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The early twenty-first century has been referred to as the ‘information age’; this

appears to be an apt name given the massive amounts of data that are created

daily. However, the utility of the data is limited by the tools we possess to ex-

tract and manipulate the information contained within. Towards this end, in

this thesis we examine some problems concerning classification and communi-

cation.

The first problem examined is that of classification in a ‘large-alphabet’

regime. In this large-alphabet regime, which is motivated by natural language,

standard statistical approaches to classification based on chi-squared tests or

maximum likelihood are inconsistent. We derive the limit (in terms of alphabet

growth rate) beyond which consistent classification is impossible and propose

a new consistent test that achieves this limit. We also propose a new classifier

which has good empirical performance.

The second problem addressed concerns compression of sources with large

alphabets. We first characterize for which alphabet growth rates is universal

compression possible. We then study the permitted alphabet growth-rate in the

non-universal case in which the goal is to compress a source generated by a

known sequence of distributions.

We finally examine error exponents for source coding/compression prob-

lems. The error exponent characterizes the optimal exponential decay of the



error probability. For the cases of the Wyner-Ziv and source coding with side

information problems we provide new upper and lower bounds on the error

exponent. These bounds match for some special cases. We also make connec-

tions between source coding error exponents and graph theory and provide new

upper bounds on Witsenhausen’s rate and complementary graph entropy, two

useful quantities from graph theory.
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CHAPTER 1

INTRODUCTION

There were 5 exabytes of information created between the dawn of

civilization through 2003 ... but that much information is now created

every two days, and the pace is increasing.

Eric Schmidt, CEO Google, Techonomy conference, August 2010.

1.1 Motivation and Overview

The sheer volume of information produced by mankind today presents many

challenges to communication engineers, computer scientists, and statisticians,

such as how to efficiently store and transmit the data, and how to use the data

to make accurate predictions and decisions. The fields of information theory

and statistics are especially suited to providing answers to these problems since

in both fields, it is often assumed that a very large (infinite) amount of data is

available.

There is, of course, a sharp distinction between very large and infinite

amounts of data. It is not necessarily the case that studying an abstract model,

where the number of observations goes to infinity, says anything about the prob-

lem faced by the engineer, who may be asked to design a solution for a problem

in which only one hundred observations are available. Fortunately, it turns out

that in many cases the solutions and insights provided by studying these ab-

stract models in fact work well when applied to real-world problems. This can

be seen, for example, in the area of channel coding, where practical error correct-

1



ing codes such as LDPC (which approach the limit established by Shannon) now

exist; or in the area of data compression where algorithms such as Lempel-Ziv

can compress a source at rates close to the entropy fundamental limit. Loosely

speaking, the asymptotic analysis establishes the limits of what can be accom-

plished, e.g. how much data can be sent over a particular noisy channel or by

how much we can compress a file, and then with the limits established, begins

the search for practical schemes.

For a typical information processing problem any practical scheme can be

split into three phrases. First the raw data is acquired, say by some sensing

mechanism; the data is then stored, or perhaps transmitted and stored at a re-

mote site; finally the data is processed into some usable form. In this thesis

we focus on the final two phases, and in particular we specialize and study the

problems of compression (storage and transmission) and classification (process-

ing).

We first study compression and classification of large-alphabet sources. As

explained in the next section, the large-alphabet model captures some asymp-

totic properties present in natural language data that are not captured by the

conventional model often used. Natural language is an important class of raw

data and covers a wide spectrum of sources, including blogs, webpages and

books.

The final two chapters of the thesis examine compression/transmission of

data in the presence of correlated ‘side information’. The goal is to characterize

the error exponent, the speed of the exponential decay of the error probability,

which allows the performance of various schemes to be compared to a funda-

mental limit.
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1.2 Classification with Large Alphabets

A fundamental problem when dealing with natural language data is that of

classification. In its simplest form the problem is as follows: a classifier is given

a document and has to decide whether the document is about topic one or topic

two. As an example, the classifier could be an email client, and topic one is

“spam” and topic two is “not spam”; or the classifier could be a search engine

bot deciding whether a webpage is written in “French” or “English”; or the

classifier could be trying to decide which of two authors wrote a particular text.

A statistical formalisation of the problem is to suppose that the document is

a sequence of words Z = Z1, . . . , Zn, and is the output of a memoryless source

with distribution p or q, and that we (the classifier) know p and q. The optimum

solution to this problem was given by Neyman and Pearson [1]. In the case

where the document length goes to infinity, it can be shown that the Neyman-

Pearson solution is consistent, i.e. has classification error tending to zero [2].

However, a more practically relevant scenario is when the underlying distri-

butions are not available to us, but instead we have access to training data X

and Y, where X is known to be generated according to the distribution P (topic

one) and Y generated according Q (topic two). We are then given the third

sequence Z and we perform a binary classification (i.e. a hypothesis test), to

decide whether Z is generated by according to topic one or topic two.

One model for this problem is to suppose that X = Xn
1 is a realization of a

discrete memoryless source (DMS) emitting symbols with some fixed, but un-

known, distribution p on a finite alphabetA (and similarly Y = Y n
1 is generated

by a DMS with a different unknown distribution q). The problem is then to

3



decide whether Z = Zn
1 was generated by distribution p or distribution q, us-

ing only X and Y. The classical information-theoretic approach is to let the

blocklength, n, increase so that we see longer realizations, and be satisfied by a

classifier that performs well in the limit as n goes to infinity.

For certain scenarios this classical asymptotic is inappropriate. For exam-

ple in natural language, with words as our base symbols, X and Y are strings

containing n words each generated according to p and q. Studies of English

text [3] however, suggest that 1) as the blocklength grows, so does the number

of words we encounter, without bound; and 2) English text tends to comprise

a large number of words that occur Θ(1) times. Yet in the traditional asymp-

totic with a fixed and finite alphabet, the law of large numbers (LLN) applies,

implying that all words will eventually appear and the count of any word will

increase without bound. Notice that this observation precludes the use of the

Zipf-Mandelbrot distribution [4, 5], often used to model (ranked) word frequen-

cies, because as the blocklength tends to infinity, a string generated according to

this distribution would still be dominated by Θ(1) words appearing Θ(n) times.

The presence of a LLN is roughly equivalent to being able to “learn” the under-

lying distributions from the data via the convergence of empirical distributions,

and can itself be another reason to reject the asymptotic if such an assumption

is unrealistic for the application. Note that if we model language with some

fixed-order Markov chain, similar issues arise.
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1.2.1 Contributions

In Chapter 2 we investigate the classification problem in an alternative asymp-

totic, where the (discrete) alphabet and underlying distributions generating the

data can vary with n. To tackle the problem we formulate it as a sequence of

composite1 binary hypothesis testing problems and ask under what conditions

on the distributions pn, qn and alphabet An is it possible to have universally con-

sistent tests, i.e. a sequence of tests (one for each n) that asymptotically makes

no error for any sequence of pairs of distributions on An. Note that this prob-

lem is non-trivial because here, unlike in the classical asymptotic, the empirical

distributions of the test and training data need not converge to the underlying

distributions.

Our primary focus is the case in which the underlying distributions belong

to the class of α-large-alphabet distributions, i.e. distributions whose underly-

ing symbol probabilities are all order n−α and alphabet size order is order nα

(see Def. 2.1, Sect 2.1 for a precise definition). For these sources we provide

a simple test and prove that it is universally consistent when 0 ≤ α < 2. We

also show that universally consistent classification for these sources is impos-

sible when α ≥ 2. We also prove that two commonly used tests from classical

statistics, the chi-squared test and generalized likelihood ratio test (GLRT), are

universally consistent for 0 ≤ α < 1, but both tests fail when α = 1.

Our study of α-large-alphabet sources offers insights into the hypothesis

testing problem for inhomogeneous sources (i.e. non α-large-alphabet sources

whose symbol probabilities are arbitrary) with growing alphabets. Firstly,

1Using the nomenclature from statistics, a hypothesis is simple if the distribution is fully
known and otherwise we say the hypothesis is composite.
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our results show that universally consistent tests for up-to sub-linear alphabet

growth exist. Secondly, our converse result implies that testing for arbitrary

sources is not possible when the underlying alphabet grows quadratically or

faster. Finally, we illustrate that a key problem in classifying inhomogeneous

data concerns how to handle symbols whose probabilities are of different or-

ders. The chi-squared test and GLRT employ a kind of normalization, which

attempts to put the differences between the symbol counts in the data on the

same scale. Yet, for α-large alphabet sources these differences are naturally on

the same scale and we show that this normalization can cause a systematic in-

consistency. Our new test relies solely on the unnormalized counts, and we

show that for inhomogeneous data our test is inconsistent precisely due to its

lack of normalization.

We show by proving that when given an infinite amount of training data (i.e.

the classifier exactly knows the underlying distributions pn and qn) consistent

testing is possible for any rate of alphabet growth; we also provide an achievable

error exponent.

We conclude with some observations on classification of general sources (i.e.

beyond the α-large-alphabet model) and propose a practical classification algo-

rithm for this problem.

1.2.2 Related Work

The case of hypothesis testing between fixed distributions on a finite alphabet

has been well studied. For this simple-versus-simple case, a fundamental result

on the existence of optimum tests is due to Neyman and Pearson, [1]; Cher-
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noff [6, 7] also provides exponential error guarantees. For the simple-versus-

composite case, a key result concerning the problem of asymptotically optimum

tests (in an error exponent sense) is Hoeffding [8].

The composite-versus-composite case with fixed distributions on finite al-

phabets has also received some attention. The problem of determining a test

with a prescribed exponential error decay under one hypothesis and that is uni-

formly most powerful under the other is considered by Gutman [9] (see also

Ziv [10]). Feder and Merhav [11] propose a “competitive minimax” approach,

in which one minimizes the worst case ratio between the probability of error

of a universal test and the minimum probability of error attainable when the

distributions are known.

For the case of growing alphabets, the existence of consistent tests for the

simple-versus-composite problem is studied by Barron [12], Paninski [13] and

Ermakov [14]. The works [12, 13] also address the converse problem of de-

termining the the smallest growth rate beyond which (respectively) uniformly

exponentially consistent and consistent tests do not exist.

An alternate line of investigation into the simple-versus-composite case with

growing alphabets studied the Pitman and Bahadur efficiencies of the likeli-

hood and chi-square tests [15, 16]. Moderate and large deviation results for

these statistics in the same regime are also available [17]. In [18, Ch.4 §3] Read

and Cressie study the power divergence family with growing alphabets, which

includes the chi-square and likelihood tests as members; the Bahadur efficiency

of this family with growing alphabets is investigated in [19].

The composite-versus-composite case with growing alphabets is addressed

7



in limited form by Wagner et al. [20], who develop a probability estimator for

the “rare-events” regime where underlying probabilities are all order Θ(n−1)

and therefore alphabet size is order Θ(n). Other practical approaches may also

be taken, see for example Orlitsky-Santhanam-Zhang (OSZ) [21, 22], support

vector machines [23], and techniques from pattern recognition and machine

learning [24].

1.3 Compression of Large Alphabet Sources

Compression of a sequence of independent and identically distributed (i.i.d.)

random variables is arguably one of most basic problems in information theory.

If we suppose that p is a probability mass function on some finite alphabet A,

then the entropy of the source, H(p), specifies the fewest number of symbols

required to represent a source Xn ∼ pn. In the fixed-rate setting, this is accom-

plished via the specification of a block encoder that maps source sequences of

length n to some fixed message set, i.e. fn : A×n → Mn, along with a decoder

gn : Mn → A×n that inverts this mapping. Shannon [25] showed that the error

probability, Pr(gn(fn(Xn)) 6= Xn), can be made arbitrarily small provided that

n is sufficiently large and n−1 log |Mn| > H(p). A converse result states that if

n−1 log |Mn| < H(p) then the probability of error must remain bounded away

from zero.

Yet many practical compression problems do not satisfy the hypotheses of

this result. There are two reasons for this. First, the result makes the unrealistic

assumption that the underlying distribution is known a priori; in practice we are

often provided with Xn and asked to compress it as well as we can. It is there-
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fore natural to seek instead compression schemes that can compress a source

generated by any underlying distribution in some reasonably-large class. The

second reason is that, as mentioned in the previous section, the statistical model

on which this result is based is often a poor fit for real data. Many existing

algorithms choose to bypass working on the source’s natural alphabet by map-

ping each source symbol onto multiple symbols in a smaller alphabet, such as

bits. The disadvantage of this approach, however, is that the dependence of the

source may become very long range.

In Chapter 3 we consider fixed-rate universal compression of general large-

alphabet sources. We suppose that we are given a sequence of alphabets, {An},

and distributions on those alphabets, {pn}, and observe a source Xn generated

i.i.d. according to the nth distribution on the nth alphabet. We determine when

there exist codes that can compress any i.i.d. source asymptotically as well as

the best code for that source.

1.3.1 Related Work

Ziv [26] appears to be the first to examine fixed-rate universal compression of

sources over fixed alphabets. He shows that universal codes with exponential

decay of the error probability exist for sources whose non-universal minimal

achievable rates are smaller than the coding rate. Nowadays it is well known

that block codes that are universal with respect to the class i.i.d. distributions

exist, and in fact these codes can be made to be error-exponent optimal for each

source. [27, Th. 2.15].

Universal compression of large alphabet sources is also examined by Orlit-
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sky and Santhanam [28] (see also [29] for a modified result), however their focus

is on compression redundancy of variable length codes for i.i.d. sources. They

show that the compression redundancy goes to zero when the alphabet grows

sublinearly, but is bounded away from zero when the alphabet grows linearly.

Other work investigating variable length compression redundancy of sources

on fixed alphabets includes [30, 31, 32]. Although practical lossless compression

algorithms are typically variable rate, the fixed-rate framework in this work pro-

vides a more natural starting point for studying large alphabets in other coding

problems, such as the Slepian-Wolf problem and channel coding.

Our results rely on an information spectrum [33] characterization of lossless

compression. This characterization turns the question of the existence of codes

of a prescribed rate into a question about the probability that the information

random variable, −n−1 log pnn(Xn), exceeds the given threshold.

1.3.2 Contributions

In Section 3.2 we show that universal compression of large-alphabet sources is

possible when the alphabet grows sublinearly, i.e. |An| = o(n). The scheme

we use to achieve this growth rate is not new. Our main contribution is the

converse: we show that there are families of alphabets that grow linearly for

which universal compression is impossible, even with randomized codes. The

converse hinges on the fact that with linear alphabets it is possible to find col-

lections of i.i.d. sources, each having the same entropy, such that a mixture of

the sources has an entropy that is strictly larger by an amount that is linear in

the blocklength.
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In Section 3.3 we introduce and study the problem of source coding with

distributional side information in which the decoder is given the distribution

of the source, but the encoder knows only that the distribution is i.i.d. over a

particular alphabet. If randomized encoders and decoders are permitted then

we show that universal coding is possible for any alphabet growth rate. This re-

sult is reminiscent of the result of Slepian and Wolf [34], who show that decoder

knowledge of a correlated random variable Y reduces the required rate from the

entropy of the source to the conditional entropy given the side information, and

this performance is not achievable if the side information is absent at the de-

coder. Likewise, here if the decoder alone knows the distribution then universal

coding is possible for any alphabet growth, but without the side information

sub-linear growth is the best rate that can be handled.

In Section 3.4 we conclude by showing that non-universal compression (i.e.

compression of a source with known distribution sequence {pn}) is possible at

the entropy rate {H(pn)} if and only if n−1/2 log |An| → 0. This is in stark contrast

to the variable length case, where it is possible to design a code with normal-

ized expected codeword length arbitrarily close to the entropy, H(pn) for any

alphabet growth rate [35, Eqn. 5.37].

1.4 Reliability in Source Coding with Side Information

In a typical lossy data compression problem a source is to be compressed by

an encoder at a prescribed rate so that a decoder may reproduce the source to

within some desired fidelity (distortion). Sometimes present, in addition to the

data to be compressed, is some correlated information that can be utilized by
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a second encoder, that is able to send a separate message to the decoder. We

refer to this kind of problem as source coding with side information (SCSI).

The set-up is depicted in Fig. 1.1, where a source X is compressed by encoder

one to a rate R1 with the decoder having access to encoded side information Y ,

compressed at rate R2 by encoder two, as well as the compressed version of X

from the first encoder.

The SCSI scenario arises in a variety of applications. For example, in video

applications [36] X can represent a current frame, and Y a separate correlated

frame sent from a second encoder; by taking the second rate to be large, Y can

even represent the frame(s) preceding the current frame X in the stream. While

the previous frames are certainly available to the encoder, the encoder’s coding

scheme can be simplified by not making use of this information and leaving the

decoder to exploit the interframe dependence. A second example can be found

in communication in networks with relays [37]. A source sends a message X

to a sink in a network containing a relay. One mode of operation for the relay

is “compress and forward”, i.e. for the relay to send a compressed version of

its observation, Y , of the source-sink message to the sink. This compressed

message can be used by the sink to further aid its decoding. SCSI appears in

applications even beyond communication, for example (with minor changes) it

has been proposed as a model for rate-constrained pattern recognition [38].

For the lossless problem with partial side information (SCPSI)2, and the lossy

problem with full side information (Wyner-Ziv), the “rate region” problem, i.e.

determining the rates required to meet a given average distortion constraint, is

solved. In this chapter, we study these two problems from an error-exponent

2Also known as the “One Helper” problem, Wyner’s problem [39] or the Ahlswede-Körner
problem [40].
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standpoint. Our motivation for doing so is three-fold:

• In the applications mentioned above the average distortion of a compres-

sion scheme is not the only important metric. Indeed, a video compression

system with good average performance but that frequently yields poor

images, or a communication system that suffers from frequent outages

is usually deemed unacceptable. In addition to minimizing the average

distortion, one would like to minimize the fraction of time in which the

images are poor or the relay is unable to help.

• In some important cases, there is no rate loss, meaning that there is no dif-

ference in the rate-distortion performance between the SCSI problem and

the problem in which the side information Y is available to the encoder

as well as the decoder. In particular, it is well known that this is true of

both the binary erasure and quadratic Gaussian forms of the problem [41].

This raises the question of whether these two systems are equivalent when

performance is measured via error exponents instead of the average dis-

tortion.

• Recently a connection has been established between error exponents in

channel coding and the stabilization of linear systems over noisy chan-

nels [42], and there is a known interdependence between source- and

channel-coding error exponents. Thus new techniques in source-coding

error exponents could aid our understanding of problems at the intersec-

tion of communication and control [43].
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Figure 1.1: The source coding with side information (SCSI) problem

1.4.1 Related Work

Error exponents for both SCPSI and Wyner-Ziv were studied by Arutyunyan

and Marutyan [44]. However, their results were not proven rigorously and ap-

pear to be unduly strong; they have recently been retracted [45]. Eswaran and

Gastpar [46] have established an achievable exponent for the general multiter-

minal source-coding problem, which yields an achievable exponent for these

two problems in particular. Their approach is based on determining the rate

of convergence of the Markov lemma, and is fundamentally different from the

approach used in this chapter. The approach used here arguably reveals greater

insight into both the design of coding schemes for these problems and theoret-

ical questions such as the exponent loss for the Binary Erasure and Gaussian

Wyner-Ziv problems.

For the SCPSI problem in particular, Csiszár and Körner [27, pg. 268] pro-

vide an upper bound on the reliability function. This bound is formally im-

proved in the present work by using a more refined change-of-measure argu-

ment. For the Wyner-Ziv problem, Jayaraman and Berger [47] studied the ex-

ponent associated with the binning error probability. One of the goals of this

work is to show that a binning error is only one of two competing error events.

In this sense, at the error exponent level the Wyner-Ziv problem resembles the
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problem of distributed hypothesis testing [48].

The Wyner-Ziv problem is in a sense “dual” to the problem of channel cod-

ing with side information (CCSI) [49]. Comparing the results in this work to

error exponent studies of the CCSI problem [50, 51], however, show that this

duality breaks down at the level of error exponents. In particular, in the CCSI

problem, the encoder can force the realization of the auxiliary random variable

to have a specified joint distribution with the side information. In the Wyner-

Ziv problem, however, the encoder must rely on the law of large numbers to

ensure this. At the rate level, atypical realizations can be ignored and this dif-

ference is immaterial. At the level of error exponents, on the other hand, the

two are quite different, and the Wyner-Ziv setup is more challenging.

There is a substantial literature on error exponents for simpler source cod-

ing problems such as lossless compression with side information available at

encoder and decoder (full side information) [52, 53, 54], the Slepian-Wolf prob-

lem [55, 56, 57], and lossy compression without side information [58, 59]. None

of the these problems involve optimization over an auxiliary random variable,

however, and we shall see that the presence of auxiliary random variables

makes the error exponent problem more interesting.

1.4.2 Contributions

Our key contributions are achievable exponents and converse bounds for the

SCPSI and Wyner-Ziv problems. The conventional approach to proving coding

theorems for the these problems [35] relies on typicality-based arguments and

yields error exponents that are essentially zero. By using more sophisticated
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covering and decoding techniques, we obtain lower bounds that are strictly pos-

itive for all achievable rates and distortions. Both achievable exponents have a

natural interpretation as a two-player game between nature and the code de-

signer, with nature’s goal to minimize the exponent and the code designer’s

goal to maximize it.

In Section 4.2 we give our results for the SCPSI problem. Our upper bound

uses a change-of-measure argument that is more refined than the conventional

approach [27, pg. 268] and yields a formally better bound. This bound more

accurately captures the structure of the problem and might be applicable to

other network information setups. The proof also uses the Karush-Kuhn-Tucker

(KKT) conditions in a novel way to obtain cardinality bounds on the auxiliary

random variable.

In Section 4.3 we give our results for the Wyner-Ziv problem. We supply

results for both the discrete-memoryless and Gaussian versions of the problem.

Our analysis indicates that the optimization of the coding scheme is a richer

problem than it is when the goal is to minimize the average distortion. In par-

ticular, there is a tension in the choice of the test channel. If the test channel is

“clean” then the codebook is large, which results in a high binning error proba-

bility and a low error exponent. On the other hand, if the test channel is “noisy”

then the binning error probability is low, but the decoder must rely heavily on

the side information Y n to reconstruct Xn. A small deviation in the empirical

distribution of Y n from its true distribution will then cause an error, which again

leads to a poor error exponent. The optimum choice of the test channel balances

these two competing error events.

Section 4.4 applies the Wyner-Ziv results to the Binary Erasure and Gaussian
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problem, where we illustrate the aforementioned tension numerically for the

Binary Erasure version of the problem.

Our results present evidence that, for both the binary erasure and Gaussian

cases, there is likely a difference in the error exponents between conventional

Wyner-Ziv and the version of the problem in which the side information is

available at both encoder and decoder (an “exponent loss”). This is in contrast

to the rate-distortion version of the problem, for which the two scenarios have

identical performance. Determining whether the reliability functions are indeed

different is an interesting topic for future work.

An application of our results on discrete-memoryless Wyner-Ziv allows us

to determine the reliability function exactly (for a range of rates) for the lossless

functional source coding problem, in which the goal is to reproduce a function

g(X) at the decoder (see section 4.3.1).

1.5 Improved Source Coding Exponents via Witsenhausen’s

Rate

In Chapter 53 we improve the results of Chapter 4 for the special case of full side

information depicted in Figure 1.2.

3 c©2011 IEEE. Portions, reprinted, with permission, from [Kelly and Wagner, “Improved
Source Coding Exponents via Witsenhausen’s Rate”, to appear in IEEE Transactions on Infor-
mation Theory].
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Figure 1.2: Source coding with full side information

1.5.1 Related Work

Bounds on the rate of decay of the error probability for this problem, the so-

called error exponent, were determined by Csiszár and Körner [53] whose results

include a universally attainable random coding exponent and a non-universal

‘expurgated’ exponent. Previously Gallager [52] derived a non-universal expo-

nent that was later shown to be universally attainable by Csiszár, Körner and

Marton [55].

Although our interest is in error exponents and therefore, necessarily, the

vanishing error probability formulation of full side information problems, our

improvements are derived from the study of a related zero-error problem. The

zero-error formulation of source coding with full side information was studied

by Witsenhausen [60], who showed that for fixed blocklength, n, the fewest

number of messages required so that the decoder can reproduce the source with

no error, i.e. P n
XY (Xn = X̂n) = 1, is γ(Gn

X), the chromatic number of the n-

fold strong product of the characteristic graph of the source; see Section 5.1 for

definitions and Körner and Orlitsky [61] for a comprehensive overview of the

applications of graph theory in zero-error information theory.

Asymptotically, the required rate, sometimes referred to as Witsenhausen’s

18



rate in the literature, is therefore

R(G) = lim
n→∞

1

n
log γ(Gn). (1.1)

(Note that the limit in (1.1) exists by sub-additivity and appealing to Fekete’s

lemma.) Witsenhausen’s rate may also be expressed as an optimization over

input distributions of the complementary graph entropy functional [62, 63], but

no single letter expression for this functional is known. Existing bounds on

R(G) include log γ(G), which follows by noting that γ(Gn) ≤ γ(G)n, and graph

entropy [64], which bounds complementary graph entropy. The second contri-

bution of this work is a new upper bound on R(G), attained by introducing a

new graph functional and showing that it is an upper bound on complemen-

tary graph entropy. Our method combines graph- and information-theoretic

techniques.

We use the Witsenhausen coding idea and our new functional to give im-

proved error exponents for the full side information problems. The key obser-

vation is that all sequences in some typeclasses can be communicated without

error using the Witsenhausen scheme, and doing so can strictly improve the er-

ror exponent by eliminating certain error events. Unlike existing schemes this

requires that the encoder be nonuniversal, although the only knowledge of the

source distribution required is the position of the zeroes in the channel matrix

that connects the source and the side information.

1.5.2 Contributions

Section 5.1 contains definitions and preliminary facts, including the definition

of the new graph functional.
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Section 5.2 gives some useful properties of our new functional.

In Section 5.3 we motivate the functional and give our first result, a single

letter, computable bound on Witsenhausen’s rate. We also prove that our func-

tional bounds complementary graph entropy. Comparison between some of the

aforementioned existing bounds are also given.

In Section 5.4, we give our second result, improved error exponents for

the problem of lossless source coding with full side-information; examples and

comparisons to previous known exponents are also given.

In Section 5.5 we use the ideas from Section 5.4 to give our third and fourth

results, an improved error exponent for the lossy Wyner-Ziv problem and de-

termination of the reliability function for the case when the side information is

a deterministic function of the source.

In Section 5.6 we briefly give an application of our new bound to channel

coding.
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CHAPTER 2

CLASSIFICATION OF LARGE ALPHABET SOURCES

In this chapter we formulate and study the problem of classification of large

alphabet sources. We introduce the class of α-large-alphabet sources and show

that universal classification of such sources is possible when 0 ≤ α ≤ 2. We also

show that common statistical tests such as chi-squared or likelihood ratio tests

are consistent only for 0 ≤ α < 1. We conclude with thoughts on classification

of general sources and propose a new classifier that works well empirically.

2.1 Definitions and Problem Statement

Sets are usually denoted using calligraphic letters, e.g. A = {a1, . . . , a|A|}. The

set A×n is the n-fold cartesian product of A. Strings are denoted in bold face,

e.g. x = x1 · · ·xn (usually the blocklength is clear from the context). 1{A} is the

indicator function for event A and

N(a|x) =
n∑
i=1

1{xi = a}.

We use Λx to denote the empirical distribution or type of string x, i.e.

Λx = n−1
[
N(a1|x) · · ·N(a|A||x)

]
.

The set of all discrete distributions on alphabet A is denoted P(A). The set

of all sequences of length n with type Q is denoted T nQ (again we usually omit

n since it is clear from the context). The set of all type variables Q ∈ P(A),

i.e. those for which T nQ 6= ∅, is denoted Pn(A). For other information theoretic

notations we use the standard definitions, see e.g. [27]. If p is a distribution on
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A then pn is the n-fold i.i.d. product measure on A×n, i.e.

pn(x) =
n∏
i=1

p(xi).

For triangular arrays, Xn,m, 1 ≤ m ≤ n, n ≥ 1, the notation Xn refers to

the rows of the array, i.e. Xn = Xn,1, . . . , Xn,n. We use ‖ · ‖p to denote the pth

Euclidean norm and 〈·〉 to denote the standard inner product.

For any distribution p on a finite set A, supp(p) denotes its support and we

define

p̌ = min
a∈(A∩supp(p))

p(a) and p̂ = max
a∈A

p(a).

Our primary focus in the chapter will be the following class of distributions.

Definition 1. The sequence {pn, qn,An} is an α-large-alphabet source pair if for

all n

č

nα
≤ min(p̌n, q̌n) ≤ max(p̂n, q̂n) ≤ ĉ

nα
, (2.1)

where č and ĉ are positive constants independent of n; and where

An = A′n ∪ Xn ∪ Yn

with

A′n = supp(pn) ∩ supp(qn)

Xn = supp(pn) ∩ {a : qn(a) = 0}

and Yn = supp(qn) ∩ {a : pn(a) = 0}.

Note that for any α-large-alphabet source, |An| = Θ(nα). This can easily be

seen since

1 ≥
∑
a∈A′n

pn(a) ≥ |A′n|
č

nα
and 1 ≤ |An|

ĉ

nα
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which along with 1 ≥ |Xn| čnα and 1 ≥ |Yn| čnα implies

3nα

č
≥ |An| ≥

nα

ĉ
.

Such distributions may arise from sampling a probability density. For ex-

ample, suppose f(x) is (almost everywhere) continuous on [0, 1] satisfying∫
f(x)dx = 1 and č ≤ f(x) ≤ ĉ. If X is a random variable with density f

and we define pn as the distribution of dnαXe, then the sequence {pn} is α-large-

alphabet with alphabet {1, . . . , nα}.As we will see later studying this class sheds

light on the general classification problem.

2.1.1 Problem Statement

For each n, let Xn,m, 1 ≤ m ≤ n be i.i.d. random variables with distribution pn

and similarly let Yn,m, 1 ≤ m ≤ n be i.i.d. with distribution qn. We assume that

pn and qn are unknown distributions with a common finite alphabet An. We also

assume that pn and qn satisfy

lim inf
n→∞

‖pn − qn‖1 = lim inf
n→∞

∑
a∈An

|pn(a)− qn(a)| > 0. (2.2)

For each n we observe independent realizations Xn and Y n, the nth rows

of the corresponding triangular arrays. Given a third independent row Zn,m,

1 ≤ m ≤ n generated i.i.d, we wish to test which of hypotheses

H0 : Zn ∼ pnn for all n,

orH1 : Zn ∼ qnn for all n

is in effect. One may think of Xn and Y n as being training data and the problem
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is to determine whether Zn came from the unknown distribution pn or qn. We

refer to this problem as the triangular array hypothesis testing problem.

Let Pn = pnn × qnn × pnn and Qn = pnn × qnn × qnn . We will be concerned with the

following asymptotic properties of tests.

Definition 2 (α-Universal Consistency). For a given sequence of alphabets

{An}∞n=1 with |An| = Θ(nα), we say a sequence of tests Tn : A×nn ×A×nn ×A×nn →

{0, 1} is α-universally consistent if for every sequence {pn, qn} on {An} satisfying

(2.1) and (2.2),

Pn(Tn(Xn, Y n, Zn) = 0)→ 1

and Qn(Tn(Xn, Y n, Zn) = 1)→ 1 as n→∞.

Definition 3 (Universal Consistency). For a given sequence of alphabets

{An}∞n=1 we say a sequence of tests Tn : A×nn × A×nn × A×nn → {0, 1} is univer-

sally consistent if for every sequence of distributions {pn, qn} on {An} satisfying

condition (2.2),

Pn(Tn(Xn, Y n, Zn) = 0)→ 1

and Qn(Tn(Xn, Y n, Zn) = 1)→ 1 as n→∞.

Note: Implicit in both definitions of universal consistency is that the classifier

knows the underlying alphabet, however the classifiers considered in this work

do not require knowledge of the symbols that do not appear in the training data.

When proving impossibility results, however, we assume the classifier knows

the alphabet.
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2.2 Testing of α-large-alphabet sources

2.2.1 Achievability

In this subsection we show that α-large-alphabet sources can be handled with

a simple test based on Euclidean geometric considerations. Loosely speaking,

the idea is that under hypothesisH0, ΛZn should be “closer” to ΛXn than it is to

ΛY n , despite the fact that ‖ΛXn − pn‖1 need not tend to zero when |An| grows

linearly or faster [65].

Theorem 1. If 0 ≤ α < 2 then the test

‖ΛZn − ΛXn‖2
2

H0

≶
H1

‖ΛZn − ΛY n‖2
2 (2.3)

is α-universally consistent.

To prove the result we need the following lemmas. Throughout we define

F = F (Xn, Y n, Zn) = ‖ΛZn − ΛXn‖2
2 − ‖ΛZn − ΛY n‖2

2.

Lemma 1.

E0[F ] =
∑
a∈An

−(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a))

and E1[F ] =
∑
a∈An

(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a))

Proof. Using Ei to denote expectation underHi, we now compute

Ei[F (Xn, Y n, Zn)] = Ei[‖ΛXn‖2
2 − ‖ΛY n‖2

2 − 2〈ΛZn ,ΛXn − ΛY n〉].

We start with the two-norm of the type
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Ei
[
‖ΛXn‖2

2

]
= n−2

∑
a∈An

Ei
[
N2(a|Xn)

]
.

Since N(a|Xn) is a binomial random variable with parameters (n, pn(a)),

Ei
[
‖ΛXn‖2

2

]
= n−2

∑
a∈An

npn(a)(1− pn(a)) + n2p2
n(a)

= n−1 +
∑
a∈An

p2
n(a)− n−1p2

n(a)

Similarly

Ei
[
‖ΛY n‖2

2

]
= n−1 +

∑
a∈An

q2
n(a)− n−1q2

n(a).

For the final term

Ei
[
〈ΛZn , (ΛXn − ΛY n)〉

]
= n−2

∑
a∈An

Ei
[
N(a|Zn)(N(a|Xn)−N(a|Y n))

]
= n−1

∑
a∈An

Ei
[
N(a|Zn)](pn(a)− qn(a)).

Under hypothesisH0, the previous line is

∑
a∈An

pn(a)2 − pn(a)qn(a)

and under hypothesisH1 is

∑
a∈An

−qn(a)2 + pn(a)qn(a).

Therefore

E0[F ] =
∑
a∈An

p2
n(a)− n−1p2

n(a)− q2
n(a) + n−1q2

n(a)− n−1p2
n(a) + 2pn(a)qn(a)

=
∑
a∈An

−(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a)),
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and similarly

E1[F ] =
∑
a∈An

(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a)).

Lemma 2. For all 0 < α < 2 and for i = 0, 1

Vari[n
αF ]→ 0

Proof. Follows from direct calculation using binomial moments. See Appendix

A.1 for details.

Lemma 3. For any α-large-alphabet source pair {pn, qn,An}

č/3‖pn − qn‖2
1 ≤ nα‖pn − qn‖2

2

Proof. The result follows from the Cauchy-Schwarz inequality and the bound

|An| ≤ 3nα

č
.

We are now in a position to prove achievability.

Proof of Theorem 1. Case 1 : 0 < α < 2. Notice that the test nαF ≶ 0 makes the

same decision as the test in the statement of the theorem. When hypothesis H1

is in effect (a subscript on operators denotes this) Lemma 1 tells us

E1[F ] =
∑
a∈An

(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a)),

where both
∑
Xn p

2
n(a) and

∑
Yn q

2
n(a) are O(n−α). Therefore by Lemma 3 we

have

lim inf
n→∞

E1[nαF ] = lim inf
n→∞

nα
∑
a∈An

(pn(a)− qn(a))2

≥ lim inf
n→∞

č

3
‖pn − qn‖2

1,
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which is strictly positive by hypothesis. Invoking Lemma 2

Var1(nαF )→ 0

and the result follows from Chebyshev’s inequality1. The hypothesisH0 is han-

dled analogously.

Case 2: α = 0. For this case we take square root of both sides of (2.3) so

that we are working with norms. Now the result may be be proved using the

weak law of large numbers (see for example Lemma 10 in Section 2.3). Suppose

hypothesisH0 is in effect. The lefthand side of (2.3) is

‖ΛXn − ΛZn‖2 ≤ ‖ΛXn − pn‖2 + ‖ΛZn − pn‖2

and both terms on the right of the previous display tend to zero in probability.

For the righthand side, note that by the reverse triangle inequality∣∣∣‖ΛY n − ΛZn‖2 − ‖pn − qn‖2

∣∣∣ ≤ ‖ΛY n − qn‖2 + ‖ΛZn − pn‖2

and so for n large enough ‖ΛY n − ΛZn‖2 is as close to ‖pn − qn‖2 as we

desire. Finally note that the hypothesis lim infn→∞ ‖pn − qn‖1 > 0 implies

lim infn→∞ ‖pn − qn‖2 > 0 if the alphabet is not growing with n.

2.2.2 Converse

We next show that the result in Theorem 1 cannot be improved.

Theorem 2 (Converse). If α ≥ 2, then there are alphabets with growth rate Θ(nα) for

which there are no α-universally consistent tests.

1Sharper concentration results can be obtained using martingale techniques; see Theorem 25
in the Appendix for one such result.
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To prove the result we need the following additional machinery.

Definition 4 (Testing Affinity). Suppose P and Q are probability measures on

some space X dominated by λwith densities f and g. Let the density f∧g define

the (sub-probability) measure P ∧Q, i.e.

(P ∧Q)(A) =

∫
A

(f ∧ g)dλ.

with f ∧ g denoting the pointwise minimum of f and g.

Note that 2(a ∧ b) = a+ b− |a− b|, and so we may also write

‖P ∧Q‖1 = 1− 1

2
‖P −Q‖1. (2.4)

Following Le Cam [66, Ch.16 §4] we associate with a hypothesis H0 (resp.

H1) a set of measures, say A (resp. B). Let 0 ≤ φ ≤ 1 be a randomized test

function, i.e. a function which gives the probability of accepting hypothesisH0.

For a given φ and sets of measures A and B we define the worst case “average”

error probability as follows

R(A,B, φ) = sup
P∈A,Q∈B

[ ∫
(1− φ)dP +

∫
φdQ

]
,

and define the minimax error probability (or risk) as

R(A,B) = inf
φ
R(A,B, φ)

i.e. R(A,B) is the best universally achievable risk. We recall the following re-

sult.

Lemma 4. [Kraft [66, Ch.16 §4, Lem. 1]]

R(A,B) = sup
P∈conv(A),Q∈conv(B)

‖P ∧Q‖

where conv(A) denote the convex hull of the set A.
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Equality (2.4) and Lemma 4 allow us to express minimax risk in terms of L1

distances between convex hulls. We will also need the following result.

Lemma 5. For any pair of probability measures P and Q, both dominated by a proba-

bility measure λ,

‖P −Q‖2
1 ≤

∫ (dP
dλ
− dQ

dλ

)2

dλ.

Proof. Applying the Cauchy-Schwarz inequality gives

‖P −Q‖1 =

∫ ∣∣∣dP
dλ
− dQ

dλ

∣∣∣dλ
≤

√∫
dλ

∫ (dP
dλ
− dQ

dλ

)2

dλ

=

√∫ (dP
dλ
− dQ

dλ

)2

dλ.

We now use these facts to establish a converse result. We first give a lower

bound on the risk for a suitably chosen hypothesis testing problem on the se-

quence of alphabetsAn = {1, . . . , dnαe2}, where d·e2 denotes rounding up to the

next even integer. Define sets

Cn,α,ε,č,ĉ = {(pn, qn) ∈ P(A×2
n ) : ‖pn − qn‖1 ≥ ε,

čn−α ≤ min(p̌n, q̌n) ≤ max(p̂n, q̂n) ≤ ĉn−α

∀a ∈ An : max(pn(a), qn(a)) > 0},

An,α,ε,č,ĉ = {pnn × qnn × pnn : (pn, qn) ∈ Cn,α,ε,č,ĉ},

and Bn,α,ε,č,ĉ = {pnn × qnn × qnn : (pn, qn) ∈ Cn,α,ε,č,ĉ}.

Observe that for any choice of ε > 0 and constants č, ĉ any sequence of pairs

distributions {pn, qn} with the nth chosen from Cn,α,ε,č,ĉ is by definition α-large
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alphabet and moreover

lim inf
n→∞

‖pn − qn‖1 ≥ ε.

The following upper bound on the L1 distance between the convex hulls of

the sets for this testing problem combined with (2.4) give the aforementioned

lower bound on the risk. The proof of the bound is similar in spirit to that of

[13, Th. 4], which in turn borrows ideas from [67], using a so-called “mixture

measure” to construct bad convex combinations. In our proof we apply the mix-

ture measure idea to address the composite-versus-composite problem studied

here.

Lemma 6. Let 0 < ε < 1. For 0 < č ≤ 1−ε
3

< 1 + ε ≤ ĉ there exists Pn ∈

conv(An,α,ε,č,ĉ) and Qn ∈ conv(Bn,α,ε,č,ĉ) so that

‖Qn − Pn‖1 ≤
√

2 exp
(n2ε4

2nα

)
.

Proof. Define m = dnαe2. Let un be the uniform distribution on {1, . . . ,m}. Let

Π = {−1, 1}×(m/2) i.e. the set of all {−1, 1} vectors of length m/2. For any π ∈ Π

let

ν(i, π) =


πi/2 i even

−π(i+1)/2 i odd,

and define the distribution qn,π as

qn,π(i) = (1 + εν(i, π))m−1 for i ∈ {1, . . . ,m}.

We note that

‖qn,π − un‖1 = ε for all π. (2.5)

Also since for all positive real x

x ≤ dxe2 ≤ x+ 2,
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one has

1

3
≤ nα

m
≤ 1. (2.6)

Define measures

Pn,π = unn × qnn,π × unn and Qn,π = qnn,π × unn × unn

and observe that (2.5), and (2.6) combined with

1− ε
m
≤ min(ǔn, q̌n,π) ≤ max(ûn, q̂n,π) ≤ 1 + ε

m

imply that Pn,π ∈ An,α,ε,č,ĉ and Qn,π ∈ Bn,α,ε,č,ĉ for the ε, č and ĉ of the theorem.

Let µ denote the uniform distribution on the set Π and define mixtures

Pn =
∑
π∈Π

Pn,πµ(π) and Qn =
∑
π∈Π

Qn,πµ(π).

Note that Pn ∈ conv(An,α,ε,č,ĉ) and Qn ∈ conv(Bn,α,ε,č,ĉ) and further

Pn(x,y, z) = m−2n
∑
π∈Π

µ(π)qnn,π(y)

and

Qn(x,y, z) = m−2n
∑
π∈Π

µ(π)qnn,π(x).

We will now show that the stated L1 bound holds for this choice of Pn and Qn.

Taking λ = unn × unn × unn and invoking Lemma 5 we have

‖Pn −Qn‖2
1 ≤

∑
x,y,z

(Pn(x,y, z)−Qn(x,y, z)

λ(x,y, z)

)2

λ(x,y, z)

= Eλ

[(Pn(Xn, Y n, Zn)−Qn(Xn, Y n, Zn)

λ(Xn, Y n, Zn)

)2]
= Eλ

[(m−2n
∑

π∈Π µ(π)qnn,π(Y n)−m−2n
∑

π∈Π µ(π)qnn,π(Xn)

m−3n

)2]
= m2nEλ

[(∑
π∈Π

µ(π)qnn,π(Y n)−
∑
π∈Π

µ(π)qnn,π(Xn)
)2
]

≤ m2nEλ

[(∑
π∈Π

µ(π)qnn,π(Y n)
)2
]

+m2nEλ

[(∑
π∈Π

µ(π)qnn,π(Xn)
)2
]
.
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Noting that under λ, Y n andXn have the same distribution and then expanding

the square, we see that

‖Pn −Qn‖2
1 ≤ 2m2n

∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)Eλ

[
qnn,π(Y n)qnn,γ(Y

n)

]

= 2m2n
∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)Eλ

[
n∏
i=1

qn,π(Yi)qn,γ(Yi)

]

= 2m2n
∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)
(
Eun [qn,π(Yi)qn,γ(Yi)]

)n
, (2.7)

where on the previous line we used the fact under λ the Yi are i.i.d. uniform

random variables. Focusing on the expectation alone

Eun [qn,π(Yi)qn,γ(Yi)] =
∑
i

un(i)(1 + εν(i, π))m−1(1 + εν(i, γ))m−1

= m−3
∑
i

1 + ε[ν(i, π) + ν(i, γ)] + ε2ν(i, π)ν(i, γ)

= m−3
∑
i

1 + ε2ν(i, π)ν(i, γ)

= m−2 +m−3ε2
∑
i even

πi/2γi/2 +
∑
i odd

π(i+1)/2γ(i+1)/2

= m−2 + 2m−3ε2
m/2∑
i=1

φ(πi, γi)

where φ(πi, γi) = 1 when πi = γi and φ(πi, γi) = −1 otherwise. Applying this

calculation to (2.7) yields

‖Pn −Qn‖2
1 ≤ 2m2n

∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)
(
m−2 + 2m−3ε2

m/2∑
i=1

φ(πi, γi)
)n

= 2
∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)
(

1 + 2m−1ε2
m/2∑
i=1

φ(πi, γi)
)n

≤ 2
∑
π∈Π

∑
γ∈Π

µ(π)µ(γ) exp
(2nε2

m

m/2∑
i=1

φ(πi, γi)
)

where we used the inequality log(1 + x) ≤ x. Recalling that µ is uniform over
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{−1, 1}×(m/2) we may write

‖Pn −Qn‖2
1 ≤ 2Eπ,γ

[
exp

(2nε2

m

m/2∑
i=1

φ(πi, γi)
)]

= 2
(1

2
exp

(
− 2nε2

m

)
+

1

2
exp

(2nε2

m

))m/2
.

Applying the inequality

1

2
(exp(u) + exp(−u)) ≤ exp

(u2

2

)
,

which follows from Hoeffding’s Lemma (or by simply comparing the series ex-

pansions), gives

‖Pn −Qn‖2
1 ≤ 2 exp

(2n2ε4

m2

)m/2
= 2 exp

(n2ε4

m

)
,

i.e.

‖Pn −Qn‖1 ≤
√

2 exp
(n2ε4

2m

)
≤
√

2 exp
(n2ε4

2nα

)
.

We are now in a position to prove Theorem 2. Roughly the argument is as fol-

lows. Recall that the setup of Lemma 6 provides the tester with ε, the minimum

L1 distance between distributions and constants č, ĉ. But even for this “easier”

problem, there is some choice of č, ĉ, ε and distributions Pn ∈ conv(An,ε,č,ĉ) and

Qn ∈ conv(Bn,ε,č,ĉ) so that when α ≥ 2

lim sup
n→∞

‖Pn −Qn‖1 < 2

implying that no α-universally consistent test is exists.

Theorem (2). If α ≥ 2, then there are alphabets with growth rate Θ(nα) for which

there are no α-universally consistent tests.
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Proof. Let α ≥ 2, An = {1, . . . , dnαe2} and suppose by way of contradiction that

there exists {Tn}, a universally consistent test for the α-large-alphabet hypoth-

esis testing problem having alphabet An. Now fix 0 < ε < 1, 0 < č ≤ 1−ε
3

<

1 + ε ≤ ĉ and choose (pn, qn) ∈ Cn,α,ε,č,ĉ so that

pnn × qnn × pnn(Tn = 1) ≥ 1

2
sup

p̃n,q̃n∈Cn,α,ε,č,ĉ
p̃nn × q̃nn × p̃nn(Tn = 1).

Since {Tn} is α-universally consistent we have that

pnn × qnn × pnn(Tn = 1)→ 0

which in turn implies that

sup
p̃n,q̃n∈Cn,α,ε,č,ĉ

p̃nn × q̃nn × p̃nn(Tn = 1)→ 0. (2.8)

We now choose (rn, sn) ∈ Cn,α,ε,č,ĉ so that

rnn × snn × snn(Tn = 0) ≥ 1

2
sup

r̃n,s̃n∈Cn,α,ε,č,ĉ
r̃nn × s̃nn × s̃nn(Tn = 0),

and therefore again by universality we must have

sup
r̃n,s̃n∈Cn,α,ε,č,ĉ

r̃nn × s̃nn × s̃nn(Tn = 0)→ 0. (2.9)

Thus the existence of a α-universal test implies that

sup
Pn∈An,α,ε,č,ĉ

Pn(Tn = 1)→ 0

and

sup
Qn∈Bn,α,ε,č,ĉ

Qn(Tn = 0)→ 0

and therefore

sup
Pn∈An,α,ε,č,ĉ
Qn∈Bn,α,ε,č,ĉ

Pn(Tn = 1) +Qn(Tn = 0)→ 0.
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But

sup
Pn∈An,α,ε,č,ĉ
Qn∈Bn,α,ε,č,ĉ

Pn(Tn = 1) +Qn(Tn = 0) ≥ inf
T̃n

sup
Pn∈An,α,ε,č,ĉ
Qn∈Bn,α,ε,č,ĉ

Pn(T̃n = 1) +Qn(T̃n = 0)

(2.10)

= R(An,α,ε,č,ĉ,Bn,α,ε,č,ĉ)

≥ 1−
√

2

2
exp

(n2ε4

2nα

)
(2.11)

where in (2.10) the infimum is over all (randomized) tests and where (2.11) fol-

lows from Lemma 6 and (2.4). Note when α > 2 the exponential term goes to

1 as n → ∞ and 1 −
√

2/2 is strictly greater than zero. When α = 2 taking

ε = (1/2 log 2)1/4 > 0 gives 1− 2−1/4 > 0. Thus for any α ≥ 2, choosing this ε and

taking limits we obtain the inequality

0 = lim
n→∞

sup
Pn∈An,α,ε,č,ĉ
Qn∈Bn,α,ε,č,ĉ

Pn(Tn = 1) +Qn(Tn = 0)

≥ lim
n→∞

1−
√

2

2
exp

(n2ε4

2nα

)
> 0

a contradiction, and thus no such α-universal test {Tn} exists.

Although we used a particular choice {An} to prove the converse, a slight

modification of Theorem 2 goes through for any {An} with |An| = Θ(nα). Thus

we can in fact state the following more general theorem.

Theorem 3. Let {An} by any sequence of alphabets with |An| = Θ(nα). Then there

are no α-universal consistent tests for any α ≥ 2.
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2.3 Generalized Likelihood Ratio and Chi-Squared Tests

In this section we study the performance of two commonly used statistical tests:

the generalized likelihood ratio and chi-squared tests. We show that both tests

are α-universally consistent with sub-linear alphabet growth and that both tests

are inconsistent with linear alphabet growth. Note that for both tests we actually

prove universal consistency as opposed to merely α-universal consistency for up-

to sub-linear alphabet growth, we return to this point in the conclusion.

2.3.1 GLRT and its Consistency

The GLRT is derived from the maximum likelihood method, which compares

the likelihood functions evaluated with the most likely distribution in the hy-

pothesis setsH0 andH1. This gives

max
pn,qn∈P(An)

pnn(Xn)qnn(Y n)pnn(Zn)
H0

≷
H1

max
pn,qn∈P(An)

pnn(Xn)qnn(Y n)qnn(Zn),

where the maximizations are over arbitrary distributions on the alphabetAn. (Re-

call that the constants č, ĉ defining the α-large-alphabet sequence are unknown

by the tester and the L1 constraint is asymptotic in nature any so any pn and qn

are feasible.)

The following Lemma allows us to rewrite the GLRT in terms of Kullback-

Leibler divergences.

Lemma 7. For any three probability distributions x, y and z on a common alphabet A

min
p,q∈P(A)

D(x||p) +D(y||q) +D(z||p) = D(x||p̂) +D(z||p̂),
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where

p̂ = (x+ z)/2.

Proof. Choosing q = y yields D(y||q) = 0. For the optimal p, the result follows

from the parallelogram identity [27, Ex 1.3.19],

D(x||p) +D(z||p) = D(x||(x+ z)/2) +D(z||(x+ z)/2)

+ 2D((x+ z)/2||p).

Using this Lemma combined with the well-known identity [27, Ch 1, Lemma

2.6]

pn(x) = exp(−n[D(Λx||p) +H(Λx)]) (2.12)

we see that the GLRT test is equivalent to

D(ΛXn||p̂n) +D(ΛZn||p̂n)
H1

≷
H0

D(ΛY n||q̂n) +D(ΛZn||q̂n), (2.13)

where p̂n = (ΛXn + ΛZn)/2 and q̂n = (ΛY n + ΛZn)/2. Later it we will find the

following useful. Define the functional

G(p, q,M) =
∑
a∈M

p(a) log
( 2p(a)

p(a) + q(a)

)
+ q(a) log

( 2q(a)

p(a) + q(a)

)
and notice we may equivalently write the GLRT (2.13) as

G(ΛXn ,ΛZn ,An)
H1

≷
H0

G(ΛY n ,ΛZn ,An).

We will also make use of the following result.

Lemma 8. Suppose p and q are distributions on an alphabet A, then

G(p, q,A) =
∑
a∈A

∑
i:even

1

i(i− 1)

(q(a)− p(a))i

(p(a) + q(a))i−1
.
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Further,

p(a) log
2p(a)

p(a) + q(a)
+ q(a) log

2q(a)

p(a) + q(a)
≥ 0.

It turns out the growth-rate of the alphabet is of critical interest for proving

consistency of the statistical tests. The following result allows us to prove a

“weak law” for empirical distributions (to be used later) and Theorem 4, the

consistency of the GLRT for sub-linear alphabet growth.

Lemma 9. If |An| = o(n) then2

n−1 log |Pn| → 0 as n→∞.

Proof. See [12, Lem. 1]

Lemma 10 (Empirical Weak Law). Let Xn,m, 1 ≤ m ≤ n be i.i.d. with distribution

pn on alphabet An. If |An| = o(n) then for any ε > 0

pnn(D(ΛXn||pn) > ε) ≤ e−n(ε−δn),

where δn(|An|)→ 0 as n→∞.

The final components of our proof of consistency of the GLRT (and chi-

squared tests) are the following concentration results, which we include here

for completeness.

Definition 5. A function g : An → R has the bounded differences property if for

some non-negative constants c1, . . . , cn,

sup
x1,...,xn,x′i∈A

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci, for 1 ≤ i ≤ n.

(2.14)
2The sequence an has the property an = o(bn) iff lim an

bn
= 0.

39



Lemma 11 (Efron-Stein Inequality [68, 69]). Let A be any set and let gn : An → R

be a function of n variables. Define Z = g(X1, . . . , Xn), where X1, . . . , Xn are arbi-

trary independent random variables taking values inA. LetX ′1, . . . , X ′n be independent

copies of X1, . . . , Xn and define

Z ′i = g(X1, . . . , X
′
i, . . . , Xn)

then

Var(Z) ≤ 1

2

n∑
i=1

E[(Z − Z ′i)2].

Corollary 1. Suppose g satisfies the hypothesis of Lemma 11 and has bounded differ-

ences with constant c. Then

Var(Z) ≤ nc2

2
.

To establish consistency of the GLRT we also need

Lemma 12. The quantity

D(Λx||(Λx + Λz)/2)

viewed as a real-valued function of the vector (x, z) = (x1, . . . , xn, z1, . . . , zn) satisfies

the bounded differences property with the single constant

2

n
(1 + log 2 + log(1 + n)).

Proof. See Appendix A.2.

Theorem 4. If |An| = o(n) then the GLRT (2.13) is universally consistent.

Proof. Suppose hypothesisH0 is in effect. Define the set

Dεn = {(x, z) : G(Λx,Λz) > ε}.
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By definition

Pn((Xn, Zn) ∈ Dεn) =
∑

(x,z)∈Dεn

pnn(x)pnn(z)

=
∑

QX∈Pn(An)

QZ∈Pn(An):

G(QX ,QZ)>ε

∑
x∈T (QX)

z∈T (QZ)

pnn(x)pnn(z).

Using identity (2.12) and the bound [27, Ch 1, Lemma 2.5]

|T (QX)| ≤ exp(nH(QX)),

it follows that ∑
x∈T (QX)

∑
z∈T (QZ)

pnn(x)pnn(z)

≤ exp(−n[D(QX ||pn) +D(QZ ||pn)]).

Further, as in the proof of Lemma 7 we have for all distributions QX , QZ , pn

D(QX ||pn) +D(QZ ||pn) ≥ G(QX , QZ)

and therefore

Pn((Xn, Zn) ∈ Dεn) ≤ |{P(An)}|2e−nε.

By way of Lemma 9 and the hypothesis, this implies that for all ε > 0

Pn(D(ΛXn||p̂n) +D(ΛZn||p̂n) > ε)→ 0 as n→∞.

It remains to show that for some δ > 0

lim
n→∞

Pn(D(ΛY n||q̂n) +D(ΛZn||q̂n) > δ) = 1. (2.15)

Chebyshev’s inequality tells us for any δ > 0

Pn(|D(ΛY n||q̂n)− E[D(ΛY n||q̂n)]| > δ)

≤ Var(D(ΛY n||q̂n))

δ2
.
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The bounded differences property (Lemma 12) and the Efron-Stein inequal-

ity (Lemma 11) imply that this variance goes to zero. Thus it follows with

probability tending to one, D(ΛY n||q̂n) + D(ΛZn||q̂n) ‘concentrates’ around

E[D(ΛY n||q̂n)] + E[D(ΛZn||q̂n)]. Recalling D(p||q) is convex in the pair (p, q), by

Jensen’s inequality

E[D(ΛY n||q̂n)] + E[D(ΛZn||q̂n)]

≥ D(E[ΛY n ]||E[q̂n]) +D(E[ΛZn ]||E[q̂n])

= D(qn||(pn + qn)/2) +D(pn||(pn + qn)/2),

and from (2.2) and Pinsker’s inequality [27, Ex 1.3.17]

lim inf
n→∞

D(pn||(pn + qn)/2) +D(qn||(pn + qn)/2)

≥ lim inf
n→∞

1

4 log 2

( ∑
a∈An

|pn(a)− qn(a)|

)2

> 0.

Thus for n sufficiently large D(ΛY n||q̂n) + D(ΛZn||q̂n) concentrates around a

strictly positive quantity, which is enough to establish (2.15). Under hypoth-

esisH1 the proof is similar.

We now show that when the alphabet growth is linear, i.e. α = 1, the GLRT

is not α-universally consistent. We do this by means of a particular counterex-

ample which we will refer to throughout the remainder of the chapter.

We first need the following technical result.

Lemma 13. Let {pn, qn} be a sequence of pairs of distributions and denote by µ2
n(x, y)

the shadow (see [20]), i.e. the distribution of the random vector
(
npn(Xn), nqn(Xn)

)
when Xn ∼ pn. If µ2

n(x, y) converges weakly to µ2(x, y), then under hypothesisH0 (i.e.
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Zn ∼ pnn)

E[D(ΛZn||p̂n)]→
∫ [ ∞∑

j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!
log(j + k)

]
dµ2(x, y)

and

E[D(ΛZn||q̂n)]→
∫ [ ∞∑

j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−y)yk

k!
log(j + k)

]
dµ2(x, y).

Proof. See Appendix A.2.

Theorem 5. There exists a sequence of alphabets having linear growth for which the

GLRT (2.13) is not α-universally consistent.

Proof. We letAn = {1, . . . , 9n} and will show there exists a pair of α = 1 sources

for which the GLRT fails. Define distributions

pn(a) =


1

2n
if a ∈ {1, . . . , n}

1
16n

if a ∈ {n+ 1, . . . , 9n}

and qn(a) =



5
4n

if a ∈ {1, . . . , n/2}

1
4n

if a ∈ {n/2 + 1, . . . , n}

1
32n

if a ∈ {n+ 1, . . . , 9n}.

Using Lemma 13, and numerically evaluating the resulting integrals, we see

that under hypothesisH0,

lim
n→∞

E[D(ΛXn||p̂n) +D(ΛZn||p̂n)] = 1.085

lim
n→∞

E[D(ΛY n||q̂n) +D(ΛZn||q̂n)] = 1.026
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whereas under hypothesisH1,

lim
n→∞

E[D(ΛXn||p̂n) +D(ΛZn||p̂n)] = 1.026

lim
n→∞

E[D(ΛY n||q̂n) +D(ΛZn||q̂n)] = 0.773.

From the Efron-Stein inequality and bounded differences property (Lemma 12),

the random variables concentrate around their respective means, which by the

previous calculation are converging to the values above. It follows that under

hypothesis H0, the test incorrectly declares H1. This is illustrated in section

2.3.4.

Another well-known statistical procedure is chi-squared testing and we turn

to that next.

2.3.2 Chi-Squared Test and its Consistency

For any distributions p and q on alphabet A, and any M ⊆ A introduce the

functional3

χ2(p, q,M) =
∑
a∈M

(p(a)− q(a))2

p(a) + q(a)
.

We will usually write χ2(p, q) when the setM is taken for the full alphabet A.

Following [71, Ch 17, Ex. 3], one can apply the following chi-squared procedure

to the present problem∑
a∈An

(ΛXn(a)− p̂n(a))2

p̂n(a)
+

(ΛZn(a)− p̂n(a))2

p̂n(a)

H1

≷
H0∑
a∈An

(ΛY n(a)− q̂n(a))2

q̂n(a)
+

(ΛZn(a)− q̂n(a))2

q̂n(a)
.

3ForM = A this functional is sometimes called the triangular discrimination, see [70].
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After some manipulation, this yields

χ2(ΛXn ,ΛZn)
H1

≷
H0

χ2(ΛY n ,ΛZn), (2.16)

which we will refer to as the chi-squared test (see also [66, Ch.4 §2]).

As with the GLRT, the chi-squared test is consistent with sublinear alphabet

growth, in particular for 0 ≤ α < 1. The proof is similar to that of the GLRT, and

so only outline the argument.

Theorem 6. Suppose |An| = o(n), then the chi-squared test (2.16) is universally con-

sistent.

Proof. Suppose hypothesisH0 is in effect, i.e. Xn, Y n, Zn ∼ Pn. We will show the

left side tends to zero in probability, while the other goes to something positive.

For brevity we omit writing the alphabet argument in χ2. Let ε > 0. By Lemma

taking the first term of the expansion from Lemma 8 we have that

D(ΛXn||p̂n) +D(ΛZn||p̂n) ≥ 1

2
χ2(ΛXn ,ΛZn)

therefore the event {D(ΛXn||p̂n) +D(ΛZn||p̂n) < ε/2} implies χ2(p, q) < ε. Thus

Pn(χ2(ΛXn ,ΛZn) > ε) ≤ Pn(D(ΛXn||p̂n) +D(ΛZn||p̂n) > ε/2)

which goes to zero according to the proof of Theorem 4.

An easy argument (see Lemma 35 in Appendix A.2) shows that χ2(ΛY n ,ΛZn)

viewed as a function from R2n → R has the bounded differences property with

constant 8n−1. Also, Jensen’s inequality and the joint convexity of the function
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(p− q)2/(p+ q) in p, q imply that

EPn
[
χ2(ΛY n ,ΛZn)

]
=
∑
a

EPn
[(ΛY n(a)− ΛZn(a))2

ΛY n(a) + ΛZn(a)

]
]

≥ (EPn [ΛY n(a)]− EPn [ΛZn(a)])2

EPn [ΛY n(a)] + EPn [ΛZn(a)]

=
∑
a

(pn(a)− qn(a))2

pn(a) + qn(a)
.

Now by Cauchy-Schwarz we have

‖pn − qn‖2
1 =

(∑
a

|pn(a)− qn(a)|√
pn(a) + qn(a)

√
pn(a) + qn(a)

)2

≤ 2χ2(pn, qn),

therefore Efron-Stein implies the random variable χ2(ΛY n ,ΛZn) is concentrated

around something strictly greater than 1
2
‖pn−qn‖2

1, which is not tending to zero.

We also have a corresponding result about inconsistency of the chi-squared

test when α = 1.

Lemma 14. Let {pn, qn} be a sequence of pairs of distributions and denote by µ2
n(x, y)

the shadow (see [20]), i.e. the distribution of the random vector
(
npn(Xn), nqn(Xn)

)
when Xn ∼ pn. If µ2

n(x, y) converges weakly to µ2(x, y), then under hypothesisH0 (i.e.

Zn ∼ pnn)

E[χ2(ΛXn ,ΛZn ,An)]→ 2

∫ ∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!

(j − k)

j + k
dµ2(x, y)

and

E[χ2(ΛY n ,ΛZn ,An)]→
∫ ∞∑

j=1

∞∑
k=0

exp(−y)yj−1

(j − 1)!

exp(−x)xk

k!

(j − k)

j + k

y

x
dµ2(x, y)

+

∫
C2

∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−y)yk

k!

(j − k)

j + k
dµ2(x, y).

Proof. See Appendix A.2.
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Theorem 7. There exists a sequence of alphabets having linear growth for which the

chi-squared test (2.16) is not α-universally consistent.

Proof. Using the distributions from the proof of Theorem 5, applying Lemma 14,

and numerically evaluating the resulting integrals, we see that under hypothe-

sisH0,

lim
n→∞

E[χ2(ΛXn ,ΛZn ,An)] = 1.57

lim
n→∞

E[χ2(ΛY n ,ΛZn ,An)] = 1.49

whereas under hypothesisH1,

lim
n→∞

E[χ2(ΛXn ,ΛZn ,An)] = 1.49

lim
n→∞

E[χ2(ΛY n ,ΛZn ,An)] = 1.14.

By a similar argument as used in the proof of Theorem 5, it follows that under

hypothesisH0, the test incorrectly declaresH1.

2.3.3 Understanding the Inconsistency

The inconsistency of both the GLRT and chi-squared test for linear alphabets can

be explained neatly by relating these tests to the L2-norm test nF ≶ 0, where

F =
∑
a

n(ΛXn(a)− ΛZn(a))2 −
∑
a

n(ΛY n(a)− ΛZn(a))2.

Recall, from Lemmas 1 and 2 we know that the random variable nF con-

centrates around values which guarantee consistent detection, i.e. asymptoti-

cally −E0[nF ] = E1[nF ] > 0. But unlike our L2-norm test, which weights all

terms equally (by n), the χ2 test weights the terms in the first sum of F by
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(ΛXn(a) + ΛZn(a))−1 and those in the second sum by (ΛY n(a) + ΛZn(a))−1. There

is no guarantee that the inequality

E0[χ2(ΛXn ,ΛZn)− χ2(ΛY n ,ΛZn)] < 0

should hold for such weights.

For the case of the GLRT the same reasoning applies by reducing the GLRT

to a chi-squared test via a Taylor series expansion, see Lemma 8. For these

distributions, numerical calculations show it suffices to restrict attention to the

case where the symbol count is zero in the training string and is positive in

the test string or vice versa (in fact with high probability N(a|Xn) = 0 and

N(a|Zn) ∈ {1, 2, 3} or vice-versa). This observation about the counts combined

with Lemma 8 implies

G(ΛXn ,ΛZn ,A) ≈ log(2)χ2(ΛXn ,ΛZn ,A),

(Lemma 36 in Appendix A.2 makes this slightly more rigorous).

Another frequently used test in statistics is the Hellinger metric, h(p, q),

which for two mass functions p and q is defined via

h2(p, q) =
1

2

∑
a∈A

(
√
p(a)−

√
q(a))2. (2.17)

At first glance one may be tempted to think that the test

h2(ΛXn ,ΛZn) ≶ h2(ΛY n ,ΛZn) (2.18)

would not suffer from the same problems as the chi-squared test and GLRT

since it does not involve divisions by empirical distributions. However since

(p− q)2 = (
√
p−√q)2(

√
p+
√
q)2, h(p, q) may also be written as

h2(p, q) =
1

2

∑
a∈A

(p− q)2

(
√
p+
√
q)2

,
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and again the test involves divisions by counts. We conjecture (for evidence

see the next sub-section) that the Hellinger test is not universally consistent for

α = 14.

2.3.4 Simulation (α = 1 case)

In Figure 2.1 we show the empirical performance (over 10000 trials) of the L2-

norm classifier (2.3), the GLRT classifier (2.13), the chi-squared classifier (2.16)

and the Hellinger classifier (2.18) for increasing n and a uniform prior on the

two hypothesesH0 andH1. The alphabet is An = {1, . . . , 9n}; Example A refers

to the distributions pn, qn appearing in the proof of Theorem 5; Example B is the

same sequence pn versus rn = 1/(9n), the uniform distribution. We see that in

Example A the average error probability of the GLRT and chi-squared classifier

tends to 1/2, as predicted by Theorems 5 and 7; we also notice the apparent

inconsistency of the Hellinger test previously mentioned. In Example B, even

though all tests seem to be consistent, the fraction of errors for our new classifier

converges to zero more quickly than does the GLRT.

2.4 Testing with Infinite Training Data

In this section we suppose that the tester is given access to an “infinite” amount

of training data, i.e. for each n he or she knows (pn, qn,An), the underlying

4The missing ingredient is the concentration of the random variable h2(ΛXn ,ΛZn) about its
mean. Once this is established one can readily verify using a calculation similar to Lemma 14
that the numerical values of the means imply the inconsistency. Concentration would also es-
tablish the consistency of the Hellinger test for sub-linear alphabet growth, since the inequality
χ2(p, q) ≥ 2h2(p, q) [66, Ch.4 §2] implies a proof along the lines of Theorem 6.
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Figure 2.1: Simulation of the performance of L2-norm versus statistical
tests. Example A illustrates the inconsistency of GLRT and
Chi-squared (Theorems 5 and 7) and suggests inconsistency of
Hellinger test.
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distributions and alphabets. The following theorem answers the question for a

sequence {pn, qn,An} satisfying

lim inf
n→∞

∑
a∈An

|pn(a)− qn(a)| > 0,

what, if any, are the conditions on the growth rate of the alphabet guaranteeing

consistent testing between

H0 : Zn ∼ pnn

H1 : Zn ∼ qnn for all n.

Theorem 8. For any sequence of alphabets {An} and sequence of distributions

{pn}, {qn} satisfying

lim inf
n→∞

∑
a∈An

|pn(a)− qn(a)| > 0

the likelihood ratio test

pnn(Xn) ≶H1
H0
qnn(Xn)

is exponentially consistent, i.e. if

Pe,n = pnn(pnn(Xn) < qnn(Xn)) + qnn(pnn(Xn) > qnn(Xn))

denotes the sum of the type I and type II errors, then

lim inf − 1

n
log
(
Pe,n

)
≥ lim inf

1

8

( ∑
a∈An

|pn − qn|
)2

.

Proof. By the Neyman Pearson theory the optimum test is the likelihood ratio

test. Invoking Lemma 4 with the point sets An = {pnn}, Bn = {qnn}, we find the

minimum error probability for this problem is

R(An, Bn) = 1− 1

2
‖pnn − qnn‖1.
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To bound this probability, we follow [72, Cor. 13.1.1] and again make use of the

Hellinger metric (2.17). First we recall the inequality (see [73, Ch.3])

h2(p, q) ≤ 1

2
‖p− q‖1 ≤

√
2h(p, q). (2.19)

For product measures it is well known that the Hellinger metric factorizes (see

[73, Ch.3]). Thus in the i.i.d. case

h2(pn, qn) = 1− (1− h2(p, q))n.

Applying these results allows us to write the following chain of inequalities

R(An, Bn) = 1− 1

2
‖pnn − qnn‖1

≤ 1− h2(pnn, q
n
n)

= (1− h2(pn, qn))n

≤ exp(−nh2(pn, qn)),

where on the previous line we used the inequality 1 + x ≤ exp(x). Finally we

use the right side of inequality (2.19) to give

R(An, Bn) ≤ exp(−n1

8
‖pn − qn‖2

1).

But by hypothesis

lim inf
n→∞

‖pn − qn‖1 > 0,

which gives the result.

Note that this result extends the classical fixed distribution, fixed alphabet

i.i.d. case which states that the testing error, R({pn}, {qn}), decays exponentially

fast with the blocklength n when p 6= q [72, Cor. 13.1.1]. In fact examining the

proof we see that nh2(pn, qn)→∞ is sufficient.
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2.5 Beyond α-large-alphabet model

We conclude with some comments on the general-source triangular array hy-

pothesis testing problem (i.e. removing the α-source assumption). Firstly, Theo-

rems 4 and 6 show that the GLRT and chi-squared tests are universally consistent

(i.e. can handle non-homogeneous sources) provided that the underlying al-

phabet grows sub-linearly. Using Lemma 10 and bounding the L2 distances by

relative entropies (via Pinkser’s inequality), one can also show that the L2-test

(2.3) is also universally consistent with sub-linear alphabet growth, provided

that the asymptotic separation occurs in L2, i.e. the assumption (2.2) is replaced

by

lim inf
n→∞

‖pn − qn‖2
2 > 0.

The counterexample from the proof of Theorem 5 shows that neither the GLRT

nor chi-squared test are universally consistent with linear alphabet growth. The

following Lemma shows that the L2-test (2.3) is also inconsistent for inhomoge-

neous sources with linear alphabet growth.

Lemma 15. Let p̃n and q̃n be a sequence of α = 1 large alphabet sources, defined on

alphabet Ãn such that n‖p̃n − q̃n‖2
2 = ε for every n. Denote by ω a special symbol that

does not occur in any of Ãn and define

An = Ãn ∪ {ω}.

Let δx denote a point-mass at x and define pn = 1
2
p̃n + 1

2
δω and qn = 1

2
q̃n + 1

2
δω. Then

the test

‖ΛXn − ΛZn‖2
2 ≶ ‖ΛY n − ΛZn‖2

2

is inconsistent.

Proof. See Appendix A.3.
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Dataset Description Number of classes

20ng Usenet articles 20
r52 Reuters newswires 52
r8 Same data as r52, grouped more coarsely 8
webkb Webpages from a CS department 4

Table 2.1: Datasets used for comparison of classification methods

Roughly speaking the proof uses the fact that the L2 distance for the α = 1

component converges in probability to either ε
4

or − ε
4
, but the variance for the

symbol ω is order 1 in probability, and so reliable detection is impossible. Here

the problem is that the L2 test relies on the unnormalized counts, and a symbol

with large probability can dominate the overall statistic. The GLRT and chi-

squared test avoid this problem by using normalized counts, but as we have

seen, this normalization can eliminate the bias necessary to ensure consistency.

2.6 Results with real-world datasets

We conclude this chapter by applying the various tests considered here to some

real world data. We used the datasets summarized in Table 2.1, which were

taken from [74]. Dealing with real-world data requires us to make some de-

partures from the model considered in this chapter. Firstly, each of the datasets

comprise multi-class classification problems as opposed to the binary classifi-

cation considered here. Secondly, the training and test datasets are not all of a

common length.

Fortunately each of the tests we considered can be viewed as minimum

distance test, e.g. in the case of the GLRT we decide the class i for which
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Dataset L2 GLRT Chi-squared Hellinger

20ng 22 15.7 19 16
r52 6.7 0 5.6 4.4
r8 5.0 1.5 2.6 2.6
webkb 19 11.8 13.6 14

Table 2.2: Classification results for “rare” words (words occurring at-most 20
times) only. Figures are percentage of correct classifications

d(ΛXi
, P̂i) + d(ΛZ, P̂i) is smallest, where P̂i is the weighted sum of ΛXi

and ΛZ

(with the weighing given by the length of the training document); or in the case

of the L2-norm test we decide the class i for which ‖ΛXi
− ΛZ‖2

2 is smallest.

Table 2.2 shows the results when applied to data that loosely “fit” the α = 1-

large-alphabet model. To obtain these results we took the real-world data and

kept only those words that occurred fewer than 20 times. This meant that some

common words with possibly high discriminatory power were removed from

the test and training sets. The results show the L2 norm test performing the best

of the various distance metrics.

Table 2.3 shows the results using all of the available data. Also included are

results for support vector machines (SVM) [23] reported by [74]. The column

GLRT(b) corresponds to a tweaked version of the GLRT we devised to correct

the poor performance on the r52 dataset. We observed that when dealing with

skewed training sets (i.e. where the lengths of the training data are very differ-

ent), the GLRT is systematically biased towards the shorter class. For example

suppose we have training lengths nx and n with nx � n and the test string is

also length n. The GLRT first forms the quantities

p̂(·) =
N(·|Xnx) +N(·|Zn)

n+ nx
, q̂(·) =

N(·|Y n) +N(·|Zn)

n+ n
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Dataset SVM L2 GLRT GLRT(b) Chi-squared Hellinger

20ng 80.8 52 81.7 82.7 74.8 60.4
r52 92 84.1 1.9 91.2 86.1 74.8
r8 94.5 91.2 87.5 96.2 94.2 90.9
webkb 87.9 74.3 91.1 91.7 82.5 78.7

Table 2.3: Classification results for full datasets. Figures are percentage of correct
classifications.

and then carries out the test

nx
n
D(ΛXnx ||p̂) +D(ΛZn||p) ≶ D(ΛY n||p̂) +D(ΛZn||p).

When the true hypothesis is that Y n and Zn are from the same class (i.e. have

the same distribution) we observed that the GLRT incorrectly decided for the

case that Xnx and Zn were from the same class. A reason for this appeared to be

that D(ΛZn||p̂) was small because p̂ ≈ ΛZn . By “repeating” the training data, so

that all strings were the same length, e.g. by forming

p̃(·) =
n
nx
N(·|Xnx) +N(·|Zn)

n+ n

we found the bias disappeared, and these are reported as GLRT(b) in Table 2.3.

As can be seen from the table, GLRT(b) performs quite well, outperforming the

published SVM results in all but one example.
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CHAPTER 3

COMPRESSION OF OF LARGE ALPHABET SOURCES

In this chapter we formulate and study the problem of compression of large

alphabet sources. A connection between the results of the previous chapter and

the present chapter is apparent if one notices that the set of distributions used

in the converse part Theorem 11 are in-fact α = 1 large-alphabet distributions.

Thus another interpretation for the results in this chapter is that for 0 ≤ α < 1

universal compression of α-large-alphabet sources is possible; for α = 1 it is not.

3.1 Notation and Preliminaries

Throughout logarithms and exponents are in base e. For a distribution p on a

finite alphabet A, we use H(p) =
∑

a∈A−p(a) log p(a) to denote entropy. The

notation A×n is the n-fold Cartestian product of A. We use bold type to denote

strings (or vectors), e.g. x = x1 · · ·xn, usually the length is clear from the context

and will be omitted. We use Λx to denote the empirical distribution or type

of the string x. H2(x) denotes the binary entropy function. For a probability

distribution p, supp p denotes the support of p i.e. the set of symbols having

positive probability. P(A) denotes the set of all distributions on the setA. Pn(A)

denotes the set of possible empirical distributions for a string of length n on the

alphabet A. For a type Q ∈ Pn(A), we use T nQ to denote the typeclass of Q, i.e.

the set of strings with type Q.

We mainly consider sequences of alphabets {An} and distributions {pn ∈

P(An)}. In this case, unless specified otherwise, when we write the ran-

dom variable Xn, we mean the nth row of a corresponding triangular array
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{Xn,m, 1 ≤ m ≤ n}n≥1, so that Xn = Xn,1, . . . , Xn,n and Xn,i ∼ pn.

We first formalize the notation of an achievable rate sequence.

Definition 6. Let {An} be a sequence of finite alphabets. For a sequence of

distributions {Qn}, where Qn is defined on the product space A×nn , we say a

sequence of rates {Rn} is achievable (for source coding) if for every δ > 0, ε > 0,

there exist a sequence of sets {Mn} and a sequence of deterministic maps {fn :

A×nn →Mn, gn :Mn → A×nn } satisfying

1

n
log |Mn| < Rn + δ

and

Qn(gn(fn(Xn)) 6= Xn) ≤ ε

for all n sufficiently large.

Remark: For a given sequence of distributions {Qn}, it is straightforward

to verify that a sequence of rates {Rn} is achievable with deterministic maps iff

{Rn} is achievable with randomized maps.

Using information-spectrum methods [33], the following theorem provides

a second characterization of an achievable rate sequence.

Theorem 9. Let {An} be a sequence of finite alphabets. Let {Qn} be a sequence of

probability measures such that Qn is a measure on the product space A×nn . Suppose

Xn ∼ Qn. Then the sequence {Rn} is achievable for source coding if and only if for

every δ > 0

lim
n→∞

Qn

(
− 1

n
logQn(Xn)−Rn > δ

)
= 0. (3.1)
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Proof. Achievability: Suppose that (3.1) holds. Let Gδ
n = {x ∈ A×nn :

−n−1 logQn(x) ≤ Rn + δ}. Then

1 ≥ Qn(Gδ
n) ≥ |Gδ

n| exp(−n(Rn + δ))

which implies
1

n
log |Gδ

n| ≤ Rn + δ.

Furthermore, by hypothesis, as n→∞

Qn(Gδ
n

c
)→ 0,

so that defining fn, gn to identify those sequences in Gδ
n suffices.

Converse: Assume that there exists δ > 0 and ε > 0 so that

lim sup
n→∞

Qn

(
− 1

n
logQn(Xn)−Rn > δ

)
> ε.

Let

Bn = {x : −n−1 logQn(x) > Rn + δ}.

By Definition 6, the achievability of Rn implies the existence of a sequence of

sets An , {x : gn(fn(x)) = x} satisfying Qn(Acn) ≤ ε/4 for all n sufficiently large.

Now,Qn(An∩Bn) ≥ Qn(Bn)−Qn(Acn) andQn(An∩Bn) < |An∩Bn| exp(−n(Rn+

δ)), which together gives

n−1 log |An| ≥ n−1 log |An ∩Bn|

> n−1 log[Qn(An ∩Bn)] +Rn + δ

≥ n−1 log[Qn(Bn)−Qn(Acn)] +Rn + δ.

However, for a subsequence {nk}we have that Qnk(Bnk) ≥ ε/2, thus Qnk(Bnk)−

Qnk(A
c
nk

) > ε/4 for all nk ≥ n0. Therefore for all nk ≥ n0

nk
−1 log |Mnk | ≥ nk

−1 log |Ank | > Rnk + δ/2,
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i.e. n−1 log |Mn| > Rn+δ/2 for infinitely many n, contradicting the achievability

of {Rn}.

Corollary 1. If there is a code f : A×nn → Mn, g : Mn → A×nn with rate

n−1 log |Mn| ≤ Rn and probability of error Qn(g(f(Xn)) 6= Xn) ≤ ε then

Qn(−n−1 logQn(Xn) > Rn + δ) ≤ ε+ exp(−nδ).

Proof. This is implied by the calculations in the converse part of the proof The-

orem 9. Adopting the definitions from that proof we saw that

Qn(Bn) ≤ Qn(Acn) +Qn(An ∩Bn).

By hypothesis Qn(Acn) ≤ ε. Furthermore

Qn(An ∩Bn) =
∑

x∈An∩Bn

Qn(x)

≤
∑

x∈An∩Bn

exp(−n[Rn + δ])

≤ exp(−nδ)

where the final equality uses the fact that the range of f is at most exp(nRn).

3.2 Universal Compression of Large Alphabet Sources

We begin by defining universal compression and then study the cases of sub-

linear and linear alphabet growth.

Definition 7 ({An, Rn}-Universal Codes). The pair {An, Rn} admits a determin-

istic (respectively random) universal code if for every δ > 0 and ε > 0, there
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exists an integer n0 such that for all n > n0 there is a deterministic (resp. ran-

dom) encoder/decoder pair (fn : A×nn →Mn, gn :Mn → A×nn ) with rate Rn + δ

such that for all pn ∈ P(An), when Xn ∼ pnn

Pr(gn(fn(Xn)) 6= Xn) ≤ ε+ min
f̃n,g̃n

Pr(g̃n(f̃n(Xn)) 6= Xn)

where the minimum is over all deterministic codes with rate Rn.

Definition 8. A sequence of alphabets {An} supports deterministic (resp. ran-

dom) universal compression if for every rate sequence {Rn} the sequence {An, Rn}

admits a deterministic (resp. random) universal code.

3.2.1 Sublinear Alphabet Growth

For sub-linear alphabet growth we have the following positive result.

Theorem 10. If {An} is a sequence of alphabets satisfying |An| = o(n) then {An}

supports deterministic universal compression.

Proof. Let δ > 0 and ε > 0 be arbitrary. Define

Mn = {1, . . . , |Pn(An)|} × {1, . . . , dexp(n[Rn + δ/2])e}

Define the encoder fn as follows. Let fn first send the type ΛXn and then for

types ΛXn satisfying

H(ΛXn) ≤ Rn + δ/2

send the index of the sequence within the typeclass (recall that the number of

sequences in a typeclass, T nQ is at most exp(nH(Q)) [27]); otherwise send an

arbitrary index. The decoder, gn, declares an arbitrary output if the type is such
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that H(ΛXn) > Rn + δ/2, otherwise it can decode Xn unambiguously. In total

the scheme requires

n−1 logMn ≤ Rn + δ/2 + o(n) + n−1 log |Pn(An)|

≤ Rn + δ nats,

for all n sufficiently large, using the fact that n−1 log |Pn(An)| → 0 if |An| = o(n)

[12, Lem. 1]. Therefore the inequality in the previous display holds for all n ≥ n1

(and n1 depends only on An).

Let us now fix a sequence of distributions {pn ∈ P(An)}. Notice that an error

can occur only when {H(ΛXn) > Rn + δ/2}. Therefore

pnn(gn(fn(Xn)) 6= Xn) ≤ pnn(H(ΛXn) > Rn + δ/2)

= pnn(Hn −Rn > δ/2 +Hn −H(ΛXn)),

where we introduced the term Hn = −n−1 log pnn(Xn). Notice that the identity

[27, Lem. 2.6]

− 1

n
log pn(x) = D(Λx||p) +H(Λx)

implies that

Hn −H(ΛXn) = D(ΛXn ||pn),

and therefore since D(p||q) ≥ 0,

pnn(Hn −Rn > δ/2 +Hn −H(ΛXn)) ≤ pnn(Hn −Rn > δ/2).

Now let

e∗n = min
f̃n,g̃n

pnn(g̃n(f̃n(Xn)) 6= Xn),

where the minimum is over all rate Rn codes. Then Corollary 1 implies

pnn(Hn −Rn > δ/2) ≤ e∗n + exp(−nδ/2).
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Finally, since exp(−nδ/2) ≤ ε for all n ≥ n2 we have shown that for all n ≥ n0 ,

max(n1, n2)

pnn(gn(fn(Xn)) 6= Xn) ≤ ε+ e∗n.

This completes the proof.

3.2.2 Linear Alphabet Growth

We next show that linear growth is the best possible.

Theorem 11. The sequence of alphabets {An , {1, 2, . . . , n}}, n = 2, 4, . . . does not

support random universal compression.

To prove this result we will exhibit a collection of i.i.d. sources on {An},

each of which is individually compressible at the same rate Rn, but for which

universal compression demands rates strictly bounded away from Rn.

Throughout this subsection we will take n to be an even integer, An =

{1, . . . , n}, and En will denote the collection of subsets of An having size exactly

n/2, i.e.

En = {E ⊂ An : |E| = n/2}.

To each E ∈ En, we can associate a probability measure on An in the following

manner

un,E(a) =


2
n

if a ∈ E

0 otherwise.
(3.2)

We will let Un denote the set of all such measures. Observe that by counting

arguments

|En| = |Un| =
(
n
n
2

)
.
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An object of key interest will be the probability measureQn defined on the space

A×nn via

Qn(x) =
∑
pn∈Un

pnn(x)

|Un|
.

This measure has the following Bayesian interpretation. Let πn be the uniform

measure on En. Choose an E ∈ En according to πn and then generate a string

Xn i.i.d. according to un,E (cf. (3.2)). The marginal distribution of Xn under this

scheme is then given by Qn.

To prove Theorem 11, we require the following lemmas. The proofs of some

results are omitted due to space constraints.

Lemma 16. Let pn ∈ Un, suppose that Xn ∼ pnn and let Jn = | supp ΛXn|. Then

pnn

(
Jn <

n

2

[
1−

(
1− 2

n

)n
− e−3

])
≤ exp(−ne−6/2).

Proof. Notice that changing any symbol inXn changes Jn by at most one. There-

fore Jn satisfies the hypotheses of McDiarmid’s inequality [75]. Note that

E[Jn] =
∑
a∈An

pnn(N(a|Xn) > 0)

=
∑
a∈An

[
1−

(
1− 2

n

)n]
1{a ∈ supp pn}

=
n

2

[
1−

(
1− 2

n

)n]
.

Applying McDiarmid’s inequality, with ε = ne−3/2 gives the result.

Lemma 17. Let X, Y be two random variables on finite sets X and Y with joint distri-

bution pXY . Then for every y ∈ Y

H(X|Y = y) ≤ log |{x : p(x|y) > 0}|.
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Proof. Fix y ∈ Y . Let u be the uniform probability distribution over the set

{x : p(x|y) > 0}. Observe that

∑
x∈X

PX|Y (x|y) log
PX|Y (x|y)

u(x)
=

∑
x∈{x:p(x|y)>0}

PX|Y (x|y) log
PX|Y (x|y)

u(x)

= log |{x : p(x|y) > 0}| −H(X|Y = y)

Jensen’s inequality implies that

0 ≤
∑

x∈{x:p(x|y)>0}

PX|Y (x|y) log
PX|Y (x|y)

u(x)

giving the result.

Lemma 18. Let En ∼ πn and Xn|En ∼ uEn,n and define γn =
(

1− 2
n

)n
+ e−3. Then

1

n
H(En|Xn) ≤ H2(γn/2) + (log 2) exp(−ne−6/2).

for all n ≥ 2.

Proof. Define the set

Cn =
{
x : | supp Λx| <

n

2
(1− γn)

}
.

Notice that under the scheme of the Lemma Xn ∼ Qn, therefore

1

n
H(En|Xn) =

1

n

∑
x∈Cn

H(En|Xn = x)Qn(x) (3.3)

+
1

n

∑
x∈Ccn

H(En|Xn = x)Qn(x). (3.4)

Applying Lemma 17 to the first term of (3.3) gives

1

n

∑
x∈Cn

H(En|Xn = x)Qn(x) ≤ 1

n
(log |En|)Qn(Cn)

≤ (log 2)Qn(Cn),
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where on the previous line we used the fact that for all 1 ≤ k ≤ n(
n

k

)
≤ exp(nH2(k/n)). (3.5)

Now applying Lemma 16 to bound Qn(Cn) gives

1

n

∑
x∈Cn

H(En|Xn = x)Qn(x) ≤ (log 2) exp(−ne−6/2).

We now turn our attention to the second term of (3.3). Notice that for x ∈ Cc
n,

the event {Xn = x} implies that the random support set En must contain at

least those elements that occur in x. On the set Cc
n the “sparsest” x contains⌈n

2

(
1− γn

)⌉
distinct values. Therefore conditional on {Xn = x}, En can take on at most(

n− dn
2
(1− γn)e

n
2
− dn

2
(1− γn)e

)
≤
(

n
n
2
− dn

2
(1− γn)e

)
values and applying Lemma 17 gives

1

n

∑
x∈Ccn

H(En|Xn = x)Qn(x) ≤ 1

n
log

(
n

n
2
− dn

2
(1− γn)e

) ∑
x∈Ccn

Qn(x)

≤ 1

n
log

(
n

n
2
− dn

2
(1− γn)e

)
.

Again using (3.5) to bound the binomial coefficient gives

1

n

∑
x∈Ccn

H(En|Xn = x)Qn(x) ≤ H2

( n
2
− dn

2
(1− γn)e
n

)
.

Since 0 < 1− γn < 1 for all n ≥ 2, applying the inequality dxe ≥ x and using the

monotonicity of H2(p) for 0 ≤ p ≤ 1/2 we get

H2

( n
2
− dn

2
(1− γn)e
n

)
≤ H2(γn/2).
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Lemma 19. Let Hn = − 1
n

logQn(Xn). Then

Hn ≤ log n+
log |Un|
n

− log 2 a.s.

Proof. Let x ∈ A×nn be a string with positive Qn probability. Then

Qn(x) =
1

|Un|
∑
p∈Un

pn(x)

≥ 1

|Un|

( 2

n

)n
,

where we used the fact that the string has probability (2/n)n under at least one

measure in the collection Un. Therefore

− 1

n
logQn(Xn) ≤ − 1

n

[
log

1

|Un|
+ log

( 2

n

)n]
=

1

n
log |Un| − log 2 + log n.

Proof of Theorem 11. Let β > 0. Then observe that for any {pn ∈ Un} there is a

sequence of codes with rate sequence {Rn = log n − log 2 + β} that makes no

error at each n: with this much rate we can simply map each possible string

onto a unique element in the message set. Now let δ > 0, ε > 0 be given. The

existence of a {An, Rn}-random universal code implies that there exists random

maps {fn, gn} and n0 so that for all n > n0 both

1

n
log |Mn| < Rn + δ (3.6)

and

Pr(gn(fn(Xn)) 6= Xn) ≤ ε,Xn ∼ pnn, for all pn ∈ Un. (3.7)
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Let γn(f, g) denote the probability distribution of the random code fn, gn. Notice

that (3.7) implies that for all n > n0

ε ≥ 1

|Un|
∑
pn∈Un

∑
f̃n,g̃n

γn(f̃n, g̃n)pnn(g̃n(f̃n(Xn)) 6= Xn)

=
∑
f̃n,g̃n

γn(f̃n, g̃n)Qn({x : g̃n(f̃n(x)) 6= x}).

Viewing the last display as an expectation, it follows there must be at least one

deterministic code f ∗n, g∗n for which

Qn({x : g∗n(f ∗n(x)) 6= x}) ≤ ε for all n > n0. (3.8)

Recalling Definition 6, we see that (3.6) and (3.8) tell us that the existence of

{fn, gn} (and in particular the specific deterministic maps {f ∗n, g∗n}) implies that

{Rn} is achievable for the mixture probability measure Qn. However, we will

proceed to show that for some β > 0 and all n sufficiently large

Qn

(
− 1

n
logQn(Xn)−Rn > β

)
> C(β) > 0,

i.e. that {Rn} is not achievable for {Qn} by Theorem 9.

Suppose that En ∼ πn and Xn|En ∼ pEn,n. By the chain rule for entropy we

see that

H(Xn) = H(En) +H(Xn|En)−H(En|Xn). (3.9)

Let Hn = − 1
n

logQn(Xn) and observe that E[Hn] = 1
n
HQn(Xn). From equation

(3.9) and Lemma 18 we have

1

n
HQn(Xn) ≥ 1

n
log

(
n
n
2

)
+ log

n

2
−H2(γn/2)− log 2 exp(−ne−6/2),

where γn =
(

1 − 2
n

)n
+ e−3. We now recall the reverse Markov inequality: for

any X ≤ a a.s. and d < E[X]

Pr(X > d) ≥ E[X]− d
a− d

.
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Applying this inequality with X = Hn, d = log n − log 2 + 2β and a = log n +

log |Un|
n
− log 2 (Lemma 19), where β will be chosen to ensure d < E[X], we see

that for n ≥ 2

Qn(Hn > d) ≥
n−1 log

(
n
n
2

)
+ log n

2
−H2(γn/2)− (log 2) exp(−ne−6/2)− log n

2
− 2β

log n+ log |Un|
n
− log 2− log n+ log 2− 2β

=
n−1 log

(
n
n
2

)
−H2(γn/2)− (log 2) exp(−ne−6/2)− 2β

log |Un|
n
− 2β

Taking the liminf as n→∞ gives

lim inf
n→∞

Qn(Hn > d) ≥ H2(1/2)−H2((e−2 + e−3)/2)− 2β

H2(1/2)− 2β
,

which is strictly positive provided that 0 < 2β < H2(1/2)−H2((e−2 + e−3)/2) ≈

0.385. We conclude that An does not support random universal compression.

3.3 Universal Compression with Distributional Side Informa-

tion

We next show that informing the decoder of the true source distribution is as

good as informing both the encoder and the decoder. That is, there exist codes

with a universal encoder that perform asymptotically as well as codes for which

both the encoder and decoder are tailored for the particular source distribution.

Our result requires random codes; it would be interesting to determine whether

this is also possible with deterministic codes, or whether there is a fundamental

difference between deterministic and randomized codes, as occurs in, for exam-

ple, arbitrarily varying channels [27, Sec. 2.6].
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Theorem 12. For any sequences {An}, {Rn}, and real numbers δ > 0 and ε > 0 there

exists an integer n0 such that for all n > n0 there is a random encoder/decoder pair

(fn : A×nn → Mn, gn : Mn × P(An) → A×nn ) with rate Rn + δ such that for all

pn ∈ P(An), when Xn ∼ pnn

Pr(gn(fn(Xn), pn) 6= Xn) ≤ ε+ min
f̃n,g̃n

Pr(g̃n(f̃n(Xn)) 6= Xn)

where the minimum is over all deterministic codes with rate Rn.

Proof. Let δ > 0, ε > 0 be given. The encoder assigns each to x ∈ A×nn an index

in {1, . . . , dexp(n[Rn + δ])e} uniformly at random. Let B(i) denote the set of

sequences assigned to index i and U(x) denote the index assigned to sequence

x. The encoder sends i = U(Xn). Using the received i, the decoder declares its

output as the x ∈ B(i) ∩Gn(pn) if |B(i) ∩Gn(pn)| = 1, where

Gn(pn) = {x : −n−1 log pnn(x) ≤ Rn + δ/2};

and declares an arbitrary string otherwise.

By the union bound it follows that the error probability is upper-bounded

by

Pr({∃x̃ 6= Xn ∈ Gn(pn) : U(Xn) = U(x̃)}) + Pr(Xn 6∈ Gn(pn)). (3.10)

Applying the union bound to the first term of (3.10) gives

∑
x∈Gn(pn)

Pr(U(Xn) = U(x))

≤ |Gn(pn)| 1

dexp(n[Rn + δ])e

≤ exp(n[Rn + δ/2])
1

dexp(n[Rn + δ])e

= exp(−nδ/2).
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Note that this term is smaller than ε/2 for all n larger than some n1. Now we

turn to the second term of (3.10). Let

e∗n = min
f̃n,g̃n

pnn(g̃n(f̃n(Xn)) 6= Xn),

where the minimum is over all rate Rn codes. Corollary 1 implies

Pr(Xn 6∈ Gn(pn)) = pnn(Hn −Rn > δ/2) ≤ e∗n + exp(−nδ/2).

Notice that exp(−nδ/2) ≤ ε/2 for all n larger than n1. Therefore for any pn ∈

P(An)

Pr({∃x̃ ∈ Gn(pn) : U(Xn) = U(x)}) + Pr(Xn 6∈ Gn(pn)) ≤ ε+ e∗n

for n ≥ n1, which concludes the proof.

3.4 Non-universal compression

In the classical fixed-distribution setting, the entropy of an i.i.d. source with

distribution p,H(p), is the fundamental limit as far as compression is concerned.

In the large alphabet setting, a natural question is when the sequence of rates

{H(pn)} is achievable. We show that it is provided n−1/2 log |An| → 0.

Lemma 20. Suppose |A| = 2, then

max
p∈P(A)

∑
a∈A

p(a) log2 p(a) ≤ 1.

Suppose |A| ≥ 3, then

max
p∈P(A)

∑
a∈A

p(a) log2 p(a) = log2 |A|.
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Lemma 21. For any distribution p on a finite alphabet A and any ε > 0

pn
(
| − 1

n
log pn(Xn)−H(p)| > ε

)
≤ max(log2 |A|, 1)

nε2

Proof. We start by noticing that E[Hn] = H(p). Applying Chebyshev’s inequal-

ity to the random variable Hn gives

pn
(
|Hn − E[Hn]| > ε

)
≤ Var(Hn)

ε2
.

Next we notice that

Var(Hn) = n−2Var
( n∑
i=1

− log p(Xi)
)

≤ n−1E[(− log p(Xi))
2].

Finally, since

E[(− log p(Xi))
2] =

∑
a∈A

p(a) log2 p(a),

invoking Lemma 20 gives the result.

This immediately implies:

Theorem 13. For any sequence of distributions {pn} on alphabets {An} satisfying

n−
1
2 log |An| → 0

the sequence of rates {H(pn)} is achievable.

The growth rate of Theorem 13 is indeed the best we can do.

Theorem 14. Suppose {An = {1, 2, . . . , |An|}} satisfies

lim sup
n→∞

n−
1
2 log |An| = c > 0.
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Define mn = |An| − 1 and

pn(a) =


1
2

if a = 1

1
2mn

otherwise.

Then for any δ > 0,

lim inf
n→∞

pnn

(
− 1

n
log pnn(Xn)−H(pn) > δ

)
> 1− Φ((4/c)δ) > 0,

where Φ(·) is the CDF of a standard normal random variable.

Proof. Define In,i = − log pn(Xn,i) and Hn = n−1
∑n

i=1 In,i. Notice that In,i is a

random variable with distribution

Pr(In,i = x) =


1
2

if x = log 2

1
2

if x = log 2 + logmn.

Furthermore we have that

H(pn) = log 2 +
1

2
logmn

Let Jn = |{i : In,i = log 2 + logmn}|. The event of interest maybe be written

{Jn(log 2 + logmn) + (n− Jn) log 2 > nH(pn) + nδ}. After substituting the value

of H(pn), dividing through by (1/2)
√
n and simplifying, this is equivalent to the

event {Jn − n/2
(1/2)

√
n
>

√
n2δ

logmn

}
.

Let {nk} be a subsequence such that limk→∞ n
− 1

2
k log |Ank | = c. Then it follows

that for all k sufficiently large
√
nk

logmnk
< 2/c and therefore

pnknk

(Jnk − nk/2
(1/2)

√
nk

>

√
nk2δ

logmn

)
≥ pnknk

(Jnk − nk/2
(1/2)

√
nk

> (4/c)δ
)
.

Now since Jn is a sum of n independent Bernoulli(1/2) random variables, the

central limit theorem implies the result.
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CHAPTER 4

RELIABILITY IN SOURCE CODING WITH SIDE INFORMATION

In this chapter we study error exponents in the classical fixed distribution

(and fixed alphabet) asymptotic. As mentioned in Chapter 1, our goal is to

understand optimal communication/compression schemes, where optimality

refers to the best decay of the error probability.

4.1 Definitions and Notations

We use P(X ) to denote the set of discrete probability distributions on X and

C(X → Y) to denote all channels from X to Y . For P ∈ P(X ) and V ∈ C(X →

Y), we write P × V to denote the distribution of the pair (X, Y ) ∈ X × Y in

which X is generated according to P (·) and Y is taken as the output of the

channel V whose input is X . For P ∈ P(X ) and PY |X ∈ C(X → Y) we use PXY

as shorthand for PX × PY |X .

We use x to denote vectors in X n; usually the length of the vector is clear

from the context. For any x ∈ X n we write Qx(·) as the empirical distribution

or type of x. The set of all sequences of length n with type Q is denoted T nQ.

The set of all type variables Q ∈ P(X ), i.e. those for which T nQ 6= ∅, is denoted

Pn(X ). For Q ∈ Pn(X ), we let Cn(Q,Y) denote the set of all W ∈ C(X → Y)

for which (1) T nQ×W is non-empty; and (2) in the case that Q(x) = 0, W (·|x) takes

the form W (y|x) = ξ(y)/2−n, for any choice of ξ(y) so that
∑

y ξ(y) = 2n. For

x ∈ X n and V ∈ C(X → Y) we denote by T nV (x), the set of sequences in Yn

having conditional type V given x. For a type QY , k(QY ) returns a unique index

for that type.

74



Throughout, when dealing with discrete random variables, all logarithms

and exponents have base 2. We take 0 log 0 = 0 and log 0 = −∞ based on con-

tinuity arguments. For a distribution or type P we let H(P ) denote entropy.

For strings x,y, we write H(x|y) as the conditional empirical entropy. For a

distribution PX and a channel PY |X we write I(PX ;PY |X) for the mutual infor-

mation between X and Y supposing that PX × PY |X governs the pair. D(P ||Q)

denotes the Kullback-Leibler (KL) divergence between distributions P and Q.

We also use the standard definitions of conditional entropy, conditional mutual

information, and conditional KL divergence.

Whenever the range of a summation, maximization or minimization is clear

we will use shorthand, e.g.
∑

QX∈Pn(X ) =
∑

QX
. We define (x)+ , max(0, x).

For the Gaussian Wyner-Ziv problem logarithms and exponents have base e.

ForK a variance or covariance matrix, we write fK as a shorthand for aN (0, K)

Gaussian random density. For (X, Y ) ∼ fK , we write fKY |X for the conditional

distribution of Y given X and write KY |X for the conditional covariance (ma-

trix). h(K) denotes the differential entropy of a Gaussian random variable with

distribution fK . A subscript K denotes that expectation or mutual information

should be computed using fK . Additional definitions, facts and proofs for the

Gaussian version of the Wyner-Ziv problem can be found in Appendix B.4.

4.2 SCPSI Results and Discussion

Let (Xi, Yi) be the output of a memoryless source with distribution PXY (x, y)

on a finite alphabet X × Y . The first encoder observes only the i.i.d sequence

Xn, the second encoder observes only the i.i.d sequence Y n. The decoder, gn :
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M1×M2 → X n must reproduce Xn using the messages from the encoders. The

encoders are deterministic functions fn1 : X n →M1 and fn2 : Yn →M2.

For this set-up the rate region was determined by Ahlswede and Körner [40]

and by Wyner [39] who showed that R1, R2 are achievable if

∃S − Y −X s.t. R1 ≥ H(X|S), R2 ≥ I(Y ;S).

The closure of the union of the pairs over all such S gives the entire rate region.

Let the decoder output be denoted X̂n = gn(fn1 (Xn), fn2 (Y n)), then error

probability is

Pe(f
n
1 , f

n
2 , g

n) = P n
XY (X̂n 6= Xn),

and we define the source coding with partial side information error exponent as

η(PXY , R1, R2) = lim
ε↓0

lim sup
n→∞

− 1

n
log

[
min

fn1 ,f
n
2 ,g

n
Pe(f

n
1 , f

n
2 , g

n)

]
, (4.1)

where the minimization ranges over all encoders and decoders fn1 , fn2 , gn, such

that

logMi ≤ n(Ri + ε). (4.2)

Our main results for SCPSI are as follows.

Theorem 15. Let R1, R2, PXY ∈ P(X × Y) be given. Then

η(PXY , R1, R2) ≥ ηL(PXY , R1, R2) , (4.3)

inf
QY

sup
QS|Y :

I(QY ;QS|Y )≤R2

inf
QX|Y S :

H(QX)>R1

D(QXY S||PXYQS|Y ) + [R1 −H(QX|S|QS)]+ (4.4)

where the joint distribution of X, Y, S is QYQS|YQX|Y S and S takes finitely many val-

ues.
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The scheme to achieve this exponent is explained in detail in the appendix.

In brief, operating on a type by type basis, the second encoder generates a code-

book with 2nR2 codewords chosen uniformly from T nQS and uses this to compress

the side information. The primary encoder bins the X sequences and transmits

the index of the bin containing the sequence. The decoder declares its output as

the source sequence in the received bin that has the smallest empirical entropy

conditional on the compressed side information.

Theorem 16. Let R1, R2, PXY ∈ P(X ×Y) be given, and suppose that PXY (x, y) > 0

for all x and y. Then

η(PXY , R1, R2) ≤ ηU(PXY , R1, R2) , inf
QY

sup
QS|Y :

I(QY ;QS|Y )≤R2

inf
QX|Y :

H(QX|S |QS)>R1

D(QXY ||PXY )

(4.5)

where the joint distribution of X, Y, S is QYQX|YQS|Y , i.e. X, Y and S form a Markov

chain in that order, and S satisfies

|S| ≤ |X | · |Y|+ |Y|+ 2. (4.6)

4.2.1 Discussion

Both theorems can be viewed as a competitive game between two players, na-

ture and the code designer. Nature’s goal is to minimize the exponent and the

code designer’s goal is to maximize it. The particular problem under consider-

ation determines the parameters and order of the plays. For example in Theo-

rem 15, nature plays first, choosing a “worst-case” side information distribution.

Then knowing nature’s choice the code designer picks the best codebook (via its

choice of test channel). Nature plays last, choosing the worst possible consistent
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joint distribution. Notice that the choices at each step match the “information”

available to the players.

A standard application of the change-of-measure argument [27, p.g. 268]

provides the following upper-bound on the SCPSI exponent

η(PXY , R1, R2) ≤ ηSP (PXY , R1, R2) , (4.7)

inf
QXY

sup
QS|Y :

I(Y ;S)≤R2


D(QXY ||PXY ) H(QX|S|QS) > R1

∞ H(QX|S|QS) ≤ R1.

(4.8)

One can show that ηU ≤ ηSP , and so formally ηU provides an improvement upon

the standard sphere-packing upper bound. In the game theoretic interpretation

the ηSP exponent is obtained by letting nature’s play reveal the joint distribution

of the source and side information, and then the code designer plays, choosing

the best codebook. But in the SCPSI problem, the code designer knows only the

marginal type of the side information, i.e. our improved upper bound better

captures the inherent structure of the problem.

The optimizations in Theorems 15 and 16 differ in several respects. Fore-

most, in Theorem 16 the inner-most optimization is over QX|Y , so that X, Y, S

adhere to the Markov structure, yet in the achievable exponent this Markov

constraint is not present. This differing Markov structure is also present in the

partial Wyner-Ziv exponent results of Jayaraman and Berger [47, 76] who at-

tribute the gap between sphere packing and random exponents (present even

at low rates) to this type of difference in the Markov structure. The other differ-

ences between ηL and ηU are the range of the inner most optimization and the

presence of the binning term in the achievable exponent.

Despite of these differences, the bounds provided by the theorems do allow
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us to determine the error exponent exactly in some special cases. When R2 = 0,

there is no possibility of encoding the side information. Taking S = 0 a.s., in

both exponents, one recovers the standard point to point exponent

inf
QX :

H(X)≥R1

D(QX ||PX).

Similarly, when R2 ≥ log |Y|, the second encoder may send all of the side in-

formation to the decoder. In this case our achievable exponent recovers the

Oohama and Han [57] exponent, which has been shown to be tight near the

boundary of the Slepian-Wolf rate region (see also Gallager [52]).

4.3 Wyner-Ziv Results and Discussion

Let (Xi, Yi) be the output of a memoryless source with distribution PXY (x, y) on

a finite alphabet X × Y . Let X̂ be the reproduction alphabet and d : X → X̂

a single letter distortion measure. Define the distortion between two strings as

d(x, x̂) = 1
n

∑n
i=1 d(xi, x̂i).

An encoder observes the i.i.d. source sequence,Xn and communicates a mes-

sage using nR bits (or nats) to the decoder. The decoder combines the message

with the side information Y n to give its reproduction X̂n. The encoder/decoder

pair are functions ψ : X n →M and ϕ :M×Yn → X̂ n, whereM is a fixed set.

The rate region was determined by Wyner and Ziv [77], who showed that if

the allowable distortion is ∆, then the required rate is given by

RWZ(PXY ,∆) = inf I(X;Z)− I(Y ;Z),

where the infimum is over all auxiliary random variables Z such that (1) Z, X ,

and Y form a Markov chain in this order and (2) there exists a function λ such
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that

E[d(X,λ(Y, Z))] ≤ ∆.

Let X̂n = ϕ(ψ(Xn), Y n) be the decoder’s output and define the error proba-

bility

Pe(ψ, ϕ,∆, d) = Pr
(
d(Xn, X̂n) > ∆

)
. (4.9)

We define the Wyner-Ziv error exponent to be

θ(R,∆, PXY , d) = lim
ε↓0

lim sup
n→∞

− 1

n
log

[
min
(ψ,ϕ)

Pe(ψ, ϕ,∆, d)

]
(4.10)

where the minimization ranges over all encoder/decoder pairs satisfying

log |M| ≤ n(R + ε). (4.11)

Our main results for the Wyner-Ziv problem are as follows.

Discrete Memoryless Case

Theorem 17. Let PXY ∈ P(X × Y) and R > 0, ∆ > 0, d(·, ·) be given. Then

θ(R,∆, PXY , d) ≥ inf
QX

sup
QZ|X

inf
QY

sup
f∈F

inf
QXY Z

GD [QXY Z , PXY , f, d,∆, R] (4.12)
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where

GD [QXY Z , PXY , f, d,∆, R] =



D(QXY Z ||PXYQZ|X) EQ[d(X, f(Y, Z))] ≥ ∆

D(QXY Z ||PXYQZ|X)

+
(
R− I(QX ;QZ|X)

+I(QY ;QZ|Y )
)+ EQ[d(X, f(Y, Z))] < ∆

I(QX ;QZ|X) ≥ R

∞ otherwise,

F = {f |f : Y × Z → X̂}, and Z takes finitely many values. Note in the final

minimization over QXY Z , QXZ and QY are fixed to be those specified earlier in the

optimization.

For completeness, we state the upper bound, which can be proved easily

following Marton’s [58] sphere-packing/change-of-measure proof for the point-

to-point case.

Theorem 18. Let PXY ∈ P(X × Y) and R > 0, ∆ > 0, d(·, ·) be given. Then

θ(R,∆, PXY , d) ≤ inf
QXY :RWZ(QXY ,∆)>R

D(QXY ||PXY ).

This result is analogous to the upper bound in (4.7) and is therefore not as

strong as its SCPSI counterpart (cf. (4.5)). We expect that this bound can be

improved, although the technique used to obtain Theorem 16 does not seem to

be applicable here. If this bound can be strictly improved in the binary erasure

case, it would imply an exponent loss (see Section 4.4.1).

Gaussian Case
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Theorem 19. Let (Xi, Yi) be jointly Gaussian with zero means and covariance matrix

Σ =

 1 ζXY

ζXY 1

 , (4.13)

and let d(x, x̂) = (x− x̂)2. Then for any R > 0, ∆ > 0, and Σ as in (4.13),

θ(R,∆, fΣ, d) ≥ inf
σ2
X

sup
ρxz

inf
σ2
Y

sup
λ∈Λ

inf
ρyz ,ρxy

GG [K,Σ, λ,∆, R] (4.14)

where

GG[K,Σ, λ,∆, R] =



D(K||K̄) EK [(X − λ(Y, Z))2] ≥ ∆

D(K||K̄)

+
(
R− IK(X;Z) EK [(X − λ(Y, Z))2] < ∆

+IK(Y ;Z)
)+

IK(X;Z) ≥ R

∞ otherwise,

(4.15)

Λ = {λ : R× R→ R : λ(y, z) = αy + βz, α, β ∈ [−Mλ,Mλ]}, the covariance matrix

of (X, Y, Z) is

K =


σ2
X σXσY ρxy σXρxz

σXσY ρxy σ2
Y σY ρyz

σXρxz σY ρyz 1


and

K̄ =


1 ζXY

ρxz
σX

ζXY 1 ζXY
ρxz
σX

ρxz
σX

ζXY
ρxz
σX

ρ2
xz

σ2
X

+ 1− ρ2
xz

 . (4.16)

Mλ > 0 is an arbitrary real number. The covariance matrix K̄ corresponds to a

source (X, Y, Z), where X, Y ∼ N (0,Σ), Z,X and Y form a Markov chain in that

order, and the distribution of Z conditional on X is taken from K.
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Theorem 20. Let (Xi, Yi) be jointly Gaussian with zero means and covariance Σ as

in (4.13). Let RX|Y (fΣ,∆) denote the conditional rate distortion function. Let θ̃ de-

note the error exponent for a modified Gaussian Wyner-Ziv problem in which the side

information is also available at the encoder. Then for any, ∆ > 0, R > RX|Y (fΣ,∆)

θ̃(R,∆, fΣ, d) ≤ inf
Π:RX|Y (fΠ,∆)≥R

D(Π||Σ) (4.17)

where Π is a 2× 2 positive definite covariance matrix and

RX|Y (fΠ,∆) = RWZ(fΠ,∆) =
1

2
log+

(
VarΠ(X|Y )

∆

)
.

Corollary 2. Under the assumptions of Theorem 20, we have that

θ(R,∆, fΣ, d) ≤ θ̃(R,∆, fΣ, d).

Proof. Any code that works for the Wyner-Ziv problem will work when the en-

coder also sees the side information. This implies that the error exponent for the

Wyner-Ziv problem is upper bounded by the error exponent for the two-sided

problem.

The upper bound in the Corollary is identical to the change-of-measure up-

per bound obtained via Theorem 18. As with that bound, we believe that this

upper bound can be improved, and showing a strict improvement would estab-

lish an exponent loss.

4.3.1 Discussion

As in the SCPSI case, in the Wyner-Ziv case the same game-theoretic inter-

pretation holds, but there are more parameters and the game becomes more
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elaborate. Nature plays first, choosing the most “difficult” source distribution.

The code designer plays next, selecting the “best” test channel for that difficult

source. Nature plays again choosing the worst marginal distribution for the

side information. Then, knowing everything so far, the code designer chooses

the estimation function. Nature has the final play, choosing the worst consistent

joint distribution for triple X, Y, Z. Once again the choices and order of plays

match the problem.

The nature of the optimizations in Theorems 17 and 19 give us some insight

into the design of practical coding schemes by revealing a tension, which we

examine in detail in the next section for the binary erasure and Gaussian prob-

lems. Briefly we see that the objective functions GD (resp. GG) contain three

cases which correspond to

• a violation of the distortion constraint even when the codeword is decoded

correctly;

• the use of binning, leading to the potential for decoding the wrong code-

word;

• no possibility for error.

A large codebook allows for a cleaner quantization and hence lower chance of

the first kind of event. But this large codebook comes with the requirement of

binning, leading to the potential for the second kind of event. Thus these two

kinds of errors are in tension.

Theorem 17 allows us to determine a portion of the reliability function for

a certain functional source coding problem. If we wish to reproduce a func-

tion g(X) of the source X losslessly at the decoder, then the rate required is
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HP (g(X)|Y ), which follows from the results of Orlitsky and Roche [78]. Setting

the distortion measure to be

d(X, f(Y, Z)) = dH(g(X), f(Y, Z))

(dH is the hamming measure) and evaluating Theorem 17 in the limit as ∆ → 0

provides an achievable exponent for this problem. This can be seen by al-

ways choosing QZ|X so that Z = g(X) and letting the reproduction function

be f(Y, Z) = Z. Using the fact that Z ↔ X ↔ Y , one can show that limit as

∆→ 0 of the righthand-side of equation (4.12) is

ξL(R,PXY ) = inf
QXY :HQ(g(X))≥R

D(QXY ||PXY ) + (R−HQ(g(X)|Y ))+. (4.18)

One can prove a change-of-measure/sphere-packing argument (say, again

along the lines of Marton [58]), which yields the following upper bound on the

error exponent for this problem

ξU(R,PXY ) = inf
QXY :HQ(g(X)|Y )≥R

D(QXY ||PXY ). (4.19)

On account of the fact that both (4.18) and (4.19) are optimizations of a contin-

uous function over a compact sets, the inf is attained. Therefore it follows that

the relationship between these two functions is analogous to the relationship be-

tween the sphere-packing and random coding exponents in channel coding [27,

Lemma 2.5.4]. Thus for R ≥ 0 until some critical rate Rc the reliability function

for the functional source coding problem is given exactly by

inf
QXY :HQ(g(X)|Y )≥R

D(QXY ||PXY ).
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4.4 Examples

4.4.1 Binary Erasure Case

As an application of Theorem 17, we turn to the binary erasure version of

the Wyner-Ziv problem. In this case, X is uniformly distributed over the set

{−1,+1}, and Y equals X passed through a binary erasure channel with era-

sure probability p

P (Y = 0|X = 1) = p = 1− P (Y = 1|X = 1)

P (Y = 0|X = −1) = p = 1− P (Y = −1|X = −1).

We would like to permit the reconstruction string to have erasures but not er-

rors. The reconstruction alphabet is thus

X̂ = {−1, 0, 1}.

One way to avoid errors in the reconstruction string is to use the “erasure” dis-

tortion measure

d(x, x̂) =


0 if x̂ = x

1 if x̂ = 0

∞ otherwise.

This distortion measure is overly harsh, however, in that it prohibits all errors.

For the Wyner-Ziv problem, higher rates can be achieved if one tolerates a van-

ishing probability of error. We will therefore consider a finite approximation of
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this distortion measure,

d(x, x̂) =


0 if x̂ = x

1 if x̂ = 0

K otherwise,

where K is a large but fixed constant. We will examine the rate-distortion and

reliability functions in the limit as K tends to infinity.

To determine the rate-distortion function in this case, let Z be the output of

a binary erasure channel with input X and erasure probability δ. If Z, X , and Y

form a Markov chain in this order, then it follows that

I(X;Z)− I(Y ;Z) = p(1− δ).

There is a natural choice of f for this case

f(y, z) =


1 if z = 1 or y = 1

0 if z = 0 and y = 0

−1 otherwise.

(4.20)

Then E[d(X, f(Y, Z))] = pδ, and so any rate

R ≥ (p−∆)+

is achievable. To see that this is in fact the best possible, consider the problem in

which the side information Y n is available to both the encoder and the decoder.

The rate-distortion function for this problem is given by

min
p(x̂|x,y)

I(X; X̂|Y ).

such that

E[d(X, X̂)] ≤ ∆.
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This minimization can be computed using classical techniques and shown in

the limit as K tends to infinity to equal (p − ∆)+. It follows that (p − ∆)+ is

the rate-distortion function for both problems. In particular, there is no “rate

loss” in the sense that the rate-distortion function is the same whether the side

information is available at both the encoder and decoder or at the decoder only.

We note that for the problem with side information at both the encoder and

decoder, there is a simple scheme that achieves the rate-distortion function (p−

∆)+. Since the encoder knows the locations of the erasures in Y n, it can simply

communicate the value of Xn in the first nR erased locations.

We turn to the application of Theorem 17 to this set-up. For simplicity of

exposition, we will consider the optimization problem in (4.12) with two re-

strictions: (1) QX is fixed to be the uniform distribution over {−1,+1}; and (2)

we optimize QZ|X over the class of binary erasure channels, instead of optimiz-

ing over the class of all test channels from X to Z . The optimization problem

in (4.12) then reduces to

sup
QZ|X

min
QY |XZ

G[QXY Z , PXY , f,∆, R].

This optimization problem can be written in the following alternative form

sup
QZ|X

min(G1(QZ|X), G2(QZ|X)), (4.21)

where

G1(QZ|X) = min
QY |XZ

D(QXY Z ||PXYQZ|X)

with the minimization being over all QY |XZ such that

EQ[d(X, f(Y, Z))] ≥ ∆,

and

G2(QZ|X) = min
QY |XZ

D(QXY Z ||PXYQZ|X) + (R− IQ(X;Z) + IQ(Y ;Z))+,

88



with the optimization being over all QY |XZ such that

EQ[d(X, f(Y, Z))] < ∆,

and

IQ(X;Z) ≥ R.

This last condition, of course, either holds for all choices of QY |XZ or for none of

them.

The alternative form of the optimization problem given in (4.21) is useful

because it shows that maximizing over the binary erasure test channel amounts

to maximizing the minimum of the exponents of two error events: the first,

G1(QZ|X), is the exponent on the event that Y n and Zn together provide insuf-

ficient information about Xn to enable the decoder to meet the distortion con-

straint. Thus an error will occur even if the codeword Zn is decoded correctly.

The second, G2(QZ|X), is the exponent on the probability of a binning error.

These two error exponents are in tension in the following sense. Choosing

QZ|X to have a low probability of erasure communicates many of the bits in Xn

to the decoder via Zn. This makes it unlikely that Y n and Zn will reveal too few

bits about Xn for the decoder to meet the distortion constraint, meaning that

G1(QZ|X) will be large. At the same time, choosing QZ|X to have a low probabil-

ity of erasure requires the use of large codebook, which makes the binning error

probability high, leading to a smallG2(QZ|X). On the other hand, choosingQZ|X

to have a high probability of erasure leads to exactly the opposite behavior: the

binning error probability is small since little information is being communicated

through Zn, but it is much more likely that the realization of Y n and Zn do not

collectively reveal enough of the bits in Xn to meet the distortion constraint.
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Figure 4.1: Tension in choice of the test channel erasure probability δ, re-
vealed by Theorem 17. Note that pδ is the average distortion of
the system. Here ∆ = 0.15, p = 0.5, and R = 0.425.

This tension is illustrated in Fig. 4.1. The optimum choice of QZ|X is given

by a moderate erasure probability that balances the exponents of the two error

probabilities. With this choice, both are dominant error events.

The exponent itself is shown for various R in Fig. 4.2. Since we have not

optimized over QX , this is properly interpreted as an upper bound on the error

exponent of the scheme. Fig. 4.2 also shows the error exponent of the simple

scheme mentioned above for achieving the rate-distortion function when the

side information is available at both the encoder and the decoder1. The error

probability of this scheme is simply the probability that Y n contains more than

n(R + ∆) erasures. Assuming R > p−∆, the exponent of this event is equal to

D(R + ∆||p),

i.e., the relative entropy between two Bernoulli distributions, one with success

1This is also the upper bound in Theorem 18.
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Figure 4.2: Upper bound on error exponent of Theorem 17, and the error
exponent of the scheme that makes use of side information at
the encoder. The parameters ∆, p are the same as those used in
Fig. 4.1.

probability R + ∆ and one with success probability p. Fig. 4.2 shows that when

the side information is available at both the encoder and decoder the exponent

is higher than for our one-sided scheme. This suggests that there is an exponent

loss.

4.4.2 Gaussian Case

A similar test channel tension arises in the Gaussian case. This can be seen most

clearly by considering the optimization problem over ρxz for fixed σ2
X . In Fig.

4.3 we plot

G3(ρxz) = inf
σ2
Y

sup
λ∈Λ

inf
ρxy ,ρyz

G [K,Σ, λ,∆, R]

where we hold σ2
X = 1, andK = K(1, σY , 1, ρxy, ρyz, ρxz) is the covariance matrix

of (X, Y, Z).
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Figure 4.3: Test channel optimization for Theorem 19. The plot shows the
exponent against ρxz, holding σ2

X = 1 fixed for R = 0.4, ζxy =
0.7 and ∆ = 0.4.

Intuitively, ρxz controls the number of different codewords we use to cover

the source sequences. At rateR the scheme allows us to identify at most exp(nR)

codewords uniquely, and binning is required to go beyond this. A large code-

book has the advantage that each source can be mapped to a better (i.e. closer)

codeword. As we increase the size of the codebook beyond this point, the gains

from having a “cleaner” codebook are outweighed by the penalty we pay for

binning. From the plot we can see there is an optimum choice around ρxz = 0.76

for these parameters.

Figure 4.4 shows the exponent plotted (by numerically solving the optimiza-

tion problem) against the rate. For comparison the upper bound of Theorem 20

is included, as is the exponent for the no side information case, corresponding

a the continuous version of Marton’s point-to-point exponent [58]. This result
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Figure 4.4: A plot of the achievable exponent of Theorem 19. Here ζxy =
0.7 (the correlation coefficient between the source and side in-
formation) and ∆ = 0.4. R(∆) = 0.121 nats for these parame-
ters.

was first proved by Ihara and Kubo [59], who showed the exponent is

inf
σX : 1

2
log(

σ2
X
∆

)>R

D(fσX ||f1) =
1

2
(∆ exp(2R)− log(∆ exp(2R))− 1) . (4.22)

We can show our achievable exponent recovers (4.22) by taking the side in-

formation to be statistically independent i.e. ζ = 0. In this case, one can show

that ρxy = ρyz = 0 solve the inner optimization problem of (4.12). Further, since

X ⊥⊥ Y , Y cannot help achieve the distortion constraint, choosing σY = 1 is

nature’s best play. With these choices we see that D(K||K̄) = D(fσ2
X
||f1) and

we are left with the following equivalent optimization (where we have written

X̂ = αZ)

inf
σX

sup
ρxx̂,σX̂


D(fσ2

X
||f1) E[(X − X̂)2] ≥ ∆ or

I(X; X̂) ≥ R

∞ otherwise.
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As nature will always pick σX such that the supremum is finite, we are left with

inf
σX :R(σ2

X ,∆)≥R
D(fσ2

X
||f1).

Expanding the divergence and appealing to the monotonicity of x− log x gives

(4.22)2.

Using equation (4.22) and Theorem 20 we can determine the error expo-

nent exactly when the side information is available at both the encoder and

decoder. In this case, Wyner [79, section 3] provides a simple scheme to achieve

the rate distortion function. The encoder simply subtracts the conditional mean

E[X|Y = y] from the source. An achievable exponent then follows by com-

puting the point-to-point exponent for the random variable X|Y = y, which is

again Gaussian, with mean −ζy and variance 1 − ζ2. Our achievable exponent

in this case is

inf
σX :R(σX ,∆)>R

D(fσ2
X
||f1−ζ2) =

1

2

(
∆ exp(2R)

1− ζ2
− log

(
∆ exp(2R)

1− ζ2

)
− 1

)
(4.23)

We now show that this is in fact the best we can do, by showing that (4.23)

coincides with the upper bound of Theorem 20. The optimization problem of

Theorem 20 can be solved as follows. We first note that if X, Y are zero mean

with covariance matrix K, then Var(X|Y ) = det(K)
VarY

. Hence we may write the

problem as

inf
K�0: g(K,∆,R)≤0

D(K||Σ)

where g(K,∆, R) = − log det(K)+log(∆)+log eT2Ke2 +2R. The KKT conditions

tell us the optimum K∗ must satisfy

2Using a virtually identical argument one can show that exponent of Theorem 17 reduces to
Marton’s exponent for the discrete-memoryless case when the side information is independent
of the source.
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1. −1
2
(K∗)−1 + 1

2
Σ−1 + λ

−(K∗)−1 +

0 0

0 eT2K
∗e2


 = 0

2. λg(K∗) = 0.

One can solve to this system to find

K∗ =

ζ2 + ∆ exp(2R) ζ

ζ 1

 .
Evaluating D(K∗||Σ) yields (4.23). Therefore, when the side information is

available in both places we have determined the exponent exactly as (4.23).
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CHAPTER 5

IMPROVED SOURCE CODING EXPONENTS VIA WITSENHAUSEN’S

RATE

In this chapter we improve the results of the previous chapter, for the special

case that the side information is availably fully (i.e. without being encoded) at

the decoder, see Fig 5.1.

c©2011 IEEE. Portions, reprinted, with permission, from [Kelly and Wagner,

“Improved Source Coding Exponents via Witsenhausen’s Rate”, to appear in

IEEE Transactions on Information Theory].

5.1 Notation and Preliminaries

For sets, types, etc., we use the same notations as the previous chapter. Unless

specified, exponents and logarithms are taken in base 2. We use ‖x‖∞ to de-

note the supremum norm, i.e. ‖x‖∞ = maxi |xi|. The notation T n,εQ denotes the

(Q, n, ε)-typical set, i.e. the set of x ∈ X n satisfying ‖Qx −Q‖∞ ≤ ε.

A graph G = (V,E) is a pair of sets, where V is the set of vertices and E ⊂

V × V is the set of edges. Two vertices x, y ∈ V are connected iff (x, y) ∈ E.

In this chapter we need only consider simple graphs, i.e. undirected graphs

without self-loops. The degree of a vertex v, ∆(v), is the number of other vertices

Encoder Decoder
R

X X

Y

^

Figure 5.1: Source coding with full side information
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to which v is connected. The degree of a graph G, denoted ∆(G) is defined as

maxv∈V ∆(v). A coloring of a graph is an assignment of colors to vertices so

that no pair of adjacent vertices share the same color. The chromatic number of G,

γ(G), is defined to be the fewest number of colors needed to colorG. For U ⊂ V ,

G(U) is the (vertex-) induced subgraph, i.e. the graph with vertex set U and edge

set E ∩ (U ×U). An independent set of G is a subgraph of G containing no edges.

The graph Ḡ is the graph complement of G, which has the same vertex set of G

and two vertices are connected in Ḡ if and only if they are not connected in G.

A clique of G is a subset of the vertices of G such that every two vertices are

connected. A graph G is called perfect if the chromatic number of every induced

subgraph, G(V ′) is equal to the size of the largest clique of G(V ′).

Let G = (V,E), H = (V ′, E ′) be two graphs. The strong product (also called

the and product or normal product) G ∧ H is a graph whose vertex set is V × V ′

and in which two vertices (v, v′), (u, u′) are connected iff

1. v = u and (v′, u′) ∈ E ′ or

2. v′ = u′ and (v, u) ∈ E or

3. (v, u) ∈ E and (v′, u′) ∈ E ′.

We will be interested inGn = G∧G∧. . .∧G (n-factors), the n-fold strong product

of G. One may think of the vertices of Gn as length n vectors (v1, . . . , vn) with

two vertices are connected in Gn if each of the components of the vectors are

either the same or connected in G. The characteristic graph, GX , of a source PXY

is the graph whose vertex set is X and two vertices x, x′ are connected if there is

a y ∈ Y such that P (y|x′)P (y|x) > 0. For a given y, the set Z(y) = {x : P (x|y) >

0} is the set of ‘confusable’ sequences, i.e. the set of xs than can occur with a
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given y.

For a graph G and distribution Q on the vertices of G, we define the follow-

ing functional.

Definition 9.

κ(G,Q) = max
W :W�G
QW=Q

H(W |Q). (5.1)

Note: whenever we write the graph G where a matrix is expected, we abuse

notation and refer to the matrix G = A + I where A is the adjacency matrix of

graph G and I is the identity matrix.

A second equivalent definition of κ is

κ(G,Q) = max
X,X̃:QX=QX̃=Q

H(X̃|X) (5.2)

where X and X̃ have common alphabet and P (x̃|x) > 0 only if (x̃, x) ∈ E(G) or

x = x̃.

We remark that similar optimizations arise in the determination of maxi-

mum entropy Markov chains subject to moment constraints [80].

We will also make use of the following graph functionals from graph/zero-

error information theory.

Definition 10. The graph entropy [64], H(G,Q), of a graph G and a distribution

Q on the vertices of G is defined as

H(G,Q) = min
X∈Z∈Γ(G)

I(X;Z) (5.3)

where X is a random node in the graph and has distribution Q, Γ(G) denotes

the set of all maximal independent sets of G, and the notation X ∈ Z means

PZ|X(z|x) = 0 for x 6∈ z.
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Definition 11. The complementary graph entropy (or co-entropy or π-entropy)

[62, 63], H̄(G,Q) of a graph G with a distribution Q on the vertices of G is de-

fined as

H̄(G,Q) = lim
ε→0

lim sup
n→∞

log γ(Gn
X(T n,εQ ))

n
. (5.4)

Graph entropy and complementary graph entropy are related as follows (see

for example [81, Theorem 4])

H̄(G,Q) ≤ H(G,Q), (5.5)

and equality holds in (5.5) if G is perfect [82, Corollary 12].

5.2 Properties of κ

In this section we give some properties of κ which will be used elsewhere in the

chapter. Throughout this section G is a graph, Q is a distribution on the vertices

of G and X is a random variable with distribution Q.

Property 1. κ(G,Q) ≤ H(Q) = H(X), where equality holds if G is fully con-

nected.

Proof. Note that any valid choice of channel in the optimization defining κ(G,Q)

satisfies QW = Q, thus H(W |Q) ≤ H(Q), giving the first claim.

If G is fully connected then the constraint W � G imposes no restriction on

the choice of W . The problem is then to choose a W that produces the given

output distribution Q. Setting the rows of W equal to Q gives κ(G,Q) = H(Q).

99



Property 2. If G is the disjoint union of fully connected subgraphs then

κ(G,Q) = H(X|Y ). (5.6)

where

1. Y is a random variable with alphabet size |Y| equal to the number of dis-

joint subgraphs in G so that to each subgraph we associate a unique ele-

ment y ∈ Y ; and

2. for the subgraph associated with y, the event {X = a, Y = y} has proba-

bility Q(a) if a is in the subgraph and probability zero otherwise.

Proof. Via (5.2), it follows that

κ(G,Q) = H(X)− min
X,X̃:QX=QX̃=Q

I(X; X̃)

where X and X̃ have common alphabet and P (x̃|x) > 0 only if (x̃, x) ∈ E(G)

or x̃ = x. Now, because Y can be determined from X̃ (due to the graph-based

constraint on PX̃|X), we have I(X; X̃) = I(X; X̃, Y ). By the chain rule,

I(X; X̃, Y ) = I(X;Y ) + I(X; X̃|Y ),

which gives

κ(G,Q) = H(X|Y )− min
X,X̃:QX=QX̃=Q

I(X; X̃|Y ).

Choosing PX̃|X so that X ⊥⊥ X̃|Y , i.e. setting PX̃|X(x̃|x) = Q({x′ : x′ =

x or (x, x′) ∈ E(G)})−1Q(x) if (x, x̃) ∈ E(G) or x = x̃, and PX̃|X(x̃|x) = 0 other-

wise shows the minimum is zero.

Property 3. Let G be a graph and Q(n) be a sequence of distributions (on the

vertices of G) converging to distribution Q∞. Then

lim sup
n→∞

κ(G,Q(n)) ≤ κ(G,Q∞)
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(I.e. κ(G, ·) is upper semicontinuous in Q for a fixed G.)

Proof. Let

W (n) = arg max
W :W�G

Q(n)W=Q(n)

H(W |Q(n)),

whereW (n) exists because we are maximizing a continuous function over a com-

pact set. By choosing a subsequence and relabeling we may arrange it so that

H(W (n)|Q(n)) → lim supH(W (n)|Q(n)) and W (n) → W∞, where both W∞ � G

and Q∞W∞ = Q∞ are true. Therefore, we have

lim sup
n→∞

κ(G,Q(n)) = lim sup
n→∞

H(W (n)|Q(n))

= H(W∞|Q∞) ≤ κ(G,Q∞).

5.3 Bounding Witsenhausen’s Rate

Recall that in Witsenhausen’s problem [60] the goal is communication of Xn to

the decoder who has access to Y n under the criterion P n
XY (Xn = X̂n) = 1. This

requirement is stricter than the vanishing error probability criterion of Slepian-

Wolf and increases the required rate from H(X|Y ) to R(GX). As mentioned in

Chapter 1, an alternative characterization of Witsenhausen’s rate is via comple-

mentary graph entropy.

Lemma 22.

R(GX) = max
QX∈P(X )

H̄(GX , QX). (5.7)
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Proof. This identity is easily established using the fact that there are only poly-

nomially many types. See [63, Lemma 3] for a recent proof of a more general

result.

Our new bound on R(GX) stems from a new bound on H̄(GX , QX). We

derive this bound in two steps. First we provide a degree bound on the type-

induced subgraph Gn
X(T nQ). We then we pass from a degree bound to a chro-

matic number bound.

Lemma 23. Let QX ∈ Pn(X ). Then

(n+ 1)−|X ||X | exp(nκn(GX , QX))− 1

≤ ∆(Gn
X(T nQX ))

≤ (n+ 1)|X ||X | exp(nκn(GX , QX)) (5.8)

where

κn(GX , QX) = max
W∈Cn(QX ,X )

W�GX
QXW=QX

H(W |QX). (5.9)

Note: κn maximizes over channels giving rise to types rather than distributions, but of

course we may replace κn by κ in the right-hand inequality of (5.8) to get another valid

upper bound.

Proof. Suppose x ∈ T nQX , and let N(x) denote the neighbors of x in the induced

subgraph Gn
X(T nQX ). We partition the set {(x,x′) : x′ ∈ N(x)} by joint type QXX′

and observe that each joint type can be written as QX × W for some W . One

may verify that W � GX and QXW = QX .

For any x ∈ T nQX we can count the number of sequences in N(x) by decom-

posing {(x,x′) : x′ ∈ N(x)} into joint types, determining a W for each joint type
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and using the standard cardinality bounds for type classes. Thus

∆(Gn
X(T nQX )) ≤

∑
W :W�G
QXW=QX

|T nW (x)|

≤
∑

W :W�G
QXW=QX

exp(nH(W |QX))

≤ (n+ 1)|X ||X | max
W :W�G
QXW=QX

exp(nH(W |QX)).

For the reverse inequality, we let ∆(x) denote the degree of vertex x in the in-

duced subgraph. Then

∆(x) =
∑

W∈Cn(QX ,X )

W 6=I,W�G
QXW=QX

|T nW (x)|.

To see this, note first that if W arises by selecting a x′ ∈ N(x), then TW (x) ⊂

N(x). This is the case because N(x) is simply a union of W -shells. And second,

that any W 6= I with W � G and QXW = QX gives rise to a neighbor. Then

because ∆(Gn
X(T nQX )) = maxx∈TQX ∆(x), we have

∆(Gn
X(T nQX )) = max

x∈TQX

∑
W∈Cn(QX ,X )

W 6=I,W�G
QXW=QX

|T nW (x)|

∆(Gn
X(T nQX )) = max

x∈TQX

∑
W∈Cn(QX ,X )

V�G
QXV=QX

|T nV (x)| − 1.
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Using the cardinality bound for typeclasses we get

∆(Gn
X(T nQX ))

≥ max
x∈TQX

max
W :W�G
QXW=QX

|T nW (x)| − 1

≥ max
x∈TQX

(n+ 1)−|X ||X | max
W :W�G
QXW=QX

exp(n(H(W |QX)))− 1

= (n+ 1)−|X ||X | max
W :W�G
QXW=QX

exp(n(H(W |QX)))− 1

where we implicitly assumed we still have W ∈ Cn(QX ,X ).

Using this result we now bound H̄(GX , QX).

Lemma 24. For any QX ∈ P(X ) and graph GX with vertex set X

H̄(GX , QX) ≤ κ(GX , QX).

Proof. We may upper bound H̄(GX , QX) by coloring each typeclass separately.

This gives

H̄(GX , QX)

= lim
ε→0

lim sup
n→∞

log γ(Gn
X(T n,εQX

))

n

≤ lim
ε→0

lim sup
n→∞

log
(

(n+ 1)|X |maxQ∈Pn(X ):‖QX−Q‖∞≤ε γ(Gn
X(T nQ))

)
n

= lim
ε→0

lim sup
n→∞

log
(

maxQ∈Pn(X ):‖QX−Q‖∞≤ε γ(Gn
X(T nQ))

)
n

.

A well-known fact from graph theory tells us that γ(G) ≤ ∆(G) + 1 [83, §5.2].
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Using this and Lemma 23 we obtain

H̄(GX , QX)

≤ lim
ε→0

lim sup
n→∞

log
(

1 + maxQ∈Pn(X ):‖QX−Q‖∞≤ε ∆(Gn
X(T nQ))

)
n

≤ lim
ε→0

lim sup
n→∞

1

n
log
(

1 + (n+ 1)|X |
2

max
Q∈Pn(X ):‖QX−Q‖∞≤ε

exp(nκ(GX , Q))
)
.

We get a further upper bound by replacing Pn(X ) in the maximization by P(X ),

which, after taking the lim sup, gives

H̄(GX , QX) ≤ lim
ε→0

sup
Q∈P(X ):‖QX−Q‖∞≤ε

κ(GX , Q).

Because κ is upper semicontinuous, it attains its supremum and therefore we

can consider any sequence εm ↓ 0, and let Q(m) be the corresponding maximizer.

Observe that lim supm→∞ ‖Q(m) − QX‖∞ ≤ 0, i.e. Q(m) → QX . Thus, by κ prop-

erty 3 we have

H̄(GX , QX) ≤ lim sup
m→∞

κ(GX , Q
(m)) ≤ κ(GX , QX).

We can now state our bound on Witsenhausen’s rate.

Theorem 21.

R(GX) ≤ max
QX∈P(X )

κ(GX , QX).

Proof. An immediate consequence of Lemma 24 and (5.7).

5.3.1 Comparison of Bounds

Since both κ(GX , QX) and H(GX , QX) provide upper bounds on H̄(GX , QX),

and therefore on Witsenhausen’s rate, it is natural to ask which of these two
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Figure 5.2: Example 1 and 2: Two source distributions and their character-
istic graphs

bounds is best. It is currently unknown whether one bound dominates the

other. For all of the examples we studied, κ(GX , QX) ≥ H(GX , QX). However,

κ(GX , QX) does have one important advantage in that can be computed effi-

ciently by convex programming techniques whereas computation ofH(GX , QX)

involves a maximization over all distributions on the potentially exponentially

many (in |X |) independent sets [84]. Additionally even computation of the sim-

ple bound R(GX) ≤ γ(GX) requires finding the chromatic number of GX which

is NP-complete. Therefore using κ could be beneficial when dealing with large

graphs.

We now provide three concrete examples to compare the bounds.

Example 1 (see Fig. 5.2). For this example, the graph GX is perfect and for

perfect graphs it is known that H̄(GX , QX) = H(QX)−H(ḠX , QX) [82, Theorem
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2]. To compute

H̄(GX , QX) = H(QX)−H(ḠX , QX)

= H(QX)− min
X∈Z∈Γ(ḠX)

I(X;Z)

= max
X∈Z∈Γ(ḠX)

H(X|Z)

it suffices to notice the set Γ(ḠX) = {{0, 1}, {2}} forces PZ|X to be deterministic.

Therefore, using h2 to denote the binary entropy function, we have

H̄(GX , QX) = P (Z = {0, 1})h2

( QX(0)

QX(0) +QX(1)

)
+ P (Z = {2})h2(0)

= [QX(0) +QX(1)]h2

( QX(0)

QX(0) +QX(1)

)
.

For κ(GX , QX) we use the fact that GX is the disjoint union of fully connected

subgraphs, and therefore κ property 2 gives

κ(GX , QX) = [QX(0) +QX(1)]h2

( QX(0)

QX(0) +QX(1)

)
.

Since the graph is perfect, recall that we have equality in (5.5), and therefore in

this example

κ(GX , QX) = H(GX , QX) = H̄(GX , QX).

Example 2 (see Fig. 5.2). Here the characteristic graph is the well-known pen-

tagon graph, C5. For this case, with QX denoting the uniform input distribution

as depicted, both H̄(GX , QX) and H(GX , QX) are known (e.g.[85, Example 1,

pp. 105]),

H̄(GX , QX) =
1

2
log 5 and H(GX , QX) = log

5

2
.

To compute κ(GX , QX), we note the constraint W � GX implies that

H(W |QX) ≤ log 3. But κ(GX , QX) = log 3 is achievable by setting W (x̃|x) = 1/3

whenever W can be non-zero. Therefore we have the strict inequalities

H̄(GX , QX) < H(GX , QX) < κ(GX , QX).
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The final example shows that in certain cases the bound provided by Theo-

rem 21 can be arbitrarily bad.

Example 3 (Looseness of the bound in Theorem 21). Consider the graph G with

V (G) = {0, 1, . . . , 2n} and E(G) = {(n, n + 1) : n ≥ 0} ∪ {(0, n) : n ≥ 2}. It is

clear that γ(G) = 3 for all n, and hence R(G) ≤ log 3. Yet, if we choose

W (b|0) =


0 if b = 0

2−n otherwise

W (b|a 6= 0) =


1 if b = 0

0 otherwise

Q =

[
1

2
,

1

2n+1
,

1

2n+1
. . .

1

2n+1

]
one sees that W � G and therefore that

κ(G,Q) ≥ H(W |Q) =
1

2
log 2n =

n

2
.

5.4 Improved Exponents for Lossless Source Coding

We consider the setup depicted in Figure 5.1 under the vanishing error prob-

ability criterion. The encoder/decoder pair are functions ψ : X n → M and

ϕ :M×Yn → X̂ n, whereM is a fixed set. Define the error probability to be

Pe(ψ, ϕ) = Pr(Xn 6= X̂n) (5.10)

where X̂n = ϕ(ψ(Xn), Y n). Our focus is the asymptotic behavior of the error

probability Pe(ψ, ϕ) as n gets large. Define the error exponent (or reliability func-

tion) to be

θ(R,PXY ) = lim
ε→0

lim inf
n→∞

− 1

n
log

[
min
(ψ,ϕ)

Pe(ψ, ϕ)

]
(5.11)
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where the minimization ranges over all encoder/decoder pairs satisfying

1

n
log |M| ≤ R + ε. (5.12)

To state our result we need the following definitions. For any distribution Q ∈

P(X ), channels W, W̃ ∈ C(X → Y) and rate R define

Q(W, W̃ ,Q,R) = {QXX̃Y ∈ P(X × X × Y) : QY |X = W,

QY |X̃ = W̃ ,QX = QX̃ = Q,

IQXX̃ (X; X̃) ≤ R}.

Let α(Q,W ) be a real valued function and use the notation W̃ ≤α W to denote

α(Q, W̃ ) ≤ α(Q,W ) and QW = Q̃W

and let

W(α,Q) = {W ∈ C(X → Y), W̃ ∈ C(X → Y) : W̃ ≤α W}.

Finally, define

e(α,Q, PXY , R) =

min
W,W̃∈W(α,Q)

[
D(W ||PY |X |Q)

+ min
QXX̃Y ∈Q(W,W̃ ,Q,R)

[IQXX̃Y (X, Y ; X̃)−R]+
]
,

er(Q,PXY , R) =

min
W∈C(X→Y)

[
D(W ||PY |X |Q) + [I(Q;W )−R]+

]
,

and ex(Q,PXY , R) =

min
QXX̃ :QX=QX̃=Q

I(X;X̃)≤R

[
EdB(X, X̃) + I(X; X̃)−R

]
,
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where dB is the Bhattacharyya distance

dB(x, x̃) = − log
∑
y∈Y

√
PY |X(y|x)PY |X(y|x̃).

In [53], Csiszár and Körner construct source codes for the present problem

by exhibiting schemes based on certain partitions {Ai}qi=1 of X n. Let M =

{1, . . . , q} and for a given partition {Ai}qi=1, define the encoder ψ : X n →M

ψ(x) = i, if x ∈ Ai.

A family of decoders {ϕi : Yn → Ai}qi=1 is specified via an α-decoding rule,

which for a given i ∈ M and y ∈ Yn, declares the output as x ∈ Ai satisfy-

ing α(Qx, Qy|x) ≤ α(Qx̃, Qy|x̃) for all x̃ ∈ Ai, with ties broken arbitrarily. The

decoder is then specified by ϕ(i,y) = ϕi(y).

For this communication scheme, which we will call the CK scheme, the fol-

lowing result holds.

Theorem 22 (Csiszár and Körner [53, Theorem 2]). For every R ≥ 0, there exists a

partition {Ai}qi=1 of X n with
1

n
log q ≤ R + δn, (5.13)

such that for every distribution PXY ∈ P(X × Y) the encoder, ψCK , defined by the

partition {Ai}qi=1 and decoder, ϕCK,α, defined via the α-decoder, has probability of error

Pe(ψCK , ϕCK,α) ≤ exp

(
− n

[
min

QX∈Pn(X )
D(QX ||PX)

+ e(α,QX , PXY , H(QX)−R)− δ′′n
])

(5.14)

where

δn =
(
|X |2 + |X |

) log(n+ 1)

n
+

1

n
(5.15)
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and

δ′′n =
(
|X |2|Y|+ |X |

) log(n+ 1)

n
.

When specialized to particular α-decoders, namely the maximum likelihood

decoder

αML(Q,W ) = D(W ||PY |X |Q) +H(W |Q) (5.16)

and the minimum entropy decoder

αME(Q,W ) = H(W |Q) (5.17)

the following result provides two alternative bounds on the decoding error

probability.

Lemma 25 (Csiszár and Körner [53, Lemma 4]). Under the maximum likelihood

decoder (5.16),

e(αML, Q, PXY , R) ≥ max(ex(Q,PXY , R), er(Q,PXY , R)).

Under the minimum entropy decoder decoder (5.17),

e(αME, Q, PXY , R) ≥ er(Q,PXY , R).

5.4.1 An Improved Scheme

Rather than encoding every sequence using the CK scheme, we propose to en-

code certain typeclasses using the Witsenhausen scheme whenever the rate al-

lows it. The precise details are as follows.

The encoder and decoder agree on a coloring of every typeclass T nQX , such a

coloring requires γ(Gn
X(T nQX )) colors.
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Encoder: To communicate, the encoder first sends the typeQx of the sequence

x, and if there is sufficient rate, i.e. log γ(Gn
X(T nQx

)) < nR, sends the color of the

sequence in the graph. Otherwise the encoder sends the index of the partition

containing the sequence in the CK scheme.

Decoder: Using the type, the decoder knows whether the encoder is sending

the color of the sequence or the partition index. In the former case it can decoder

the sequence x without error, otherwise it uses the CK scheme to decode.

Using this scheme we will show:

Theorem 23. For any R > 0, PXY ∈ P(X ×Y), and continuous α : P(X )×C(X →

Y)→ R,

θ(R,PXY ) ≥ min
QX :

min(κ(GX ,QX),H(GX ,QX))≥R

[
D(QX ||PX) + e(α,QX , PXY , H(QX)−R)

]
(5.18)

where GX is the characteristic graph of the source PXY .

Remark: One may replace the function min(κ(GX , QX), H(GX , QX)) ≥ R re-

stricting the feasible set in (5.18) by min(κ(GX , QX), H(GX , QX), f(GX , QX)) ≥

R where f is any upper semicontinuous (in QX) function satisfying

H̄(GX , QX) ≤ f(GX , QX).

Corollary 3. Using maximum likelihood decoding (cf. (5.16))

θ(R,PXY ) ≥ min
QX :

min(κ(GX ,QX),H(GX ,QX))≥R

[
D(QX ||PX)

+ max(er(QX , PXY , H(QX)−R), ex(QX , PXY , H(QX)−R))
]
.

(5.19)

112



Using minimum entropy decoding (cf. (5.17))

θ(R,PXY ) ≥ min
QX :

min(κ(GX ,QX),H(GX ,QX))≥R

[
D(QX ||PX) + er(QX , PXY , H(QX)−R)

]
.

Proof. The minimum entropy decoding rule (5.17) is clearly continuous. The ML

decoding rule (5.16) is continuous provided that W � PY |X , but such a choice

is guaranteed by the fact that D(W ||PY |X |Q) appears in the objective function

defining e(α,Q, PXY , R). The results then follows from Lemma 25 and Theorem

23.

Before we can prove Theorem 23, we need to establish the following results.

Proposition 1. For any distribution Q ∈ P(X ), channels W, W̃ ∈ C(X → Y) and

rate R, the set Q(W, W̃ ,Q,R) is compact.

Proof. The set is clearly bounded. To show that it is closed, let Q(n)

XX̃Y
→

QXX̃Y and observe that for each n, Q(n)
Y |X = W,Q

(n)

Y |X̃ = W̃ ,Q
(n)
X = Q

(n)

X̃
=

Q, I
Q

(n)

XX̃

(X; X̃) ≤ R. Taking limits and using the continuity of mutual infor-

mation gives the result.

Proposition 2. For any distribution Q ∈ P(X ) and continuous α : P(X ) × C(X →

Y)→ R, the setW(α,Q) is compact.

Proof. The set is clearly bounded. To see that it is closed, suppose {W (n)} and

{W̃ (n)} are two sequences in W(α,Q). Suppose further that W (n) → W and

W̃ (n) → W̃ . Since for each x ∈ X and n we have

∑
y

Q(y)W (n)(x|y) =
∑
y

Q(y)W̃ (n)(x|y)
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taking limits and then interchanging the order of limits and sums shows that

QW = QW̃ . By continuity of α we also have that

α(Q,W ) = lim
n→∞

α(Q,W (n)) ≤ lim
n→∞

α(Q, W̃ (n)) = α(Q, W̃ ).

Proposition 3. Let {W (n)}, {W̃ (n)} be sequences of channels with W (n) → W and

W̃ (n) → W̃ . Then for any Q ∈ P(X ), PXY ∈ P(X × Y) and R,

lim inf
n→∞

[
D(W (n)||PY |X |Q) + min

QXX̃Y ∈Q(W (n),W̃ (n),Q,R)
[IQXX̃Y (X, Y ; X̃)−R]+

]
≥ D(W ||PY |X |Q) + min

QXX̃Y ∈Q(W,W̃ ,Q,R)
[IQXX̃Y (X, Y ; X̃)−R]+.

Proof. Let Q(n)

XX̃Y
= Q

(n)

XX̃Y
(W (n), W̃ (n), R,Q) be a minimizer of

min
QXX̃Y ∈Q(W (n),W̃ (n),Q,R)

[IQXX̃Y (X, Y ; X̃)−R]+

if the set Q(W (n), W̃ (n), Q,R) is non-empty and arbitrary otherwise. If the sets

Q(W (n), W̃ (n), Q,R) are empty for all n sufficiently large, then the result trivially

holds. Therefore we can focus on the case for which there is a subsequence

along which the sets are non-empty. Along this subsequence there is a further

subsequence where Q(n)

XX̃Y
converges, so that by relabeling we may assume that

Q
(n)

XX̃Y
→ QXX̃Y andQ(W (n), W̃ (n), Q,R) is non-empty for each n. Now by lower

semicontinuity of the information measures it follows that

lim inf
n→∞

[
D(W (n)||PY |X |Q) + min

QXX̃Y ∈Q(W (n),W̃ (n),Q,R)
[IQXX̃Y (X, Y ; X̃)−R]+

]
= lim inf

n→∞
D(W (n)||PY |X |Q) + [I

Q
(n)

XX̃Y

(X, Y ; X̃)−R]+

≥ D(W ||PY |X |Q) + [IQXX̃Y (X, Y ; X̃)−R]+.

The convergence of W (n) and W̃ (n) and the continuity of mutual information

imply that QXX̃Y ∈ Q(W, W̃ ,Q,R), which gives the result.
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Lemma 26. Let {Q(n)}, Q(n) ∈ P(X ) for each n, be a sequence of distributions con-

verging to Q ∈ P(X ) and α : P(X ) × C(X → Y) → R be continuous. Then for any

R and PXY ∈ P(X × Y)

lim inf
n→∞

e(α,Q(n), PXY , H(Q(n))−R) ≥ e(α,Q, PXY , H(Q)−R).

Proof. If the sequence Q(n) is such that e(α,Q(n), PXY , H(Q(n))−R) =∞ for all n

sufficiently large, then the result trivially holds. Therefore it remains to handle

the case for which there is a subsequence along which e(α,Q(n), PXY , H(Q(n))−

R) is finite for all n. Let us relabel so that Q(n) gives this property.

For any W, W̃ , let Q(n)

XX̃Y
= Q

(n)

XX̃Y
(W, W̃ ,R,Q(n)) be a minimizer of

min
QXX̃Y ∈Q(W,W̃ ,Q(n),H(Q(n))−R)

[IQXX̃Y (X, Y ; X̃)−H(Q(n)) +R]+

if the set Q(W, W̃ ,Q(n), H(Q(n))−R) is non-empty and arbitrary otherwise.

Similarly, let W (n) = W (n)(R,Q(n)), W̃ (n) = W̃ (n)(R,Q(n)) be minimizers of

min
W,W̃∈W(α,Q(n))

[
D(W ||PY |X |Q) + [I

Q
(n)

XX̃Y

(X, Y ; X̃)−H(Q(n)) +R]+
]
.

The existence of such minimizers is guaranteed by the fact that we are minimiz-

ing a lower semicontinuous function over a non-empty compact set. Therefore,

for the sequence W (n), W̃ (n), Q
(n)

XX̃Y
(W (n), W̃ (n)), we have

e(α,Q(n), PXY , H(Q(n))−R) = D(W (n)||PY |X |Q)+[I
Q

(n)

XX̃Y

(X, Y ; X̃)−H(Q(n))+R]+,

(5.20)

and

Q
(n)
Y |X = W (n), Q

(n)

Y |X̃ = W̃ (n), Q
(n)
X = Q

(n)

X̃
= Q(n), I

(n)
QXX̃

(X; X̃) ≤ H(Q(n))−R

(5.21)

and W̃ (n) ≤α W (n).
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By compactness we can find a convergent subsequence, and by relabeling we

may arrange it so that

W (n) → W, W̃ (n) → W̃ ,Q
(n)

XX̃Y
→ QXX̃Y .

Furthermore, taking the limits of both sides of each equation in (5.21) and re-

calling the continuity assumption for α, it follows that

QY |X = W,QY |X̃ = W̃ ,QX = QX̃ = Q, IQXX̃ (X; X̃) ≤ H(Q)−R and W̃ ≤α W.

(5.22)

Now, taking the lim inf of both sides of (5.20) gives

lim inf
n→∞

E(α,Q(n), PXY , H(Q(n))−R) =

lim inf
n→∞

D(W (n)||PY |X |Q) + [I
Q

(n)

XX̃Y

(X, Y ; X̃)−R]+

∗

≥ D(W ||PY |X |Q) + [IQXX̃Y (X, Y ; X̃)−H(Q) +R]+

where (∗) follows from the lower semicontinuity of the information mea-

sures. The result follows by noticing that (5.22) implies that both QXX̃Y ∈

Q(W, W̃ ,Q,H(P )−R) and W, W̃ ∈ W(α,Q).

Lemma 27. LetQ(m)
X be a sequence of distributions converging toQX , {εm} a sequence

of positive reals converging to zero, ω(Q) be an upper semicontinuous function of Q,

and

Fε(QXY , ω(·), R) =
D(QX ||PX) + e(α,QX , PXY , H(QX)−R) if ω(QX) ≥ R− ε

∞ otherwise,

F (QXY , ω(·), R) =
D(QX ||PX) + e(α,QX , PXY , H(QX)−R) if ω(QX) ≥ R

∞ otherwise.
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Then

lim inf
m→∞

Fεm(Q
(m)
X , ω(Q

(m)
X ), R) ≥ F (QX , ω(QX), R) (5.23)

Proof. We proceed by cases. Case 1: QX is such that ω(QX) ≥ R. If ω(Q
(m)
X ) <

R−εm for all sufficiently largem, then the left-hand side is infinity and the result

trivially holds. Otherwise we appeal to the semicontinuity of D(Q||P ) and the

functional e (Lemma 26).

Case 2: QX is such that ω(QX) < R. In this case by hypothesis we have that

lim supω(Q
(m)
X ) < R, whence (5.23) holds with equality eventually, because both

sides are infinity.

We these facts established we now prove our main result in this section.

Proof of Theorem 23. We will show the scheme described at the start of sub-

section 5.4.1 has the performance specified by the theorem. Let ε > 0. Note

that for n sufficiently large the constraint (5.12) is met (cf. (5.13), (5.15) and the

fact that there are only polynomially many types). Therefore using (5.14)

− n−1 logPe ≥ (5.24)

min
QX∈Pn(X )


D(QX ||PX) if log(γ(Gn

X(T nQX ))) ≥ nR

+e(α,QX , PXY , H(QX)−R)− δ′′n

∞ otherwise.

(5.25)

For each n, let Q(n)
X attain the minimum in the righthand side of (5.24). Along

a subsequence where Q
(n)
X is such that that the objective in (5.24) evaluated

along this subsequence converges to the liminf of the righthand side of (5.24)
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(cf. (5.11)) there is a further subsequence that converges to Q∞X . Let us relabel so

that that Q(n)
X → Q∞X , and so that the liminf is attained. Define

ω(·) = min(H(GX , ·), κ(GX , ·)),

and note that ω is upper semicontinuous (using κ(GX , ·) property 3 and conti-

nuity of H(GX , ·) [86, Lemma 2.3]).

If the sequence of minimizers is such that n−1 log(γ(Gn
X(T n

Q
(n)
X

))) < R for all n

sufficiently large then clearly we may write

lim inf
n→∞

−n−1 logPe ≥ inf
QX :ω(QX ,GX)≥R−ε

D(QX ||PX) + e(α,QX , PXY , H(QX)−R),

(5.26)

because the righthand side of (5.24) is infinity for all n sufficiently large.

In the opposite case, i.e. there is a subsequence nk for which

nk
−1 log(γ(Gnk

X (T nk
Q

(nk)

X

))) ≥ R for all k,

we argue as follows. For any δ > 0, there exists an n0 so that ‖Q∞X −Q(nk)‖∞ < δ

for every nk > n0. Thus for every nk > n0

nk
−1 log(γ(Gnk

X (T nk,δQ∞X
))) ≥ nk

−1 log(γ(Gnk
X (T nk

Q
(nk)

X

))) ≥ R.

Thus, taking the lim sup we conclude

lim sup
k→∞

nk
−1 log(γ(GX(T nk,δQ∞X

))) ≥ R.

Now, for δ sufficiently small it follows from (5.4) that

H̄(GX , Q
∞
X ) + ε ≥ lim sup

k→∞
nk
−1 log(γ(Gnk

X (T nk,δQ∞X
)))

and hence

H̄(GX , Q
∞
X ) + ε ≥ R. (5.27)
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Therefore the inequality ω(GX , Q
∞
X ) ≥ H̄(GX , Q

∞
X ) (cf. Lemma 5.7 and (5.5)) and

(5.27) imply that (5.26) holds in this case.

To complete the proof let {ε(m)} be any sequence tending to zero, and let

Q̃
(m)
X denote a minimum in (5.26). Taking a subsequence and relabeling we may

assume that Q̃(m)
X → Q̃∞X . Recalling the definitions from the statement of Lemma

27 gives

lim
m→∞

lim inf
n→∞

−n−1 logPe ≥ lim inf
m→∞

Fεm(Q̃
(m)
X , ω, R)

∗
≥ F (Q̃∞X , ω, R)

≥ inf
QX∈P(X )

F (QX , ω, R),

where ∗ follows from Lemma 27. Since the sequence {εm} was arbitrary we are

done.

5.4.2 Discussion and Comparisons

The achievable exponent provided by Theorem 23 is no worse than the ex-

ponent of Csiszár and Körner [53, Theorem 2] for any continuous α-decoder,

which includes both maximum likelihood and minimum entropy decoders. To

see this note that the minimization in (5.18) is over all QX ∈ P(X ) satisfying

min(κ(GX , QX), H(GX , QX)) ≥ R, whereas the minimization in (5.14) is over all

QX ∈ P(X ).

A second achievable exponent for the present problem is given by Oohama
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and Han [57]:

eOH , min
QXY :H(QX)≥R

[
D(QXY ||PXY ) + [R−HQXY (X|Y )]+

]
. (5.28)

The exponent of Theorem 23 is no worse than (5.28). To see this we apply Corol-

lary 3 (with minimum entropy decoding) to yield the following lower bound on

the Theorem 23 exponent:

eME , min
QXY :

min(κ(GX ,QX),H(GX ,QX))≥R

[
D(QXY ||PXY ) + [R−HQXY (X|Y )]+

]
. (5.29)

The Oohama and Han exponent minimizes over all distributions {QXY :

H(QX) ≥ R}, whereas (5.29) minimizes over the smaller set of distributions

{QXY : min(κ(GX , QX), H(GX , QX)) ≥ R} (apply κ property 1 or notice that

H(GX , QX) ≤ H(QX)).

For numerical comparisons we study several examples and evaluate eME ,

eOH and the following lower bound on the Csiszár and Körner exponent of (5.14)

eCK , min
QX

[
D(QX ||PX) + max(er(QX , PXY , H(QX)−R), ex(QX , PXY , H(QX)−R))

]
.

(5.30)

This bound is obtained by using maximum likelihood decoding and applying

Lemma 25. It was necessary to use the bound because the complexity of the

optimizations required to evaluate (5.14) made computation of (5.14) infeasi-

ble, even for the simple examples we study and exploiting convexity. A fairer

comparison would be to replace eME with the stronger bound obtained using

maximum likelihood decoding (Corollary 3). However, even the weaker eME is

enough to show numerical improvements over both eCK and eOH .

Example 1, revisited. (Fig. 5.2)For this example we note that the calcula-

tions in Section 5.3.1 imply κ(GX , QX) = H(GX , QX). In Figure 5.3 we plot eME
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Figure 5.3: Comparing exponents for Example 1 of Figure 5.2. eME coin-
cides with eCK and both lie below the sphere packing exponent.
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Figure 5.4: Example 3: A source distribution and its characteristic graph

(5.29) against eCK , (5.30), and eOH (5.28). From the figure we see that eME lies

below the sphere packing exponent and above eOH . When compared with eCK ,

eME agrees (numerically) and was obtained using a universal minimum entropy

decoder.

Example 3. (Fig. 5.4) In this example it is clear that any rate in excess of

one bit allows the decoder to determine the source sequence without error. The

various error exponents are plotted in Fig 5.5. From the figure we see that eME
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Figure 5.5: Comparing exponents for Example 4 (Figure 5.4). eME is infi-
nite for all rates above 1 bit, whereas eCK is finite for some rates
above 1 bit. Interpret the exponent as infinite to the right of the
point that the curve vanishes.

is infinite for all rates above 1 bit since H(GX , QX) ≤ 1. Notice, however, that

eCK is finite for some rates above one bit and therefore eCK is dominated by

eME . The eOH exponent remains finite for all rates below log(3) bits and is also

dominated by eME . Below 1 bit, eOH and eCK are dominated by eME in a certain

region.

Note: As previously mentioned, the strongest results of Csiszár and Körner

[53] are obtained by using the ML decoder in (5.14). However, in the particular

case of Example 3, we note that if for some R the exponent eCK is finite, then

there exists a QX for which

min
QX̃X :H(X̃|X)≥R

QX̃=QX

E[dB(X, X̃)] +R−H(X̃|X) <∞.

Following the definitions (cf. equations (28) and (16) in [53]), this implies that

the exponent of (5.14) would too be finite. Yet, as we see from Figure 5.4, eCK
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is finite for some rates above 1 bit and hence (5.14) is too. Thus, at least for

Example 3, eME strictly improves upon the exponent of (5.14).

We conclude by observing that eME gives the optimal exponent in the case

of deterministic side information.

Example 4, Deterministic side information. Suppose the side information

is a deterministic function of the source, i.e. Y = f(X) and let PY |X denote the

induced conditional distribution. In this case κ property 2 yields κ(GX , QX) =

HQ×PY |XH(X|Y ). Furthermore the minimization of (5.29) must select QY |X =

PY |X , i.e. the ‘deterministic’ side information. These observations imply that

eME reduces to

eSP (R,PXY ) = min
QXY :HQXY (X|Y )≥R

D(QXY ||PXY ),

the sphere packing exponent for this problem. Thus the minimum entropy

scheme is optimal for all rates and the reliability function is determined for this

problem.

5.5 Improved Exponents for Wyner-Ziv

When dealing with lossy reproduction it is often convenient to use ‘covering’

(i.e. quantization) followed by binning and in this section we describe how use

of the characteristic graph can yield improved error exponents in such scenar-

ios. We focus on lossy compression with side information i.e. Wyner-Ziv [77].

Formally the error exponent problem in this case is as follows.

Let X̂ be the reproduction alphabet and d : X × X̂ → R a single letter

distortion measure. Define the distortion between two strings as d(x, x̂) =
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1
n

∑n
i=1 d(xi, x̂i). The encoder/decoder pair are functions fn : X n → M and

gn :M×Yn → X̂ n, whereM is a fixed set.

Let X̂n = gn(fn(Xn), Y n) be the decoder’s output and define the error prob-

ability

Pe(f
n, gn,∆, d) = Pr

(
d(Xn, X̂n) > ∆

)
. (5.31)

We define the Wyner-Ziv error exponent to be

π(R,∆, PXY , d) = lim
ε↓0

lim inf
n→∞

− 1

n
log

[
min

(fn,gn)
Pe(f

n, gn,∆, d)

]
(5.32)

where the minimization ranges over all encoder/decoder pairs satisfying

log |M| ≤ n(R + ε). (5.33)

Before we state the result we define another graph functional.

Definition 12.

κ2(PXY , QXY U) = [κ(GU , QU)−H(QU |X |QX)]+,

where the graph GU is defined from the distribution

QUY (u, y) =
∑
x∈X

PXY (x, y)QU |X(u|x).

Note: Since PXY will be fixed throughout, we will abbreviate to κ2(QXY U) or

even simply κ2(QX).

Our first result in this section is Theorem 24.
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Theorem 24. Let PXY ∈ P(X × Y) and R > 0, ∆ > 0, d(·, ·) be given. Then

π(R,∆, PXY , d) ≥ inf
QX

sup
QU|X

inf
QY

sup
φ∈F

inf
QXY U

η(R,PXY , QXY U , φ)

where

η(R,PXY , QXY U , φ) =



D(QXY U ||PXYQU |X) if EQ[d(X,φ(Y, U))] ≥ ∆

D(QXY U ||PXYQU |X) if EQ[d(X,φ(Y, U))] < ∆

+[R− IQ(X;U) + IQ(Y ;U)]+ and κ2(PXY , QXY U) ≥ R

∞ otherwise

and F = {φ|φ : Y × U → X̂}. Note in the final minimization over QXY U , QXU and

QY are fixed to be those specified earlier in the optimization.

Proof. See Appendix.

5.5.1 Discussion of Result

In the previous chapter, we determined an achievable exponent for the Wyner-

Ziv problem, obtained by replacing η in Theorem 24 with

ηD(R,PXY , QXY U , φ) =



D(QXY U ||PXYQU |X) if EQ[d(X,φ(Y, U))] ≥ ∆

D(QXY U ||PXYQU |X) if EQ[d(X,φ(Y, U))] < ∆

+[R− IQ(X;U) + IQ(Y ;U)]+ and I(X;U) ≥ R

∞ otherwise,

the difference being the conditions under which we switch from case 2 to case 3.

Theorem 24 is obtained by modifying the scheme in the previous chapter taking
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into account the graph-based expurgation established in the previous section.

Recalling κ property 1 we have the following inequality

κ2(QXY U) = [κ(GU , QU)−H(U |X)]+

≤ [H(U)−H(U |X)]+

= I(X;U)

therefore for any R,PXY , φ and QXY U we see that ηD(R,PXY , QXY U , φ) ≤

η(R,PXY , QXY U , φ) and the present modification yields an achievable exponent

that is never any worse than the result of the previous chapter.

5.5.2 Sketch of Scheme

Operating at blocks of length n, for each type QX , a test channel Q∗U |X(QX) =

QU∗|X is selected. The test channel is used to generate a codebook, Bn(QX), of

approximately 2nI(U
∗;X) codewords. The key insight is that the (random) graph

Bn(QX) ∩Gn
U∗ , constructed from

QU∗Y (u, y) =
∑
x∈X

PXY (x, y)QU∗|X(u|x)

plays the same role in this problem as did the graph characteristic graph of the

source PXY in the Slepian-Wolf problem.

In this modified scheme, the encoder first communicates the type of Xn and

then if there is sufficient rate, i.e. nR > log γ(Bn(QX) ∩ Gn
U∗), rather than com-

municating a bin index the encoder may send the color of the codeword in the

graph GU∗ . If there is insufficient rate, then the encoder communicates a bin

index of the codeword. For each pair marginal types (QX , QY ) the decoder can
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choose an estimation function φ and depending on the case, either decodes us-

ing the graph, or a minimum empirical entropy decoder. The estimation func-

tion is then used to combine the side information and the codeword to yield the

reproduction.

The careful reader will notice our improvement makes use of our κ func-

tional (via κ2), but not graph entropy H(GX , QX), to bound the chromatic num-

ber. Primarily this is to keep the analysis shorter, and in principle there is no rea-

son why a similar argument using H(GX , QX) and then taking the best bound

would not work. As we shall see in the next sub-section, for improving expo-

nents, using κ is enough.

5.5.3 Deterministic Side Information

We now use the result of Theorem 24 to determine the reliability function when

the side information is a deterministic function of the source, i.e. Y = f(X) a.s.

for a deterministic f . We first note that in this case, the solution to the inner-

most optimization must be QY |XU = PY |X else the exponent is infinite. This

reduces the problem to

inf
QX

sup
QU|X ,φ

η(R,PXY , QXY U , φ)

where the distribution of QXY U is QXPY |XQX|U , i.e. U,X and Y

form a Markov chain in that order. We can massage the exponent

infQX supQU|X ,φ η(R,PXY , QXY U , φ) as follows
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inf
QX

sup
QU|X ,φ



D(QXY U ||PXYQU |X) if EQ[d(X,φ(Y, U))] ≥ ∆

D(QXY U ||PXYQU |X)+ if EQ[d(X,φ(Y, U))] < ∆

[R− IQ(X;U) + IQ(Y ;U)]+ and κ2(QXY U) ≥ R

∞ otherwise

≥ inf
QX

sup
QU|X :Y=ν(U),φ



D(QXY U ||PXYQU |X) if EQ[d(X,φ(Y, U))] ≥ ∆

D(QXY U ||PXYQU |X)+ if EQ[d(X,φ(Y, U))] < ∆

[R− IQ(X;U) + IQ(Y ;U)]+ and [H(U |Y )−H(U |X)]+ ≥ R

∞ otherwise

where the previous inequality follows because we maximize over a smaller set.

The notation QU |X : Y = ν(U) means we consider only those test channels that

result in Y being a deterministic function ν of U . By construction U,X and Y

still form a Markov chain in that order, thus H(U |X) = H(U |XY ) and we can

continue the chain of equalities with

= inf
QX

sup
QU|X :Y=ν(U),φ



D(QXY U ||PXYQU |X) if EQ[d(X,φ(Y, U))] ≥ ∆

D(QXY U ||PXYQU |X)+ if EQ[d(X,φ(Y, U))] < ∆

[R− IQ(X;U |Y )]+ and I(X;U |Y ) ≥ R

∞ otherwise.
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Note now that the only difference between QXY U and PXYQU |X occurs in QX ,

so it follows that the quantity above can be written as

= inf
QX

sup
QU|X :Y=ν(U),φ


D(QX ||PX) if EQ[d(X,φ(Y, U))] ≥ ∆ or I(X;U |Y ) ≥ R

∞ otherwise.

= inf
QX

sup
QU|X ,φ


D(QX ||PX) if EQ[d(X,φ(Y, U))] ≥ ∆ or I(X;U |Y ) ≥ R

∞ otherwise

To argue the final equality, let QX and R be fixed. The direction ≤ is clear since

we maximize over a larger set. For ≥, it suffices to show that if the optimization

on the left side yields D(QX ||PX) then so does the optimization on the right.

On account of the fact that the objective is piecewise constant (over QU |X and

φ), when the left side is finite, there exists a Q∗U |X : Y = ν(U) and φ causing

evaluation to D(QX ||PX). Suppose by way of contradiction there exists a non-

deterministic QU |X which yields an infinite exponent. This means that

I(X;U |Y ) < R and EQ[d(X,φ(Y, U))] < ∆

but then by Lemma 28 (which follows) we can find a deterministic QŨ |X and

corresponding φ̃ with the property that

I(X; Ũ |Y ) < R and EQ[d(X, φ̃(Y, Ũ))] < ∆

implying thatQŨ |X would yield an infinite exponent, contradicting the optimal-

ity of Q∗U |X .

Lemma 28. Let QX be given and let Y = f(X) with PY |X denoting the induced

conditional distribution. Then for any QU |X , φ, there exists a QŨ |X and φ̃ so that when

QXY U = QXQU |XPY |X ,

1) EQXY U [d(X,φ(Y, U))] = EQXY Ũ [d(X, φ̃(Y, Ũ))],

2) I(X;U |Y ) = I(X; Ũ |Y )
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and 3) Y = ν(Ũ) for some deterministic function ν.

Proof. Define Ũ = (U, Y ) and φ̃(Y, Ũ) = φ(Y, U). Then clearly conditions 1 and 3

hold. To see condition 2 note by the chain rule

I(X; Ũ |Y ) = I(X;U, Y |Y ) = I(X;U |Y ) + I(X;Y |Y, U) = I(X;U |Y ).

Finally we point out that since Y = f(X) we also have Ũ ↔ X ↔ Y .

Rewriting this final optimization problem as

inf
QX

sup
QU|X ,φ


D(QX ||PX) if EQ[d(X,φ(Y, U))] ≥ ∆ or I(X;U |Y ) ≥ R

∞ otherwise

= inf
QX :RWZ(∆,QX)≥R

D(QX ||PX)

≤ π(R,∆, PXY , d)

where RWZ(∆, QX) denotes the Wyner-Ziv rate distortion function for the

source with X ∼ QX and Y = f(X) with distortion measure d. But accord-

ing to the change-of-measure argument of 18,

π(R,∆, PXY , d) ≤ inf
QX :RWZ(∆,QX)≥R

D(QX ||PX).

Thus our scheme is optimal in the sense that it meets the change-of-measure

upper bound.

5.6 Connection to Channel Coding

In this section we briefly mention that κ has applications in zero-error channel

coding problems. Let G = G(W ) be the characteristic graph of the channel W ,
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and c(G) denote the zero error capacity (see [61, Section III] for definitions). It is

known that [81]

c(G) = max
QX

[H(QX)− H̄(GX , QX)]

and therefore Lemma 24 implies

c(G) ≥ max
QX

[H(QX)− κ(GX , QX)].

Thus κ can be used to provide a lower bound on zero-error channel capacity.
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APPENDIX A

CHAPTER 2 - PROOFS

A.1 Proofs: Section 2.2

This appendix is dedicated to the proof of Lemma 2, showing that the variance

of F , the test random variable used for α-sources tends to zero when 0 < α < 2.

(Note, such a result does not follow via other means, say Efron-Stein or bounded

differences conditions.) We start by reproducing the moments of the binomial

distribution.

Lemma 29 (Higher Moments of the Binomial). Suppose N ∼ Binomial(n, p)

E[N2] = n2p2 + np(1− p)

E[N3] = n3p3 + 3n2p2 − 3n2p3 + np− 3np2 + 2np3

E[N4] = n4p4 + 6n3p3 − 6n3p4 + 7n2p2 − 18n2p3 + 11n2p4 + np

− 7np2 + 12np3 − 6np4

Proof. Direct calculation.

Computing the variance of F will require that the following results on co-

variance of multinomial vectors.

Lemma 30. Suppose Xn ∼ pn. For a 6= b

E[N2(a|Xn)N2(b|Xn)] = n(n− 1)(n− 2)(n− 3)p2(a)p2(b)

+ n(n− 1)(n− 2)[p(a)p2(b) + p2(a)p(b)]

+ n(n− 1)p(a)p(b)
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Proof. Start by writing

E[N2(a|Xn)]N2(b|Xn)] = E
[( n∑

i=1

1{Xi = a}
)2( n∑

i=1

1{Xi = b}
)]

=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[1{Xi = a}1{Xj = a}1{Xk = b}1{Xl = b}]

Now observe that only certain cases have positive expectation these are

1. i 6= j 6= k 6= l which occurs n(n− 1)(n− 2)(n− 3) times.

2. i = j and k 6= l with i 6= k and i 6= l, which occurs n(n− 1)(n− 2) times

3. k = l and i 6= j with k 6= i and k 6= j, which occurs n(n− 1)(n− 2) times.

4. i = j and k = l with i 6= k which occurs n(n− 1) times.

Lemma 31. Suppose Xn ∼ pn. For a 6= b

E[N2(a|Xn)N(b|Xn)] = n(n− 1)(n− 2)p2(a)p(b) + n(n− 1)p(a)p(b)

= (n3 − 3n2 + 2n)p2(a)p(b) + (n2 − n)p(a)p(b)

Proof. We have

E[N2(a|Xn)N(b|Xn)] =
n∑
i=1

n∑
j=1

n∑
k=1

E[1{Xi = a}1{Xj = a}1{Xk = b}]

As in the proof of Lemma 30 only cases i = j 6= k and i 6= j 6= k yield a positive

expectation.

To simplify the analysis we will use the following lemma to discard terms

that vanish in the limit.
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Lemma 32 (Discarding Rule). Suppose 0 < α < 2 and for all a, b ∈ An that p(a) =

O(n−α) and q(b) = O(n−α) . For integers i, j such that 4 ≥ j ≥ i ≥ 2

1. n2α−4
∑
a∈An

nipj(a)→ 0 as n→∞.

For positive integers i, j, k such that 4 ≥ j + k > i ≥ 2 or j + k = 4 and i = 1

2. n2α−4
∑
a,b∈An

nipj(a)qk(b)→ 0 as n→∞.

Proof. For the first property

n2α−4
∑
a∈An

nipj ≤ n2α−4 3nα

č
ni
( ĉ

nα

)j
= nα(3−j)−4+i3ĉ

j

č

Since α < 2, examining the exponent alone we have for 3 ≥ j

α(3− j)− 4 + i < 2− 2j + i

≤ 2− 2i+ i

≤ 2− i

≤ 0

i.e α(3− j)− 4 + i < 0. When j = 4 we have

−α− 4 + i,

so for i = 3 the exponent is −α− 1 < 0 and for i = 4 it is −α < 0.

For the second property, argue with cases:

n2α−4
∑
a,b∈An

nipj(a)qk(b) ≤ n4α−4−(j+k)α+i9ĉ
j+k

č2

when i = 2, j + k = 3 the sum behaves like nα−2, for i = 2, (j + k) = 4 it behaves

like n−2 and for i = 3, (j + k) = 4 it behaves like n−1, thus in all three cases the

134



sum goes to zero when 0 < α < 2 as n → ∞. For j + k = 4 and i = 1 the sum

behaves like n−3, which again goes to zero as n→∞.

Lemma (2). For i = 0, 1

Vari[n
αF ]→ 0

for all 0 < α < 2.

Proof. Throughout we suppose hypothesisH1 is in effect and simply write E for

E1, the other case is handled analogously.

E[F 2] = E[‖ΛXn‖4
2]− 2E[‖ΛXn‖2

2]E[‖ΛY n‖2
2]

− 4E[‖ΛXn‖2
2〈ΛZn ,ΛXn − ΛY n〉] + E[‖ΛY n‖4

2]

+ 4E[‖ΛY n‖2
2〈ΛZn ,ΛXn − ΛY n〉]

+ 4E[〈ΛZn ,ΛXn − ΛY n〉2].

Notice that every term in the expansion above has a common factor n−4 and

therefore we will be dealing with terms such as

n2αE[‖ΛXn‖4
2] = n2α−4E

[( ∑
a∈An

N2(a|Xn)
)2]

= n2α−4E
[ ∑
a,b∈An

N2(a|Xn)N2(b|Xn)
]

= n2α−4
[ ∑
a∈An

E[N4(a|Xn)] +
∑

a6=b∈An

E[N2(a|Xn)N2(b|Xn)]
]
.

(A.1)

Using the discarding rule (Lemma 32) we can safely ignore terms that vanish in

135



the limit. For example since N(a|Xn) is binomial, recalling Fact 29 we see

n2α−4
∑
a∈An

E[N4(a|Xn)] = n2α−4
∑
a∈An

n4p4
n(a) + 6n3p3

n(a)− 6n3p4
n(a) + 7n2p2

n(a)

− 18n2p3
n(a) + 11n2p4

n(a) + npn(a)− 7np2
n(a)

+ 12np3
n(a)− 6np4

n(a)

' n2α−4
∑
a∈An

npn(a) = n2α−4n, (A.2)

where the notation

an ' bn means lim
n→∞

an − bn = 0.

For the “cross-terms”, by Lemma 30 we have

∑
a6=b

E[N2(a|Xn)N2(b|Xn)] =
∑
a6=b

n4p2
n(a)p2

n(b)− 6n3p2
n(a)p2

n(b) + 11n2p2
n(a)p2

n(b)

− 6np2
n(a)p2

n(b)

+ (n3 − 3n2 + 2n)p2
n(a)pn(b) + (n3 − 3n2 + 2n)p2

n(b)pn(a)

+ (n2 − n)pn(a)pn(b)

Note that

∑
a6=b

p(a)qi(b) =
∑
b

qi(b)(1− p(b)) =
∑
a

qi(a)− qi(a)p(a)

therefore

∑
a6=b

E[N2(a|Xn)N2(b|Xn)] =
∑
a6=b

n4p2
n(a)p2

n(b)− 6n3p2
n(a)p2

n(b) + 11n2p2
n(a)p2

n(b)

− 6np2
n(a)p2

n(b)

+ 2(n3 − 3n2 + 2n)
[∑

a

p2
n(a)− p3

n(a)
]

+ (n2 − n)− (n2 − n)
∑
a

p2
n(a).
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Applying the discarding rule we see the terms∑
a6=b

n4p2
n(a)p2

n(b) + 2n3
∑
a

p2
n(a) + n2 − n

are significant in the limit. Therefore combining the previous display and (A.2)

calculations gives

n2αE[‖ΛXn‖4
2] ' n2α−4

(∑
a6=b

n4p2
n(a)p2

n(b) + 2n3
∑
a

p2
n(a) + n2

)
.

An analogous argument tells us that

n2αE[‖ΛY n‖4
2] ' n2α−4

(∑
a6=b

n4q2
n(a)q2

n(b) + 2n3
∑
a

q2
n(a) + n2

)
.

We now turn our attention to

n2αE[‖ΛXn‖2
2]E[‖ΛY n‖2

2]

= n2α−4
(∑

a

n2p2
n(a) + npn(a)− np2

n(a)
)(∑

a

n2q2
n(a) + nqn(a)− nq2

n(a)
)

= n2α−4
(
n+

∑
a

n2p2
n(a)− np2

n(a)
)(
n+

∑
a

n2q2
n(a)− nq2

n(a)
)

= n2α−4
(
n2 +

∑
a

(n3q2
n(a)− n2q2

n(a)) +
∑
a

(n3p2
n(a)− n2p2

n(a))

+
∑
a,b

(n2p2
n(a)− np2

n(a))(n2q2
n(b)− nq2

n(b))
)

In the final sum, the expansion starts with n4p2
n(a)q2

n(b) plus terms of lower order

in n (still with a product of 4 probabilities), therefore applying our discarding

rule we see

− 2n2αE[‖ΛXn‖2
2]E[‖ΛY n‖2

2]

' −2n2α−4
(
n2 +

∑
a

n3q2
n(a) +

∑
a

n3p2
n(a) +

∑
a,b

n4p2
n(a)q2

n(b)
)
.

Now we turn to

E[‖ΛXn‖2
2〈ΛZn ,ΛXn − ΛY n〉] = E[‖ΛXn‖2

2〈ΛZn ,ΛXn〉]− E[‖ΛXn‖2
2]E[〈ΛZn ,ΛY n〉]

(A.3)
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The first term on the right is

n−4E
[(∑

a

N2(a|Xn)
)(∑

a

N(a|Zn)N(a|Xn)
)]

= n−4
∑
a,b

E[N2(a|Xn)N(b|Xn)]E[N(b|Zn)]

= n−4
∑
a

E[N3(a|Xn)]E[N(a|Zn)] + n−4
∑
a6=b

E[N2(a|Xn)N(b|Xn)]E[N(b|Zn)].

(A.4)

Applying Fact 1 and the discarding rule to the first sum in (A.4) gives

n2α−4
∑
a

E[N3(a|Xn)]E[N(a|Zn)] =

n2α−4
[∑

a

(n3p3
n(a) + 3n2p2

n(a)− 3n2p3
n(a) + npn(a)

− 3np2
n(a) + 2np3

n(a))nqn(a)
]

' 0.

For the second sum of (A.4), applying Lemma 31 gives

n−4
[∑
a6=b

(n4 − 3n3 + 2n2)p2
n(a)pn(b)qn(b) + (n3 − n2)pn(a)pn(b)qn(b)

]
and we see only terms

n−4
[∑
a6=b

n4p2
n(a)pn(b)qn(b) + n3pn(a)pn(b)qn(b)

]
are significant. Turning to the second term of the right of (A.3) we have

E[‖ΛXn‖2
2]E[〈ΛZn ,ΛY n〉] = n−4

∑
a,b

[npn(a) + n2p2
n(a)− np2

n(a)]n2q2
n(b)

and it follows that the significant terms are

n−4
∑
a6=b

n3pn(a)q2
n(b) + n4p2

n(a)q2
n(b).
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Therefore

− 4n2αE[‖ΛXn‖2
2〈ΛZn ,ΛXn − ΛY n〉]

' −4n2α−4
(∑
a6=b

n4p2
n(a)pn(b)qn(b) + n3pn(a)pn(b)qn(b)− n3pn(a)q2

n(b)− n4p2
n(a)q2

n(b)
)
.

The term

E[‖ΛY n‖2
2〈ΛZn ,ΛXn − ΛY n〉]

can be handled as above and we see that

4n2αE[‖ΛY n‖2
2〈ΛZn ,ΛXn − ΛY n〉]

' 4n2α−4
(∑
a6=b

n4q2
n(a)qn(b)pn(b) + n3qn(a)qn(b)pn(b)− n3qn(a)q2

n(b)− n4q2
n(a)q2

n(b)
)
.

The final term is

E[〈ΛZn ,ΛXn − ΛY n〉2]

= n−4E
[(∑

a

N(a|Zn)
(
N(a|Xn)−N(a|Y n)

))2]
= n−4

∑
a

[nqn(a) + (n2 − n)q2
n(a)][npn(a) + (n2 − n)p2

n(a)]

− [nqn(a) + (n2 − n)q2
n(a)]n2pn(a)qn(a)

− [nqn(a) + (n2 − n)q2
n(a)]n2qn(a)pn(a)

+ [nqn(a) + (n2 − n)q2
n(a)][nqn(a) + (n2 − n)q2

n(a)]

+
∑
a6=b

(n2 − n)2qn(a)qn(b)pn(a)qn(b)− (n4 − n3)qn(a)qn(b)pn(a)qn(b)

− (n4 − n3)qn(a)qn(b)qn(a)pn(b) + (n2 − n)2qn(a)qn(b)qn(a)qn(b).

In the last line of the previous display, terms in the summation over a are such

that every probability is accompanied by an n of the same or lesser power and

therefore these terms vanish in the limit. In the summation over a 6= b every
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term involves four probabilities so we only keep the n4 terms. Hence

E[〈ΛZn ,ΛXn − ΛY n〉2]

∼ 4n2α−4
(
n4
∑
a6=b

qn(a)qn(b)pn(a)qn(b)− qn(a)q2
n(b)pn(a)− q2

n(a)qn(b)pn(b) + q2
n(a)q2

n(b)
)
.

Combining all the above we have shown that

E[n2αF 2] ' n2α−4

[(
n2 + 2

∑
a

n3p2
n(a) +

∑
a6=b

n4p2
n(a)p2

n(b)
)

− 2
(
n2 +

∑
a

n3q2
n(a) +

∑
a

n3p2
n(a) +

∑
a6=b

n4p2
n(a)q2

n(b)
)

− 4
(∑
a6=b

n4p2
n(a)pn(b)qn(b) + n3pn(a)pn(b)qn(b)− n3pn(a)q2

n(b)− n4p2
n(a)q2

n(b)
)

+
(∑
a6=b

n4q2
n(a)q2

n(b) + 2
∑
a

n3q2
n(a) + n2

)
+ 4
(∑
a6=b

n4q2
n(a)qn(b)pn(b) + n3qn(a)qn(b)pn(b)− n3qn(a)q2

n(b)− n4q2
n(a)q2

n(b)
)

+ 4
(∑
a6=b

n4qn(a)qn(b)pn(a)qn(b)− n4qn(a)q2
n(b)pn(a)

− n4q2
n(a)qn(b)pn(b) + n4q2

n(a)q2
n(b)

)]
.

In the above there are several simplifications, for example all of the n3 terms

self-cancel (note

n3
∑
a6=b

pn(a)q2
n(b) = n3

∑
a

q2
n(a)− q3

n(a) ∼ n3
∑
a

q2
n(a)).

After performing the cancellations we have

E[n2αF 2] ' n2α
(∑
a6=b

p2
n(a)p2

n(b)− 4p2
n(a)pn(b)qn(b) + 2p2

n(a)q2
n(b)

+ q2
n(a)q2

n(b) + 4qn(a)qn(b)pn(a)qn(b)− 4qn(a)q2
n(b)pn(a)

)
.
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We now compute

n2αE[F ]2 = n2α
( ∑
a∈An

(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a))
)2

Since every term in the above sum involves a quartic product of probabilities it

follows that

n2αE[F ]2 ' n2α
∑
a6=b

((pn(a)− qn(a))2((pn(b)− qn(b))2

= n2α
∑
a6=b

(p2
n(a)− 2pn(a)qn(a) + q2

n(a))(p2
n(b)− 2pn(b)qn(b) + q2

n(b))

= n2α
∑
a6=b

p2
n(a)p2

n(b)− 2p2
n(a)pn(b)qn(b) + p2

n(a)q2
n(b)

− 2pn(a)qn(a)p2
n(b) + 4pn(a)qn(a)pn(b)qn(b)− 2pn(a)qn(a)q2

n(b)

+ q2
n(a)p2

n(b)− 2q2
n(a)pn(b)qn(b) + q2

n(a)q2
n(b)

= n2α
∑
a6=b

p2
n(a)p2

n(b)− 4p2
n(a)pn(b)qn(b) + 2p2

n(a)q2
n(b)

+ 4pn(a)qn(a)pn(b)qn(b)− 4pn(a)qn(a)q2
n(b) + q2

n(a)q2
n(b).

Therefore we have shown for 0 < α < 2

n2αE[F 2] ' n2αE[F ]2

giving the result.

We note that concentration results sharper than those obtained with Cheby-

shev’s inequality and the variance calculation can be obtained in some cases

using Martingale techniques. For α = 1 one such result is as follows.
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Theorem 25. For α = 1 and any γ > 0

Pr
(
|F − E[F ]| > γ

)
≤ 2 exp

(
− ε2γ2n

96(n1/3 + Θ(1))2

)
(A.5)

+
(

1 +
Θ(1)

γ(1− ε)

)
3n exp

(
− (n1/3 −Θ(1))2

2(ĉ+ (n1/3 −Θ(1))/3)

)
. (A.6)

Proof.

ty(j) =


j − n if j ∈ {n+ 1, . . . , 2n}

0 otherwise

and tz(j) =


j − 2n if j ∈ {2n+ 1, . . . , 3n}

0 otherwise.

Let {Fj}3n
j=1 be a filtration defined as

Fj = σ(Xj
1 , Y

ty(j)
1 , Z

tz(j)
1 )

and define a Doob Martingale {Wj}3n
j=0 as follows

Wj =


E[F (Xn, Y n, Zn)] if j = 0

E[F (Xn, Y n, Zn)|Fj] j ∈ {1, . . . , 3n}.

Let Dj = Wj −Wj−1 be the resulting martingale difference sequence (MDS) and

a∗ ∈ An be a most likely symbol over the measures pn, qn. Using the bounds

established in Lemma 33 we have for j ∈ {1, . . . , n}

Pr(|Dj| > α) ≤ Pr
( 2

n
(N(Xj|Xj−1

1 ) + Θ(1)) > α
)

≤ Pr(N(a∗|Xn) + Θ(1) > (n/2)α).

Taking α = 2
n
(n1/3 + Θ(1)) gives

Pr
(
|Dj| >

2

n
(n1/3 + Θ(1))

)
≤ Pr(N(a∗|Xn) > n1/3)
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We now make use of the following ‘Chernoff Inequality’ [87], which states that

if X is binomial, then

Pr(X ≥ E[X] + λ) ≤ exp
(
− λ2

2(E[X] + λ/3)

)
.

Now using λ = n1/3 − ĉ in Chernoff Inequality, we have1 for j ∈ {1...n}

Pr(|Dj| >
2

n
(n1/3 + Θ(1))) ≤ exp

(
− (n1/3 − ĉ)2

2(ĉ+ (n1/3 − ĉ)/3)

)
,

similar bounds apply for j ∈ {n + 1, . . . , 3n}. A result of [88, 89] states for any

MDS (Dj), for every γ > 0 and each sequence of positive numbers (wj) and any

0 < ε < 1,

Pr
(
|
∑
j

Dj| > γ
)
≤ 2 exp

( −ε2γ2

8
∑n

j=1w
2
j

)
+
(

1 +
‖D∗‖∞
γ(1− ε)

) n∑
j=1

Pr(|Dj| > wj),

where ‖D∗‖∞ = supi ‖Di‖∞. For our particular set of Di, it follows from Lemma

33 that the worst case jump is only Θ(1), therefore ‖Di‖∞ ≤ Θ(1). Choosing

wj = 2
n
(n1/3 + Θ(1)), j = 1, . . . , 3n gives

Pr
(
|
∑
j

Dj| > γ
)
≤ 2 exp

(
− ε2γ2n

96(n1/3 + Θ(1))2

)
+
(

1 +
Θ(1)

γ(1− ε)

)
3n exp

(
− (n1/3 −Θ(1))2

2(ĉ+ (n1/3 −Θ(1))/3)

)
.

Lemma 33. Let {Dj} be the martingale difference sequence appearing in the proof of

1Recall Pr(B(n, p) > x) is monotonic increasing in p and for rare events sources pn(a) ≤ ĉ
n
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Theorem 1 and t be the function defined there, then

|Dj| ≤



2
n
(N(Xj|Xj−1

1 ) + Θ(1)) j ∈ {1, . . . , n}

2
n
(N(Yty(j)|Y ty(j)−1

1 )

+ Θ(1)) j ∈ {n+ 1, . . . , 2n}

2
n
(N(Ztz(j)|Y n)

+N(Ztz(i)|Xn) + Θ(1)) j ∈ {2n+ 1, . . . , 3n}.

Proof. We will only do the third case, the others are similar. Let j ∈

{2n + 1, . . . , 3n}, let Z̃tz(j) be an independent copy of Ztz(j) define Z̃n =

(Z1, . . . , Z̃tz(j), . . . , Zn), then

|Dj| =
1

n

∣∣∣ ∑
a∈An

E[(N(a|Xn)−N(a|Zn))2

− (N(a|Y n)−N(a|Zn))2 −N((a|Xn)−N(a|Z̃n))2

+ (N(a|Y n)−N(a|Z̃n))2|Fj]
∣∣∣.

Expanding the squares and cancelling gives

|Dj| =
1

n

∣∣∣ ∑
a∈An

E[2N(a|Xn)(N(a|Z̃n)−N(a|Zn))

+ 2N(a|Y n)(N(a|Zn)−N(a|Z̃n))|Fj]
∣∣∣

=
2

n

∣∣∣ ∑
a∈An

E[N(a|Xn)(1{Z̃tz(j) = a} − 1{Ztz(j) = a})

+N(a|Y n)(1{Ztz(j) = a} − 1{Z̃tz(j) = a})|Fj]
∣∣∣

=
∣∣∣ 2
n

∑
a∈An

(N(a|Y n)−N(a|Xn))1{Ztz(j) = a})

+ (N(a|Xn)−N(a|Y n))E[1{Z̃tz(j) = a})]

where on the previous line we used the fact that Xn, Y n, Ztz(j) are measurable

with respect to Fj . Applying the triangle inequality and the bound pn(a) ≤ ĉ/n
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for all a ∈ An gives

|Dj| ≤
2

n

(
N(Ztz(j)|Xn) +N(Ztz(j)|Y n)

+
∑
a∈An

(N(a|Xn) +N(a|Y n))
ĉ

n

)
=

2

n
(N(Ztz(j)|Xn) +N(Ztz(j)|Y n) + 2ĉ).

A.2 Proofs: Section 2.3

Lemma (8). Suppose p and q are distributions on an alphabet A, then

G(p, q,A) =
∑
a∈A

∑
i:even

1

i(i− 1)

(q(a)− p(a))i

(p(a) + q(a))i−1
.

Further,

p(a) log
2p(a)

p(a) + q(a)
+ q(a) log

2q(a)

p(a) + q(a)
≥ 0.

For another proof along the same lines see [70, Th. 1].

Proof. Suppose first that supp p = supp q = A, then

D
(
p
∣∣∣∣∣∣p+ q

2

)
=
∑
a

p(a) log
( 2p(a)

p(a) + q(a)

)
=
∑
a

p(a) log
(

1 +
p(a)− q(a)

p(a) + q(a)

)
=
∑
a

[p(a) + q(a)

2
+
p(a)− q(a)

2

]
log
(

1 +
p(a)− q(a)

p(a) + q(a)

)
=
∑
a

[p(a) + q(a)

2
+
p(a)− q(a)

2

] ∞∑
i=1

(−1)i+1
(p(a)− q(a)

p(a) + q(a)

)i1
i

=
∑
a

∞∑
i=1

(−1)i+1 1

2i

(
(p(a)− q(a))i

(p(a) + q(a))i−1
+

(p(a)− q(a))i+1

(p(a) + q(a))i

)
.
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Similarly

D
(
q
∣∣∣∣∣∣p+ q

2

)
=
∑
a

∞∑
i=1

(−1)i+1 1

2i

(
(q(a)− p(a))i

(p(a) + q(a))i−1
+

(q(a)− p(a))i+1

(p(a) + q(a))i

)
.

Combining the terms and using the fact that for i odd (x− y)i + (y− x)i = 0, we

get

D
(
p
∣∣∣∣∣∣p+ q

2

)
+D

(
q
∣∣∣∣∣∣p+ q

2

)
=
∑
a

∑
i:odd

1

i

(q(a)− p(a))i+1

(p(a) + q(a))i
−
∑
i:even

1

i

(q(a)− p(a))i

(p(a) + q(a))i−1

=
∑
a

∑
i:even

1

i(i− 1)

(q(a)− p(a))i

(p(a) + q(a))i−1
.

Turning to mismatched supports. Firstly whenever p(a) > 0 and q(a) = 0, by

continuity conventions

D(p(a)||(p(a) + q(a))/2) +D(q(a)||(p(a) + q(a))/2) = D(p(a)||p(a)/2)

= p(a) log(2)

where D(p(a)||q(a)) = p(a) log(p(a)/q(a)), but since in this case

∑
i:even

1

i(i− 1)

(q(a)− p(a))i

(p(a) + q(a))i−1
= p(a)

∑
i:even

(−1)i

i(i− 1)

= p(a) log(2)

the expansion is valid. An analogous argument holds for q(a) > 0 and p(a) = 0

concluding the proof.

Lemma (10). Let Xn,m, 1 ≤ m ≤ n be i.i.d. with distribution pn on alphabet An. If

|An| = o(n) then for any ε > 0

pnn(D(ΛXn||pn) > ε) ≤ e−n(ε−δn),

where δn(|An|)→ 0 as n→∞.
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Proof.

pnn(D(ΛXn||pn) > ε) =
∑

Q∈Pn(An):

D(Q||pn)>ε

∑
x∈T (Q)

pnn(x)

=
∑

Q∈Pn(An):

D(Q||pn)>ε

|T (Q)|e−n[D(Q||pn)+H(Q)]

≤
∑

Q∈Pn(An):

D(Q||pn)>ε

e−nε

≤ |Pn(An)|e−nε.

Applying Lemma 9 gives the result.

Lemma 34.

sup
j∈[0,n),k∈[0,n]

∣∣∣j + 1

n
log

2(j + 1)

j + 1 + k
− j

n
log

2j

j + k

∣∣∣
≤ 1

n
(1 + log 2 + log(1 + n)) (A.7)

and sup
j∈[0,n),k∈[0,n]

∣∣∣k
n

log
2k

k + j + 1
− k

n
log

2k

k + j

∣∣∣ ≤ 1

n
. (A.8)

Proof. First we prove (A.7). Suppose j 6= 0, then∣∣∣j + 1

n
log

2(j + 1)

j + 1 + k
− j

n
log

2j

j + k

∣∣∣
=

1

n

∣∣∣j log
2(j + 1)

j + 1 + k

j + k

2j
+ log

2(j + 1)

j + 1 + k

∣∣∣
≤ 1

n

(∣∣∣j log
j2 + jk + j + k

(j + 1 + k)j

∣∣∣+ log 2 +
∣∣∣ log

j + 1

j + 1 + k

∣∣∣)
≤ 1

n

( k

(j + 1 + k)
+ log 2 + log

(
1 +

k

j + 1

))
.

Using the monotonicity of log(1 + x) gives the bound of the lemma. For j = 0,
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continuity gives ∣∣∣j + 1

n
log

2(j + 1)

j + 1 + k
− j

n
log

2j

j + k

∣∣∣
=

1

n

∣∣∣ log
2

1 + k

∣∣∣
≤ 1

n
(log 2 + log(1 + k))

≤ 1

n
(log 2 + log(1 + n)),

but since the bound of the lemma is larger, we have the result. To show (A.8),

observe for k 6= 0 we have∣∣∣k
n

log
2k

k + j + 1
− k

n
log

2k

k + j

∣∣∣ =
1

n

∣∣∣k log
2k

k + j + 1

k + j

2k

∣∣∣
=

1

n

∣∣∣k log
k + j + 1

k + j

∣∣∣
≤ 1

n

k

k + j

≤ 1

n
,

where the previous line follows from k ≤ k + j. The case k = 0 is handled by

continuity.

Lemma (12). The quantity

D(Λx||(Λx + Λz)/2)

viewed as a real-valued function of the vector (x, z) = (x1, . . . , xn, z1, . . . , zn) has the

bounded differences property with constant

2

n
(1 + log 2 + log(1 + n)).

Proof. Consider the difference

|D(Λx||(Λx + Λz)/2)−D(Λx′||(Λx′ + Λz)/2)|
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where x′ is identical to x except for one position. Without loss of generality

suppose the change from x to x′ replaced an occurrence of a ∈ An with b ∈ An

where a 6= b. It follows from the definition of relative entropy that

|D(Λx||(Λx + Λz)/2)−D(Λx′||(Λx′ + Λz)/2)|

≤
∣∣∣N(a|x)

n
log

2N(a|x)

N(a|x) +N(a|z)

− N(a|x′)
n

log
2N(a|x′)

N(a|x′) +N(a|z)

∣∣∣
+
∣∣∣N(b|x)

n
log

2N(b|x)

N(b|x) +N(b|z)

− N(b|x′)
n

log
2N(b|x′)

N(b|x′) +N(b|z)

∣∣∣. (A.9)

Let

j + 1 = N(a|x) and k = N(a|z), then j = N(a|x′),

then the first absolute value in the righthand side of (A.9) is of the form∣∣∣j + 1

n
log

2(j + 1)

(j + 1) + k
− j

n
log

2j

j + k

∣∣∣
which is bounded by 1

n
(1 + log 2 + log(1 + n)) from Lemma 34. For the second

summand, suppose

j = N(b|x) and k = N(b|z), then (j + 1) = N(b|x′),

and it follows the same bound holds. Now instead consider the difference

|D(Λx||(Λx + Λz)/2)−D(Λx||(Λx + Λz′)/2)|

where z′ is identical to z except for one position. Again, without loss of general-

ity suppose that the change replaced an occurrence of a ∈ An with b ∈ An where
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a 6= b. It follows that

|D(Λx||(Λx + Λz)/2)−D(Λx||(Λx + Λz′)/2)|

≤
∣∣∣N(a|x) log

2N(a|x)

N(a|x) +N(a|z)

−N(a|x) log
2N(a|x)

N(a|x) +N(a|z′)

∣∣∣
+
∣∣∣N(b|x) log

2N(b|x)

N(b|x) +N(b|z)

−N(b|x) log
2N(b|x)

N(b|x) +N(b|z′)

∣∣∣. (A.10)

Let

j + 1 = N(a|z) and k = N(a|x), then j = N(a|z′),

then by way of Lemma 34 the first absolute value of (A.10) is bounded by 1
n

.

The second term is handled analogously. Since 2
n
< 2

n
(1 + log 2 + log(1 + n)), the

bounded differences property is established.

Lemma (13). Let {pn, qn} be a sequence of pairs of distributions and denote by µ2
n(x, y)

the shadow (see [20]), i.e. distribution of the random vector
(
npn(Xn), nqn(Xn)

)
when

Xn ∼ pn. If µ2
n(x, y) converges weakly to µ2(x, y), then under hypothesis H0 (i.e.

Zn ∼ pnn)

E[D(ΛZn||p̂n)]→
∫
C2

[ ∞∑
j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!
log(j + k)

]
dµ2(x, y)

and

E[D(ΛZn||q̂n)]→
∫
C2

[ ∞∑
j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−y)yk

k!
log(j + k)

]
dµ2(x, y).
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Proof. For notational convenience let

gnk (x) =

(
n

k

)(x
n

)k(
1− x

n

)n−k
and gk(x) =

xk exp(−x)

k!
,

and note for all sequences xn → x, gnk (xn)→ gk(x). Now we compute

E[D(ΛZn||p̂n)] = n−1
∑
a∈An

E[N(a|Zn) log 2N(a|Zn)]

− E[N(a|Zn) log(N(a|Xn) +N(a|Zn))]. (A.11)

Starting with the second term on the righthand side (recalling the convention

that 0 log 0 = 0)

n−1
∑
a∈An

E[N(a|Zn) log(N(a|Xn) +N(a|Zn))]

=
∑
a∈An

n∑
j=1

j

n

(
n

j

)
pn(a)j(1− pn(a))n−j

×
n∑
k=0

(
n

k

)
pn(a)k(1− pn(a))n−k log(j + k)

=
n∑
j=1

n∑
k=0

[ ∑
a∈An

pn(a)gn−1
j−1 ((n− 1)pn(a))× gnk (npn(a))

]
log(j + k).

Using B(n, p) to denote a Binomial(n, p) random variable we have for all n ≥ č

1 =
∑
a∈An

n−1E[B(n, pn(a))]

=
∑
a∈An

n∑
j=0

j

n

(
n

j

)
pn(a)j(1− pn(a))n−j

=
n∑
j=1

n∑
k=0

∑
a∈An

pn(a)gn−1
j−1 ((n− 1)pn(a))gnk (npn(a))

=
n∑
j=1

n∑
k=0

∫
C

gn−1
j−1

(n− 1

n
x
)
gnk (x)dµn(x),
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where µn(·) =
∫
C
µ(·, y)dy. Thus it follows there exist a pair of random variables

(Jn, Kn) taking values in {1, . . . , n} × {0, . . . , n},

Pr(Jn = j,Kn = k) =

∫
C
gn−1
j−1

(
n−1
n
x
)
gnk (x)dµn(x) j ∈ {1, . . . , n},

k ∈ {0, . . . , n}.

0 otherwise.

Since npn(Xn) converges in distribution to W with distribution µ(·) =∫
C
µ2(·, y)dy, we can create a sequence of random variables {Wn} such that

Wn =d npn(Xn) and converges to W almost surely. Then since gnk (Wn)→ gk(W )

almost surely and gnk is bounded,

lim
n→∞

E[gn−1
j−1

(n− 1

n
Wn

)
gnk (Wn)] = E[gj−1(W )gk(W )],

and there are random variables (J,K) taking values in {1, . . .} × {0, . . .} with

joint distribution so that

Pr(J = j,K = k) =
E[gj−1(W )gk(W )] j, k ∈ {1, . . .} × {0, . . .}

0 otherwise,

and (Jn, Kn) converge in distribution to the pair (J,K). Now,

E[(Jn +Kn)] =
n∑
j=1

n∑
k=0

(j + k)

∫
C

gn−1
j−1

(n− 1

n
x
)
gnk (x)dµn(x)

=

∫
C

n∑
j=1

n∑
k=0

(j + k)gn−1
j−1

(n− 1

n
x
)
gnk (x)dµn(x)

=

∫
C

(1 + 2x− x

n
) dµn(x)

→ 1 +

∫
C

2x dµ(x)
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and

E[J +K] =
∞∑
j=1

∞∑
k=0

∫
C

(j + k)
e−xxj−1

(j − 1)!

e−xxk

k!
dµ(x)

=

∫
C

∞∑
j=1

∞∑
k=0

(j + k)
e−xxj−1

(j − 1)!

e−xxk

k!
dµ(x)

=

∫
C

(1 + 2x) dµ(x).

Hence E[(Jn + Kn)]→ E[J + K] implying that Jn + Kn is uniformly integrable.

It follows that log(Jn + Kn) is uniformly integrable and by way of monotone

convergence

E[log(Jn +Kn)]→ E[log(J +K)].

which gives the convergence of the second term on the right of (A.11). A similar

argument applies to the first term. Therefore

E[D(ΛZn||p̂n)]→
∫
C

[ ∞∑
j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!
log(j + k)

]
dµ(x).

An analogous argument establishes the second claim of the lemma.

Lemma (14). Let {pn, qn} be a sequence of pairs of distributions and denote by µ2
n(x, y)

the shadow (see [20]), i.e. distribution of the random vector
(
npn(Xn), nqn(Xn)

)
when

Xn ∼ pn. If µ2
n(x, y) converges weakly to µ2(x, y), then under hypothesis H0 (i.e.

Zn ∼ pnn)

E[χ2(ΛXn ,ΛZn ,An)]→ 2

∫
C2

∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!

(j − k)

j + k
dµ2(x, y)
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and

E[χ2(ΛY n ,ΛZn ,An)]→
∫
C2

∞∑
j=1

∞∑
k=0

exp(−y)yj−1

(j − 1)!

exp(−x)xk

k!

(j − k)

j + k

y

x
dµ2(x, y)

+

∫
C2

∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−y)yk

k!

(j − k)

j + k
dµ2(x, y)

Proof. The proof immediately follows that of Lemma 13, once one notices that

E[χ2(ΛXn ,ΛZn ,An)] = n−1
∑
a∈An

E
[(N(a|Xn)−N(a|Zn))2

N(a|Xn) +N(a|Zn)

]
= n−1

∑
a∈An

E
[N(a|Xn)(N(a|Xn)−N(a|Zn))

N(a|Xn)−N(a|Zn)

]
+ E

[N(a|Zn)(N(a|Zn)−N(a|Xn))

N(a|Xn) +N(a|Zn)

]
= 2

∑
a∈An

n∑
j=1

j

n

(
n

j

)
pn(a)j(1− pn(a))n−j

×
n∑
k=0

(
n

k

)
pn(a)k(1− pn(a))n−k

(j − k)

j + k
.

Lemma 35. For all k ∈ [0, n] and j ∈ [0, n]∣∣∣∣∣
(
j+1
n
− k

n

)2

j+1
n

+ k
n

−

(
j
n
− k

n

)2

j
n

+ k
n

∣∣∣∣∣ ≤ 4

n

Proof.∣∣∣∣∣
(
j+1
n
− k

n

)2

j+1
n

+ k
n

−

(
j
n
− k

n

)2

j
n

+ k
n

∣∣∣∣∣ =
1

n

∣∣∣(j + 1− k)2

j + 1 + k
− (j − k)2

j + k

∣∣∣
=

1

n

∣∣∣((j − k)2 + 2(j − k) + 1)(j + k)

(j + 1 + k)(j + k)
− (j − k)2(j + 1 + k)

(j + k)(j + 1 + k)

∣∣∣
=

1

n

∣∣∣−(j − k)2 + (2(j − k) + 1)(j + k)

(j + 1 + k)(j + k)

∣∣∣
≤ 1

n

∣∣∣ (j − k)2

(j + 1 + k)(j + k)
+

(2j + 2k + 1)

j + k + 1

∣∣∣
≤ 1 + 2 + 1

n
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Where the final inequality uses the triangle inequality and the fact that (j−k)2 ≤

(j + k)2.

Lemma 36. Define the sets

Z ′n(p, q, i) =
{
a : p(a) = 0 and q(a) =

i

n

}
and Zn(p, q, j) =

j⋃
i=1

Z ′n(p, q, i) ∪ Z ′n(q, p, i).

For all j ≥ 1

G(p, q,A) ≥ log(2)χ2(p, q,Zn(p, q, j))

Proof. Note that from the proof of Lemma 8 we know that the summand in the

definition of G(p, q,A) is non-negative, therefore

G(p, q,A) ≥ G(p, q,Zn(p, q)).

On the set Zn(p, q, j) either q(a) = 0 or p(a) = 0 and when q(a) = 0 we have that

p(a) log
( 2p(a)

p(a) + q(a)

)
+ q(a) log

( 2q(a)

p(a) + q(a)

)
= p(a) log(2)

and analogously the summand is q(a) log(2) when p(a) = 0. Therefore

G(p, q,Zn(p, q, j)) =
∑

a∈Zn(p,q,j)

p(a) log
( 2p(a)

p(a) + q(a)

)
+ q(a) log

( 2q(a)

p(a) + q(a)

)
= log(2)

∑
a∈Zn(p,q,j)

(p(a)− q(a))2

p(a) + q(a)

= log(2)χ2(p, q,Zn(p, q, j))

A.3 Proofs: Section 2.5

In this appendix we prove the following result.
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Lemma (15). Let p̃n and q̃n be a sequence of α = 1 large alphabet sources, defined on

alphabet Ãn such that n‖p̃n − q̃n‖2
2 = ε for every n. Denote by ω a special symbol that

does not occur in any of Ãn and define

An = Ãn ∪ {ω}.

Let δa denote a point-mass at a and define pn = 1
2
p̃n + 1

2
δω and qn = 1

2
q̃n + 1

2
δω. Then

the test

‖ΛXn − ΛZn‖2
2 ≶ ‖ΛY n − ΛZn‖2

2 (A.12)

is inconsistent.

Throughout this appendix we assume the setup of Lemma 15, i.e. Xn ∼ pnn,

Y n ∼ qnn and we will see it suffices to consider the case Zn ∼ pnn, i.e. hypothesis

H0 is in effect.

We use the notation Xn/i to mean Xn without the ith component, i.e.

Xn/i = X1, X2, . . . , Xi−1, Xi+1, . . . , Xn.

Lemma 37. For any i ∈ {1, . . . , n}

N2(a|Xn) = 1{Xi = a}(1 + 2N(a|Xn/i)) +N2(a|Xn/i).

Proof.

N2(a|Xn) =
(
1{Xi = a}+N(a|Xn/i)

)2

= 1{Xi = a}+ 2N(a|Xn/i)1{Xi = a}+N2(a|Xn/i)

= 1{Xi = a}(1 + 2N(a|Xn/i)) +N2(a|Xn/i).
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Lemma 38.

E[N(a|Xn)N(b|Xn)] =


(n2 − n)pn(a)pn(b) if a 6= b

npn(a) + (n2 − n)p2
n(a) if a = b.

Proof. The proof is similar to that of Lemma 30 and so is omitted.

Let T denote the restriction of the L2-norm test (A.12) to Ãn, i.e.

T (Xn, Y n, Zn) =
1

n2

∑
a∈Ãn

N2(a|Xn)−N2(a|Y n)− 2N(a|Zn)[N(a|Xn)−N(a|Y n)].

Lemma 39. Under distribution Pn = pnn × qnn × pnn

Var[nT (Xn, Y n, Zn)]→ 0.

Proof. Recall the Efron-Stein inequality, which states that

Var(nT ) = n2Var(T ) ≤ 1

2
n2

3n∑
i=1

E[(T − T̃i)2]

where T̃i is identical to T except that the ith argument of T is replaced with an

independent copy having the same distribution. Thus we now investigate what

happens when we replace one of the Xi, Yi or Zi.

Denote by X̃n
i = X1, X2, . . . , Xi−1, X̃i, Xi+1, . . . , Xn, where X̃i =d Xi. Then

for i ∈ {1, . . . , n}

T − T̃i = n−2
∑
a∈Ãn

N2(a|Xn)−N2(a|X̃n
i )− 2N(a|Zn)(N(a|Xn)−N(a|X̃n

i ))

= n−2
∑
a∈Ãn

(1{Xi = a} − 1{X̃i = a})(1 + 2N(a|Xn/i)− 2N(a|Zn))
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where on the previous line we used Lemma 37.

Hence for i ∈ {1, . . . , n}we have

n2E[(T − T̃i)2] = n−2E
[( ∑

a∈Ãn

(1{Xi = a} − 1{X̃i = a})(1 + 2N(a|Xn/i)− 2N(a|Zn))
)2]

= n−2E
[ ∑
a∈Ãn

∑
b∈Ãn

(1{Xi = a} − 1{X̃i = a})(1{Xi = b} − 1{X̃i = b})

× (1 + 2N(a|Xn/i)− 2N(a|Zn))(1 + 2N(b|Xn/i)− 2N(b|Zn))
]

Let S(a, b) = (1 + 2N(a|Xn/i)− 2N(a|Zn))(1 + 2N(b|Xn/i)− 2N(b|Zn)), so that

n2E[(T − T̃i)2] = n−2
∑
a∈Ãn

∑
b∈Ãn

E[1{Xi = a}1{Xi = b}S(a, b)]

− E[1{Xi = a}1{X̃i = b}S(a, b)]

− E[1{X̃i = a}1{Xi = b}S(a, b)] + E[1{X̃i = a}1{X̃i = b}S(a, b)].

Because the indicators act like selectors the above display may be written as

n2E[(T − T̃i)2] = n−2
∑
a∈Ãn

E[1{Xi = a}S(a, a)] + E[1{X̃i = a}S(a, a)]

−
∑
a∈Ãn

∑
b∈Ãn

E[1{X̃i = a}1{Xi = b}S(a, b)]

+ E[1{Xi = a}1{X̃i = b}S(a, b)].

Now because Xi =d X̃i, we may write

n2E[(T − T̃i)2] = n−2
[ ∑
a∈Ãn

2E[1{Xi = a}S(a, a)]− 2
∑
a∈Ãn

∑
b∈Ãn

E[1{X̃i = a}1{Xi = b}S(a, b)]
]

= n−2
[ ∑
a∈Ãn

2E[1{Xi = a}S(a, a)]− 2
∑
a∈Ãn

E[1{X̃i = a}1{Xi = a}S(a, a)]

− 2
∑

a6=b∈Ãn

E[1{X̃i = a}1{Xi = b}S(a, b)].
]
.

Since S ⊥⊥ (Xi, X̃i) it remains to compute E[S(a, b)].
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Expanding S gives

S(a, b) = 1 + 2N(b|Xn/i)− 2N(b|Zn) + 2N(a|Xn/i) + 4N(a|Xn/i)N(b|Xn/i)

− 4N(a|Xn/i)N(b|Zn)− 2N(a|Zn)− 4N(a|Zn)N(b|Xn/i) + 4N(a|Zn)N(b|Zn)

For a = b applying Lemma 38 gives

E[S(a, b)] = 1 + 2(n− 1)pn(a)− 2npn(a) + 2(n− 1)pn(a) + 4(n2 − 3n+ 2)p2
n(a)

+ 4(n− 1)pn(a)− 4(n− 1)pn(a)npn(a)− 2npn(a)

− 4npn(a)(n− 1)pn(a) + 4(n2 − n)p2
n(a) + 4npn(a)

= 1 + 8npn(a)− 8pn(a)− 8np2
n(a) + 8p2

n(a).

Similarly for a 6= b we get

E[S(a, b)] = 1 + 2(n− 1)pn(b)− 2npn(b) + 2(n− 1)pn(a) + 4(n2 − 3n+ 2)pn(a)pn(b)

− 4(n− 1)pn(a)npn(b)− 2npn(a)− 4npn(a)(n− 1)pn(b)

+ 4(n2 − n)pn(a)pn(b)

= 1− 2pn(b)− 2pn(a)− 8npn(a)pn(b) + 8pn(a)pn(b).

Putting things together we can now evaluate to give

n2E[(T − T̃i)2] = n−2
[ ∑
a∈Ãn

2pn(a)(1 + 8npn(a)− 8pn(a)− 8np2
n(a) + 8p2

n(a))

− 2
∑
a∈Ãn

pn(a)pn(a)(1 + 8npn(a)− 8pn(a)− 8np2
n(a) + 8p2

n(a))

− 2
∑

a6=b∈Ãn

pn(a)pn(b)(1− 2pn(b)− 2pn(a)− 8npn(a)pn(b) + 8pn(a)pn(b))
]
.

We can get a valid upper bound by keeping only those terms which are pos-
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itive, i.e.

n2E[(T − T̃i)2] ≤ n−2
[ ∑
a∈Ãn

2pn(a)(1 + 8npn(a) + 8p2
n(a))

− 2
∑
a∈Ãn

pn(a)pn(a)(−8pn(a)− 8np2
n(a))

− 2
∑

a6=b∈Ãn

pn(a)pn(b)(−2pn(b)− 2pn(a)− 8npn(a)pn(b))
]
.

Now summing each factor in the squares braces, and just writing the order of

the resulting sum we have

n2E[(T − T̃i)2] ≤ n−2[O(1) +O(1) +O(n−2) +O(n−2) +O(n−2) +O(n−1) +O(n−1) +O(n−1)]

= O(n−2)

and therefore
n∑
i=1

n2E[(T − T̃i)2] ≤ O(n−1).

When changing a Yi, proceeding as before we get

T − T̃i+n = T (Xn, Y n, Zn)− T (Xn, Ỹ n
i , Z

n)

= n−2
∑
a∈Ãn

N2(a|Ỹ n
i )−N2(a|Y n) + 2N(a|Zn)[N(a|Y n)−N(a|Ỹ n

i )]

= n−2
∑
a∈Ãn

[1{Yi = a} − 1{Ỹi = a}](2N(a|Zn)− 1− 2N(a|Y n/i)).

Now define U(a, b) = (2N(a|Zn)−1−2N(a|Y n/i))(2N(b|Zn)−1−2N(b|Y n/i)),
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then

n2E[(T − T̃i)2] = n−2
∑
a∈Ãn

∑
b∈Ãn

E
[
(1{Yi = a} − 1{Ỹi = a})(1{Yi = b} − 1{Ỹi = b})U(a, b)

]
= n−2

∑
a∈Ãn

∑
b∈Ãn

E[1{Yi = a}1{Yi = b}U(a, b)]− E[1{Yi = a}1{Ỹi = b}U(a, b)]

− E[1{Ỹi = a}1{Yi = b}U(a, b)] + E[1{Ỹi = a}1{Ỹi = b}U(a, b)]

= n−2

[ ∑
a∈Ãn

2E[1{Yi = a}U(a, a)]−
∑
a∈Ãn

∑
b∈Ãn

2E[1{Ỹi = a}1{Yi = b}U(a, b)]

]

= n−2

[ ∑
a∈Ãn

2E[1{Yi = a}U(a, a)]−
∑
a∈Ãn

2E[1{Ỹi = a}1{Yi = a}U(a, a)]

−
∑

a6=b∈Ãn

2E[1{Ỹi = a}1{Yi = b}U(a, b)]

]
.

Computing E[U(a, b)] yields

E[U(a, a)] = 4npn(a) + 4(n2 − n)p2
n(a)− 2npn(a)− 4npn(a)(n− 1)qn(a)

− 2npn(a) + 1 + 2(n− 1)qn(a)− 4(n− 1)qn(a)npn(a)

+ 2(n− 1)qn(a) + 4(n− 1)qn(a) + 4(n− 1)(n− 2)q2
n(a)

and

E[U(a, b)] = 4(n2 − n)pn(a)pn(b)− 2npn(a)− 4npn(a)(n− 1)qn(b)

− 2npn(b) + 1 + 2(n− 1)qn(b)− 4(n− 1)qn(a)npn(b)

+ 2(n− 1)qn(a) + 4(n− 1)(n− 2)qn(a)qn(b).

For any a, b ∈ Ãn the absolute value of every term appearing in U(·, ·) is

O(1), and since U(a, b) ⊥⊥ (Yi, Ỹi) it follows that

n∑
i=1

n2E[(T − T̃i+n)2] = O(n−1).
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When replacing a Zi, we have

T − T̃i+2n = n−22
∑
a∈Ãn

(1{Z̃i = a} − 1{Zi = a})(N(a|Xn)−N(a|Y n))

Thus for i ∈ {1, . . . , n}we have

n2E[(T − T̃i+2n)2] = n−2E
[( ∑

a∈Ãn

(1{Z̃i = a} − 1{Zi = a})(N(a|Xn)−N(a|Y n))
)2]

= n−2
∑
a∈Ãn

∑
b∈Ãn

E
[
(1{Zi = a} − 1{Z̃i = a})(1{Zi = b} − 1{Z̃i = b})V (a, b)

]
where we defined

V (a, b) = (N(a|Xn)−N(a|Y n))(N(b|Xn)−N(b|Y n))

= N(a|Xn)N(b|Xn)−N(a|Xn)N(b|Y n)−N(a|Y n)N(b|Xn) +N(a|Y n)N(b|Y n).

Expanding the terms and using the selection property we get

n2E[(T − T̃i)2] = n−2

[ ∑
a,b∈Ãn

E[1{Zi = a}1{Zi = b}V (a, b)]− E[1{Zi = a}1{Z̃i = b}V (a, b)]

− E[1{Z̃i = a}1{Zi = b}V (a, b)] + E[1{Z̃i = a}1{Z̃i = b}V (a, b)]

]

= n−2

[
2
∑
a∈Ãn

E[1{Zi = a}V (a, a)]− 2
∑
a,b∈Ãn

E[1{Zi = a}1{Z̃i = b}V (a, b)]

]

On account of the independence of (Zi, Z̃i) and V (·, ·) it remains to compute

E[V (a, b)], yielding

E[V (a, a)] = npn(a) + (n2 − n)p2
n(a)− n2pn(a)qn(a)

− n2pn(a)qn(a) + nqn(a) + (n2 − n)q2
n(a)

and for a 6= b

E[V (a, b)] = (n2 − n)pn(a)pn(b)− n2pn(a)qn(b)

− n2pn(b)qn(a) + (n2 − n)qn(a)qn(b).
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Each term appearing in V (·, ·) has absolute value O(1) and so it follows that

n∑
i=1

n2E[(T − T̃i+2n)2] = O(n−1).

Therefore we have shown

Var(nT ) ≤ O(n−1)→ 0.

Proof of Lemma 15. Suppose hypothesis H0 is in effect. Chebyshev’s inequality

combined with Lemma 39 imply that

n
[ ∑
a∈Ãn

(ΛXn(a)− ΛZn(a))2 − (ΛY n(a)− ΛZn(a))2
]

is close to its mean with high probability. Thus, using →Pn to denote conver-

gence in probability, we have

n
∑
a∈Ãn

(ΛXn(a)− ΛZn(a))2 − (ΛY n(a)− ΛZn(a))2 →Pn −ε/4.

Next we note that by the Central Limit Theorem,

2
√
n
(

ΛXn(ω)− 1

2

)
= 2
√
n
( n∑
i=1

1(Xi = ω)

n
− 1

2

)
⇒ N (0, 1),

where N (0, 1) denotes a standard Normal random variable. Similarly

2
√
n(ΛY n(ω) − 1/2) ⇒ N (0, 1) and 2

√
n(ΛZn(ω) − 1/2) ⇒ N (0, 1). Further-

more the independence of the Xn, Y n, Zn sequences implies the independence

of the limiting distributions. Let X̃, Ỹ , Z̃ be independent N (0, 1). Now by the

continuous mapping theorem [90, Ch.1 §7] it follows that

4n
[
(ΛXn(ω)− ΛZn(ω))2 − (ΛY n(ω)− ΛZn(ω))2

]
⇒ X̃2 + Z̃2 − 2X̃Z̃ − Ỹ 2 − Z̃2 + 2Ỹ Z̃

= X̃2 − Ỹ 2 − 2Z̃(X̃ − Ỹ ).
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Finally, Slutsky’s theorem [90, Ch.1 §5.4] tells us that if Xn ⇒ X and Yn →P c

then Xn + Yn ⇒ X + c, therefore

4n
[
‖ΛXn − ΛZn‖2

2 − ‖ΛY n − ΛZn‖2
2

]
⇒ X̃2 − Ỹ 2 − 2Z̃(X̃ − Ỹ )− ε.

This random variable has positive probability of being positive, and thus the

test is inconsistent.
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APPENDIX B

CHAPTER 4 - PROOFS

B.1 Proof of Theorem 15

If R1 ≥ log |X1|, then clearly η(PXY , R1, R2) = ∞ and the result trivially holds,

so suppose that R1 < log |X1|.

B.1.1 Scheme

We start by describing a scheme and then show the scheme has the performance

specified in the theorem. Let ε > 0 be given. For a given blocklength n, we

operate on a type-by-type basis and define the encoding and decoding functions

as follows.

Encoder 1: For each type-class T nQX , the encoder and decoder agree on a

random binning scheme. In particular, for every sequence in T nQX , a bin in-

dex is assigned uniformly at random from {1, 2, . . . , exp(nR1)}. To encode a

sequence x, the encoder sends the type Qx and its bin index, U1(·). Mathemati-

cally fn1 : X n →M1 is

fn1 (x) = (k(Qx), U1(x)),

where

M1 =M′
1 ×M′′

1,

M′
1 = {1, 2, . . . ,M1 , exp(nR1)},

M′′
1 = {1, 2, . . . , (n+ 1)|X |}.
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Encoder 2: For each type QY , fix a conditional type Q∗S|Y (QY ) ∈ Cn(QY ,S) so that

I(QY ;Q∗S|Y (QY )) ≤ R2 and randomly choose a set of codewords Bn(QY ) in the

following way. The size of Bn(QY ) is an integer satisfying

exp(nI(QY ;Q∗S|Y (QY )) + (|Y||S|+ 2) log(n+ 1))

≤ |Bn(QY )| (B.1)

≤ exp(nI(QY ;Q∗S|Y (QY )) + (|Y||S|+ 4) log(n+ 1))

and the codewords are drawn uniformly, with replacement, from the marginal

type class T nQ∗S induced by QY and Q∗S|Y (QY ). Define S : T nQy
→ Bn(Qy) as

follows. Let G(y) = Bn(Qy)∩T nQ∗
S|Y (Qy)(y), if G(y) is non-empty, then the output

of S(y) is drawn uniformly at random from G(y). If G(y) is empty the output of

S(y) is drawn uniformly at random from Bn(Qy). The function S(·) determines

the codeword sent by the helper encoder to the decoder. We define Sn = S(Y n).

To encode a sequence y ∈ T nQX , the encoder sends the type of y and the index,

U2(S(y)), of the codeword S(y). Mathematically the second encoder, fn2 : Yn →

M2 operates as follows

fn2 (y) = (k(Qy), U2(S(y)))

where

M2 =M′
2 ×M′′

2,

M′
2 = {1, 2, . . . ,M2 , exp(n(R2 + ε/2))},

M′′
2 = {1, 2, . . . , (n+ 1)|Y|}.

Decoder:

1. If log |T nQx
| ≤ nR1 then x can be decoded without error;
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2. If log |T nQx
| > nR1 the decoder receives a bin index from encoder one and

uses the coded side information from encoder two to pick the “best” x

from the bin in the minimum conditional entropy sense: it searches for a x̂

in the received bin so that among all x̃ in the bin, H(x̃|s) > H(x̂|s). If there

is no such x̂ it picks uniformly at random from the bin.

gn(k(QX), i, k(QY ), s) =


x̂ if U1(x̂) = i and ∀x̃ 6= x̂, U1(x̃) = i :

H(x̃|s) > H(x̂|s)

any x̃ with U1(x̃) = i if no such x̂

B.1.2 Error Probability Calculation

We define the following sets

Er = {(x,y, s) : H(Qx) > R1)},Dr = {QXY S : H(QX) > R1},

Ec = {(x,y, s) : s 6∈ T nQ∗
S|Y (Qy)(y))},Dc = {QXY S : QS|Y 6= Q∗S|Y (QY )},

and let F denote the event that there exists some s̃ ∈ Bn(QY ) with s̃ ∈

T nQS|Y (Qy)∗(y).

The following lemmas will be useful.

Lemma 40. Let Xn, Y n, Sn = S(Y n) be generated according to our scheme and sup-

pose that (x,y, s) is in (Ec)c, i.e. that s ∈ T nQ∗
S|Y (Qy)(y). Then

Pr(Xn = x, Y n = y, Sn = s) (B.2)

≤ P n
XY (x,y)

1

|T nQ∗
S|Y (Qy)(y)|

. (B.3)

167



Proof. For the x,y, s in this lemma, {Xn = x, Y n = y, Sn = s} implies that the

event F has occurred. Thus

Pr(Xn = x, Y n = y, Sn = s)

= Pr(Xn = x, Y n = y, Sn = s, F )

= P n
XY (x,y) Pr(F |Xn = x, Y n = y)

× Pr(Sn = s|Xn = x, Y n = y, F )

≤ P n
XY (x,y) Pr(Sn = s|Xn = x, Y n = y, F )

= P n
XY (x,y)

1

|T nQ∗
S|Y (Qy)(y)|

where in the final line we used that conditional on F , Sn is uniformly distributed

over T nQS|Y (Qy)(y).

Lemma 41. Let Xn, Y n, Sn = S(Y n) be generated according to our scheme and sup-

pose that (x,y, s) ∈ Ec. Then

Pr(Xn = x, Y n = y, Sn = s)

≤ exp(−(n+ 1)2). (B.4)

Proof. For the x,y, s in this lemma, {Xn = x, Y n = y, Sn = s} implies that event

F c has occurred. Thus

Pr(Xn = x, Y n = y, Sn = s)

= Pr(Xn = x, Y n = y, Sn = s, F c)

= P n
Y (y) Pr(F c|Y n = y) Pr(Xn = x|Y n = y, F c)

× Pr(Sn = s|Xn = x, Y n = y, F c)

≤ Pr(F c|Y n = y).

Pr(F c|Y n = y) is the probability that there is no s̃ ∈ Bn(Qy) so that s̃ ∈

T nQ∗
S|Y (Qy)(y). We will now give an upper bound on this probability using the
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properties of the codeword set. Let m = |Bn(Qy)| and Bn(Qy)[i] be the ith code-

word in the set Bn(Qy). Then

Pr(F c|Y n = y)

=
m∏
i=1

Pr(Bn(Qy)[i] 6∈ T nQ∗
S|Y (Qy)(y))

=
m∏
i=1

[1− Pr(Bn(Qy)[i] ∈ T nQ∗
S|Y (Qy)(y))]

=

(
1−
|T nQ∗

S|Y (Qy)(y)|

|TQ∗S |

)m

≤ exp

(
−
|T nQ∗

S|Y (Qy)(y)|

|TQ∗S |
m

)
where the last line followed by applying the inequality (1 − t)m ≤ exp(−tm).

Next, using the following bounds on the cardinality of type classes [27, lemmas

2.3 and 2.6],

|T nQS | ≤ exp(nH(QS))

|T nQS|Y (y)| ≥ (n+ 1)−|Y||S| exp(nH(QS|Y |QY ))

and that I(Q∗S|Y (Qy);Qy) = H(Q∗S)−H(Q∗S|Y (Qy)|Qy) we have

−
|T nQ∗

S|Y (Qy)(y)|

|TQ∗S |
≤ −(n+ 1)−|Y||S| exp(−nI(Qy;Q∗S|Y (Qy))).

Thus,

Pr(F c|Y n = y)

≤ exp
(
−(n+ 1)−|Y||S| exp(−nI(Qy;Q∗S|Y (Qy)))m

)
≤ exp(−(n+ 1)2)

where the final line followed by substitution our choice of m from (B.1).

Lemma 42. For all strings x,y, let

S(x|y) = {x̃|H(x̃|y) ≤ H(x|y), Qx̃ = Qx}.
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Then

|S(x|y)| ≤ (n+ 1)|X ||Y| exp(nH(x|y)).

Proof.

|S(x|y)| ≤ |{x̃|H(x̃|y) ≤ H(x|y)}|

=
∑

V :V ∈Cn(Qy,X )

∑
x̃∈TV (y):H(x̃|y)≤H(x|y)

1

=
∑

V :V ∈Cn(Qy,X )

H(V |Qy)≤H(x|y)

|TV (y)|

≤
∑

V :V ∈Cn(Qy,X )

H(V |Qy)≤H(x|y)

exp(nH(x|y))

≤ (n+ 1)|X ||Y| exp(nH(x|y)).

Lemma 43. Let (x,y, s) ∈ Er ∩ (Ec)c. Then

Pr(Xn 6= X̂n|Xn = x, Y n = y, Sn = s)

≤ exp
(
−n
(
R−H(Qx|s|Qs)− δn

)+
)

(B.5)

where

δn =
1

n
log(n+ 1)|S||X |.

Proof. The decoder makes an error if it selects the wrong source sequence from

the bin. We note that the set S(x|s) of Lemma 42 contains all the sequences

with lower empirical entropy, but having the same type as x. Therefore we can
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bound the decoding error probability as

Pr(Xn 6= X̂n|Xn = x, Y n = y, Sn = s)

≤
∑

x̃∈S(x|s)

Pr(U(x̃) = U(x))

≤|S(x|s)| exp(−nR1)

≤ exp(−n(R1 −H(Qx|s|Qs)− δn))

where the final line used the result from Lemma 42. Further bounding the prob-

ability by one gives the result.

Lemma 44. Let

F n(PXY , R1, R2) = min
QY

max
QS|Y ∈Cn(QY ,S):

I(QY ;QS|Y )≤R2

min
QXY S

H(QX)≥R1

D(QXY S||PXYQY |S)+[R1−H(QX|S|QS)−δn]+

(B.6)

and

F∞(PXY , R1, R2) = inf
QY

sup
QS|Y ∈C(Y→S):

I(QY ;QS|Y )≤R2

inf
QXY S

H(QX)≥R1

D(QXY S||PXYQY |S)+[R1−H(QX|S|QS)]+.

(B.7)

Then

lim inf
n→∞

F n(PXY , R1, R2) ≥ F∞(PXY , R1, R2).

Proof. A more intricate result is proved in Lemma 51 for the discrete memory-

less Wyner-Ziv problem. The approach taken there is applicable here.

Proof of Theorem 15. To prove the theorem we will upper bound Pe = Pr(Xn 6=

X̂n), the probability of error for our scheme. For any ε > 0, we note that for n

sufficiently large the constraints in (4.2) are met. On (Er)c our scheme makes no
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error, thus

Pe =
∑
Er

Pr(Xn 6= X̂n|Xn = x, Y n = y, Sn = s) Pr(Xn = x, Y n = y, Sn = s)

=
∑
Er∩(Ec)c

Pr(Xn 6= X̂n|Xn = x, Y n = y, Sn = s) Pr(Xn = x, Y n = y, Sn = s)

+
∑
Er∩Ec

Pr(Xn 6= X̂n|Xn = x, Y n = y, Sn = s) Pr(Xn = x, Y n = y, Sn = s)

≤
∑
Er∩(Ec)c

Pr(Xn 6= X̂n|Xn = x, Y n = y, Sn = s) Pr(Xn = x, Y n = y, Sn = s)

+
∑
Ec

Pr(Xn = x, Y n = y, Sn = s)

where the final inequality follows by bounding the conditional error probability

by 1 on Ec. Applying Lemmas 40 and 43 to the summation over Er ∩ (Ec)c, and

Lemma 41 to summation over Ec we get

Pe ≤
∑
Er∩(Ec)c

exp(−n[R1 −H(Qx|s|Qs)− δn]+)
P n
XY (x,y)

|T nQ∗
S|Y (Qy)(y)|

+
∑
Ec

exp(−(n+ 1)2).

Now summing first over types and then over sequences within the type class,

we get

Pe ≤
∑
QY

[ ∑
QXY S∈Dr∩(Dc)c

∑
(x,y,s)∈TnQXY S

exp(−n[R1 −H(Qx|s|Qs)− δn]+)
P n
XY (x,y)

|T nQ∗
S|Y (Qy)(y)|

+
∑

QXY S∈Dc

∑
(x,y,s)∈TnQXY S

exp(−(n+ 1)2)
]
, (B.8)

where in the summation over joint types QXY S , the marginal type of Y is fixed

to be that set by the earlier summation. Using the following facts

P n
XY (x,y) = exp(−n(D(Qxy||PXY ) +H(Qxy)))

|T nQXY S | ≤ exp(n(H(QXY S))) ≤ exp(n log(|X ||Y||S|)) (B.9)

|T nQS|Y | ≥ (n+ 1)−|Y||S| exp(n(H(QS|Y |QY ))) (B.10)
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and continuing from (B.8), we can further bound Pe as follows

Pe ≤
∑
QY

[ ∑
QXY S∈Dr∩(Dc)c

exp
(
− n

(
[R1 −H(QX|S|QS)− δn]+

+D(QXY ||PXY ) +H(QXY ) +H(QS|Y |QY )−H(QXY S)
))

+
∑

QXY S∈Dc

exp
(
− (n+ 1)2 + n log(|X ||Y||S|)

)]
. (B.11)

Next we note that

D(QXY ||PXY ) +H(QXY ) +H(QS|Y |QY )−H(QXY S)

=D(QXY ||PXY ) +H(QS|Y |QY )−H(QS|XY |QXY )

=D(QXY S|PXYQS|Y ),

and substituting this identity into (B.11) gives

Pe ≤
∑
QY

[ ∑
QXY S∈Dr∩(Dc)c

exp
(
− n

(
[R1 −H(QX|S|QS)− δn]+

+D(QXY S||PXYQS|Y )
))

+
∑

QXY S∈Dc

exp
(
− (n+ 1)2 + n log(|X ||Y||S|)

)]
.

We now upper bound the summations by maximizing over the types and opti-

mizing over the choice of test channel QS|Y . This gives

Pe ≤ |Pn(X × Y × S)||Pn(Y)|max
QY

min
QS|Y ∈Cn(QY ,S):

I(QY ;QS|Y )≤R2

max
QXY S∈Dr∩(Dc)c

exp
(
− n

(
[R1 −H(QX|S|QS)− δn]+

+D(QXY S||PXYQS|Y )
))

+ exp
(
− (n+ 1)2 + n log(|X ||Y||S|)

)
. (B.12)

Let F n be as defined in (B.6). We may move the optimizations appearing in
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(B.12) into the exponent and this yields

Pe ≤ |Pn(X × Y × S)||Pn(Y)|
[

exp(−n(F n(PXY , R1, R2)))

+ exp
(
− (n+ 1)2 + n log(|X ||Y||S|)

)]
.

Then we have

lim inf
n→∞

− 1

n
logPe ≥ lim inf

n→∞
− 1

n
log
(
|Pn(X × Y × S)||Pn(Y)|

[
exp(−n(F n(PXY , R1, R2)))

+ exp
(
− (n+ 1)2 + n log(|X ||Y||S|)

)])
≥ lim inf

n→∞
F n(PXY , R1, R2)

≥ F∞(PXY , R1, R2)

where the final line followed by an application of Lemma 44.

B.2 Proof of Theorem 16

Before proving Theorem 16, we prove two technical lemmas. We first prove

the cardinality bound on S given in (4.6). This argument differs from conven-

tional cardinality-bound proofs in that it uses the KKT conditions in addition to

Carathéodory’s theorem. We then prove a continuity lemma that is similar to

Lemma 44. For the purposes of these lemmas define two new quantities

η̃U(PXY , R1, R2) , inf
QY

sup
QS|Y :|S|≤|X |·|Y|+|Y|+2

I(QY ;QS|Y )≤R2

inf
QX|Y :

H(QX|S |QS)≥R1

D(QXY ||PXY )

and ηU(PXY , R1, R2) , inf
QY

sup
QS|Y :

I(QY ;QS|Y )≤R2

inf
QX|Y :

H(QX|S |QS)≥R1

D(QXY ||PXY ).

Note that η̃U differs from ηU only in that the inequality in the inner-most in-

fimum is no longer strict, and ηU differs from η̃U only in the omission of the
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cardinality bound on S. Since for R1 ≥ log |X1|, ηU(PXY , R1, R2) =∞ and Theo-

rem 16 is trivial, we assume throughout this appendix that R1 < log |X1|.

Lemma 45. If R1 < log |X1| and PXY (x, y) > 0 for all x and y, then η̃U = ηU .

Proof. Clearly ηU ≥ η̃U . To show the reverse inequality, it suffices to show that

for all QY and all QS|Y such that I(QY ;QS|Y ) ≤ R2, there exists Q̃S|Y such that

1. I(QY , Q̃S|Y ) ≤ R2

2. |S| ≤ |X | · |Y|+ |Y|+ 2

3. γ(QY , QS|Y ) ≤ γ(QY , Q̃S|Y ),

where

γ(QY , QS|Y ) = inf
QX|Y :

H(QX|S |QS)≥R1

D(QXY ||PXY ).

Fix QY and QS|Y . For the PXY of the hypothesis, γ(QY , ·) has a continuous ob-

jective and a compact feasible set, so there exists Q∗X|Y such that

γ(QY , QS|Y ) = D(QYQ
∗
X|Y ||PXY )

and H(Q∗X|S|QS) ≥ R1. Since γ(·, ·) is convex in QX|Y and strictly feasible, Q∗X|Y

must satisfy the KKT conditions for optimality [91, p.g. 243]: there exists1

µx,y ≥ 0 for all x, y

λ ≥ 0

νy ≥ 0 for all y

1The assumption that PXY (x, y) > 0 for all x and y guarantees that D(QYQ
∗
X|Y ||PXY ) is

finite. If this quantity is infinite, then the KKT conditions may not hold at Q∗X|Y .
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such that

Q(y)
(

log
Q∗(x|y)Q(y)

P (x, y)
+ 1 + λ

)
− µx,y + νy

+λ
(∑

s

Q(s)
(
Q(y|s) log

(∑
y′

Q∗(x|y′)Q(y′|s)
)))

= 0 for all x, y

µx,yQ(x|y) = 0 for all x, y

λ(H(Q∗X|S|QS)−R1) = 0

νy(
∑
x

Q∗(x|y)− 1) = 0 for all y.

By Carathéodory’s theorem, there exists Q̃(s) such that

|s : Q̃(s) > 0| ≤ |X | · |Y|+ |Y|+ 2

and

∑
s

Q̃(s)Q(y|s) = Q(y) for all y

Q(y)
(

log
Q∗(x|y)Q(y)

P (x, y)
+ 1 + λ

)
− µx,y + νy

λ
(∑

s

Q̃(s)
(
Q(y|s) log

(∑
y′

Q∗(x|y′)Q(y′|s)
)))

= 0 for all x, y

I(QS;QY |S) = I(Q̃S;QY |S)

H(Q∗X|S|QS) = H(Q∗X|S|Q̃S).

Define Q̃S|Y via QY |SQ̃S/QY . Then Q∗X|Y satisfies

H(Q∗X|S|Q̃S) ≥ R1
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and

Q(y)
(

log
Q∗(x|y)Q(y)

P (x, y)
+ 1 + λ

)
− µx,y + νy

+λ
(∑

s

Q̃(s)
(
Q(y|s) log

(∑
y′

Q∗(x|y′)Q(y′|s)
)))

= 0 for all x, y

µx,yQ(x|y) = 0

λ(H(Q∗X|S|Q̃S)−R1) = 0

νy(
∑
x

Q∗(x|y)− 1) = 0 for all y.

Since γ(QY , ·) is convex, the KKT conditions are also sufficient for optimality,

and we have

γ(QY , Q̃S|Y ) = D(QXY ||PXY ) = γ(QY , QS|Y ).

Lemma 46. For R1 < log |X1|, we have

lim
ε→0

η̃U(PXY , R1 + ε, R2 + ε) = ηU(PXY , R1, R2).

Proof. Clearly η̃U(PXY , R1 + ε, R2 + ε) ≥ ηU(PXY , R1, R2) for all ε > 0. To show

the reverse inequality, fix a sequence εn ↓ 0. Note that there exists Q∗Y such that2

sup
QS|Y :

I(Q∗Y ;QS|Y )≤R2

inf
QX|Y :

H(QX|S |QS)>R1

D(Q∗YQX|Y ||PXY ) ≤

inf
QY

sup
QS|Y :

I(QY ;QS|Y )≤R2

inf
QX|Y :

H(QX|S |QS)>R1

D(QXY ||PXY ) + δ.

For each n, there exists Q(n)
S|Y such that

inf
QX|Y :

H(QX|S |Q
(n)
S )≥R1+εn

D(QX|YQ
∗
Y ||PXY ) ≥ sup

QS|Y :

I(Q∗Y ;QS|Y )≤R2+εn

inf
QX|Y :

H(QX|S |QS)≥R1+εn

D(QX|YQ
∗
Y ||PXY )−δ.

2Throughout this proof, QS|Y is assumed to satisfy the cardinality bound (4.6).
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By considering subsequences, we may assume that

Q
(n)
S|Y → Q∞S|Y .

Then there exists Q∞X|Y such that

H(Q∞X|S|Q∞S ) > R1.

and

D(Q∞X|YQ
∗
Y ||PXY ) ≤ inf

QX|Y :

H(QX|S |Q∞S )>R1

D(QX|YQ
∗
Y ||PXY ) + δ.

Note that for all sufficiently large n, we have

H(Q∞X|S|Q
(n)
S ) ≥ R1 + εn.

Then for all sufficiently large n,

η̃U(PXY , R1 + εn, R2 + εn) ≤ sup
QS|Y :

I(Q∗Y ;QS|Y )≤R2+εn

inf
QX|Y :

H(QX|S |QS)≥R1+εn

D(QX|YQ
∗
Y ||PXY )

≤ inf
QX|Y :

H(QX|S |Q
(n)
S )≥R1+εn

D(QX|YQ
∗
Y ||PXY ) + δ

≤ D(Q∞X|YQ
∗
Y ||PXY ) + δ.

Thus

lim sup
n→∞

η̃U(PXY , R1 + εn, R2 + εn) ≤ D(Q∞X|YQ
∗
Y ||PXY ) + δ. (B.13)

On the other hand, we have

D(Q∞X|YQ
∗
Y ||PXY ) ≤ inf

QX|Y :

H(QX|S |Q∞S )>R1

D(QX|YQ
∗
Y ||PXY ) + δ

≤ sup
QS|Y :

I(Q∗Y ;QS|Y )≤R2

inf
QX|Y :

H(QX|S |QS)>R1

D(QX|YQ
∗
Y ||PXY ) + δ

≤ ηU(PXY , R1, R2) + 2δ.
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Combining this with (B.13) yields

lim sup
n→∞

η̃U(PXY , R1 + εn, R2 + εn) ≤ ηU(PXY , R1, R2) + 3δ,

but δ > 0 and εn → 0 were arbitrary.

Proof of Theorem 16. Recall that we may assume R1 < log |X1|. As we are even-

tually considering small ε, we may assume that R1 + 2ε ≤ log |X1|. Take n suffi-

ciently large so that 1
n
≤ ε

2
.

Let (fn1 , f
n
2 , g

n) be any code satisfying (4.2) and let

En(fn1 , f
n
2 , g

n) = {(x,y) : gn(fn1 (x), fn2 (y)) 6= x}.

denote its erroneous sequences. Take any QXY such that

HQXY (Xn|fn2 (Y n)) ≥ n(R1 + 2ε). (B.14)

We first show that for this choice of QXY the following inequality holds

Qn
XY (En(fn1 , f

n
2 , g

n)) ≥ ε

2 log |X |
> 0. (B.15)

Fano’s inequality gives

Qn
XY (En(fn1 , f

n
2 , g

n)) ≥ H(Xn|fn1 (Xn), fn2 (Y n))− 1

log |X n|
. (B.16)

But

H(Xn, fn1 (Xn)|fn2 (Y n)) = H(Xn|fn2 (Y n)) +H(fn1 (Xn)|Xn, fn2 (Y n)) = H(Xn|fn2 (Y n))

= H(fn1 (Xn)|fn2 (Y n)) +H(Xn|fn1 (Xn), fn2 (Y n)).

Therefore

H(Xn|fn1 (Xn), fn2 (Y n)) = H(Xn|fn2 (Y n))−H(fn1 (Xn)|fn2 (Y n))

≥ H(Xn|fn2 (Y n))−H(fn1 (Xn))

≥ H(Xn|fn2 (Y n))− n(R1 + ε)

≥ nε. (B.17)
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The fact that 1
n
≤ ε

2
along with equations (B.16) and (B.17) gives (B.15). For δ > 0

define the set

Dn =

{
(x,y) :

∣∣∣∣ 1n log
Qn
XY (x,y)

P n
XY (x,y)

−D(QXY ||PXY )

∣∣∣∣ ≤ δ

}
.

Fix 0 < α <∞ such that for all distributions QXY ,

EQ
[
log2 Q(X, Y )

P (X, Y )

]
≤ α.

Such an α exists because the alphabet is finite. By Chebyshev’s inequality we

have

Qn
XY (Dn) = 1−Qn

XY ((Dn)c)

≥ 1− (δ−2)EQ

( 1

n

∑
i

log
Q(Xi, Yi)

P (Xi, Yi)
−D(QXY ||PXY )

)2


≥ 1−
EQ
[
log2 Q(X,Y )

P (X,Y )

]
nδ2

≥ 1− α

δ2n

We may bound the error probability as follows

P n
XY (En(fn1 , f

n
2 , g

n)) ≥ P n
XY (En(fn1 , f

n
2 , g

n) ∩ Dn)

=
∑

En(fn1 ,f
n
2 ,g

n)∩Dn
Qn
XY (x,y) exp

(
− log

Qn
XY (x,y)

P n
XY (x,y)

)

≥ Qn
XY (En(fn1 , f

n
2 , g

n) ∩ Dn) exp (−n(D(QXY ||PXY ) + δ))

≥
(

ε

2 log |X |
− α

δ2n

)
exp (−n(D(QXY ||PXY ) + δ)) . (B.18)

However, for n large enough

ε

2 log |X |
− α

δ2n
≥ ε

4 log |X |
, β > 0,

thus, observing that the argument above holds for every QXY satisfying (B.14)

we see that

P n
XY (En(fn1 , f

n
2 , g

n)) ≥ sup
QXY :HQ(Xn|fn2 (Y n))≥n(R1+2ε)

β exp (−n(D(QXY ||PXY ) + δ)) .
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Now we note that the above holds for every code satisfying (4.2), thus, observ-

ing that the right hand side does not depend on fn1 , gn, we conclude that

min
fn1 ,f

n
2 ,g

n
P n
XY (En(fn1 , f

n
2 , g

n)) ≥ min
fn2

sup
QXY :HQ(Xn|fn2 (Y n))≥n(R1+2ε)

β exp (−n(D(QXY ||PXY ) + δ)) .

We now move the optimizations into the exponent and focus our attention there.

max
fn2 :

log |fn2 |≤n(R2+ε)

inf
QXY :HQ(Xn|fn2 (Y n))≥n(R1+2ε)

D(QXY ||PXY )

= max
fn2 :

log |fn2 |≤n(R2+ε)

inf
QY

inf
QX|Y :

HQ(Xn|fn2 (Y n))≥n(R1+2ε)

D(QXY ||PXY )

≤ inf
QY

max
fn2 :

log |fn2 |≤n(R2+ε)

inf
QX|Y :

HQ(Xn|fn2 (Y n))≥n(R1+2ε)

D(QXY ||PXY )

≤ inf
QY

max
fn2 :

I(Y n;fn2 (Y n))≤n(R2+ε)

inf
QX|Y :

HQ(Xn|fn2 (Y n))≥n(R1+2ε)

D(QXY ||PXY )

≤ inf
QY

sup
QU|Y n :

I(Y n;U)≤n(R2+ε)

inf
QX|Y :

HQ(Xn|U)≥n(R1+2ε)

D(QXY ||PXY ) (B.19)

In the previous line, we note that the deterministic functions are still feasible

and on deterministic functions the previous two bounds agree. Henceforth the

joint distribution of X, Y, U is QYQU |YQX|Y , so that X, Y and U form a Markov

chain. To continue we use of the following, obtained via the chain rule

H(Xn|U) =
n∑
i=1

H(Xi|U,X i−1
1 )

≥
n∑
i=1

H(Xi|U,X i−1
1 , Y i−1

1 )

=
n∑
i=1

H(Xi|U, Y i−1
1 ) (B.20)

where on the final line we used the fact thatXi−(U, Y i−1
1 )−X i−1

1 . The following
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identity also holds

I(Y n;U) =
n∑
i=1

I(Yi;U |Y i−1
1 )

=
n∑
i=1

H(Yi|Y i−1
1 )−H(Yi|Y i−1

1 , U)

=
n∑
i=1

I(Yi;Y
i−1

1 , U). (B.21)

Substituting (B.20) into (B.19) makes the feasible set smaller because of the in-

equality. After substituting (B.21), we can continue to bound the exponent by

≤ inf
QY

sup
QU|Y n

1
n

∑n
i=1 I(Yi;Y

i−1
1 ,U)≤R2+ε

inf
QX|Y :

1
n

∑n
i=1H(Xi|U,Y i−1

1 )≥R1+2ε

D(QXY ||PXY )

= inf
QY

sup
QU|Y n

1
n

∑n
i=1 I(Yi;Vi)≤R2+ε

inf
QX|Y :

1
n

∑n
i=1 H(Xi|Vi)≥R1+2ε

D(QXY ||PXY )

where on the previous line, we let Vi = (Y i−1
1 , U). Let T denote a time shar-

ing random variable, uniformly distributed on {1, . . . , n} and independent of

everything else. Then the quantity above can be written

inf
QY

sup
QU|Y n :

I(YT ;VT ,T )≤R2+ε

inf
QX|Y :

H(XT |VT ,T )≥R1+2ε

D(QXY ||PXY )

= inf
QY

sup
QU|Y n :

I(YT ;W )≤R2+ε

inf
QX|Y :

H(XT |W )≥R1+2ε

D(QXY ||PXY ). (*)

where we set W = (VT , T ) = (Y T−1
1 , U, T ). Since (XT , YT )

d
= (X, Y ), the above

quantity is upper bounded by

inf
QY

sup
QS|Y :

I(Y ;S)≤R2+2ε

inf
QX|Y :

H(X|S)≥R1+2ε

D(QXY ||PXY ) = ηU(PXY , R1 + 2ε, R2 + 2ε).

To see this, we note that every choice in (∗) is a feasible choice in F . In par-

ticular for a given QY , let U∗ denote a choice for QU |Y n in (∗), then choosing S
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so that (Y, S)
d
= (Y, Y T−1

1 , U∗, T ), is feasible. By Lemma 45, this quantity equals

η̃U(PXY , R1 + 2ε, R2 + 2ε). Thus we have shown that

min
fn1 ,f

n
2 ,g

n
P n
XY (En(fn1 , f

n
2 , g

n)) ≥ β exp (−n(η̃U(PXY , R1 + 2ε, R2 + 2ε) + δ)) .

Taking logs and the lim sup as n→∞, and letting δ ↓ 0 and ε ↓ 0 (and invoking

Lemma 46) gives the result.

B.3 Proof of Theorem 17

B.3.1 Scheme

For a given blocklength n, we operate on a type-by-type basis and define the

encoder and decoder functions as follows. For each type QX , fix a conditional

type Q∗Z|X(QX) ∈ Cn(QX ,Y), a decoding function f(QX , QY ) ∈ F , and ran-

domly choose a set of codewords Bn(QX) in the following way. The size of

Bn(QX) is an integer satisfying

exp(nI(QX ;Q∗Z|X(QX)) + (|X ||Z|+ 2) log(n+ 1))

≤ |Bn(QX)| (B.22)

≤ exp(nI(QX ;Q∗Z|X(QX)) + (|X ||Z|+ 4) log(n+ 1))

and the codewords are drawn uniformly, with replacement, from the marginal

type class T nQ∗Z induced by QX and Q∗Z|X(QX).

Define Z : T nQx
→ Bn(Qx) as follows. Let G(x) , Bn(Qx) ∩ T nQ∗

Z|X(Qx)(x), if

G(x) is non-empty, then the output of Z(x) is drawn uniformly at random from

G(x). If G(x) is empty the output of Z(x) is drawn uniformly at random from
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Bn(Qx). The function Z(·) determines the codeword sent by the encoder to the

decoder. We define Zn = Z(Xn) and define the encoder’s message set as follows

M =M1 ×M2,

M1 = {1, 2, . . . ,M1 , exp(nR)},

M2 = {1, 2, . . . , (n+ 1)|X |}.

Operation of the encoder: To encode a sequence x ∈ T nQX , the encoder sends

the type of x and an index, U(Z(x)), of the codeword Z(x). There are two cases

to consider:

1. log |Bn(QX)| < nR, in which case we can map each member of Bn(QX) to

an element ofM1 in a one-to-one manner.

2. log |Bn(QX)| ≥ nR, in which case we assign each member of Bn(QX) to

M1 uniformly at random.

Let U(Z(x)) denote the element to which Z(x) is mapped. The encoder can be

expressed mathematically as

ψ(x) = (U(Z(x)), k(QX)) for x ∈ T nQX (B.23)

Operation of the Decoder: The decoder operates in a two-step manner. First it

attempts to recover the codeword Zn:

1. If |Bn(QX)| < nR then Zn can be decoded without error,

2. If |Bn(QX)| ≥ nR the decoder receives a bin index and uses the side in-

formation to pick the “best” z from the bin in the minimum conditional
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entropy sense: it searches for a ẑ in the received bin so that among all z̃

in the bin, H(z̃|y) > H(ẑ|y). If there is no such ẑ it picks uniformly at

random from the bin.

Let

ϕ1(i, k(QX),y) =


ẑ ẑ ∈ Bin(i) and ∀z̃ ∈ Bin(i),

z̃ 6= ẑ : H(z̃|y) > H(ẑ|y)

any z̃ ∈ Bin(i) if no such ẑ ∈ Bin(i)

(B.24)

where Bin(i) = {z : z ∈ Bn(QX) and U(z) = i} denotes the set of codewords

that are assigned to index i. Second, the decoder uses the estimation function,

f , to combine the side information y with codeword z to give the reproduction

x̂. This is expressed mathematically as

ϕ(i, k(QX),y) = x̂ s.t. x̂j = f(ϕ1(i, k(QX),y)j,yj). (B.25)

B.3.2 Error probability calculation

It will be convenient to consider the following subsets of the sequence space

Eb =
{

(x,y, z) : z ∈ T nQ∗
Z|X(Qx)(x), d(x, f(y, z)) < ∆,

log |Bn(Qx)| ≥ nR}

Ec =
{

(x,y, z) : z 6∈ T nQ∗
Z|X(Qx)(x)

}
Ed =

{
(x,y, z) : z ∈ T nQ∗

Z|X(Qx)(x), d(x, f(y, z)) ≥ ∆
}

Eb corresponds to a potential binning error, Ec to a covering error and Ed to a dis-

tortion error. We will consider the errors on these sets separately. Equivalently
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we can view these error events as properties of the joint type, so we define

Db = {QXY Z : E[d(X, f(Y, Z))] ≤ ∆, QZ|X = Q∗Z|X(QX)

log |Bn(QX)| ≥ nR}

Dc = {QXY Z : QZ|X 6= Q∗Z|X(QX)}

Dd = {QXY Z : E[d(X, f(Y, Z))] > ∆,

QZ|X = Q∗Z|X(QX)}.

Before we proceed with the proof of Theorem 1, we establish the following use-

ful facts.

Lemma 47. Let Xn, Y n, Zn = Ẑ(Xn) be generated according to our scheme and sup-

pose that (x,y, z) is in (Ec)c, i.e. that z ∈ T nQ∗
Z|X(Qx)(x). Then

Pr(Xn = x, Y n = y, Zn = z) (B.26)

≤ P n
XY (x,y)

1

|T nQ∗
Z|X(Qx)(x)|

. (B.27)

Proof. The proof mirrors that of Lemma 40 and is omitted.

Lemma 48. Let Xn, Y n, Zn = Z(Xn) be generated according to our scheme and sup-

pose that (x,y, z) ∈ Ec. Then

Pr(Xn = x, Y n = y, Zn = z)

≤ exp(−(n+ 1)2). (B.28)

Proof. The proof mirrors that of Lemma 41 and is omitted.
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Lemma 49. For all strings x, z such that z ∈ T nQ∗Z ,

Pr(z ∈ Bn(Qx)) ≤

(n+ 1)|Z|(1+|X |)+4

× exp(n(I(Qx;Q∗Z|X(Qx))−H(Qz))).

Proof. By the construction of Bn(Qx), each of the codewords is chosen with re-

placement from the set T nQ∗z . Thus each string has probability |T nQ∗z |
−1 and we

make |Bn(Qx)| such choices (bounded by (B.22)). From [27, lemma 2.3] we have

|TQz| ≥ (n+ 1)−|Z| exp(nH(Qz)).

Invoking the union bound gives the result.

Lemma 50. Let (x,y, z) ∈ (Ec ∪ Ed)c. Then

Pr(d(Xn, X̂n) > ∆|Xn = x, Y n = y, Zn = z)

≤ exp
(
−n
(
(R− J(Qxyz)− δnb )+)) (B.29)

where

J(Qxyz) = I(Qx;Q∗Z|X(Qx))− I(Qy;Qz|y)

and δnb =
1

n
log(n+ 1)|Z|(|Y|+1+|X |)+4.

Moreover, if log |Bn(Qx)| < nR then

Pr(d(Xn, X̂n) > ∆|Xn = x, Y n = y, Zn = z) = 0.

Proof. For the given sequence x,y, z let L be the event that z 6= ϕ1(ψ(x),y).

(Observe that L occurs when the decoder decodes the wrong codeword and that

Pr(d(Xn, X̂n) > ∆|Xn = x, Y n = y, Zn = z) is upper bounded by Pr(L|Xn =

x, Y n = y, Zn = z).)

187



If Qx is such that log |Bn(Qx)| < nR, then

Pr(L|Xn = x, Y n = y, Zn = z) = 0.

For the case where log |Bn(Qx)| ≥ nR (i.e. (x,y, z) ∈ Eb), we note that the set

S(z|y) contains all strings z̃ having the property that z̃ has the same type as z

and lower conditional empirical entropy.

Pr(L|Xn = x, Y n = y, Zn = z)

≤
∑

z̃∈S(z|y)

Pr(z̃ ∈ Bn(Qx), U(z̃) = U(z))

=
∑

z̃∈S(z|y)

Pr(z̃ ∈ Bn(Qx))

× Pr(U(z̃) = U(z)|z̃ ∈ Bn(Qx))

≤
∑

z̃∈S(z|y)

(n+ 1)|Z|(1+|X |)+4 1

M1

× exp(n(I(Qx;Q∗Z|X(Qx))−H(Qz))) (B.30)

where the last line follows from Lemma 49. Next,

Pr(L|Xn = x, Y n = y, Zn = z)

≤ (n+ 1)|Z|(|Y|+1+|X |)+4 exp(nH(Qz|y|Qy))

× exp(n(I(Qx;Q∗Z|X(Qx))−H(Qz)))
1

M1

= (n+ 1)|Z|(|Y|+1+|X |)+4 exp (−n (R− J(Qxyz)))

where the first line follows from Lemma 42. Also, since Pr(L|Xn = x, Y n =

y, Zn = z) ≤ 1 we get

Pr(L|Xn = x, Y n = y, Zn = z)

= exp(−n (R− J(Qxyz)− δnb )+).
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Lemma 51. Let δnb → 0 with n,

Gn[QXY Z , PXY , f, d,∆, R] =

D(QXY Z ||PXYQZ|X) EQ[d(X, f(Y, Z))] ≥ ∆

D(QXY Z ||PXYQZ|X)

+
(
R− I(QX ;Q∗Z|X(QX))

+I(QY ;QZ|Y )− δnb
)+ EQ[d(X, f(Y, Z))] < ∆

I(QX ;QZ|X) ≥ R

0 otherwise

and

θn(PXY , d,∆, R) = min
QX

max
QZ|X∈Cn(X→Z)

min
QY

max
f∈F

min
QXY Z

Gn(QXY Z , PXY , f, d,∆, R),

θ∞(PXY , d,∆, R) = inf
QX

sup
QZ|X

inf
QY

sup
f∈F

inf
QXY Z

G(QXY Z , PXY , f, d,∆, R).

In θn the minimizations and maximizations on QX , QZ|X , QY and QXY Z are over

types/conditional types, and in θ∞ they are over distributions. And, in the optimization

of QXY Z the marginal type/distribution of X and Y and conditional type/distribution

of Z given X are taken to be those specified earlier in the optimization. Then

lim inf
n→∞

θn(PXY , d,∆, R) ≥ θ∞(PXY , d,∆, R) (B.31)

Proof. Choose δ > 0 and n sufficiently large so that G−Gn < δ
2

(i.e. δnb <
δ
2
). Let

Q
(n)
X , Q

(n)
Z|X , Q

(n)
Y , Q

(n)
XY Z and f (n) be such that

θn(PXY , d,∆, R) = Gn(Q
(n)
XY Z , PXY , f

(n), d,∆, R).

For convenience, henceforth we omit writing the arguments PXY , d,∆ and

R in G(·) and Gn(·). Also, when necessary for clarity, we expand QXY Z =

QX , QZ|X , QY , QY |XZ in the argument to G and Gn(·).
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By boundedness there exists a subsequence of (Q
(n)
X , Q

(n)
Z|X , Q

(n)
Y , Q

(n)
XY Z) with

index n′ such that the sequence (Q
(n′)
X , Q

(n′)
Z|X , Q

(n′)
Y , Q

(n′)
XY Z , f

(n′)) converges to a

limit (Q∞X , Q
∞
Z|X , Q

∞
Y , Q

∞
XY Z , f

∞). There exists Q̃∞Z|X so that

inf
QY

sup
f

inf
QY |XZ

G(Q∞X , Q̃
∞
Z|X , QY , QXY Z , f) ≥ sup

QZ|X

inf
QY

sup
f

inf
QY |XZ

G(Q∞X , QZ|X , QY , QXY Z , f)−δ
2

and there is a sequence Q̃(n′)
Z|X converging to Q̃∞Z|X . Let

Q̃
(n′)
Y = arg min

Q̄Y
max
f

min
QXY Z :

QX=Q
(n′)
X

QZ|X=Q̃
(n′)
Z|X

QY =Q̄Y

Gn′(QXY Z , f)

and by considering a further subsequence we may assume that Q̃(n′)
Y → Q̃∞Y .

Then there exists f̃∞ so that

inf
QY |XZ

G(Q∞X , Q̃
∞
Z|X , Q̃

∞
Y , QY |XZ , f̃

∞) ≥ max
f

inf
QY |XZ

G(Q∞X , Q̃
∞
Z|X , Q̃

∞
Y , QY |XZ , f)

and we set f̃ (n′) = f̃∞. Let

Q
(n′)
XY Z = arg min

QXY Z :

QX=Q
(n′)
X

QZ|X=Q̃
(n′)
Z|X

QY =Q
(n′)
Y

Gn′(QXY Z , f̃
(n′))

and by considering a further subsequence we may assume that Q̃(n′)
XY Z → Q̃∞XY Z .

Observe that

θn
′
(PXY , d,∆, R) = max

QZ|X∈Cn
′ (X→Z)

min
QY

max
f∈F

min
QY |XZ

Gn′(Q
(n′)
X , QZ|X , QY , QY |XZ , f)

≥ min
QY

max
f∈F

min
QY |XZ

Gn′(Q
(n′)
X , Q̃

(n′)
Z|X , QY , QY |XZ , f)

= max
f∈F

min
QY |XZ

Gn′(Q
(n′)
X , Q̃

(n′)
Z|X , Q̃

(n′)
Y , QY |XZ , f)

≥ min
QY |XZ

G(Q
(n′)
X , Q

(n′)
Z|X , Q

(n′)
Y , QY |XZ , f̃

(n′))

= Gn′(Q̃
(n′)
XY Z , f̃

(n′))
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But Gn′(Q̃
(n′)
XY Z , f̃

(n′)) ≥ G(Q̃
(n′)
XY Z , f̃

(n′)))− δ
2

and since G is lower-semicontinuous

lim inf
n′→∞

Gn′(Q
(n′)
X , Q̃

(n′)
Z|X , Q̃

(n′)
Y , Q̃

(n′)
XY Z , f̃

∞)

≥ G(Q∞X , Q̃
∞
Z|X , Q̃

∞
Y , Q̃

∞
XY Z , f̃

∞)− δ

2

≥ inf
QXY Z

G(Q∞X , Q̃
∞
Z|X , Q̃

∞
Y , QXY Z , f̃

∞)− δ

2

= sup
f

inf
QXY Z

G(Q∞X , Q̃
∞
Z|X , Q

∞
Y , QXY Z , f)− δ

2

≥ inf
QY

sup
f

inf
QXY Z

G(Q∞X , Q̃
∞
Z|X , QY , QXY Z , f)− δ

2

≥ sup
QZ|X

inf
QY

sup
f

inf
QXY Z

G(Q∞X , QZ|X , QY , QXY Z , f)− δ

≥ inf
QX

sup
QZ|X

inf
QY

sup
f

inf
QXY Z

G(QX , QZ|X , QY , QXY Z , f)− δ

= θ∞(PXY , d,∆, R)− δ

Hence lim infn′→∞ θ
n′(PXY , d,∆, R) ≥ lim infn′→∞G(Q̃

(n′)
XY Z , f̃

(n′)) ≥ θ(PXY , d,∆, R)−

δ. Letting δ ↓ 0 gives the result.

We are now in a position to prove Theorem 17. We will accomplish this

by giving an upper bound on the probability of error by considering the error

events separately.

Proof of Theorem 17. We start by noting that for n sufficiently large the constraint
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of equation (4.11) is satisfied. Summing over sequences gives

Pr(d(Xn, X̂n) > ∆)

=
∑
x,y,z

Pr(d(Xn, X̂n) > ∆|Xn = x, Y n = y, Zn = z)× Pr(Xn = x, Y n = y, Zn = z)

≤
∑
Eb

[
Pr(d(Xn, X̂n) > ∆|Xn = x, Y n = y, Zn = z)× Pr(Xn = x, Y n = y, Zn = z)

]
+
∑
Ec

Pr(Xn = x, Y n = y, Zn = z)

+
∑
Ed

Pr(Xn = x, Y n = y, Zn = z)

where the last inequality followed from upper bounding the conditional error

probability by 1 in the summations over Ec and Ed, and by zero (Lemma 50)

on (Eb ∪ Ec ∪ Ed)c (the sequences omitted from the sum). Next, we bound the

sequence probabilities using Lemma 47 on Eb and Ed and Lemma 48 on Ec. We

bound the conditional error probability on Eb using Lemma 50.

Pr(d(Xn, X̂n) > ∆)

≤
∑
Eb

[
exp

(
−n (R− J(Qxyz)− δnb )+)× P n

XY (x,y)
1

|T nQ∗
Z|X(Qx)(x)|

]

+
∑
Ec

exp(−(n+ 1)2)

+
∑
Ed

P n
XY (x,y)

1

|T nQ∗
Z|X(Qx)(x)|

We can rewrite the above by first summing over types and then over sequences
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within each type class. This gives us

Pr(d(Xn, X̂n) > ∆)

≤
∑
QX

∑
QY

[( ∑
QXY Z∈Db

∑
(x,y,z)∈TnQXY Z

P n
XY (x,y)

1

|T nQ∗
Z|X(Qx)(x)|

× exp
(
−n (R− J(Qxyz)− δnb )+))

+

( ∑
QXY Z∈Dd

∑
(x,y,z)∈TnQXY Z

P n
XY (x,y)

1

|T nQ∗
Z|X(Qx)(x)|

)

+
∑

QXY Z∈Dc

∑
(x,y,z)∈TnQXY Z

exp(−(n+ 1)2)

]
.

Note that in the summation over joint types QXY Z , the marginal types of X and

Y are fixed to be those set by the earlier summations. Proceeding in a similar

manner as was taken in going from (B.8) to (B.11) in the SCPSI proof (with Z

taking the role of S) we get

Pr(d(Xn, X̂n) > ∆)

≤
∑
QX

∑
QY

[ ∑
QXY Z∈Db

exp
(
− n

(
D(QXY Z ||PXYQZ|X)

+R− J(QXY Z)− δnb
)+
)

+
∑

QXY Z∈Dd

exp
(
− nD(QXY Z ||PXYQZ|X)

)
+ exp(−(n+ 1)2 + n log(|X ||Y||Z|))

]

Next, we use a + b ≤ 2 max(a, b) to combine the first two terms. We can

then upper bound the summations by maximizing over the types, and since the

choice of test channel Q∗Z|X and estimation function f were arbitrary, we can
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optimize to give

Pr(d(Xn, X̂n) > ∆)

≤
[
|Pn(X )|max

QX
min
Q∗
Z|X

|Pn(Y)|max
QY

2|Pn(X × Y × Z)|

min
f∈F

max
QXY Z :

QZ|X=Q∗
Z|X

G̃n[QXY Z , PXY , f,∆, R, n]
]

+ |Pn(X × Y × Z)| exp(−(n+ 1)2 + n log(|X ||Y||Z|))

where we used the definition of Gn from Lemma 51. Moving the optimizations

into the exponent we get

Pr(d(Xn, X̂n) > ∆)

≤ 2|Pn(X )||Pn(Y)||Pn(X × Y × Z)| exp
(
− n

[
min
QX

max
Q∗
Z|X

min
QY

max
f∈F

min
QXY Z :

QZ|X=Q∗
Z|X

Gn[QXY Z , PXY , f, d,∆, R]
])

+ |Pn(X × Y × Z)| exp(−(n+ 1)2 + n log(|X ||Y||Z|))

We can absorb the set cardinalities δ2 = 1
n
[1+log(n+1)|X |+|Y|+|X ||Y||Z|] and observe

that in the limit as n→∞, δ2 vanishes, as does the second summand. Hence we

have

lim inf
n→∞

− 1

n
log Pr(d(Xn, X̂n) > ∆)

≥ lim inf
n→∞

min
QX

max
QZ|X∈
Cn(QX ,Z)

min
QY

max
f∈F

min
QXY Z

Gn [QXY Z , PXY , f, d,∆, R]

≥ inf
QX

sup
QZ|X

inf
QY

sup
f∈F

inf
QXY Z

G [QXY Z , PXY , f,∆, R] ,

where the final line followed from application of Lemma 51.
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B.4 Gaussian Type-classes

For the Gaussian case (X = Y = R), we need the following definitions3. These

are a modification of the Gaussian types used by Arikan and Merhav [92]. The

difference is that here the type-classes are disjoint and the conditions specify-

ing joint types are independent. This significantly simplifies the subsequence

analysis and might prove useful in other applications.

Definition 13. For a given 0 < ε < 1 and σ2
X > 0, a Gaussian type-class T ε

σ2
X

is

defined as the set of n-sequences

T εσ2
X

=
{
x ∈ Rn : |xtx− nσ2

X | ≤ nε
}
.

For such a type-class, it can be shown (see Appendix B.4) that

(
1− 2σ4

X

nε2

)
exp

(
n

(
h(σ2

X)− ε

2σ2
X

))
≤ Vol(T εσ2

X
) ≤ exp

(
n

(
h(σ2

X) +
ε

2σ2
X

))
. (B.32)

Similarly, for a given 0 < ε < 1 and covariance matrix

K =

 σ2
X ρσXσY

ρσXσX σ2
Y

 ,
with non-zero variances, a joint Gaussian type-class T εK is defined as the set of

3For more than two jointly Gaussian random variables, these definitions can be extended in
the obvious way.
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pairs of n-sequences

T εK =
{

(x,y) ∈ Rn × Rn : |xtx− nσ2
X | ≤ nε

|yty − nσ2
Y | ≤ nε

|xty − ρ
√

xtxyty| ≤ ε
√

xtxyty}.

This set has the corresponding volume bound

Vol(T εK) ≤ exp (n (h(K) + oε(1))) , (B.33)

where we use oε(1) to denote a quantity g(ε) > 0 having the property that

limε→0 g(ε) = 0.

Furthermore, for a given x ∈ T ε
σ2
X

, we define the conditional Gaussian type-

class T εK(x) as the x-set of n-sequences

T εK(x) = {y ∈ Rn : (x,y) ∈ T εK}.

For this set one can show (see Appendix B.4) that

Vol(T εK(x))

≥
(

1− 1

noε(1)
+ oε(1)

)
exp(n(h(KY |X)− f̃ε)). (B.34)

where f̃ε is an oε(1) term whose value is determined in the proof. In Appendix

B.4 we show for a Gaussian distribution fK(·, ·), if (x,y) ∈ T ε
K̃

, where K̃ is any

positive definite covariance matrix, then

fnXY (x,y) ≤ exp
(
− n

(
D(K̃||K) + h(QK̃)− oε(1)

))
. (B.35)

The analysis for the Gaussian case requires that we “quantize” the space of

3×3 covariance matrices. Unlike discrete memoryless sources, Gaussian sources

require use of a “bounding box” to limit the number of types. To this end, fix 0 <
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ML < 1 and MU > ML; both will be chosen later. For a fixed 0 < ε < ML define

σ2(i) = ML + 2iε and for i, j, ε, given define ηij(r) =
√
σ2(i)σ2(j)(−1 + 2ε(r−1)).

We will consider type-classes indexed by matrices of the form

Kε(i, j, k, r, s, t) =


σ2(i) ηij(r) ηik(s)

ηij(r) σ2(j) ηjk(t)

ηik(s) ηjk(t) σ2(k)


and i, j, k, r, s, t ≥ 1; note that not all of these matrices are positive semidefinite.

We let PεX = {i : ∃x ∈ T εσ2(i) with xtx ≤ MU} and similarly

PεXY Z = {(i, j, k, r, s, t) : ∃(x,y, z) ∈ TK(i,j,k,r,s,t) with xtx ≤ nMU and yty ≤

nMU and ztz ≤ nMU}, where MU � ML. With SL = {(x,y, z) : xtx ≤

n(ML + ε) or yty ≤ n(ML + ε) or ztz ≤ n(ML + ε)}, SU = {(x,y, z) : xtx >

nMU or yty > nMU or ztz > nMU}, the union of the shells T εK(i,j,k,r,s,t), and the

set SL cover R3n entirely and we defineR3n = R3n\(SL∪SU). We denote by ν(x)

the index of the shell containing the string x, i.e. x ∈ T εσ2(ν(x)), which is uniquely

defined almost everywhere inR3n.

Proof of (B.32)

Let X ∼ N (0, σ2
X). Then

1 ≥
∫
T ε
σ2
X

(2πσ2
X)−

n
2 exp

(
− xtx

2σ2
X

)
dx

≥
∫
T ε
σ2
X

(2πσ2
X)−

n
2 exp

(
−n(σ2

X + ε)

2σ2
X

)
dx

= exp

(
−n
(

1

2
log(2πσ2

X) +
1

2

)
− nε

2σ2
X

)
Vol(T εσ2

X
),
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which gives the upper bound. For the lower bound,

Pr(T εσ2
X

) =

∫
T ε
σ2
X

(2πσ2
X)−

n
2 exp

(
− xtx

2σ2
X

)
dx

≤
∫
T ε
σ2
X

(2πσ2
X)−

n
2 exp

(
−n(σ2

X − ε)
2σ2

X

)
dx

= Vol(T εσ2
X

) exp

(
−n
(

1

2
log(2πeσ2

X)

)
+

nε

2σ2
X

)
.

Conversely, by Chebyshev’s inequality

1− Pr(T εσ2
X

) = Pr
(
|xtx− nσ2

X | > nε
)

≤ E

[
(xtx− nσ2

X)
2

n2ε2

]

=
2σ4

X

nε2

Combining these two calculations gives the lower bound.

Proof of (B.34)

Let x ∈ T ε
σ2
X

, then

T εK(x) =
{
y ∈ Rn :|yty − nσ2

Y | ≤ nε∣∣∣∣∣ytxn − ρ
√

xtx

n

yty

n

∣∣∣∣∣ ≤ ε

√
xtx

n

yty

n

}
.

By the triangle inequality∣∣∣∣∣ytxn − ρ
√

xtx

n

yty

n

∣∣∣∣∣ ≤
∣∣∣∣∣ytxn − ρ

√
xtx

n
σY

∣∣∣∣∣+

∣∣∣∣∣ρ
√

xtx

n
σY − ρ

√
xtx

n

yty

n

∣∣∣∣∣ ,

198



whence

T εK(x) ⊃ A(x) ,
{
y ∈ Rn :|yty − nσ2

Y | ≤ nε∣∣∣∣∣ytxn − ρ
√

xtx

n
σY

∣∣∣∣∣ ≤ ε

2

√
σ2
Y − ε

√
xtx

n∣∣∣∣∣ρ
√

xtx

n
σY − ρ

√
xtx

n

yty

n

∣∣∣∣∣ ≤ ε|ρ|
2

√
σ2
Y − ε

√
xtx

n

}
.

Let V be a Gaussian random vector whose law is N (0, Iσ2
Y (1 − ρ2)), and let

Y = ρσY√
xtx
n

x + V. Applying the union bound gives

Pr(A(x)c) ≤ Pr
(
|YtY − nσ2

Y | > nε
)

+ Pr

(∣∣∣∣∣Ytx

n
− ρ
√

xtx

n
σY

∣∣∣∣∣ > ε

2

√
σ2
Y − ε

√
xtx

n

)

+ Pr

(∣∣∣∣∣ρ
√

xtx

n
σY − ρ

√
xtx

n

YtY

n

∣∣∣∣∣ > ε|ρ|
2

√
σ2
Y − ε

√
xtx

n

)
.

The event in the third probability on the right is equivalent to{ ∣∣∣∣YtY

n
− σ2

Y −
ε2(σ2

Y − ε)
4

∣∣∣∣ > εσY

√
σ2
Y − ε

}
.

Using this fact and bounding each of the probabilities using Chebyshev’s in-

equality yields

Pr(A(x)c) ≤ E
[

(YtY − nσ2
Y )2

n2ε2

]
+ E

[
(Y

tx
n

√
n

xtx
− ρσY )2

ε2(σ2
Y − ε)/4

]

+ E

[
(Y

tY
n
− σ2

Y − ε2(σ2
Y − ε)/4)2

ε2σ2
Y (σ2

Y − ε)

]

=
2σ4

Y

nε2
+

σ2
Y (1− ρ2)

n(ε2(σ2
Y − ε))/4

+
2σ4

Y

nε2σ2
Y (σ2

Y − ε)
+
ε2(σ2

Y − ε)
16σ2

Y

=
1

noε(1)
+ oε(1) (*)

To bound the volume we note that under the law above

Pr(A(x)) =

∫
A(x)

fV

(
y −
√
nρσY x√
xtx

)
dy

=

∫
A(x)

(2πσ2
Y (1− ρ2))−n/2 exp

(
−
∑

i(yi −
√
nρσY√
xtx

xi)
2

2(σ2
Y (1− ρ2))

)
dy.
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We can get an upper bound on the density by lower bounding the summand in

the exponent

∑
i

(
yi −

√
nρσY√
xtx

xi

)2

= yty − 2ρσY

√
n√
xtx

ytx + nρ2σ2
Y

≥ n(σ2
Y − ε) + nρ2σ2

Y − 2ρσY n
(
ρσY + sgn(ρ)ε/2

√
σ2
Y − ε

)
= n(σ2

Y (1− ρ2)− fε(ρ, σY ))

where fε(ρ, σY ) = ε(1 + ρ sgn(ρ)σY
√
σ2
Y − ε) goes to zero with ε. Thus

Pr(A(x)) ≤ Vol(A(x)) exp

(
−n
(

1

2
log(2πσ2

Y (1− ρ2))− 1

2
− f̃ε(ρ, σY )

))
= Vol(A(x)) exp

(
−n
(

1

2
log(2πeσ2

Y (1− ρ2))− f̃ε(ρ, σY )

))
,

where f̃ε = fε/(2(σ2
Y (1 − ρ2))). Combining this with (∗) and using the fact that

Vol(T εK(x)) ≥ Vol(A(x)) gives the result.

Proof of (B.35)

Let (X, Y ) ∼ N (0, K) and (x,y) ∈ T ε
K̃

. Then

f(x,y) = [(2π)2|K|]−
n
2

× exp

(
− 1

2(1− ρ2)

(
xtx

σ2
X

+
yty

σ2
Y

− 2ρxty

σXσY

))
.

Applying the bounds from the definition of T ε
K̃

allows us to continue the in-

equality with

≤ exp

(
− n

2
log((2π)2|K|)− 1

2(1− ρ2)

(n(σ̃2
X − ε)
σ2
X

+
n(σ̃2

Y − ε)
σ2
Y

−
2ρn
√

(σ̃2
X + ε)(σ̃2

Y + ε)(ρ̃+ sgn(ρ)ε)

σXσY

))
.
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For fε(σX , σY , σ̃X , σ̃Y , ρ, ρ̃) (which goes to zero with ε), we can write

≤ exp−n

(
1

2

(
log((2π)2|K|) +

σ̃2
X

σ2
X(1− ρ2)

+
σ̃2
Y

σ2
Y (1− ρ2)

− 2ρσ̃X σ̃Y ρ̃

σXσY (1− ρ2)
− fε(σX , σY , σ̃X , σ̃Y , ρ, ρ̃)

))
.

Finally, using the identity

D(K̃||K) =
1

2

(
log
|K|
|K̃|

+ Tr(K−1K̃)− 2

)
gives

f(x,y) ≤ exp−n
(
D(K̃||K) +

1

2
log(2πe)2|K̃|

− fε(σX , σY , σ̃X , σ̃Y , ρ, ρ̃)
)

B.5 Proof of Theorem 19

B.5.1 Scheme

Let ε > 0 and ML,MU as defined in Appendix B.4. For each blocklength n,

and for each shell of n-length x sequences, T εσ2(i) we choose a Gaussian test

channel. The test channel is specified by selecting integers k(i) and s(i) (such

that σ2(k(i)) < MU ) so that if X ∼ N (0, σ2(i)) is the input to the channel then

(X,Z) ∼ N (0, σ2(i)); where the bar applied to a scalar results in

σ2(i) =

 σ2(i) ηi,k(i)(s(i))

ηi,k(i)(s(i)) σ2(k(i))

 . (B.36)

The codebook for the ith shell of x sequences is a randomly chosen set of

codewords, Bn(i), selected in the following way. The size of Bn(i) is an integer
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satisfying

exp(n(Iσ2(i)(X;Z) + 2gε)) ≤ |Bn(i)| ≤ exp(n(Iσ2(i)(X;Z) + 3gε)) (B.37)

where gε = f̃ε + ε/2σ2(k(i)) (c.f. (B.34)) and the codewords are chosen uniformly

from the shell Tσ2(k(i)).

For x ∈ T εσ2(i), define Z(x) : T εσ2(i) → Bn(i) as follows. We can cover the

shell T εσ2(i) with conditional type-classes T ε
σ2(i)

(Bn(i)[j]), whereBn(i)[j] is the jth

codeword. This covering induces a partition of sequences in T εσ2(i), with the

partition being based on the set of possible codewords in Bn(i) that have the

correct joint type with the sequences. For each set generated by this partition,

we chose the codeword for that set uniformly among the covering conditional

type-classes. For the sets not covered by any class, the codeword is selected at

random from Bn(i). We define Zn = Z(Xn). Finally, let the encoder’s message

set be defined asM =M1 ×M2, where

M1 = {1, . . . ,M1 , exp(nR)},M2 = {1, 2, . . . , |PεX |}.

Operation of the Encoder: To encode a sequence x ∈ T εσ2(i), the encoder sends i,

the “type” of x and an index, U(Z(x)), of the codeword Z(x). If log |Bn(i)| ≥ nR

we use random binning of the codewords, and U(Z(x)) denotes the element of

M1 to which Z(x) is mapped. For sequences with xtx 6∈ (n(ML + ε), nMU ] the

encoder declares an error. The encoder can be expressed mathematically as

ψ(x) = (U(Z(x)), i) for x ∈ T εσ2(i) (B.38)

Operation of the Decoder: The decoder operates in a two-step manner. First it

attempts to recover the codeword Zn:
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1. If log |Bn(i)| < nR then Zn can be decoded without error,

2. If log |Bn(i)| ≥ nR the decoder receives a bin index and uses the side infor-

mation to pick the z from the bin by searching for a ẑ in the received bin

so that among all z̃ in the bin, ρ2
z̃,y < ρ2

ẑ,y. If there is no such ẑ, the encoder

picks uniformly at random from the bin.

Let

ϕ1(l, i,y) =


ẑ ẑ ∈ Bin(l) and ∀z̃ 6= ẑ ∈ Bin(l),

ρ2
z̃,y < ρ2

ẑ,y

any z̃ if no such ẑ ∈ Bin(l)

(B.39)

where Bin(l) = {z : z ∈ Bn(i) and U(z) = l} denotes the set of codewords

that are assigned to bin l. The marginal types i, j of x and y are known, and

for each pair i, j we choose an estimation function. We restrict our attention to

estimation functions that are linear in the side information and the codeword,

i.e. λi,j(y, z) = α(i, j)y + β(i, j)z, where α(i, j) = νε, β(i, j) = κε for integers

ν, κ so that α(i, j), β(i, j) ∈ [−Mλ,Mλ]. α and γ will be optimized later and

Mλ > 0 is an arbitrary positive constant. For the second step the decoder uses

the estimation function, λ, to combine the side information y with codeword z

to give the reproduction x̂. This is expressed mathematically as

ϕ(l, i,y) = x̂ (B.40)

s.t. x̂m = α(i, ν(y))ym + β(i, ν(y))ϕ1(l, i,y)m.
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B.5.2 Key events

The following subsets of R3n will be of interest.

Eb =
{

(x,y, z) ∈ R3n : z ∈ T ε
σ2(ν(x))

(x),

1

n
‖x− λν(x),ν(y)(y, z)‖2

2 < ∆, log |Bn(ν(x))| ≥ nR
}

Ec =
{

(x,y, z) ∈ R3n : z 6∈ T ε
σ2(ν(x))

(x)
}

Ed =
{

(x,y, z) ∈ R3n : z ∈ T ε
σ2(ν(x))

(x),

1

n
‖x− λν(x),ν(y)(y, z)‖2

2 ≥ ∆
}
.

On Eb, the distortion constraint is violated only if there is a decoding error. On

Ec we say there is a “covering” error: the encoder cannot find a codeword with

the desired joint type with the source sequence. On Ed, the distortion constraint

will be violated even if the codeword is decoded correctly by the decoder.

For x ∈ T εσ2(i), F is defined to be the event that there exists z̃ ∈ Bn(i) such

that z̃ ∈ T n
σ2(i)

(x).

B.5.3 Error Probability Calculation

We will first state several useful lemmas, which are “Gaussian versions” of the

discrete memoryless Wyner-Ziv lemmas.

Lemma 52. Let Xn, Y n, Zn = Z(Xn) be generated according to our scheme and sup-

pose that A ⊂ (Ec)c ∩R3n. Then

Pr((Xn,Y n, Zn) ∈ A)

≤
∫
A

fnXY (x,y)
1

Vol(T ε
σ2(ν(x))

(x))
dxyz. (B.41)
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Proof. For the x,y, z ∈ A in this lemma, {Xn = x, Y n = y, Zn = z} implies that

the event F has occurred. Let AXY be the projection of A onto XY space, i.e.

AXY = {(x,y) : (x,y, z) ∈ A for some z} and Ax,y = {z : (x,y, z) ∈ A}. Then

Pr((Xn,Y n, Zn) ∈ A)

= Pr((Xn, Y n, Zn) ∈ A,F )

=

∫
AXY

fnXY (x,y) Pr(F |Xn = x, Y n = y)

× Pr(Zn ∈ Ax,y|Xn = x, Y n = y, F )dxy

≤
∫
AXY

fnXY (x,y)

× Pr(Zn ∈ Ax,y|Xn = x, Y n = y, F )dxy

=

∫
AXY

fnXY (x,y)

∫
Ax,y

fZ|X,Y,F (z|x,y)dzdxy

=

∫
A

fnXY (x,y)
1

Vol(T ε
σ2(ν(x))

(x))
dxyz

where in the final line we used that conditional on F and Xn = x, Zn is uni-

formly distributed over T ε
σ2(ν(x))

(x) and independent of Y .

Lemma 53. Let Xn, Y n, Zn = Z(Xn) be generated according to our scheme. Then for

n sufficiently large

Pr((Xn,Y n, Zn) ∈ Ec) ≤ |PεX | exp(− exp(noε(1))) (B.42)

Proof. For (x,y, z) ∈ Ec, {Xn = x, Y n = y, Zn = z} implies that the event F c has
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occurred. Thus

Pr((Xn,Y n, Zn) ∈ Ec)

= Pr((Xn, Y n, Zn) ∈ Ec, F c)

≤
∑

T ε
σ2(i)

∈PεX

Pr(Xn ∈ T εσ2(i)) Pr(F c|Xn ∈ T εσ2(i))

× Pr((Xn, Y n, Zn) ∈ Ec|Xn ∈ T εσ2(i), F
c)

≤
∑

T ε
σ2(i)

∈PεX

Pr(F c|Xn ∈ T εσ2(i)) Pr(Xn ∈ T εσ2(i)).

Pr(F c|Xn ∈ T εσ2(i)) is the probability that there is no z̃ ∈ Bn(i) so that z̃ ∈

T ε
σ(i)

(Xn). We will now give an upper bound on this probability using the prop-

erties of the codeword set. Let m = |Bn(i)| and Bn(i)[j] be the jth codeword in

the set Bn(i). Then

Pr(F c|Xn ∈ T εσ2(i)) =
m∏
j=1

Pr(Bn(i)[j] 6∈ T ε
σ2(i)

(Xn))

=
m∏
j=1

[1− Pr(Bn(i)[j] ∈ T ε
σ2(i)

(Xn))]

=

(
1−

Vol(T ε
σ2(i)

(Xn))

Vol(T εσ2(k(i)))

)m

≤ exp

(
−

Vol(T ε
σ2(i)

(Xn))

Vol(T εσ2(k(i)))
m

)

where the last line followed by applying the inequality (1 − t)m ≤ exp(−tm).

Next, using (B.32) and (B.34) to bound the volume of the shells,

Pr(F c|Xn ∈ T εσ2(i))

≤ exp

(
−
(

1− 1

noε(1)
− oε(1)

)
m exp

(
−n
(
Iσ2(i)(X;Z) + gε

)))
≤ exp(− exp(noε(1)))

where the final line followed by substitution our choice of m from (B.37).
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Lemma 54. For any positive definite covariance matrix K,

Pr(T εK ∩ (Ed ∪ Eb))

≤ exp
(
− n

(
D(K||K̄)− oε(1)− δp

))
(B.43)

where K̄ is defined in (4.16) and

and δp =
1

n
log

(
1− 1

noε(1)
− oε(1)

)−1

Proof. Lemma 52 gives an upper bound for the probability density on Eb and Ed.

Applying this lemma with (B.32) and (B.35), we get

Pr(T εK ∩ (Ed ∪ Eb)) ≤
∫
T εK

fnΣ(x,y)
1

Vol(T ε
σ2(ν(x))

(x))
dxyz

≤
∫
T εK

exp
(
− n

(
D(KXY ||Σ) + h(KXY )− oε(1)

))
×
(

1− 1

noε(1)
− oε(1)

)−1

exp(−n(h(KZ|X)− oε(1)))dxyz

= Vol(T εK) exp
(
− n

(
D(KXY ||Σ) + h(KXY )− oε(1)

))
×
(

1− 1

noε(1)
− oε(1)

)−1

exp(−n(h(KZ|X)− oε(1)))dxyz.

Bounding the volume term using (B.33) and applying the identity

D(K||K̄) = D(KXY ||Σ) + h(KZ|X)− h(KZ|XY )

gives the result.

Lemma 55. Let y, z be two strings with empirical correlation ρz,y and let

A(z,y) = {z̃ ∈ T εσ2 : ρ2
z̃,y ≥ ρ2

z,y}.

Then

Vol(A(z,y)) ≤ 2 exp
(n

2
log
(
2πeσ2(1− ρ2

z,y)
)

+ noε(1)
)
.
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Proof. The empirical correlation does not change if we scale the vectors, so we

may assume that ztz = yty = n(σ2 + ε). Suppose zty ≥ 0, in which case

A(z,y) = {z̃ ∈ T εσ2 : ρz̃,y ≥ ρz,y} ∪ {z̃ ∈ T εσ2 : ρz̃,y ≤ −ρz,y}

and by symmetry the two sets on the right hand side have the same volume and

it suffices to consider one of them.

{z̃ ∈ T εσ2 : ρz̃,y ≥ ρz,y} = {z̃ ∈ T εσ2 :
z̃ty√
z̃tz̃yty

≥ zty√
ztzyty

}

=
{
z̃ ∈ T εσ2 : −2 ρz,yz̃

ty ≤ −2 ρz,yz
ty

√
z̃tz̃√
ztz

}
, B(z,y)

We now bound the volume of B(z,y). Let X ∼ N (ρx,yy, σ
2(1− ρ2

z,y)I). Then

1 ≥
∫
B(z,y)

fX(x)dx

=

∫
B(z,y)

(2πσ2(1− ρ2
z,y))−n/2 exp

(
−
∑

(xi − ρz,yyi)2

2(σ2(1− ρ2
z,y))

)
dx. (*)

To continue we upper bound the summand in the exponent as follows

∑
(xi − ρx,yyi)2 = xtx− 2ρz,yx

ty + ρ2
z,yy

ty

≤ n(σ2 + ε)− 2ρz,yx
ty + ρ2

z,yn(σ2 + ε)

≤ n(σ2 + ε)− 2ρ2
z,yn(σ2 + ε)(1− oε(1)) + ρ2

z,yn(σ2 + ε)

≤ n(σ2(1− ρ2
z,y) + oε(1)).

Substituting the above into (*) gives

Vol(B(z,y)) ≤ exp
(
n
(1

2
log(2πσ2(1− ρ2

z,y)) +
1

2
+ oε(1)

))
= exp

(
n
(1

2
log(2πeσ2(1− ρ2

z,y)) + oε(1)
))
.

Observing that an identical argument holds for zty ≤ 0 we are done.

208



Lemma 56. Let (x,y, z) ∈ (Ec ∪ Ed)c ∩R3n. Then

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|Xn = x, Y n = y, Zn = z
)

≤ exp
(
−n (R− J(K)− oε(1)− δb)+) (B.44)

where K = K(i, j, k(i), r, s(i), t) is the type containing (x,y, z) and

J(K) = IK(X;Z)− IK(Y ;Z),

δb =
1

n
log

(
2

(
1− 2σ4(k(i))

nε2

)−1
)

Moreover, if log |Bn(ν(x))| < nR then

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|Xn = x, Y n = y, Zn = z
)

= 0.

Proof. For a given sequence x,y, z, let L be the event that z 6= ϕ1(ψ(x),y).

Observe that L occurs when the decoder decodes the wrong codeword and

that Pr
(

1
n
‖Xn − X̂n‖2

2 > ∆|Xn = x, Y n = y, Zn = z
)

is upper bounded by

Pr(L|Xn = x, Y n = y, Zn = z).

If i is such that log |Bn(i)| < nR, then

Pr(L|Xn = x, Y n = y, Zn = z) = 0.

For the case in which log |Bn(i)| ≥ nR, we invoke the union bound over the

slots of the codebook. From the perspective of the decoder, given that the true

sequence is (x,y, z), a codeword z̃ is “bad” if it has higher empirical correlation

with y and ends up in the same bin as z. Mathematically,

Pr(L|Xn = x, Y n = y, Zn = z)

≤
∑
|Bn(i)|

∫
T ε
σ2(k(i))

Pr(ρ2
z̃,y > ρ2

z,y, U(z̃) = U(z))|T εσ2(k(i))|−1d z̃
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where we used the fact that the codewords are chosen uniformly from the shell.

Now using the result from lemma 55, we can bound the volume of the set of

bad z̃s and use (B.32) to bound the density.

≤
∑
|Bn(i)|

2 exp
(n

2
log 2πeσ2(k(i))(1− ρ2

z,y) + noε(1)
)

×
(

1− 2σ4(k(i))

nε2

)−1

exp(−n(h(σ2(i)) + ε/2 +R))

≤ 2

(
1− 2σ4(k(i))

nε2

)−1

exp
(
− n

(
R + I(y; z)

− Iσ2(k(i))(X;Z)− oε(1)
))

≤ 2

(
1− 2σ4(k(i))

nε2

)−1

exp
(
− n

(
R− J(x,y, z)− oε(1)

))
.

Also, since Pr(L|Xn = x, Y n = y, Zn = z) ≤ 1 we get

Pr(L|Xn = x, Y n = y, Zn = z)

exp
(
−n
(
(R− J(x,y, z)− oε(1)− δb)+)) .

Lemma 57. Let δp, δb be sequences going to zero as n→∞,

Gn
ε (K,Σ, λ,∆, R) =

D(K||K̄)− oε(1)− δp EK [(X − λ(Y, Z))2] ≥ ∆− oε(1)

D(K||K̄)− oε(1)− δp

+
(
R− IK(X;Z) EK [(X − λ(Y, Z))2] < ∆− oε(1)

+IK(Y ;Z)− oε(1)− δb
)+ and IK(X;Z) ≥ R− oε(1)

∞ otherwise,

πnε (R,∆,Σ) = min
i

max
k,s

min
j

max
λ

min
r,t

Gn
ε (Kε,Σ, λ,∆, R),

210



and

π(R,∆,Σ) = inf
σX

sup
σZ ,ρxz

inf
σY

sup
λ

inf
ρxy ,ρyz

GG(K,Σ, λ,∆, R),

where Kε is shorthand for Kε(i, j, k, r, s, t) and K is a covariance matrix with entries

(σX , σY , σZ , ρxy, ρxz, ρyz). Then

lim inf
ε→0

lim inf
n→∞

πnε (R,∆,Σ) ≥ π(R,∆,Σ).

Proof. Let δ > 0. For ε > 0 define

Gε(K,Σ, λ,∆, R) =

D(K||K̄)− oε(1) EK [(X − λ(Y, Z))2] ≥ ∆− oε(1)

D(K||K̄)− oε(1)

+
(
R− IK(X;Z) EK [(X − λ(Y, Z))2] < ∆− oε(1)

+IK(Y ;Z)− oε(1)
)+ and IK(X;Z) ≥ R− oε(1)

∞ otherwise,

and

πε(R,∆,Σ) , min
i

max
k,s

min
j

max
λ

min
r,t

Gε(Kε,Σ, λ,∆, R).

Then for any choice of arguments and n sufficiently large Gε −Gn
ε ≤ δ

3
. Hence

lim inf
n→∞

πnε (R,∆,Σ) ≥ πε(R,∆,Σ)− δ

3
.

Via the use of the functions σ2(·) and η(·, ·, ·) we write the optimization above as

follows

πε(R,∆,Σ) = min
σX

max
σZ ,ρxz

min
σY

max
λ

min
ρxy ,ρyz

Gε(Kε,Σ, λ,∆, R),

where the use of max,min are justified since we optimizing over finite sets.
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Take any sequence εm → 0. Let K(m) = K(m)(σ
(m)
X , σ

(m)
Z , ρ

(m)
xz , σ

(m)
Y , ρ

(m)
xy , ρ

(m)
yz )

and λ(m) be such that

πεm(R,∆,Σ) = Gεm(K(m),Σ, λ(m),∆, R).

By considering subsequences, we may assume that K(m) → K∞ and λ(m) → λ∞.

Then there exists σ̃∞Z , ρ̃
∞
xz so that

inf
σY

sup
λ

inf
ρxy ,ρyz

GG(K(σ∞X , σY , σ̃
∞
Z , ρ̃

∞
xz, ρxy, ρyz),Σ, λ,∆, R)

≥ sup
σZ ,ρxz

inf
σY

sup
λ

inf
ρxy ,ρyz

GG(K(σ∞X , σY , σZ , ρxz, ρxy, ρyz),Σ, λ,∆, R)− δ

3

and there are sequences ρ̃(m)
xz , σ̃

(m)
Z converging to ρ̃∞xz and σ̃∞Z respectively. Let

σ̃
(m)
Y ∈ arg min

σY

max
λ

min
ρxy ,ρyz

Gεm(K(σ
(m)
X , σY , σ̃

(m)
Z , ρ̃(m)

xz , ρxy, ρyz),Σ, λ,∆, R)

and by taking a further subsequence we can assume σ̃(m)
Y → σ̃∞Y . Then there

exists λ̃∞ such that

inf
ρxy ,ρyz

GG(K(σ∞X , σ̃
∞
Y , σ̃

∞
Z , ρ̃

∞
xz, ρxy, ρyz),Σ, λ̃

∞,∆, R)

≥ sup
λ

inf
ρxy ,ρyz

GG(K(σ∞X , σ̃
∞
Y , σ̃

∞
Z , ρ̃

∞
xz, ρxy, ρyz),Σ, λ,∆, R)− δ

3

and we let λ̃(m) be a sequence converging to λ̃∞. Let

(ρ̃(m)
xz , ρ̃

(m)
yz ) ∈ arg min

ρxy ,ρyz

Gεm(K(σ
(m)
X , σ̃

(m)
Y , σ̃

(m)
Z , ρ̃(m)

xz , ρxy, ρyz),Σ, λ
(m),∆, R).

Define K̃(m) , K̃(m)(σ
(m)
X , σ̃

(m)
Y , σ̃

(m)
Z , ρ̃

(m)
xz , ρ

(m)
xy , ρ

(m)
yz ), then observe that

πεm(R,∆,Σ)

= max
σZ ,ρxz

min
σY

max
λ

min
ρxy ,ρyz

Gεm(K(m)(σ
(m)
X , σY , σZ , ρxz, ρxy, ρyz),Σ, λ,∆, R)

≥min
σY

max
λ

min
ρxy ,ρyz

Gεm(K(m)(σ
(m)
X , σY , σ̃

(m)
Z , ρ̃(m)

xz , ρxy, ρyz),Σ, λ,∆, R)

= max
λ

min
ρxy ,ρyz

Gεm(K(m)(σ
(m)
X , σ̃

(m)
Y , σ̃

(m)
Z , ρ̃(m)

xz , ρxy, ρyz),Σ, λ,∆, R)

≥ min
ρxy ,ρyz

Gεm(K(m)(σ
(m)
X , σ̃

(m)
Y , σ̃

(m)
Z , ρ̃(m)

xz , ρxy, ρyz),Σ, λ̃
(m),∆, R)

=Gεm(K̃(m),Σ, λ̃(m),∆, R)
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By examining the various cases and using the continuity of expectation and the

information measures, one can show that

lim inf
m→∞

Gεm(K̃(m),Σ, λ̃(m), R,∆) ≥ GG(K̃∞,Σ, λ̃∞, R,∆).

Furthermore,

GG(K̃∞,Σ, λ̃∞, R,∆)

≥ inf
ρxz ,ρyz

GG(K(σ∞X , σ̃
∞
Y , σ̃

∞
Z , ρ̃

∞
xz, ρxy, ρyz),Σ, λ̃

∞, R,∆)

≥ sup
λ

inf
ρxy ,ρyz

GG(K(σ∞X , σ̃
∞
Y , σ̃

∞
Z , ρ̃

∞
xz, ρxy, ρyz),Σ, λ,∆, R)− δ

3

≥ inf
σY

sup
λ

inf
ρxy ,ρyz

GG(K(σ∞X , σY , σ̃
∞
Z , ρ̃

∞
xz, ρxy, ρyz),Σ, λ,∆, R)− δ

3

≥ sup
σZ ,ρxz

inf
σY

sup
λ

inf
ρxy ,ρyz

GG(K(σ∞X , σY , σZ , ρxz, ρxy, ρyz),Σ, λ,∆, R)− 2δ

3

≥π(R,∆,Σ)− 2δ

3

Hence

lim inf
m→∞

lim inf
n→∞

πnεm(R,∆,Σ) ≥ π(R,∆,Σ)− δ.

But ε→ 0 and δ > 0 were arbitrary.

Proof of Theorem 19.

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆
)

(B.45)

= Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|(Xn, Y n, Zn) ∈ (R3n)c) Pr((R3n)c
)

+ Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|(Xn, Y n, Zn) ∈ R3n
)

Pr(R3n)

≤
∫
R3n

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|x,y, z
)
dF (xyz) + Pr((R3n)c)

For now we focus on the integral and will deal with Pr((R3n)c) separately.

Observe first that the error probability on (Eb ∪ Ec ∪ Ed)c is zero, thus we can

we can split the integral as follows, allowing us to deal with the various key
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events defined in Section B.5.2.∫
R3n∩Ec

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|x,y, z
)
dF (xyz)

+

∫
R3n∩Ed

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|x,y, z
)
dF (xyz)

+

∫
R3n∩Eb

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|x,y, z
)
dF (xyz).

Bounding the error probability on Ec and Ed by 1 gives

Pr(Ec ∩R3n) + Pr(Ed ∩R3n) (B.46)

+

∫
R3n∩Eb

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|x,y, z
)
dF (xyz).

By Lemma 53, Pr(Ec ∩ R3n) tends to zero double exponentially with the block

length and can therefore also be neglected. Let

Dd = {K : T εK ∩ Ed 6= ∅}.

Then applying Lemma 54 gives

Pr(Ed ∩R3n) ≤
∑
i

∑
j

∑
r,t:K(i,j,k(i),r,s(i),t)∈Dd

exp(−n(D(K||K̄)− oε(1)− δp))

≤
∑
i

∑
j

|PεXY Z | max
r,t:K(i,j,k(i),r,s(i),t)∈Dd

exp(−n(D(K||K̄)− oε(1)− δp)).

where we have written K for Kε(i, j, k, r, s(i), t) and likewise K̄ for

Kε(i, j, k(i), r, s(i), t). Next let

Db = {K : T εK ∩ Eb 6= ∅}.
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Addressing the integral in (B.46),∫
R3n∩Eb

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆|x,y, z
)
dF (xyz)

(a)

≤
∑
K∈Db

∫
TK∩Eb

exp(−n(R− J(K)− oε(1)− δb)+)

dF (xyz)

≤
∑
K∈Db

exp(−n(D(K||K)− oε(1) + (R− J(K)− oε(1)− δb)+ − δp))

=
∑
i

∑
j

∑
(r,t):K(i,j,k(i),r,s(i),t)∈Db

exp(−n(D(K||K)− oε(1) + (R− J(K)− oε(1)− δb)+ − δp))

≤
∑
i

∑
j

|PεXY Z | max
(r,t):K(i,j,k(i),r,s(i),t)∈Db

exp(−n(D(K||K)− oε(1) + (R− J(K)− oε(1)− δb)+ − δp)),

where (a) follows from Lemma 56 and (b) follows from Lemma 54.

Turning to (R3n)c, using well-known large-deviations results for the Gaus-

sian distribution, we obtain

Pr((R3n)c) ≤ 2 Pr(xtx < n(ML + ε)) + 2 Pr(xtx > nMU)

≤ 2 exp
(
−n

2
((ML + ε)− log(ML + ε)− 1− oε(1))

)
+ 2 exp

(
−n

2
(MU − logMU − 1− oε(1))

)
.

Now MU and ML can be chosen so that this term does not dominate the ex-

ponent and can therefore be neglected. Combining the various bounds (and
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neglecting the terms in the previous equation) gives

Pr
( 1

n
‖Xn − X̂n‖2

2 > ∆ ∩R3n
)

≤
∑
i,j

|PεXY Z |
[

max
(r,t):K∈Dd

exp(−n(D(K||K)− δp − oε(1)))

+ max
(r,t):K∈Db

exp(−n(D(K||K)− oε(1) + (R− J(K)− oε(1)

− δb)+)− δp)
]
.

Using the formula a + b ≤ 2 max(a, b), we can upper bound the quantity in

square brackets by

2 max
(

max
(r,t):K∈Dd

exp(−n(D(K||K)− δp − oε(1))),

max
(r,t):K∈Db

exp(−n(D(K||K)− oε(1) + (R− J(K)− oε(1)− δb)+)− δp)
)
.

Note that the sets Db and Dd may overlap. However, without loss of generality,

we may assume that the oε(1) terms are such that the objective in the Dd max is

no smaller than the objective in the Db max. This quantity can then be further

upper bounded by replacing the maximum over (r, t) such that K ∈ Db with a

maximum over (r, t) such that K ∈ Db\Dd. This yields

2|PεXY Z |max
(r,t)

H(K),

with H(K) = exp(−nGn
ε (K)), where Gn

ε (K) is as in Lemma 57.

Thus

P

(
1

n
‖Xn − X̂n‖2

2 > ∆

)
≤
∑
i

∑
j

2|PεXY Z |max
r,t

H(K).

Since λ and the choice of the test channel were arbitrary, the right-hand side is

upper bounded by

2|PεXY Z |3 max
i

min
k,s

max
j

min
λ

max
r,t

H(K).
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We then let take logs, divide by n, and let n tend to infinity and ε tend to zero,

invoking Lemma 57 to obtain the desired result.

B.6 Proof of Theorem 20

Proof. Let fn, gn be a code for the two-sided Gaussian rate distortion problem

with conditional rate distortion function RX|Y and define

En∆ , {(x,y) : ‖x− gn(fn(x,y),y)‖2
2 > n∆}

and

EnK , {(x,y) : nK ≥ ‖x− gn(fn(x,y),y)‖2
2},

where K ∈ R+ is to be specified later. For R fixed, choose a covariance matrix Π

so that

RX|Y (fΠ,∆) > R. (B.47)

Let ∆′ be the solution to RX|Y (fΠ,∆
′) = R and define ∆̄(fn, gn) , EΠ[ 1

n
‖Xn −

gn(fn(Xn, Y n), Y n)‖2
2]. Then according to [79, section 4]

RX|Y (fΠ,∆) > RRX|Y (fΠ,∆
′) ≥ RX|Y (fΠ, ∆̄) (B.48)

for every n and code (fn, gn) with rate at most R. Monotonicity of the rate

distortion function implies that ∆̄(fn, gn) ≥ ∆′ > ∆.

To continue we modify our original code to give (f̃n, g̃n). The modification

comprises adding a new codeword such that the decoder emits the string 0 on

receipt of this codeword. Encoder f̃n, knowing the side information can choose

to send this codeword if the choice by fn results in a higher distortion than

1
n
‖Xn‖2

2. If we let X̂n = g(n)(f (n)(Xn, Y n), Y n) and ˜̂
Xn = g̃(n)(f̃ (n)(Xn, Y n), Y n)
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then we see that n−1(Xn − ˜̂
Xn)2 ≤ 1

n
‖Xn‖2

2 a.s. Modifying the code in this way

only reduces the squared error, hence defining

Ẽn∆ = {(x,y) : ‖x− g̃n(f̃n(x,y),y)‖2
2 > n∆}

(and correspondingly ẼnK) we see that E∆ ⊃ Ẽ∆. In the following all expectations

and probabilities are with respect to the law fΠ unless stated otherwise.

E[‖Xn − ˜̂
Xn‖2

21Ẽn∆∩(ẼnK)c ] ≤ E[‖Xn‖2
21Ẽn∆∩(ẼnK)c ]

≤ E[‖Xn‖2
21{‖Xn‖22>nK}].

Next, applying the Cauchy-Schwarz inequality gives

≤
√

E[(‖Xn‖2
2)2] Pr(‖Xn‖2

2 > nK)

=

√√√√E

[
n∑
i=1

n∑
j=1

X2
iX

2
j

]
Pr(‖Xn‖2

2 > nK)

=
√

(nE[X4
1 ] + (n2 − n)E[X2

1 ]E[X2
1 ]) Pr(‖Xn‖2

2 > nK).

ChoosingK = E[X2
1 ]+ε and applying Chebyshev’s inequality to the probability

allows us to further bound this quantity by

≤
√

(nE[X4
1 ] + (n2 − n)E[X2

1 ]E[X2
1 ])

×
√

E[X4
1 ]− E[X2

1 ]2

nε2
.

Hence

E[n−1||Xn − ˆ̃Xn||21Ẽn∆∩(ẼnK)c ]

≤
√

(n−1E[X4
1 ] + (1− n−1)E[X2

1 ]E[X2
1 ])

×
√

E[X4
1 ]− E[X2

1 ]2

n3ε2
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which goes to zero with n. We note that this new code has rate R̃ = R +

n−1 log(1 + exp(−nR)) = R + on(1). Let ∆′ − ∆ > δ1 > 0, and ∆̃ be the so-

lution to R̃ = R(fΠ, ∆̃). Then for n sufficiently large

∆′ − ∆̃ < δ1.

We also note that ∆̄(f̃n, g̃n) ≥ ∆̃. One may decompose the space into different

events to see that

∆̄(f̃n, g̃n) = E[n−1‖Xn − ˜̂
Xn‖2

2]

= E[n−1‖Xn − ˜̂
Xn‖2

21(Ẽn∆)c ]

+ E[n−1‖Xn − ˜̂
Xn‖2

21Ẽn∆∩ẼnK
]

+ E[n−1‖Xn − ˜̂
Xn‖2

21Ẽn∆∩(ẼnK)c ]

≤ ∆ Pr((Ẽn∆)c) +K Pr(Ẽn∆ ∩ ẼnK)

+ E[n−1‖Xn − ˜̂
Xn‖2

21Ẽn∆∩(ẼnK)c ]

≤ ∆(1− Pr(Ẽn∆)) +K Pr(Ẽn∆)

+ E[n−1‖Xn − ˜̂
Xn‖2

21Ẽn∆∩(ẼnK)c ]

i.e.

Pr(Ẽn∆) ≥
∆̄(f̃n, g̃n)−∆− E[n−1‖Xn − ˜̂

Xn‖2
21Ẽn∆∩(ẼnK)c ]

K −∆
. (B.49)

Thus

Pr(En∆) ≥ Pr(Ẽn∆)

≥
∆̃−∆− E[n−1‖Xn − X̂n‖2

21Ẽn∆∩(ẼnK)c ]

K −∆

≥ ∆′ −∆− δ2

K −∆
, α > 0

for all n > n1 (where δ2 , δ1 + E[n−1(Xn − X̂n)21En∆∩(EnK)c ]). Next, we set

Gn =

{
(x,y) :

∣∣∣∣ 1n log
fΠ(x,y)

fΣ(x,y)
−D(Π||Σ)

∣∣∣∣ < δ3

}
.
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By the law of large numbers,∫
Gn
fΠ(x,y)dxy > 1− 1

2
α

for all n sufficiently large. Combining everything, this gives

Pr
Σ

(En∆) =

∫
En∆
fΣ(x,y)dxy

≥
∫
En∆∩Gn

fΣ(x,y)dxy

=

∫
En∆∩Gn

fΠ(x,y) exp

(
− log

fΠ(x,y)

fΣ(x,y)

)
dxy

≥ 1

2
α exp(−n(D(Π||Σ) + δ3)).

We observe that this inequality holds for all codes of rate at most R and Π satis-

fying (B.47). To complete the proof it suffices to show that

lim
ε→0

inf
Π:R(Π,∆)>R+ε

D(Π||Σ) = inf
Π:R(Π,∆)>R

D(Π||Σ)

The first direction (≥) is obvious. For the reverse inequality, choose Π∗ to

achieve within δ of the infimum on the right-hand side. Let Π(ε) be a collec-

tion of covariance matrices converging to Π∗ such that R(Π(ε),∆) > R + ε. That

such a choice is possible follows by continuity of the rate distortion function.

Then

lim
ε→0

inf
Π:R(Π,∆)>R+ε

D(Π||Σ) ≤ lim
ε→0

D(Π(ε)||Σ) = D(Π∗||Σ) ≤ inf
Π:R(Π,∆)>R

D(Π||Σ) + δ

by continuity of relative entropy. But δ was arbitrary.
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APPENDIX C

CHAPTER 5 - PROOFS

C.1 Proof of Theorem 24

The key to the proof is Lemma 59, a bound on degree of the codebook graph

which holds with exponentially high probability. With this fact established we

give a scheme for coding when the bound holds and declare an error when the

bound does not. Throughout this section the reader should keep in mind that

besides the source, the randomness comes from the codebook construction.

C.1.1 Codebook Construction

Operating on blocks of length n, for each type QX choose a test channel QU∗|X =

Q∗U |X(QX) and let QU∗ = Q∗U(QX) denote the resulting induced marginal type1.

The test channel is used to build a codebook Bn(QX) as follows. For each u ∈

TQU∗ , flip a coin with probability of heads

p , exp
(
− n

[
H(QU∗|X |QX)− 3

|U||X | log(n+ 1)

n

])
,

and add u to the codebook only if the coin comes up heads. Define the distribu-

tion

QUY (u, y) =
∑
x∈X

PXY (x, y)QU∗|X(u|x)

and let GU∗ be the resulting characteristic graph. The codeword for x ∈ TQX

is chosen as follows. If G(x) , Bn(QX) ∩ TQ∗
U|X

(x) is non-empty, choose uni-

1For brevity we will use the following conventions: The random variable U∗ (resp. channel
QU∗|X ) refers to the random variable (resp. channel) defined by the choice of test channel for
the particular QX under consideration.
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formly from G(x). If G(x) is null, choose uniformly from Bn(QX). We let U(x)

denote the chosen codeword. For each codebook, we define bQX : Bn(QX) →

[1, . . . , exp(nR)] (a binning function) as follows, for all u ∈ Bn(QX)

Pr(bQX (u) = i) = exp(−nR), for all i ∈ [1, . . . , exp(nR)].

C.1.2 Scheme

In Lemmas 58 and 59 we establish that

γ(GU∗ ∩Bn(QX)) ≤ ∆(GU∗ ∩Bn(QX)) + 1

w.h.p.
≤ exp(n[κ2(QX) + λn + δ̃n]) + 1,

for some λn > 0, δ̃n → 0 as n → ∞ and where w.h.p stands for probability

tending to 1 as n→∞. For types QX in which the above bound fails to hold, we

send an error message to the decoder. For types in which the bound holds, the

scheme is as follows. To communicate the codeword to the decoder, the encoder

may either give an index into the codeword set Bn or using the ideas from the

improved lossless binning scheme, it can color the graph Gn
U∗ ∩Bn(QX) using a

minimal coloring and send the color of the codeword.

Encoder:

The encoder first sends the type of the source sequenceQx. If exp(n[κ2(Qx)+

λn + δ̃n]) + 1 < exp(nR), the encoder transmits the color of the codeword in the

graph GU∗ ∩ Bn(Qx). Otherwise it sends the bin index bQx(U(x)). Formally, we

denote the encoder by fn : X n →M, where

M = [1, . . . , (n+ 1)|X |]× [1, . . . , exp(nR)]
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Decoder:

The decoder receives a type index, a message and the side information y. If

exp(n[κ2(Qx) + λ]) + 1 < exp(nR) then the codeword can be decoded without

error. In the opposite case, the decoder searches the bin for a unique codeword

û, so that among all ũ in the received bin, H(û|y) < H(ũ|y). If there is no

such unique codeword, the decoder chooses û uniformly at randomly from the

received bin. For each pair of types QX , QY , the decoder picks an reproduction

function φ, and declares the output as

x̂ where x̂j = φ(ûj,yj).

Thus the decoder gn : Yn ×M→ X̂ is specified.

Lemma 58. Let

δn = 3
|U||X | log(n+ 1)

n
and δ̃n =

|U||U|
n

log(n+ 1)

κn2 (QX) = κ2(QX) + δ̃n and

λn =
2

n
log(n+ 1) + δn.

Then for all n sufficiently large and for all types QX ,

Pr(∆(Gn
U∗ ∩Bn(QX)) > exp(n[κn2 (QX) + λn])

≤ expe(−(n+ 1)2).

Note the randomness in ∆(Gn
U∩Bn(QX)) comes from the fact thatBn(QX) is a random

set.
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Proof. Let K = 2n[κn2 (QX)+λn], then

Pr(∆(Gn
U∗ ∩Bn(QX)) > K)

= Pr(∃u ∈ TQU∗ : u ∈ Bn(QX),∆(u) > K)

≤
∑

u∈TQ∗
U

Pr(u ∈ Bn(QX)) Pr(∆(u) ≥ K|u ∈ Bn(QX))

≤
∑

u∈TQ∗
U

Pr(∆(u) ≥ K|u ∈ Bn(QX)).

Let N(u) denote the neighbors of u in the graph Gn
U , then quantity in the previ-

ous line is upper bounded by∑
u∈TQ∗

U

Pr
( ∑

v∈N(u)

1{v∈Bn} ≥ K
)
.

From the construction of the codebook, we know that for each string v, 1{v∈Bn}

is Bernoulli with parameter p. Furthermore, by Lemma 23, we know that

|N(u)| ≤ exp(n[κ(GU , Q
∗
U) + δ̃n]) , J(QX). Therefore, by bounding the num-

ber of terms in the summation, letting Di be a sequence of i.i.d. Bernoulli(p)

random variables, we have

Pr(∆(Gn
U∗ ∩Bn(QX)) > K)

≤ |TQU∗ |Pr
( J(QX)∑

i=1

Di ≥ K
)
.

Focusing on the probability, using the exponential form of Markov’s inequality,

one has for any θ > 0

Pr
( J(QX)∑

i=1

Di ≥ K
)
≤ expe(J(QX) ln(1 + p(eθ − 1)))

expe(θK)

≤ expe(J(QX)p(eθ − 1))

expe(θK)

≤ expe(J(QX)peθ)

expe(θK)

≤ expe(2
n[κ2(QX)+δn+δ̃n]+θ log e − θ2n[κ2(QX)+δ̃n+λn]). (C.1)
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Choosing θ = 1, we have

Pr
( J(QX)∑

i=1

Di ≥ K
)
≤ expe(2

n[κ2(QX)+δn+δ̃n](2log e − (n+ 1)2)).

For n ≥ 1, (e− (n+ 1)2) < −1, hence

Pr(∆(Gn
U∗ ∩Bn(QX)) > K) ≤ |TQU∗ | expe(−2n[κ2(QX)+δn+δ̃n])

≤ |TQU∗ | expe(−2nδn)

≤ |TQU∗ | expe(−(n+ 1)3),

for all n sufficiently large. Since |TQU∗ | is only exponential in n, the result holds.

On account of the previous lemma, we have a bound, which holds with high

probability, on the degree of GU∗ ∩Bn(QX). For each QXY U , we define the event

F (QXY U) as follows

F (QXY U) , {∆(Bn(QX) ∩GU∗) > en[κn2 (QX)+λn]}.

Lemma 59. For all n sufficiently large and any type QXY U

Pr(F (QXY U)) ≤ exp(−(n+ 1)2).

Proof. The result follows directly from Lemma 58.

In the remainder of this appendix κn2 and λn will be defined as in the state-

ment of Lemma 58.
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C.1.3 Error Analysis

Let

E1 = {(x,y,u) : u 6∈ TQ∗
U|X

(x)}

E2 = {(x,y,u) : u ∈ TQ∗
U|X

(x), d(x, φQx,Qy(u,y)) < ∆

exp(n[κn2 (Qx) + λn]) + 1 ≥ exp(nR)}

E3 = {(x,y,u) : u ∈ TQ∗
U|X

(x), d(x, φQx,Qy(u,y)) < ∆

exp(n[κn2 (Qx) + λn]) + 1 < exp(nR)}

E4 = {(x,y,u) : u ∈ TQ∗
U|X

(x), d(x, φQx,Qy(u,y)) ≥ ∆}

and

D1 = {QXY U : QU |X 6= Q∗U |X(QX))}

D2 = {QXY U : exp(n[κn2 (QX) + λn]) + 1 ≥ exp(nR)

QU |X = Q∗U |X(QX),EQ[d(X,φQX ,QY (U, Y )) < ∆}

D3 = {QXY U : exp(n[κn2 (QX) + λn]) + 1 < exp(nR)

QU |X = Q∗U |X(QX),EQ[d(X,φQX ,QY (U, Y )) < ∆}

D4 = {QXY U : QU |X = Q∗U |X(QX),EQ[d(X,φQX ,QY (U, Y )) ≥ ∆}.

The sets defined above and the following Lemmas allow us to bound the

error probability for our improved scheme.

Lemma 60. For all strings x,y, let

S(x|y) = {x̃|H(x̃|y) ≤ H(x|y), Qx̃ = Qx}.

Then

|S(x|y)| ≤ (n+ 1)|X ||Y| exp(nH(x|y)).
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Proof.

|S(x|y)| ≤ |{x̃|H(x̃|y) ≤ H(x|y)}|

=
∑

V :V ∈Cn(Qy,X )

∑
x̃∈TV (y):H(x̃|y)≤H(x|y)

1

=
∑

V :V ∈Cn(Qy,X )

H(V |Qy)≤H(x|y)

|TV (y)|

≤
∑

V :V ∈Cn(Qy,X )

H(V |Qy)≤H(x|y)

exp(nH(x|y))

≤ (n+ 1)|X ||Y| exp(nH(x|y))

Lemma 61. Let Xn, Y n, Un = U∗ be generated according to our scheme, then for all n

sufficiently large and all (x,y,u) ∈ E1

Pr(Xn = x, Y n = y, Un = u, F c(Qxyu)) ≤ exp(−(n+ 1)2).

Proof.

Pr(Xn = x, Y n = y, Un = u, F c(Qxyu))

= Pr(Xn = x, Y n = y, Un = u)

× Pr(F c(Qxyu)|Xn = x, Y n = y, Un = u)

≤ Pr(Xn = x, Y n = y, Un = u)

Let A denote the event that there does not exist a u ∈ Bn(Qx) such that u ∈

TQU∗|X (x). For (x,y,u) ∈ E1, the event {Xn = x, Y n = y, Un = u} implies that
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the event A has occurred. Hence

Pr(Xn = x, Y n = y, Un = u)

= Pr(Xn = x, Y n = y, Un = u, A)

≤ Pr(Xn = x) Pr(A|Xn = x)

≤ Pr(A|Xn = x).

Recalling p was the probability that each codeword is added to the codebook.

We have

Pr(A|Xn = x) = Pr(∀u ∈ TQU∗|X : u 6∈ Bn(Qx))

= (1− p)|TQU∗|X (x)|

≤ exp(−p|TQU∗|X(x)|).

For x ∈ TQX we have the lower bound,

|T nQU∗|X (x)| ≥ (n+ 1)−|X ||U| exp(nH(QU∗|X |QX))

substituting this and the value of p we obtain

Pr(A|Xn = x) ≤ exp
(
− exp

(
n
[
3
|U|X |
n

log(n+ 1)− |U|X |
n

log(n+ 1)
]))

≤ exp(−(n+ 1)2).

Lemma 62. Let x,y,u ∈ Ec1 , then

Pr(Xn = x, Y n = y, Un = u, F c(Qxyu))

≤ P n
XY (x,y) exp(−n[H(Q∗U |X(Qx)|Qx)− δn]),

where

δn = 3
|U|X |
n

log(n+ 1).
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Proof. Proceeding as in proof of Lemma 61, we have

Pr(Xn = x, Y n = y, Un = u, F c(Qxyu))

≤ Pr(Xn = x, Y n = y, Un = u)

= Pr(Xn = x, Y n = u) Pr(Un = u|Xn = x, Y n = y).

Conditional on {Xn = x}, the event {Un = u} is equivalent to {u ∈ Bn(Qx)}∩{u

was chosen among all ũ ∈ Bn(Qx) with ũ ∈ TQ∗
U|X

(x)}. Bounding the latter

probability by 1, we have

Pr(Xn = x, Y n = y, Un = u, F c(Qxyu))

≤ P n
XY (x,y) exp(−n[H(Q∗U |X |Qx)− 3

|U|X |
n

log(n+ 1)])

Lemma 63. For any QXY U ∈ Dc1 and any PXY

∑
(x,y,u)∈TQXY U

Pr(Xn = x, Y n = y, Un = u, F c(QXY U))

≤ exp(−n[D(QXY U ||PXYQ∗U |X(QX))− δn]),

where δn is the same as in the statement of Lemma 62.

Proof. Using the bound of Lemma 62 and the following identity for (x,y) ∈

TQXY ,

P n
XY (x,y) = exp(−n[D(QXY ||PXY ) +H(QXY )]),
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we have

∑
(x,y,u)∈TQXY U

Pr(Xn = x, Y n = y, Un = u, F c(QXY U))

≤
∑

(x,y,u)∈TQXY U

exp(−n[D(QXY ||PXY ) +H(QXY )

+H(QU |X |QX)− δn])

≤ exp(−n[D(QXY ||PXY )−H(QU |XY |QXY )

+H(QU |X |QX)− δn]). (C.2)

Applying the identity

D(QXY ||PXY )−H(QU |XY |QXY ) +H(QU |X |QX)

= D(QXY U ||PXYQU |X)

in (C.2) gives the result.

Lemma 64. For n sufficiently large and (x,y,u) ∈ E2

Pr(d(Xn, X̂n) > ∆|Xn = x, Y n = y, Un = u, F c(Qxyu))

≤
exp(−n[R− IQxyu(X;U)− IQxyu(U ;Y )− δn]+)

1− expe(−(n+ 1)2)
,

where δn → 0 as n→∞.

Proof. Let L be the event that the decoder decodes the wrong codeword, i.e.

L , {∃ũ 6= U(Xn) : H(ũ|y) ≤ H(U(Xn)|y), ũ ∈ Bn(QXn),

bQXn (U(Xn)) = bQXn (ũ)}

and note that {d(Xn, X̂n) > ∆} ∩ E2 ⊆ L. We can bound the conditional proba-
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bility of L as follows

Pr(L|Xn = x, Y n = y, Un = u, F c(Qxyu))

=
Pr(L, F c(Qxyu)|Xn = x, Y n = y, Un = u)

Pr(F c(Qxyu)|Xn = x, Y n = y, Un = u)

≤ Pr(L|Xn = x, Y n = y, Un = u)

Pr(∆(Bn(Qx) ∩QU∗) ≤ en[κn2 (Qx)+λn])
.

We now bound the numerator. Recalling the definition of S(u|y) from Lemma

60 and invoking the union bound gives

Pr(L|Xn = x, Y n = y, Un = u)

≤
∑

ũ∈S(u|y)

Pr(ũ ∈ Bn(Qx), bQx(u) = bQx(ũ)),

and substituting the various bounds gives

exp(−n[R− IQxyu(X;U) + IQxyu(U ;Y )− δn]+),

where δn = 4 |U||X |
n

log(n + 1). To handle the denominator, by Lemma 58 the

complementary event goes to zero super exponentially as n→∞.
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Lemma 65. Let δn, δ̃n,
˜̃δn,

˜̃̃
δn be positive sequences converging to 0 as n→∞,

ηn(R,PXY , QXY U , φ) =



D(QXY U ||PXYQU |X)− δn if EQ[d(X,φ(Y, U))] ≥ ∆

D(QXY U ||PXYQU |X)− δn + [R if EQ[d(X,φ(Y, U))] < ∆

−IQ(X;U) + IQ(Y ;U)− δ̃n]+ − ˜̃δn and κn2 (QX) + λn ≥ R−
˜̃̃
δn

∞ otherwise,

βn(R,∆, PXY , d) = min
QX

max
QU|X

min
QY

max
φ

min
QXY U

ηn(R,PXY , QXY U , φ)

η(R,PXY , QXY U , φ) =



D(QXY U ||PXYQU |X) if EQ[d(X,φ(Y, U))] ≥ ∆

D(QXY U ||PXYQU |X)+ if EQ[d(X,φ(Y, U))] < ∆

{R− IQ(X;U) + IQ(Y ;U)}+ and κ2(QX) ≥ R

∞ otherwise

and β(R,∆, PXY , d) = inf
QX

sup
QU|X

inf
QY

sup
φ

inf
QXY U

η(R,PXY , QXY U , φ).

Then

lim inf
n→∞

βn(R,∆, PXY , d) ≥ β(R,∆, PXY , d)

(Note in βn the maximizations are over types/conditional types and in β over distribu-

tions.)

Proof. One sees that κn2 (QX) + λn = κ2(QX) + o(n) is upper semicontinuous in

QX , with this established the proof then follows a similar proof for the Wyner-

Ziv error exponent in the previous appendix.

Proof of Theorem 2. Define

E = {d(Xn, X̂n) > ∆},
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then for our scheme we have

Pe =
∑
x,y,u

Pr(E|Xn = x, Y n = y, Un = u, F (Qxyu))

× Pr(Xn = x, Y n = y, Un = u, F (Qxyu))

+
∑
x,y,u

Pr(E|Xn = x, Y n = y, Un = u, F c(Qxyu))

× Pr(Xn = x, Y n = y, Un = u, F c(Qxyu)).

By definition, when F occurs the encoder sends an error symbol, which we

assume leads to the distortion constraint being violated. Using this observation,

and rewriting the above equation, first summing over types then over sequences

gives

Pe ≤
∑
QXY U

∑
x,y,u∈TQXY U

[
Pr(E|Xn = x, Y n = y, Un = u, F c(QXY U))

× Pr(Xn = x, Y n = y, Un = u, F c(QXY U))
]

+
∑
QXY U

|TQXY U |Pr(F (QXY U)).

On account of the fact that Pr(F (QXY U)) goes to zero super exponentially for

any choice of QXY U and the fact that there are only exponentially many se-

quences and polynomially many types, the final summand can be safely ignored

for the error exponent calculation. We use a � b to mean that

lim sup
n→∞

1

n
log a ≤ lim sup

n→∞

1

n
log b.

Let

P (x,y,u) = Pr(Xn = x, Y n = y, Un = u, F c(Qxyu))

and

P (E|x,y,u) = Pr(E|Xn = x, Y n = y, Un = u, F c(Qxyu)).
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We now group the summation according to the sets outlined at the start of this

section. This gives

Pe �
∑
QX

∑
QY

[ ∑
QXY U∈D1

∑
x,y,u∈TQXY U

P (x,y,u)P (E|x,y,u)

+
∑

QXY U∈D2

∑
x,y,u∈TQXY U

P (x,y,u)P (E|x,y,u)

+
∑

QXY U∈D3

∑
x,y,u∈TQXY U

P (x,y,u)P (E|x,y,u)

+
∑

QXY U∈D4

∑
x,y,u∈TQXY U

P (x,y,u)P (E|x,y,u)
]

where in the inner summations over QXY U on the sets Di, the types of QX and

QY are fixed to be those set by the outer summations. On the set D1, Lemma

61 implies the quantity P (x,y,u) decays super exponentially. Since there are

only polynomially many types and exponentially many sequences this term can

therefore be safely ignored. On the set D3, conditional on the event F c(Qxyu),

the codeword can be decoded without error, and hence there is no error. Using

the result of Lemmas 63 and 64 we therefore have

Pe �
∑
QX

∑
QY

[ ∑
QXY U∈D2

exp(−n[D(QXY U ||PXYQU |X)− δn

+ [R− IQ(X;U) + IQ(Y ;U)− δ̃n]+ − ˜̃δn])

+
∑

QXY U∈D4

exp(−n[D(QXY U ||PXYQU |X)− δn])
]

where ˜̃δn = − 1
n

log(1− expe(−(n+ 1)2). Bounding the summands by their max-
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imum value gives

Pe � |Pn(X )|max
QX
|Pn(Y)|max

QY
|Pn(X × Y × U)|

×
[

max
QXY U∈D2

exp(−n[D(QXY U ||PXYQU |X)− δn

+ [R− IQ(X;U) + IQ(Y ;U)− δ̃n]+ − ˜̃δn])

+ max
QXY U∈D4

exp(−n[D(QXY U ||PXYQU |X)− δn])
]

(C.3)

Let
˜̃̃
δn(QX) =

1

n
log(exp(n[κn2 (QX) + λn]) + 1)− (κn2 (QX) + λn)

and let
˜̃̃
δn be the maximum over QX ∈ Pn(X ) of

˜̃̃
δn(QX); it follows that

˜̃̃
δn → 0.

Adopting the definitions from the statement of Lemma 65 and using a + b ≤

2 max(a, b) to combine the two sums of (C.3) gives

Pe � 2|Pn(X )||Pn(Y)||Pn(X × Y × U)|

×max
QX

max
QY

max
QXY U :QU|X=Q∗

U|X(QX)
exp(−n[ηn(R,PXY , QXY U , φ)])

Finally, we can optimize over Q∗U |X and φ, and move the optimizations in the

exponent to give

Pe � 2|Pn(X )||Pn(Y)||Pn(X × Y × U)|

× exp(−n[min
QX

max
QU|X

min
QY

max
φ

min
QXY U

ηn(R,PXY , QXY U , φ)]).

Taking the log, dividing by −n and then taking the lim infn→∞ of both sides,

invoking Lemma 65 on the righthand side gives the result.
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