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Abstract—This paper presents HyperFlow, a processor that
enforces secure information flow, including control over timing
channels. The design and implementation of HyperFlow offer se-
curity assurance because it is implemented using a security-typed
hardware description language that enforces secure information
flow. Unlike prior information-flow secured processors that aim
to strictly enforce noninterference, HyperFlow supports complex
information flow policies that can be configured at run time, and
provides support for secure interprocess communication (IPC)
and system calls. The architecture also offers a new model for
process isolation in which memory protection is provided via
information flow control with strong security assurance while
allowing IPC and shared memory. HyperFlow is designed to sup-
port practical applications and system architectures. It therefore
supports decentralized information flow mechanisms that allow
controlled communication among mutually distrusting processes,
mediated by dynamic, fine-grained labels. Static information-
flow verification of such a complex processor architecture poses
significant challenges, which require contributions in both the
hardware architecture and the security type system. The paper
discusses the architecture decisions that make the processor
secure and describes a new secure HDL, named ChiselFlow, that
allows these decisions to be verified in a lightweight way. The
HyperFlow architecture is also prototyped on a fully-featured
processor that offers a complete RISC-V instruction set, and is
shown to have moderate overhead on area and performance.

I. INTRODUCTION

In modern computer systems, hardware plays a central
role in providing isolation for software modules. Protection
rings are widely used to isolate supervisor processes from
user processes. Recent hardware security architectures such
as ARM TrustZone [23] and Intel SGX [8]] aim to protect
critical software even when the operating system is malicious
or compromised. However, the security of these processors
relies on the assumption that the underlying hardware properly
enforces necessary security properties.

Unfortunately, microprocessors often contain vulnerabili-
ties that allow security-critical software to be compromised
by untrusted software. Software-exploitable vulnerabilities in
SGX have already been found [24]]. Previous studies found
vulnerabilities in implementations of Intel VT-d [38] and
system management mode (SMM) [37]]. Moreover, the recent
Spectre [19] and Meltdown [22]] vulnerabilities show that even
if the hardware is correct in a conventional sense—that it
implements a specification—is not sufficient to ensure security.
Exploiting subtle timing channels in Intel microprocessors,
Meltdown can be used to leak arbitrary kernel data. Therefore,

it is important for security to ensure that hardware implemen-
tations are free of timing channels.

Prior work has shown that hardware constructed with a
security-typed hardware description language (HDL) [20], [43]
can provide strong security assurance. Security-typed HDLs
can statically prove that the hardware prevents insecure infor-
mation flows: untrusted signals cannot affect trusted signals,
and secret signals cannot affect public ones. Because HDLs
produce cycle-level descriptions of the hardware, security-
typed HDLs can also prove that the hardware is free of timing
channels. Prior work has also shown that security-typed HDLs
catch real-world security vulnerabilities [14].

This paper presents HyperFlow, a processor architecture and
implementation designed for information-flow security that is
verified with a security-typed HDL at design time, providing
strong security assurance about its design and implementation.
The HyperFlow architecture is carefully designed to remove
all disallowed information flows between security levels, in-
cluding timing channels, and the information flows within the
design are statically verified using a security type system.
HyperFlow is also implemented as an extension of a fully
featured processor with a complete (RISC-V) instruction set.

HyperFlow security policies. Beyond being a practical,
realistic processor, HyperFlow also innovates in the security
policies it enforces. Unlike prior processors with verified
information flow, which only supported simple, fixed 2-point
or 4-point policy lattices, HyperFlow can enforce complex
application-defined security policies directly in hardware, in
line with work on information-flow security in operating
systems and programming languages which suggests that real
applications need rich lattice policies that can capture complex
trust relationships among mutually distrusting principals [5]],
(12]], [26]], [41]].

We show how to encode complex and dynamic security
policies involving both confidentiality and integrity even for
applications built from communicating processes serving mu-
tually distrusting principals. By enforcing security policies in
hardware, the software component of the trusted computing
base is minimized, and strong security assurance is obtained.
While practical tagged architectures have previously been built
with the ability to encode information flow policies [11]], [42],
they do not handle timing channels, and their implementations
have not been secured with an information flow HDL.

HyperFlow represents rich lattice policies in hardware at the



bit level by introducing hypercube labels, in which software-
level labels are mapped to points in a hypercube. Hypercube
labels enable efficient comparisons between security levels
directly in hardware, and they are amenable to static checking
in the security-typed HDL.

Controlled downgrading. To be practical, systems based
on information-flow security must allow exceptions to non-
interference [|16]]. For example, applications must be able
to release the results of computing on secrets. This can be
accomplished by downgrading, a mechanism for relaxing
information-flow policies. Uncontrolled downgrading is dan-
gerous, so the HyperFlow ISA provides instructions for con-
trolled downgrading. Downgrading of confidentiality policies
(declassification) is permitted only when it is robust [|39]—
secrets can be released only if the downgrade can be influenced
only by the owners of these secrets. Dually, downgrading of
integrity policies (endorsement) is permitted only it when it
is transparent [4]]: that is, if the party providing the endorsed
data could have read it. Together, these conditions ensure that
information flow is nonmalleable. Nonmalleable information
flow is enforced not only at the ISA level but also at the
HDL level, providing similarly strong assurance about the
implementation.

Secure interprocess communication. Another novel and
challenging feature of HyperFlow is its support for secure
communication across trust domains. HyperFlow allows but
constrains interprocess communication (IPC) via shared mem-
ory. It also supports the secure communication via registers
of arguments and return values of system calls. System calls
and shared function libraries present another challenge that
HyperFlow addresses—both scenarios require a mechanism
by which untrusted code can invoke trusted code. HyperFlow
introduces an information-flow secure call gate [31]], [36]
mechanism to make cross-domain control transfers secure.

Memory protection. Conventional systems use virtual
memory to isolate pages that belong to different applications.
However, hardware support for virtual memory is complex
and its correctness also depends on other mechanisms such as
cache coherence, which is notoriously difficult to implement
correctly. HyperFlow replaces conventional memory protection
with security tags associated with each physical page (or
frame) of memory. Security tags are mapped to hypercube
labels using a mapping defined by the operating system;
accesses to memory are then mediated using hypercube labels.
The security of this mechanism is checked in the HDL code
at design time. Despite its novel mechanism for memory pro-
tection, HyperFlow also provides a virtual-memory interface
to support existing operating systems and applications.

ChiselFlow security-typed HDL. To ease the task of
information-flow verification, we designed a security-typed
HDL called ChiselFlow in which to construct HyperFlow. Chi-
selFlow is embedded in Scala, and inherits the expressiveness
of a complex full-featured language. But ChiselFlow compiles
to a small intermediate language that is responsible for the
enforcement of security policies, so the trusted component of
ChiselFlow is small. Unlike prior secure HDLs, ChiselFlow

provides label inference that reduces programmer effort. The
hardware designer provides security labels for the inputs and
outputs of hardware modules, but labels of internal signals can
be omitted. ChiselFlow also supports multiple mechanisms for
describing heterogeneously labeled data structures, which are
crucial for practical designs. Finally, ChiselFlow separates the
confidentiality and integrity components of labels supporting
controlled downgrading.

Prototype implementation. We implement HyperFlow as
an extension to the RISC-V Rocket processor, and HyperFlow
supports a complete RISC-V ISA. Our implementation allows
conventional virtual-memory protection to interoperate with
HyperFlow’s information flow protection. HyperFlow imple-
ments performance-critical features that were absent in prior
processors secured with an IFC HDL. The prototype imple-
mentation shows that the new security features in HyperFlow
add moderate area overhead, largely due to the additional stor-
age for security tags, and moderate performance overhead due
to timing-channel protection. The HyperFlow implementation
is also more fully-featured than prior information-flow secured
processors. The timing-safe implementations of these features
also type-checks with ChiselFlow, providing strong assurance
that the implementation is secure.

II. HDL-LEVEL INFORMATION FLOW CONTROL

Implementing hardware with security-typed hardware de-
scription languages (HDLs) is a promising approach to en-
suring the hardware is secure. HDL-level information flow
control applies techniques from language-based security [29]
to hardware design [13]], [20], [21], [43]. Variables in the code
that describe the hardware design are annotated with security
labels, L, which are types describing restrictions on where
information contained in that signal can flow. The type system
then enforces these restrictions.

Type systems for information flow security can enforce
noninterference [|16], which ensures that a signal with a label
L can only be influenced by signals with labels that are
less restrictive than L. For example, if the label public is
less restrictive than the label secret, then a secret signal
cannot influence a public signal. When a label L is no more
restrictive than another label L’, it is said that L flows to L/,
written L E L.

HDLs for information flow security can enforce a partic-
ularly strong, timing-safe variation of noninterference [21]],
[43]. HDLs describe hardware at the register transfer level
(RTL) — the code describes new valuations of signals during
each clock cycle. Because HDLs give cycle-level descriptions
of hardware, the information flow type system can guarantee
cycle-level timing-channel freedom.

In this work, we develop a new information-flow-secure
HDL, ChiselFlow, and use it to construct a novel and secure
processor. ChiselFlow extends Chisel [3|], an HDL embedded
in Scala. An advantage of the ChiselFlow implementation is
that it gains much of the expressiveness of Scala without
including this complex language in its trusted computing
base. Like Chisel, ChiselFlow generates a simpler, compiled



class ExampleIO extends Bundle {
val id = Input(UInt(4.W), L(public, trusted))
val data_in = Input(UInt(32.W), hlvl(id, id))
val data_out = Output(UInt(32.W), hlvl(id, id))

3}

class ExampleModule extends Module {
val io = IO(new ExampleIO)

val secretMask = Reg(init = 0x2.U, L(secret, trusted))
val publicMask = Reg(init = @x1.U, L(public, trusted))

when (id confFlowsTo secret) {
io.data_out := secretMask & io.data_in
}.otherwise {
io.data_out
}
}

:= publicMask & io.data_in
Fig. 1. ChiselFlow example.

intermediate representation that can then be used to produce
hardware designs. The intermediate representation (IR) for
ChiselFlow is called SIRRTL; it extends Chisel’s IR, FIR-
RTL, with information flow annotations. The enforcement
mechanisms of ChiselFlow operate entirely on SIRRTL. In an
accompanying technical report [|1], we formalize a core subset
of SIRRTL and prove that, aside from downgrades, well-typed
hardware modules enforce timing-sensitive noninterference. In
Appendix [A] we discuss the implementation of ChiselFlow and
some features that were useful for implementing HyperFlow
securely.

Figure [I] shows an example of ChiselFlow code, which
looks much like Chisel code aside from the parts in bold font.
As in Chisel, ChiselFlow describes hardware modules with
classes that extend Module. The example shows a module
called ExampleModule, which takes two inputs: data_in, a
data value, and id, a one-bit flag indicating whether data_in
is secret or public. The module outputs data_out, which is
data_in masked with a secret value when id indicates that
data_out can observe secrets.

Signals in ChiselFlow are annotated with security labels
that have confidentiality and integrity components. Here, the
label L(public,trusted) means that id is fully public and
fully trusted. However, ChiselFlow also supports software-
defined security policies that depend on the run-time values
of variables. The ability to express security policies that
change at run time enables hardware implementations with
low area overhead, because it allows hardware modules to
be shared among security domains over time. For example,
hlvl(id, id) describes the interpretation of the signal id as
an information flow label. Although labels of this form can
depend on run-time values of signals, the type system relies
on a static program analysis to reason about the behavior of
these run-time types at design time.

The interface for ExampleModule is ExampleIO, which
describes a record type in which id, data_in, and data_out
are records with distinct security labels that have already been
described. The register secretMask is a fully secret and fully
trusted register. The body of ExampleModule is secure because
access control ensures that the value of secretMask does not
flow to io.data_out unless id flows to secret. The program
analysis statically determines that under the branch in which

this access control is true, the security label of io.data_out
is secret, which permits the assignment from the value that
depends on the secret.

III. SECURITY POLICIES IN HYPERFLOW

HyperFlow enforces information flow security policies di-
rectly in hardware. Prior work on label models for information
flow security has developed rich policies allow mutually dis-
trusting principals to communicate [5], [12], [26]], [41]]. These
label models represent policies using lattices of information
flow labels. HyperFlow can enforce policies described in these
models because it can enforce general lattice-based policies.

A. Confidentiality and integrity policies

Information flow labels in HyperFlow support reasoning
about both confidentiality and integrity. An information flow
label £ = (c,i) in HyperFlow is a pair of a confidentiality
level ¢ and an integrity level i. Confidentiality and integrity
levels in HyperFlow both form lattices that are ordered by
Cc and Cj respectively. The ordering on confidentiality levels
specifies constraints on secrecy; if ¢ ¢ ¢’, then ¢ is no
more confidential than ¢’. Similarly, if i C; i’, then i is at
least as trustworthy as i’. The ordering of integrity levels
and confidentiality levels is dual: high confidentiality levels
are more restrictive than low ones, whereas low integrity
levels are more restrictive than high ones. The orderings on
confidentiality and integrity levels are lifted to a lattice of
labels C; if ¢ C¢ ¢’ and i &7 i’ then (c,i) C (c¢/,i’). We write
C(¢) and I(€) to denote just the confidentiality or integrity
part of the label respectively.

B. Lattices via bit vectors

In order to support efficient computations and comparisons
of labels in hardware, HyperFlow represents lattices over
bit vectors. We first explain the ordering of confidentiality
levels. Levels are mapped to a point in a hypercube, which
is expressed using a bit vector. A bit vector b is split into
d € D dimensions, each of K bits. Bit vectors are then
functions from [1, D] to [0,2%X — 1], and the notation b(i)
represents the value in the i’ dimension of b. Bit vectors
by and b, are ordered in the confidentiality lattice, written
b1 C¢ by if each dimension of b; is numerically less than or
equal to the corresponding element of b,. The join (L¢) and
meet (M¢) of two confidentiality components are respectively
computed by taking the maximum or the minimum over the
corresponding dimensions of each vector. The lattice over bit
vectors is defined more formally in Figure [2| As an example,
if by and b, are each bit vectors of 4, 2-bit dimensions, and
by is 10100111 and b, is 10010010, then by T by. It is
straightforward to check that this order has lattice properties
(i.e., it is a transitive, reflexive, and antisymmetric partial
order). The ordering in the integrity lattice is exactly dual to
the ordering in the confidentiality lattice as shown in Figure

We write (¢, ))U(c’,i’) £ (cUcc’,ilyi’) and (¢, H)N(c’,i’) £
(cMcc’,inyi’) to denote the join and meet over labels respec-
tively. We use T and L to denote a sequence of all 1’s and



beB=[1,D] - [0,2K-1]
by Cc by 2Yd € [1,D].b;(d) < by(d)
(b Uc br)d = max{b;(d), b>(d)}
(b1 Nc by)d £ min{by(d), by(d))

Fig. 2. Confidentiality ordering over bitvectors.

beB=[1,D]—[02K-1]
by Ty by 2 Vd € [1,D].by(d) > by(d)
(b1 U by)d £ min{b;(d), ba(d)}
(b1 M ba)d = max{b;(d), by(d)}
Fig. 3. Integrity ordering over bitvectors.

all @’ s respectively. In the confidentiality order, T and L are
completely secret and completely public respectively. In the
integrity order, T and L are completely trusted and completely
untrusted respectively. The labels (L, T) and (T, L) are the
least and most restrictive labels in information flow order (C).

Other representations of lattices in computer systems have
been studied [15]]. Because HyperFlow uses information flow
labels for access control and timing-channel protection, lattice
comparisons and computations need to be done throughout
the implementation, and the ability to efficiently update and
compare labels directly in hardware is particularly important in
designing a processor with strong information flow security.
Prior representations of lattices such as adjacency lists and
matrices are less space-efficient. Other approaches that rely
on caching requires software intervention on each lattice
operation. The hypercube lattice is most similar to the skeletal
representation, also known as the Fidge and Mattern vector
clock [[18]]. However, vector clocks have not been used to
represent lattices in hardware in prior work.

C. Nonmalleable downgrading

Systems for information flow control are often intended
to enforce noninterference, which prevents all information
flows that violate lattice policies. However, noninterference
is too restrictive for practical systems. For example, data
computed using secrets may eventually need to be released
publicly. Noninterference may be weakened through down-
grading which relaxes information flow labels. Downgrading
that weakens confidentiality is said to declassify whereas
downgrading that weakens integrity is said to endorse [40].

Because downgrading weakens noninterference, effort has
been made to constrain downgrading to limit its potential to
cause harm [30]. In this work, we permit communication
that weakens noninterference as long as the downgrading it
causes is nonmalleable [4]. Nonmalleable information flow
subsumes two security conditions, robust declassification and
transparent endorsement. These security conditions have not
been enforced by previous hardware mechanisms.

Robust declassification [39] only permits information to be
downgraded by parties that have authority over that informa-
tion. As in prior work on defining robust declassification [4],
[6], authority (trust, privilege) is represented by integrity; only

a principal at least as trusted as /(p) can declassify data with
confidentiality C(p). This constraint is useful for decentralized
systems. A principal A can declassify its data to a principal B,
and as long as B does not have integrity /1(A), B can observe
A’s data but is prevented from releasing it elsewhere.

In HyperFlow, a process with label {.,, can declassify a
label ¢ to ¢’ only if the following holds:

C(0) Ec C() Ue (I(Leur) Ly 1(0)).

This condition follows directly from prior work on defining
robust declassification in the context of programming lan-
guages [4], [6]]. Roughly, it allows the confidentiality C(£) of
the data being declassified to be “made up for” by the integrity
1({) of the data being declassified and the integrity I({.,,) of
the current process. When ¢ can be robustly declassified to ¢’

by a process with label €., we write £ -, .

The dual of robust declassification is t?efﬁrsparent endorse-
ment [4]. It sets a maximum confidentiality on endorsements
to prevent opaque writes that could enable attacks. A write is
opaque if a principal could have written data but not read it.
In HyperFlow, a process with label ¢, can endorse a label
{ to ¢’ if,

I(f) Cy I(fl) Ly (C(fcur) Lc C(f))

This condition follows directly from work on defining
transparent endorsement for a functional programming lan-
guage [4]]. When ¢ can be transparently endorsed to ¢’ by a

process with label €.,,, we write £ ——I—> ¢’. When ¢ —I—> t’

C cur cur
and { —— ¢’ we say that £ can be nonmalleably downgraded
to ¢’ bycgprocess with label €., and we write £ —— ¢’ [4].

IV. THE HYPERFLOW ARCHITECTURE

HyperFlow is realized as a tagged architecture where se-
curity labels are explicitly represented as hardware tags for
a process, registers, and memory pages. HyperFlow replaces
conventional memory protection enforced by virtual memory
with security tags that are associated with each physical page
(or frame) of memory. Tagged physical memory enables static
checking of information flow with a type system. Virtual
memory does not ensure noninterference; it is possible for
the same physical page to be mapped to virtual addresses
owned by distrusting processes. Even if the mapping did
ensure noninterference, it would not be possible to prove
that noninterference is established purely by inspecting the
hardware design, since the mapping is software-defined. The
tagged physical memory can also be used to reduce the
software trusted computing base by removing the need to rely
on virtual memory for process isolation.

The security tags in HyperFlow are information flow labels.
By enforcing information flow labels in hardware, HyperFlow
can permit isolation among multiple principals that are mutu-
ally distrusting, yet communicate. Noninterference precludes
communication among mutually distrusting principals, so the
information that they are communicating must be downgraded.



However, HyperFlow constrains these downgrades by ensuring
that they are nonmalleable [4]]. In doing so, HyperFlow ensures
that processes cannot leak information that they do not have
authority over. Enforcing nonmalleability requires the ability
to inspect the integrity and confidentiality of the information
being downgraded as well as the principal initiating the
downgrading. This is accomplished by making the information
flow labels visible in hardware.

A. Process levels

Processes executing in HyperFlow are associated with a
level, €.,,. The level C(€.,,) represents the greatest level of
secrecy that the process can observe, and I({.,,) represents
the most trusted level of information it can affect. In order
for the currently executing process to read a page of memory,
m, we require Mg(m) C €.y, where M, is a mapping from
pages to their information flow labels. Similarly, to write to
m, we require that €., © M¢(m).

HyperFlow also associates security labels with registers
to facilitate two kinds of communication that are needed in
processors: 1) communication between userspace applications
and the operating system during system calls, and 2) in-
terprocess communication in memory. During system calls,
arguments and return values are communicated between the
application and system call handler via registers. HyperFlow
permits communication using registers by associating labels
with registers and through instructions that downgrade regis-
ters’ labels. Assuming the application is untrusted, the trusted
call handler can endorse the registers storing the arguments
after inspecting them. At the end of the system call, the call
handler can declassify the registers storing the return values
before re-entering the public application.

Because information flow labels are used to enforce security,
HyperFlow must ensure that the labels accurately reflect the
security of the data they protect. General-purpose register r
has security label ¢,. Normally, to store the content of r to
an address in m, we require £, C M,(m). Similarly, loading
a word from m into r requires M,(m) C ;.

Though secure, these invariants sometimes prevent nec-
essary communication among distrusting principals. Hyper-
Flow permits interprocess communication among distrusting
principals via shared memory so that it provides a familiar
software interface. Writes to and reads from shared memory
that would violate noninterference require downgrading. Pages
can be downgraded; however, downgrading an entire page
is too imprecise for many applications. HyperFlow supports
downgrades at the granularity of an individual word with
downgrading load and store instructions. These instructions
work just like conventional loads and stores except that they
downgrade the source data while it is copied. HyperFlow
also supports page downgrades for zero-copy sharing of entire
pages.

Processes in HyperFlow are also protected against informa-
tion flow violations caused by the instructions that are fetched
by the currently executing process. The active process should
not execute low-integrity instructions because this would allow

adversaries that the process does not trust to influence the code
that the process executes. Similarly, branching conditions that
depend on secrets can cause secrets to be released through
the instructions that HyperFlow executes. Information leaks
through control flow are called implicit flows.

HyperFlow prevents implicit flows because ., also repre-
sents the information flow label of the most recently fetched
instruction. Branches cannot depend on a register r unless
€, E €cyr. Similarly, for all instructions that write to a register
r, HyperFlow requires €., C ¢, to ensure that the label of ¢,
accurately reflects the process that influenced it.

B. Information-flow call gates

The restriction on branch conditions and on writes to
registers together prevent an untrusted or secret process from
invoking code that is trusted or public. However, untrusted
applications need to be able to call trusted code when making
system calls, and secret applications need to be able to call
public functions from libraries. HyperFlow securely supports
control transfers of this form with a mechanism that is analo-
gous to call gates that originated in Multics [31]]. Call gates in
HyperFlow tightly couple the entry point (program counter)
that initiates the code with an information flow label that
represents the privilege level of that code. A process at level
{.ur can register a call gate at level ¢’ as long as €, C ¢’.
Another process can then invoke a call gate, at which point
the program counter is set to the entry point of the gate and
{cur 1S set to the level at which the gate was registered. To
allow protected returns from call gates, invoking a call gate
also pushes the previous program counter value and level of
{.,r onto a hardware stack. The executing process can then
invoke a return instruction to pop the stack, jumping to the
old pc value and privilege level.

Call gates in HyperFlow are unique in that conventional
hierarchical privilege levels are replaced with more general
lattice-model information flow labels. By generalizing privi-
lege levels, HyperFlow securely supports control transfers with
fewer privilege changes than in a conventional processor while
simultaneously providing more fine-grained separation of priv-
ilege. For example, in a system managed by a microkernel
running on HyperFlow, a network driver can register a call
gate at a security level €,., that is incomparable with other
components of the microkernel. When an application wishes
to send a packet over the network, it can directly invoke the
call gate transferring immediately to €,.;. In a conventional
processor, the network driver can either run in supervisor
mode, in which case the application must implicitly trust the
entire kernel, or the network driver can run in userspace. In
the second case, the application must first make a system
call causing a transition to supervisor mode before the kernel
delegates to the userspace driver. In this case, the application
must both trust the kernel to delegate to the driver, and there is
a performance penalty because of the extra privilege changes.

Using just a single level, £.,,, for a given process is often
sufficient. However, other applications require the ability to
operate on data within a space of information flow labels.



To permit flexibility with the label of executed instructions,
HyperFlow allows the active process to move the level of £,
within a space of labels bounded by ¢, and ¢,,,. When
setting the value of £, we require {3, C Ccyy C Lypr. For a
process executing with a space of labels, C(€,p,) and I(£y,p,)
represent the most secret and most trusted information that the
process can observe and affect respectively. On the other hand,
C(¢pyr) and I(€y,,) represent the least secrecy the process can
claim it has observed and the least trustworthy information that
it can be influenced by.

C. Instruction set extensions

HyperFlow introduces new instructions as well as new
control and status registers. Security levels in HyperFlow are
represented as a pair of confidentiality and integrity compo-
nents as described in Section Levels {wr, Lcur, and, £,p,
are each stored in control and status registers (CSRs) and are
accessed with conventional CSR instructions. The registers
that store £, and ¢, define the bounds for a process. To
prevent a process from circumventing its own bounds, the
bounds can only be modified when the processor is in the most
public and trusted level, that is €., = (L, T). However, €.,
can be modified at any level as long as ;v C €cur E Cupr.

The new instructions are summarized in Table [l The first
column describes the instruction name and operands, the
second column describes restrictions that must be satisfied
when executing instructions, and the third column describes
what the instruction does if the restrictions are satisfied. We
overload the notation r to denote the value stored in register r.
As before, €, denotes the label associated with » and M, (a)
denotes the label of the page containing address a.

The instructions DECLREG and ENDOREG downgrade registers.
The DECLREG instruction declassifies the value stored in ry
to the confidentiality level stored in rp, but it permits the
declassification only if it is robust. The first restriction prevents
implicit flows by ensuring that £,,- can write to the new level
of ri. The second restriction ensures that r; can be robustly
declassified from ¢, to (r2, I({y)).

The last restriction is more subtle — it prevents potential
information flow violations that might be caused by the use
of rp as an argument. The register labels and memory labels
are fully public and fully trusted. In most work on secure infor-
mation flow, labels are public and trusted; otherwise, merely
inspecting the labels releases information, and if the labels are
not trusted, it is hopeless to rely on them for security. Because
this instruction allows the value stored in r to influence a
label, it must be permitted to influence fully public and trusted
data. A natural way to ensure this is to simply require that
tr, = (L, T). However, this restriction would often require
extra instructions to first downgrade r, before downgrading
r1. Instead, we enforce a less restrictive, but equally secure
condition—it must be possible to downgrade r» to (L, T) using
robust declassifications and transparent endorsements. This
relaxed restriction does not weaken security because when the
restriction on the label of r; holds, it is always possible to first
downgrade the label of r;.

The instruction RSTREG allows a process to reclaim a register
without downgrading by setting the level of the register r; to
{cur. In order to avoid possibly downgrading the value stored
in ry, ry is cleared. Because this instruction takes no arguments
other than ry, and it happens unconditionally, no restrictions
on this instruction are necessary. This instruction is useful
for easily resetting the labels of registers because it does not
impose any restrictions.

The LWDWN instruction works like a normal load word
instruction, but it relaxes the restrictions on information flow
labels. It permits the load if the value of the page from which
the data is loaded could be downgraded to the label of the
destination register, and to €.,,-. Similarly, SWDWN works like a
store instruction that permits the store if the register contents
could be downgraded to the label of the destination page.
Both instructions are useful for interprocess communication
via shared memory.

The memory levels can be reset by totally trusted and
public software through a SETMEM instruction, which takes two
arguments: the page-aligned physical address in register rg
and confidentiality and integrity components in r;. SETMEM
sets M¢(m) to r, where r is the value stored in r. The
SETMEM instruction can only be executed when €., = (L, T).
Trustworthy software that uses this instruction should clear the
contents of the page to prevent implicit downgrades.

Entire pages can also be declassified/endorsed by user-
space applications through the DECLMEM and ENDOMEM instruc-
tions, which are similar to SETMEM except that they require
the changes in memory levels to be robust/transparent as
in DECLREG and ENDOREG. As with DECLREG and ENDOREG,
information flow violations through labels are also prevented
by requiring that the arguments that influence labels can be
downgraded securely.

The REGLGATE instruction registers a new call gate with a pc
value of r; and a label of r, by adding it to a table T, that stores
call gates by mapping pc values to labels. The first restriction,
(Ceur U €y U E,,) E rp, checks that the process creating the
gate and the arguments from which the gate is constructed are
no more secret and are at least as trusted as the label of the
gate. The entries in the call gate table are public and trusted
(though the labels of individual gates may be more restrictive),
because processes that attempt to use call gates must be able
to see whether or not they exist. Therefore, the last two
restrictions check that the active process can downgrade the
register arguments to public and trusted because they influence
the creation of a call gate entry.

The LCALL and LCALLR instructions execute a call gate and
have the same instruction formats as conventional JAL and
JALR instructions. The LCALL instruction specifies the call-gate
entry point with an immediate that is added to the current
pc value, whereas the LCALLR instruction specifies the entry
point by adding an immediate to a register argument. For both
instructions, if the specified entry point is found in the call gate
table, the address of the instruction following the call and the
value of €., prior to the call are pushed to a hardware stack
S for return addresses and labels. The processor then sets the



Instruction Restrictions

Behavior
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TABLE T
NEW INSTRUCTIONS ADDED IN HYPERFLOW.

pc value to the entry point of the gate and sets {.,, to the
label of the gate. If the gate does not exist, the instruction is
converted to a NOP. The instruction LRET pops the stack S and
returns to the most recent pc value and label.

Finally, the SETBOUNDS instruction permits software that is
fully public and fully trusted to set the label bounds. There are
CSRs called €ycurs Cniwr> Cnupr that privileged software can
read and write normally. The SETBOUNDS instruction atomically
copies these CSRs to €cyr, €1y, and £y p, respectively in a
single cycle. This instruction is necessary, because writing
to an individual bound register might otherwise temporarily
violate the invariant, £;,,, C Ccyr E Cupr.

D. Semantic changes to existing instructions

In addition to the new instructions, HyperFlow also changes
the semantics of existing instructions in order to ensure that the
policies described by the information flow labels are enforced.
To enforce these polices, a set of invariants must hold for each
instruction that is executed. The invariants depend on the kind

Invariant

br, U Me(m)Uleyr E grd
AMe(m) E Ceur

Instruction Type

Load instructions

Store instructions Crg U, Ulcyr & Me(m)

Execute unit by UWer, UWeur E by

Value-dependent branches ["sl [} €r32 Cleur

All instructions Me(m;) C leur

TABLE IT
INSTRUCTION INVARIANTS ENFORCED BY HYPERFLOW.

of instruction being executed. For example, different invariants
hold for arithmetic instructions and memory instructions.
Table [l summarizes these invariants. The invariants serve two
purposes: 1) to implement memory protection, and 2) to ensure
that the labels of the registers and memory pages accurately
capture the secrecy and integrity of the data they protect.
Memory protection is enforced by ensuring that when a
process with label €., loads from a page m, M¢(m) C €.y,



to prevent reads that would violate security. This is explicitly
enforced on loads. On stores to m, we require €, & M. (m)
which is subsumed by the invariant enforced by store instruc-
tions listed in the table.

For all instructions regardless of type, HyperFlow must
enforce the condition Mg(m;) T ¢, where m; is the
memory page where the instruction is fetched from. This
prevents information from leaking to the process via the
fetched instruction.

The rest of the invariants preserve the accuracy of the
information flow labels. For load instructions, condition

fra UMe(m) U leyr E grd

must also hold, where r, is the source register that contains
the base address and m is the page which contains the data
being loaded. This invariant ensures that the level of the
destination register accurately reflects the level of the data it
stores. Similarly, store instructions require

fr‘, U gr‘, u gcur E Mf(m)

where r, is the register that contains the value being written,
and m is the page being written to. This invariant ensures that
the policy described by the level of the page being written to
is also not violated by the data being written to the page or
by the address.

Computation instructions such as arithmetic and logical
instructions, multiplication and division, and floating-point in-
structions, perform a computation on arguments and write the
result back into a destination register. For these instructions,

by Ulpy Uleur C Ly,

rs2

must hold, where ry; and ry; are the source registers and ry
is the destination register. The data is influenced by the values
of both the source registers (which are bounded by ¢, , and
{r.,) as well as the process causing the instruction to execute
(which is bounded by €., ).

Value-dependent control-flow instructions such as condi-
tional branches must enforce the invariant

g U, T leyr.

Because ¢, represents the security level of the current
control flow (program counter) as well as the security level
of a process, a change to the program counter can only be
affected by information that can flow into €.,,-. This invariant
prevents branch instructions that would violate the information
flow policy.

V. HYPERFLOW MICROARCHITECTURE AND LABELING

This section describes the microarchitecture extensions nec-
essary for HyperFlow and how they are be labeled in the
secure HDL. The HyperFlow instruction set architecture can
be realized by many implementations and microarchitectures.
Here, we discuss our prototype implementation based on the
RISC-V Rocket Chip processor. The HyperFlow implementa-
tion includes many advanced microarchitecture features such

as a pending store buffer, pipelined caches, branch prediction,
virtual memory, and atomic memory operations, which were
not studied in previous information-flow-secured processor
designs. Appendix [C|provides more details on the design trade-
offs we considered to make the HyperFlow implementation
pass the information flow security analysis performed by the
type system, and how the process of implementing hardware
with a security-typed HDL differs from that of conventional
hardware designs.

A. Labels in the core and label bypassing

In the processing core, the security label of the current pro-
cess (£qyur) 1s stored in a new control status resister (CSR). The
confidentiality and integrity components, C(¢,,) and I({,),
of general purpose registers r; are stored in register banks
adjacent to the registers. These label registers can be modified
only by the DECLREG and ENDOREG instructions, which are
guarded by logic that checks the non-malleability conditions,
and the RSTLREG instruction which can only set the label of a
register to ¢y

The HyperFlow core supports data bypassing. To function
correctly, the security labels must be bypassed with the data.
For immediate values, the bypassed label is £.,,-. For a value
from a register or a cache, its label travels with the bypassed
data. The bypassed labels are themselves labeled with £,
because they might be stalled or updated by the current
process.

B. Memory and cache labels

The memory page labels (M, (m)) are stored in an on-chip
table that maps page numbers to labels. Initially, every page
is mapped to the most public and trusted label C(L) A I(T).
The SETMEM, DECLMEM, and ENDOMEM instructions issue memory
transactions that modify the memory label table. The current
security label (£, ) is attached to each memory transaction so
that information flow and downgrading can be checked in the
memory system. For a system with large off-chip memory, the
memory page labels may be stored in off-chip memory along
with data.

In the data cache, a data label is added to each cache line
to track the memory label for the physical address stored in
the cache line. The memory label is appended to a cache
refill transaction from memory. The data cache is blocking,
so memory tags are always brought into the cache before any
data is modified or returned to the core. For a load, the cache
only returns data if the data label of the accessed cache line
flows to €.,,. The core updates the destination register only
if the label of the returned cache data flows to the label of
the destination register. The security of a store is enforced by
checking that the label of a pending store buffer entry flows
to the label of the cache line, and that the label of a memory
transaction flows to the memory page label.

The LWDWN instruction may be used to load a value with
downgrading and performs three non-malleability checks. The
cache checks that the value can be downgraded to £.,;,. Then,
the core checks that the data label of the cache response can



be downgraded to the destination register’s label; two checks
are added, one near the bypassed data and the other near the
register file writeback.

C. Timing-channel protection

Ccur 1s also used as a timing label to prevent timing channels
through microarchitectural state. That is, C({,,-) is an upper
bound on the level of secrecy that the process is permitted
to observe by measuring timing. Any microarchitectural state
that influences the timing of instructions is protected by €.
Cache entries, in-flight instructions and cache transactions,
translation-lookaside buffer (TLB) and page table walker
(PTW) entries, and branch predictor state are examples of
state that influences instruction timing. Because the security
type system in ChiselFlow enforces timing-sensitive non-
interference, timing channels must be removed for the hard-
ware to type-check.

When the value of ¢.,, moves downwards in the lattice,
the level of secrecy that the process can observe is decreasing.
HyperFlow must prevent secrets owned by the previous level
of £.,, from leaking to the new one. The processor pipeline
is drained to prevent high instructions from stalling low
instructions as well as other subtle timing channels through
register bypassing. In-flight transactions in pipelined caches
are also drained when £, is lowered.

The pending store buffer in the data cache also introduced
a subtle timing channel that we did not initially expect.
Outstanding cache-write requests in the pending store buffer
are serviced opportunistically when there is no in-flight read
request. The store buffer can cause a stall either when the
content of the buffer might have a read-after-write hazard or
when the buffer is full. To prevent a timing channel, we enforce
that all entries of the pending store buffer must have the same
label, and the buffer is drained before lowering €.,,;.

Caches may also cause timing channels when they are
shared among security levels. For instruction caches, the
timing channel can be removed by simply clearing and in-
validating cache lines when lowering £.,,-. However, in the
data cache, dirty cache lines must be written back when
they are evicted, and cannot be simply invalidated. In our
implementation, we require software to issue a cache flush
instruction to write-back dirty cache blocks before executing
an instruction to lower €.,,. When €., is lowered, the data
cache is invalidated in a single clock cycle.

While our prototype implementation uses flushing to remove
cache timing channels, cache partitioning can also be used to
lower the flushing overhead on a label change. With partitioned
caches, each partition can have a register for its own security
label. Then, the logic for a cache read only searches partitions
with labels ¢p such that £p C {.,,. When the security label of
a partition changes downwards in the lattice, only that partition
will need to be invalidated.

HyperFlow has both branch prediction, which predicts
whether or not branches are taken, as well as branch target
prediction. The branch target predictor (BTB) in HyperFlow

is fully-associative. The branch history table (BHT) has two-
bit states per index and a global history register. Prior work
has demonstrated that both forms of branch prediction create
timing channels that are capable of leaking secrets from Intel
SGX enclaves [?]. To prevent timing channels, when €.,
moves downward, the BTB is invalidated and cleared, the BHT
is cleared, and the global history register is reset.

D. Virtual memory

The HyperFlow implementation includes support for virtual
memory. While HyperFlow protects memory using memory la-
bels, the virtual memory system provides a familiar interface to
the software and permits software to run on HyperFlow mostly
unmodified. Virtual memory support includes instruction and
data TLBs as well as a hardware page table walker (PTW).
TLBs influence timing because they are caches of recently
used Level-1 (L1) page table entries (PTEs). L1 PTEs store
mappings from virtual to physical addresses. The PTW serves
as a cache of L2 PTEs, which store pointers to L1 PTEs. The
TLB and PTW state are labeled with ¢.,,, and the state is
cleared when £.,,, moves downward in the lattice.

Because the TLB and PTW state is labeled with £.,,-, PTEs
must be stored in a memory page with a label that flows to
€cur. This restriction must be satisfied by the software that
manages the page tables. One simple option is to label the
memory pages for page tables with (C(L),I(T)), which is
the least-restrictive information-flow label. The page table can
also be stored in pages with more restrictive labels as long as
they flow into the processes that use the page table.

E. Atomic memory operations

Like the baseline processor it extends, HyperFlow supports
atomic memory operations (AMOs). AMOs are critical for
operating system implementations because they are needed
to implement synchronization primitives. AMOs are imple-
mented by buffering both operands into different slots of the
pending store buffer in the data cache before buffering the
result back into the first slot of the pending store buffer.
Implementing AMOs securely is challenging because the
operands are buffered-in over multiple clock cycles, meaning
they might have different timing labels, and because they are
computed from operands that might also have different data
labels. Because both AMO operands are buffered-in by the
same instruction, both operands have the same timing label.
To reduce the number of ports in the AMO execute unit, both
operands, and therefore the output, are required to have the
same label.

VI. EVALUATION

We developed a prototype implementation of HyperFlow
as an extension to a single-core configuration of the RISC-V
Rocket Chip processor. This is a more full-featured processor
than those previously implemented with statically checked
information-flow [14], [20], [21]], [43]]. The prototype imple-
mentation label-checks with ChiselFlow and successfully runs
all of Rocket Chip’s ISA and application unit tests.



A. Processor features

The processor is pipelined, with branch prediction and
branch target prediction. The branch history table has 2 bits of
state per entry and a global history register. The branch target
predictor is fully associative. The execution units include an
ALU, a multi-cycle multiplier, and a floating-point unit (FPU).

The FPU is implemented as an independent coprocessor
that receives instructions from the main processor, but it has
its own independent instruction-decode unit, floating-point
register file, and pipeline. The FPU sends requests to the
memory hierarchy independently of the main processor.

The processor has four hierarchical protection rings, and
a 32-bit virtual address space divided into 4KiB pages. The
baseline processor has L1 instruction and data caches each
with 64 sets and 4 ways. Both L1 caches have 2 pipeline
stages. The data cache has a two-slot pending store buffer.
Both caches are virtually indexed and physically tagged. The
caches include cache controllers. Separate instruction and data
TLBs store level-1 page table entries for each cache. A single
hardware page-table walker refills both TLBs on misses and
caches recently-used level-2 page-table entries.

Many of these micro-architectural features have been absent
in prior information-flow secured processor implementations.
To the best of our knowledge, HyperFlow is the first to
include, TLBs, a PTW, branch and branch target prediction,
and a pending store buffer. Most of these features introduce
subtle timing channels that we address. HyperFlow is also the
first to include data bypassing with fine-grained information
flow labels. This necessitates dynamic label bypassing, which
we must also label-check. The prototype implementation of
HyperFlow includes all of the aforementioned features as well
as the ISA and microarchitectural extensions described in
Sections[[V|and |V| The HyperFlow prototype does not include
hardware accelerators and relies on a hard-wired memory
controller on an FPGA.

B. Developer effort

HyperFlow was implemented by a single developer re-
quiring roughly eight person-months of effort. While the
existing Chisel implementation of the RISC-V Rocket chip
provides most of the hardware functionality described above,
it contains many timing channels. Much of the work required
modifying the microarchitectural design to eliminate these
timing channels, especially in the instruction and data cache
pipelines, virtual memory hardware, and multiplier. Aside
from, eliminating timing channels, many of the other hardware
features, such as bypassing, required rewriting of the hardware
to make it amenable to program analysis, even though the
functionality was not changed. The labeling support provided
by ChiselFlow was essential for removing timing channels
correctly. By contrast, it was straightforward to extend the
architecture with new instructions for managing labels, down-
grading, and call gates — label-checking these features did
not pose significant challenges beyond those of conventional
hardware implementation. Label-checking many other features
already present in RISC-V imposed no additional effort for
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label-checking; for example, the instruction expansion units
and additional decode logic for compressed instructions label-
check trivially. Label inference significantly reduced required
developer effort.

C. Uses of downgrades

The RTL code for HyperFlow performs downgrades at var-
ious points; these downgrades are checked for nonmalleability
by the ChiselFlow type system. Our formal results imply that
insecure information flows can only arise because of these
downgrades, which should therefore be inspected carefully. All
but one downgrade is statically checked to be nonmalleable by
the type system. Table summarizes the uses of RTL-level
downgrades. The first column shows the ISA-visible event to
which the downgrade is tied, the second column states the
number of downgraded expressions in the RTL code, and
the third gives a brief description of what is downgraded.
For all downgrades other than downgrades of data caused by
explicit downgrade instructions, both an endorsement and a
declassification happen.

We expand upon these descriptions here. When the pro-
cessor resets (1), the register file tags are all initialized to
(L, T). This initialization requires explicit writes to the tags
because the register file labels are implemented as a sequential
memory that can be synthesized as a BRAM on an FPGA.
However, this initialization is secure because the processor is
initially public and trusted and boots public and trusted code.
For convenience, copies from the FPU to the integer register
file (2) are automatically downgraded if the labels of the data
coming out of the FPU can be nonmalleably downgraded.
When €., moves downwards in the lattice (3), it is possible
for a single outstanding cache coherence transaction to remain
in a pending transaction buffer, causing timing interference.
We resolve this with a downgrade, but nothing is leaked
if the software is written as described in Section prior
to lowering €., the software should issue a cache flush
instruction to flush any buffered coherence transaction. When
a memory transaction is issued (4), the data used to compute
the address is downgraded to £, because the address affects
the timing of the cache transaction; this downgrade is for
convenience because the address can otherwise be downgraded
with an instruction. The label of the address is still protected
by the data label, and so the store invariant in Table is
enforced by the data label. To permit the use of performance
counters, writes to the CSR file (5) are downgraded to €.,

The downgrading instructions (DECLREG, ENDOREG, LWDWN,
SWDWN DECLMEM, and ENDOMEM) downgrade the stored data and
the arguments to the instructions (6-9). These downgrades are
done under a conditional statement that checks that these val-
ues are downgraded nonmalleably. As described in Section[[V]
the arguments are also downgraded to (L, T) because the
arguments influence changes to public and trusted labels — this
downgrade is also guarded by a nonmalleability check. The
labels of the arguments are also bypassed, and bypassed labels
are labeled ¢.,,. Because the bypassed labels are inspected
by the nonmalleability check, which influences whether or



When is Information Downgraded | Number of Downgrades | What is Downgraded
1 On Reset 1 Register tags (for initialization)
2 FPU to Int instructions 1 Values copied from the FPU to integer registers (when nonmalleable)
3 Cour lowers 2 Presence of one outstanding finish coherence transaction
4 Memory instructions 1 Address is downgraded to £c,,
5 CSR file writes 1 Data written to CSR file is downgraded to £¢,,
6 DECLREG, ENDOREG 7 (1 + 3 each) Register contents, control signals, arguments
7 LWDWN 2 RF writeback data, dcache bypass data
8 SWDWN 1 P-store buffer data
9 DECLMEM, ENDOMEM 9 (1 + 4 each) Page contents, control signals, arguments
10 | RSTLREG 1 Control signal
11 | REGLGATE 8 Control signals, arguments, pipelined data labels
12 | LCALL, LCALLR 3 Control signal, arguments, pc value
13 | LRET 1 Control signal
14 | MMIO Responses 1 MMIO response transaction data

TABLE TIT

USES OF DOWNGRADES IN HYPERFLOW.

not the downgrade happens, the labels of the bypassed labels
are also downgraded from €., to (L, T). The control signals
that induce the downgrades are also downgraded to (L, T) —
this downgrade is always nonmalleable because these control
signals are labeled ¢.,,. The LWDWN instruction downgrades
the data in two places in the core: the bypass data from the
cache and the register file writeback data from the cache. The
SWDWN instruction downgrades the stored data from the label in
the pending store buffer to the label indicated by the memory
tags that are stored in the cache. Neither LWDWN nor SWDWN
changes the valuation of any labels, so these instructions do
not induce downgrades of control signals or arguments.

Similarly, for instructions RSTLREG, REGLGATE, LCALL,
LCALLR, and LRET (10-13), control signals are downgraded
because these instructions affect public and trusted state. The
REGLGATE instruction also includes a nonmalleability check
on pipelined labels. The LCALL and LCALLR instructions store
the old pc value in a public and trusted stack, so the pc is
downgraded from €., to (L, T).

Finally, one downgrade endorses and declassifies data from
memory-mapped IO devices (14). This downgrade is not in
general nonmalleable because we do not provide protection
for or from memory-mapped 10 devices.

D. Uses of dynamic checks

Dynamic checks are alternatives to downgrades. They are
dynamic label comparisons that are written to establish some
invariant. They are preferable to downgrades because they do
not weaken security. However, care must be taken because
dynamic checks should only be used when it is expected that
the invariant can never be violated. Dynamic checks are used
in HyperFlow to establish that ¢;,, E {.,-. This invariant
is established in the control and status register (CSR) file
where those registers are stored. However, the fact that this
invariant is true is not visible in other components outside the
CSR file. Another use of dynamic checks is to prevent timing
channels caused by floating-point computation. Because the
FPU computes on register values, and the time taken to finish
a floating-point computation is data-dependent, the stall signals
from the FPU are also data-dependent. The pipeline register
stall signals in HyperFlow are labeled with ¢.,,. We use a
dynamic check that hides the stall signals from the FPU when

the data values do not flow to £.,;-. Another dynamic check is
used to convince the type system that the bypass value from the
data cache does not cause timing channels; this dynamic check
forces the bypass value from the cache to 0 if the timing label
from the data cache response does not flow to £, but permits
the actual data value to be returned otherwise. In practice, this
dynamic check does not cause a functional error because when
{cur 1s lowered, the data cache pipeline is stalled and cannot
emit responses. Both the regular data cache bypass value and
a downgraded bypass value produced by LWDWN are covered b
the dynamic check.

E. RTL synthesis results

We synthesized the baseline processor and HyperFlow using
Vivado v2016.2 targeting the 7z020clg484-1 FPGA found on
the Zedboard Zynq 7000 development board. The baseline
processor uses 34,508 LUTs (64.9%) on the FPGA, whereas
HyperFlow uses 40,205 LUTs (75.6%), a LUT utilization
overhead of 16.5%. The baseline processor uses 13 (9%) of the
block RAM tiles whereas HyperFlow utilizes 19.5 (14%). The
majority of the utilization overhead is due to the security tags
stored with each cache entry, the tag table that associates tags
with memory pages, and dynamic label comparisons, which
are used for either access controls or dynamic checks. For
both the baseline processor and HyperFlow, Vivado is able to
meet a target clock frequency of 25MHz. For both designs,
the critical path is through the FPU multiplier, so we expect
that the minimum clock period is the same for both designs.

F. CPI Results

Although HyperFlow has no clock frequency overhead,
there is performance overhead for timing channel protection.
We measured the cycles per instruction (CPI) for HyperFlow
when executing the RISC-V benchmark suite compared to the
baseline RocketChip processor. For the HyperFlow processor,
the processor executes with the same security level during the
entire execution of the program. The results are summarized
in Table HyperFlow incurs a performance penalty because
unlike RocketChip, the multiplier unit always executes in the
worst case number of cycles. This performance penalty can
be removed by disallowing multiplications of operands with
data labels that do not flow to ¢.,,. The mm benchmark
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Benchmark name | HyperFlow CPI | RISC-V CPI | Percent Overhead
mm 1.089 1.063 2.4%

spmv 1.748 1.678 4.2%

median 1.631 1.284 27%

multiply 1.899 1.115 69%

gsort 1.542 1.531 0.7%

towers 1.052 1.030 2.14%

vvad 1.161 1.094 6.12%

dhrystone 1.206 1.187 1.6%

TABLE TV

PERFORMANCE RESULTS

is matrix-matrix multiply, spmv is double-precision sparse
matrix vector multiply, median is a median filter, multiply does
multiplications, gsort does quicksort on an array of integers,
towers solves a towers of Hanoi puzzle, vvad adds two
vectors, and dhrystone is the classic synthetic benchmark. The
benchmark with the highest overhead is multiply, naturally.
The geometric mean overhead is 12.4%.

HyperFlow also introduces performance overhead through
hardware state that is flushed or invalidated on label changes,
but these occur infrequently—when the active process changes
via a context switch, or when the application information
through instructions. The time between context switches is
on the order of tens of milliseconds, so this overhead should
be amortized over execution.

G. Usability

HyperFlow intends to support necessary communication
among mutually distrusting principals in an environment
managed by an operating system. HyperFlow also supports
the expressive information flow label models that have been
proposed for prior operating systems and languages for in-
formation flow control. In this section, we demonstrate that
HyperFlow supports shared memory interprocess communica-
tion, communication through registers for system calls, and
enforcement of rich information flow policies.

We demonstrate how labels represented in the FLAM model
can be expressed as hypercube labels and enforced. The
flow-limited authorization model (FLAM) is a recent model
that supports decentralized security policies [2]. To illustrate
the usability of the HyperFlow architecture, we implemented
a simple application with a decentralized information flow
control (DIFC) policy expressed in FLAM originally by Myers
and Liskov [?]. DIFC policies allow communication among
mutually-distrusting principals [S[], [12], [26]], [41].

The application emulates a tax-preparation service where a
user (“Bob”) sends data to a tax preparer and gets the result
back. Both the tax preparer and the user are distrusting. Even
though the tax-preparer process is allowed to perform compu-
tation on the user’s data, HyperFlow prevents it from sharing
the user’s data or any values derived from it to any party
other than the user. In our implementation, the tax-preparer
process and the user process communicate through shared
memory via IPC. Both processes are managed by trusted
software implemented as a single system call that manages
labels for the two parties. The application is implemented as
assembly that runs in RTL simulations of our information-
flow verified processor prototype. This result suggests that
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the HyperFlow ISA and prototype are sufficient to enforce
complex application-defined information flow control policies
with IPC and system calls.

Section provides background on FLAM. Sec-
tion demonstrates how FLAM labels can be repre-
sented with the hypercube labels of HyperFlow. Section
discusses how we use the IPC and system call primitives
to construct the tax preparation application. Appendix
discusses the system call and IPC primitives in more detail
and shows code segments that illustrate how they work.

1) Background: The FLAM Label Model and Downgrading:
FLAM unifies authorization and information flow polices.
Principals p can delegate to each other; given principals p and
q, if p acts for q, written p > q, then p trusts g. Compound
principals can be constructed from primitive principals. The
conjunctive principal p A g, denotes the combined authority
of both p and ¢. Similarly, the disjunctive principal, p V ¢,
represents the authority of either p or ¢g. Principals together
with > form a lattice, and pA g > p > pV ¢ for any p and q.

In FLAM, principals are also information flow labels. The
confidentiality of p is written p~, and intuitively represents
the authority to observe secrets owned by p. The integrity of
p, written p—, represents the authority to affect information
owned by p. A second ordering on principals, defines per-
mitted information flows. The statement p flows to g, written
p E g, denotes that information is permitted to flow from p
to g. The ordering C forms another lattice over principals,
which is orthogonal to the authority lattice. The meet and
join in the information flow order are written M and LI. Any
FLAM principal can be represented as a conjunction of a
confidentiality projection and integrity projection p~ A g~.
Labels of this form are said to be in normal form.

2) Mapping FLAM Labels to Hypercube Labels: FLAM
labels are easily represented in the hypercube model using
bit vectors. FLAM labels in normal form map directly to
confidentiality and integrity components of hypercube labels.
Primitive principals p are mapped to numeric constants, bp,.
For example, if there are four 1-bit dimensions and p and ¢q are
mutually distrusting, one might map p to 1000 and g to 0100.
Figure [ shows how compound principals can be mapped to
hypercube labels. Here, B[[p] denotes the representation of p
as a pair of its hypercube label components. The confidentiality
component is the first in the pair, and the integrity component
is the second. B.[p] denotes the confidentiality component
of p and B;[p] is the integrity component. The values by,
and b, are the lowest and greatest bit vectors that can be
represented with the width of a label; they are respectively a
sequence of all 1s and a sequence of all Os. Here, max, is a
function that computes the dimension-wise maximum of two
hypercube labels, and min;, similarly computes a minimum.

3) Tax Preparation Application: To test the usability of
HyperFlow, we implemented the tax-preparer application in
assembly using the HyperFlow ISA. Bob has ¢;,,, and £,
labels that are B~ and B~ respectively, and generally operates
with a €., label of B. The tax-preparer generally operates
with €., of (BAP)~ AP because it is an instance of the tax



Blp] £ (bp, bp)
Blp~] £ (Belpl bmax)
Blp~] = (byin, Bi[p])
Blp A q] £ (maxy, (B [p], B [q]), max, {B:[p]. Bi[q]})
Blp V q] £ (miny{B. [p], B [q]}, miny {B;[p], B:[q]})
B[p uq] £ (max,{B.[p]. B[q]}, miny{B;[p], Bi[q]})
Blp 1 q] £ (miny{B.[p], Bc[¢]}, max,{B;[p], Bi[4]})

Fig. 4. Representing FLAM labels with hypercube labels.
preparation service specifically for handling Bob’s requests, so
it needs to be able to observe Bob’s data. Its €5, and £,
labels are P~ and (B A P)~ respectively.

Before either Bob or the tax-preparer executes, a la-
bel manager that is fully trusted and public registers the
switch_process call gate and initializes the memory label.
Bob computes his tax form and sends the message to the
preparer using shared memory as described in Section
Bob then yields the processor by calling the switch_process
gate so that the preparer can begin executing. The tax preparer
receives the message and then computes the form using its
proprietary data before declassifying the result. The preparer
sends the result back to Bob via IPC and yields the processor
back to Bob by calling the switch_process gate again.
Finally, Bob receives the computed form.

VII. RELATED WORK

Gate-Level Information Flow Tracking Gate-level in-
formation flow tracking [[17]], [27], [28[, [33]-[35] applies
information flow control to hardware designs at the gate-level.
In the earliest variations of GLIFT [35], each gate of the
hardware implementation is augmented with additional gates
to track information flow. This approach incurs significant area
and energy overhead. Later versions of GLIFT apply gate-level
information flow tracking to simulated hardware designs [34],
rather than to the implementation. This reduces overhead,
but increases development effort compared to a conventional
processor design flow. Because simulating every state in large
designs is intractable, prior efforts to use simulation-based
GLIFT check either small components [28], or limit the
simulation to cover just the state space reachable with software
that is co-designed with the hardware [33]], [34].

Security-Typed Hardware Description Languages More
recently, security-typed hardware description languages have
been developed to check that information-flow policies are
enforced at design-time. Unlike simulation-based approaches,
type systems can ensure that the entire design is secure
in just seconds. Sapper [20] and Caisson [21] are security-
typed hardware description languages that generate GLIFT
logic, but use a static analysis of the HDL code to minimize
the amount of information flow tracking logic generated.
Sapper and Caisson enforce security dynamically — security
violations are converted into functional correctness violations.
SecVerilog [13]], [43] is a security-typed hardware description
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language that allows security policies to depend on run-
time values, but enforces security statically by generating
type errors. By enforcing security policies statically, hardware
designers can avoid unexpected functional errors. The design
of ChiselFlow closely follows the design of SecVerilog, and
in particular, enforces security fully statically [[13].
Information-Flow Secured Processors HyperFlow has
strong information flow security guarantees because it is
constructed with ChiselFlow, which has an information-flow
control type system. Tiwari et al. [[34]] built the first processor
with strong information flow security guarantees using a
simulation-based approach to GLIFT. The processor supports
just two security levels, and communication from the untrusted
domain to the trusted one is not allowed. Similarly Zhang
et al. construct a processor with two security domains [43]].
Xun et al. [20]], [21] construct a processor that supports a
diamond lattice. None of these processors support communi-
cation that might violate information flow security. Ferraiuolo
et al. [14] implement a processor that permits communication
that weakens information flow security, but it does not con-
strain downgrades, and so security is weakened when down-
grades are used. HyperFlow provides better assurance with
downgrades because they enforce nonmalleable information
flow control [4], a secure downgrading mechanism from prior
work. None of these processors provide memory protection or
privilege levels that can be arbitrary lattice-model information
flow labels. Prior information-flow secured processors also
do not have mechanisms for downgrading registers, or for
control-flow transfers between different security domains; both
of these mechanisms are necessary to support system calls.

VIII. CONCLUSION

This paper presents HyperFlow, a processor with strong
information flow security that can be statically checked with
an HDL-level security type system. Prior information-flow
secured processors either enforce noninterference, which limits
communication among distrusting processes, or provide no
guarantee when communication would violate noninterference.
HyperFlow provides communication that weakens noninterfer-
ence, but constrains downgrades so that they are either robust
or transparent. The HyperFlow architecture was also designed
to limit downgrades so that they are mostly visible at the
ISA level. HyperFlow was synthesized for an FPGA, and adds
little area compared to a baseline processor. HyperFlow also
enforces rich security policies expressible using a lattice; using
them, we implemented an application with decentralized IFC
policies.
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Declassification: Dimensions and

APPENDIX A
CHISELFLOW IMPLEMENTATION AND EXTENSIONS

ChiselFlow extends Chisel, a domain-specific language for
describing hardware designs embedded in the programming
language Scala. Chisel is shallowly embedded in Scala. It
is implemented as a set of Scala libraries that allow a user
to design hardware. Chisel emits FIRRTL, an intermediate
language that is compiled to Verilog, a widely used language
for hardware design.

L Synthesis
Tool-flow
— S— Hardware
— ——
— — Security Type
— — System
ChiselFlow SIRRTL

Fig. 5. ChiselFlow toolflow.



Figure [5] shows the toolflow for ChiselFlow. ChiselFlow
extends the syntax of Chisel with features for describing
and enforcing security policies. ChiselFlow emits SIRRTL,
which extends FIRRTL with a syntax for information flow
labels. Security enforcement is done by SIRRTL, which has
an information flow type system. After type-checking, SIRRTL
compiles to conventional Verilog. A conventional Verilog
toolflow can then be used to generate an RTL simulation or
synthesize to an FPGA or ASIC design.

Types that depend on the run-time values of signals are
statically checked by using a program analysis that relies on
the SMT solver Z3 [10] for dispatching proof obligations.
The program analysis models the behavior of the hardware
signals that are propagated in parallel. The program analysis
generates a set of Z3 constraints that model the value as-
signed to each signal—for each signal, a single expression is
generated by unrolling conditional statements. Cases in which
sequential variables retain their value from the previous cycle
are modeled by an auxiliary variable that represents the old
value from the previous cycle. In an accompanying technical
report, we formalize a core subset of SIRRTL and prove that
well-typed hardware modules do not leak secrets aside from
downgrades [1].

A. Heterogeneously Labeled Data Structures

Hardware modules written in Chisel commonly group sig-
nals together in bundles, which are analogous to structs or
record types. ChiselFlow supports heterogeneously labeled
bundles. The syntax of ChiselFlow allows each signal within a
bundle to take an additional argument that describes the label
of that individual field. Bundle labels in ChiselFlow are similar
to the path labels in Jif [7]. Because the program analysis
used in ChiselFlow dispatches proof obligations to Z3, bundle
labels must be represented in Z3. We represent bundles using
the algebraic datatype theory.

Chisel also includes the Vec type for describing arrays.
In addition, Chisel has a Mem type for describing memories,
which can either be used to instantiate BRAMs on an FPGA,
SRAMs in an ASIC design, or arrays of registers. To support
heterogeneously labeled Vecs and Mems in ChiselFlow, we
adopt a recent proposal in which arrays in a secure hardware
language can be labeled with functions that map the index of
the array to the label of the element at that index [14].

B. Nonmalleable downgrades

Much like the downgrading instructions in HyperFlow,
ChiselFlow supports robust declassification and transparent
endorsement with syntax decl(e,{) and endo(e, ) respec-
tively in which e is an expression and ¢ is a label. The typing
judgments for these expressions closely resemble those used
in a recent functional programming language for information
flow control called NMIFC [4]. A difference between the
typing judgments of downgrades in ChiselFlow and NMIFC is
that ChiselFlow must use the program analysis to reason about
the run-time valuation of signals mentioned in the labels.
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# Set
1i x1,
1i x2,

Page Labels. cur_lvl: {\bot-> & \top <-}
0x84 # {B-> & P<-}

0x48 # {P-> & B<-}

la x3, prep_to_bob

la x4, bob_to_prep

setmem x1, 0(x3)

setmem x2, 0(x4)

# Bob Sends. cur_lvl: {B}
la x5, bob_to_prep
swdwn x6, 0(x5) #decl {B} to {P-> & B<-}

# TP Receives. cur_lvl: {(B&P)-> & P<-}
la x5, bob_to_prep
lwdwn x6, @(x5) #endo {P-> & B<-} to {(B&P)-> & P<-}

Fig. 6. IPC Example.

C. Label inference

The baseline processor that HyperFlow extends is many
lines of code. To aid in the effort needed to label HyperFlow,
ChiselFlow supports label inference. In ChiselFlow, only the
module ports need to be explicitly annotated with labels
whereas the labels of internal registers and wires are inferred.
ChiselFlow is the first security-typed hardware language with
support for label inference, though the label inference algo-
rithm is similar to those of prior security typed languages
for software [25]. Initially, all internal signals that are not
explicitly labeled are given variable labels v € VarLabel that
represent unknown labels. Initially, variable labels have the
least restrictive label T. Label inference then proceeds as a
work-list algorithm that iteratively lowers the estimate of the
final label of each variable label based on the labels of other
signals it influences either directly or through implicit flows.

APPENDIX B
IPC AND SYSTEM CALLS

1) Interprocess Communication: Figure [6] shows an exam-
ple of how messages are communicated among processes in
the tax-preparer application, and more generally, shows how
shared memory IPC works in HyperFlow. In the example,
060100 represents the principal Bob (B), and 060010 rep-
resents the Tax Preparer principal (P). A page of memory
is allocated for Bob to send messages to Preparer with label
B~ A P7, and for Preparer to send messages to Bob with
label P~ A B~. Public and trusted code initializes the labels
of the pages used for IPC. In the code segment shown, Bob
has a £.,, label of B. Because the Tax Preparer is an instance
of the tax preparation service specifically for handling Bob’s
requests, it has a €., label of (BAP)~ AP* so that it can see
Bob’s data. For Bob to send a message to Preparer, it simply
performs a SWDWN instruction on a register with label B which
downgrades the register contents to the label of the destination
page (P~ A B7). This downgrade is robust because Bob has
sufficient integrity to remove the B~ component of the label.
The P~ component of the label can be added because this
increases the restrictiveness of the label. The Preparer receives



# Gate Registration: cur_lvl {\bot-> & \top<-}
la x1, switch_process

1i x2, Ox0F # {\bot-> & \top<-}

reglcall x1, x2

# Bob. cur_lvl: {B-> & B<-}

L. # compute form, store in shared page
1i x4, oxo
la x3, swith_process

declreg x1, x4 # Flag to choose Bob or Preparer
declreg x2, x4 # Address to jump to after call
lcallr o(x3)

# Process Switch Call: cur_lvl {\bot-> & \top<-}
switch_process:
1i x4, oxF
endoreg x1, x4 # Flag to choose Bob or Preparer
endoreg x2, x4 # Address to jump to after call

# Set labels, jump to target

Fig. 7. Syscall Example.

the message by doing a LWDWN instruction which endorses the
integrity of the message to P-.

In some cases, it is possible to receive a message through
IPC by first downgrading a register and then doing a conven-
tional load instruction to the downgraded register. However,
this example demonstrates that this is not always possible,
and that the LWDWN instruction is necessary for expressiveness
of the ISA. The tax preparer cannot endorse the integrity of a
register to B~ because its label does not flow to B~. However,
it can endorse the P~ A B data to P, so it can receive the
data with a LWDWN instruction.

In this example, we used two separate pages for commu-
nication in each direction. However, it is more conventional
for processes to share a single page that both processes can
both read and write. The label model of HyperFlow is also
expressive enough to support bi-directionally shared pages—a
single page could be labeled B v P. With this label, both B
and P can write to the page, and both process can read from
the page by endorsing it. However, with the aforementioned
numerical representations of B and P, BV P computes to the
fully public and fully distrusted label, which any other process
can read and write as well. By representing B as 0601001
and P as 0000101, B vV P becomes the more restrictive label,
0600001. Because this has a one-bit overhead in the size of
labels, we chose to use the more compact label encoding and
use two pages for communication. Other representations are
also possible. For example, using 2-dimensional, rather than
4-dimensional hypercubes offers a compact encoding while
retaining unique disjunctions, however, it reduces the total
number of physical principals.

2) System Calls: In the tax preparer, a single trusted system
call is used to manage Bob and the Preparer by initializing
labels for the target process before jumping to the entrypoint
of the process. This system call is implemented as a call
gate. Figure [7| shows a small segment of the call gate as well
as how the gate is registered and called, and by extension,
the example shows how system calls can be implemented in
HyperFlow more generally. Initially, fully trusted and fully
public code registers the call gate at address switch_process
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and with label L™ A T7. The call gate takes two arguments.
One describes whether labels should be initialized for Bob
or the Preparer, and the other is the PC value that is the
entrypoint for the next process. When Bob is done computing,
it executes the call gate. Before doing so, it must declassify
the confidentiality of the two arguments from B~ to L~. It
then simply calls the gate with an LCALLR instruction.

At the start of the call gate, the handler must endorse the
integrity of the two arguments from B~ to T*. The call gate
handler then sets the tags of all registers and the levels of
Cniwrs Cneur, and €yyp, to values that depend on the next
principal to execute. It then does a SETBOUNDS instruction
before jumping to the entrypoint of the next process.

In conventional processors, system calls work by first
jumping to trusted code that contains a system call handler
table — the particular call handler to execute is selected by
using a register argument that contains the call number. This
model is also supported by HyperFlow. However, because
HyperFlow replaces conventional privilige modes with lattice
model information flow labels, the call gates of HyperFlow
are more general and can both improve performance and the
precision with which access controls are enforced.

APPENDIX C
DISCUSSION

In this section we discuss some of the design and imple-
mentation trade-offs we made in order to satisfy the goal of
making HyperFlow label-check with ChiselFlow. This section
also discusses the process of implementing a processor that
label-checks and how this process differs from conventional
hardware design without label-checking.

Labels of Labels In ChiselFlow, wires can be used to
represent information flow labels that can change at run-time.
Because these wires are still wires, they are also labeled. In
most information flow systems, it is assumed that information
flow labels are fully trusted and fully public. If the labels
cannot be trusted, then they clearly cannot be used to establish
security, and if they contain secrets, even inspecting them to
implement access controls might leak those secrets.

However, because HyperFlow is timing-channel free and
implements fine-grained per-register and per-page data labels,
we found it necessary to give more restrictive labels to some
of the signals that represent data labels. For example, the per-
page data labels are stored in the cache and used as security
types for the data in the cache. Most control signals in the
cache are labeled with ., because they represent signals
that affect timing. Because the values of these control signals
influence the time that per-page data labels are brought into
the cache, the labels themselves must be labeled with £, .

Register File Labeling The register file tags underwent
several revisions even though it is a simple component.
This is related to the issue of labeling labels because the
register file tags are the labels of the registers. Initially, we
labeled the register file tags with £.,, following the same
design choice that we made for the data labels in the cache.
However, this would have required the register file tags to



be cleared whenever ¢.,,, moves downward in the lattice, and
by extension the associated registers would need to be cleared.
Clearing the registers whenever £, was lowered would cause
unacceptable limitations in the expressiveness of the ISA.

We later tried labeling the registers with £;,,,. With this
labeling, the level of £, can move freely without clearing the
tags because £, C {5, at all times. The tags (and registers)
need only be cleared when ¢}, is changed—effectively,
whenever the active process is changed. However, the tags
could only be set when €., = {;,,. This design point is
plausibly acceptable, but it still imposed too many restrictions.
For example, it is useful to set register tags while at a level
above {,,, so that a spare register does not have to retain the
value of £;,,,. It is also potentially useful to avoid clearing the
tags even when ¢}, changes.

In our final design, the register file tags (though not the
general purpose registers themselves) are labeled totally public
and totally trusted. As we discuss in [VI-C| the control signals
from the instruction decode unit that determine when tag-
setting instructions happen are downgraded. Given that these
downgrades only happen during particular instructions and that
the information released is clear, these downgrades do not
violate our design goal of making information release ISA-
visible.

Automatic Tag Propagation Initially, we expected that
security labels could be propagated automatically. For exam-
ple, following an ADD RS3, RS2, RS1 instruction, we would
like to compute the join of the labels of RS1 and RS2 and store
the result in RS3 without needing explicit instructions to set
the tag of RS3. In fact, this form of dynamic tag propagation is
common in tagged hardware architectures [9], [32]. However,
whether or not general purpose registers are updated depends
on control signals that are influenced by timing and labeled
with €.,,, but the labels are public and trusted. In other words,
dynamically updating the security tags themselves introduces
subtle timing channels. We found it preferable to only allow
register tags to be updated by explicit instructions that are
controlled by the software.

Multi-Cycle Execute Unit Stall Signals HyperFlow
has two execute units that take multiple cycles to perform a
computation, the multiplier and the FPU. The time to complete
these computations depends on the data values. Because the
data values have security labels that might not flow to €.,
the time to finish these computations could create timing
channel vulnerabilities if they are not carefully controlled. In
the HDL code, this timing channel is visible as a flow from the
operands from the register file (which have labels that depend
on their tags) to the stall signal, which has the label ¢.,,,.. We
address this timing channel for each of the two execute units
in different ways. For the FPU, we do not permit computations
on operands with labels that do not flow to {.,,. For the
multiplier, we permit computations on operands that do not
flow to {.,,, but the operations always complete in the worst-
case time. This presents a tradeoff between the expressiveness
of the ISA and performance. We chose to take two different
approaches for each primarily to demonstrate that either can
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be statically checked with the information flow type system.

For the FPU, when the labels of the operands do not flow
to €cyr, the stall signals in the pipeline are modified to hide
the stall signal that is an output from the FPU — this dynamic
check converts the insecure information flow to a correctness
error if the arguments to the FPU ever have operands with
labels that do not flow to €.,,-. Access controls guard the inputs
to the FPU to ensure that this invariant always holds, and a
correctness violation is never introduced in practice.

The multiplier is modified so that it always terminates in
the worst-case time. In this way it is always correct, but
does not leak information through timing. Unlike the FPU,
multiplications can be performed on operands with labels that
do not flow to £.,,. However, implementing a constant-time
execute unit is not straightforward. Because the multiplier is
a simple FSM it is a better candidate for this approach than
the FPU, which can be viewed as an independent coprocessor.
To implement a constant-time multiplier, we used two state
registers: the primary state register and the shadow state
register. The primary state register always points to the FSM
state farthest from the terminal state. The shadow state is
always updated based on the control signals and operands
to point to what the state would have been in the original
multiplier. The primary state does not depend on the operands,
and so its label only depends on the label ¢,,,. The label of
the shadow state does depend on the label of the operands, and
the value of the shadow state is used to compute the output,
but the stall signal does not depend on the shadow state. In
this way the multiplier label-checks and is correct.

HyperFlow and the Spectre and Meltdown Attacks The
recent Spectre [19] and Meltdown [22] attacks exploit spec-
ulate execution. HyperFlow, like the RocketChip baseline it
extends, does not support out-of-order execution or speculative
execution. It does, however, speculatively update the branch
history table (BHT). The BHT in RocketChip includes a table
of 2-bit counters per index and a global history table. On a
hit in the branch-target buffer (BTB), the BHT is updated
speculatively. Although the BHT and BTB are accessed in the
fetch stage of the processor pipeline, the speculative update
is not undone until the memory stage by reseting the global
history table on branch mispredictions. In an unsafe design, it
might be possible for a secret instruction to cause a speculative
update to the BHT that is visible to a public instruction
earlier in the pipeline, leaking information through timing.
In HyperFlow, however, when {.,, moves downward in the
lattice, the BTB is invalidated and cleared, and both the BHT
global history register and branch table are cleared in the same
cycle that €., changes.

The Meltdown attack exploits a vulnerability in memory
permissions checks in the data caches of Intel processors [22].
In some Intel processors, the data fetch and TLB permissions
checks that a memory access entails are implemented with
separate micro-ops. Because the data access can happen before
the permissions check, it is possible that the data access can
modify the cache even though the TLB permissions check
later rejects the access. The speculatively modified cache



state creates a timing channel. In HyperFlow, a potential
similar vulnerability is prevented in two ways. First, the cache
implementation is guarded by a timing label that represents
the secrecy of the process that brought the entries into the
cache. When ¢, becomes lower than HyperFlow, the cache
is invalidated. Second, permissions checks that govern memory
data are tightly coupled with data access. The memory tags
governing the accessed data are inspected in the same cycle
of the cache pipeline during which the data is granted.
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