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The pyrochlore lattice Heisenberg antiferromagnet is a highly frustrated model,

and possesses, classically, a macroscopic continuous ground state degeneracy. We

study the semiclassical limit of large spin length S and examine the effect of quan-

tum fluctuations on the energy within various theories. In each of these theories,

we focus on deriving an effective Hamiltonian, as a function of a small number

of degrees of freedom. The effective Hamiltonian gives us a simple formula for

calculating the energy and facilitates the search for a unique ground state among

the large number of classical ground states.

First, we consider the harmonic spin-wave theory, in which we keep only the

lowest order (in 1/S) correction to the classical Hamiltonian. We perform a de-

tailed analysis of the harmonic order spin-wave modes and, using a real-space loop

expansion, produce an effective Hamiltonian, in which the degrees of freedom are

Ising variables representing products of the classical spin directions around loops

in the lattice. We find a family of exactly degenerate collinear ground states, re-

lated by gaugelike Z2 transformations and provide bounds for the zero-temperature

entropy.

We carry the spin-wave calculation to the next –anharmonic– order in the 1/S

expansion, utilizing a a self-consistent variational Hamiltonian approach, equiv-



alent to Hartree-Fock approximation. We find that the harmonic degeneracy is

broken, but there remain a large number of seemingly degenerate ground states.

We develop an alternative approximation, employing the widely used, but not

well controlled generalization of the SU(2) ∼= Sp(1) theory to Sp(N), in the limit of

infinite N . We develop an effective Hamiltonian for this mean-field theory, using

an analytical loop-expansion. We find that in this case, the ground state of the

large-N theory cannot possibly be the physical ground state in the limit S À 1,

since it is not a harmonic spin-wave ground states. Nonetheless, when restricted to

the manifold harmonic spin-wave ground states, both the anharmonic spin-waves

and the large-N theory result in similar effective Hamiltonian.

We further demonstrate that the harmonic theory can readily be applied to de-

termine the harmonic-order ground state manifolds of the Heisenberg Hamiltonian

on related lattices, and to field-induced collinear magnetization plateau states.
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5.3 “Capped kagomé” states. . . . . . . . . . . . . . . . . . . . . . . . 67
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Chapter 1

Introduction

1.1 Geometrical frustration

In recent years, there have been many theoretical studies of geometrically frus-

trated systems [1, 2, 3]. These are systems in which not all of the spin bonds can

be satisfied simultaneously, due to the connectivity of the lattice. The frustration

may lead to unconventional magnetic ordering, or even to a complete absence of

long-range order.

In general, an antiferromagnetic model on any lattice that includes triangular

loops is frustrated. Since each spin would like to be opposite to both its neighbors,

not all of the bonds can be satisfied simultaneously. Consider, for example, the

triangular lattice. An Ising model on this lattice would have, as a ground state, any

configuration in which each triangle has two spins of the same kind, i.e., ↑↑↓ or ↑↓↓.
It is easy to see that there is a macroscopic degeneracy of such ground states, i.e.,

the number of ground states N0 is exponential in Ns, the number of sites, and the

residual entropy (at zero temperature), defined as lnN0 is extensive. Suppose, on

the other hand, that we consider the classical x-y model or the classical Heisenberg

model

H =
∑
ij

JijSi · Sj , (1.1)

where Jij = 1 for nearest neighbors 〈ij〉. and Si is a spin at site i (of two or

three dimensions, for the x-y or Heisenberg model, respectively). Here we we find

that, up to global spin rotation and lattice symmetries, there is one unique ground

state on the triangular lattice, a state in which the spins are coplanar and are at

1
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120◦ angles to each other. Thus, although not all bonds are satisfied, there is one

unique ground state. In the following, we will focus on highly frustrated models –

models in which the frustration leads to a massive ground state degeneracy.

Models that lead to strong frustration are nearest-neighbor antiferromagnets

on bisimplex [4] lattices composed of corner sharing simplexes [5, 4]. Examples in-

clude the two-dimensional kagomé and three-dimensional garnet lattices, each com-

posed of triangular simplexes, and lattices composed of corner sharing “tetrahe-

dra”: the two-dimensional checkerboard, layered SCGO [2], and three-dimensional

pyrochlore.

In bisimplex models, the Heisenberg Hamiltonian (1.1), can be recast in the

form

H =
1

2

∑
α

|Lα|2 + const. , (1.2)

where Lα ≡
∑

i∈α Si, is an operator that resides on a simplex α (we reserve Greek

indices for simplexes - and roman indices for the spin sites). Alternatively, α is

a site on the lattice composed of the centers of the simplexes, e.g., a triangular

lattice for the kagomé case, and Lα is a spin operator acting on the sites of that

lattice.

The classical result is a macroscopic continuous degeneracy among all states

satisfying

Lα = 0 . (1.3)

for all α. The entropy associated with the degeneracy is extensive.

Much of the theoretical work on such highly frustrated models has been aimed

at the extreme quantum limit, of S = 1/2 [6, 7, 8, 9, 10, 11, 12, 13], in hopes of

understanding the nature of the disordered spin states and in search of exotic new

states of matter. We, on the other hand, focus on the semiclassical S À 1 regime.
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Given the large classical degeneracy, one would like to know what physical

mechanisms can break the degeneracy and choose a unique ground state. In exper-

imental system, one usually finds that there are either lattice distortions [14, 15]

[that break the symmetry of the lattice – vary Jij along different directions] or

additional interactions, including dipolar interaction [16], Dzyaloshinsky-Moriya

interaction [17, 18], and spin-orbit interactions, due to orbital ordering [19, 20, 14]

or single-ion anisotropies [15]. Nevertheless, it is still a valid question to ask: what

is the ground state of the pure, undistorted Heisenberg model on one of these

lattices? The answer is rather counterintuitive: it turns out that often ordering

can be induced by classical thermal fluctuations, or (zero temperature) quantum

zero-point fluctuation, a phenomenon known as order due to disorder [21, 22].

Among the bisimplex lattices, the most studied theoretically has been, until

recently, the kagomé lattice (shown in Fig. 1.1) [23, 24, 25, 26, 27, 28, 29, 30]. In

the Heisenberg model on this lattice, thermal fluctuations have been shown to favor

a coplanar state –the so-called
√

3 × √3 state (shown in fig. 1.1) [24, 26]. In the

zero temperature semiclassical (i.e. spin length S À 1) case, one only considers

the lowest order, in 1/S, quantum correction to the classical energy. The result is

a harmonic spin-wave theory, and in the kagomé case it turns out that all coplanar

configurations are exactly degenerate harmonic ground states.

Why are the coplanar states preferred by quantum fluctuations? A general

argument can be given to suggest that in many frustrated lattices the ground

states should actually be collinear [31, 32, 22]: each spin Si feels the effects of a

local field due to its neighbors hi =
∑

j JijSj. The classical ground state is such

that all spins align with the local exchange field hi ‖ Si. Now, once fluctuations

are considered, each spin deviates from its ground state direction by δSi ⊥ Si,
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Figure 1.1: The
√

3×√3 kagomé state

and the local field changes by δhi =
∑

j JijδSj Since each spin would like to be

aligned with the direction of the local magnetic field, then it is preferred to have

δhi ‖ δSi. Since the deviations of Si and hi are perpendicular to the classical

directions, the result is that quantum fluctuations prefer collinear classical ground

states. [A similar argument can also be given for classical thermal fluctuations.]

In the kagomé lattice, though, due to the odd number of spins in a simplex,

there is no way of satisfying the constraint (1.3) with collinear spins. The kagomé

system settles for the next best thing: the spins align in a coplanar configuration.

To break the harmonic degeneracy in the kagomé model, one has to go on

to higher orders in the 1/S expansion. The results of self-consistent anharmonic

calculations have been that the
√

3 × √
3 state is the unique zero temperature

large-S ground states [29, 30, 33].

An established alternative to the spin-wave approach is to generalize the Heisen-

berg spins [with SU(2) ∼= Sp(1) symmetry] to Sp(N) symmetry [34, 35]: here N is
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the number of flavors of Schwinger bosons whose bilinear form represents a gener-

alized spin [34, 35], with length κ = 2S. The resulting mean-field theory (valid in

the N → ∞ limit) is popular as an analytic approach to the S = 1/2 limit, since

the small -κ limit captures various disordered and exotic ground states [34, 35, 36].

The large-N mean-field theory is also useful for large-κ (large-S) problem, because

it gives a simple analytical prescription for ground state selection: unlike the spin-

wave expansion, here all degeneracies are (typically) broken at the lowest order

[O(1/κ)] quantum correction [28, 34, 35]. This method has been applied to the

kagomé case, at about the same time as the anharmonic spin-wave theory [28], and

resulted in the same
√

3×√3 ground state.

1.2 The pyrochlore antiferromagnet

The pyrochlore lattice, in which the centers of the tetrahedra form a diamond

lattice1 (see Fig. 1.2), is of interest because it is realized in many experimental

systems, in both A2B2O7 oxides and in B sites of AB2O4 spinels [37], and because,

by the analysis of Ref. [38], bisimplex lattices composed of tetrahedra are less

susceptible to ordering than lattices with triangle simplexes. In fact, the prevailing

view is that thermal fluctuations do not facilitate ordering [39, 38] in this lattice.

Because of the tetrahedron simplexes (with even number of spins) in the py-

rochlore, the classical spin configurations can satisfy the constraint (1.3) and also

be collinear, and therefore, by the arguments given before, one expects that the

states preferred by quantum (or thermal) fluctuations would be collinear. In re-

cent work, Henley has demonstrated [40] that the classical degeneracy is not fully

1Alternatively, the lattice may be viewed as an FCC lattice of disjoint tetrahe-
dra.
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Figure 1.2: The pyrochlore lattice

lifted by the lowest order (in 1/S) non-interacting spin-wave theory, assuming a

collinear spin arrangement. Here we recover this result using the more rigorous

Holstein-Primakoff transformation, and provide a detailed study of various aspects

in the linear spin-wave theory, as well as a study of the anharmonic spin-waves and

of a large-N mean field theory.

Lately, there have been various works designed to search for a ground state

of the pyrochlore in the large-S limit. These include work on two-dimensional

analogs of the pyrochlore [41, 42] (see also Sec. 5.2) and on ground state selection

due to lattice distortions and spin-orbit coupling in Vanadium spinels [19, 20, 15].

Another body of work is on the closely related problem of the ordering in the

pyrochlore in the presence of a magnetic field, which allows, at a special value

of the field, a collinear pattern with nonzero magnetization [43, 44, 45] (see also

Sec. 5.1).

We note that, beyond a search for the large-S ground states, our results can
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serve as a starting point for a study of intermediate values of S, by allowing for

tunneling among the various semiclassical ground states, with appropriate tunnel-

ing matrix elements. The result could be a selection of one particular ground state

to a mixture of superposition of several ordered states, or to disorder [44, 46].

1.3 Outline

The rest of this thesis is organized as follows: In Ch. 2 we derive the large-S

expansion of the Hamiltonian (1.1):

H = Hcl +Hharm +Hquart + · · · , (1.4)

where Hcl is the classical Hamiltonian , of order S2, Hharm is the harmonic, non-

interacting spin-wave, Hamiltonian (of order S) and Hquart is the next order [O(1)]

interaction term [47]. We diagonalize the harmonic part of the expansion, assuming

fluctuation around a collinear classical ground state, where each state can be

parameterized by an Ising variable ηi = ±1 on each lattice site, such that Si = ηiẑ.

In Ch. 3 we study the properties of the various spin-wave modes: zero modes

that do not contribute to the zero-point energy, non-zero modes that can be ex-

pressed entirely in terms of the diamond lattice sites, and divergent zero modes

that carry divergent fluctuations. We use this formalism to demonstrate a key

result of Ref. [40]: that collinear classical ground states related by Ising gaugelike

transformations are exactly degenerate.

In Ch. 4 we consider the zero-point energy of the harmonic fluctuations and

derive an effective Hamiltonian [4], where we parameterize the energy only in terms

flux variables (using the terminology of Ref. [41]) through all loops in the diamond

lattice (where the pyrochlore spins sit bond centers). The flux ϕL through a loop
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L with bond centers at (i1, i2, . . . , in) is defined as

ϕL = ηi1ηi2ηi3 · · · ηin . (1.5)

And the effective harmonic-order zero-point energy is found to be

Eeff
harm = E0 + K6Φ6 + K8Φ8 + · · · , (1.6)

where Kn are numerical coefficients that we evaluate using a real-space loop ex-

pansion, and Φn are sums of the fluxes ϕL through all loops of length n.

Φn ≡
∑

|L|=n

ϕL . (1.7)

We numerically evaluate the zero-point energy of a large number of collinear clas-

sical ground states and find that the effective Hamiltonian does a good job of

evaluating the energy with just a few terms. We find a family of ground states and

obtain bounds for the residual entropy, using a correspondence between gaugelike

transformations and divergent zero modes. In Sec. 4.4 we argue that the collinear

states have lower energy than closeby non-collinear states obtained by rotating

loops of spins out of collinearity, thereby making the assumption of collinearity

plausible. However, we have not been able to rigorously prove that within the

space of all classical ground states, the global energy minimum must occur at a

collinear state.

In Ch. 5 we apply the loop expansion to some closely related models including

the case of non-zero magnetization plateaus and other lattices. We find that the

effective Hamiltonian approach is useful in predicting the ground states in many

cases.

In Ch. 6 we go beyond the harmonic approximation to the next order in the

Holstein-Primakoff spin-wave expansion. We derive a mean field theory for the
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anharmonic Hamiltonian, and apply it to both the checkerboard lattice and the

pyrochlore. Although most of the degeneracy is broken, there remain a large family

of harmonic ground states that remain, within our numerical precision, degenerate

at all (large) values of S. We do not know whether this degeneracy is exact.

In Ch. 7 we employ a different mean field theory, the large-N Sp(N) theory.

This is a widely used method that is believed to capture the physics of frustrated

systems. In particular, the common lore is that the large-N theory always breaks

the classical degeneracy at the lowest order in the 1/N expansion, and selects the

correct large-S ground state. We find, both numerically and analytically, using

a loop expansion, that the large-N theory does indeed break all classical degen-

eracies. However, the large-N ground state is not a harmonic spin-wave ground

state. Since, in the S → ∞ limit the harmonic spin-wave theory becomes exact,

this means that the large-N calculation produces an unphysical result. Neverthe-

less, we find that when the discussion is restricted to harmonic ground states, the

large-N and the anharmonic spin-wave mean field theories yield similar results.

Most of the work in this thesis has appeared previously in Ref. [48] (chapters 2–

5), Ref. [49] (Ch. 6), and Ref. [50] (Ch. 7).
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Chapter 2

Semiclassical spin-waves
In this chapter, we consider the effect of quantum fluctuations on the pyrochlore

Heisenberg model, in the semiclassical, S À 1 limit. In 2.1 we perform a Holstein

Primakoff transformation to expand the Hamiltonian in powers of 1/S. In 2.2, we

focus on collinear classical ground states. Next, in Sec. 2.3, we diagonalize the

collinear harmonic Hamiltonian to find the spin-wave modes. The contents of this

chapter, as well as Ch. 3, Ch. 4, and Ch. 5, were mostly published in Ref. [1].

2.1 Large-S expansion

We start from a given ordered classical state, where the spin directions are param-

eterized by angles (θi, φi), such that the classical spin direction is

n̂i = (sin θi cos φi, sin θi sin φi, cos θi) . (2.1)

We expand around this state, in powers of 1/S, to account for quantum fluctua-

tions, implicitly assuming here that the quantum fluctuations are small and do not

destroy the local collinear order. Upon rotation to local axes (x̃, ỹ, z̃), such that the

classical spins are in the z̃ direction (parallel to n̂i), we apply the usual Holstein-

Primakoff transformation. Note that there is an arbitrary angle in the choice of

directions x̃ and ỹ and in the following we shall take ỹ to be perpendicular to the

z axis. We define boson operators ai, a†i such that

S z̃
i = S − a†iai ,

S+
i ≡ Sx̃ + iS ỹ =

√
2S − a†iai ai ≈

√
2Sai ,

S−i ≡ Sx̃ − iS ỹ = a†i

√
2S − a†iai ≈

√
2Sa†i . (2.2)

13
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These operators satisfy the canonical bosonic commutation relations

[ai, a
†
j] = δij , [ai, aj] = 0 , [a†i , a

†
j] = 0 . (2.3)

We obtain the spin-wave Hamiltonian (1.4), where the leading term is the classical

Hamiltonian

Hcl = S2
∑
ij

Jijn̂i · n̂j , (2.4)

which is equivalent of Eq. (1.1), and whose degenerate ground states satisfy

∑
i∈α

n̂i = 0 . (2.5)

for all tetrahedra α. with energy

Ecl = −NsS
2 , (2.6)

where Ns is the number of lattice sites. Due to the large classical degeneracy,

we must go on to the leading order, harmonic, quantum correction, in order to

search for a ground state, while assuming that Eq. (2.5) is satisfied, i.e., that we

are expanding around a classical ground state.

The linear spin-wave energy Eharm was calculated by Henley [2], using classical

equations of motion. The results of that work were that the classical degeneracy is

not fully lifted by quantum fluctuations, to harmonic order, and that the remaining

degeneracy is associated with a gaugelike symmetry. Here we justify these results

using the more rigorous Holstein-Primakoff approach, which allows us to gain a

better analytic understanding of the degeneracy, as well as perform numerical

diagonalization. Furthermore, the Holstein-Primakoff transformation allows for a

controlled expansion in powers of 1/S, including anharmonic order.

We find it convenient to change variables to spin deviation operators

σx̃ =

√
S

2
(a + a†) , σỹ = −i

√
S

2
(a− a†) , (2.7)
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where a† = (a†1, a
†
2, . . . , a

†
Ns

) is a vector of operators of length Ns. We shall, from

now on, reserve boldface notation for such vectors and matrices. These operators

satisfy the commutation relations

[σx̃,σỹ] = iS1 , [σx̃, σx̃] = [σỹ,σỹ] = 0 . (2.8)

The harmonic Hamiltonian can now be written in matrix notation

Hharm =
(
(σx̃)†, (σỹ)†

)



Rx̃ P

PT Rỹ







σx̃

σỹ


− SNs , (2.9)

where the block matrixes, with respect to lattice site index are

Pij =
Jij

2
cos θi sin φij ,

Rx̃
ij = δij +

Jij

2
(sin θi sin θj + cos θi cos θj cos φij) ,

Rỹ
ij = δij +

Jij

2
cos φij , (2.10)

where we defined φij ≡ φi−φj. These matrices depend on our arbitrary choice for

the local transverse directions x̃ and ỹ, and can therefore not be expressed solely

in terms of the spin direction n̂i. Note however, that in the case of coplanar spins,

one can take, with no loss of generality, φi = 0 for all sites, i.e. spins in the (x, z)

plane, and find that Pij = 0 and that the matrix in Eq. (2.9) is block diagonal.

2.2 Harmonic Hamiltonian for Collinear states

The preceding derivation (Eqs. (1.1-2.9)) is valid for any lattice composed of corner

sharing simplexes. One can argue on general grounds [3, 4, 5, 6, 7] that the spin-

wave energy has local minima for classically collinear states. In lattices that are

composed of corner-sharing triangles, such as the kagomé, the classical constraint
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[Eqs. (1.3,2.5)] is incompatible with collinearity. However, in the case of the py-

rochlore lattice, or any other lattice composed of corner sharing tetrahedra, there

is an abundance of collinear classical ground states. We will henceforth assume a

collinear classical ground state, i.e. that each site is labeled by an Ising variable

ηi = ±1, such that Si = ηiẑ. We will return to the more general, non-collinear

case in Sec. 4.4 to justify this assumption a posteriori.

For any classical collinear ground state, the Ising variables must satisfy the

tetrahedron constraint
∑
i∈α

ηi = 0 , (2.11)

for any tetrahedron α. In each tetrahedron there are six bonds: four of which

are satisfied antiferromagnetic bonds, with ηiηj = −1. The other two bonds are

unsatisfied (ηiηj = +1). We call the satisfied and unsatisfied bonds AFM bonds

and FM bonds, respectively.

In the collinear case (φi = 0, θi ∈ {0, π}), our definitions of the local axes for

site i, are such that

x̃ = ηix , ỹ = y , z̃ = ηiz . (2.12)

We may restore the x-y symmetry of the problem, by transforming the spin devi-

ation operators back to the regular axes by the reflection operation

σx ≡ ησx̃ , σy ≡ σỹ , ~σ ≡




σx

σy


 , (2.13)
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where

η ≡




η1 0 0 · · · 0

0 η2 0 · · · 0

0 0 η3 · · · 0

...
...

...
. . .

...

0 0 0 · · · ηN




. (2.14)

The transformation (2.13) amounts to a reflection with respect to the y-z plane

and makes the diagonal blocks in Eq. (2.9) equal to each other:

Hharm = ~σ†




H 0

0 H


 ~σ − S TrH , (2.15)

where

H = 1 +
J

2
=

1

2
W†W , (2.16)

J is the matrix whose elements are Jij and Wαi is an Ns/2×Ns matrix that takes

the value 1 if i ∈ α, and 0 otherwise.

The transformation of Eq. (2.13) was chosen to explicitly show the symmetry

between the x and y axes in the collinear case. It also causes the Hamiltonian (2.15)

to appear independent of {ηi}. However, the particular collinear configuration does

enter the calculation via the commutation relations

[σx,σy] = iSη (2.17)

Therefore, the equations of motion that govern the spin-waves do depend on the

classical ground state configuration.

2.3 Diagonalization of harmonic Hamiltonian

Next we would like to Bogoliubov-diagonalize the Hamiltonian of Eq. (2.15), so

that we can study its eigenmodes and zero-point energy. As a motivation, we write
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the equations of motion

d~σ

dt
= −i[~σ,Hharm] = 2S




0 ηH

−ηH 0


 ~σ . (2.18)

These are the quantum equivalent of the classical equations of motion derived in

Ref. [2]. Upon Fourier transforming with respect to time, and squaring the matrix,

we obtain

( ω

2S

)2

~σ =




(ηH)2 0

0 (ηH)2


 ~σ . (2.19)

The spin-wave modes are therefore eigenvectors of the matrix (ηH)2, with eigen-

values λ2
m = (ωm/2S)2. If the non-hermitian matrix ηH is diagonalizable then its

eigenvectors {vm} are the spin-wave modes with eigenvalues {±|λm|}. Here vm is

a vector of length Ns, whose indices are site numbers. Note that although we refer

to the eigenvectors of ηH as the spin-wave modes, strictly speaking, the quantum

mechanical modes are pairs of conjugate operators σx = vm, σy = isgn(λm)vm.

Since {H1/2vm} are eigenvectors of the Hermitian matrix H1/2ηH1/2, the com-

plete basis of eigenvectors {vm} can be “orthogonalized” by

(vm,ηvn) ≡ v†mηvn =
1

λm

v†mHvn = cmδm,n . (2.20)

We shall henceforth refer to the operation (vm,ηvn) as the inner product of modes

vm and vn. Note that cm ≡ (vm, ηvm) is not really a norm, since it can be zero

or, if λm < 0, negative.

The Bogoliubov diagonalization involves transforming to boson operators

bm =
1√

2S|cm|
(
(ηvm)†σx + i sgn(cm)(ηvm)†σy

)
, (2.21)

with canonical boson commutation relations, to obtain

Hharm =
∑
m

ωm

(
b†mbm +

1

2

)
− SNs , (2.22)
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with the zero-point energy (setting ~ = 1)

Eharm =
1

2

∑
m

ωm = S
∑
m

|λm| − SNs . (2.23)

The fluctuations of σx,y are now easy to calculate from the boson modes

G ≡ 〈σx(σx)†〉 = 〈σy(σy)†〉 =
∑
m

S

2|cm|vmv†m ,

〈σx(σy)† + σy(σx)†〉 = 0 . (2.24)

Note that this is a matrix equation, where σx/y(σx/y)† are Ns×Ns matrices. The

matrix G has elements Gij = 〈σx
i σx

j 〉 = 〈σy
i σ

y
j 〉.
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Chapter 3

Spin-wave modes
We now examine the spin-wave modes that we found in Sec. 2.3 to study their

properties. In 3.1 we classify them as zero modes, that do not contribute to the

zero-point energy, and non-zero modes, that can all be expressed in terms of the

diamond lattice formed from the centers of tetrahedra. Within the zero modes,

we find, in 3.2, that a number of modes (proportional to N
1/3
s ) have divergent

fluctuations. In Sec. 3.3 we discuss the energy band structure and identify special

singular lines in the Brillouin zone. In 3.4, we show that the energy of any non-zero

mode is invariant under an group of Z2 gaugelike transformations.

3.1 Zero modes and Non-zero modes

Many of the eigenmodes of the Hamiltonian (2.16), are zero modes, i.e. modes that

are associated with an (eigen) frequency ωm = 0. These are the modes vz that

satisfy

(Wvz)α =
∑
i∈α

vz(i) = 0 for all tetrahedra α . (3.1)

Since there are Ns/2 tetrahedra, and thus Ns/2 constraints, we can expect as

many as half of the spin-wave frequencies {ωm} to be generically zero. In order to

prove that indeed half of the eigenmodes of H are zero modes we first note that

the subspace of zero modes is spanned by modes that alternate along loops, as in

Fig. 3.1, i.e., for a loop L, up to a normalization factor

vL(i) ∝





(−1)ni i site number ni in loop L
0 i /∈ L

. (3.2)
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In order for these loop modes to indeed be zero modes, two consecutive bonds in

the loop cannot be from the same tetrahedron, i.e. the sites along each loop are

centers of bonds in a diamond lattice loop. In the entire discussion of spin-waves

(from now and through chapter 6), we use the term loop only for lines in the lattice

satisfying this constraint.

The loop zero modes can in turn be written as a linear combination of hexagon

modes only, of which there are Ns (see Fig. 3.1a). Hexagons are the shortest loops

in this lattice. Since there is a linear dependence between the four hexagons in a

big super-tetrahedron (see Fig. 3.1b), then only Ns/2 of the hexagon modes are

linearly independent [1, 2]. Therefore a basis of zero modes of H would consist of

half of the hexagon modes, and the matrix (ηH)2 has at least Ns/2 zero modes.

Note that since these modes are zero modes of the matrix H, they are independent

of the particular collinear spin arrangement. We refer to these Ns/2 modes as the

generic zero modes, to distinguish them from other zero modes of (ηH)2 that are

not zero modes of H, that we shall discuss in the next section. All collinear ground

states have the same generic zero modes.

Zero modes mean that the quadratic correction to the classical energy due

to small deviations from collinear order vanishes. It is interesting to note, that

the zero modes associated with loops that have alternating classical spins ηi, are

modes associated with the transformations under which Hcl is invariant. In fact,

deviations that rotate spins along these loops by any angle θ take a collinear state

to a non-collinear classical ground state, and when θ = 180◦, the rotation takes one

collinear classical ground state to another. These modes are completely analogous

to the so-called weathervane modes in the kagomé lattice [3]. We will use the

properties of these rotations in Sec. 4.2 to generate a large number of collinear
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Figure 3.1: Loop zero modes.
(a) Example of a zero mode (in {001} projection) alternating along a loop. Any
such loop can be expressed as a linear combination of Ns hexagon modes. Further-
more, there is a linear dependence between the hexagons in each super-tetrahedron,
as depicted in (b). The additional constraints reduce the number of independent
modes to Ns/2.

classical ground state, and in Sec. 4.4 to study the dependence of the zero-point

energy on deviations out of collinearity.

Thus, the abundance of spin-wave zero modes is a reflection of the macroscopic

continuous classical degeneracy. On the experimental side, the properties of the

spinel material ZnCr2O4, at temperatures just higher than the phase transition

into an ordered state, have been shown to be dominated by so-called local soft

modes, which are spin-wave modes that have zero or infinitesimal frequency [4].

Whereas the zero modes are associated with the large classical degeneracy, they

do not contribute to the quantum zero-point energy (2.23). We now consider har-

monic modes that have non-zero frequency. For any such mode vnz, the diamond

lattice vector u = Wvnz is an eigenvector of (WηW†)2 with the same eigenvalue

(WηW†)2u = W(ηW†W)2vnz = λ2u (3.3)

In this fashion, we can get rid of Ns/2 generic zero modes by projecting to a space
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that resides on the diamond lattice sites only, and is orthogonal to all generic

zero modes. As already noted, since the generic zero modes are the same for all

states, we can consistently disregard them and limit ourselves solely to diamond

lattice eigenmodes of Eq. (3.3). Since the matrix WηW† is symmetric, it is always

diagonalizable and its eigenvectors are orthogonal in the standard sense.

um · un ∝ δmn . (3.4)

We refer to these remaining Ns/2 spin-wave modes, that can be viewed as dia-

mond lattice modes, as the ordinary modes. Although the ordinary modes do not

generically have zero frequency, we may find that for a given classical ground state,

some of them are zero modes. We will find, in the following section, that these are

modes that have divergent fluctuations.

3.2 Divergent modes

As is apparent from Eq. (2.24) for the fluctuations Gij, that divergent harmonic

fluctuations occur whenever a certain mode vd satisfies

cd ≡ (vd,ηvd) = 0 . (3.5)

This can be shown to occur if and only if ηH is not diagonalizable, i.e., when the

Jordan form of the matrix has a block of order 2.

ηHvd = 0 ,

ηHwd = vd . (3.6)

We call the mode vd, a divergent zero mode [As we noted before, a more accurate

description would be to refer to the pair of conjugate operators σx ∼ vd, σy ∼ wd
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as the quantum mechanical divergent mode] From Eq. (3.6), factoring H = 1
2
W†W

[Eq. (2.16)], we find that any divergent zero mode is related to a zero mode of the

diamond-lattice equation of motion (3.3) (diamond lattice zero mode) ud

ud ≡ Wwd , vd = ηW†ud . (3.7)

Diamond lattice zero modes can be separated into two linear subspaces so that the

modes in each subspace are confined to even or odd diamond sublattice. We call

such modes even divergent modes and odd divergent modes, respectively. An even

diamond lattice zero mode ud corresponds, by (3.7) to a divergent mode

vd(i) = ηiud(αeven(i)) , (3.8)

where αeven(i) is the even tetrahedron to which site i belongs. Since any divergent

mode vd is a zero mode, then it must satisfy the tetrahedron constraint Eq. (3.1).

For an even mode, this is automatically guaranteed for the even tetrahedra α,

by (3.8)
∑
i∈α

veven
m (i) = ueven

m (α)
∑
i∈α

ηi = 0 . (3.9)

On the other hand, for an odd tetrahedron β, we get

∑

i∈β

veven
i =

∑

i∈β

ueven
m (αeven(i))ηi = 0 . (3.10)

Note that there is one linear dependence between the odd and even modes: the

Goldstone mode [vG(i) = ηi for all i] can be expressed either as an even mode or

as an odd mode [with uG(α) = 1 for all even or odd α, respectively]. Owing to

the (almost) independence of the even and odd subspaces of divergent modes, we

shall, for the rest of this section, limit the discussion to one sublattice only –the

even sublattice– and everything can be carried over trivially to the odd sublattice.

Note that each diamond lattice sublattice is an FCC lattice.
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3.2.1 Real space support networks

Relatively simple real-space divergent modes can be constructed to satisfy (3.10)

with support Sd (Sd is a network composed of a subset of the even diamond sub-

lattice), so that for any odd site β, with even neighbors {αk}

|{αk} ∩ Sd| = {0, 2} , (3.11)

i.e., exactly 0 or 2 even neighbors of β belong to Sd. Eq. (3.10) implies that for a

divergent mode ud supported on a connected network Sd

ud(α) =




±1 α ∈ Sd

0 α /∈ Sd

. (3.12)

If two even diamond lattice sites α1 and α2 are connected by a (pyrochlore) bond

(ij), and they are both in the support Sd then, by (3.10)

ud(α1) · ud(α2) =





+1 if (ij) is AFM ,

−1 if (ij) is FM .
. (3.13)

See Fig.3.2 for examples of real space divergent modes.

Upon inspection of Fig. 3.2, it becomes clear that, given a particular support

Sd, satisfying (3.11), resolving the values of the Ising variables {ud(α)} is equiv-

alent to finding a ground state configuration of an mock Ising model on Sd, with

the AFM (FM) bonds in the {ηi} spin configuration replaced by FM (AFM) ef-

fective Ising bonds. A corollary is that Sd can support a divergent mode only if

the mock Ising model is unfrustrated. For example, a square network, as shown

in Fig. 3.2(b), supports divergent modes if the product of the bond sign (i.e.,

ηiηj for bond (ij)) around each FCC square is positive, i.e. the flux ϕL around

corresponding pyrochlore loop is negative.
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(a) (b)

Figure 3.2: Real space divergent modes.
(a) Example of a portion of a {001} slice out of an even divergent mode, in real
space (dashed lines connect to adjacent slices). Light (dark) colored bonds repre-
sent AFM (FM) bonds, and an even tetrahedron α is marked “±” for ud(α) = ±1.
(b) Example of a planar (xy) divergent mode, i.e. a mode that is bounded along
the z axis (in this case, to one slice). Divergent modes can be bounded at most,
along one of the major axes.

3.2.2 Planar divergent modes

If we examine the rules of constructing a real space divergent modes, we find

that their support Sd (on the diamond lattice) can either be unbounded in space,

or unbounded in two directions and bounded along only one of the major axes,

as in Fig. 3.2(b). This can be easily proved: suppose that an even divergent

mode is bounded in the x direction. There is an even diamond lattice site α

that is in the support of this divergent mode, and its x value takes the maximum

possible value xα [Note that here (x,y,z) are spatial coordinates, while in Sec. 2

they referred to spin directions]. The site α has an odd neighbor at (x, y, z) =

(xα + 1/4, yα + 1/4, zα − 1/4) (where the lattice constant of the underlying cubic

lattice is taken to be 1), that has two (even) neighbors at x > xα (and thus

cannot be in the Sd), and two (even) neighbors at x = xα. One of these is α,

the other – at (xα, yα + 1/2, zα − 1/2) – must, by (3.11) also be in the support

of the mode. Continuing this reasoning, we will find that the site at coordinates
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(xα, yα + 1, zα − 1) is also in Sd and by induction the support of this mode is

unbounded in the (0, 1,−1) direction. Similarly, we can show that the support for

this mode is unbounded in the −y axis and the +z directions.

It turns out empirically that one can always construct a basis for divergent

modes from planar modes, i.e. modes supported by a quasi-two-dimensional net-

work Sd, satisfying Eq. (3.11). However, the planar divergent modes are generally

not mutually orthogonal. The relation between these modes and the Fourier space

basis of divergent modes is described in the following section.

3.3 Magnon energy band structure

Our discussion so far has focused on spin waves in real space, and has therefore been

applicable to any (even non-periodic) classical collinear ground state. However, in

order to perform numerical calculations (in Sec. 4.2), one must consider periodic

spin configurations, with a (possibly large) magnetic unit cell. We refer to the

lattice composed of the centers of the magnetic unit cells as the magnetic lattice.

We can Fourier transform the Hamiltonian (2.15), using

~σr(l) =
1√
NM

∑
q

~σl
qe
−iq·(r+∆l) ,

~σq(l) =
1√
NM

∑
r

~σl
re

iq·(r+∆l) , (3.14)

where r is a magnetic lattice vector, l is a sublattice index, corresponding to a basis

vector ∆l, NM is the number of magnetic lattice sites, and q is a Brillouin zone

vector. Note that this deviates from the standard way of Fourier transforming, in

that we do not give all of the sites in each unit cell the same phase [i.e. we use

eiq·(r+∆l) rather than use eiq·r for all sublattices l]. The elements of the transformed
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Hamiltonian matrix are

Hlm(q) = δlm +
1

2

∑

ξlm

eiq·ξlm , (3.15)

where the sum is over all nearest neighbor vectors ξlm connecting the sublattices l

and m. Upon diagonalization, we obtain that the number of bands in the Brillouin

zone is equal to the number of sites in the magnetic unit cell, i.e. the number of

sublattices. The bands can be classified as follows: half of the energy bands belong

to generic zero modes, which have vanishing energy throughout the Brillouin zone.

These modes are the zero modes of H and are identical for all collinear classical

ground states. The other half of the spin-wave modes are the ordinary modes,

which can be viewed as diamond lattice eigenmodes of Eq. (3.3). Of these bands,

the optical ordinary modes possess non-zero frequency throughout the Brillouin

zone, and the acoustic ordinary modes have non-zero energy in most of the Brillouin

zone, but vanish along the major axes in reciprocal space (see, for example, the

solid lines in Fig. 4.6). Note that this deviates from the common usage of “acoustic

band”, in which the band goes to zero only at the point q = 0. We find that the

number of acoustic zero modes does depend on the particular classical ground

state, and the zero modes in these bands are the divergent modes, i.e. modes with

divergent fluctuations

Glm(q) ≡ 〈σx
q(l)σx

−q(m)〉 = 〈σy
q(l)σ

y
−q(m)〉 . (3.16)

Why are the divergent modes restricted to divergence lines in q space? Since a

(non-orthogonal) basis of divergent modes can be made of planar divergent modes,

the Fourier space basis is constructed by taking linear combinations of such planar

modes, which are localized modes along the (major) axis normal to the plane. We

label the {100} modes in such a basis by {ux
m}, where x is a (real space) coordinate
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along the normal axis, and the index m reflects that there may be several types

of plane modes in the x direction [for example, there could be four different types

of divergent modes supported by a square-lattice of the form shown in Fig 3.2b].

A divergent mode with wavevector (qx, 0, 0) can thus be constructed by linear

combinations

u(qx,0,0)
m =

∑
x

ux
meiqxx, , (3.17)

and similarly for y and z. These linear combinations can be taken at any q value

along the normal axis, and the number of divergent modes along each axis is equal

to the number of values that the index m can take. The conclusion we can draw

from this will be important later on (in Sec. 4.3): the rank of the divergent mode

space is of order N
1/3
s .

If we look at the acoustic energy bands to which the divergent modes belong,

moving away from the divergence lines, in q space, we find (see, for example,

Fig. 4.6) that the energy increases linearly with q⊥, the component of q perpen-

dicular to the divergence line. The dispersion of the acoustic modes can be easily

found analytically by solving Eq. (3.3) for small deviations away from a planar

divergent mode (e.g. the one depicted in Fig. 3.2b), with q⊥ restricted to be within

the plane.

The singular spin fluctuations along lines in q space would produce sharp

features in the structure factor S(q), that could be measured in elastic neutron

diffraction experiments. Here q represents a scattering wavevector and not a band

wavevector of Bloch-like states). The sharp features would come about because

the structure factor is proportional to the spin-spin correlation 〈S⊥q · S⊥−q〉, where

S⊥ is the component of the spin transverse to the scattering wave vector q. To
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lowest order in S, only σx and σy contribute to the correlations, and one obtains

S(q) ∝
∑

〈lm〉
〈σl

qσ
m
−q〉 . (3.18)

Thus, the structure factor should have sharp features, along the major lattice axes,

as q is varied.

Furthermore, since the zero-point energy of the present harmonic theory will be

shown to have degenerate ground states (see Sec. 3.4 and Ref. [5]), anharmonic cor-

rections to the harmonic energy determine the ground state selection (See Ch. 6).

It turns out that the divergent modes become decisive in calculating the anhar-

monic energy Hquart. The anharmonic spin-wave interaction would also serve to

cut off the singularity of the fluctuations.

In Sec. 4.3, we shall show that the divergent modes also provide a useful basis

for constructing and counting gaugelike transformations that relate the various

degenerate ground states.

3.4 Gaugelike symmetry

Upon examination of the diamond-lattice equation of motion [Eq. (3.3)], it be-

comes apparent that the harmonic energy Eharm, of Eq. (2.23), is invariant under

a Z2 gaugelike transformation that changes the sign of some tetrahedra spin devi-

ations [5]

ηi → τ(α)τ(β)ηi , (3.19)

where τ(α), τ(β) ∈ ±1, and α, β are the two tetrahedra that share site i. While

this is an exact gauge symmetry of the projected (diamond lattice) Hamiltonian

[related to (3.3)], it is not a physical gauge invariance, since the transformation

must be carried out in a way that conserves the tetrahedron rule, i.e. does not take
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us out of the classical ground state manifold. Furthermore, these transformations

relate physically distinct states. We will henceforth refer by transformation to

“allowed” gaugelike transformations that conserve the classical tetrahedron rule.

Fig. 3.3 shows an example of a transformation that includes flipping some of the

even tetrahedra only (even transformation). There are two special transformations

that can each be viewed either as an odd or as an even transformation: the identity

transformation [τ(α) = 1 for any even α or any odd α] the global spin flip [τ(α) =

−1 for any even α and τ(α) = +1 for any odd α, or vice-versa].

For any even transformation τeven, we can define its reverse (even) transforma-

tion by

τ even(α) = −τeven(α) ,∀ even α , (3.20)

and similarly for odd transformations. Examining Eq. (3.19) we find that there

are actually two ways of expressing any transformation as an product of an even

transformation and an odd transformation because

τ even ⊗ τ odd ≡ τeven ⊗ τodd , (3.21)

Even and odd transformations commute, in the sense that applying an even (odd)

transformation does not affect the set of allowed odd (even) transformations [this

is trivial to see, as even (odd) transformations only change bonds in odd (even)

tetrahedra, which do not alter the rules for constructing odd (even) transforma-

tions]. Thus we find that for any reference state, the number of possible gauge

transformations N (ref)
G satisfies

N (ref)
G =

1

2
N (ref)

even ×N (ref)
odd , (3.22)

where N (ref)
even and N (ref)

odd are the number of even and odd transformations for the

reference state, respectively, including both the identity transformation and the
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overall spin flip.
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Figure 3.3: Gaugelike transformations.
{001} projection of a portion of an even transformation. The shaded tetrahedra,
on the even sublattice of the diamond lattice, are being flipped. Each flipped tetra-
hedron must be connected by exactly four satisfied (highlighted) bonds to neigh-
boring tetrahedra in the same sublattice. Up (down) spins are signified by solid
(open) circles. Dashed lines connect one layer to another in the three-dimensional
structure.

If we take a particular classical ground state, and apply a gauge transformation

(as depicted in Fig. 3.3) to it, it is easy to see graphically what would happen to the

divergent modes (as shown in Fig. 3.2): If a tetrahedron marked by “+” in Fig 3.2

overlaps the support of the gauge transformation, it turns into a “−” and vise

versa. More formally, if we start from a given state, in which there is a divergent

mode ud, a transformation τ (such that τα = ±1) results in the new state with a

divergent mode

u(α) → ταu(α) , (3.23)

for each α. Otherwise, the number and spatial support of the divergent modes

is gauge-invariant. On the other hand, one finds that states that are not related

by gauge transformations, and therefore have different (harmonic-order) energies,

generally have a different number of divergent modes.
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Chapter 4

Zero-point energy and effective

Hamiltonian
In this chapter, we study the zero-point energy of the harmonic Hamiltonian (2.15).

First, in Sec. 4.1, we write the energy as an expansion in real-space paths, and use

this expansion to produce an effective Hamiltonian in terms of Ising like fluxes

through the diamond lattice loops. Next, in Sec. 4.2, we numerically diagonalize

the Hamiltonian to calculate the zero-point energy for various classical ground

states. We compare the numerical results to the analytic effective Hamiltonian

and find that they agree well, and predict the same ground state family. Finally,

in Sec. 4.3 we find an upper bound for the number of harmonic ground states using a

correspondence between gaugelike transformations and the divergent modes, which

we discussed in Sec. 3.2.

4.1 Effective Hamiltonian

In Ch. 2 we discussed the diagonalization of the harmonic spin-wave Hamilto-

nian (2.15), which is valid for collinear classical ground states. We wrote the

zero-point energy Eharm (2.23 as a sum over eigen-frequencies. Later, in Sec. 3.4,

we showed that the energy is invariant under a gaugelike transformation (3.19).

If we parameterize the Eharm in terms of the Ising variables {ηi}, it follows that

the energy can only depend on the gauge-invariant combinations of {ηi}, which

are products of the Ising variables around loops. These can be viewed as Z2 flux

through the plaquettes of the diamond lattice [1]. In this section, we find an ef-

35
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fective Hamiltonian in terms of these new degrees of freedom, using a real space

analytic loop expansion.

The harmonic zero-point energy of Eqs. (2.23), (2.15), and (2.16) can be written

as

Eharm = S Tr

(
1

4
µ2

)1/2

− SNs , (4.1)

where µ = WηW† is the Ns/2×Ns/2 matrix, whose indices are diamond lattice

sites

µαβ =
∑

i

WαiWβiηi . (4.2)

For any collinear classical ground state, the diagonal part of µ vanishes, elements

connecting diamond nearest neighbors are equal to ±1 and all other elements are

0. Therefore, the non-diagonal elements of µ2 connect between the same diamond

sublattice, i.e. between FCC nearest neighbors.

(µ2)αβ =





4 α = β

ηαβ α , β next nearest neighbors

0 otherwise

, (4.3)

where ηαβ ≡ ηiηj and (ij) is the (pyrochlore) bond connecting α and β. Thus, we

could formally Taylor-expand the square root in Eq. (4.1) about unity. In order to

assure convergence of the expansion, as will be discussed later, we generalize this

and expand about A1, where A is an arbitrary disposable parameter.

Eharm = S Tr

[
A1 + (

µ2

4
− A1)

]1/2

− SNs (4.4)

= S
√

A
∑
n=0

Cn Tr(
µ2

A
− 41)n − SNs

= S
√

A
∑
n=0

Cn

n∑

k=0

(−4)n−k

Ak




n

k


 Tr µ2k − SNs ,
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with the coefficients

C0 = 1 , Cn = (−1)n+1 (2n− 3)!!

8nn!
, for n > 0 . (4.5)

Tr µ2k is a sum over all of the diagonal terms of µ2k, i.e. a sum over products of

µαβ along all of the closed paths of length 2k in the diamond lattice. Here a “closed

path” is any walk on the diamond lattice that starts and ends at the same site.

This expansion involves constant terms that are independent of the sign of µαβ as

well as terms that do depend on particular spin configurations. For example, any

path of length 2k, such that each step in one direction is later retraced backwards

(a self-retracing path), will contribute 1 to Tr µ2k. On the other hand, paths

involving loops on the lattice could contribute either +1 or −1 depending on the

spin directions. Thus, we can re-sum Eq (4.4) to obtain an effective Hamiltonian

Eeff
harm = E0 + K6Φ6 + K8Φ8 +

∑

s(10)

K10,sΦ10,s + · · · , (4.6)

where K2l and K2l,s are constants, which we calculate below, and Φ2l (Φ2l,s) is a

sum over all loops of length 2l (and type s). The index s is to differentiate between

different types of loops of length 2l that are not related to each other by lattice

symmetries. In our case, we do not need the index s for loops of length 6 or 8, since

there is just one type of each. On the other hand, there are three different types

of loops of length 10, and therefore there are three different 2l = 10 terms. Since

we will explicitly deal with just the first three terms in Eq. (4.6), we shall omit the

index s from now on. In fact, in the approximation that we present below, we will

assume that all of the loops of length 2l can be grouped with the same coefficient

K2l.

By our definition of loops, Φ2l can be expressed either in terms of 2l diamond

lattice sites along the loop (α1, α2, . . . , α2k), or in terms of 2l pyrochlore lattice
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sites (i1, i2, . . . , i2l):

Φ2l ≡
∑

(α1,α2,...,α2l)

µα1α2µα2α3 · · ·µα2lα1

=
∑

(i1,i2,...,i2l)

ηi1ηi2 · · · ηi2l
. (4.7)

Note that in general, paths that we consider in the calculation (and that are not

simple loops) should only be viewed as paths in the diamond lattice.

4.1.1 Bethe lattice harmonic energy

Before we evaluate the coefficients in Eq. (4.6) for the diamond lattice, we shall

consider the simpler case of a coordination z = 4 Bethe lattice. In order for this

problem to be analogous to ours, we assume that the number of sites is NB = Ns/2

and that each bond (αβ) in the lattice is assigned an Ising variable µαβ = ±1. In

this case, since each bond included in any closed path along the lattice is revisited

an even number of times, and since µ2
αβ = 1 for any bond in the lattice, then each

closed path of length 2k contributes 1 to Tr µ2k. Thus all bond configurations in

the Bethe lattice would have the same energy.

Calculating the Bethe lattice energy for a given path length 2k turns out to be

a matter of enumerating the closed paths on the Bethe lattice, which can be done

exactly using simple combinatorics (see Appendix A). The sum (4.4) does not

converge, as we consider longer and longer paths, for the trivial choice of A = 1,

but converges well for A ∼> 1.4 (see Fig. 4.1). In the thermodynamic limit, we

obtain (see Eq. (A.13))

Eharm(Bethe) = E0 = −0.56395SNs ± 5×10−5SNs . (4.8)

This value was obtained from Eq. (4.4), cutting it off at n = 30 and extrapolating

to n →∞ (see Fig. 4.2).
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Figure 4.1: Analytically calculated constant E0, in Bethe lattice approximation.
The calculated value is shown here as a function of the maximum path length
considered, for various values of A. We find that the sum converges for A ∼> 1.4.
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Figure 4.2: Extrapolation of the constant E0.
Calculated energy in the Bethe lattice approximation for paths of length n ≤ 30
extrapolated to n →∞, using the linear dependence of E0 on 1/n. The calculated
energy is shown as open circles and the extrapolated inverse linear dependence as
lines. We see that the extrapolated results are nearly independent of our choice of
A > 1.4.
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It should be noted that we neglected any boundary effects in the Bethe lattice

calculation. There is no justification for this in Bethe lattices, since a finite fraction

of the lattice points live on the boundary. However, as we shall see in the following,

our real interest is in mapping Bethe-lattice paths to diamond-lattice paths. Since

the boundaries do not play any significant role in the infinite diamond lattice, we

are free to ignore them.

It turns out that since Eharm(Bethe) is the spin-wave zero-point energy on the

Bethe lattice, it can be calculated by solving the spin-wave equation (3.3) on the

Bethe lattice. This has actually been previously done in Ref. [2]. The authors in

this paper solved an equivalent tight binding model on the Bethe lattice and found

a density of states (for general coordination z)

ρ(λ) =
z

π

√
(z − 1)− λ2

z2 − 4λ2
. (4.9)

To find the zero point energy we integrate over |λ|ρ(λ):

Eharm(Bethe) = 2SNB

∫ √
z−1

0

λρ(λ)dλ− SNs

=
zSNB

π

[√
z − 1− z − 2

2
arctan

2
√

z − 1

z − 2

]
− SNs . . (4.10)

In out case, z = 4 and Ns = 2NB and we obtain

Eharm(Bethe) = SNs

[
2
√

3

π
− 5

3

]
= −0.564009SNs , (4.11)

which agrees well with the result (4.8). This serves as reaffirmation that our

numerical technique is valid (for the Bethe lattice), and we shall use it in the

following.
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4.1.2 Bethe lattice approximation for the constant term

What can we learn from the Bethe lattice calculation about the diamond lattice

effective energy? It turns out that actually the coordination-4 Bethe lattice cal-

culation provides a very good approximation for the constant term E0. There is

a one-to-one correspondence between the Bethe lattice paths, and self-retracing

diamond lattice paths, which are the paths that contribute to E0. Conversely, the

product of µαβ along a path that goes around a loop depends on the particular clas-

sical ground state, and therefore contributes to the term in Eq. (4.6) corresponding

to that loop and not to E0.

There is only one type of path that contributes to the constant term, but was

omitted in the Bette lattice approximation: If a loop is repeated twice (or any

even number of times), in the same direction, as in Fig. 4.3b, it does contribute

a constant term since each µ2
αβ = 1 for each link along the loop. A simple argu-

ment can be given to show that the constant terms involving repeated loops are

negligible compared to the Bethe lattice terms. First, we realize that the contri-

bution of paths involving repeated loops is exactly the same as the contribution

due to another subset of paths that have already been counted by the Bethe lat-

tice enumeration: self-retracing paths that go around a loop, and then return, in

the opposite direction (see Fig. 4.3a). We call these self-intersecting self-retracing

paths since they include retraced diamond lattice loops. Since they still correspond

to Bethe lattice paths, they can be readily enumerated.

In order to get an idea for the number of such self-intersecting paths, consider

the smallest loop, a hexagon. The number of paths of length 2k = 12 starting

from a particular point is (by Appendix A), f6 = 195352, while the number of

hexagons touching that point is only 12, accounting for 24 intersecting paths of
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Figure 4.3: Repeated loops that contribute constant terms.
(a) Circled back and forth, and accounted for by the Bethe lattice enumeration
(self-intersecting paths), and (b) Repeated in the same direction, not accounted
for in our calculation.

length 2k ≤ 12! If we now consider the paths of length 14 starting from the same

point, then there are fewer than 100 involving a repeated hexagon, while there

are nearly 2 million in total. Essentially, the number of self-intersecting paths,

involving loops of length 2l is smaller by a factor greater than (z − 1)l than the

total number of paths of the same length.

The argument is reinforced a posteriori, by enumeration of paths involving

loops, that we do below. The lowest order correction to the constant term E0

(from Eq. (4.8) due to repeated loops is of the same order as the coefficient for a

loop of particular loop of length 12 (circling twice around a hexagon), which we

find to be of order 10−4.

4.1.3 One loop terms

We now move on to calculate the coefficients K2l of the non-constant terms that

involve simple loops. The prediction of Ref. [3] is that these terms decay with

increased length of loops and therefore an effective Hamiltonian of the form (4.6)
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can be derived.

Consider a particular loop of length 2l. We try to enumerate all of the closed

paths of length 2k that involve this loop and no other loops, i.e. all of the terms

proportional to
∏2l

i=1 µαiαi+1
, where αi are the sites along the loop (α2l+1 ≡ α1).

Since we allow for no additional loops, we assume that the path is a decorated

loop, i.e. a loop with with self-retracing (Bethe lattice-like) paths emanating from

some or all of the sites on it. In order for this description to be unique, we allow

the self-retracing path emanating from site αi along the loop to include site αi−1,

but not site αi+1. Thus, the first appearance of the bond (i, i + 1) is attributed to

the loop, and any subsequent appearance must occur after going back from a site

j > i, and is attributed to the self-retracing path belonging to j.

Appendix A.2 describes the practical aspects of this calculation. See Fig. A.2

for a diagrammatic description of the paths we enumerate. The approximation

neglects, as before, the contribution of repeated loops, which is negligible, by the

argument of Sec. 4.1.2. This means that, within our approximation, all loops of

length 2l have the same coefficient in Eq. (4.6). Calculating the sums in Eq. (4.4)

for n ≤ 30 and extrapolating to n → ∞, we obtain the values K6 = 0.0136S,

K8 = −0.0033S.

Looking at the first three terms in the effective Hamiltonian (4.6), it follows

that, to leading order in the loop length 2l, the preferred collinear states should

have as many hexagon loops L with negative flux ϕL = −1 as possible and as

many octagons L with ϕL = +1 as possible. It turns out [3] that there is a family

of (gauge-equivalent) collinear states that optimize both of these conditions: the

so-called π-flux states (using the terminology of Ref. [1]), in which

Π7ηi = −1 , (4.12)
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for all hexagons. In the next section we go on to numerically calculate the zero-

point energy for a large number of states, in order to prove that the π-flux states

are indeed the ground states.

In the next section, we shall compare the effective energy (4.6) to numerical

diagonalization.

4.2 Numerical diagonalization

In order to be able to test our predictions numerically, we first constructed a large

number of classical ground states, using a path flipping algorithm [4, 5] on a

cubic unit cell of 128 sites, with periodic boundary conditions. In each step of this

algorithm we randomly select a loop of alternating spins (of any length) to obtain

a new classical ground state (see Appendix C.1). This algorithm is ergodic, in the

sense that it can reach any collinear classical ground state that is supported by

the same unit cell. 1 Considering the large classical degeneracy, we can construct

a very large number of collinear classical ground states in this manner. In order to

explore diverse regions of the configuration space, we started the algorithm with

various different states that we constructed by hand.

We have Fourier transformed the Hamiltonian (2.15), with a magnetic unit cell

of 128 sites, diagonalized for each q value, and calculated the harmonic zero-point

energy (2.23) for fluctuations around a wide range of classical ground states. We

show the calculated Eharm for 50 sample states in Fig. 4.4 2 Our calculations verified

that indeed gauge-equivalent states always have the same energy.

1It is my opinion that an algorithm the flips only AFM hexagons would not be
ergodic (beyond the obvious fact that it would never reach a zero-flux state).

2The energies in Table I of Ref. [3] are higher by exactly +S per spin compared
to the results presented here, because that calculation omits a constant term arising
in the Holstein-Primakoff expansion.
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We also show in Fig, 4.4 the effective energy Eeff
harm for the same 50 states, using

K6 and K8 calculated above. The effective Hamiltonian, even with just 3 terms,

proves to do a remarkably good job of approximating the energy. The root-mean-

squared (RMS) error for the 50 states shown in Fig. 4.4 is 1× 10−3, and it can be

attributed to higher order terms (2l > 8) in the expansion (4.6).
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Figure 4.4: Zero-point energy for 50 randomly generated classical ground states.
The calculated energy is compared to the Ising effective energy of Eq. (4.6), with
2l ≤ 8. State number 1 in the plot is the π-flux state and state 50 is the zero-flux
state, in which all of the terms Φ2l take the maximum possible value. Notice that
the effective Hamiltonian is not as good at calculating the energies of these two
extreme states, as it does of calculating the energies of other states. This is because
neglected higher order terms in these states tend to add up in these states rather
than cancel out.

Among the hundreds of collinear states that we constructed, we indeed find

that there is a family of exactly degenerate ground states, satisfying Eq. (4.12).

In Fig. 4.5 we show some of the ground states. The smallest magnetic unit cell

that we obtain for a ground state has 16 spins, although if we consider bond

variables rather than spins (as in Fig. 4.5), the unit cell can be reduced to 8 sites

(see Appendix B). The highest energy, among collinear states, is obtained for the
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(a) (b)

(c) (d)

Figure 4.5: Harmonic ground states.
{001} slices of some of the ground states with the smallest magnetic unit cells.
For clarity, we only show the bond types, which are (unlike the spin directions),
identical for all {001} slices, for these particular states,. FM bonds are presented
as dark lines and AFM bonds as light lines. Dashed lines connect this slice to
adjacent slices.

zero-flux states, for which the spin directions have a positive product around each

hexagon. Note that since the spin product around any loop can be written as a

product of hexagon fluxes, all states satisfying Eq. (4.12) have the same loop terms

Φ2l, for any l, and are thus gauge-equivalent. In general, if two states have the

same hexagon product for every hexagon, they are necessarily gauge-equivalent.

Once we have established that the π-flux states are the ground states, we go

on to find such states. To search for π-flux states, we developed a computer

algorithm that randomly generates even or odd gauge transformations starting

from a particular state, and a unit cell with periodic boundary conditions. We

start by flipping a random even tetrahedron. In each subsequent step, we find
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an odd tetrahedron that violates the tetrahedron rule (i.e. has non-zero sum),

and randomly flip one of its (even) neighbors that can fix that violation. This

is repeated until there are no more violated tetrahedra. A similar algorithm is

employed to find odd transformations. See Appendix C.2 for the details of the

algorithm.

We performed an exhaustive search for ground states, satisfying Eq. (4.12), in

the 128 spin cubic magnetic unit cell of linear dimension L = 2. We started with

a particular π-flux ground state and randomly generated 107 even and 107 odd

gauge transformations and found 142 unique transformations on each sublattice,

resulting, by Eq. (3.22), in a total of 10082 distinct states. Only 24 of these are

unique with respect to lattice and spin-flipping symmetries. Note that although

the number of even gauge transformations and the number of odd gauge transfor-

mations turn out to be the same for the harmonic ground states, they need not

be the same for other states. Fig.4.5 shows the states with the smallest unit cells.

By construction, all of these states are exactly degenerate to harmonic order in

spin-wave theory. In Ch. 6, we shall explore the anharmonic selection among the

harmonic ground states.

4.3 Ground state entropy

In the preceding section we have found that there is a large family of exactly degen-

erate ground states. Any two of these states are related by a gauge transformation

of the type discussed in Sec. 3.4, and therefore, in order to enumerate these states,

we must find how many gauge transformations one can perform on a given ground

state, in an arbitrarily large system. In Ref. [3], the number of ground states was

speculated to be of order eL, where L is the linear dimension of the system size
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(as opposed to a classically extensive entropy). However, that was only rigorously

shown to be a lower bound, by explicitly constructing a set of layered ground states

in which each layer can independently be flipped. In fact, most of the π-flux states

that we present throughout this thesis are not included in that set of states [In

Fig. 4.5 only (d) is included in that set of states and, later on, in Fig. 6.9 only one

of the lines shown is included in this set]. Here, we aim to find an upper bound for

the number of ground states.

Comparing Figs. 3.3 and 3.2, we see that there is a close relation between even

(odd) transformations and even (odd) divergent modes. Any (diamond lattice)

divergent mode uG that has uG(α) = +1 for any α in its support, describes a valid

gauge transformation. This is reminiscent of the relation that we saw in Sec. 3.1,

between generic zero modes of Hharm and transformations that keep Hcl invari-

ant. The relation between divergent modes and transformations, as illustrated

above, and our knowledge of the divergent modes allows us to demonstrate that

the entropy has an upper bound of order L ln L.

Consider a particular reference harmonic ground state. We assume that all of

the ground states are related to each other by gauge transformations. Thus, any

ground state is related to the reference state by a transformation, that can be

almost uniquely expressed as the product of an even and an odd transformation.

The number of ground states N0 is equal to the number of transformations possible

for the reference state N (ref)
G (see Eq. (3.22)).

N0 = N (ref)
G . (4.13)

We have seen in Sec. 3.3 that the number of independent divergent modes is of

order L. In the π-flux harmonic ground states, we find that there are ndiv = 24L

independent divergent modes, half of which are even and half odd. Here L is
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measured in units of the underlying cubic lattice.

We will focus, for the moment, on the linear subspace of even divergent modes,

of dimension neven. Consider an (not necessarily orthogonal) basis of neven real

space planar even divergent modes (neven = 12L for π-flux states), i.e. {um} are

a set of linearly independent vectors residing on the even diamond sublattice that

have amplitude 1 on every diamond-lattice site in their support Sm

um(α) =




±1 α ∈ Sm

0 α /∈ Sm

. (4.14)

Any even gauge transformation is associated with a divergent mode uG also residing

on the even sublattice, and satisfying uG(α) = +1, for any α ∈ SG. Define the

projection of uG on a basis vector um:

Cm
G ≡ uG · um

um · um

. (4.15)

We can write the transformation in terms of the basis

uG =
neven∑
m=1

(
uG −

∑
l<m

uG·ul

ul·ul
ul

)
· um

um · um

um

=
neven∑
m=1

(
Cm

G −
∑

l<m

C l
G

um · ul

um · um

)
. (4.16)

In the case of the pyrochlore π-flux states, each of the planar divergent modes has

a support of |Sm| = 4L2 diamond lattice sites and, by Eq. (4.14), we find that

|um|2 = |Sm|. Since uG(α) is 0 or 1 for each α, the inner product uG · um is also

an integer satisfying

|uG · um| ≤ |um|2 = |Sm| . (4.17)

Therefore, each of the coefficients Cm
G in Eq. (4.16) can take one of, at most, 2|Sm|+

1 values. Since there are neven coefficients Cm
G that determine uG, the number of
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possible vectors uG is
∏

m(2|Sm|+ 1) ∼< (2L)2neven . This is an upper bound on the

number of even transformations and, similarly, of odd transformations, as well. By

Eq. (3.22), we find that the number of π-flux states satisfies

N0 ≤ 1

2
(2L)2ndiv . (4.18)

The entropy is defined as lnN0 and, is at most, of order L ln L. From Ref. [3] we

know that N0 > 24L, and the entropy is at least of order L.

This same bound on the order of the multiplicity applies to any family of gauge-

equivalent Ising configurations, since we enumerated the possible gauge transfor-

mations on any given reference state (not necessarily a π-flux state), which implies

that the upper bound to the number of states in any gauge-equivalent family is

of the same order. However, while the orders of magnitude of the multiplicities of

all energy levels are the same, the coefficients in front of L ln L differ, because the

number of independent divergent modes (which is always of order L) is generally

not the same for different gauge families.

4.4 Non-collinear spins

We now move on to comment the case of non-collinear classical ground states, aim-

ing to show that the energy of any collinear ground state increases upon rotating

some of the spins out of collinearity.

In the kagomé lattice it was found that, in the space of all classical ground

states, the coplanar states are local minima [6] and that upon an out-of-plane

rotations, the zero-point energy increases linearly with the angle of rotation [6, 7].

In the following we show that the linear angle dependence is a property of

divergent zero modes. In the kagomé lattice there is an entire band of divergent
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modes, and thus they dominate the energy, upon an out-of-plane rotation. In the

pyrochlore, on the other hand, the fraction of divergent modes among all modes

goes to zero in the thermodynamic limit. Even though the divergent modes’ energy

is linear in the rotation angle away from collinearity, the total zero point energy is

found to increase only quadratically.

4.4.1 Collinear states are extrema of Eharm

Consider first the case of a coplanar rotation, i.e., without loss of generality, some

of the spins are rotated such that the angle θi is neither 0 nor π, while φi remains

0. The elementary way of performing such a rotation is to rotate the spins in

an alternating (in ηi) loop, by +θ and −θ in an alternating fashion, where θ is a

constant.

θi = 0 → θi = θ ,

θi = π → θi = π − θ . (4.19)

Carrying through the derivation of the equation of motion (2.19) (see Appendix B.2),

for the coplanar case, we find that the dynamical matrix elements change

ηiηkHikHkj → cos(θi − θk)HikHkj . (4.20)

This means that in the expansion (4.4), µ2 changes from Eq. (4.3) to

(µ2)αβ =





4 α = β

cos θαβ α , β next nearest neighbors

0 otherwise

. (4.21)

Here θαβ ≡ θi − θj, where (ij) is the (unique) pyrochlore bond a site i ∈ α and a

site j ∈ β.
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To see how the zero-point energy changes with coplanar deviations away from

a collinear state, we take the derivative of the Hamiltonian (2.9) with respect to θi

∂Hharm

∂θi

= −
∑

j

Jij sin(θi − θj)σ
x̃
i σx̃

j . (4.22)

This is clearly zero for any collinear state. Therefore all collinear states (θi − θj ∈
{0, π}) are local extrema of Eharm({θi}).

We have shown that the collinear states are local extrema of Eharm, in the

space of coplanar classical ground states. However, are they minima or maxima?

In order to find out, we calculate the Hessian M at a given collinear state

Mij ≡ 1

2

∂2Eharm

∂θi∂θj

∣∣∣∣
coll

. (4.23)

To find M, we take the second derivative of the Hamiltonian, evaluated at a

collinear state

∂2Hharm

∂θi∂θj

∣∣∣∣
coll

= Jij cos(θi − θj)σ
x̃
i σx̃

j − δijσ
x̃
i

∑

k

Jik cos(θi − θk)σ
x̃
k

= Jijσ
x
i σx

j − σx
i δij

∑

k

Jikσ
x
k , (4.24)

where we took cos(θi − θj) → ηiηj at the collinear state and used Eq. (2.13) to

transform to the σx operators.

In order to calculate the Hessian matrix M we take the expectation value

of (4.24). We get terms involving Gij = 〈σx
i σx

j 〉 [see Eq. (2.24)]

Mij =
1

2

∂2〈Hharm〉
∂θi∂θj

∣∣∣∣
coll

≈





∑
k JikGik i = j

1
2
JijGij otherwise

. (4.25)

In order to prove that the collinear states are local minima with respect to {θi},
we would have to demonstrate that M is positive definite. Unfortunately, we have

not been able to show this analytically,
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The inset in Fig 4.6 shows a numerical example Eharm({θi}) for the state in

Fig. 4.5(a), where all of the spins along the AFM line, in the (110) direction, are

rotated by an angle away from the axis of the other spins. Clearly, the lowest

energy configurations are collinear. For small deviations of θi from collinearity, the

deviation of the energy from the value is quadratic:

Eharm({θi})− Eharm(0) = O({(θi − θj)
2}) . (4.26)

Since the Hessian matrix elements Mij are dominated by the fluctuations of the

divergent modes, we focus, in the following section, on these modes. We will

show that the divergent modes’ frequency becomes nonzero for coplanar states,

and therefore the zero point energy increases upon rotation from a collinear to a

coplanar state.

4.4.2 Spin-wave modes upon deviation from collinearity

In order to better understand the origin of the quadratic (in θ) energy change

in Eq. (4.26), we examine the eigenmodes of the new dynamical matrix (4.20).

Looking at the harmonic Hamiltonian (2.9), in the coplanar case (φi = 0), we find

that it is, as in the collinear case, block diagonal, and the lower-right block Ry is

the same as for a collinear state Ry = H. Thus, all of the Ns/2 generic zero modes

of the collinear dynamical matrix (using the jargon of Ch. 3) remain zero modes

for any coplanar spin arrangement. One finds, however, that these generic zero

modes acquire divergent fluctuations in coplanar states, because of the difference

in stiffness between in-plane and out-of-plane fluctuations. This is similar to the

case of the kagomé lattice, where all of the zero modes of coplanar classical ground

states have divergent fluctuations [8].
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Figure 4.6: Dispersion for coplanar spins.
Dispersion along a line in q space, for the collinear state shown in Fig. 4.5a (solid
lines), as well as the θ = π/6 coplanar state (dashed lines), showing that a divergent
zero mode at q = (π/8, 0, 0) gains non-zero energy, when the state is taken away
from collinearity, while all other modes are virtually unchanged. Inset: Zero-point
energy of the same state with the spins along the AFM x-y diagonal rotated by
angle ±θ. The minimum energy is for the collinear states.

On the other hand, the divergent zero modes wd of the collinear states, become

(non-divergent) nonzero modes when the spins are rotated out of collinearity. If a

loop in a collinear state is rotated, as in (4.19), by ±θ, we find that the divergent

modes’ frequency increases linearly with θ [6, 7]. However, after integration over

the Brillouin zone, the rise in total zero-point energy is quadratic in θ. This rise in

the divergent modes’ zero-point energy is the reason that each collinear classical

ground state has lower energy than nearby coplanar states.

In the main part Fig. 4.6, we see that the most significant difference in the

dispersion between collinear and non-collinear states, is the gap formed in some of

the zero modes along the divergence lines. The change in the contribution of the

optical modes to 1
2

∑
ω is negligible compared to this gap, for all cases that we
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looked at.3

Looking at further rotation of spins out of a coplanar arrangement, i.e. rotation

of a loop or line by angles ±φ, one finds numerically that some of the (now diver-

gent) zero modes gain non-zero frequency, proportional to |φ|, as for the kagomé

lattice [6, 7], and the energy increase is O({φi}).
While we have shown that collinear states are local minima of the energy land-

scape, we have not ruled out the possibility that a non-collinear state would be a

local (or even global) minimum. Although we do not believe this to be the case,

further work would be required to prove so.

3We note that
∑

ω2
m ∝ Tr(µ2) can be shown to be independent of the classical

ground state (collinear or not). On the other hand
∑

ω4
m attains (the same)

maximum for all collinear states. This is consistent with the argument of Ref. [9]
that collinearity generally maximizes the spectrum’s dispersion. That makes it
plausible that

∑
ωm has a minimum.
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Chapter 5

Effective Hamiltonian for related models
The loop expansion of Sec. 4.1 can be easily be adapted to study similar models

that support collinear ground states including the pyrochlore Heisenberg model

with a large applied magnetic field and the Heisenberg model in closely related

lattices, as we shall show in Secs. 5.1 and 5.2, respectively. In this chapter we

derive an effective Hamiltonian for several such models, and in each case discuss

the nature of the (harmonic) ground states and the zero temperature entropy.

For the purpose of determining the ground state manifold, we find it conve-

nient to recast the effective Hamiltonian Eeff
harm of Eq. (4.6) as an Ising model in

the complementary lattice. This is a lattice composed of the centers of the shortest

loops, or plaquettes, in the original lattice. In the pyrochlore lattice, the comple-

mentary lattice sites are the centers of the hexagons, and form another pyrochlore

lattice. To each complementary lattice site a, we assign an Ising spin η̃a, equal to

the product of the direct lattice sites around the corresponding plaquette, i.e, the

flux ϕa through the plaquette:

η̃a ≡
∏
i∈a

ηi = ϕa , (5.1)

where the product is on all sites in the (direct lattice) plaquette a. Since any loop

product can be written as a product of spin products around plaquettes, the terms

Φ2l in Eq. (4.6) are now represented by simpler (at least for small l) expressions,

in terms of the complementary lattice spins

Eeff
harm = E0+SB

∑
a

η̃a+SJ
∑

〈ab〉
η̃aη̃b+SJ ′ ∑

〈〈ab〉〉
η̃aη̃b+SJ3

∑

4abc

η̃aη̃bη̃c+· · · , (5.2)

where 〈· · · 〉 and 〈〈· · ·〉〉 represent nearest neighbors and next-nearest neighbors on
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the complementary lattice, respectively, and the 4 sum is over 3-spin plaquettes.

Comparing to Eq. (4.6), we can identify, for the pyrochlore, E0 ≡ E0, B ≡ K6/S,

J ≡ K8/2S, J ′ ≡ K10/S, J3 = 0. The 1/2 factor in J stems from the fact that

each loop of length eight in the pyrochlore has two different representations as a

product of two hexagons. We are free to choose J3 = 0, because in pyrochlore

complementary lattice the product of three spins of a tetrahedron is equal to the

fourth spin in the same tetrahedron. This is due to the dependence, in the direct

lattice, between the four hexagons in one super-tetrahedron (see Fig. 3.1b). Thus

the J3 term is already accounted for in the “field” B term in (5.2). Note that, in the

pyrochlore, there are three different types of loops of length 10, and thus, within

the approximation that we use to calculate the effective Hamiltonian coefficient

(see Sec. 4.1.3 and Appendix A.2), there should be two more terms [not shown in

Eq. (5.2)]. with coefficients equal to J ′.

Writing the effective Hamiltonian in terms of the complementary lattice spins

is manifestly gauge invariant, since the complementary spins η̃a are not modified

by gauge transformations. In the pyrochlore Heisenberg model, we found in Sec. 4

a ferromagnetic nearest neighbor interaction J , with a positive field B, resulting

in a uniform complementary lattice ground state in which η̃a = −1 for all a (the

π-flux state). This unique complementary lattice state corresponds to the family

of direct lattice ground states satisfying Eq. (4.12).

5.1 Non-zero magnetic field

We now consider what happens to the loops expansion when a magnetic field

is applied to the system. Since quantum fluctuations favor collinear spins, one

generically expects the magnetization to field curve to include plateaus at cer-
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tain rational values of the magnetization, corresponding to collinear spin arrange-

ments [1, 2, 3, 4, 5]. Thus, at one certain value of the field ~B, such that ~B/2J is

an integer, the classical ground states satisfy, for all tetrahedra α

∑
i∈α

Si = MS . (5.3)

for some non-zero magnetization M . If it is classically allowed (given M and

the number of spins in the simplex), then the harmonic spin-waves would favor

collinear spin arrangements satisfying

∑
i∈α

ηi = M , ∀ simplexes α . (5.4)

These are the new collinear classical ground states in this theory and, like the

zero-field case, they are typically highly degenerate. Now the question we ask

is which of these are selected by harmonic quantum fluctuations. Repeating the

derivation of the loop expansion (4.4), we now find that the diagonal elements of

H change, as now Eq. (2.16) is modified to H = 1
2
W†W − ηM . Writing down

the equations of motion in terms of the diamond lattice, as before, we find that

the zero-point energy can still be written as Tr (µ2)1/2, as in Eq. (4.1), but that

the diagonal elements of µ are all non-zero and equal to −M . In order to remove

these diagonal elements, we can define

µ0 ≡ µ + M1 , (5.5)
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where µ0 is equal to the M = 0 value of µ as defined in Eq. (4.2), and, as before,

it only connects nearest neighbor tetrahedra. The loop expansion is now

Eharm = S Tr

(
A1 +

(
(µ0 −M1)2

4
− A1

))1/2

− SNs + |M |NzS

= S
√

A
∑
n=0

Cn Tr

(
(µ2

0 − 2Mµ0) + (M2 − 4A)1
A

)n

− SNs + |M |NzS

= S
√

A

∞∑
n=0

Cn

An

n∑

k=0

n−k∑
j=0




n

k j


 (M2 − 4A)n−k−j(−2M)j Tr µ2k+j

0

−SNs + |M |NzS . (5.6)

Here Nz is the number of zero modes of W†W, i.e. Ns/2 for the pyrochlore

lattice. Now the calculation goes as in Sec. 4.1, noting that the trace is non-zero

only for even j. When one re-sums the terms in Eq. (5.6) to construct an effective

Hamiltonian of the form (4.6), one finds that, unlike the M = 0 case, where always

sgn(K2l) = (−1)l+1, the signs of the expansion terms are no longer easy to predict.

Applying this calculation to the only non-trivial collinear case on the pyrochlore

lattice, i.e., M = 2, and rearranging the terms in the form (5.2), we find (see

Tab. 5.1) that B < 0, and that the coefficient of the interaction terms, J , is two

orders of magnitude smaller than the effective field B. Therefore the complemen-

tary lattice ground state is a uniform η̃a = 1 state, corresponding to the family of

states with positive hexagon products (zero-flux states).

As in the zero magnetization case, studied in chapters 2–4, the harmonic energy

is invariant under any gauge transformation that flips the spins in a set of tetra-

hedra, while conserving the constraint (5.4). However, it is clearly much harder,

in this case, to construct a transformation in this way, because a single tetrahe-

dron flip violates the constraint not just on the neighboring tetrahedra, but on the

flipped tetrahedron itself as well. Therefore one would expect the ground state
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Figure 5.1: Pyrochlore M = 2 ground state.
{001} projection of a pyrochlore lattice M = 2 zero-flux ground state. Each
tetrahedron has three up spins (solid circles) and one down spin (empty circle).
This is the ground state with the smallest possible (four-site) magnetic unit cell.
The dark lines show x-z planes (coming out of the page), that can each by flipped
independently to obtain a valid zero-flux M = 2 state. Since there are O(L) such
planes, the ground state entropy is at least of order L.

degeneracy for this model to be smaller than for the M = 0 case.

It is easy to show that still, the ground state entropy is at least of order L,

by observing that in the simplest ground state, with a 4 site unit cell, one can

construct gauge transformations by independently flipping some of O(L) parallel

planes, each composed e.g. of parallel AFM lines in the x-z plane (see Fig. 5.1).

The keys to these transformations being valid are: (i) The spin-product around

any hexagon (and therefore any loop) in the lattice is not affected by it. (ii) Since

AFM lines are flipped, the spin sum on each tetrahedron remains the same.
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5.2 Other lattices

The calculation of the loop expansion is actually quite general and can be applied

on any lattice composed of corner-sharing simplexes, as long as the classical ground

state is collinear, and the (zero field) Hamiltonian has the form (2.16). We have

implicitly assumed that the simplex lattice, formed by centers of simplexes, is

bipartite, although we could easily modify the calculation to take care of a more

general case. Given these assumptions, the only lattice information relevant to

our calculations is the coordination z of the simplex lattice and the lengths of the

various loops in the same lattice. In most cases, the coordination of the simplex

lattice is equal to the number of sites in a single simplex, e.g. z = 4 for the

pyrochlore, or 3 for the kagomé. However the expansion works equally well for

cases where not every lattice site is shared by two simplexes, as in the capped

kagomé model below, in which case z is smaller than the number of sites in a

simplex.

In general, we find numerically, that in going from z = 4 to z = 3, the con-

vergence rate of the Bethe lattice calculation becomes slower and the value of of

the parameter A at which convergence is obtained is smaller. The accuracy of our

Bethe lattice approximation is expected to be better for larger values of z, since

there are relatively fewer uncounted paths.

5.2.1 Checkerboard lattice

The checkerboard lattice is also often called the planar pyrochlore, and is a two-

dimensional projection of the pyrochlore lattice [6, 7]. It is composed of “tetra-

hedra” (crossed squares) whose centers form a square lattice (see, e.g. the {001}
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projections of the pyrochlore in Figs. 3.1a,3.2,3.3,4.5). Aside from the dimensional-

ity, a major difference between the checkerboard and the pyrochlore lattice is that

in the checkerboard, not all of the “tetrahedron” bonds are of the same length,

and thus one would generally expect coupling J ′ 6= J along the square diagonals.

Nevertheless, to pursue the frustrated analog of the pyrochlore, we shall consider

here the case J ′ = J .

As in the diamond lattice, the coordination of the (square) simplex lattice is

z = 4, and therefore the calculation of approximate loop expansion coefficients,

is identical to the pyrochlore calculation of Sec. 4.1. However, we should note

that since the shortest loops are now of length 4, the error in our Bethe lattice

approximation is greater than in the pyrochlore case, since the “repeated loops”

that we ignore carry more significant weight. Nevertheless, the ignored terms are

still expected to be two orders of magnitude smaller than the Bethe lattice terms.

In the checkerboard case, the complementary lattice is a square lattice com-

posed of the centers of the empty square plaquettes. Now the effective field in

Eq. (5.2) is the coefficient due to loops of length four B = K4/S < 0, which prefers

η̃a > 0, or in other words, zero-flux order. While the nearest neighbor complemen-

tary lattice coupling is antiferromagnetic J = K6/S > 0 and competes with B, it

is not strong enough (see Tab. 5.1) to frustrate the uniform zero-flux order.

The ground state entropy of the checkerboard lattice, has been shown in Ref. [8]

to be of order L, by construction of all of the possible even and odd gauge trans-

formations on a particular reference zero-flux state. A simple explanation for the

degeneracy is that, given a line of spins, say in the x direction, there are, at most,

two choices in the construction of an adjacent parallel line. This is because there

is one constraint on each tetrahedron (two down-spins) and one on each plaquette
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(an even number of down-spins). Thus, starting from an arbitrary choice of one

horizontal line (2L choices), there are ≤ 2L ways of constructing the rest of the

lattice. The resultant entropy is O(L).

Applying a magnetic field that induces the M = 2 plateau, we find (Tab. 5.1),

that the complementary lattice effective Hamiltonian has B > 0, J < 0, favoring

the π-flux uniform state. The ground state entropy in this case is also of order L.

To show this, we note that there is only one down-spin in each tetrahedron when

M = 2, and that the spin product around each plaquette is −1. This means that

there must be exactly one down-spin around each plaquette.

We could use an argument similar to the one used in the M = 0 model, to find

the entropy in this model. A more elegant argument uses a one-to-one correspon-

dence between the ground states and complete tiling the checkerboard lattice with

squares of size 2a× 2a, where a is the size of each plaquette (and “tetrahedron”).

Here each square is centered on a down-spin and covers the two plaquettes and two

tetrahedra to which it belongs (see Fig. 5.2. The entropy of such tilings is clearly

of order L.

5.2.2 “Capped kagomé”

The kagomé lattice Heisenberg model has been one of the most studied highly

frustrated models. The lattice is two dimensional, and is composed of corner

sharing triangles, such that the centers of the triangles form a honeycomb simplex

lattice. This model too is closely related to the pyrochlore, as a (111) projection

of the pyrochlore lattice contains kagomé planes sandwiched between triangular

planes, such that the triangular lattice sites “cap” the kagomé triangles to form

tetrahedra.
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Figure 5.2: Mapping checkerboard M = 2 ground states to tilings.
The checkerboard M = 2 ground states (π-flux states) can be mapped to tilings
of the lattice with squares. Each square covers two “tetrahedra” and is centered
on a down-spin (open circle). The entropy of such tilings in trivially of order L.

We cannot apply our collinear loop expansion to the kagomé Heisenberg model,

with no applied field, because there are no collinear states that can satisfy the

zero triangle-sum rule. One way to consider a “collinear kagomé” is to look at

a capped kagomé lattice which consists of a kagomé, flanked by two triangular

lattices, so that each triangle turns into a tetrahedron, with equal bonds. This

model was studied by Tchernyshyov et. al. [9], who referred to it as a “[111] slice

of pyrochlore”. Those authors found that the ground state is one in which one

out of every four hexagons has a positive spin product (the 2 × 2 state shown in

Fig. 5.3a). Surprisingly, the Hamiltonian for this model can be written in matrix

form with H = 1
2
W†W [Eq. (2.16)], and therefore we expect our loop expansion

to work. Furthermore, as long as there is no applied field, B = K6/S is positive, so

applying our intuition based on the previously discussed models, we would naively

think that the ground state should be a π-flux state.
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However, this is the one model that we have studied, where the complementary

lattice effective Hamiltonian has interaction terms strong enough to resist the B
field term. Here, the complementary lattice nearest neighbor term corresponds

to loops of length 10 and therefore J > 0 (there are no loops of length 8 in the

kagomé), and J ′ = K12/S < 0.

In the π-flux state, all complementary lattice spins are −1, and thus while the

B term in Eq. (5.2) is optimized, all of the nearest neighbor bonds (3N c
s , where

N c
s is the number of complementary lattice sites) are violated, as well as all of the

3-site terms (2N c
s ). On the other hand, the 2 × 2 state has only N c

s/4 negative

spins, but half of the complementary lattice bonds and 3/4 of the three-spin terms

are satisfied. Applying the coefficients we obtained (from Tab. 5.1, J /B ≈ 0.14),

and including also the next order (K12) term J3/B ≈ −0.05) to the expansion, we

find the energy per complementary-lattice site

Eπ−flux
harm − E2×2

harm

SN c
s

≈ −0.5B + 3J − 3J3 ≈ 0.0026 > 0 , (5.7)

and we find that the 2×2 state is favored over the π-flux state [9]. We provide this

calculation as an illustration of the difficulty in using the effective Hamiltonian in

a model with an unusually frustrated complementary lattice. In order to actually

determine the ground state in this case, one must include further terms in the

effective Hamiltonian. In fact, based only on the terms included in Eq. (5.7), we

would conclude, mistakenly, that the complementary lattice ground state is the

√
3×√3 state (not to be confused with the well-known coplanar kagomé ground

state with the same ordering vector), where 1/3 of the (in plane) spins are up, so

that each triangular plaquette has two down spins and one up spin (see Fig. 5.3b).

However, based on numerical diagonalization, we find that both the 2×2 state and

the π-flux state have, in fact, lower energy than the
√

3×√3 state, in agreement
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Figure 5.3: “Capped kagomé” states.
(a) The 2×2 ground state of the “capped kagomé” lattice. (b) The

√
3×√3 state

in the same lattice. Up (down) spins are marked by solid (open) circles, and FM
(AFM) lattice bonds are shown as dark (light) lines. The dashed lines represent
the complementary lattice bonds, whose sites are marked + and −.

with Ref. [9].

Due to the large number of degrees of freedom in this model, arising from the

“free” spins capping each triangle, there is an extensive number of 2 × 2 ground

states, as has been calculated in Ref. [9].

5.2.3 Kagomé with applied field

Another way of obtaining a “collinear kagomé” model, is to apply a field strong

enough to induce collinear states with M = 1 on the (standard) kagomé lattice [4,

10]. Applying our expansion, we find B < 0 and J < 0 (see Tab. 5.1), consistent

with a uniform zero-flux ground state, as we have indeed confirmed by numerically

calculating the zero-point energy.

In the M = 1 kagomé model, zero-flux states are obtained by spin arrangements

in which there are exactly two down-spins around each hexagon. To find the ground

state entropy, we map these to a dimer covering of the (triangular) complementary
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(a) (b)

Figure 5.4: Counting M = 1 kagomé ground states by mapping.
The M = 1 kagomé model ground states can be mapped one-to-one to continuous
lines on triangular lattice, such that a line can turn, at each site by ±60◦ or 0◦.
The “kinks” in each lines must lie along directed defect lines (dashed lines). There
are two possible cases: (a) parallel defects alternating in directions. (b) three lines
meeting at a point defect (and no other kinks).

lattice, in which there are exactly 2 dimers touching each complementary lattice

site, and there is exactly 1 dimer in each plaquette. These can be viewed as

continuous lines on the triangular lattice, that can turn at each node by ±60◦

or 0◦. Since there is no way of closing such lines into loops, one finds that they

generally run in parallel, possibly turning by 60◦ to form a “directed line defect”.

Three such line defects can meet and terminate at a single plquette, as long as they

form 120◦ angles and are all directed into this “point defect”. Thus, each ground

state either has exactly one point defect and three line defects coming into it (and

no others), as in Fig. 5.4b, or parallel line defects (alternating in direction), as in

Fig. 5.4a, allowing for entropy of order L.
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Table 5.1: Effective Hamiltonian (5.2) coefficients for the models we consider.
The coefficients were obtained by the expansion (5.6), with n ≥ 30 and extrap-
olated to n → ∞. The complementary lattice ground state is given in the right
column, and it corresponds, in all cases, to a family of states in the direct lattice.

Lattice Complementary M B J Ground
lattice state

pyrochlore pyrochlore 0 +0.0136 −0.0016 π-flux
pyrochlore pyrochlore 2 −0.0091 −0.00007 0-flux
checkerboard square 0 −0.0649 +0.0136 0-flux
checkerboard square 2 +0.0342 −0.0091 π-flux
capped kagomé triangular 0 +0.0376 +0.0052 2× 2
kagomé triangular 1 −0.0173 −0.0037 0-flux
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Chapter 6

Anharmonic spin-waves
In Ch. 4 we found that the harmonic spin-wave theory has a large family of degener-

ate collinear ground states. These states are related by a gaugelike transformation

and are known as the π-flux states, because the product ϕL =
∏

ηi around each

hexagon in the lattice is −1. We now attempt to resolve this degeneracy by taking

the next order (in 1/S) in the spin-wave expansion.

This chapter is organized as follows: in Sec. 6.1 we derive the quartic-order term

in the Holstein-Primakoff large-S expansion, assuming a collinear classical ground

state. We then derive a self-consistent mean-field Hamiltonian for the anharmonic

theory.

Then, in Sec. 6.2 we use a simple example – the (π, π) state on the two-

dimensional checkerboard lattice– in order to gain some analytic intuition on the

behavior of the bond variables that govern the mean-field quartic energy, and the

scaling laws involved. We find that these diverge as ln S, resulting in anharmonic

energy of order (ln S)2. We argue that among all harmonic checkerboard ground

states, the quartic energy is minimized in the (π, π) state and prove this to be true

within a set of checkerboard lattice harmonic ground states.

In Sec. 6.3 we present the main results of this chapter – numerical results for the

pyrochlore lattice. We find that, as in the checkerboard, the quartic energy scales

as (ln S)2. We calculate the anharmonic energy for a large set of harmonic ground

states and show that the anharmonic theory breaks the degeneracy between them.

We numerically fit effective Hamiltonians for both the gauge-invariant and gauge-

dependent terms in the quartic energy, and find a set of seemingly degenerate

71
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ground-states.

6.1 Self-consistent theory

In Ch. 2, we wrote down the harmonic-order Hamiltonian, for collinear states, in

matrix form

Hharm = ~σ†




H 0

0 H


 ~σ − SNS , (6.1)

where the matrix elements of H satisfy Hii = 1 and Hij = Jij/2 [Jij = 1 for nearest

neighbors (i, j) and zero otherwise], Ns is the number of lattice sites, and ~σ is a

vector of length 2Ns: ~σ† = ((σx)†, (σy)†).

Here we carry the Holstein-Primakoff expansion to the next order, in 1/S to

obtain the quartic-order HamiltonianHquart. We then decouple it to derive a mean-

field Hamiltonian similar in form to (6.1). To solve it we propose a self-consistent

variational Hamiltonian.

6.1.1 Mean field Hamiltonian

If we continue the Holstein-Primakoff expansion of Ch. 2 to the next order is 1/S,

for a collinear classical configuration, we obtain the anharmonic term in (1.4)

Hquart =
1

8S2

∑
ij

Jij

[
2ηiηj((σ

x
i )2 + (σy

i )
2)((σx

j )2 + (σy
j )

2)

− σx
i ((σx

j )3+σy
j σ

x
j σy

j )−σx
j ((σx

i )3+σy
i σ

x
i σy

i )

− σy
i ((σ

y
j )

3+σx
j σy

j σ
x
j )−σy

j ((σ
y
i )

3+σx
i σy

i σ
x
i )

]
. (6.2)

In order to calculate the anharmonic corrections to the energy, for an arbitrary

given state, parameterized by {ηi}, we develop a mean field approach. We can

obtain a Hartree-Fock-like mean field Hamiltonian by decoupling the quartic term
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of the Hamiltonian (6.2) (see Appendix D). We write the mean-field form of

Hquart +Hharm in matrix form, in analogy with the Harmonic Hamiltonian (6.1)

HMF = ~σ†




HMF 0

0 HMF


 ~σ − SNs , (6.3)

where the matrix elements can be written in terms of the correlations Gij =

〈σx
i σx

j 〉 = 〈σy
i σ

y
j 〉

(HMF)ii = 1 +
1

2S2

∑
j

Jij (ηiηjGjj −Gij) , (6.4)

(HMF)ij =
1

2
Jij

[
1− 1

2S2
(Gii + Gjj − 2ηiηjGij)

]
(6.5)

We have thus taken the interacting spin-wave Hamiltonian and decoupled it to

obtain a non-interacting theory. Unfortunately, even this problem is not easy to

solve, since the Hamiltonian matrix elements are written in terms of the correla-

tions {Gij}, which are unknown. We cannot use the correlations obtained from

the bare Harmonic theory (6.1) for both practical reasons (Gij diverges) and sub-

stantial ones: the theory would not be self-consistent – we would not recover the

same correlations as those we put into it. Our solution will therefore be based on

correlation functions that we obtain, self-consistently, from a variational Hamilto-

nian.

6.1.2 Variational Hamiltonian

To self-consistently solve the Hamiltonian (6.3), we would like to construct a Gaus-

sian variational wavefunction Ψvar which is the ground state of a variational har-

monic Hamiltonian Hvar. We know the exact mean-field Hamiltonian – the solu-

tion to an unconstrained variational problem – has only nearest-neighbor terms,

so there is no loss of generality when we restrict out variational search to that
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form. (This can be contrasted to the kagomé lattice where, due to cubic terms in

the spin-wave expansion, the appropriate variational Hamiltonian had second- or

third-nearest-neighbor (Heisenberg) terms [1, 2, 3, 4])

The simplest nontrivial form for the variational Hamiltonian Hvar is thus the

same as (6.3), but with the diagonal block matrix HMF replaced by

Hvar ≡ H + δηHη + ε1 . (6.6)

where δ and ε are variational parameters. Here, the δ term distinguishes between

AFM and FM bonds [i.e. (Hvar)ij = 1+δ for neighbors with ηi = ηj and (Hvar)ij =

1−δ for neighbors with ηi = −ηj]. This is the simplest possible form of a variational

Hamiltonian that is consistent with the local spin symmetries.

Spin rotation symmetry requires that the global rotation, associated with the

eigenvector vG, with elements

vG(i) =
ηi√
Ns

, ∀i , (6.7)

would have zero energy, i.e., ηHvarvG = 0. Writing this term by term, we find

0 = ηi

∑
j

(Hvar)ijvG(j) = 4δ + ε (6.8)

Thus, if we require invariance to global spin rotation [and assume (6.6)] we end up

with only one variational parameter ε. It will become clear in the following, that

the correct signs for the parameters are ε > 0, δ < 0.

We diagonalize this Hamiltonian to find a variational wavefunction Ψvar(ε) and

the correlations {Gij}, and minimize with respect ε (for a given S) the decoupled

mean-field energy, from (6.3)

EMF = 〈HMF〉 = −
∑

〈ij〉
ηiηj

(
Γij + Γji − 1

S2
ΓijΓji

)
− SNs . (6.9)
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Here 〈ij〉 denotes a sum over nearest neighbors. We defined, for conciseness, the

bond variable Γij

Γij ≡ Gii − ηiηjGij . (6.10)

Γij is not symmetric and is defined only for (i, j) nearest neighbors (nonzero Jij).

The result of the minimization is that for any value of S there is one unique

value of the variational parameter ε = ε∗(S) for which the variational wavefunction

Ψvar(ε
∗) minimizes EMF. We will find, in the following, that ε∗(S) ∝ ln S/S.

6.1.3 Scaling

Within the harmonic theory of Ch. 2, the fluctuations of the spin deviation oper-

ators scale as 〈σiσj〉 = O(S) and therefore, we would expect, from the spin-wave

expansion (1.4)

Eharm = O(S) , 〈Hquart〉 = O(1) . (6.11)

However, since the fluctuations diverge, Hquart has an infinite expectation. Studies

of the kagomé lattice [2, 3, 4] have taught us that, when anharmonic terms are

treated self consistently, spin fluctuations of divergent modes are renormalized. In

the kagomé case 〈σiσj〉 = O(S4/3) and the scaling relations are

Eharm = O(S) , 〈Hquart〉 = O(S2/3) . (6.12)

Note that the harmonic energy is not rescaled because the frequency of divergent

zero modes is only O(S2/3), which is negligible compared to non-zero modes’ O(S)

frequency.

Näıvely, one might expect this scaling argument to carry through to the py-

rochlore lattice as well [5]. However, it is important to observe that the dominant
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contribution to the anharmonic term in EMF comes from (the vicinity of) the di-

vergent modes, discussed previously in Sec. 3.2. There is a big difference between

the divergent modes of the kagomé and the pyrochlore: in the kagomé, due to

the anisotropy between in-plane and out-of-plane spin fluctuations, all zero modes

are divergent modes. In other words, the kagomé divergent modes span the entire

Brillouin zone. In the pyrochlore, on the other hand, the divergent modes reside

only along lines in the Brillouin zone. In the following, we shall find that this

leads to logarithmic renormalization of the divergent fluctuations Γij = O(S ln S),

resulting in scaling

Equart ≡ EMF − Eharm = O((ln S)2) . (6.13)

The singularity of the divergent modes’ fluctuations, away from q = 0, is cut

off by the variational parameter ε. At q = 0, the divergence of 〈σiσj〉 would

be preserved, due to the physical Goldstone mode vG, but the Goldstone mode’s

contribution to Γij vanishes such that the Goldstone mode does not contribute to

the energy at any order in 1/S. Because it is technically difficult to deal with the

divergence of Gij(q = 0) we shall, for now, retain both variational parameters.

Thus we will have a handle on the fluctuations until we eventually take the limit

δ → −ε/4. [We find that Gij(q = 0) ∼ 1/
√

ε + 4δ, so that ε + 4δ must be chosen

to be positive.]

6.1.4 Self-consistency

In order for our theory to be self-consistent, each of the diagonal elements (6.4)

should be be independent of i, and the off-diagonal elements (6.5) should depend

solely on ηiηj. Furthermore, we want (HMF)ij/(Hvar)ij to be equal for all i, j (for
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Figure 6.1: Self-consistency of the matrix elements.
We show the ratio of all nonzero elements of HMF and Hvar(ε) for the state shown
in Fig. 4.5(d). Here ε is set to 0.1. Each line represents a particular (ij) matrix
element. Up to symmetries of the configuration, there are 11 unique matrix ele-
ments elements, some of which are virtually indistinguishable in the plot. All of
the lines converge at S∗(ε = 0.1) = 7.5 (up to a deviation which is much smaller
than ε)

which Hij 6= 0). We indeed find (empirically) that, for a certain value S = S∗(ε)

this is true, i.e.

variance

[
(HMF(S∗(ε))ij

(Hvar(ε))ij

]
¿ ε . (6.14)

In Fig. 6.1 we show an example of this for a particular state and a particular value

of ε.

The self consistency clearly implies that the relation S∗(ε) is the inverse of the

relation ε∗(S): If, up to a constant HMF(S∗(ε)) = Hvar(ε), then the variational

wavefunction Ψ(ε) minimizes the mean field energy EMF(S∗(ε)). Thus, the self-

consistency provides us with an alternative way of finding the value of ε∗(S).

The mechanism of the self-consistency can be explained as follows: we find
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numerically that (for any ε) the ground state wavefunction Ψ(ε) of Hvar satisfies

Γij = Γ(0)(ε) + Γ(2)(ε)ηiηj + ∆Γij(ε) , (6.15)

where Γ(0) and Γ(2) are independent of i, j (and of order S ln ε) whereas ∆Γij does

depend on i and j but is much smaller than Γ(2) (|∆Γij| is an order of magnitude

smaller that Γ(2) for all numerically accessible value of ε). Using the relation (6.15)

and Eqs. (6.4) and (6.5), we can write the matrix elements of the mean-field Hamil-

tonian

(HMF)ij =
Jij

2

[
1− 1

2S2
(Γij + Γji)

]

=
Jij

2

[
1− 1

S2
Γ(0) − 1

S2
Γ(2)ηiηj − 1

2S2
(∆Γij + ∆Γji)

]

(HMF)ii = 1 +
1

2S2

∑
j

JijηiηjΓji

= 1− 1

S2
Γ(0) +

3

S2
Γ(2) +

1

2S2

∑
j

Jijηiηj∆Γji . (6.16)

In the last line of this equation, we used the z = 6 coordination of the pyrochlore

lattice, and the classical tetrahedron constraint. We now define

J∗ ≡ 1− 1

S2
Γ(0) , J∗ij ≡ J∗Jij , (6.17)

and obtain

(HMF)ij =
J∗ij
2

(
1 +

Γ(2)

Γ(0) − S2
ηiηj

)
− ∆Γij + ∆Γji

2S2

(HMF)ii = J∗
(

1− 3
Γ(2)

Γ(0) − S2

)
+

1

2S2

∑
j

Jijηiηj∆Γji . (6.18)

For a particular spin length S = S∗, such that

Γ(2)

Γ(0) − (S∗)2
= δ , (6.19)
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(recall that δ < 0 and ε = −4δ), we find (neglecting terms that are ¿ δ)

(HMF)ii ≈ J∗(1 + ε + δ) = J∗(Hvar)ii ,

(HMF)ij ≈ J∗(1 + δηiηj) = J∗(Hvar)ij . (6.20)

Why is our choice of the variational Hamiltonian (6.6) a natural one? The

reason is that the correlations that come out of the bare Hamiltonian have the

form (6.15) (albeit with divergent Γ(0), Γ(2)) [For motivation of this form, see

Appendix E]. For example, if we try a different one-parameter variational Hamil-

tonian, where we add ±δ to the matrix elements Hij in a pattern other than

the one in Eq. (6.6), Γij is regularized, but the dominant contribution is still of

the form (6.15), and the self-consistency is lost. The only one-parameter nearest-

neighbor variational Hamiltonian which is self-consistent is (6.6).

A more elaborate (multi-variabled) self-consistent scheme could improve the

quality of the calculation, by exploring a larger set of variational wavefunctions.

Nevertheless, as we shall see numerically in of Sec. 6.3, there are clear, degeneracy-

breaking effects even within this simple one parameter theory.

6.2 Checkerboard lattice

As a warm-up to the pyrochlore lattice problem, we will first consider the same

model on the closely related, two-dimensional checkerboard lattice. The checker-

board lattice (see Fig. 6.2) can be viewed as {001} projection of the pyrochlore

lattice, and is often called the planar pyrochlore. The lattice structure is a square

lattice with primitive vectors a1 = (1, 1), a2 = (1,−1) and two sublattices corre-

sponding to basis vectors u1 = (−1/2, 0),u2 = (1/2, 0). We refer to the crossed

squares as “tetrahedra” in analogy with the pyrochlore lattice, and we refer to any
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two sites within a tetrahedron as “nearest neighbors” regardless of the actual bond

length.

Since the checkerboard lattice, as the pyrochlore, is composed of corner shar-

ing tetrahedra, the derivation of Ch. 2 and Ch. 3 remains valid. Note that we

assume that all of the couplings within a tetrahedron are equal, even though in

the checkerboard lattice, the various bonds are not related by lattice symmetries.

Since the shortest loop in the checkerboard lattice is a square, the effective har-

monic Hamiltonian for this lattice has the same form as the pyrochlore harmonic

effective Hamiltonian (4.6), with the addition of a dominant term K4Φ4, with

K4 < 0 [6, 7]. Thus, the harmonic ground states of the checkerboard lattice con-

sist of all the zero-flux states, i.e., states with positive flux in all square plaquettes.

Similar to the pyrochlore case, this is a family of states that are exactly degenerate

to harmonic order, and in this case residual entropy is O(L), where L is the linear

dimension of the system [7].

6.2.1 The checkerboard (π,π) state

One of the checkerboard harmonic ground states is simple enough for the diago-

nalization of the variational Hamiltonian (6.6) to be done analytically: the (π, π)

state depicted in Fig. 6.2. In this state, the diagonal bonds in each tetrahedron

are unsatisfied (FM), such that the symmetry of the lattice is conserved, and the

magnetic unit cell has two sites.
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Figure 6.2: The checkerboard lattice (π, π) state.
The primitive vectors are the diagonal arrows, and the primitive unit cell is shown
by the dashed square. The small arrows represents the two basis vectors. Here we
show the (π, π) state: open (closed) circles denote up (down) spins. Dark (light)
colored lines denote AFM (FM) bonds.

Harmonic Hamiltonian

The Fourier transformed harmonic Hamiltonian for the (π, π) state is Eq. (3.15),

with

H(q) =




2 cos2 Q+ 2 cos Q+ cos Q−

2 cos Q+ cos Q− 2 cos2 Q−


 , (6.21)

where

Q± ≡ (qx ± qy)/2 . (6.22)

In Ch. 2 we learned that the spin-wave modes can be found by diagonalizing the

matrix ηH(q). η is a diagonal matrix with elements {ηi} along the diagonal (in

our case η1 = 1, η2 = 2). Diagonalization of ηH(q) produces eigenmodes Vq and
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Uq for any wavevector q, with eigenvalues λV and λU, respectively

VT
q =

√
2

αq
(cos Q+,− cos Q−) , λV = βq ,

UT
q =

√
2

αq
(cos Q−,− cos Q+) , λU = 0 , (6.23)

satisfying the orthogonality condition V†
qηUq = 0. Here we defined

αq = 2(cos2 Q+ + cos2 Q−) ,

βq = 2(cos2 Q+ − cos2 Q−) . (6.24)

Thus, the ordinary spin-wave band has dispersion ωq = 2S|βq|, and the zero point

energy can be easily calculated

Eharm =
1

2

∑
q

ωq −NsS = NsS

(
4

π2
− 1

)
. (6.25)

The fluctuations of the spin deviation operators (Glm(q) = 〈σx
q(l)σx

−q(m)〉, where

l and m are sublattice indices) can be calculated from the spin-wave modes by

Eq. (2.24)

G(q) =
S

2βq




αq −γq

−γq αq


 , (6.26)

where γq ≡ 4 cos Q+ cos Q−, so that αq =
√

β2
q + γ2

q. Eq. (6.26) shows that the

fluctuations diverge wherever βq vanishes, i.e., along the lines in the Brillouin zone

|Q+| = |Q−|, which turn out to be qx = 0 or qy = 0.

Anharmonic energy

The variational Hamiltonian for the (π, π) checkerboard state is of the form (3.15)

with the matrix (6.6) given by

Hvar(q) = αqηVqV
T
qη + δαqVqV

T
q + ε1 , (6.27)



83

Diagonalizing ηHvar(q), and keeping only the first order terms in δ, ε results in

ωq of order
√

ε,
√

δ along the divergence lines defined by βq = 0, and a linear (in

ε,δ) correction to ωq away from these lines.

The fluctuations of the variational Hamiltonian are now:

G(q) =
S

2Dq(ε, δ)




αq(1 + δ) + 2ε −γq(1− δ)

−γq(1− δ) αq(1 + δ) + 2ε


 . (6.28)

Here we defined, for conciseness

Dq(ε, δ) ≡
√

β2
q(1− δ)2 + 4(αq + ε)(αqδ + ε) . (6.29)

The fluctuations diverge (for nonzero ε) only if βq = 0 and αqδ + ε = 0. If we

take δ → −ε/4, to conserve the symmetries of the original Hamiltonian, we find

one divergent mode: the q = 0 Goldstone mode.

In order to calculate the mean field energy (6.9), we are interested in combina-

tions of the diagonal (on-site) and off-diagonal (nearest neighbor) fluctuations of

the form Γij. We can write this as a sum over Fourier modes

Γij =
1

NM

∑
q

Γij(q) , (6.30)

with Γij(q) defined as

Γij(q) ≡ Glili(q)− ηiηjGlilj(q) cos ξij · q . (6.31)

Here li, lj are the sublattice indices of i and j, respectively, ξij is the vector

connecting the two sites. NM is the number of points in the Brillouin zone, i.e.

the number of sites in the magnetic lattice.

In this case we obtain, for two neighboring sites on the same sublattice

Γ↑↑(q) =
S

Dq(ε, δ)
[αq(1 + δ) + 2ε] sin2 Q+ , (6.32)

Γ↓↓(q) =
S

Dq(ε, δ)
[αq(1 + δ) + 2ε] sin2 Q− . (6.33)
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Here we used Γ↑↑(q) [shown in Fig. 6.3(a)] for Γij(q), where both i and j are on

the up-spin sublattice (and similarly for Γ↓↓. For neighboring sites on different

sublattices, we obtain [see Fig. 6.3(b)]

Γ
x/y
↑↓ (q) =

S

2Dq(ε, δ)
[αq(1 + δ) + 2ε− γq(1− δ) cos qx/y] , (6.34)

where Γx
↑↓ (Γy

↑↓) is the bond variable for a bond oriented along the x (y) axis,

connecting an up-spin and a down-spin. Note that Eqs. (6.32),(6.33), and (6.34)

do not diverge at any value of q for ε + 4δ = 0. Thus, we have regularized the

fluctuations, and retained only one variational parameter. Since all sites are related

by symmetry in this state, Γij = Γji. Furthermore Γ↑↑(q) and Γ↓↓(q) are related

by a rotation of the Brillouin zone, and the real space correlations will be the same

upon integration over the Brillouin zone.

As we can see in Fig. 6.3, the divergent lines for Γ↑↑(q) and Γ↓↓(q) are both

major axes, whereas Γx
↑↓(q) and Γy

↑↓(q) only diverge along the y and x axes, re-

spectively. Along the divergent lines, where βq = 0 and αq = |γq| = 4 cos2 Q+, the

values of the bond variables are, asymptotically Γij(q) = S| sin 2Q+|/2
√

ε. Away

from the divergence line,

Γij(q) ≈ S| sin 2Q+|
2
√

ε + 4q2
⊥

, (6.35)

where q⊥ ¿ 1 is transverse to the divergence line. Upon integration of (6.32), (6.33),

and (6.34) over the Brillouin zone, the result is a logarithmic singularity in the fluc-

tuations that go into the anharmonic term of (6.9)

Γ↑↑ = Γ↓↓ = −4S

π2
ln ε +O(ε) = 2Γ↑↓ +O(ε) . (6.36)

Next, we plug this into Eq. (6.9) for EMF. The terms linear in Γij+Γij cancel out at

leading order in 1/S, as there are twice as many AFM bonds as there are FM bonds
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and Γij is twice as big for FM bonds as it is for AFM bonds. This must be true for

any checkerboard or pyrochlore state since, from Eq. (6.6) 〈Hvar〉 = Eharm +O(ε).

The quartic term in the mean field energy EMF is quadratic in ln ε, resulting

in EMF

EMF = Eharm + S ×O(ε)−
∑

〈ij〉
ηiηj(ln ε)2 +O(ε ln ε)

= Eharm + S ×O(ε) +
4(ln ε)2

π4
+O(ε ln ε) . (6.37)

Minimizing (6.37) with respect to ε, for a given S À 1, we obtain ε∗(S) ∝ ln S/S

and therefore the quartic energy Equart ≡ EMF − Eharm is quadratic in ln S. We

remark that due to the logarithmic singularity, in a numerical calculation one would

expect it to be hard to distinguish between terms of order O((ln ε)2), O(ln ε), and

O(1) for numerically accessible values of ε. Nevertheless, since we are doing a

large-S expansion, we are mostly interested in the asymptotic behavior.

6.2.2 Anharmonic ground state selection

Divergent correlations

In order to understand the leading order term in the anharmonic energy, we restrict

our discussion to the correlations due to divergent modes. We would like to derive

an expression for the divergent part of Γij, for any zero-flux state. In order to do

so, we need to be more explicit about the divergent modes for these states.

As we saw in Sec. 3.2, a basis of real-space divergent modes {vd} can be con-

structed from diamond lattice modes {ud}, each with support on a subset of either

the even or odd tetrahedra. For example, for an even mode

vd(i) =
1

2
ηiud(αeven(i)) , (6.38)
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Figure 6.3: Bond variables in the Brillouin zone of the (π, π) checkerboard state.
(a) Γij for two neighboring sites on the same sublattice. (b) Γij for two neighboring
sites with ηiηj = −1. In the case shown, the (ij) bond is along the x axis. The
analytic forms of the functions are given in Eq. (6.32) and Eq. (6.34), respectively.
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where αeven(i) is the (unique) even tetrahedron to which site i belongs and ud is a

diamond-lattice mode. For a support network Sd

ud(α) =




±1 α ∈ Sd

0 otherwise
. (6.39)

We further showed that the sign of ud(α) (for α ∈ Sd) is determined by a “mock”

Ising model: next nearest neighbor (even) diamond sites α, β ∈ Sd have ud(α) =

ud(β) if the bond connecting them is AFM, and ud(α) = −ud(β) if the bond

connecting them is FM [see Eq. (3.13)].

In the checkerboard lattice (π,π) state, we can construct such a basis of real-

space divergent modes, such that each mode has support on a horizontal (x̂-

oriented) or vertical (ŷ-oriented) ladder, living on the square lattice [as in Fig. 6.4].

We label each x̂-oriented mode by its y coordinate ux̂
y and similarly, the ŷ-oriented

modes are labeled by their x coordinate.1 Since all of the horizontal and vertical

bonds in the (π,π) state are AFM, the mock Ising model for this particular state

is satisfied by ux̂
y (α) = 1, uŷ

x(α) = 1, for all sites on each ladder.

Considering other zero-flux states, we find that any ladder supports a divergent

mode (the support networks Sd are gauge-invariant), but the signs of ux̂
y , uŷ

x are

different from the (π,π) case. Looking at the x̂ and ŷ ladders, it is easy to see

that, for all checkerboard zero-flux states, one can consistently choose a single

value uα = ±1 for each tetrahedron so that ux̂
y(α)(α) = uŷ

x(α)(α) = uα.

The “mock Hamiltonian constraint (3.13) on {uα} holds for tetrahedra con-

nected by vertical (ŷ) or horizontal (x̂) bonds. This implies that, if i and j are

1To be exact, we note that for the basis to be linearly independent, one would
have to remove one of the ladders from it, since, as mentioned in Sec. 3.2, there in
one case of linear dependence between the odd and even modes. This concern has
no effect on the discussion, in the thermodynamic limit
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Figure 6.4: Real space “ladder” divergent mode in the Checkerboard lattice.
The analog of a planar mode in the checkerboard lattice: a “ladder mode”. The
large “+” and “-” represent the effective Ising variables {um(α)}, and the thick
lines represent the nearest neighbor bonds within the support Sm.

nearest neighbors

uαeven(i) × uαeven(j) =





−ηiηj (ij) x̂ or ŷ bond; αeven(i) 6= αeven(j) ,

+ηiηj (ij) diagonal bond; αeven(i) 6= αeven(j) ,

1 αeven(i) = αeven(j) .

(6.40)

Unfortunately, the real-space ladder modes are not mutually orthogonal. Any

x̂ ladder has nonzero product with each and every ŷ ladder. To construct an

orthonormal basis, we take Fourier combinations of the even and odd x̂ ladders,

and of the even and odd ŷ ladders, separately

ueven
qx

(α) =





2√
Ns

eiqxx(α)uα α even ,

0 otherwise
,

ueven
qy

(α) =





2√
Ns

eiqyy(α)uα α even ,

0 otherwise
, (6.41)

and similarly for odd modes. The band indices qx and qy takes L/2 values 2πn/L,

with n = 0, 1, · · · , L/2− 1, for both odd and even modes. Here L is the length of

the system.

The bond variable Γij can be written as a sum over these basis divergent modes,
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using Eq. (2.24) and Eq. (6.10)

Γij ≈
∑
m

Γ
(m)
ij = SC(ε)

∑
m

′ (|vm(i)|2 − ηiηjv
∗
m(i)vm(j)

)
, (6.42)

where the sum
∑′ is just over the divergent mode basis and the prefactor C(ε) ≡

(2|v†mηvm|)−1 would be infinite for ε → 0. Given that all of the divergent modes

are related by lattice symmetries, we assume that C(ε) is approximately equal, to

leading order in 1/ε, for all of the divergent modes in our basis. We note that

based on Sec. 6.2.1, we know to expect C(ε) ∝ ln ε, upon integration over the

almost divergent modes.

Writing Eq. (6.42) in terms of the even and odd Fourier modes, using vm(i) =

ηium(αi)/2 [from Eq. (6.38)] we get

Γij ≈ SC(ε)

4

{∑
q

[|uodd
q (αodd(i))|2 − [uodd

q (αodd(i))]
∗uodd

q (αodd(j))]

+
∑
q

[|ueven
q (αeven(i))|2 − [ueven

q (αeven(i))]
∗ueven

q (αeven(j))]

}
, (6.43)

where
∑

q is shorthand for sum over qx and qy.

Plugging the Fourier modes (6.41) into Eq. (6.43) we find

Γij ≈ SC(ε)

Ns

{∑
qx

[
1− uαodd(i)uαodd(j)e

iqx[x(αodd(j))−x(αodd(i)])
]

+
[
1− uαeven(i)uαeven(j)e

iqx[x(αeven(j))−x(αeven(i))]
]

+
∑
qy

[
1− uαodd(i)uαodd(j)e

iqy[y(αodd(j))−y(αodd(i))]

+
[
1− uαeven(i)uαeven(j) + eiqy[y(αeven(j))−y(αeven(i))])

]}
. (6.44)

If i and j are nearest neighbors in, say, an odd tetrahedron, only even modes give

nonzero contributions to Γij. Summing up the terms and using the mock Ising

model constraint (6.40), we get different contributions for diagonal bonds than for
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z x y

Figure 6.5: The three possible polarization axes for a single tetrahedron.

horizontal or vertical bonds

Γij =





SC(ε)L
Ns

(ij) diagonal bond ,

SC(ε)L
2Ns

(2 + ηiηj) (ij) x̂ or ŷ bond ,

0 otherwise ,

(6.45)

Note that due to the anisotropy of the checkerboard lattice (i.e., the asymme-

try between diagonal and x̂ or ŷ bonds), here Γij does not have the expected

form (6.15).

Single tetrahedron

To find the leading order quartic energy for a generic state, we consider the three

possible bond configurations for a single tetrahedron, which can be viewed as three

polarization axes :[8, 9] z (where all tetrahedra are oriented as in the (π, π) state),

x and y (see Fig. 6.5).2

Summing up the contributions, we obtain, for a single z polarized tetrahedron:

E£
quart =

1

S2

∑

〈ij〉∈£
ηiηjΓ

2
ij ≈ C(ε)2L2/N2

s . (6.46)

On the other hand, for x or y polarization we find

E£
quart ≈ 2C(ε)2L2/N2

s . (6.47)

2In Ref. [6] the polarization axis of checkerboard tetrahedra was denoted by a
color Potts variable.
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Note that in all cases
∑

ηiηjΓ
(m)
ij ≈ 0 to leading order, since the divergent modes

do not contribute to the harmonic part of EMF in (6.9).

Thus we found that the divergent contribution to the quartic energy is twice

as large for x or y polarization as it is for z polarization. We expect an effective

Hamiltonian of the simplified form

Eeff
quart = Ns[A(S)−B(S)ρz] , (6.48)

with B(S) ≈ A(S)/2. Therefore the (π, π) state, in which all tetrahedra are z

polarized, would be favored over all other zero-flux states, and thus is the unique

ground state for the checkerboard lattice.

Numerics for full lattice

To prove our theory on the anharmonic selection among harmonic checkerboard

ground states, we constructed various such states in the following way: we started

from the (π, π) state on a 8× 8 system (“checkerboard”), with periodic boundary

conditions. To generate a new state, we applied a gaugelike transformation by

changing the sign of ηiηj of all bonds crossing one or more horizontal lines going

through centers of four tetrahedra (see Fig. 6.6). We do this for any subset of

the eight possible horizontal lines, generating a total of 28 states, 32 of which are

unique by lattice symmetry. Note that the construction of states, as well as our

calculation, is based on bond-order (see Appendix B), and thus we need not worry

about flipping an odd number of lines of this structure. See Ref. [7] for a detailed

discussion of gaugelike transformations; for our purpose, it suffices to realize that

each state that we generate is a valid classical ground states with zero flux through

each plaquette.
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Figure 6.6: A checkerboard lattice harmonic ground state.
This state was constructed by flipping the bonds that cross each of the two dashed
horizontal lines.

Whenever we flip a row of bonds, we change the polarization of four tetrahedra

from the z direction to the x direction. Based on the arguments of the previous

section, we expect that the leading order term in the quartic energy would be

proportional to the number of flipped rows.

For each of these states, we calculate the quartic energy for a given value of

ε = 0.001, integrating over 41 × 41 points in the Brillouin zone, equivalent to a

system size of 328×328, which is more than required to obtain good accuracy (see

Sec. 6.3 for more details about the numerical considerations).

The results are presented in Fig. 6.7, as a function of the fraction of z-polarized

tetrahedra ρz. As expected we find: (i) the quartic energy is, for the most part,

linear in ρz. (ii) the energy span is of order 4(ln ε)2/π4. (iii) the ground state is

the uniformly z polarized (π, π) state. (iv) the quartic energy of the (π, π) state is

approximately half of the energy of the uniformly x polarized state.
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Given the clear differences in Equart(ε, S) between the various harmonic ground

states, we expect that the same ordering would be conserved in the saddle point

value Equart(S) upon minimization with respect to ε. Thus we can predict that

the large-S checkerboard lattice model would possess long range Neél order at zero

temperature. The ground state is the same one found in large-N calculations for

the large-S limit. [10, 11] The effective quartic Hamiltonian has the form (6.48)

with the coefficients B(S) ∝ (ln S)2 and A(S) ≈ 2B(S) to leading order in S. We

note that this effective Hamiltonian can be written in a more conventional form,

in terms of Ising products

Eeff
quart = NsA(S)−B(S)

∑

〈ij〉

×
ηiηj , (6.49)

where
∑× is a sum is over diagonal bonds only.

The result is not very surprising: although we set the Heisenberg couplings to

be the same for all bonds in the checkerboard lattice, there is no physical symmetry

between the diagonal bonds and the non-diagonal bonds and therefore we should

have expected to generate anharmonic terms consistent with the actual lattice

symmetry. Thus, unfortunately, this does not provide a guide to lattices where all

bonds in a tetrahedron are related by symmetry.

6.3 Effective Hamiltonian for the pyrochlore

We now turn our attention back to the pyrochlore lattice, where, due to the large

sizes of the magnetic unit cells of ground state candidates, it would be impossible

to do analytic calculations. Our aim here is to calculate the quartic energy for

a given arbitrary periodic state, and gather the energies we have calculated to

construct an effective Hamiltonian.
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Figure 6.7: Quartic energy for checkerboard lattice harmonic ground states.
The energy Equart is shown for ε = 0.001, as a function of the fraction of z polarized
tetrahedra, for various checkerboard lattice harmonic ground states.

The numerical calculation is done as follows: for a given collinear classical

ground state and a given value of ε we diagonalize the Fourier transform of the

variational Hamiltonian (6.6), keeping ε + 4δ infinitesimal. We find the bond

variable Γij(q) for each wavevector on a grid of Brillouin zone points, and sum

over these points to obtain Γij in real space.

In performing the calculation, we find a distinct resemblance to our findings

on the checkerboard lattice: There are divergent modes along the x, y, and z

axes in the Brillouin zone [7], and these modes dominate the mean field quartic

energy (and have no contribution to the harmonic order energy). The variational

Hamiltonian’s divergence is cut off, along the divergent lines by a term of the order

S/
√

ε. The width of the divergence peaks is of order
√

ε, which means that the

grid of wavevectors that we use must become denser in order to capture the effect

of the divergent modes, as ε becomes smaller. Thus, we need to sum of the order
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of 1/ε3/2 points, to obtain good accuracy. This limits the values of S that we can

do the calculation for, and we have found no useful numerical tricks to get around

it. Nevertheless, we can get results over about two orders of magnitude of S, which

can be extrapolated to the S →∞ limit.

Upon numerical integration, we find, that as in the two-dimensional checker-

board lattice, the divergence of the fluctuations is logarithmic

Γij ∝ ln ε +O(ε) . (6.50)

This numerical finding is somewhat surprising. We would näıvely expect that the

bond variable Γij(q) would drop, away from the divergent lines, with a functional

form (6.35), as in the checkerboard. In that case, two-dimensional integration over

q⊥ would result in a non-singular Γij.

It turns out that this expectation is incorrect because the dispersion in the di-

rection perpendicular to the divergence line is strongly anisotropic. For each value

of q along the divergence line, there are two particular independent eigendirections

of q⊥. For example, for a q = qzẑ divergence, corresponding to a linear combination

of real-space divergent modes similar to the one shown in Fig. 3.2(b), the eigendi-

rections of q⊥ are (1, 1, 0) and (1,−1, 0). If we call unit vectors along these eigendi-

rections ê1 and ê2, then we find that Γij ∝ 1/
√

ε + (q⊥ · ê1)2 + 1/
√

ε + (q⊥ · ê2)2.

Integration over q⊥ results in the logarithmic dependence on ε of (6.50), as in the

checkerboard case.

Once we have calculated EMF for many values of ε (for a given collinear state),

we can minimize it, for a given S, and find Equart(S). Our plan of action is to

perform this numerical calculation of Equart for a large number of collinear classical

ground states and construct an effective Hamiltonian.
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6.3.1 Gauge invariant terms

We start by calculating Equart on a large number of classical ground states (not all

π-flux states), with unit cells ranging from 4 to 32 sites. We minimize the EMF

with respect to ε at each value of S and obtain the energy shown in the inset

of Fig. 6.8. We show the energies of 16 states, belonging to five gauge families.

Two of these families have uniform +1 and −1 products around all hexagons, the

zero-flux and π-flux, respectively. We refer to the other three gauge families as the

000π, 0π0π, and 00ππ plane states, as the hexagon fluxes are arranged in planes

such that within each plane the flux is uniform. Due to the exact invariance of the

(ε = 0) harmonic energy under the gaugelike transformation, the total energies of

states related by such transformations are, as expected, indistinguishable in the

inset, since the harmonic term dominates.

In the main part of Fig. 6.8 we show the anharmonic energy Equart for the same

states. As in the checkerboard lattice, the dominant part of the quartic energy is

quadratic in ln S, and of the order (ln S)2. However, unlike the checkerboard lattice

(compare to Fig. 6.7), we find that the energy differences between harmonically

degenerate states are one to two orders of magnitude smaller.

We first consider the dominant gauge invariant contribution to the quartic

energy. Since the invariants of the gaugelike transformation are products around

loops, we search for an effective Hamiltonian in terms of the fluxes Φl, similar to

the harmonic effective Hamiltonian (4.6).

Eeff
quart = A0 + A6(S)Φ6 + A8(S)Φ8 + A10(S)Φ10 + · · · , (6.51)
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where we find, numerically

A0(S) ≈ 0.300 + 0.0130(ln S)2 ,

A6(S) ≈ −0.116− 0.0030(ln S)2 ,

A8(S) ≈ −0.022 + 0.0055(ln S)2 ,

A10(S) ≈ 0.008− 0.0021(ln S)2 . (6.52)

Note that for large S, the signs of the coefficients A6, A8, and A10 are opposite

to K6, K8, and K10 in the harmonic Hamiltonian. The differences in signs among

the Al(S) coefficients can explain why some of the lines in Fig. 6.8 appear to be

convex and other concave: each family of states is dominated by different flux loop

lengths l.

The gauge invariant terms can be heuristically explained in terms of the di-

vergent modes: the quartic energy is large for states that have a large number of

divergent modes. As was discussed in Sec. 3.2, the divergent modes are spanned

by a set of real-space divergent modes, each with support on a subset of fcc sites

Sm. In order for a divergent mode to exist on a given Sm, it turns out that any

loop of length n/2 (equivalent to diamond lattice or pyrochlore loops of length n),

the flux ϕa through the loop, defined in (1.5), must be (−1)n/2. This ensures that

the mock Ising model within Sm is unfrustrated. Thus, the gauge invariant energy

is largest when the product around hexagons is negative and the product around

loops of length eight in positive.

In fact, not only the divergent modes, but all ordinary modes of the bare

Hamiltonian are gauge invariant (see Appendix E.3). In is only when one considers

the details of our (variational) regularization scheme that the degeneracy is broken.

The above discussion of the gauge invariant quartic energy (6.51) is somewhat
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moot, inasmuch as it is negligible compared to the harmonic energy (4.6), and it

does not break the gauge symmetry. Nevertheless, one can clearly see in Fig. 6.8

that the anharmonic energy within each gauge family is not exactly the same,

meaning that there is a gauge-dependent term in the variational anharmonic en-

ergy.
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Figure 6.8: Quartic energy Equart for 16 classical collinear ground states.
Equart(S) was obtained in the variational calculation. The lines show a numerical
quadratic fit in ln S. Each gauge family (represented by 2-6 different states each)
is denoted by a different symbol, of which triangles denote the harmonic ground
states – the π-flux states. We show six π-flux states, and their energies are virtually
indistinguishable to the naked eye. The total energy EMF is shown in the inset.

6.3.2 Gauge dependent terms

Upon close inspection of Fig. 6.8, we see that some of the gauge families have a

larger dispersion in their quartic energies than others. Unfortunately, the quartic

energy differences among the ground states of the harmonic Hamiltonian –the π-

flux states–are much smaller than the gauge-invariant contribution. We attribute
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this to the fact that, unlike the checkerboard lattice harmonic ground states or

even some pyrochlore gauge families, the set of supports of the divergent modes

of the π-flux states possess all of the lattice symmetries. Thus, there is no reason

for any tetrahedron to prefer a particular polarization axis. We would expect any

gauge dependent terms in an effective Hamiltonian to not be as local as those in,

say, Eq. (6.48).

In Fig. 6.9, we zoom in on the gauge dependent anharmonic energy, by showing

the difference ∆Equart ≡ Equart − Equart, where Equart is calculated for 12 π-flux

states, and Equart is the mean quartic energy of the states shown in the plot.
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Figure 6.9: Energy difference between Equart of 12 harmonic ground states and the

average of their energies Equart.
By taking differences between energies, we eliminate the (dominant) gauge-
invariant term in the anharmonic energy. Each dashed line shows a linear fit
in ln S, for one of the states.. Note that there are several overlapping symbols
along the bottom line, representing the degenerate states described later in the
text (those with the maximum possible value of P6 = Ns/3).

In order to systematically search for a ground state configuration, we have con-

structed a large number of harmonic ground states using an algorithm for randomly
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generating gaugelike transformations [7]. Within unit cells that we used, of up to

192 sites, we believe that the algorithm performs an exhaustive search for harmonic

ground states. We observe that each of these energies can be extremely well fitted

by a quadratic in ln S. This is consistent with the view that the decoupled quartic

energy in Eq. (6.9) is a sum over products ΓijΓji, with Γij linear in ln S.

In Fig. 6.10 we show Equart for 50 of the harmonic order ground states at

S = 100. There are two sources of error in this calculation: The first is the

minimization error, represented by the error bars, which is due to the difference

in energy between consecutive value of ε that we calculated, i.e. due to the “grid”

in ε-space. The second source of error is the grid used in integrating over the

Brillouin zone, which is equivalent to a finite (albeit large) system size. This error

becomes more significant for large values of S (i.e., smaller values of ε), where the

singularity of the divergence lines becomes narrower. The results shown are for

153 points in the Brillouin zone, for two different magnetic unit cells: a cubic 128

site unit cell, and a 96 site tetragonal unit cell.

Also shown in the figure is a numerical fit to an effective Hamiltonian of the

form

∆Eeff
quart = C6(S)P6 + C8(S)P8 + C10(S)P10 , (6.53)

where Pl is equal to the number of loops of length l composed solely of satisfied

AFM bonds and, for S = 100 we obtain

C6/Ns = −0.0621 ,

C8/Ns = −0.0223 ,

C10/Ns = −0.0046 . (6.54)

We ignore any constant terms here, as they belong in the gauge-invariant Hamil-
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Figure 6.10: Equart for 12 π-flux states at S = 100.
Also shown is a numerical fit given by Eq. (6.53). The inset shows the energy as
a function of P6.

tonian (6.51).

While we cannot numerically repeat this calculation over a large range of values

of S, in order to find the functional dependence Cl(S) with good accuracy, we can

obtain a rough fit by considering the small group of states depicted in Fig. 6.9.

For these 12 states we obtain

C6(S)/Ns ≈ 0.05− 0.03 ln S ,

C8(S)/Ns ≈ 0.04− 0.02 ln S ,

C10(S)/Ns ≈ 0.01− 0.005 ln S . (6.55)

We remark that we could write the first term of the effective Hamiltonian (6.53)

in terms of simple Ising products, using the sum rule (valid for all π-flux states)

16P6 + S3,2 + S2,2 = 4 , (6.56)

where S2,2 is a sum over Ising products ηiηj for all next-nearest-neighbors (i, j),
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such that the distance between i and j is twice the distance between nearest

neighbors in the lattice. S3,2 is a sum over next-next-nearest neighbors at the

same distance.

Although it is hard to say, with no analytical understanding, which parameter-

ization of the effective Hamiltonian is more “fundamental”, the form of Eq. (6.53)

is appealing, since it depends solely on loop variables. As we have seen in the

harmonic theory of Ch. 4, and shall see later in the large-N theory of Ch. 7, it is

natural that any non-trivial energy differences among states should be represented

in loop variables, since the local environments that all spins see are the same.

Although it is a rough fit, with significant error, it is clear (see the inset in

Fig. 6.10) that for a large number of states, the leading order contribution to the

energy is captured in Eq. (6.53). In particular, the highest energy states are those

with P6 = Ns/6, which can be shown to be the smallest value that P6 can take (for

π-flux states), and the lowest energy states have P6 = Ns/3 which is the highest

possible value of P6 (see Appendix F for proof of the bounds on P6).

The value P6 = Ns/3 is shared by a set of states that are, within the numerical

accuracy that we can obtain, degenerate for all values of S. The smallest of these

states has a unit cell of 48 spins, and they can be constructed by layering two-

dimensional slabs (see Fig. 6.11), where each slab can independently be in any of

four orientations. The number of these stacked states is 9 × 23L/2 where L is the

linear dimension measured in units of the underlying cubic lattice. In fact, these

states share the same values of Pl for all loop lengths that we calculated (l ≤ 16).

If we believe that the effective Hamiltonian of form (6.53) is valid, it is thus not

surprising we cannot distinguish between the energies of these states.
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Figure 6.11: {001} projection of the one of the degenerate anharmonic ground

state we obtained.
The thick bonds are FM, of which the dark bonds connect two ↑ spins and the
light thick bonds connect two ↓ spins. Dashed lines represent bonds that connect
between different {001} slices. The magnetic unit cell of this state has 96 spins,
and is repeated every two {001} slices. Therefore, in this projection, there may
appear to be more than two thick bonds per tetrahedron. Other degenerate states
possessing P6 = Ns/3 can be constructed by independently performing a 180◦

rotation about the x axis and/or translating in the {011} direction the bond order
of each of the {100} slabs (four configurations for each slab).
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6.4 Discussion

We have calculated the anharmonic corrections to the spin-wave energy in the py-

rochlore, and found that they break the degeneracy between the various harmonic

ground states. We managed to numerically construct an effective Hamiltonian,

but we do not have an analytic understanding of its origin, nor does it completely

break the degeneracy.

In retrospect, we should not be surprised that the effective Hamiltonian is

written in terms of loop variables. After all, in any collinear configuration, the

local environment that each spin sees is the same for all sites. If the centers of the

simplexes were put on a Bethe lattice rather than a diamond lattice, all collinear

configurations would be related by lattice symmetries and would therefore have the

same energy (as we find explicitly in Ch. 4 and later in Ch. 7, and in analogy to

Ref. [12]). Thus any degeneracy-breaking terms must arise from lattice loops, and

it is plausible that the effective Hamiltonian could be written explicitly in terms

of loops.

Our numerics result in an O(L) entropy of degenerate ground states. It is worth

noting that the anharmonic selection effects in the pyrochlore turn out to be much

weaker than in other closely related lattices: the two-dimensional checkerboard

and kagomé lattices.

In the checkerboard lattice, which we discussed in Sec. 6.2, many of the details

are the same as in the pyrochlore: it is composed of corner sharing tetrahedra, the

spin-wave Hamiltonian is the same, and the harmonic ground states are collinear

states with uniform fluxes. Nevertheless, because of the anisotropy inherent to

the two-dimensional checkerboard, the anharmonic energy breaks the harmonic

degeneracy at the lowest order terms, of order (ln S)2.
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In the kagomé lattice, the anharmonic selection is even stronger: first, there

are cubic (in spin σx/y) anharmonic spin-waves terms. In addition, because of

the anisotropy between in-plane and out-of-plane fluctuations about the coplanar

states, all harmonic zero modes possess divergent fluctuations and therefore the

anharmonic energy scales as a power law in S [2, 3, 4].

What are we to make of the anharmonic degeneracy? It could be an exact

degeneracy that is related to some hidden symmetry that we have yet to discover

or it could be a near degeneracy that would be resolved by adding more and more

terms to the effective Hamiltonian. A third option is that the degeneracy is a by-

product of our variational approach. Perhaps a more sophisticated self-consistent

theory could clearly distinguish between the set of “degenerate” states.
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Chapter 7

Large-N mean-field theory
In this chapter, we study the large-N Sp(N) mean field theory [1, 2], in the semi-

classical limit. This approach has been very successful in other lattices, e.g., the

kagomé antiferromagnet.[3] Until now, this approach was generally used only on

ordering patterns of high symmetry and small magnetic cells, or by enumerating

all saddle-points in a small finite system [3, 4].

Here we develop an effective Hamiltonian approach to this question. Most of

the work here has been previously published in Ref. [5]. We first write the mean-

field energy, in the limit of N →∞, in terms of valence bond variables, and then

expand it in powers of 1/κ, keeping only the harmonic order O(κ) terms.

The effective Hamiltonian is constructed as an analytical real-space expansion

of loops made of valence bonds. This allows us to systematically search for a

collinear pyrochlore ground state, using Monte Carlo annealing, on quite large

system sizes. However, we also find that the pyrochlore ground state does not

agree with even the lowest-order term in the spin-wave expansion, and therefore

cannot give the right answer for the physical (N = 1) ground state, in the large-S

limit, demonstrating a limitation of the large-N approach for this case.

7.1 Large-N formalism

We begin by discussing the mean-field Hamiltonian derived from the Sp(N) gen-

eralization of H. For the (SU(2)) N = 1 case we transform to Schwinger boson

operators

Sz
i =

1

2
(b†i↑bi↑ − b†i↓bi↓) , S+

i = b†i↑bi↓ , S−i = b†i↓bi↑ , (7.1)

107



108

with the spin size fixed at each site by the constraint

b†i↑bi↑ + b†i↓bi↓ = 2S . (7.2)

The boson operators obey the standard boson commutation relations. It is conve-

nient to rewrite the interaction in terms of valence bonds created by the operator

A†
ij ≡ b†i↑b

†
j↓ − b†i↓b

†
j↑ . (7.3)

Thus, the Hamiltonian (1.1) can be written

H =
∑
ij

(
−1

2
A†

ijAij +
1

4
S2

)
. (7.4)

An arbitrary singlet state can be written in terms of some arrangement of these

bonds with at most 2S bonds emanating from any lattice site.

The large-N Hamiltonian is obtained by generalizing the bond operators Aij

in the Hamiltonian (7.4) to N flavors

Aij =
∑
m

(
b†i↑,mb†j↓,m − b†i↓,mb†j↑,m

)
, (7.5)

where the flavor index m = 1, 2..., N . Thus we put a large number of bonds on

a link. Since the Hamiltonian acting on a state changes at most two bonds per

link, the relative change in the number of bonds goes like 1/NS. In the limit of

N → ∞ limit which we consider, the effect of fluctuations is reduced, and we

obtain a mean-field theory.

Upon Hubbard-Stratonovich decoupling of (7.4), we obtain the mean-field Hamil-

tonian

HMF =
1

2

∑

〈ij〉

[
N |Qij|2 +

(
A†

ijQij + H.c.
)]

+
∑

i

λi

(
b†iσ,mbiσ,m −Nκ

)
(7.6)

Here the bond variables Qij satisfy

Qij =
1

N
〈Aij〉 . (7.7)
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The Lagrange multipliers λi have been introduced to enforce the constraint on

boson number Nκ at every site i, defining the generalized spin length

κ = 2S . (7.8)

The Hamiltonian (7.6) can be written in matrix form

HMF =
1

2

∑

〈ij〉
N |Qij|2 −Nκ

∑
i

λi (7.9a)

+
∑
m

(b†↑,m,b↓,m)




Λ Q

Q† Λ







b↑,m

b†↓,m


−N

∑
i

λi , (7.9b)

where Q is the (antihermitian) Ns × Ns matrix whose elements are JijQij, bσ,m

is the vector whose Ns elements are {biσ,m}, and Λ is the diagonal matrix with

elements δijλi. We are interested in large enough values of κ to condense a fla-

vor mode of the itinerant bosons, 〈biσ,m〉 =
√

Nδ1,mxiσ. This is equivalent to an

assumption of long-range order, breaking the Sp(N) symmetry. The mean-field

ground state energy (per flavor) is obtained by diagonalizing (7.9b) by a canonical

Bogoliubov transformation:

EMF

N
=

1

2

∑

〈ij〉

[|Qij|2 + (xi↑xj↓ − xi↓xj↑) Q∗
ij + c.c.

]

+
∑

i

λi

(
x∗i↑xi↑ + x∗i↓xi↓ − κ

)
(7.10a)

+ Tr

(√
Λ2 −Q†Q−Λ

)
, (7.10b)

Here (7.10b) is the zero-point energy contribution of the bosons. The exact mean-

field ground state is obtained by a constrained minimization of the above expres-

sion. It can be systematically approached as an expansion in powers of 1/κ. The

leading contribution to the energy (of order κ2) is Eq. (7.10a), whose minimization

simply relates the valence bonds to the condensate configuration in the classical
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ground states of the Heisenberg Hamiltonian H with spin size κ/2. We will de-

note this configuration of bond variables with a superscript c: {Qc
ij}, satisfying

Qc
ij = xi↑xj↓ + xi↓xj↑. The quantum correction (of order κ) is provided by terms

in (7.10b) for these bond configurations.

In the most general case, where the spin at site i is characterized by classical

spherical angle (θi, φi), the condensed boson component can be written

xi↑ =
√

κei(Φi+φi/2) cos θi/2 , xi↓ =
√

κei(Φi−φi/2) sin θi/2 , (7.11)

where Φi is an arbitrary U(1) gauge field. Therefore, at the saddle-point

Qc
ij = −xi↑xj↓ + xi↓xj↑

= κei(Φi+Φj)

(
cos

φi − φj

2
sin

θi − θj

2
− i sin

φi − φj

2
sin

θi + θj

2

)
.(7.12)

Also, at the saddle point, λi = λc = 4κ for all pyrochlore lattice classical ground

states. Note that for these Qc
ij the classical contribution to the energy (7.9a) is,

for all classical ground state configurations, Ecl = −Nsκ
2/4, in agreement with

Eq. (2.6) [using Eq. (7.8)].

On general grounds we expect, as for the spin-waves in Sec. 4.4, that quantum

corrections would select collinear ground states from the classical ground state

manifold [6, 7]. We therefore restrict our attention to such states, in which each

spin can be denoted by an Ising variable ηi ∈ {±1}. Once we find an effective

Hamiltonian in terms of loop variables, we shall see, in Sec. 7.4, that the same

effective Hamiltonian also applies for non-collinear spins, with a generalization of

the variables. This will allow us to compare the energies of any set of classi-

cal ground states, collinear or non-collinear. Collinearity implies that, up to an

arbitrary gauge choice of {Φi}

Qc
ij = κ(ηi − ηj)/2 , (7.13)
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and thus the bond variables are ±κ for every satisfied, AFM bond, and zero oth-

erwise.

7.2 Loop expansion and effective Hamiltonian

Next, we recast the first quantum correction to the mean field energy, Eq. (7.10b),

for a given classical ground state, into an effective Hamiltonian form where only

some of the degrees of freedom remain [8]. Eq. (7.10b) can formally be Taylor-

expanded

Eq

N
= −

∞∑
m=1

(2m + 1)!!

2mλ2m−1m!
Tr

[(
Q†Q

)m]
(7.14)

7.2.1 Expansion for collinear classical states

In the case of collinear classical ground states, from Eq. (7.13), |Qij/κ| = 1 for

AFM bonds, and zero otherwise, Tr
[
(Q†Q/κ2)m

]
is equal to the number of closed

paths of length 2m, composed of AFM bonds. All terms in Eq. (7.14) depend

solely on the structure of the network formed by AFM bonds. Since the Ising

variables ηi alternate along paths in this network, each nonzero element of Q†Q

is κ2. Note that, whereas the phase of Qij (and (Q†Q)ij) depends on the gauge

choice in (7.11), all terms appearing in Eq. (7.14) are gauge-invariant.

In any collinear classical ground state, each tetrahedron (with two up spins

and two down spins) has four AFM bonds forming a closed loop (see Figs. 7.1a-d).

This means that locally, in the AFM network, each site has coordination 4 and

belongs to two loops of length 4. Thus many closed paths only contribute state-

independent terms to Eq. (7.14). For example, TrQ†Q = 4Nsκ
2, for any classical

ground state since the only paths of length 2 involve going to and fro on the same

bond, and each site has four neighbors which have the opposite spin (see Fig. 7.1a).
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Similarly Tr(Q†Q)2 = (16 + 12 + 4)Nsκ
4, where the three terms correspond to the

paths shown in Figs. 7.1b, 7.1c, 7.1d, respectively. All paths that do not involve

loops, (e.g. those in Figs. 7.1a, 7.1b, 7.1c) can be viewed, similarly to the spin-wave

case of Sec. 4.1, as paths on a Bethe lattice of coordination 4, and would contribute

a constant term to the energy for all collinear classical ground states. The same is

true for paths involving any combination of trivial loops and Bethe lattice paths,

as in Fig. 7.1d. Here, a “trivial” loop is the loop of length 4 that exists within any

tetrahedron.

An important remark is that in this chapter, the meaning of the term “loop”

is different than in the spin-wave theory of Chs. 2-6. In the spin-wave discussion,

we limited the term to mean “diamond lattice loop”. Here, on the other hand, all

pyrochlore closed paths are considered “loops”.

The lattice that includes trivial loops, and no other loops, can be mapped one-

to-one to a decorated Bethe lattice (sometimes called a Husimi cactus), composed

of corner-sharing squares whose centers lie on the sites of a z = 4 Bethe lattice

(see Fig. 7.2) . The lowest order terms in expansion (7.14) that contribute a state-

dependant term in the effective Hamiltonian are for 2m = 6, since the shortest

non-trivial loops are hexagons.

This leads us to parameterize the effective Hamiltonian in terms of the various

non-trivial AFM loops.

Eeff
q

N(κ/2)
= K0 +K6P̃6 +K8P̃8 +K10P̃10 + · · · , (7.15)

where {K2l} are numerical coefficients, and P̃2l is the number of non-trivial AFM

loops of length 2l, per site. Note that P̃2l is not equal to P2l in Ch. 6. This is

because the term “loop” used here is more general than in the spin-wave theory,

as mentioned before.
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Figure 7.1: Real-space paths counted in calculation.
(a)-(d) Schematic diagram of terms contributing to the constant term in the ef-
fective energy, due to TrQ2 (a), and TrQ4 (b,c,d). These are {001} projections,
where the crossed squares are projected tetrahedra, and AFM bonds are shown in
dark. All paths that do not contain loops, e.g. (a,b,c), can be viewed as paths on
a coordination 4 Bethe lattice. (e)-(f): Examples of the two types of paths that
we need to count, in order to calculate the effective Hamiltonian coefficients, as
shown on a {001} slice of the pyrochlore lattice. The dashed lines represent bonds
that connect to adjacent slices. (e) A decorated Bethe lattice path of length 14
contributing to F (14) and (f) A path of length 22 containing a loop of length 8,
contributing to G(8, 14).

Figure 7.2: Decorated Bethe lattice (Husimi cactus).
The figure shows the topology of 5 “generations” of the lattice. Note that all of
the squares are equivalent.
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To evaluate the coefficients {K2l}, we need to calculate two types of terms: (i)

The number F (2m) of closed paths of total length 2m on the decorated Bethe

lattice (Fig. 7.1e). (ii) The number G(2l, 2m) of closed paths of length 2(m +

l), involving a particular loop of length 2l with decorated Bethe lattice paths

emanating from each site along the loop (Fig. 7.1f). [We use these notations in

the interest of consistency with Ref. [5], even though F (2m) and G(2l, 2m) are

analogous to fm and f l
m+l of Sec. 4.1.1, respectively.] Calculating these terms is a

matter of tedious but tractable combinatorics similar in spirit to the calculations

in the spin-wave loop expansion of Sec. 4.1.1 and App. A.

We find, numerically, that the functions F (2m), G(2l, 2m) decay exponentially

with m, allowing us to sum them in order to evaluate the coefficients to any

accuracy in Eq. (7.15), using

K0 =
∞∑

m=0

F (2m) , K2l =
∞∑

m=0

G(2l, 2m) . (7.16)

We show the first five coefficients in Tab. 7.1. Thus we have obtained an effective

Hamiltonian that is parameterized solely by the number of AFM loops of various

sizes. Note that the coefficients decay rapidly K2l+2/K2l ≈ 1/10, which leads us to

expect short loops to be the dominant terms in the expansion. This allows us, in

principle, to calculate the energy, to any accuracy, for any member of an infinite

ensemble of classical ground states. This represents a significant improvement over

previous calculations that were always limited to small system sizes [3, 4].

7.2.2 Comparison to spin-wave loop expansion

We should note here that despite the similarities between the calculation here and

the derivation of the spin-wave effective Hamiltonian in Sec. 4.1, there are some
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Table 7.1: Coefficient values for Eq. (7.15).
The values were obtained analytically, and by an independent numerical fit to the
energies in Fig. 7.3.

coefficient analytical numerically fitted
K0 −0.59684 −0.59687
K6 −3.482×10−3 −3.522×10−3

K8 −3.44×10−4 −3.76×10−4

K10 −3.59×10−5 −4.5×10−5

K12 −3.8×10−6 −5.5×10−6

subtle differences: (i) The coordination-4 lattice Bethe lattice considered in the

spin-wave calculation was a mapping from the diamond lattice formed by centers

of pyrochlore tetrahedra. Here, the sites on the decorated Bethe lattice (Husimi

cactus) correspond to pyrochlore lattice sites and the bonds on the decorated Bethe

lattice correspond to AFM pyrochlore bonds. (ii) In the spin-wave calculation,

there are no trivial loops, as the starting point is the diamond lattice. Conversely,

here the trivial loops do contribute to the zero-point energy, and therefore we

decorate the Bethe lattice with such loops. (iii) In the spin-wave calculation of

Sec. 4.1, each bond contributes µαβ = ±1 to the product around loops. These

products differ between various classical configurations. On the other hand, in the

large-N calculation all bonds have identical contributions to the products, but the

number of loops of various lengths is different for different spin classical ground

states. This is because the connectivity of the lattice depends on the arrangement

of AFM bonds, which depends on the configuration.
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7.3 Numerical results

To verify the validity of the effective Hamiltonian (7.15), we calculated the energy

for a large number of collinear classical ground states, as well as some harmonic

spin-wave ground states, obtained by the same random flipping algorithm used

to find states in Sec. 4.2, described in Appendix. C.1. We find that the energies

are remarkably well described by Eeff
q , even when we cut the expansion (7.15) off

at 2l = 8, as shown in Fig. 7.3. We used the coefficient values of Tab. 7.1, but

had to adjust the constant term K0 separately for each choice of cutoff, in order

to get a good fit 1. In practice, this means that the effective Hamiltonian (7.15)

is extremely useful for comparing energies of various states, even with a small

cutoff, but requires many terms in order to accurately determine the energy. An

independent 5-parameter numerical fit, to Eq. (7.15), up to 2l = 12, gives the

values shown in the right-hand column of Tab. 7.1.

Now that we have an approximate formula for Eq, for any collinear classical

ground state, we can systematically search these states, with large magnetic unit

cells, to find a ground state. We conducted Monte Carlo simulations using a

Metropolis loop flipping algorithm and the effective energy of Eq. (7.15), for vari-

ous orthorhombic unit cells of sizes ranging from 128 to 3456 sites, with periodic

boundary conditions. The Monte Carlo algorithm, described in Appendix C.3, was

adapted from the aforementioned loop-flipping algorithm.

We find a minimum energy of Eq/(Nκ/2) = −0.60077Ns for a family of nearly

degenerate states. They are composed of layers, that can each be in one of four

1We could get a cutoff-independent constant term K̃0 if we replaced P̃2l by
˜̃P2l = P̃2l − 〈P̃2l〉, where 〈P̃2l〉 is the ensemble average of P̃2l, and took K̃0 =
K0 +

∑K2l〈P̃2l〉.
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Figure 7.3: Energies Eq of 50 sample classical ground states.
16 of these are harmonic spin-wave ground states (squares), and the rest are shown
with circles. We also show the effective energy Eeff

q , with 2l ≤ 6 (dashed line) and
2l ≤ 8 (solid line). The constant term K0 was numerically fitted (see main text).
The inset shows the linear spin-wave energy for the same states. Although the
spin-wave energy tends to be lower for states with lower Eq, the large-N ground
state need not be a spin-wave ground state.
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Figure 7.4: The ground state of our large-N theory.
Here we show the state in a {001} projection. Light (dark) bonds represent AFM
(FM) bonds (unlike in Fig. 7.1). The shown pattern is repeated along x and y
directions, as well as in adjacent z slices. This state has a 48 site magnetic unit
cell.

arrangements, resulting in ∼ ecL states, where L is the system size, and c is a

constant. Each of these states has P̃6 = Ns/3, which is the maximum possible value

of P̃6 (see Appendix F; this value is not unique to these states), and P̃8 = 23Ns/6.

Upon closer investigation, however, we find that a unique ground state (depicted

in Fig. 7.4) is selected. The energy difference to nearby states is of order 10−7Ns,

corresponding to the 2l = 16 term.

7.4 Non-collinear spins

Although we derived the effective Hamiltonian for collinear states, it turns out

that, in fact, the classical tetrahedron zero sum rule implies that Eq. (7.15), with

the coefficients in Tab. 7.1, is valid for any non-collinear classical ground state, as
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well, with the generalized loop variables expressed as sums over non-trivial loops

P̃2l =
1

κ2l

∑

(i1...i2l)

Re(Q†
i1i2

Qi2i3 · · ·Q†
i2l−1i2l

Qi2li1) . (7.17)

Unlike the collinear case, where the elements of Q†Q could only take the values 0

or κ2, and thus each loop would contribute 0 or 1 to the sum (7.17), in the general

case, the matrix elements of Q†Q are complex.

This is quite a surprising result. Whereas we found the effective Hamiltonian

coefficient in the collinear case by simply counting closed paths, the general, non-

collinear case would be expected to be much harder to address because, many

more paths contribute to the energy, and each of the paths carries a different

weight. Nevertheless, the tetrahedron sum rules turns out to imply that the sum

Tr
[
(Q†Q)m

]
, due to paths on a decorated Bethe lattice, gives the same results for

all classical ground states. Thus, all of the decorated Bethe lattice calculations

that went into the the values of {K2l}, in Sec. 7.2, are perfectly valid for the

non-collinear case as well.

In the general non-collinear case, the loop variables can be written, using (7.17)

and (7.12)

P̃2l =

(
−1

2

)l ∑

(i1...i2l)

{ 2l∏
n=1

(1−n̂in ·n̂in+1)
1/2 cos [ϕi1i2 − ϕi2i3 + · · · − ϕi2li1 ]

}
. (7.18)

Here n̂i is he classical direction of spin i and ϕij is the complex argument of Qij

[see Eq. (7.12)].

While our systematic search for a ground state, in Sec. 7.3, was done only among

collinear states, we also calculated the energy for several q = 0 non-collinear

classical ground states (i.e. states with a 4-site magnetic unit cell). We find

numerically that the energy Eq for such states is always larger than for any of the

collinear states.
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The reason for this can easily be seen by considering Eq. (7.18) for hexagons in

a q = 0 state. For any such hexagon ϕi1i2 = ϕi4i5 , ϕi2i3 = ϕi5i6 , and ϕi3i4 = ϕi6i1 .

Thus the phases of the various bonds cancel out, resulting in P̃6 ≤ 0 [9]. In the

first order of the effective Hamiltonian (7.15), q = 0 non-collinear states are worse

than any collinear state.

This, of course, does not strictly rule out the possibility that a non-collinear

state with a larger magnetic unit cell would have lower energy than the collinear

states. Unlike the spin-wave case, though, here the effective Hamiltonian (7.15)

provides a simple formula to calculate Eq for any candidate non-collinear state,

and compare to the collinear ground state.

7.5 Validity of results

As we have seen in Chap. 4, the degeneracy of ground states of the spin-wave

quantum Hamiltonian, at the lowest order in 1/S, is associated with a gaugelike

symmetry. This symmetry characterizes the degenerate sub-manifold of collinear

spin ground states by the condition (4.12). Since the spin-wave theory is exact

in the limit of infinite S, the physical ground state must satisfy Eq. (4.12). The

state depicted in Fig. 7.4, however, does not. Looking at the inset in Fig. 7.3, we

find that states with negative hexagon products tend to have lower large-N energy

than other states, since they tend to have more AFM loops, but this is not a strict

rule. Thus it would seem that the N → ∞, large-κ ground state cannot be the

physical (N = 1) large-S ground state.

Nevertheless, if we restrict the large-N calculation to harmonic spin-wave ground

states only, we find that the ordering of energies for various states is similar to an-

harmonic spin-wave results of Ch. 6, and does predict the same ground state. As
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Figure 7.5: Comparison of large-N energies Eq and quartic spin-wave energies.
Per-site Eq calculated for various harmonic spin-wave ground states (bottom), com-
pared to the per-site spin-wave energy obtained from an anharmonic calculation
for S = 1500 (top). In both cases the lowest energy is for a state that maximizes
the number of AFM hexagons.

shown in Fig. 7.5, in both cases, the lowest energy among harmonic spin-wave

ground state belongs to a state with the most AFM hexagons 2

The similarities between the large-N theory and the anharmonic spin-wave

theory are most vividly seen by comparing the functional forms of the effective

Hamiltonians (7.15) and (6.53). Both Hamiltonians favor an abundance of AFM

loops of all lengths. The main difference, other than coefficient values, is that the

spin-wave loop terms P2l and the large-N loop terms P̃2l are defined on different

lattices: the diamond-lattice and the pyrochlore, respectively. Nevertheless, the

2At first glance, it may seem strange that the energy Eq/N that we calculate
in the mean-field theory, is lower than the spin-wave energy, which is, in the
limit of large S, exact. Usually, mean-field theories are equivalent to variational
Hamiltonians, which always produce an upper bound to the exact energy. However,
the large-N mean-field theory is not variational and therefore it can have lower
energy than the exact energy[10].
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leading order contribution is from hexagons, for which P6 = P̃6. This is because all

of the (non-trivial) loops of length 6 in the pyrochlore lattice are diamond lattice

hexagons.

7.6 Alternative large-N theory

In the previous sections, we developed a large-N mean field theory, which, for

collinear spins, has non-zero coupling only along AFM bonds. It would seem that

a natural way to generalize the large-N Hamiltonian (7.6) would be to use not only

the AFM bond operators Aij, but also FM bond operators [11, 12]. One might

think a theory that includes all of the lattice bonds would capture the physics

better than one that takes advantage of only a subset of the bonds. We shall see,

in the following, that this is not so.

7.6.1 Large-N theory with both AFM and FM bonds

To put the FM bonds back into the theory, we define

Bij ≡ b†i↑bj↑ + b†i↓bj↓ . (7.19)

The Heisenberg Hamiltonian (1.1) can be rewritten

H =
1

4

∑
ij

(
: B†

ijBij : −A†
ijAij

)
, (7.20)

where : · · · : denotes normal ordering. Note that obtaining Eq. (7.20), unlike

Eq. (7.4), does not require invoking the constraint (7.2). Straightforwardly gener-

alizing Bij to N flavors, as we did for Aij in (7.5), and defining

Rij =
1

N
〈Bij〉 , (7.21)
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the mean-field Hamiltonian (7.9) now becomes [13]

HMF =
1

4

∑

〈ij〉
N(|Qij|2 + |Rij|2)− 1

2
Nκ

∑
i

λi (7.22a)

+
1

2

∑
m

(b†↑,m,b↓,m)




Λ + R Q

Q† Λ + R†







b↑,m

b†↓,m


− 1

2
N

∑
i

λ , (7.22b)

where R is the matrix of Hubbard-Stratonovich fields that result from the terms

in the Hamiltonian involving Bij. Note that (7.22) possesses neither Sp(N) nor

SU(N) invariance.

Repeating the same reasoning as in Sec. 7.1, we assume that one of the flavors

of the bosons condenses, as in Eq. (7.11), and find classical configurations Qc
ij,

Rc
ij, λc. The AFM bond variables Qc

ij of (7.12) remain as before. The FM bond

variables are easily found to be

Rc
ij = x∗i↑xj↑ + x∗i↓xj↓

= κei(Φj−Φi)

(
cos

φi − φj

2
cos

θi − θj

2
− i sin

φi − φj

2
cos

θi + θj

2

)
.(7.23)

In this case, we find that for all classical ground states λc = 2κ.

Limiting ourselves to collinear classical ordering, as in Sec. 7.1, we find that,

in the same Φi = 0 gauge that we used before

Rc
ij = κ(1 + ηiηj)/2 . (7.24)

Thus Rc
ij = 1 for FM bonds and zero otherwise. We can diagonalize block diago-

nalize the matrix in (7.22b), using the unitary transformation matrix

U =
1√
2




η 1

1 −η


 (7.25)
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And the mean-field Hamiltonian (7.22) becomes

HMF = Ecl +
∑
m


Ψ†

m




H 0

0 H


Ψm − Tr H̃


 (7.26)

where

Ψm =

√
κ

2
U




b↑,m

b†↓,m


 , (7.27)

and

H =
1

2κ
(λ1 + R + ηQ) =

1

2
W†W , (7.28)

just like in the harmonic spin-wave Hamiltonian of Eq. (2.16)! Here we used the

identities ηQη = −Q and η(λ1 + R)η = λ1 + R.

Clearly the zero point energy of this quantum Hamiltonian is equal to N times

the harmonic spin-wave zero-point energy, even though we arrived to it from a

Schwinger boson theory rather than Holstein-Primakoff bosons. Thus this theory

is of no use in breaking the spin-wave degeneracy. However, the “standard” theory

of Sec. 7.1 results in a lower energy (see, for example, Fig. 7.5), and thus is a better

choice for a large-N saddle point.

7.6.2 Conclusions

The insight that we get from this “experiment”, part of which was independently

observed by Ref. [9], is that the standard large-N Hamiltonian (7.9) can in fact be

obtained from the harmonic spin-wave Hamiltonian (2.9), by setting all of the FM

bond matrix couplings to zero. Thus, the large-N Hamiltonian acts on a lattice

where all of the frustrating (FM) bonds have been removed, thereby eliminating

the branches of zero modes and the harmonic spin-wave degeneracy.



125

While it is not guaranteed that this prescription would produce the correct

ground state (it certainly does not in our case), it breaks all degeneracies at the

first order in 1/κ, and seems to capture some of the physics involved in ground

state selection. On the other hand, when we try to restore the frustrating bonds

into the large-N Hamiltonian, we immediately fall back onto the same old Holstein-

Primakoff theory.

7.7 Checkerboard and kagomé lattices

The effective Hamiltonian approach that we have outlined in Sec. 7.2 can easily be

applied to other lattices. In the checkerboard lattice, the energy is lowest for states

that have the most AFM (square) non-trivial plaquettes. Thus, the non-degenerate

ground state is clearly the (π,π) state in which all plaquettes are AFM [4].

In the kagomé case, all classical ground states are non-collinear. However,

if we limit ourselves to coplanar arrangements, we find that Qij has the same

absolute value for all of the lattice bonds, but the signs differ depending on the

chirality of the triangle to which the bond (i, j) belongs. Therefore, the effective

Hamiltonian (7.15), with the generalized variables (7.17), prefers classical ground

states with negative product of triangle chiralities around all hexagons.

While there are many states for which the product of chiralities around all

hexagons are negative, there is only one state among these in which chirality

product along all loops of length 10 (the next shortest non-trivial length) is also

negative: the
√

3×√3 state. One can thus conclude that the ground state is the

√
3×√3 state, as large-N calculations have indeed found [3]. Let us also remark

that our method can be generalized to long-range Heisenberg interactions which

are relevant in the context of real materials like Tb2Ti2O7 [14, 15].
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7.8 Small-κ limit

A recent study of the disordered (small -κ) limit of the large-N approximation

suggests that this for the pyrochlore lattice also has a massive multiplicity of saddle-

points [16, 9]. In fact, the authors of these papers suggest that the various saddle-

points there is a one-to-one correspondence between the various saddle points and

the classical (i.e., large-κ) ground states. In particular, the small-κ saddle points

can be parameterized by two angles (θi,φi) at each site, so that the bond variables

satisfy Eq. (7.12), up to a change in the normalization κ →
√

κ(κ + 1). Assuming

a uniform saddle-point value λc for the field λi, the authors of [16] have been able

to write a mean-field energy for general κ

EMF = −N

2

{
Tr

[
(|Q|2/Λ2)(1− |Q|2/Λ2)−1/2

]}2

Tr
(|Q|2/Λ2

) , (7.29)

and expand it in powers of κ for several q = 0 ground states (i.e. states with a four-

site magnetic unit cell). Naturally, one would like to write an effective Hamiltonian

for this problem and use it to systematically search for a ground state.

Starting from the mean field energy (7.29), we were able to write a loop expan-

sion of the form (7.15) and calculate the values of the coefficients K2l, which are,

as in the large-κ case, all positive. Thus we were able to reproduce the energies

calculated in [16] for some simple (non-collinear) q = 0 states. Furthermore, we

can predict that the ground state of the mean-field Hamiltonian would posses the

same symmetries as the ground state of our large-κ theory (depicted in Fig. 7.4).

Unfortunately, the validity of our results in this case are questionable, because

we have been unable to justify the assumption of uniform λc for general ground

states. Note that this assumption is certainly reasonable for q = 0 states, studied

in [16], since in these states all sites are equivalent.



127

BIBLIOGRAPHY

[1] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).

[2] S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991).

[3] S. Sachdev, Phys. Rev. B 45, 12377 (1992).

[4] J.-S. Bernier, C.-H. Chung, Y. B. Kim, and S. Sachdev, Phys. Rev. B 69,
214427 (2004).

[5] U. Hizi, P. Sharma, and C. L. Henley, Phys. Rev. Lett. 95, 167203 (2005).

[6] E. F. Shender, Sov. Phys. JETP 56, 178 (1982).

[7] C. L. Henley, Phys. Rev. Lett. 62, 2056 (1989).

[8] C. L. Henley, Can. J. Phys. 79, 1307 (2001).

[9] O. Tchernyshyov, R. Moessner, and S. L. Sondhi (unpublished).

[10] A. Auerbach, in Interacting electrons and quantum magnetism (Springer-
Verlag, New York, 1994), Chap. 17.

[11] H. A. Ceccatto, C. J. Gazza, and A. E. Trumper, Phys. Rev. B 47, R12329
(1993).

[12] L. O. Manuel, A. E. Trumper, C. J. Gazza, and H. A. Ceccatto, Phys. Rev.
B 50, R1313 (1994).

[13] P. Sharma (unpublished).

[14] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).

[15] Frustrated spin Systems, edited by H. T. Diep (World Scientific, Singapore,
2005).

[16] O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Europhys. Lett. 73, 278
(2006).



Chapter 8

Conclusions
In this thesis, we have presented three different studies of the same problem: the

pyrochlore lattice Heisenberg antiferromagnet, in the large-S limit. In each case

our aim was to derive an effective Hamiltonian that allows us to systematically

search for a ground state.

First, we considered the linear spin-wave theory [1]. Our main findings were

the following:

1. The harmonic spin-wave Hamiltonian is exactly invariant under a gaugelike

transformation (Sec. 3.4; this was previously shown in Ref. [2]). In particular,

this implies that there is a family of exactly degenerate ground states of this

Hamiltonian.

2. We analytically derived an effective Hamiltonian in terms of Ising flux variables

(Sec. 4.1). We call the ground states of this effective Hamiltonian the π-flux states.

3. We numerically calculated the harmonic energy for a large set of collinear

configurations, and find that the energies agree well with the effective Hamiltonian

(Sec. 4.2).

4. We find an upper bound on the residual entropy. This bound scales with the

system length as L lnL (Sec. 4.3). A lower bound has been found in Ref. [2] to

scale as O(L).

It seems to be well-accepted that the spin-wave theory favors collinear states,

whenever they are allowed by the classical constraints [3, 4, 5]. We presented,

in Sec. 4.4 some circumstantial evidence to support this notion, finding that the

collinear states are local minima in the energy landscape. However, we have not
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been able to rigorously prove that there cannot be a non-collinear ground state.

We applied our harmonic spin-wave theory to several other models that can

support collinear states (Ch. 5), and in each case found the family of ground

states and the scaling of entropy with system size. Among these models are the

checkerboard lattice, the “capped kagomé” lattice and the M = 1 magnetization

plateau of the pyrochlore lattice. The latter has been a subject of several recent

studies [6, 7] that have given conflicting results.

The second theory that we presented is the anharmonic spin-wave theory of

the pyrochlore (Ch. 6, also in Ref. [8]). We develop a self-consistent theory for

the quartic order spin-waves, and calculate the energies for the various harmonic

ground states. We numerically derive an effective Hamiltonian in terms of a differ-

ent set loop variables, and find that there is a family of states that are numerically

degenerate to our numerical accuracy, resulting in a residual entropy of order O(L).

We have not been able to prove (or disprove) that the degeneracy among these

states is exact, nor have we been able to present an analytical derivation of the

anharmonic effective Hamiltonian. More work would be require to resolve these

issues.

The third theory that we presented was the large-N mean-field theory, in the

semiclassical limit (Ch. 7, also in Ref. [9]). Here, we derived an effective Hamil-

tonian analytically, and find that it agree well with the numerical calculation for

collinear states. While we focused here, once again, on collinear states, it turns

out that the large-N effective Hamiltonian is valid for non-collinear states as well,

with an appropriate generalization of the variables.

Using the effective Hamiltonian, we performed a Monte Carlo search for the

collinear large-N ground state. We find that the large-N ground state is not one



130

of the harmonic order spin-wave ground states, and therefore, in the S →∞ limit,

the large-N ground state is unphysical. To our knowledge this is the first direct

evidence to refute the validity of the widely used large-N theory.

There is an interesting common thread in all three theories that we developed:

The local environment at each site is the same among all collinear classical config-

urations. Therefore, all non-trivial selection effects must result from loops in the

lattice and thus the effective Hamiltonian, in any theory that possesses the full

lattice symmetry, is necessarily a function of loop variables.

What are the experimental implications of our findings? In a system with large

spin length S and a predominant Heisenberg interaction, we would expect collinear

states to be favored, and a π-flux state as a ground state. In all of the experimental

systems that we are aware of, these expectations, based on the harmonic theory, are

not fulfilled. For example, out of the most likely Heisenberg candidates, Tb2Ti2O7

seems to be paramagnetic at all observable temperatures [10, 11], Gd2Ti2O7 (where

dipole interactions play a role) there is a noncollinear ordered state [12], and the

spinel ZnCr2O4 undergoes a phase transition into a state of uncoupled fluctuating

clusters [13].

A more likely place to search for ordered collinear states in the pyrochlore, is in

the field-induced magnetization plateaus discussed in Ch. 5. Indeed, the spin-3/2

Cr ions in CdCr2O4 and HgCr2O4 seem, at an appropriate magnetic field, to form

a collinear spin arrangement [14, 6, 15]. However, to our knowledge there have

been no published reports on neutron scattering experiments on these material,

that might resolve the true spin configuration.
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Appendix A

calculating Bethe lattice coefficients
In this appendix, we give some of the details that go into the loop expansions

for the harmonic spin-waves of Sec. 4.1. In particular, Sec. A.1 corresponds to

Sec. 4.1.1 and Sec. A.2 corresponds to Sec. 4.1.3. An analogous loop expansion of

the large-N calculation is described in Ch. 7.

A.1 Bethe lattice paths

Consider a Bethe lattice of coordination z, and NB sites. We shall assume that

NB is infinite so that the translational symmetry of the lattice is conserved. Fur-

thermore, we shall ignore any boundary effects because, in the end, our aim is to

map every path on the Bethe lattice to paths on an infinite diamond lattice, where

boundary effects play no role. We would like to find the number of paths of length

k that start and end at a particular site. Since all sites are equivalent, the total

number of paths would just be NB times this quantity.

Define the following values:

• fk: The number of paths of length 2k starting and ending at a particular site

α.

• gk: Same as fk, but counting only paths that do not return to the origin

until the last step.

• f̃k: Same as fk, but the origin α only has z − 1 nearest neighbors.

• g̃k: Same as gk, but the origin α only has z − 1 nearest neighbors.
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The number fk can be calculated from {gi : i ≤ k}. E.g.

f3 = g3 + 2g1g2 + g3
1 . (A.1)

One way of calculating the coefficients of these expansions in by means of gener-

ating functions

G =
∑

k=1

gkx
k , F = 1 + G + G2 + · · · = 1

1− G , (A.2)

on the other hand

F =
∑

k

fkx
k , fk =

1

k!

∂kF
∂xk

∣∣∣∣
x=0

. (A.3)

f̃k can be calculated from {g̃i : i ≤ k} in an identical fashion.

G̃ =
∑

k=1

g̃kx
k , F̃ =

∑

k=1

f̃kx
k =

1

1− G̃ , (A.4)

The coefficients gk, g̃k, and f̃k satisfy the following relations:

f̃0 = 1 , (A.5)

gk = zf̃k−1 ⇒ G = zxF̃ , (A.6)

g̃k = (z − 1)f̃k−1 ⇒ G̃ = (z − 1)xF̃ . (A.7)

Using (A.4) and (A.7) we can solve for F̃ and obtain

F̃(t) =
1−√1− 2t

t
, (A.8)

where we defined a new variable t = 2x(z − 1). From (A.6) we obtain

G(t) =
z

2(z − 1)

(
1−√1− 2t

)
, (A.9)

from which we can derive gk

gk =
[2(z − 1)]k

k!

∂kG
∂tk

∣∣∣∣
x=0

=
(2k − 3)!!

k!
z[2(z − 1)]k−1 . (A.10)
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The quantity that we actually want to calculate is fk. Its generating function is

F(t) =
2(z − 1)

z[1 +
√

1− 2t]− 2
. (A.11)

While fk can be easily calculated from (A.10), by summing over products of gk as

in (A.1), it turns out that a close form expression for fk has been found previously

in Ref. [1]

fk =
k∑

r=0

[(
2k

r

)
−

(
2k

r − 1

)]
(z − 1)r . (A.12)

Once {fk} have been found, we calculate the Bethe lattice harmonic energy

by the expansion Eq. (4.4) (where the Bethe lattice takes the place of the NB-site

simplex lattice)

Eharm(Bethe) = S
√

A
∑
n=0

Cn

n∑

k=0

(−4)n−k

Ak




n

k


 fkNB − SNs , (A.13)

or similarly for a non-zero magnetization plateau using the expansion Eq. (5.6).

Eharm(Bethe) is our approximation for the constant term E0 in the energy.

A.2 Calculating loop coefficients

Here we provide the details of our calculation the coefficient K2l in the effective

Hamiltonian (4.6). Consider the terms in the expansion (4.4) that involve loops

of length 2l and no other loops. In the Bethe lattice approximation, we assume

that all of the paths involving a loop, can be viewed as decorated loops, i.e., a

loop with self-retracing paths (each equivalent to a Bethe lattice path) emanating

from each site. This means that within our approximation, all loops of length 2l

are equivalent, and therefore, for any k, Tr µ2k in the expansion is equal to the

flux variable Φ2l multiplied by f l
k, the number of decorated paths of length 2k
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Figure A.1: Diagrammatic representation of the terms in fk and f̃k.
The difference between the two terms is that whereas fk is computed on a coordi-
nation z Bethe lattice, in f̃k the origin has only z− 1 neighbors, and all other sites
have z neighbors.

involving a particular loop of length 2l. The effective Hamiltonian (4.6) coefficient

can therefore be written

K2l = S
√

A
∑
n=0

Cn

n∑

k=0

(−4)n−k

Ak




n

k


 f l

k . (A.14)

In the case of a large magnetic field of Sec. 5.1, Eq. (A.14) would be replaced by

the appropriate expression from the expansion (5.6):

K2l(M) = S
√

A

∞∑
n=0

Cn

An

n∑

k=0

n−k∑
j=0




n

k j


× (M2 − 4A)n−k−j(−2M)jf l

k . (A.15)

We want to count the number of paths of length 2k involving a particular simple

loop of length 2l, and no other loops, such that each site along the loop may be an

origin of a self-retracing path (diagrammatically shown in Fig, A.2). As explained

in Sec. 4.1.3, in order to avoid double counting, we must consider trees whose
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Figure A.2: Diagrammatic representation of the paths included in K6.
Each node along the loop is “dressed” by a Bethe lattice factor, f̃k, as shown in
Fig. A.1.

origin has only z − 1 nearest neighbors. Fortunately, we have already calculated

such terms in Sec. A.1, i.e. the terms f̃i.

All we have to do is to find all of the ways of distributing k − l steps that are

not part of the loop, among 2l sites, and take the product of f̃ for each of those.

In more concrete terms, for a given k, the number of possible paths involving a

particular loop of length 2l is

f l
k ≡ 4k(k − l)!

2l∑
n=1




2l

n




∑
P

ij=k−l

f̃i1

i1!

f̃i2

i2!
· · · f̃in

in!
. (A.16)

Here, the factorial factors count the ways of of distributing k−l steps into n Bethe-

lattice paths. We have multiplied the sum by 4k because we can start anywhere

along the path and go in any of two directions. Plugging the results into Eq. (A.14)

(or (A.15)), we obtain the effective Hamiltonian coefficients.
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Appendix B

Bond-order calculations

B.1 Collinear spins

The size of a unit-cell used in diagonalization can often be reduced by utilizing the

bond order. Consider, for example the (π-flux) state shown in Fig. B.1. This state

has a tetragonal magnetic unit cell of 32 spins, denoted by the large dashed square.

However, it is apparent that the bond order has a smaller, cubic, unit cell of 16

spins. It would certainly be desirable to take advantage of the higher symmetry

and smaller unit cell of the bond order. However, in the collinear spin-wave theory

that we outlined in Ch. 2, the particular classical spin configuration comes into

play via the spin directions ηi. Here we demonstrate how the diagonalization, to

find the frequencies {ωm} and the fluctuations {Gij}, could be done differently

utilizing the bond order.

We would like to change the formalism so that {ηi} variables would only appear

in bond pairs ηij ≡ ηiηj. To do so, we go back to the spin deviation operators σx̃

and σỹ defined in Eq. (2.7). In the case of collinear spins, the Hamiltonian (2.9)

is block diagonal,

Hharm = ~σ†




Hx̃ 0

0 Hỹ


 ~σ − S

2
Tr (Hx̃ + Hỹ) , (B.1)

where Hx̃ ≡ ηHη, and Hỹ ≡ H, with H defined in (2.16). Notice that, with the

commutation relations (2.8), the spin configuration enters the Hamiltonian only

through Hx̃, whose elements are

Hx̃
ij = ηijHij . (B.2)
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Figure B.1: Bond order unit cell.
Example of reduction of the magnetic unit cell size, by exploiting the bond order.
The 32 spin site-order unit cell and the 16 spin bond-order unit cell are shown
by the thick dashed lines. We show a {001} slice of the pyrochlore, with dashed
bonds connecting to adjacent slices. FM (AFM) bonds are denoted by dark (light)
colored lines. In this state, adjacent slice have the same ordering, so that the FM
lines spiral in the {001} direction.
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Thus, the problem is manifestly defined in terms of bond variables. To diagonalize

it, we can repeat the procedure outlined in Ch. 2, taking care not to decompose

the bond variable ηij = ηiηj.

To find the spin-wave modes ṽm and their frequencies, we find the eigenmodes

of the matrix HỹHxx. The corresponding eigenvalues are λ2
m. The orthogonality

relation that these modes satisfy [analogous to Eq. (2.20)] is

(ṽm,Hx̃ṽn) =
1

λm

ṽ†mHṽn = c̃mδm,n . (B.3)

Note with these definitions, even if the site order unit cell is the same as the bond

order unit cell, ṽm and c̃m are different from vm and cm defined in Ch. 2. The

frequency associated with each spin-wave mode is still ωm = 2S|λm|. It is easy to

obtain, that given these definitions the fluctuations are

〈σx̃(σx̃)†〉 =
∑
m

S|λm|
2|c̃m| vmv†m , (B.4)

where both sides of the equation are Ns ×Ns matrices. The two-point correlation

is

Gij = 〈σỹ
i σ

ỹ
j 〉 = ηij〈σx̃

i σx̃
j 〉 . (B.5)

Thus, we can diagonalize the Hamiltonian and calculate the fluctuations using the

bond variables ηij only.

B.2 coplanar spins

In fact, the procedure that we outlined above for bond variables in the collinear case

allows us to straightforwardly calculate the harmonic dispersion and fluctuations

of any coplanar classical ground states.

Consider a coplanar classical ground states, parameterized by angles {θi} (φi =

0). The harmonic spin-wave Hamiltonian (2.9) becomes block diagonal and can
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be written in the form (B.1), with Hỹ = H, as before, and H satisfying Eq. (B.2),

but the bond variables are no longer Ising variables but rather

ηij ≡ cos(θi − θj) , (B.6)

where {θi} are the in-plane spin direction angles. With this substitution, the entire

derivation of Sec. B.1 follows automatically.

Note that, for the kagomé lattice (or any other bisimplex lattice composed of

triangles) the classical constraint (1.3) implies that in all coplanar classical ground

states θi − θj = ±120◦ for nearest neighbors, and, from Eq. (B.6), ηij = −1/2 for

all coplanar states, and thus all coplanar states are exactly degenerate.

We remark that once we consider non-coplanar states, there is no way to write

the spin-wave Hamiltonian in a block diagonal form, and there is no simple way

to generalize the procedure described here.



Appendix C

State generation algorithms
In this appendix, we provide the details of the algorithms that we use to auto-

matically generate classical ground states as well as harmonic spin-wave ground

state. We also discuss the Monte Carlo algorithm used in Sec. 7.3. All of these

algorithms were implemented in the C programming language, and compiled under

Linux using the GNU C compiler. The computer programs are a straightforward

application of the algorithms described below. They do not employ any fancy pro-

gramming tricks to reduce memory consumption or running time. As it turns out,

this has proven to be sufficient to our purposes.

C.1 Collinear classical ground state generation

The algorithm described here was employed for generating the large number of

classical ground states used in Sec. 4.2 and Sec. 7.3. The computer program is

called state gen.c. As described in Ch. 2, classical ground states can be generated

from other classical ground states by flipping loops of spins with alternating direc-

tions. Thus the algorithm is based on choosing a random site, and then finding a

loop of alternating spins. This is done by moving along a path, randomly choosing

a direction (of alternating spin) in each step, until the path intersects itself. Once

a loop is closed, we flip the spins along the loop to find a new state. This is done

many times to generate new states.

We start by defining an orthorhombic system of dimensions Lx, Ly, Lz, with

periodic boundary conditions. The length scale here is such that the lattice con-

stant of the underlying cubic lattice is 2. Thus, in any {001} pyrochlore slice,
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there is a unique tetrahedron in for any integer pair (Lx, Ly). We break the lat-

tice into disjoint (even) tetrahedra and we label each even tetrahedron by indices

0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz/2. The index z only goes to Lz/2 so

that each integer pair x, y, z would correspond to a valid fcc site, even though the

physical z-axis coordinate depends on the parity of x + y. The actual tetrahedron

coordinate is

r =

(
x, y, 2z +

1− (−1)x+y

2

)
. (C.1)

The anisotropy in the indexing in the (x, y) and z directions is necessary to store

data for the pyrochlore lattice in a matrix, while maintaining orthorhombic bound-

ary conditions. The states are stored in a state matrix of size Lx ×Ly ×Lz/2× 4.

The first three indices in the matrix refer to (x, y, z) and the last index is the

sublattice index, taking values 0 to 3.

Since we only store data of (x, y, z) corresponding to even tetrahedra, the odd

tetrahedra are only implied, and we have a routine neighbors to find, for a given

site, its (three) nearest neighbors that belong to different even tetrahedra.

We define a matrix hex similar to state for the complementary lattice “spins”

(described in Ch. 5). We remind the reader that this is the pyrochlore lattice whose

sites are the centers of the direct lattice hexagon loops. The Ising spin at a given

site in the complementary lattice is the product of the spins along the hexagon

whose center is there. Refer to Ch. 5 for further details. The complementary lattice

state is useful because it is identical for gauge-equivalent harmonic ground states.

Thus, by comparing complementary lattice states, we can ascertain whether two

states are in the same gauge family. In order to use this property, we further store

a matrix all hexs of all of the distinct complementary lattice states found so far.

For diagnostic purposes, we also define the vector frequencies in which we store
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the number of states we have found in each gauge family that we encountered.

There are three non-trivial functions that we use:

1. The hex gen function generates the complementary lattice state hex for a given

state. We multiply the spin values around each hexagon in state and store it in

the corresponding location in hex.

2. The same as function compares two complementary lattice states to find if

they are the same, up to lattice symmetry operations (translations, rotations, axis

permutations, mirror planes, inversion of all axes, and global spin flip). This

function returns a Boolean number.

3. random flip is the routine that actually generates a new state. We randomly

choose an initial site s1, defined by x, y, z, and sublattice index (between 0 and

3) and flip the corresponding spin (in state). Our aim is to now to find a loop

of spins in alternating directions and flip all of the spins in it. To do so, we add

two spin indices to a list in each step: In each step, call it step number n, we

add two more spins to the list: (i) We find the two neighbors of s2n−1 that are

not within the same (even) tetrahedron, and have the opposite spin as the s2n−1.

Randomly choose one of them – s2n– and store it. If we are back to any of the

(even) tetrahedra whose sites are already on the list – stop, and flip the loop we

found. (ii) Find the two neighbors of s2n, within the same (even) tetrahedron,

that have the opposite spin as the s2n. Randomly choose one of them – s2n+1– and

store it.

The algorithm that we use for generating classical ground states is shown in

Fig. C.1. Essentially, we initialize to a given state (i.e. set the elements of state

to an allowed combination of ±1), and in each step run random flip, generate the

complementary lattice state for the state we found, and compare (using same as)
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to the previously stored complementary lattice states to see if we found a new state.

If so, we store the complementary lattice state and print out the η values stored

in state. We also calculate and print out some properties of the state (both the

direct lattice state and the complementary lattice state) that can be later used for

numerical fits aimed at finding an effective Hamiltonian. We repeat this procedure,

periodically initializing back to the original state.

C.2 Harmonic ground state generation

This algorithm starts from a given harmonic ground state, and generates odd and

even gauge transformations on the state. Then, all combinations of the odd and

even transformations are applied to find all of the states that are gauge equivalent

to the original state. If the original state is a harmonic ground state, we generate

other harmonic ground states in this fashion. We have run the program dozens of

times with millions of searches in each run and for unit cells of up to approximately

200 sites we always find the same harmonic ground states. This leads us to believe

that the search algorithm is exhaustive. This program, called gauge gen.c actually

predates state gen.c, which accounts for some of the differences in programming

between them.

Since any group of states related by a gaugelike transformation have the same

complementary lattice state, there is no point in finding the complementary lattice

in this program. We store the transformations that we find in a Lx×Ly×Lz matrix

of boolean variables (recall that gaugelike transformations amount to flipping entire

tetrahedra and not individual spins). We have an array of such matrices (named

gauge) to store all of the odd and even gaugelike transformations that we find. The

current state is stored in the state matrix, which is, due to historic reasons slightly
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No
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Yes

No

No
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No
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Figure C.1: Flow diagram for state gen.
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different than state in state gen.c. Here we store both even and odd tetrahedra so

that each spin value appears twice in the state matrix. All of the states that we

find are in the matrix all states.

The algorithm is composed of three separate parts: (i) generate all even gauge-

like transformation for a given states, and save them. The idea here is to flip entire

even tetrahedra until a new classical ground state, with no violated odd tetrahe-

dra, remains. As long as only tetrahedra were flipped, we are guaranteed that the

new state is related to the old one by a gaugelike transformation. They are saved

in a matrix gauge of Lx×Ly×Lz/2 boolean values. (ii) similarly, generate all odd

transformations. (iii) apply all combinations of even and odd transformations, and

if a distinct state is produced, save and display it.

There are two non-trivial parts to this algorithm:

1. Generating a gauge transformation (random gauge function): suppose that we

want to generate an even gauge transformation. We randomly choose an even

tetrahedron and flip all of the spins in it. Now we have caused some of the odd

tetrahedra to violate the tetrahedron rule. Our plan is to flip more and more even

tetrahedra until no more odd tetrahedra are violated. To do so, we check to see if

any odd tetrahedra now violate the tetrahedron rule, starting from the neighbors

of the last (even) tetrahedron we flipped. If we find such a violated odd tetrahe-

dron, we find which of its even neighbors could be flipped to fix the violation. We

randomly choose one of those tetrahedra and flip it. We repeat this procedure until

there are no more violated odd tetrahedra. In order to avoid flipping the entire

sublattice, we bias the “coin flip” to give preference to flips that propagate in one

certain direction. I.e., if the first flipped tetrahedron was at r1 ≡ 0 and the second

one at r2, we give preference to flips ri with large |ri · r2|. Note that, from Sec. 3.4
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we know that the flipped cluster must be unbounded in, at least, one direction.

2. Finding all distinct states (find distinct states function): if we find gauge count[0]

even transformations and gauge count[1] odd transformations, then the total num-

ber of transformations to apply is

(gauge count[0] + 1)× (gauge count[1] + 1) .

Here we included the null transformation as well as the generated transformations.

We do not consider the global spin flip (which is both odd and even) as a valid

transformation. We compare each new state to previously found ones by employ-

ing lattice symmetry operations (essentially identical to the function same as in

state gen.c as described in C.1, but on the direct lattice). We save and display any

distinct state found.

C.3 Monte Carlo algorithm for the large-N calculation

We use a Metropolis algorithm to search for large-N ground states. This is based

on the state gen program described in C.1: we start from an initial state, and

generate new states by flipping random loops (using the random flip function).

At each step we evaluate the large-N energy Enew using the effective Hamilto-

nian (7.15), and decide whether to keep the state or not based on the Metropolis

rule: we accept the state if a random number between 0 and 1 is smaller than

exp[−β(Enew − Eold)], where Eold is the energy of the previously accepted state,

and β is a dimensionless inverse temperature, which we can set either to a con-

stant (typically between 104 and 106 for the large-N problem), or we can anneal,

i.e. start from high temperature (small β) and then incrementally reduce the tem-

perature until no more changes occur. Thus we always keep states that lower the
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energy, and occasionally keep states whose energy is slightly above the previous

energy. In all cases, we print out all of the accepted energies and states to see

if we encountered any interesting states along the way. With a good choice of

temperature we generally find the ground state for a given unit cell within a few

thousand loop flips.



Appendix D

Decoupling the quartic Hamiltonian
The anharmonic Hamiltonian Hquart [Eq. (6.2)] contains quartic terms whose ex-

pectation value we would like to calculate. Since we only know how to calculate

two-operator correlations of the form 〈σx/y
i σ

x/y
j 〉 (within a harmonic theory), we

should decouple the expectation of quartic terms to products of two-point corre-

lations.

〈σa
i σ

b
jσ

c
kσ

d
l 〉 = 〈σa

i σ
b
j〉〈σc

kσ
d
l 〉+ 〈σa

i σ
c
k〉〈σb

jσ
d
l 〉+ 〈σa

i σ
d
l 〉〈σb

jσ
c
k〉 , (D.1)

We are allowed to write Eq. (D.1) because two conditions are satisfied [1]:

1. The spin deviation operators {σx
i } and {σy

i } are linear combinations of the

canonical boson operators {ai} and {a†i}.
2. The expectation values are taken with respect to a harmonic Hamiltonian [in

our case, the variational Hamiltonian Hvar, given by the matrix (6.6)].

There is one subtlety to this decomposition: In order for Eq. (D.1) to be correct,

we must define some “normal ordering” of the operators with respect to their

indices [1]. Since the spin deviation operators commute with respect to their site

indices [i,j,k,l in (D.1)], we need only order the spatial index, i.e. a≤ b≤ c≤ d

(where by convention x < y).

However, in the case of the quartic Hamiltonian (6.2), any additional terms

that arise from bringing Hquart to normal order have zero expectation value. For

example

〈σx
i σy

j σ
x
j σy

j 〉 = 〈σx
i σx

j

(
σy

j

)2〉 − iSηj〈σx
i σy

j 〉

= 〈σx
i σx

j

(
σy

j

)2〉 = 〈σx
i σx

j 〉〈
(
σy

j

)2〉 . (D.2)
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Thus we are free to decouple the quartic Hamiltonian Hquart to the form (6.2)

as if the operators σx
i and σy

i commuted.
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Appendix E

The functional form of Γij

In Ch. 6, we write the mean-field Hamiltonian in terms of bond variables {Γij},
defined as

Γij ≡ Gii − ηiηjGij , (E.1)

where Gij = 〈σiσj〉. We also asserted, that for any state, the dominant term in Γij

(due to the bare Harmonic Hamiltonian) has the form

Γij = Γ(0) + ηiηjΓ
(2) . (E.2)

[Recall that this was used in Sec. 6.1.4 to argue for a particular form of the self-

consistent variational Hamiltonian.]

Here, we motivate Eq. (E.2) by calculating the contribution to Γij that comes

from ordinary modes.

E.1 Ordinary modes reminder

The concept of ordinary modes was first introduced in Sec. 3.1. Here we review

the ideas that are relevant to our current derivation. An ordinary mode vm, is a

mode that can be written (in matrix notation) as

vm = ηW†um . (E.3)

Here W is the Ns/2 × Ns matrix whose (α, i) element is 1 if site i belongs to

tetrahedron α, and 0 otherwise. um is a diamond-lattice spin-wave mode. It is an

eigenvector of length Ns/2 of the diamond-lattice spin-wave equation

WηW†um = λmum . (E.4)
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Recall that by writing the spin-wave equation on the diamond-lattice we ignore

half of the spin-wave modes that have 0 frequency (the generic zero modes), but

retain the divergent-zero-modes (which, along with modes close to them, dominate

correlations Gij (and Γij).

The reason that we focus on ordinary modes is that, unlike generic zero-modes,

we know how they transform under gaugelike transformation. This, as we shall see

below, is the key to determining the correlations. Furthermore, there is reason to

believe that close to the divergence lines, the zero modes’ correlations mirror the

ordinary modes’ correlations and therefore do not affect the form of Γij.

The correlation function Gij was shown in Sec. 2.3 to be written as a sum over

the spin-wave modes

Gij =
∑
m

S

2|cm|vm(i)vm(j) . (E.5)

Here cm is the “norm” of vm: cm = v†mηvm. Limiting ourselves to the contribution

of ordinary modes (denoted henceforth by a prime) we find

G′
ij =

∑
m

′ S

2|cm|ηiηj[um(αodd(i)) + um(αeven(i))][um(αodd(j)) + um(αeven(j))]

= ηiηj

〈
(σαodd(i) + σαeven(i))(σαodd(j) + σαeven(j))

〉
(E.6)

Where αeven(i), αodd(i) are the even and odd tetrahedra to which site i belongs,

respectively. We defined, in analogy with (E.5)

〈σασβ〉 =
∑
m

′ S

2|cm|um(α)um(β) . (E.7)

We are only interested in correlations of the form (E.1), for nearest-neighbors

(ij). We assume, without loss of generality that αeven(i) = αeven(j) ≡ β, and

obtain

Γ′ij =
〈
(σαodd(i) + σβ)2

〉− 〈
(σαodd(i) + σβ)(σαodd(j) + σβ)

〉

= 〈σ2
αodd(i)〉+ 〈σαodd(i)σβ〉 − 〈σαodd(j)σβ〉 − 〈σαodd(i)σαodd(j)〉 . (E.8)
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Note that the last line includes one on-(diamond)-site correlation function (on

σαodd(i)), two nearest neighbor terms, and one second-neighbor term (σαodd(i)σαodd(j)).

E.2 Using the gaugelike symmetry

Although we have been considering one particular classical configuration, we can

make use of the concept of gaugelike transformations (discussed in Sec. 3.4). The

important points are the following:

1. Under a gaugelike transformation that τ (τα = ±1) the diamond-lattice

spin-wave modes transform um(α) → ταum(α).

2. Under a gaugelike transformation ηi → ταodd(i)ταeven(i)ηi.

3. States that have the same products of {ηi} (”flux”) around each loop in the

lattice are related by a gauge-transformation.

4. In particular, for states with a uniform flux arrangement, i.e., the π-flux

states or the 0-flux states, there is a gauge transformation that can perform

any lattice-symmetry operation.

5. The “norm” cm is gauge-invariant

cm =
∑

i

ηi(vm(i))2 =
∑

i

ηi(uαodd(i) + uαeven(i))
2

=
∑

i

ηi(u
2
αodd(i) + u2

βodd(i) + 2uαodd(i)uβodd(i)) . (E.9)

The first two terms in the last line are zero (upon summation on each tetra-

hedron), and the last term is manifestly gauge-invariant.

The consequences of these points is that, for the π-flux states (recall that most

of our interest in the anharmonic theory is to break the degeneracy among the
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harmonic ground state – the π-flux states) or other states where the fluxes don’t

break the lattice symmetry

Γ(0) ≡ 〈σ2
α〉 is independent of α, (E.10)

(since a gaugelike transformation would take α to β for any two diamond-sites

α and β). Similarly, it is easy to find that for nearest neighbor (diamond) sites

(sharing site i):

Γ(1) ≡ ηi〈σαodd(i)σαeven(i)〉 is independent of i, (E.11)

and for next-nearest-neighbor (diamond) sites, connected by bond (ij):

Γ(2) ≡ −ηiηj〈σαodd(i)σαodd(j)〉 is independent of (ij), (E.12)

Here, the sign was set so that Γ(2) would be positive. Plugging these into (E.8),

we obtain

Γ′ij = Γ(0) + (ηi − ηj)Γ
(1) + ηiηjΓ

(2) . (E.13)

Since Γ′ij must be invariant under a global spin-flip, we must have Γ(1) = 0 and

we obtain Eq. (E.2). It should be noted that Γ(0) and Γ(2) are both infinite in the

bare harmonic theory. We can regularize them using a variational Hamiltonian, as

in Sec. 6.1, which would add an additional, bond-dependent term (see Eq. (6.15)),

but the dominant contribution would remain of the form (E.2).

E.3 Quartic breaking of gaugelike symmetry?

In the previous section, we used the properties of the gauge transformation to study

the relations between correlations on different sites or bonds, in the same state.

We could attempt to use the same ideas to study the relation between different
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gauge-equivalent states. After all, Γ(0) and Γ(2) were argued above to be gauge

invariant. Unfortunately, we could not break the harmonic degeneracy in this way

– the mean-field energy (6.9) is trivially gauge-invariant, if one plugs (E.2) into it.

EMF = −
∑

〈ij〉
ηiηj

(
Γij + Γji − 1

S2
ΓijΓji

)

= −
∑

〈ij〉

[(
2Γ(0) − Γ(0))2 + (Γ(2))2

S2

)
ηiηj

+2

(
Γ(2) − Γ(0)Γ(2)

S2

)]

= Ns

(
2(Γ(0) − 3Γ(2))− Γ(0))2 + (Γ(2))2 − 6Γ(0)Γ(2)

S2

)
(E.14)

So what breaks the gauge invariance? We have not been able to obtain a

good analytic understanding of this, but we believe that the reason is that, as

the variational Hamiltonian is not gauge-invariant, the regularization introduces

small gauge-dependent terms into Γ(0) and Γ(2). Further study would be required

to understand this effect.

Note that in the entire discussion, we have ignored the generic zero modes.

These modes may be as important as the ordinary modes in studying subtle de-

generacy breaking phenomena.



Appendix F

Upper and lower bounds on P6

In Ch. 6, we found an effective Hamiltonian in terms of the loop variables {Pl},
where Pl is the number of loops of length l, whose bonds are AFM (i.e. the Ising

variables {ηi} alternate along the loop). We found empirically that the quartic

spin-wave energy is lowest, among the harmonic ground states (π-flux states), for

P6 = Ns/3 and highest for P6 = Ns/6. In the following we will show, that for

π-flux states, these are rigorous bounds for P6.

First, we must note that for a given hexagon (in a π-flux state), the number

of AFM bonds can be 6 ( for spins ↑↓↑↓↑↓), 4 (↑↑↓↓↑↓), or 2 (↑↑↑↑↑↓ or ↑↑↑↓↓↓).
If we call the fraction of these respective arrangements n6 (equal to P6/Ns, where

Ns is the number of lattice sites) n4, and n2, then these number must satisfy

n2 + n4 + n6 = 1 . (F.1)

Also, because the number of AFM bonds in any arrangement is twice the number

of FM bonds, and each bond belongs to the same number (2) of hexagons

n2 = n6 . (F.2)

The hexagons in the lattice are arranged in supertetrahedra. If one tries to con-

struct all of the possible (π-flux) bond arrangements, one finds that a single su-

pertetrahedron can have one of four arrangements:

(a) Two AFM hexagons and two hexagons with 4 AFM bonds.

(b) One AFM hexagon and three hexagons with 4 AFM bonds.

(c) One AFM hexagon, one hexagon with 4 AFM bonds, and two hexagons with

2 AFM bonds.
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(d) Two Hexagons with 2 AFM bonds and two hexagons with 4 AFM bonds.

We choose a subset of non-overlapping supertetrahedra (i.e. choose half of the

supertetrahedra, such that they do not share any hexagons)1 and call the number of

the supertetrahedra (within this subset), of types (a), (b), (c), (d) na×Ns, nb×Ns,

nc ×Ns, and nd ×Ns, respectively. These number must satisfy the relations

na + nb + nc + nd =
1

4
, (F.3)

and

2nc + 2nd = n2 = n6 = 2na + nb + nc . (F.4)

Examining the constraints (F.3) and (F.4), it is not hard to find that the

maximum value of n6 is 1/3 (for nc = 1/6, na = 1/12, and nb = nd = 0) and the

minimum value is N6 = 1/6 (for nd = 1/12, nb = 1/6, and na = nc = 0). Thus we

find that, for π-flux states

Ns

6
≤ P6 ≤ Ns

3
. (F.5)

What if we looked for bounds on P6 among all collinear configurations, not

just π-flux states? The lower bound is clearly P6 = 0, since the 0-flux states have

no AFM hexagons. As for the upper bound, we can repeat the arguments above,

limiting ourselves to supertetrahedra that have at least one AFM hexagon. Thus

we set nd, as well as other, new arrangements with no AFM hexagons to zero. All

of the supertetrahedron arrangement that have AFM hexagons still fall into type

(a), (b) or (c) above, and thus, just as before P6 = Ns/3 is the maximum possible

value. This is in agreement with the empirical findings in Ch. 7 (recall that in the

large-N theory we use slightly different variables, but for hexagons P̃6 ≡ P6).

1Recall that the hexagon centers form a pyrochlore lattice (the complementary
lattice), and thus the supertetrahedra centers form a diamond lattice. Choosing a
non-overlapping subset corresponds to working with only one of the two diamond
sublattices.


