	291
14	121	217- 294	255
15	107	190- 262	226
16	96	169- 23 '7	203
17	86	149- 214	182
18	78	134- 195	165
19	71	121- 179	150
20	65	109-165	137

