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ABSTRACT

Large retailers’ operations have changed substantially in the last couple of decades,
evolving from single stores replenishing their stock directly from suppliers, to large
distribution systems where goods are centrally ordered and then allocated and
delivered to each individual store. Tremendous progress in information systems’
technology has enabled leading retailers to exploit economies of scale to the fullest
by implementing centralized control over their distribution systems.

This dissertation studies the problem of replenishing inventory in a centrally
controled, multi-facility distribution system with constant traveling times and serv-
ing external, stochastic demand. We formulate an inventory model for this prob-
lem which is a natural extension of the classical single-facility inventory models for
both continuous and periodic review. Our contribution consists of establishing two
bounds for the cost incurred by such system, and also finding a heuristic policy for
a two-stage serial system. This policy is 93%-effective within the class of weakly
nested policies—a class to be defined later in this work— and is used to extrapolate
recommendations relevant to practitioners.

The lower bounds are obtained by decomposing the distribution system into
single-facility sub-problems, a strategy based on the use of inputed penalty costs,

and which substantially reduces computational complexity and permits the appli-



cation of known single-stage techniques. New extensions of the concepts of ‘echelon

inventory position’ and ‘nested policy’ are also proposed.
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Chapter 1

Introduction

Inventory models found in the literature are not designed for the environment
faced by today’s leading retailers. One reason is that a typical large retailer’s
operations have changed substantially in the last couple of decades, evolving from
single stores replenishing their stock directly from suppliers, to large distribution
systems where goods are centrally ordered and then allocated and delivered to
each individual store. Simultaneously with these changes, more value-conscious
consumers, saturation, and competition, have reduced retailers’ gross margins,
turning their logistical capabilities into an important competitive advantage.

To achieve purchasing muscle and economies of scale, major retailers have pur-
sued aggressive growth strategies and have set up their own distribution systems,
which are often very large. By the year 1993, America’s two largest discount re-
tailers, Wal-Mart and K-Mart, had over 2500 and 4200 stores, respectively. Sears,
Roebuck, the largest US department store chain, had over 1800 stores in the same
year. Besides stores, a distribution system also includes distribution centers or

depots, which receive large amounts of goods from external suppliers and deliver



shipments to individual stores.

A distribution system can be most efficiently operated using centralized infor-
mation, which includes the amounts sold and the stock held for each product at
each store. Centralization of control is considered an important strategic goal by
industry leaders and is becoming a trend among large US retailers. During the
1980s, for example, Wal-Mart is reckoned by industry analysts to have spent over
$700m on information technologies for its distribution system, including purchasing
its own satellite to transmit its enormous load of information [63]. This strategy
has paid off. According to company records, Wal-Mart distribution costs were
under 3% of sales in 1992, which compared to 4.5%-5% for the firm’s competitors,
represent savings of close to $750m in that year alone [63]. Others are following:
51% of a sample of large US retailers surveyed by Ernst & Young, a management
consultancy, reported to be using computer-based merchandise allocation systems
in 1994 [27].

This dissertation studies the problem of replenishing inventory in a centrally
controlled, multi-facility distribution system, with the purpose of serving external,
stochastic demand in a cost-efficient way. We formulate an inventory model for this
problem which is a natural extension of classical single-facility inventory models for
both continuous and periodic review. Our contribution consists of establishing two
bounds for the cost incurred by such systems, and also finding a heuristic policy for
a two-stage serial system, which is 93%-effective within the class of weakly nested
policies—a class to be defined later in this work. Recommendations relevant to
practitioners are extrapolated from this heuristic policy.

We would like to point out two interesting features of this work. First, the



lower bounds are obtained using a decomposition approach, that is, breaking a
multi-facility system into several single-facility sub-problems. This decomposition
is based on the use of imputed penalty costs, which penalize a facility for the
extra costs caused by decisions made by the facility, but incurred elsewhere in the
system. Decomposing the system greatly reduces the computational complexity
of finding a solution, while at the same time permitting the application of known
single-facility techniques to the more complicated multi-facility inventory problem.

Even if centralized information is available, it is often desirable to decentral-
ize decision-making because local managers, often responsible for their facility’s
profits, will be more motivated if they are given more authority over ordering
and shipping decisions at their facilities. Decentralized decision-making may be a
source of conflict, however, because decisions that are good for a part of the system
may be detrimental for the system as a whole. Hence comes another advantage of
the decomposition approach: the induced penalty costs for a distribution center
mimic the costs caused on the rest of the system by decisions made by the facility.
If such a reward system is implemented at each facility, good local decisions will
result in good performance of the system as a whole.

The second interesting feature of this work is the way in which it extends the
concepts of ‘nestedness’ and ‘inventory position’ to multi-facility environments.
Nested policies have been successfully used before for systems with deterministic
demand or zero lead times. We introduce the concept of ‘weak nestedness,” which is
defined for systems with stochastic demands and constant lead times. Finally, this
work proposes a re-definition of the concept of ‘inventory position’ for multi-facility

systems. This re-definition, which we call ‘shipment-based inventory position’, is



more consistent with the multi-echelon nature of such systems.

The rest of this dissertation is organized as follows. Chapter 2 reviews the liter-
ature available in inventory theory today and comments on its limitations. Chap-
ter 3 formulates a multi-facility inventory model, introduces the notions of weak
nestedness and shipment-based inventory position, and develops two bounds for
serial inventory systems which can be extended to distribution systems. Chapter
4 discusses optimal policies for the single-stage sub-problem, an inventory model
with non-fixed ordering costs resulting from the decomposition approach used for
obtaining the bounds proposed in Chapter 3. Chapter 5 proposes a policy for a
two-stage serial inventory system which is 93%-efficient within the class of weakly
nested policies. Finally, Chapter 6 presents our conclusions and suggestions for

practitioners.



Chapter 2

Literature Review

The purpose of this chapter is to survey the literature available in inventory theory
today. This is an ambitious task since inventory management has been an active
area of research for over forty years and literally thousands of papers and articles
(including many surveys) have been written on this problem. The literature is also
extensive in terms of the number of models, the issues that these models intend
to address, and the approaches followed. We will concisely summarize those that
are relevant to these research efforts, outline their assumptions, state their results
and comment on their importance. Details are available in other broader surveys,
for which references are provided.

Inventory models are mathematical representations of real inventory systems,
formulated with the purpose of providing ordering policies that minimize some
cost function. These models can be classified in a number of ways. According to
the number of locations considered, they may be single-facility or multi-echelon
models. There may also be one or more than one item stocked. The demand may

be deterministic or stochastic, stationary or not. Unmet demand may be lost,



backlogged, or partially backlogged. System reviews, the times when inventory is
observed and ordering decisions can be made, may be conducted either periodically
or continuously. The time horizon over which costs should be minimized may be
finite or infinite, or just one time period. A good introduction to these issues, and
the classical models which are the basis for later developments, can be found in
early surveys, such as Scarf [76] (1963) and Veinott [81] (1966).

Next we provide an overview of the remainder of this chapter, which is divided
into three sections. The first one (section 2.1) focuses on single-facility inventory
problems. It covers the EOQ formula, the newsvendor problem and its extensions
(Section 2.1.1), and a standard periodic review model for both finite and infinite
time horizons (Section 2.1.2). More specifically, this last subsection includes re-
sults on the optimality of (s, S) policies, algorithms to find optimal policies, an
equivalent continuous review formulation, and (r, @) policies.

The second section (2.2) is concerned with multi-echelon inventory systems. It
covers serial systems (Section 2.2.1), distribution systems under stochastic demand
(Section 2.2.2), and policies with good worst-case performance, namely, nested

power-of-two policies (Section 2.2.3).

2.1 Single-Facility Problems

Managing the stock of a single commodity stored at a single location is the simplest
inventory problem that can be studied. Many mathematical models have been
proposed for providing ordering policies for such systems. These models normally
consider some or all of the following costs: the cost of placing an order, the cost

of carrying inventory, the cost of incurring backorders, or the cost of losing a sale.



The oldest and simplest of these models is the famous Economic Order Quantity
(EOQ) formula, whose development is credited to Harris [41] (1915). The simplic-
ity and robustness of this result are truly remarkable, so much so that the EOQ
formula remains the basis for both practical applications and theoretical studies.
This occurs even though virtually no real system satisfies the model’s assumptions,
which include a deterministic, continuous, and constant rate demand.

A detailed presentation of the properties and extensions of the EOQ model
can be found in most inventory theory textbooks (see, for example, Chapter 2
of Hadley and Whitin [39]). The most common extensions include backlogging of
orders, integrality of demand, lost sales, finite production rate, capacity constraints
and quantity discounts.

A related problem is determining inventory levels and production quantities in
multi-product manufacturing /distribution systems, most frequently in non-station-
ary environments and under capacity constraints. Optimization techniques such as
dynamic programming, stochastic programming, and various solution algorithms
have been proposed, among others, by Evans [28], Haneveld [40], Peters, Boskma,
and Kupper [58], and Sox [79].

2.1.1 Single-Period Stochastic Models and Order-up-to
Policies

Virtually all inventory models that consider stochastic demand are built upon a

single period model, often referred to as the ‘newsvendor model,” which seems

to have been first introduced, in its most common form, by Arrow, Harris and

Marschack [2]. A good review of this model and some of its extensions can be

found in Porteus [61]. The newsvendor formulation is particularly suitable for the



problem of perishable and ‘style’ goods. For a review of the former, see Nahmias
[57].

The newsvendor’s problem is to make an ordering decision at the beginning of a
discrete time period, during which a random demand for a product will take place.
The objective is to minimize the expected cost incurred at the end of the period,
which is a function of the decision made and the demand realization. Typically,
the resulting optimal policy is of the form “order-up-to-S”, which means that if
the initial stock equals < S, one should order S — z units; otherwise, no order
should be placed.

The most common classical extensions of the newsvendor problem include con-
tinuous and discontinuous demands, partial backlogging and lost sales, linear, con-
vex and non-convex cost functions, minimum and maximum ordering quantities,
batch ordering, non-linear production costs, delivery quantities differing from the
amount ordered, many products with a resource constraint, competition, and pric-
ing (see Porteus [61]). A recent extension considers the production decision for
two markets with non-overlapping selling seasons and exchange rate risk exposure
(see Kouvelis and Gutiérrez [50]).

The introduction of a fixed ordering cost is the newsvendor’s most relevant
extension in the context of multi-period problems. In such case, and assuming
that the cost function is, say, convex, optimal policies turn out to be of the form
(s,S), which means that if the initial stock equals z < s, an amount of .5 —  units

should be ordered; otherwise, no order should be placed.



2.1.2 Multi-Period Models and (s, S) Policies

The purpose of this section is to review the mathematical models proposed to
analyze the multi-period formulation of the simplest and best understood problem
in stochastic inventory theory, the single-item, single-facility inventory problem.
The two most relevant questions in relation to this problem are: first, determine the
form of optimal policies, and second, find the optimal parameters which minimize
the cost among all policies of that form. A good review of the fundé),menta,l results
in this area prior to 1972 can be found in Tijms [80].

The first mathematical models proposed to manage this problem date back to
the early 1950’s. Early results, for example those by Arrow, Harris and Marschak
[2], and Dvoretzky, Kiefer and Wolfowitz [20], [21], were impractical because of the
limited scope of their assumptions, which included zero lead times and, sometimes,
no ordering costs.

Scarf [74] was the first to find optimal policies for a model of sufficient generality
to have wide practical applicability. The main assumptions of this model include
constant lead times, fixed ordering costs, periodic review, demand backordering,
and a convex inventory cost function; its objective is to minimize the expected
costs incurred over an n-period time horizon. By using a dynamic programming
argument and introducing the concept of K-convexity, Scarf showed that the opti-
mal policy for this model is of the form (s, S},) for each period k. This proof was
extended to the discrete demand case by Zabel [84].

One of the classical results of inventory theory is that (s,8) policies are also
optimal for infinite horizon problems, in which the objective is to minimize either

the total discounted cost or the undiscounted average cost per period. The results
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to be reviewed below show that stationary (s, .S) policies can be found which are
optimal for infinite horizon models regardless of the initial state. By contrast,
optimal policies for finite horizon models in general have different parameters from
period to period, even if the data are stationary, due to the end of horizon effect.

Proving the optimality of a policy for an infinite horizon model involves the
verification of the so called optimality equation, which, to our knowledge, was
first formulated by Bellman, Glicksberg and Gross [10]. One of the terms of this
equation is usually referred to as the differential cost function, and must also be
found. For a good exposition of dynamic programming and Markovian decision
processes, including the optimality equation, see for example, Bertsekas [11] or
Puterman [62].

The first proof of the optimality of (s,.S) policies for infinite horizon problems
was developed by Iglehart [42] in 1963. This proof, which uses Scarf’s model
with the objective function changed to minimize the discounted expected total
cost, shows that both an optimal (s,S5) policy and its corresponding differential
cost function can be characterized as limits of sequences of finite-horizon optima
{(sn,Sn)} and their differential costs {f,(-)}. Veinott and Wagner [82] extended
this result to the case in which the inventory cost function is quasiconvex instead
of convex.

Other authors have proposed proofs of Iglehart’s result which bypass the fi-
nite horizon considerations. For example Johnson [48] uses a policy improvement
argument to prove that an (s,S) policy can be found which satisfies the opti-
mality equation. As pointed out in [51] and [34], this proof is incorrect because

it uses finite-state Markovian decision processes results without the appropriate
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N

modifications for infinite state spaces. Zheng [85] proposes a proof for both the
discounted and undiscounted cost cases, which includes a closed form expression
for the differential cost function and a verification of the optimality equation based
on properties of the optimal parameters (s*, S*). This proof is simpler, more illus-
trative and more insightful than the earlier proofs.

Simultaneously with these developments on the theoretipally important issue
of the optimality of (s,.S) policies, other research efforts were directed at the more
practical question of finding optimal parameters (s*,5*). Because of the ill be-
havior of the cost function, which is known to be non-quasiconvex and which may
exhibit more than one local minimum, this used to be considered a computation-
ally expensive task. This is no longer the case, however, since the computational
complexity of the fastest algorithm proposed to date is only 2.4 times that of
evaluating the cost of a single (s, .S) policy.

The oldest algorithm to compute optimal policies, proposed by Veinott and
Wagner [82], relied mostly on enumeration aided by bounds on the optimal val-
ues. Later improvements of this algorithm are due to Archibald and Silver [1],
who expressed the objective function as a convex function in one of the variables,
and to Bell [9], who used stopping rules. Heuristic methods have been proposed,
among others, by Roberts [64], Porteus [59] [60], Wagner, O’Hagan and Lundh [83],
Ehrhardt [22], [23], Freeland and Porteus [35], [36], Sivazlian (78], Schneider [77],
and Sahin and Sinha [73]. Each of these heuristics performs well in some instances
and poorly in others and it is hard to tell a priori how well a given heuristic will
perform.

Federgruen and Zipkin [34], [31], proposed an iterative approach based on the
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policy iteration technique from standard dynamic programming theory, and which
exploits the structure of the inventory problem. More recently, Zheng [86] devel-
oped the algorithm which is computationally least burdensome. This algorithm
is based on tighter, monotonically convergent bounds on the optimal parameters,
and new properties of the cost function. Its computational complexity is only 2.4
times that of evaluating the cost of a single (s, S) policy.

We conclude this section with two remarks. First, the periodic review model is
equivalent to a continuous review formulation in which the demand is generated by
a compound counting process and ordering decisions can only be made upon arrival
epochs. Such a formulation was first proposed, to our knowledge, by Beckman [8]
in 1961. It is also mentioned in [31] and [86]. Federgruen and Schechner [30]
develop the cost function in detail and Zipkin [88] presents a good description of
the underlying probabilistic aspects and proposes an extension of this model to
account for random lead times. This extension only works if the lead times satisfy
certain probabilistic conditions.

The second remark refers to the case when the reorder point is always reached
exactly, a situation referred to in the literature as ‘no overshooting.’ In this case
(s,S) policies are often referred to as (r, Q) policies, which means that whenever
the inventory reaches r(= s), Q(= S — s) units are ordered. It is often assumed
that the stationary distribution of the inventory position is uniform. In this case
the average cost is rather insensitive to the choice of the ordering quantity, see
Zheng [87]. Another interesting result provides a procedure to find parameters
(r, @) when only the mean and the variance, but not the form of the distribution,

of the lead time demand are known, see Gallego [38] [37]. This procedure was
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proposed before by Scarf [75] for the newsvendor problem.

2.2 Multi-Echelon Inventory Systems

2.2.1 Serial Systems

Many of the fundamental concepts for the analysis of multi-facility inventory sys-
tems first appeared in a seminal paper by Clark and Scarf [17], which considered
a periodic review N-stage serial system in which each stage replenishes its stock
from the next up stream facility. This model had been proposed earlier by Clark
[16], and its main assumptions include: external demand that is experienced at the
lowest stage only, constant lead times at each facility, fixed ordering cost incurred
at the highest echelon only, backlogging of unmet demand, a convex inventory
cost function at the lowest echelon, and inventory costs dependent only on echelon
stock—a concept to be defined shortly.

Clark and Scarf proved that an optimal policy for this model is of the form
order-up-to-R for all the facilities except for the highest echelon, which should
follow an (s,S) policy. This result was extended to the infinite horizon case by
Federgruen and Zipkin [33].

One of the most interesting features of this work lies in its decomposition ap-
proach, which not only simplifies the problem by reducing it to N single-stage
subproblems, but also permits using existing single-stage techniques to find a solu-
tion. Also important is the introduction of induced penalty cost functions, which
penalize a facility for the extra costs incurred elsewhere in the system due to the
insufficiency of stock at the facility in question to supply orders placed by the next

lower stage.
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Another important idea introduced by Clark [16] is the concept of a facility’s
echelon inventory, which is defined as all the stock either currently at the facility,
or that which has been there previously and is still in the system. Equivalently,
a facility’s echelon stock is equal to the stock at the facility plus all the stock on-
hand at or in-transit to all its descendants. A crucial assumption in the analysis
of multi-facility systems, although general enough for most cases, is that inventory
costs can be expressed as functions of echelon stocks only. Optimal policies also
turn out to be functions of echelon stocks only.

Perhaps the main limitation of the Clark and Scarf serial inventory model is
the absence of ordering costs at the lower echelons. The introduction of such costs
complicates the analysis to such an extent that no optimal solution is known to
date. In view of this difficulty, the same authors [18] proposed an approximation
approach for this problem based upon upper and lower bounds for the induced

penalty function.

2.2.2 Distribution Systems under Uncertainty

Being able to find an optimal solution for a multi-echelon inventory model is an
exception, not the rule. In general, optimal policies for such models are extremely
complex, difficult to find and, in most cases, unknown. Classical examples include
the serial system just mentioned, and distribution systems, i.e., systems in which
each facility has a unique supplier. These are also referred to as arborescence
systems.

Most of the literature available in this area focuses on two-echelon distribution
systems with one depot and multiple retailers. Policies for such systems may be

either decentralized, when management of each facility is based on the observation
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of its own status only, or centralized, which allow for system-wide coordination
at the expense of higher information requirements. We will address centralized
policies first.

Clark and Scarf [17] observed that their optimality result on serial systems could
be extended to distribution systems, but the resulting policies would no longer
be optimal because of the additional problem of balancing inventory among the
retailers. They proposed a relaxation to the problem by assuming that inventory
at the retailers always stays in balance. Federgruen and Zipkin [33] showed that
this assumption is a satisfactory approximation when the retailers exhibit normally
distributed demands with the same coefficient of variation. A related work by the
same authors [32] assumes that no inventory is held at the depot and presents a
myopic allocation heuristic which is optimal for an approximate model. A review
of distribution systems with centralized control can be found in Federgruen [29].

Ehrhardt, Schultz and Wagner [24] present a good heuristic for decentralized
policies by assuming that the depot’s demand consists of replenishment orders
from retail facilities which follow (s, S) policies. A single-facility heuristic is used
to find a good policy for the depot and the result is compared to policies obtained
by simulation. Other authors have studied this problem assuming that the retailers
face Poisson demands and follow a policy of a given form. See, for example, Axsater
[3], Deuermeyer and Schwarz [19], and Muckstadt [54]. A review of distribution
systems with decentralized policies can be found in Axséter [3].

An insightful and relevant result concerning the design and operation of cost
effective distribution systems is the reduction in uncertainty due to inventory con-

solidation. Often referred to as ‘risk pooling effect,” this principle enables one to
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raise service levels while reducing inventory carrying costs. This fact was first
reported by Eppen [25], who observed that the holding and penalty costs of a de-
centralized one-period stochastic system always exceed those of a centralized one,
and coined the term ‘statistical economies of scale’ to describe this phenomenon.
Related results include Eppen and Schrage [26], who show that the backordering
costs of a two-echelon distribution system decrease if the depot delays the allo-
cation of stock to the retailers from the time an order is placed with an external
supplier to the time the order arrives to the depot. Jackson and Muckstadt [44]
identify further uncertainty reduction benefits when the depot has more than one

opportunity to allocate stock to the retailers between depot replenishments.

2.2.3 Policies with Guaranteed Good Worst-Case
Performance

Since optimal policies for most multi-echelon inventory systems are either unknown
or extremely complex, some authors have sought simple policies with a good worst-
case performance. In this connection, the so called nested, power-of-two policies
have proven to be highly effective for several multi-stage generalizations of the
classical EOQ model. A policy is said to be nested if each facility sends out a
shipment at every epoch in which it receives stock. A power-of-two policy is one
in which all the reordering time intervals are of the form 2* - B, where B is the
length of a base planning period and k is an integer. To ease the presentation of
the results below, we also define the effectiveness of a policy as 100% times the
ratio of the infimum of the costs over all feasible policies to the cost of the policy
in question. A good review of the results presented in this section can be found in

Muckstadt and Roundy [55].



17

Early results in nested, power-of-two policies were developed simultaneously
and independently by Jackson, Maxwell and Muckstadt [46], who recommended
such policies for the joint replenishment problem, and by Roundy [69], who proved
that these policies are 98% effective for two-echelon distribution systems. Roundy
[68] later extended this 98%-effectiveness result to multi-echelon systems in which
the flow of stock can be represented by an acyclic directed graph, under assump-
tions similar to the classical EOQ model with no backorders. In both cases, the
98% bound rests on the assumption that the length of the base planning period
is a variable. If, more realistically, this period is predetermined, the efficiency of
nested, power-of-two policies is at least 94%.

General application algorithms to compute 94%- and 98%-effective policies can
be found in Maxwell and Muckstadt [52] and Roundy [68]. Faster algorithms
tailored to special cases include Roundy [66], for multi-item distribution systems,
Muckstadt and Roundy [56], for the joint-replenishment problem; and Jackson and
Roundy [47], for tree-structured systems.

Extensions of this model have been proposed by Mitchell [53], who shows that
both the effectiveness result and the algorithm for distribution systems can be
extended to permit backorders. Additionally, Jackson, Maxwell and Muckstadt
[45] and Roundy [67] have introduced capacity constraints into this model.

These results have spurred interest in obtaining extensions to stochastic de-
mand. Most of the research so far has been concerned only with two-stage serial
inventory systems. In this dissertation, we present 93%-effective policies for a two-
echelon serial inventory system with non-zero lead times at both facilities in such

a system. As far as we know, this result is the most general of its kind developed
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to date. Previous efforts include Atkins and De [5], who use an approach very sim-
ilar to ours. Their result, however, is incomplete because their worst performance
proof does not hold in all cases. A similar work by Chen [15] presents a valid
94%-efficient policy. However, this work assumes zero lead times at the depot,
an assumption much less general and realistic that the weak nestedness condition

used in our approach.

2.3 Current Inventory Theory’s Limitations

Perhaps the main virtue of most inventory models is that they formulate, in as
simple a way as possible, the main trade-offs involved in a stock replenishment
decision, namely the cost of carrying inventory, the cost of not having inventory
available when it is demanded, and the cost of placing an order. Some inventory
theory’s shortcomings stem from these models’ assumptions. Another important
limitation in the theory is that many relevant extensions of these models are not
well understood.

The main limitations inherent in the models’ assumptions include the difficulty
of estimating some of the parameters involved, and the way demand is modeled.
It has been written that the main problem in inventory theory is estimating the
parameters needed to apply a model. This is particularly true for the backordering
cost parameter p, and to a lesser degree for the fixed ordering cost K.

Virtually all inventory models consider the demand to be either deterministic
or stochastic and stationary. In many real applications, by contrast, demand falls
in between these two extremes. Forecasts for future demand often consist of a

deterministic firm-orders component, plus an additional stochastic component that
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typically is not stationary. Classical ways of modeling demand may be inadequate
for such cases.

Some relevant extensions of the classical inventory models which are not well
understood include: non-stationarity, forecasting, capacity constraints, multi-item
systems with random demands, multi-facility systems with random demands, or
any combination of these. Overcoming some of these difficulties is the main moti-

vation behind this dissertation.



Chapter 3

A New Lower Bound on the Cost

of Distribution Systems

This chapter focuses on the problem of making stock-replenishment decisions in
a distribution inventory system with the ultimate purpose of serving external,
stochastic demand in a cost-effective way.

The availability of system-wide information and the degree of decision-making
centralization are two important issues in managing a multi-echelon inventory
system. The availability of global information makes system-wide coordination
possible at the expense of higher information requirements. Centralized decision-
making enables a central planner to minimize total costs in the system but creates
a management problem since local managers are often given responsibility for their
facilities’ profits without authority over ordering and shipping decisions. Delegat-
ing these decisions to each manager, even if global information is available, may
result in decisions that are good from a facility’s viewpoint, but bad for the system

as a whole.

20



21

This chapter formulates a multi-facility distribution inventory model with cen-
tralized control, which generalizes the most widely used single-facility inventory
models: Veinott and Wagner’s [82] periodic review model and the continuous de-
mand, continuous review (r, @) model. Our model allows for constant travel times
and fixed shipping costs.

No optimal solution is known for this model. This is not surprising. In fact,
as mentioned in Chapter 2, no optimal solution is known for a simpler model
in which demand occurs at a deterministic, constant rate. Rather than seeking
optimal policies, this chapter focuses on finding lower bounds for the cost of a
distribution inventory system governed by an arbitrary centralized policy. These
bounds can be used to evaluate the performance of heuristic policies.

Two bounds are presented in this chapter. One uses fixed shipping costs and
is valid for any centralized, non-anticipatory policy—a concept to be defined later.
The other introduces a non-fixed imputed shipping cost and is valid only for weakly-
nested policies—a class of policies proposed for the first time in this dissertation,
which extend the concept of nestedness to systems with non-zero lead times and
stochastic demands.

These bounds are based on a decomposition approach that reduces a multi-
facility model to several single-facility subproblems. This approach is attractive
both theoretically and practically. From a theoretical point of view, it has the
advantages of reducing the computational effort of finding good policies and per-
mitting the use of existing single-facility techniques. From a practical viewpoint,
this approach provides a cost scheme for each facility that allows decentralized

decision-making on the basis of global information. This is accomplished by using



22

induced costs that mimic the effects on the system of a facility’s decisions by pe-
nalizing each facility for the extra costs its decisions may cause elsewhere in the
system.

The rest of this chapter is organized as follows. Section 3.1 reviews some
classical results on the two single-facility inventory models to be used in the rest of
the chapter, Veinott and Wagner’s periodic review model and the (r, @) continuous
review model. Section 3.2 formulates a multi-facility inventory model, presents and
comments on its assumptions, and shows how to find an equivalent formulation in
which travel times are eliminated using the concept of ‘shipment-based inventory
position’. Section 3.3 shows how a facility with no successors induces a single-
facility model, which we refer to as ‘the single-stage subproblem’. Section 3.4
presents the fundamental result of this chapter, a lower bound for the long-term
average cost incurred by a facility with no successors. Section 3.5 develops two
lower bounds for serial inventory systems. One of these bounds is valid for any
centralized non-anticipatory policy. The other bound is tighter, but valid only
for weakly nested policies, a new class of policies which extends the concept of

nestedness to stochastic systems with non-zero lead times.

3.1 Classical Single-Facility Inventory Models

This section reviews the two most commonly used infinite-horizon, single-item,
single facility inventory models, the classical periodic review model (see for exam-
ple Iglehart [42] and Veinott and Wagner [82]), and the continuous review (r, @)
model (see for example Zheng [87]). In both cases we limit our attention to the

minimization of the average cost per time period.
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Both of these models share the following assumptions:

Assumption 3.1.1 The facility replenishes its inventory from an external source
whose supply is unlimited, and the amount ordered arrives at the facility with a
constant lead time L after the placement of the order. If the review is periodic, L

is an integral multiple of the review period. In all cases L>0.
Assumption 3.1.2 Unmet demand s backordered.

Assumption 3.1.3 The cost of placing an order is fized and equal to K regardless

of the size of the order.

3.1.1 Classical Periodic-Review Stochastic Inventory
Model

This is perhaps the mosvt popular infinite-horizon model in stochastic inventory

theory, as indicated by the extensive number of articles which use its assumptions.

A finite-horizon version of this model was first proposed by Scarf [74] in 1960.

Iglehart [42] extended Scarf’s results to the infinite horizon case.

This model assumes that the inventory in the system is observed and ordering
decisions can be made at equally spaced time intervals referred to as review peri-
ods. These review periods are labeled 0,1,2,.... The demands d(0),d(1),... that
occur during these review periods are independent, discrete, nonnegative random
variables with a common probability distribution given by pp = Pr{d(t) = k},

k=0,1,2,...,t=12,...

Definition 3.1.4 The facility’s net inventory is defined as the inventory on-hand
minus outstanding backorders. NI(t) is the facility’s net inventory immediately

after placement and delivery of orders in period t.
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The following sequence of events takes place during each review period ¢, { =

1,2,...:
1. Initially the facility’s net inventory is equal to NI(t — 1) — d(t — 1).

2. A new order for quantity g(t) is placed. This order will arrive at the facility

during period ¢ + L. Order placement has no effect on the net inventory.

3. Orders due for receipt at period t arrive, causing the net inventory to increase

to

NI{t)=NI(t—1)—d{t—1)+q(t—L).
4. Costs for the review period are incurred which are equal to

KX[q(t)>O] + g(N[(t))')
where X[ is the indicator function and g(-) is called the inventory cost rate.

5. The period’s demand d(t) occurs and as a result the net inventory decreases

to NI(t) — d(t).

The inventory cost rate g(z) is often of the form E[h(z—d(0))* +p(z—d(0))7],
where the parameters h and p represent the cost of carrying or backordering
one unit of inventory, respectively, during a time period, z* = max{z,0}, and
z~ = (—z)*. To avoid trivialities, we do not consider policies that incur an in-
finite backlog or hold an infinite amount of inventory. Thus, the total amount
purchased is equal to the total amount demanded in the long run and therefore

linear purchasing costs need not be included in the model.
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Definition 3.1.5 The facility’s inventory position is defined as the net inventory
plus the amount ordered but not yet delivered to the facility. I P(t) is the inventory

position immediately after placement and delivery of orders in period t.

Note that NI(t) and I P(t) are observed at the same point in the review period.

Because of Assumption 3.1.1,
NI(t+ L) =IP(t) — D(t,t + L), (3.1)

where D(t,t + L) represents the amount demanded during the interval [t,t+ L).
Tn view of (3.1), Veinott and Wagner [82] point out that an equivalent zero-

lead-time formulation can be obtained by charging the inventory cost incurred in

period t + L to the inventory position I P(t) in period ¢. Consistent with this shift

in time, the inventory cost function is redefined as
G(IP) = Eplg(IP - D)}, (3.2)

where the expected value is taken over D, the demand that occurs over a lead time
L. Thus D ~ D(0, L).

The renewal function M (z) of the process generated by the sequence {X,,n =
1,2,...}, which in this context represents the expected number of periods until
at least z units are demanded, is very useful in computing the long-term average
cost of an (s, S) policy (see, for example, Veinott and Wagner [82]). The renewal

function can be computed by the formula:
i—1
M(0) = 0; M@) =Y m@), i=12,...; (3.3)
=0 ;\

where the renewal density, m(3), represents the expected number of review periods
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which begin with a total amount demanded of i units. The renewal density can be

computed with the expression:

m(0) = 1ij; mii) = Zi:opjm(i——j), i=1,2,... . (3.4)

Equations (3.3) and (3.4) imply that M (i) exists and is finite for all < provided
that p; < 1 for all 5.
The renewal function also satisfies the renewal equation
i—1
M@E) =1+>.p;M(GE—j), i=12,.... (3.5)
§=0
Let I(s,i) denote the expected inventory costs incurred until the inventory
position drops to or below s, when the inventory position starts at ¢ and no orders

are placed in the meantime. Using renewal theory, we can show that [/ (s,7) is

defined by

i—5—1

I(s,i)= 3 GG—Hm@), i>s, (3.6)

=0
and satisfies the renewal equation
i—s—1
I(s,i) = G(i) + ; pi(s,i — j). (3.7)
It is known that optimal policies for this model take the form (s, S) (see Iglehart
[42] and Zheng [85]). A standard application of the renewal reward theorem (see
for example Ross [65], proposition 7.3.), shows that the average cost per period

incurred by an (s, S) policy is equal to

K +1(s,9)

c(s,8) = ME—s)

(3.8)

Optimal parameters (s*,S*) can be chosen that satisfy the following lemma,

which is due to Zheng (see [85], Lemma 1).
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Theorem 3.1.6 Let G(-) be convez, G(y) — oo as |y| — oo, and let y° be a
minimum point of G(y). Then there exist s* and S* that satisfy
(i) ¢* = c(s*,5*) = min,cs c(s, S);
(ii) s* <y° < S%;
(ii3) G(s*) > ¢* > G(s* +1);
(v) G(S*) < c.
3.1.2 Continuous Review Models and (r,Q) Policies

This continuous review, continuous demand model was first proposed by Zheng
[87]. Let NI(t), IP(t) be as defined as in Section 3.1.1. Also, let D(t), t > 0
denote the cumulative demand that occurs during the interval [0, ].

It is postulated that the demand process {D(t) : ¢ > 0} satisfies the following

axioms:

Al. D(0) = 0 and the increments are independent, i.e.
ifO§t0 Stl S e Z g, then

P[D(t;) — D(t;—1) € Hi, i < k] = H P[D(t;) — D(ti-1) € Hi];

A2. The increments over time intervals of the same length are identically dis-

tributed, i.e. the distribution of D; — D, depends only on ¢ — s;
A3. The sample paths are continuous and non-decreasing.
These axioms are limited from a theoretical point of view because the only

process that satisfies them is one in which the demand occurs at a constant, con-

tinuous, and deterministic rate. To see why, note first that axioms Al, A2 and A3
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imply that the demand process is a Lévy process, i.e., a process with stationary
independent increments and whose sample paths have at most jump discontinuities
of the first kind almost surely. It is a known result that any Lévy process may
be represented as the sum of a linear drift, plus a Brownian motion, plus a jump
process, where a jump process is understood as a limit of independent superposi-
tions of compound Poisson processes with varying jump sizes. Since the continuity
and the monotonicity of the sample paths preclude the existence of the process’s
jump and Brownian components, respectively, it follows that the demand process
consists only of a linear drift. For a good reference on stochastic processes with
independent increments, see Ito [43], Section 4. A good summary of these results
can be found in Bhattacharya and Waymire [12], p. 349-356.

Despite this limitation, these axioms are approximately satisfied by many real-
world systems and remain the basis for insightful and highly effective inventory
models.

The demand rate ) := E[D(t)]/t is assumed to be finite and strictly positive.
As argued in the proof of Lemma 3.1.7 below, the expected time until z units are
demanded is equal to

M(z) = (3.9)

z
3

Inventory costs are assumed to accumulate continuously at a rate g(NI(t)),
typically equal to R(NI(t))" + p(NI(t)”). As in the periodic review, constant
lead-time model, (3.1) holds and an equivalent formulation with zero lead times
can be obtained by charging the expected inventory cost rate at time ¢ + L to the

inventory position at time t. Thus inventory costs can be assumed to accumulate

continuously at a rate G(IP(t)), where G(IP) = Ep[g(IP — D)] as in (3.2), and
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D represents the demand that occurs during a lead time.
The following lemma, new to our knowledge and proven in appendix B, is

parallel to equation (3.6).

Lemma 3.1.7 Assume that G(-) is measurable and nonnegative, that its domain
includes the interval [r,S], and that the inventory position at time t = 0 is equal
to S. Then I(r,S), the expected cost incurred until the inventory position reaches
some predetermined level 7 < S, assuming that no orders are placed in the mean-
time, is equal to

I(r,S) = :1\- / " Gy) dy. (3.10)

Proof
The proof of this lemma is included as Appendix B. Note that setting G(y) = 1
in (3.10) we obtain (B.5). O

If the system is governed by an (s, S) policy, the continuity of the sample paths
implies that the reorder point s is always reached exactly (a situation often referred
to in the literature as no overshooting of the reorder point). When this is the case,
(s,8) policies and (r, Q) policies become indistinguishable. In an (r, @) policy, @
units are ordered whenever the inventory position reaches r.

The cost function, which is parallel to (3.8) and can be derived by a similar

argument, is given by

MK + [ G(y) dy
5 .

or,Q) = (3.11)

It can be proven that (7, Q) policies are optimal for this problem (see Theo-
rem 4.1.3). Furthermore, optimal parameters (r*,Q*) are given by the following

theorem, due to Zheng (see [87], Theorem 1).
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Theorem 3.1.8 Assume that G(-) is conver and that G(y) = oo as |y| — oco.

Then (r*,Q*) is optimal for min, g c(r, Q) if and only if
o(r', Q%) = G(r*) = G + Q). (3.12)

3.2 Stochastic Modeling of Distribution
Systems

The purpose of this section is to formulate an inventory model which extends the
classical single-stage inventory model’s assumptions to distribution systems. These
assumptions include stochastic demand, constant travel times, non-zero shipping
costs, and either periodic or continuous review. This section consists of two sub-
sections; 3.2.1 formulates a distribution system inventory model, and 3.2.2 shows

how an equivalent zero-lead time formulation can be obtained.

3.2.1 Model Formulation

This section includes the notation to describe a distribution inventory model, the
assumptions for that model, and some comments about these assumptions.

Notation and Assumptions

Definition 3.2.1 Distribution System

Consider the graph representation of a single-item multi-echelon inventory system
consisting of N facilities, labeled 1,- -+, N, in which an arc from m to n means that
facility n replenishes its stock from facility m. Let A denote the set of all arcs. If
(m,n) € A we say that m is a predecessor of n and that n 1s a successor ofm. A
distribution system is a multi-echelon inventory system that satisfies two additional

conditions. First, the facilities can be labeled in such a way that if (m,n) € A,
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then m > n. Second, each facilityn < N has an unique predecessor, and N has no
predecessors. Thus N is the only facility that replenishes stock from an external
supplier. A descendant of a facility is a location that replenishes its stock directly

or indirectly from the facility in question.

Assumption 3.2.2 System Reviews

The distribution system is observed and stock-replenishment decistons can be made
only at certain points in time, referred to as review times, which may take place
either periodically or continuously. LetT' denote the set of review times. If system
reviews occur periodically, then T = {0,1,...}. If system reviews occur continu-

ously, then T = {t > 0,t € R}.

Assumption 3.2.3 Demand

D,(t), n=1,...,N, t € T represents the cumulative demand that occurs at fa-
cility n plus all of its descendants from time zero to time t, inclusive. Note that
the random variables D1(t), Da(t), ..., Dy(t) are not necessarily independent. The
cumulative demand process D, (t) has independent increments which are identically
distributed for time intervals of equal length. Ezternal demand occurs only at facil-
ities with no successors. The external demand at each location has non-decreasing
sample paths D,(t;w). The sample paths are continuous functions of time if sys-
tem reviews are continuous. The notation Dy(s,t), n=1,...,N, s,t € T will be
used to represent the demand that occurs during the time interval [s,t) NT. When
review is periodic we use d,(t) = Dyn(t) — Dyt — 1) to represent the one-period

demand.

Assumption 3.2.4 Backordering of Demand

Unmet external demand 1s backordered.
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Assumption 3.2.5 Travel Times
Material arrives at facility n a constant lead time L, after it is shipped by the
facility’s supplier. If the review is periodic, Ly is an integral multiple of the length

of the review period. In all cases L,, > 0.

Definition 3.2.6 Echelon Net Inventory

A facility’s echelon net inventory is defined as all of the stock at or downstream
from the facility. This includes the stock on-hand at the facility and at all of its
descendants, plus the stock in transit to all of the facility’s descendants, minus
the amount backordered at the facility and at its descendants. If the system s
reviewed periodically, NI,,(t), n =1,...,N, t € T represents facility n’s echelon
net inventory immediately after shipments are dispatched and received in review
period t but before d,(t) occurs. If system reviews occur continuously then NI,(t)
is observed continuously and N1I,,(t) is a right-continuous function of time for each

sample path.

Definition 3.2.7 Shipment-Based Inventory Position

The shipment-based echelon inventory position of facility n is defined as its net
echelon inventory, plus the stock already shipped to facility n that has not yet
arrived. This definition differs from the conventional use in that it does not include
the amount ordered by, but not yet shipped to, the facility. IP,(t), n =1,..., N,
t € T represents facility n’s shipment-based echelon inventory position at time t if
system reviews occur continuously, and immediately after shipments are dispatched

and received in period t if review is periodic.

Assumption 3.2.8 System Evolution

Let q,(t), n =1,...,N, t € T represent the amount shipped to facility n at the
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beginning of review period t if the system is reviewed periodically, and the amount
shipped at time t if the system is reviewed continuously. The following equations

hold for periodic review systems and for alt=0,1,...,andn=1,...,N:
NI(t+1) = NIL(t) — dn(t) + gt — Ln). (3.13)

For continuous review systems, NI,(t) and IP,(t) are continuously updated as
shipments are dispatched and received, and as demand occurs. They are right

continuous as functions of time.

Assumption 3.2.9 Stock Availability Constraint
We must have
> IP.(1) < NI,(t), vt € T, for all facilities n. (3.14)
m:(n,m)EA
This states that inventory cannot be shipped to a facility before 1t arrives at the

supplier of the facility.

Assumption 3.2.10 Shipping Costs
The cost of sending a shipment to facilityn (n=1,... ,N) at time t that raises its
shipment-based echelon inventory position to some level IP,(t), is equal to K, +

ord, (IP,(t)), where K, is a positive constant and ord,, (+) is a nonnegative function.

Assumption 3.2.11 Inventory-Related Costs
The function YN_; gn(N1,(t)) is used to model the inventory-related costs. This
is an additive function of the echelon net inventories NI(t) (1 <n < N)of

the facilities. Each function gn(-) is convez. For each facility with no successors
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gu(y) — o0 as |y| — oo. The total inventory-related cost incurred during any

interval [s,t), for s <t and s,t €T, 1s equal to

S on(NI@)dute) (3.15)

This integral has different interpretations according to whether the system re-
views are periodic or continuous. For periodic review, p is a discrete measure
which places a mass of one at each t € T. The integral in (3.15) represents
the inventory costs incurred during periods s,s + 1,...,t — 1, and is equal to

N stl g (NI(k)). If review is continuous, p 1s the Lebesgue measure and

(3.15) is equal to [; g.(NI(t))dt.
Definition 3.2.12 System History

1. F = o(Dut) : n =1,...,N,t € T) is the sigma-field generated by the
demand process.
2. u(t) = (NIL.(s),qu(s), Dn(s) : s < t,s € Tn=1,...,N), foralteT,

represents the system history up to time t.

Assumption 3.2.13 Centralized, Non-Anticipatory Policies

We consider centralized, non-anticipatory policies m, which are sets of functions
g : (tu()) = R, n=1,...N,t €T, from system histories into feasible shipping
decisions. Each function gu(t : u(t)) is measurable F. gu(t : u(t)) is the amount

shipped to facility n at time t. The dependence of g, on u(t) is often suppressed.

Assumption 3.2.14 Long-Term Average Cost of a Policy

For t > 0, let C(t) denote the total shipping and inventory costs incurred during
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the time interval [0,t). These costs are defined in Assumptions 3.2.10 and 3.2.11.

The long-term average cost of policy 7 is defined as
C(m) = lim inf 1C’ t 3.16
() = lim jnf ~C(@) (3.16)
We assume that this limit exists.

If system reviews occur periodically, we will assume that the following sequence
of activities takes place during each review period ¢ > 0. This sequence of events
is consistent with the assumptions above and is illustrated in figure 3.2.1.

At the beginning of period ¢, facility n has an echelon net inventory of NI,(t —
1) — d,(t — 1) and a shipment-based echelon inventory position of IP,(t — 1) —

do(t — 1),

A. Ordering. Facility N places an order. This does not change either the echelon

net inventories or the shipment-based echelon inventory positions.

B. Shipping and Receipt. The following activities are performed at facilities NV

to 1, in that order,

(B1) Shipments sent to facility n at time ¢ — Ly, are received. The facility’s

echelon net inventory increases to NI,,(t) = NIL,(t — 1) — d,(t — 1) +
qn(t — Ly).
(B2) Quantities g,(t), for all (n,m) € A, are shipped to each successor m

of facility n. The shipment-based inventory position of m increases to

[Po(t) = IPu(t — 1) = dp(t — 1) + gm(t).



Event

Start

B1. Receipt ¢,(t — Ln)

B2. Dispatch

gm(t) : (n,m) € A

C. Incurring

of Costs

D. Demand

dn(t)

36

Net Inventory and Inventory Position

After Event

NIL(t—1)—d,(t—1)

IP,(t — 1) —dn(t —1)
NI,(t) = NL,(t — 1) — dn(t = 1) + qn(t — Ly)

[P,(t — 1) — dy(t — 1)

NIL(¢)

IP,(t) = IP,(t — 1) —dn(t — 1) + gm(?),

V(n,m) € A
NT,(¢)
IP,(t), V(n,m) € A

NI, (t) — d,(t)
IP,(t) — d.(t)

Figure 3.1: Activities and Inventory Quantities During a Review Period.
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C. Incurring of costs. The costs for the review period are incurred. These costs

are equal to

N N
Z Xlgn ( t)>0 K + OI'd (Ipn(t + Z gn(NIn(t))

— n=1
D. Demand. The demands d,(t), n = 1,..., N occur. Both the echelon net

inventory and the shipment-based inventory position decrease by d, (t).

Note that the sequence in which shipments occur is important to ensure that
stock is available to be shipped to a facility’s successors in the same review period
in which it arrives at the facility in question. If review is continuous, these activities
take place continuously through time.

We conclude this section with some comments on the model assumptions. As-
sumptions 3.2.5 and 3.2.10 depart from most inventory models in that they focus
on shipments rather than on orders. This difference stems from a fundamental
distinction between single-facility and multi-facility systems. In the former, stock
replenishment is triggered by orders served by an unlimited supplier. In the latter,
stock replenishment is constrained by the availability of inventory and thus ship-
ments and orders do not correspond. Actual inventory levels are determined by
shipments, not by orders.

We account for shipping costs rather than ordering costs (Assumption 3.2.10).
This implies that if, for example, several orders placed by a facility are consolidated
into a single shipment sent from the facility’s supplier, the shipping cost is incurred
only once. This is realistic. Typically the placement of an order is primarily an
information transfer function. The shipment costs is typically much larger. It
includes the cost of moving the material, as well as transferring information on

what was shipped.
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Assumption 3.2.10 also introduces a non-fixed shipping cost term ord,, (I P,(t)),
which is a function of the ship-up-to inventory position at the time of the shipment,
independent of the amount shipped. The meaning of this non-fixed shipping cost
will be explained in Section 3.4; it will be useful in our method for obtaining
lower bounds on costs so that a facility can be eliminated. For now, we only say
that this cost represents the penalty cost imputed on a supplier for shipping a
quantity so small that the receiver cannot distribute its fixed shipping costs as it
had anticipated.

Inventory cost rate functions in Assumption 3.2.11 are typically based on func-

tions of the form

-~

Gn(z) = hoz +puz”. (3.17)

Parameter h,, represents the incremental cost of holding one unit of inventory for
one time unit at facility n (also called the echelon holding cost). The parameter
P, is related to the cost of incurring backorders. For facilities n with successors,
pn = 0. See Appendix A for a discussion of p,.

For continuous review systems, a typical choice for the cost rate function is

gn(NIn(t)) = gn(an(t)), (3.18)

and the parameters h,, and p, are measured in dollars per unit carried or backo-
rdered per time unit.

A typical choice for the cost rate for periodic-review systems is function

gn(NIn(t)) = Ea, @) [gn(NIn(t) '— dn(t))]v (3'19)

and the parameters h,, and p, are measured in units carried or backordered per

review period. This choice of the cost rate models the expected holding and back-
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ordering costs that will be incurred at the end of the review period.

The policies defined in Assumption 3.2.13 are non-anticipatory because ship-
ping decisions cannot be based on observations of future demand. They are central-
ized because shipping decisions are based on centralized control and system-wide
information. Compared with their decentralized counterparts, in which shipping
decisions are made locally and on the basis of local information, centralized policies
have the potential to achieve lower inventory-related costs at the expense of higher

information requirements.

3.2.2 Zero Lead-Time Reformulation

The purpose of this section is to describe an equivalent cost accounting scheme.
This approach follows the one proposed by Veinott and Wagner [82] for periodic-
review, single-facility models and is based on identity (3.1), which holds if the
definition of the term IP(t) is appropriately defined for multi-echelon inventory
systems.

In contrast to the external unlimited supply case, an internal supplier may—by
choice or necessity—delay the shipment of an order, or ship a quantity different
from the amount ordered. This results in random lead times and uncertain amounts
delivered. Consequently, the conventional definition of inventory position for multi-
echelon systems, namely the amounts on-hand plus on order, does not contain
enough information to determine the distribution of the net inventory L time
units into the future because (3.1) no longer holds.

For this reason we defined the shipment-based inventory position. Using this
definition for the notation I P(t), equation (3.1) holds and constant lead times can

be introduced into the model—with no additional difficulty—in the same way as
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in single-facility models.
Thus we can account for the costs incurred as if shipments arrived immediately.
Let D,, ~ D,(0, L,) be the external demand served by facility n and which occurs

over a time period of length L,. Define G,(-) by
Gn(IP,) = Ep,[g(I P — D,)].

Instead of incurring cost gn(NI.(t + L,)) at time ¢ 4+ Ly, we incur a cost of
Gn(IP,(t)) at time t. The two formulations are equivalent in expected cost.

We conclude this section by remarking that even though the shipment-based in-
ventory position enables one to compute expected inventory costs without explicit
knowledge of net inventories, the observation of such inventories is still necessary.
This occurs because the definition of the shipment-based inventory position natu-

rally introduces the constraint (3.14).

3.3 The Single-Stage Subproblem

This section defines and studies the single-stage subproblem, which is related to
a facility with no successors in a distribution system and is fundamental for the
lower bounds developed in this chapter. The single-stage subproblem is defined as

follows:

Definition 3.3.1 The term single-stage subproblem refers to the special case of

the model in section 3.2 when N =1 (i.e., there is only one facility).

The optimality of (s, S) policies for the single-stage subproblem is a question of
theoretical interest (as the basis for the lower bounds presented in this chapter) and

practical importance (because (s, S) policies are easy to implement and intuitively
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appealing). If the shipping costs are fixed, the results reviewed in Section 3.1
state that an (s, S) policy is optimal for the single-stage subproblem. This is not
necessarily the case when shipping costs are not fixed as example 4.1.2 shows.
Qufficient conditions for the optimality of (s, S) policies is the subject of Chapter

4. For now, we coin the following term to refer to this optimality.

Definition 3.3.2 If n is a facility in a distribution system which has no succes-
sors, then the single-stage subproblem induced by n is the single-stage subproblem
with shipping cost K,, + ord,(+), inventory cost function g,(NN I.(t)), demand pro-
cess {Dn(t) : t € T}, and lead time L. Note that there are no stock availability

constraints.

Definition 3.3.3 A facility with no successors in a distribution inventory system
is said to satisfy condition ¥ if an (s,S) policy is optimal for the single-stage

subproblem induced by the facility.

3.3.1 Optimal Parameters (s*,5%)

This section focuses on characterizing optimal parameters (s*, S*), which is a ques-
tion independent from condition ..

Let us start by recalling the terms I(s,i) and M(z). The first term, I(s,1)
denotes the expected inventory costs incurred until the inventory position drops
to or below s, when the inventory position starts at ¢ and no orders are placed
in the meantime. This term can be computed using (3.6) if system reviews occur
periodically and (3.10) if they occur continuously. Another term of interest is

M(z), the expected time until the cumulative demand reaches or exceeds z units.
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This expression can be computed using (3.3) for periodic review and (B.5) for
continuous review.
When system reviews occur periodically, the average cost per period incurred

by an (s,S) policy for the single-stage subproblem over an infinite time horizon is

equal to
K + ord(S) + I(s,S)
S) = . 2
6(37 ) M(S . 8) (3 O)
For continuous review, this cost reduces to
A § d
o.5) = M ord(8) + [ Gl dy o)

S —s

Theorem 3.3.4 There exist optimal parameters (s*,S*) satisfying:

(i) ¢* = c(s*,5*) = min{c(s,S) : s < S};
(i) s* <y, wherey® is any point at which G(-) achieves its minimum;

*

(iii) For continuous reviews: G(s*) = c*. If system reviews occur periodically,

G(s*) = ¢ > G(s*+1).

Proof
This proof is based only on the form of the cost functions (3.20) and (3.21) and
requires a different argument for periodic and continuous review. The proof for
the periodic review case mimics a proof developed by Zheng ([86] Lemma 3 and
[85] Lemma 1) assuming fixed shipping costs. The references contain details of the
proof. For the continuous review case, the proof is an exercise in calculus.

We start with the periodic review case. Since G(y) — oo as |y| — oo by
assumption 3.2.11, there is a finite number of pairs (s,S) for which c(s,S) <

G(yo) + ord(yo) > ¢(yo — 1,70). Therefore there exist values s* and S* satisfying
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(i). Parts (i) and (iii) follow by contradiction arguments using the convexity of
G(+) and the identity

m(S —s)

(s —1,5) = aG(s) + (1 — a)c(s, 5), where o = ME s+ 1)

Now we prove the theorem for the continuous review case. Note that ¢(s,S)
is non-negative and continuous for s < S, and that c(s, S) > o0asS—s5—0.
Recall that G(y) is nonnegative, convex, and tends to infinity as ly| = co. Thus
c(s,S) = oo as max(|s|,|S]) — oo. Consequently {(5,5) : c(s,5) < ¢(0,1)} is
compact, and (i) holds. Part (ii) follows by perturbing s*. Part (iii) follows from

the condition 0 = dc(s, §*)/8s = (S — 5)[c(s, ) — G(s)].00
3.3.2 A Facility as Part of a Larger System

This section lays down a probabilistic framework to compare the problem of run-
ning a facility based on the observation of local demand only, as occurs in the
single-facility subproblem, to the problem of running the same facility under a
centralized policy for a larger system, which may use information about events
external to the facility in question.

Consider a facility with no successors in a distribution inventory system. In
the remainder of this section this facility will be referred to as ‘the facility.” Let
{D(t) :t € T} and {D@) :t € T} = {Du(t) : n = 1,...,N, t € T} denote
the demand process generated at the facility and at all facilities in the system,
respectively. These demands processes generate sigma-fields F° = o(D(t) : t € T')
and F = o(D(t) : t € T).

For each t € T, we define the sigma-fields F? = o(D(s) : s < t, s € T)

and F, = o(D(s) : s < t, s € T). One can think of 7 as all the information
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available from the observation of the demand at the facility up to time ¢. Similarly,
one can think of F; as all the information available from the observation of the
demand process at all the facilities in the system up to time t. It is clear from
these definitions that Fy C F;, for all t € T'.

A random variable 7 defined on F and with possible values on T, 1is called a

stopping time for F if
{r <t} eF, forallt € T. (3.22)

In view of the interpretation of F;, this definition means that the event that a
stopping time is less than or equal to t is completely decidable by the observation
of the system’s demand history up to time . A stopping time 7, for F° is defined
in identical fashion as a random variable defined on F° and with values on T" such
that the event {7, <t} isin F}.

The following are common examples of stopping times. A constant is a stopping
time for either F° and F. The time to reach or exceed z units demanded at the
facility is a stopping time for both F° and F. Both the minimum and the maximum
of two stopping times for F are also stopping times for F. The same applies to
Fe.

The time of sending the next shipment to a given facility in a distribution
inventory system governed by a centralized, non-anticipatory policy is another
example of a stopping time for F. In this context, (3.22) precludes prevision on
the part of the decision-maker, meaning that he must make the decision to send a
shipment at time ¢ based only on the information available to him at that time.

Let 71 be a stopping time for F. Assume that a shipment is sent to the

facility at t = 0 which raises its shipment-based inventory position to some level
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IP(0) = S, and that no shipment is sent after time 0 and before time 71. The
total shipping and inventory cost incurred by the facility during the time interval

[0,71) is a random variable defined on F, with values in &, and defined by
71{w)~
R(71,S;w) = K 4 ord(S) + /0 G(S — D(t;w)) du(t), Ywe F (3.23)

where 1 depends on whether system reviews take place periodically or continuously
(see 3.15).
We are now ready to state the main results of this section, which consist of the

following two theorems:

Theorem 3.3.5 Any stationary policy m measurable F° that minimizes the long-
term average cost incurred by the facility among all policies measurable F° is also

optimal among all policies measurable F.

Proof
All of the proofs presented in Section 4.1 also hold when F is used instead of F°,
which proves the theorem for continuous review systems. The proof for periodic

review systems is in Appendix C.O

Theorem 3.3.6 Assume that condition ¥ is satisfied. Let c* be defined as in

Theorem 3.3.4 and let T be any stopping time for F. Then

.. [Eoer[R(anT,S;w)]
I £ eF 3 &y > o )
it | =A@ |~ C (3.24)

for all S. Furthermore, (3.24) holds with equality for a stopping time T satisfying

E cr|T(w)] < co. (3.25)
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Proof
If (3.24) fails then there is a stopping time 71 and a finite number al > 0 such

that 7(w) = al A 7(w) satisfies

E,cr[R(7,5;w)]
Boer[r(w)]

Note that (3.25) holds for 7. As a result of the strong Markov property, the

<. (3.26)

subproblem renews itself probabilistically if a shipment that raises the inventory
position up to S is sent upon observation of 7. Repeating this process an infinite
number of times generates a renewal reward process which is equivalent to the
inventory policy ‘ship up to S every time 7 is observed.” The cost of this policy is
equal to the left-hand side of (3.26) as a result of the renewal reward theorem (see
for example Ross [65] proposition 7.3.). Additionally, c* is equal to the infimum
among the long-term average costs of all policies measurable F because of condition
3 and Theorem 3.3.5. This proves (3.24). Theorem 3.3.4 implies that a stopping
time 7 exists for which (3.24) holds with equality, and (3.25) follows from (B.5)

and (3.3)—(3.4).0
3.4 A Lower Bound for the Cost of a Facility

The purpose of this Section is to present an alternate cost accounting scheme
for a facility with no successors in the distribution inventory model formulated
in Section 3.2.1. We will show that for a given policy, the costs incurred by the
alternate accounting scheme are lower bounds on the actual costs incurred. The
alternate accounting cost scheme accumulates inventory costs at a rate H (IP), a

non-increasing function of the facility’s inventory position, and also incurs a non-
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fixed shipping cost J(S) when a shipment that brings the inventory position up
to S is sent. Both of these cost functions are based on the optimal policy for the
single-facility’s subproblem.

The bound’s inventory cost rate is defined by

G(y) if y < 5%,
c otherwise.

This function, proposed by Atkins and De [5] and similar in spirit to the one
proposed by Clark and Scarf [17] for serial systems, is based on the following
rationale. At all times the cost rate is at least ¢*, which is the lowest average
cost that the facility can achieve. If the facility’s echelon mventory falls below its
reorder point it will do so because of a decision made by the supplier. In that case
the facility’s optimal policy becomes infeasible. The extra costs incurred by the
facility are modeled by H(-) and can be charged to the supplier.

The non-fixed shipping cost J(:) rests the observation that an optimal policy
achieves cost ¢* by distributing the shipping costs over the entire time period when
G(IP(t)) < c¢*. If, by shipping a small order quantity, the supplier does not raise
the facility’s inventory position to a level high enough to distribute all the facility’s
shipping costs, then the non-distributed portion of these costs is modeled by J()

and can be charged to the supplier. Formally, the shipping cost function is defined

as
K + ord(9) if § <s%,
J(S) = { K+4ord(S)+I(s*,8) —c* - M(S —s%) if s*<S<S*AS,
0 otherwise;
where

S :=max{IP: G(IP) <c"} (3.27)
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and the notation s A t means min{s, ¢}.
The following remark is the reason why this lower bound is more tractable than

the original cost structure in multi-echelon environments.
Remark 3.4.1 The two functions defined above satisfy the following properties.

(i) H(-) is convex and non-increasing;
(1) J(S) >0 for all S.

Part (i) of this remark follows by Theorem 3.3.4 and the convexity of G(-). Part
(i) follows from the optimality of (s*,S*) among (s,S) policies. The following

theorem is the main result of this section.

Theorem 3.4.2 Consider a facility with no successors in the distribution inven-
tory system and that condition ¥ is satisfied for this facility. Define the following

two cost structures for the facility:

[P ] Inventory costs accumulate at a rate G(IP) and the cost of shipping up to

S is equal to K + ord(S);

[B ] Inventory costs accumulate at a rate H(IP) and the cost of shipping up to

S is equal to J(S).

Then, for any non-anticipatory policy m, the facility’s average cost over an infinite

time horizon under [B] does not exceed the same cost under [P].

Proof
Assume that the inventory system is governed by the same policy and costs are
accounted by the two cost structures. Hence shipping times and quantities are the

same for each realization and we are comparing expected costs. As before, let the
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filtrations F; and F? denote the set of events that are measurable on the history
of the system and the facility’s demand process, respectively, up to time t.

Since the costs incurred over a finite time interval do not affect the long-term
average cost per period, let us assume with no loss of generality that the first
shipment is sent to the facility at time ¢ = 0 and that it raises its inventory
position to some level S = IP(0). It is sufficient to show that the expected cost
imposed by [B] does not exceed that imposed by [P] between consecutive shipments
to the facility. Hence we only consider the interval [0, 71{w)), where 71(w) is the
time of the next shipment.

If S < s* there is nothing to prove because [P] and [B] are the same. Thus we
assume that S > s*. Note that 71(w) is a stopping time on F. The objective is to
prove that

71{w)
J(8) + Ber /0 H(IP(t;w)) dt

71{w)

< K +ord(S) + Boer / G(IP(t;w)) dt
0
or equivalently
71 (w)
Ewe}-/o [H(IP(t;w)) — GUP@;w))]dt < K4 ord(S) — J(S). (3.28)

If system reviews are periodic, integrals from a to b become summations from ¢t = a
tot=b—1 (see (3.15)).

Let 7*(w) = 7(S—s*;w) denote the time until at least S—s* units are demanded,
which is a stopping time for both F° and F. The left hand side of (3.28) is equal

to

1(w)
Foer || [HUIP()) = GUP(t:w))] di
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= Ber [ T (1 P( w)) — GUP(5w))] dt

71 (w)
+ Ew EF f

(rIAT* ) (w

)[H(IP(t; w)) — G(IP(t;w))] dt
= Bur | T e (1Pt w))) d.

The first equation holds because 71 A 7* < 71. The second one follows by the

definition of H(-). Substituting into (3.28) we conclude that it is enough to prove
(T1AT*){(w)
Focr /0 [ — GUP(Hw)]dt < K+ord(S)—J(S).  (3.29)

IfS>8*AS, J(S) =0 and (3.29) follows by Lemma 3.3.6 because 7 A 7" is a

stopping time on F. If § < S* A S, we have

Fucr [ T s _ aiPw)dt < 5| "¢t = GUIP(tw))] dt
= ¢ M(S—s*)—1I(s%,9)

= K +ord(S) — J(S),

where the inequality follows because 71 A 7% < 7* and the integrand is positive for
every sample path. The last equality follows from the definition of J(S) in this

range.l]

3.5 Lower Bounds for Serial Systems

3.5.1 Weakly Nested Policies

This section presents an extension of the concept of nested policies to stochastic
systems with lead times. Nested policies have been used successfully by many au-
thors for deterministic models, mostly in connection with 94%-effectiveness results

for deterministic models. Some of these results are reviewed in Section 2.2.3 and



51

include Jackson, Maxwell and Muckstadt [46], Jackson and Roundy [47], Maxwell
and Muckstadt [52], Mitchell [53], and Roundy [69] [68].

Nested policies are not as effective when demand is stochastic. Chen [15] proves
that nested policies are optimal for a two-stage serial inventory system with zero
lead time at the upper echelon. If Ly > 0, however, nested policies are not optimal,
as we argue later in this section.

The following definition provides an extension of nestedness to stochastic mod-

els with lead times.

Definition 3.5.1 : Weak Nestedness.
Consider any two facilities m,n in a distribution system such that n (the receiver)
replenishes its inventory from m (the supplier). For any system history, let S and
R denote the set of shipments made to the supplier and the receiver, respectively.
Assume that stock at the supplier is managed on a first in, first out basis and define
the function ¢, that maps S into R. Ifoc € S, p € R, and dm (o) = p then p is
the first receiver-shipment that contains stock from supplier-shipment o.

A policy is weakly nested if it induces well defined, one-to-one functions ¢ n(-)

for all system histories and for all arcs (m,n).

According to this definition, each facility under a weakly nested policy must
send part of each shipment it receives to each of its successors (a well defined
bmn(-), and must not consolidate shipments (a one-to-one ¢, ,(-). Note that
stock that arrives at m in two different shipments, say 01,02 € S, can be sent to
n in a single shipment p € R, provided that an earlier shipment p; € R from m
to n contained some of the parts that arrived at m in shipment o;. What is being

precluded is to combine all of the units in oy that will eventually reach n, and
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some units that reached m in a subsequent shipment, in a single shipment from m
to n.

Note that nested policies are weakly nested.

Weakly nested policies are not necessarily optimal. For example, consider a
two-facility serial system consisting of a depot and a retailer and suppose that
an extremely high demand occurs immediately after the depot places an order,
triggering the placement of a second order (by the depot) € time units after the
first one. If at the time the first order arrives at the depot, the expected backorder
costs to be incurred at the retailer during the next e time units are outweighed
by the fixed cost of sending a shipment to the retailer, it will be advantageous to
wait for the second order and to consolidate both orders into one shipment to the
retailer, hence saving the cost of sending a shipment at the expense of incurring
higher backordering costs.

Despite its sub-optimality, weak nestedness appears to be a reasonable as-
sumption in real situations. One reason is that it is common practice to expedite
shipments when there is a large amount of backordered demand. Another reason
is that the situation depicted in the example above should be highly unlikely, par-
ticularly if the demand variance is not extremely high and if the system policy is

soundly designed.

3.5.2 Serial Systems

This section applies the results presented earlier in this chapter to find a lower
bound for the cost of a serial inventory system.
We consider a serial system consisting of facilities labeled 1,. .. N and satisfying

all of the assumptions stated in section 3.2.1. External demand occurs at facility 1
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Corollary 3.5.4 If the definition of Ji(-) in [C3] (Definition 8.5.2) is changed to
.fl(w) = 0, for all =z, then Theorem 3.5.3 holds for any non-anticipatory policy ,

not just for weakly nested policies.

Proof

All the statements made in the proof of Theorem 3.5.3 still hold for arbitrary
non-anticipatory policies, except for the comparison between the shipping costs
incurred by [C3] and [C4]. In the corollary Ji(-) = 0. Thus the shipping cost

imposed by both structures is identically equal to 0 and the corollary follows.Ol
Algorithm 3.5.5 System Decomposition Algorithm

1. START. Start with an N-facility serial inventory system as described in

Section 3.2.1 and satisfying the assumptions stated in that section.

2. FAcILITY REDUCTION. Forn =1,..., N — 1, do the following:

If condition X is satisfied for facility n let (s}, S¥) denote the optimal policy
for the single-stage subproblem induced by that facility. If condition ¥ does

not hold then the algorithm fails.

Apply Theorem 3.5.3 to facility n. Obtain functions H,(NI,.1(t)) and

ord,1(-) as described in [C5]. Let

Gnt1 (N1 (1)) = gna(Nnia(t) + Ha(N Lopa (1));

and let the cost of sending a shipment to facility n+1 that raises its shipment-

based echelon inventory position to a level IP,,1(t) be equal to K, +

ord,1(1 Ppya(t)).
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Delete facility n from the system. For facility n + 1, define inventory-related

costs using gn+1(-) in place of g,1().

Note that the intermediate systems resulting from each of the N iterations
in these two algorithms satisfy all the assumptions stated in Section 3.2.1, and
thus the algorithm terminates successfully as long as condition ¥ holds at every
iteration.

The following two bounds are the main results of this section. The first of
these bounds is tighter than the second one and is valid only within the sub-class
of weakly-nested policies. The second bound is not as tight but is valid for any

non-anticipatory policy.

Theorem 3.5.6 If Algorithm 3.5.5 terminates with a single-facility problem and
an optimal policy can be found for such problem, then the long-term average cost
of this policy is a lower bound for the long-term average cost of any weakly nested

policy for the original system.

Proof

This theorem follows immediately from Theorem 3.5.3.00

Theorem 3.5.7 Assume that:
(1) gn(x) = 00 as z — oo, for all n.
(i1) N, gm(z) = 00 as z — —oo, for all n.

(iii) In Step 2 of Algorithm 8.5.5, K, is used for the shipment cost at facility

n+ 1, in place of K11 + ord,1(IP,11(1)).

Then Algorithm 5.5.5 terminates with a single-facility problem and an optimal

policy can by found for such problem. The long-term average cost of such policy is
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a lower bound for the long-term average cost of any centralized, non-anticipatory

policy for the original system.

Proof
The single-facility problem induced by facility n in Step 2 has a fixed shipping
cost and the cost rate §,.1(-) is convex and satisfies g,11(y) — oo as |y| = oo.
It follows that an (s,S) policy is optimal for this problem and thus condition ¥
is satisfied at each iteration of the algorithm. The rest follows immediately from
Theorem 3.5.6.00

Note that (i) and (ii) for Theorem 3.5.7 are satisfied for inventory cost rates

defined according to (3.18) and (3.19), as long as p > ¥, hy.



Chapter 4

Optimality of (s, S) Policies for

the Single-Stage Subproblem

This chapter studies the form of optimal policies for the single-stage subproblem,
defined in section 3.3, and which differs from standard single-facility formulations
since shipping costs are not necessarily fixed. The optimality of (s, S) policies for
this subproblem, also called ‘condition ¥’ in this dissertation, is fundamental for
the lower bounds presented in chapter 3.

This chapter is organized as follows. Section 4.1 shows that (s, S) policies are
optimal for the continuous-review version of the single-stage subproblem. Section
4.2 shows by means of an example that (s, .S) policies are not necessarily optimal
when system reviews occur periodically. Next, in section 4.2.1, sufficient conditions
for the optimality of (s, .S) policies for periodic-review systems are developed which
depend only on the form of the renewal function and are valid for any nonnegative
shipping cost function. The chapter concludes with section 4.2.3, which provides

evidence that seems to indicate that condition ¥ is more likely to hold as system

59
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reviews are performed more frequently.

4.1 Optimality of (s, S) Policies for
Continuous-Review Systems

We start the proof that (s, S) policies are optimal for the continuous review version
of the single-stage subproblem by recalling some terminology from Section 3.3.2.
The sigma-field generated by the demand process at a facility is denoted F° and
its natural filtration is denoted F?. Let 71 be any stopping time on F°. Assume
that a shipment is sent at time ¢ = 0 which raises the facility’s inventory position
to some level /P(0) = S. Then the cost incurred during the time interval [0,71)

is equal to
T1{w)™
R(71,S;w) = K + ord(S) —f—f G(S — D(t;w)) du(t), (4.1)
0

where y, defined in (3.15), represents the Lebesgue measure when the system is

reviewed continuously.

Lemma 4.1.1 Assume that the inventory cost rate G(-) is conver and that G(y) —

o0 as |y| — co. Let y° be any point at which G(-) achieves its minimum and let

Eoero[R(T, S;w)]
Eoexo [T(w)]

Find s(S) < y° satisfying G(s) = ¢(S). Then the infimum in (4.2) is achieved by

c(S) = inf{ : T a stopping time in f"}. (4.2)

T (w) = 7(S — 5(8);w), the time elapsed until S — s units are demanded,

Proof
First, note that 7*(w) is a solution to (4.2) if and only if it achieves the infimum
in

inf{E,er[R(7, S;w) — ¢(S)T(w)] : 7 a stopping time for Fe} =0. (4.3)
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Consider a sample path w € F° and note that 7*(w) > 7(S — yo;w) for all w.
This occurs because the sample paths are continuous and the ratio R(S, m;w)/7 is
decreasing as a function of 7(w) for 7(w) < 7(S — yo;w) for every sample path w.
Because of the convexity of G(-), the accumulation rate in (4.3), G(S — D(t;w)) —
c(S), increases monotonically and continuously as a function of ¢ as the inventory
position descends further from y,. Since 7*(w) must also minimize this difference,
the optimal stopping time along any given sample path is the time at which this

accumulation rate becomes zero. It follows that 7*(w) = 7(S — s(S);w).O

Lemma 4.1.2 Assume that the inventory cost rate G(-) is convex and that G(y) —
oo as |y| — co. Let ¢* denote the infimum of the long-term average cost incurred

by the facility, taken among all feasible policies. Then
¢ =inf{c(S) : S € R}.

Proof
By the renewal reward theorem, ¢(.S) is equal to the cost of the policy ‘ship up to
S every time 7*(w) is observed.” It follows that ¢* < inf{c(S): S € R}.

Let m be an arbitrary policy and let ¢, denote the long-term average cost
incurred by policy m. To prove that ¢* > inf{c(S) : s € R} it is sufficient to
show that ¢, > inf{c(S) : s € R} for all policies 7. The last inequality is true
because, by definition, the expected average cost per period incurred between any
two successive shipments by any policy 7 is no less than inf{c(S) : S € ®}.0

The following theorem is the main result of this section.

Theorem 4.1.3 If the system is reviewed continuously and the inventory cost rate
G(+) is conver and such that G(y) — oo as |y| — oo, then an (s*,S*) policy is

optimal for the single-stage subproblem.
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Proof
Lemmas 4.1.1 and 4.1.2 imply that ¢* = inf{c(s, S) : s < S} where c(s, S) denotes
the cost of an (s, S) policy, defined in (3.21). Theorem 3.3.4 (i) shows that the

infimum is achieved.O

4.2 Non-Optimality of (s,S) Policies for
Periodic-Review Systems

We start this section by showing an instance of a single-stage subproblem with
periodic review for which (s, S) policies are not optimal. The subproblem’s formu-

lation, cost expression, and optimal parameters are presented in Section 3.3.

Example 4.2.1 Consider a single-stage subproblem with the following distribution
for the one-period demand X,;: Pr{X, =5} = 0.8 and Pr{X, = 1} = 0.2.

The cost of sending a shipment that raises the inventory position to some value
IP is equal to 1 + ord(IP), where ord(IP) = 9 if IP < 9 and ord(IP) = 0
otherwise. Stock arrives to the facility immediately upon shipment.

Inventory costs are incurred at the end of each review period, after the corre-
sponding demand has occurred and the facility’s stock has been depleted. These
costs are incurred at a rate of one dollar per unit carried per period, and one

thousand dollars per unit backordered per period.

We will find the best (s, S) policy for this example and then show that a better
policy exists which is not an (s, .S) policy. Some relevant data are summarized in
Table 4.1.

To find the best (s,S) policy, we will start by finding an optimal reorder point

s* first. By Theorem 3.3.4, s* < y° = 5 (recall that y° is a point at which G(:)
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Table 4.1: Data for example 4.2.1.
1 4 5 6 7 8 9 10 11 12

K+4ordtd) | 10 10 10 10 10 10 11 1
G(i) 8006 08 18 28 38 48 58 6.8 7.8

c(4,1) 10.80 9.67 10.64 11.57 1255 4.18 4.59 5.41

h(i) 0 -333 -3.00 -193 -0.72 0 -1.00 0.07 2.13

achieves its minimum). The same theorem states that G(s*) > ¢* > G(s* + 1),
which implies that s* equal to 4 because G(4) = 800.6, which is much greater than
the optimal cost. By inspection over the costs of the policies (4,.5) (in the third
row of the table) we conclude that the optimal (s,S) policy is (s*,S*) = (4, 10),
which incurs an average cost per period of ¢(s*,S5*) = 4.18.

The question remains of whether there exists a better policy. An application
of the successive approximation technique from dynamic programming (see for
example Bertsekas [11], Section 8.2) results in the following policy: ship up to 10
if the inventory position is less than or equal to 4 or equal to 9; otherwise do not
ship. The cost of this policy is equal to ¢* = 4.13, which outperforms the best
(s,S) policy. Furthermore, the optimality condition to be discussed later shows
that this policy is optimal for this problem (the differential cost function A(-), to
be defined in proposition 4.2.3, is included as the last row in table 4.1).

We conclude that condition ¥ does not necessarily hold for the periodic-review

version of the single-stage subproblem.
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4.2.1 Sufficient Conditions for the Optimality of (s, S)
Policies for Periodic Review Systems

The main result of this section is that the assumption below is sufficient to ensure
that (s,S) policies are optimal for the periodic-review version of the single-stage
subproblem (recall that Section 4.1 proves the optimality of (s,S) policies for
the continuous review version of the same problem). The application of this as-
sumption to inventory theory was first proposed by Sahin [72], who studied its
implications on the behavior of cost functions and (s, S) policies for models with

fixed shipping costs.

Assumption 4.2.2 The renewal function M(-) is concave or, equivalently, the
renewal density m(-) is non-increasing.

In this chapter, concavity is assumed to be non-strict.

Our proof of sufficient conditions for the optimality of (s, S) policies for the
single-stage subproblem relies on the so called optimality condition for dynamic
programming. This condition is also the basis for all published proofs of the
optimality of (s,S) policies for models with fixed shipping costs. Translated into
the single-stage subproblem, this condition can be stated as follows (see for example

Bertsekas [11] Proposition 1, p. 332).

Proposition 4.2.3 Assume there exists a bounded function h : Z — R, often
referred to as the differential cost function, and a constant c*, satisfying the opti-
mality equation

(i) = inf [6(j — )[K + Ord(j)] + G(j) — ¢ + Yijlh(j ~-n)]  viez (14

where the function 6(z) =0 if 2 = 0 and 6(z) = 1 otherwise.
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Then if u*(i) achieves the infimum for all i € Z, the stationary policy “when
at state 1, ship up to u*(i)” is optimal. Furthermore, the average cost per period

under policy p*(-) is equal to ¢* for all initial states.

The differential cost function for the single-stage subproblem turns out to be
identical regardless of whether shipping costs are fixed or non-fixed. An expression
of this function in closed form was first proposed by Zheng [85] for the fixed
shipping-cost case. Zheng first proves that the unbounded function

5 (i) = 0, 1 < s§%,

I(s*,1) —c*M(i — s*), ©>s7,
satisfies the optimality equation (4.4), where s* is an optimal reorder point satis-
fying Theorem 3.1.6. Zheng also shows how a bounded differential cost function
can be obtained by an appropriate relaxation of the problem, a technique to be

discussed later.

The concavity Assumption 4.2.2 implies that ﬁ() satisfies the following lemma.
Lemma 4.2.4 If Assumption 4.2.2 holds, then h(i) is conver in the range i > s*.
Proof Let us start with the definition of &(-) in the range i > sx;

h(i) = I(s%i)—cM(i—s%), i>s",
i—8*—1 g—5*—1

= > m()GGE-1)— & > m(l), i > s

1=0 1=0
where the equality follows from (3.3) and (3.6).
Let Ah(i) = h(i) — h(i — 1), AG(i) = G(i) — G(i — 1), and let y, be a point at
which G(-) achieves its minimum. We want to prove that Ah(-) is increasing for
1> s".

AR() = m(D)AGE — 1) + m(i —s* — 1)[G(s* + 1) — ¢*]
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- 1_?:00_ m(z)AG(i—zH::i_ m()AG(i — 1)

+m(i —s* — 1)[G(s* + 1) — c].

Since G(-) is convex, AG(i) is increasing, non-positive for 7 < yp and nonneg-
ative for ¢ > yo. It follows that the second summation is increasing because it is
a sum of non-positive numbers decreasing in absolute value. Similarly, the first
summation is also increasing because when the value of ¢ increases by 1, each of
the existing (nonnegative) terms increases, and a new nonnegative term is added.
Finally, the third term is increasing because m(-) is decreasing and G(s* + 1) — ¢*
is a negative constant by Theorem 3.3.4, part (iii).O

We are now ready to state the main result of this section.

Theorem 4.2.5 If the concavity Assumption 4.2.2 holds, then an (s, S) policy is

optimal for the single-stage subproblem.

Proof
This proof, which closely follows a proof proposed by Zheng [85] for the fixed
shipping-cost periodic-review model, consists of the following steps. First, a re-
laxation of the model is proposed; second, a differential cost function is presented
whose associated policy behaves like an (s,S) policy in the long run; third, the
optimality condition is verified.

We start by relaxing the model to allow the placement of negative shipments.
More precisely, in the relaxed model the inventory position can be lowered from i
to 7 < 4 at a cost K + ord(j). This relaxation amounts to deleting the constraint

j > 1 from the original model’s optimality equation.
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The differential cost function for the relaxed model is defined by

0 if 1 < s*
h(i) = I(s*,i)—c*M(i—s*) ifs* <i<S°
0 ifi > 8°
where S° = max{S : I(s*,S) — ¢*M (S — s*) < 0} and (s*, S¥) are optimal param-
eters satisfying Theorem 3.3.4.

The following properties follow immediately from the definition of A(-).

K +ord(i) + h(i) > 0 for all i, with equality binding for i = S*;  (4.5)

S*o<se. (4.6)

The inequality in (4.5) follows from the minimality of ¢(s*, S*) for i in the inter-
val s* < i < S°, and because h(-) = 0 and ord(-) is nonnegative for i outside that
interval. Inequality (4.6) follows because K +ord(S*)+I(s*, S*)—c*M(S*~s*) =0,
which implies that I(s*, S*) — c*M(S* — s*) < 0 because ord(-) is nonnegative and
K is strictly positive. This last inequality implies that S° exists and (4.6) holds.
Finally, (4.5) is binding for ¢ = S* because of (4.6) and the definition of h(-).

Intuitively, —h(S) can be interpreted as the fixed shipping cost at which policy
(s*,S) would achieve cost c*.

The policy corresponding to the differential cost function A(-) calls for shipping
up to S* if the inventory position is at or below s*; placing a negative shipment
down to S* if the inventory position is above S°; and not shipping otherwise. The
average cost per period for this policy is the same as the cost of an (s*,S*) policy
because a negative shipment is placed at most once (if the initial inventory position

is greater than S°) and the policy becomes indistinguishable from an (s*, S *) policy
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afterwards. This difference between the two policies over a finite time period does
not affect the average cost over an infinite horizon.

We are now in a position to verify the optimality condition. Since h(-) is
clearly bounded, the proof reduces to the verification of the optimality equation
(4.4), which consists of proving the following two inequalities:

h(i) < G(&) — ¢ + > pih(i = 1) (4.7)
1=0
with the inequality binding for s* < < .S°, and
h(i) < inf{K +ord(j) + G(j) = ¢" + S (i =D}, (4.8)
1=0
with the inequality binding for i < s* and ¢ > S°. The first equation means that
not to ship is better than to ship for s* < ¢ < S°. The second equation means that
shipping up to S* is better than not shipping for ¢ < s* and ¢ > S5°.

Let us start with (4.7). The following ranges for ¢ will be considered one by
one: it i < §*, s* < i< 8° and i > S° In the first of these ranges, i < s*, (4.7)
reduces to 0 < G(i) — ¢*, which is true by Theorem 3.3.4 parts (ii) and (iii), and
by the convexity of G(-).

For the second range, s* <1 < §°, (4.7) reduces to

M) = G(3) — ¢ + Y mih(i — 1),
=0
which can be proved by substituting the renewal equations (3.5) and (3.7) into the
definition of A(-) in this range, and noticing that h(i) = 0 for 7 < s™.
In the last range, 1 > S°, the optimality equation reduces to

Gli) = + > ph(i = 1) > 0, (4.9)

1=0
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whose left-hand side, in view of the renewal equations (3.5) and (3.7), is equal to

I(s*,%) = M(i — s) — 1_§~ pi[I(s*,i—1) — ¢ M(i— s* —1)]
i—5°—1
> I(s*1) — MG —s") — ; pi[I(s*,1) — "M (i — s%)]
= ) - M= X p)

> 0.

The first inequality is true because I{s*,7) — ¢*M(i — s*) is non-decreasing for
i > S°, which follows from the convexity of I(s*,i) — c*M (i —s*) and the fact that
5° > y,. The second inequality is true because the term inside the square brackets
is positive for ¢ > S°.

We conclude the proof by verifying (4.8). In view of (4.7), it is sufficient to
show that

(i) < K +ord(j) + h(j), for all 4, 7;

which is true because the left hand side is non-positive by definition, and the right
hand side is nonnegative by (4.5). Furthermore, the fact that (4.5) is binding at
S* and the definition of A(-) imply that (4.8) is binding for ¢ < s* and ¢ > 5. This

concludes the proof.O]
4.2.2 Concavity Assumption and the One-Period Demand

The purpose of this section is to identify two classes of one-period demand distri-

butions that generate concave renewal functions.

Definition 4.2.6 A nonnegative random variable X is said to have a Decreasing
Failure Rate (DFR) distribution if Pr{X = 0} <1 and Pr{X >z +y|X >y} is

increasing iny > 0 for all z > 0.
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It is known that a continuous random variable with density f(-) and c.d.f. F(-)

has a DFR distribution if and only if its failure rate

__f@)
@) =17

is non-increasing (see for example Barlow and Proschan [7]).

A discrete random variable X with distribution p, = Pr{X = k} is DFR if and

only if its failure rate

Pk
r{k) =
(k) E;ikpj

is non-increasing (see for example Barlow and Proschan [6]).

Proposition 4.2.7 The following one-period demand distributions generate con-

cave renewal functions:
(i) Any decreasing failure rate (DFR) distribution;
(ii) A Bernoulli distribution.

Proof

This proposition was first proved by Brown [14] for DFR distributions. Direct
substitution shows that the renewal function is linear for Bernoulli distributed

demands.[D

Example 4.2.8 The following are examples of DFR distributions:

1. A negative binomial distribution with parameter o > 1 (see Barlow and

Proschan [6] p. 18).

2. A geometric distribution, which is a negative binomial with a =1, exhibits a

constant failure rate.
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3. An exponential or mized exponential distribution.

4. Gamma and Weibull distributions with rate parameter o less or equal to one.

4.2.3 Reducing the Review-Period Length

Recall that Theorem 4.2.5 states that (s, S) policies are optimal for the single-stage
subproblem with continuous review. In view of this result, one could conjecture
that (s, S) policies are more likely to be optimal for periodic review systems as
system reviews are performed more frequently. This section presents instances in
which reducing the length of the review period results in systems for which (s, S)

policies are guaranteed to be optimal.

Definition 4.2.9 Let P be a non-negative discrete distribution and n a natural
number. We say that a distribution Q is the kth root of P if P = Q**, the convul-

tion of Q with itself n times.

Roots do not exist for all distributions. Common distributions for which roots

exist include the binomial, negative binomial, and Poisson distributions.

Definition 4.2.10 Consider a single-stage subproblem with review period length
T.., one-period demand distribution P and inventory cost rate G('). Assume that P
has an k-th root Q for some natural number k. The kth root of this subproblem is
a new subproblem with review period length T, [k, inventory cost rate G(")/k, one-

period demand distribution Q, and otherwise identical to the original subproblem.

An interpretation of this definition can be given by assuming that there exists an
underlying demand process which is oberved at intervals of length T, for the original

subproblem and at intervals of length T /k for the nth root of the subproblem.
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Example 4.2.11 The one-period demand for the subproblem is is binomially dis-

tributed.

A binomial distribution with parameters (n,p) can be expressed as the convolution
of n Bernoulli distributions with parameter p. Theorem 4.2.5 and proposition 4.2.7

imply that (s, S) policies are optimal for the nth root of the subproblem.

Example 4.2.12 The distribution of the one-period demand for the subproblem is

a negative binomial.

It is known that the convolution of two negative binomial distributions with param-
eters (p, 1) and (p, o) is a negative binomial with parameters (p, a1 +az). Choose
any natural number n such that a/n <1 and express the one-period demand dis-
tribution as the convolution of n negative binomial distributions with parameters
(p,a/n). Then an (s, S) policy is optimal for the nth root of the subproblem as a
result of Theorem 4.2.5, Proposition 4.2.7, and Example 4.2.8.

Finally, assume that the one-period demand is Poisson distributed. If the
underlying demand process is continuous in time and has independent increments,
then it follows that the demand process is a Poisson process. We know that as
we make the review period smaller and smaller, the probability of two units being
demanded during a review period tends to 0 and therefore the demand over a short
time interval should looks more or less like a Bernoulli trial distribution. It should
thus be expected that the renewal function approaches concavity as the mean of

the distribution tends to 0. This is in fact the case.



Chapter 5

93%-Effective Policies for a

Two-Stage Inventory System

This chapter focuses on two-stage serial inventory systems with continuous review
and governed by weakly nested policies. We show that if the penalty cost for
incurring backorders is at least six times as large as the incremental holding cost
at the lower echelon facility, then a 93%-effective policy can be found.

The chapter is divided into four sections. Section 5.1 discusses the sensitivity of
the single-facility (r, @) model to changes of the shipping quantity when the reorder
point is kept at its optimal level. Section 5.2 formulates a two-stage serial inventory
model and establishes a lower bound for the long-term average cost incurred by

weakly nested policies for this model. Section 5.4 identifies 93%-effective policies.

5.1 A Sensitivity Property of the (r,Q) Model

The purpose of this section is to present a new sensitivity property of the (r,Q)

inventory model reviewed in section 3.1.2.

73
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Recall (3.11) states that the cost function for an (r, @) model is equal to

Q)
o(r, @) = ML g Gl)dy (5.1)

Assume that inventory costs include holding and backordering costs, which are
incurred at a rate proportional to the amount stocked or backordered, respectively.
Thus

g(z) = hx® + pz~,

where the parameters h and p are expressed in dollars per unit held or backordered
per day.
Using (3.2), we can write the inventory cost rate as a function of the inventory

position as
G(y) = Ep[M(y — D)* +ply— D)7} (5.2)

where D represents the demand that occurs over a lead time. The following remark

states some elementary properties of G().

Remark 5.1.1 If D has a density function, the cost rate G(-) satisfies the follow-

ing properties:

(i) G(-) is differentiable almost everywhere, G'(+) is non-decreasing and G'(y) —
h as y — oo0;
(it) G(-) is convez;

(i) G(y) — oo as |y| = oo.

Part (iii) is true because G(y) > g(y — E[D]) for all y, which follows from
Jensen’s inequality applied to (5.2) (Jensen’s inequality can be found, for example,

in Billinsgley [13], page 283). To prove (i) and (ii) we apply the fundamental
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theorem of calculus to G(y), which can be written as h(y — E[D]) + (h+p)E[(D —
y)*], and obtain G'(y) = h — (h+ p)(1 — Fp(y))-
Remark 5.1.1 implies that G(:) satisfies the conditions in Theorem 3.1.8 and

therefore ¢(r*, Q*) = min{c(r,@) : r € ®,Q > 0} if and only if
o', Q%) = Gr*) = G + @), (53)

Theorem 5.1.2 Let ¢t = ¢(r*,Q*) = inf{c(r,Q) : r € R,Q > 0}. Then for any

a>0

c(r*,aQ*) —c 1

( g ) 2 a7 (5.4)
Proof

This proof is an exercise in calculus which depends only on the form of the cost
function (5.1). The first step of the proof is finding a bound for the numerator of
the left hand side of (5.4). The second step is finding a bound for the denominator
of the same expression. Dividing these two bounds results in (5.4) and concludes
the proof.

We know by remark 5.1.1 (i) that G’(y) is non-decreasing and tends to h as y

tends to infinity. This implies that for any numbers a,b, a # b

Gla) = G) _

a—b -

h (5.5)

regardless of whether a is greater than or less than b.

We now start the proof with the numerator of (5.4).

c(r*,aQ") — c*
MK + [0 Gly) dy + [0 5% Gly)dy [ ¢ dy+ [0 e dy
aQ® aQ*
TG ~ ) dy 656
aQ* '
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where (5.6) holds because c*Q* = AK + J7 79" G(y) dy. Note that the additivity
of integrals in the first equation holds regardless of whether r* + @* > r* + a@*
or 7 + Q* <7 + aQ”.

The essential part of the proof is to use (5.5) to bound the integral in (5.6).

More explicitly, we now prove that

r*4+ad* - aQ*
'= r*+:z*Q (G) =e)dy < /T,,;* h(y — (r* + Q%)) dy

The first inequality is a direct consequence of the convexity of G(-) and of (5.3).
If a > 1, the second inequality follows from (5.5) with b = 7" + Q" and a = y.

If a < 1, then —[G(y) — ¢*] < =[aly — (r* + Q*))] for all y between the
integration limits by (5.5). Because the lower integration limit 7* + @ is greater
than the upper integration limit 7* + a@*, the second inequality holds.

Substitution of (5.7) into (5.6) yields the following bound for the numerator of
(5.4):

(r,0Q") — ¢ < sh(1 = aP(@). (58)

Next we find a bound for the denominator of (5.4):

¢ = ) = GO+ Q)

> max{g(r* — E[D]), g(r" + Q" — E[D])}
hp .,
> m@ > 0. (5.9)

The first equality holds by Theorem 3.1.8, the first inequality is an application of
Jensen’s inequality, and the second inequality follows as a result of known proper-
ties of the EOQ model with backorders (see for example, Zheng [87], Lemma 1, p.

6).
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The sought result (5.4) is the ratio of (5.8) over (5.9), which concludes the
proof. We close by pointing out that the inequality is binding when there are no
lead times, in which case the cost function is identical to that of an EOQ model

with backorders.[]

Corollary 5.1.3 If the backordering cost parameter p is at least siz times as large
as the holding cost parameter h, the extra cost incurred by rounding off the shipping

quantity to the nearest power of two, while keeping the reorder point fized, is at most

%.

This corollary follows because rounding off the shipping quantity to the nearest
power of two means that a € [1/v/2,v2]. The 7% value is a worst-case performance
for the bound of Theorem 5.1.2 for o in this range and for p/h > 6. In expected
value the bound is tighter because a most often falls closer to one and because the
bound improves for larger values of p/h. Practitioners typically use p/h > 10. For

p = h and a € [1/+/2, /2] the bound is at most 12%.

5.2 Two-Stage Model Formulation

This section considers a continuous review, two-stage serial inventory model with
fixed shipping costs. The system consists of two facilities referred to as ‘the retailer’
and ‘the depot’, and denoted by the indices 1 and 2, respectively. External demand
occurs at the retailer only. The retailer replenishes its inventory from the depot,
which in turn is replenished from an external and unlimited supply.

We assume that the system satisfies the assumptions stated in section 3.2.1.
These assumptions include: a demand process with stationary and independent

increments and continuous and non-decreasing sample paths, continuous review,
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backordering of unmet demand at the retailer, a fixed traveling time L; from the
depot to the retailer, a fixed lead time Ly for the shipments sent to the depot, and
fixed shipping costs at each facility, which are denoted K; and K. The inventory
cost rate is an additive function of each facility’s echelon net inventory and is the
subject of the discussion below.
Notation and Inventory Cost Rate
Inventory in the system can be located either physically at or in transit to any
facility. Let INI,(t) and TI,(t) (n = 1,2) denote the installation net inventory
and the shipments in transit to facility n at time ¢, respectively. Since backorders
occur at the retailer only, all of these quantities are nonnegative except for INIy(t),
which is unrestricted in sign.

A facility’s echelon net inventory at time ¢, defined in section 3.2 and denoted

NI,(t) (n=1,2), can be calculated by the expressions
NIi(t) = INL(t); NI(t) = INLi(t) + ITi(t) + INIx(t). (5.10)

Similarly, the shipment-based echelon inventory positions at time ¢, noted IF,(t)

(n = 1,2) and defined in section 3.2.2, can be calculated by the equations
IP,(t) = NIL,(t) + TI.(t), n=1,2.
The retailer’s shipment-based inventory position before shipping is denoted by

IP(t7) = lim OIPl(t —€).

e—»0,e>

Inventory costs are incurred at each facility at a rate linear in the amount

carried or backordered at the facility. Thus

GUNIL, ITy, INL, ITy) = (hy + ho) INI + pINIT + hoITi + hoINIp;  (5.11)
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where t has been omitted for convenience. The parameter hy represents an in-
cremental holding cost. There is only one backordering cost parameter p because
demand is backordered only at the retailer. All of these parameters are expressed
in dollars per unit carried or backordered per time unit and are assumed to be
positive.

An algebraic manipulation of (5.11) and (5.10) shows that the inventory cost
rate can be expressed as an additive function of each facility’s echelon net inventory
by

g(NI,NIy) = MNI{ + (p+ he) NIT + ho N1y (5.12)

where ¢ has been omitted for convenience.

5.3 A Lower Bound for Weakly-Nested Policies

The purpose of this section is to develop a lower bound for the long-term average

cost of any weakly nested policy for a two-stage serial inventory system.

Definition 5.3.1 Let W denote the class of centralized, non-anticipatory weakly

nested policies.

We start by applying Theorem 3.5.3 to the two-stage system. This results in

the following cost structures.
[CO ] The inventory cost rate is gi(N11(t)) = m[NL(®)]" + (p + ho)[NI1(t)]~.
The cost of sending a shipment is equal to Kj.

[C1 ] The inventory cost rate is G1(IPi(t)) = Ep,[g1(IPi(t) — Dy)]. The cost of

sending a shipment is equal to Kj.
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[C2 ] The inventory cost rate is Hi(/Py(t)) and the cost of sending a shipment
that raises IP;(t) to S is equal to the funtion Ji(S). The functions Hi(:)

and Jy(-) are defined in (5.14) and (5.15).

[C3 ] is the same as [C2] because Ji(:) is non-increasing and therefore Ji() =
J1(4).

[C4 ] The inventory cost rate is equal to H;(NIx(t)) and the cost of receiving a
shipment at facility 2 is equal to J1(S2), where S; = NIy(t) represents the
depot’s echelon net inventory just after the time ¢ when the shipment arrives

to facility 2.

[C5 ] The inventory cost rate is equal to H;(NIx(t)) and the cost of sending a
shipment to facility 2 is equal to ordy(S) = Ep,[J1(S—Ds)], where S = I P»(t)
represents the depot’s shipment-based echelon inventory position just after

the time ¢ when the shipment is sent to facility 2.

Recall that functions Hi(-) and ords(+) are based on the optimal policy (r}, Q7),
for the retailer’s single-stage sub-problem. It is shown in Theorem 3.1.8 that the

parameters of this policy are characterized by the equation

MKy + fr?_’_Q; Gi(y) dy

Gi(r7) = Gi(ri + Q1) = - (5.13)
Q1
Functions Hi(-) and ordy(-) are defined as
Gi(IPi(t it IP(t) < 71,

H(IPy(1) = 1(1Pi(t)) 1(t) <7 (5.14)

i otherwise.

K1 if $ <rf,
Ji(S) = K — X1t fr‘f (¢ —Gily))dy ifr; < S <ri+Q7, (5.15)

0 otherwise;
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We continue our argument by applying Algorithm 3.5.5 to the two- stage serial

system.

1. START. The two-facility serial inventory system defined in Section 5.2 satis-

fies the assumptions stated in Section 3.2.1.

2. FACILITY REDUCTION. The facility reduction step eliminates the retailer
from the system. This technique can be applied because the retailer satisfies
condition ¥, a fact proven by the results on the optimality of (r, Q) policies
reviewed in Section 3.1.2. The resulting system consists of one facility—the

depot—only. The inventory cost rate for this system is equal to
G2(NI(t)) = he NIo(t) + Hi(N (1)), (5.16)

and the cost of sending a shipment that raises the depot’s shipment-based

echelon inventory position to level I P5(t) is equal to

Kg -+ OI‘dg(IPQ(t)). (517)

Definition 5.3.2 Fort > 0, let B(t) denote the total shipping and inventory costs

incurred during the time interval [0,t) under [C5]. For any m € W let

B(r) = lim inf ~B(t). (5.18)

t—oo §

Theorem 3.5.3 implies that for allme W
B(n) < P(m). (5.19)

Remark 5.3.3 Consider the function

MKy + ord(ry + Qo)) + [1219 Ep,ga(y — D2) dy
Q2 ’

Cp(re, Q2) == (5.20)
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Then for any @ € W such that under m, the depot follows an (72, Q2) policy to

replenish its tnventory

B(m) = Cp(r2,Q2) (5.21)

Transferring Shipping Costs

Let 0 < A < K;. Consider a two-stage model identical to the one described in
Section 5.2, except that the retailer’s shipping cost is equal to K; — A instead of K7,
and the depot’s shipping cost is equal to Ko+ A instead of Ky. Let Ca(7) denote the
long-term average cost of policy 7 for this new shipping cost parameters. Applying
Theorem 3.5.3 to the new shipping cost parameters results in a lower bound for
C(r), analogous to (5.20), which we will denote Ba(m). Furthermore, if 7 € W

calls for an (re, Q2) policy for the depot we define
Cp(ra, Q2; A) := Ba(m). (5.22)
Lemma 5.3.4 Forallme W,0 <A< Ky,

Ca(m) < C(m).

Proof

Recall from Definition 3.5.1 that for each realization of 7, there exist a well defined,
one-to-one function o(-) from the set of depot shipments S to the set of retailer
shipments R. The lemma is true because, for all realizations of m, the extra cost
A incurred for each depot shipment o as a result of the transfer in shipping costs,

is offsett by a cost saving of equal magnitude for each shipment ¢ Ho)=p0O

Theorem 5.3.5 Minimax Property
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Function Cg(ry, Q2, A), defined in (5.22), satisfies the minimaz property. This

means that there exist r3, Q5, A such that

in(ag sup Cp(re, Q2; A) = sup ixg Cg(re, Qa; A) = Cp(r;, Q3; A™). (5.23)
72,42 4§ § 72,42

The value (5, Q%; A*) is often referred to as a saddlepoint.

Proof
A straightforward argument shows that Cp(rs, @2;A) is continuous because it
results of the composition of continuous functions.

For 6 € [0, Ky] let (r3(6),Q3(6) be a solution to min,, g, C(ra2, Q2;6). Such
solution exists because of Theorem 3.3.4. Furthermore, the continuity of Cp(-)
implies that Q5(6) is a continuous function of 6.

For any ry € R, Q2 > 0, let 6*(r, @2) be a solution to maxo<s<k, C(r2, Q2;90).
This solution exists an is continuous on 73, Q2 because Cg(-) is continuous.

Now consider the function §(8) := §*(r3(8), @3(6)). The arguments above show
that (6)(8) : [0, K1) — [0, K] is continuous. It is a known result that any

continuous function from a closed interval onto itself has a fixed point. Thus there

exists a point 6/ € [0, K;] such that
5 = 5 (3 (87, Q3(AT)). (5.24)

To conclude the proof, consider the following inequalities

IA

inf sup Cp(r2, Qs,0) sup Cy(r3(6%),Q3(67); 6
= Ca(r3(67), @5(6%);67)(5.25)
= 11’15 CB (7‘2, QQ; 5f) (526)

< inf,, g, sups Cp(r2, Q2;0);
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where (5.25) follows from (5.24) and (5.26) follows from the definition of 73(5), Q3(6).

The proof is finished because it is known that for any function f(x,y), inf, sup, f(z,y) >
sup, inf, f(z,y)O
Theorem 5.3.6 Lower Bound for Weakly Nested Policies

Let G1(IPy(t)) = Ep,[g1(IP(t) — D1)]. For any Q > 0 the following quantities

are uniquely defined

r1(Q) s.t. G1(r1(Q)) = G1(r(Q) + @), (5.27)
m{Q)+Q
8@ =Ki-5 [ (Gl — Galo)] dy (5.28)
Furthermore,
¢t = ngfv C(n) (5.29)
> éfgz Cg(re, Q2; A(Q2) ™). (5.30)
Proof

Quantities 71(Q) and A(Q) are uniquely defined because G1(-) is strictly convex
and G(y) — oo as |y| — oo. We also define Q@ = {r € W : 7 calls for an (re, Q2)

policy for the retailer, 12 € R, @2 > 0}. It follows that

¢ = ;25\/(3(71’) (5.31)

= igévggs(;lgp}{l Cs(m) (5.32)

> inf B 5.33

> nf, sup Bs(m) (539

= inf sup Bs(m) (5.34)
TEQ 0<I< Ky

= inf sup Cp(re,Q2;9) (5.35)
r2:Q2 0<6<K;

> inf sup Cp(re, Q2 A(Q2)") (5.36)

72,Q2 0<§< K,
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The infimum in (5.31) exists because C(7) is non-negative and well defined for
all 1 € W. Expressions (5.32) and (5.33) follow from Lemma 5.3.4 and (5.19),
respectively. Theorem 4.1.3 implies that for any 7 € W, 0 < 6 < Kj,there exist
7 € Q such that Bs(n°) < Bs(r); since also @ C W, (5.34) follows. Equation
(5.35) is true by (5.21). To conclude, note that 0 < A(Q2)" < Ky by (5.27), (5.28)

and G1(+) is convex; (5.35) follows O

5.4 A 93%-Efficient Policy

This section shows a class of weakly nested policies, denoted P(rs, Q1,Q2). We
prove that P(rq, @1, @2) always contains a 93%-effective policy.
Features of Policy P(r2, Q1,Q:)

Policy P(rq, @1, Q2) is based on the following principles:
1. The depot follows an (rz, Q2) policy based on its echelon inventory position.
2. The depot ships stock to the retailer on a first in, first out basis.

3. There is no mixing of stock from different depot-shipments into the same

retailer-shipment. This implies that P(rs, Q1, @Q2) is weakly nested.

4. The retailer always places an order when I Py(t) = r1(Q1), defined in (5.27).
The amount shipped to the retailer varies according to the amount of stock

available at the depot.
Assumption 5.4.1 We will assume that Q2 > Q1

Shipments

A depot-shipment is a shipment from an external supplier to the depot. A retailer-
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shipment is a shipment from the depot to the retailer. We will use the following

notation for depot-shipments.
1. o denotes any depot-shipment;
2. o+ denotes the next depot-shipment after shipment o;
3. o— denotes the last depot-shipment before shipment o.

Time Epochs and Inventory Quantities Related to a Depot-Shipment

For each depot-shipment o, we define the following items.
1. t,(o) is the time at which o arrives at the depot;

2. We define
NIy, (t) :== NI(t.(0)) — D(ta(0),1t), (5.37)

where D(tg,t1) := —D(t1,t2) for t; < ta. If t > t,(0) then
NIy(t) — NI, ,(t) > 0 (5.38)

is the amount of inventory that has arrived at the depot in the time interval

(ta(0),t]. Note that NIy ,(t) is continuous and non-increasing, and that

NIy, (t) = NIy(t), if t,(0) <t < ta(o+). (5.39)

3. t,(0) is defined by

tu(o+) = sup{t : NIo,(t) > r1(Q1)}. (5.40)

Clearly

Nlyo(tu(o4)) = ri(Qu)- (5.41)
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4. t.(o) = max{t.(0),tu(0)}.

Since the retailer places orders when IPi(t) = r1(Q1) and because IP(t) <
N1I,(t), one can think of t,,(c) as the latest time at which o can arrive at the depot
without causing unfilled orders from the retailer.

Policy P(ry, @Q1,Q2) operates in cycles with one cycle per depot-shipment.
The cycle corresponding to a depot-shipment o occurs during the time interval
[7.(¢), 7.(c+)). No shipment to facility 1 contains stock from two different depot-

shipments. We now present a formal description of Policy P(re, Q1, Q2).

Algorithm 5.4.2 : Policy P(rz, @1, Q2)
Facility 2 Inventory Replenishment. Facility 2 follows an (rq, Q2) policy based on

its echelon inventory position.

Facility 1 Ordering. Place an order for Q; units whenever the facility’s shipment-
based inventory position IP;(t) reaches r1(Q1). Recall that 71(Q1) is defined in
(5.27).

Facility 2 Shipping. For each shipment ¢ incoming at the depot, execute the

following steps:

1. Compute the Ship-up-to Level for the current cycle. At time t.(c), calculate

the ship-up-to level for the current cycle, denoted S.(o).

Case 1. If NIy ,(t.(0)) < r1(Q1) + Q1, set k(c) = 0 and

SC(O") = leﬂ(t).

Case 2. If NIy, (t.(0)) > r1(Q1) + Q1, execute the following steps:
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(a) Compute AA(c), the amount available for shipping after fulfilling the

demand backlogged at the beginning of the cycle.
AA(0) = NIy, (t.(0)) — ri(Q1)-

(b) Compute SQ1(c), the shipping quantity for the current cycle, and an

integer k(o) > 0, such that

AA(o) = 2¢@ . 8Q(0); 27V < EZ%(?)’ < 212,
1

(c) The ship-up-to level for the current cycle is equal to
Se(0) = r1(Q1) + SQu(0).
2. First Shipment. Make a shipment to facility 1 at time ¢.(c) so that

IPi(t.(0)) = S.(o).

3. During the rest of the cycle corresponding to o, ship SQ1(c) units each time
an order from facility 1 comes in. Keep sending these shipments until either
the installation inventory at facility 2 is depleted, which will occur after

2k@) — 1 more shipments.

If the demand process is assumed to be deterministic and occur at a constant
rate, then Policy P(rz,Q1,Q2) resembles the one proposed by Mitchell [53] for
distribution systems under such a demand process. In the random demand case,
Policy P(ra, Q1, @2) is different from Mitchell’s in that shipping quantities to fa-
cility 1 change in time to account for randomness in the amount available for

shipment at stage 2.
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Note that P(r, Q1,Q2) is weakly nested. Note also that under P(ra, Q1,Q2)
all retailer-shipments sent during the same cycle raise facility 1’s shipment-based

inventory position to the same level S.(o), which may change from cycle to cycle.

Definition 5.4.3 Note that when Q1 = @2, all shipping quantities are equal to
Q1 = Q.. Under such circumstance, retailer-shipments are sent immediately upon
the arrival of an incoming depot-shipment or when facility 2 places an order,

whichever happens later. We refer to this special case as a lot-by-lot policy.

A one-to-one correspondence between depot-shipments and retailer-shipments
can be established for each realization of a lot-by-lot policy because all depot ship-

ments and retailer-shipments have equal quantities. The following claim follows.

Claim 5.1 All lot-by-lot policies satisfy C(P(r2,Q,Q)) = C5(P(r2,Q,Q)), for all

0<d<Kj.

Lemma 5.4.4 The following properties are satisfied for all depot-shipments o:
(i) tu(o) < tu(o+).
(ii) t.(o) < te(o+).

(i1i) Nlpo(t.(0)) < m1(Q1) if and only if t.(0) > tu(o+). If te(o) = tu(o+) then

(iv) Lett € [t.(0),t(0+)).
(iv-a) Ift < t,(o+) then NIy(t) > NI (t) > IPi(t) > m1(Q1)-
(@"U~b) Ift 2 tu(O'-f') then ]Pl(t) = NIg(t) = N.[Q’g(t) S Tl(Ql)-

(v) No shipments to facility 1 are made at time t if t € [tu(c+),tc(0+)) and

t > t.(0).
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(vi) If tu(o4) > tc(0) then IPi(tu(o+)") = r1(Q1)-
(vii) Assume NI, (t()) < r1(Q1) + Q1. Then either NIy(ta(0)) = IPa(te())
or NIx(ta(0)) 2 IPi(te(0)) = 71(Q1) + Q1-
(viii) If Q1 = Qo then NIp,(tc(0)) < m1(Q1) + Q1.
Proof
Since NIa(ta(0)) = Nla(ta(o=)) = D(ta(0—),ta(0)) + Qa, it follows that

NIQ"o-(t) = NIQ’O-_(t) -+ QQ, for all ¢. (542)

Thus t,(c) = sup{t : NIz ,_(t) > r1(Q1)} < sup{¢: NIy, (t) > ri(Q1)} = tu(o™)
by the continuity and monotonicity of NIz ,(-). This proves (i). Part (ii) follows
immediately from (i) and t,(0) < t.(0+).

The first statement in (iii) follows by (5.40). The second statement follows

because, by(i), t.(c) > tu(o+) > tu(0).

Note that
Policy P(r2,Q1,Q2) will not ship any material from depot-
(5.43)
shipment o+ to facility 1 before time t.(o+).
Therefore
IP(t) < NIy,(t(o)) — D(tc(0),1)
= NlI,(t), if t € [t.(0),t.(0+)). (5.44)

Let ¢ € [t.(c),tc(0+)). There is enough inventory in shipment o and in all

earlier shipments to keep IPy(t) above 71(Q1) at time t if and only if

NI, (t(o)) > ri(Q1) + D(t.(0),t)
& Tl(Ql) < Nfgag(t)

& t<ty(o+), (5.45)
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where the equivalences follow by (5.37) and (5.40). Policy P(r2, Q1, Q2) is con-
structed to keep IP;(t) above r1(Q1) as long as possible, i.e.,

IP(t) > r(Q1) if (o) <t <tulo+).
This expression, together with (5.38) and (5.44), prove (iv-a).

If t,(c+) < t.(o) then by (iii) and Policy P(rs, Q1, Q2), all of the inventory
that arrived in shipment o is dispatched to facility 1 at time t.(c). If t,(o+) >
t.(c) then Policy P(rz,Q1,Q2) ships all the inventory in o to facility 1 before
time ,(c+). Therefore if t,(o+) V t(0) <t < to(o+), then IP(t) = NI ,(t).
By (5.43), (v) holds. By (5.44) and (5.45), if t € [t.(0) V tu(o+),t.(0c+)) then
IPy(t) = NI, (t) < r1(Q1). By (5.39), NI2(t) = N1y ,(t), so (iv-b) holds.

Claim (vi) follows upon taking the limit as ¢ 1 t,(c+) in (iv-a), and noting that
NIz, (tu(o+)) = r1(Qu)-

Next we prove (vii). By Policy P(r2, @1, @2) all of the inventory in o is shipped

at time t.(c). By (5.43),
IPi(tc(0)) = NIz (te(0))- (5.46)
By (5.42), (5.41) and Assumption (5.4.1),
NIy, (tu(o)) + Q2

r1(Q1) + @1

> NI ,(t(0)).

NIy, (tu(o))

Vv

Therefore either NIp,(t,(0)) > Nly4(t(o)) or NI ,(tu(0)) = Nlyo(t(o))-
In the former case the monotonicity of NI ,(-) implies that t,(0) < tc(0) = ta(0).

By (5.39) and (5.46),

NIy(t,(0)) = NIy.(ta(0))



= NIQ’O-(tC(O'))

= IPy(t(0)),

so (vii) holds. In the latter case r1(Q1)+ Q1 = NI, 4(t.(0)) = IPi(t.(0)) by (5.46),
and NIy(ty(0)) = Nlo,(ta(o)) = Nlao(t(o)) by (5.39) and the monotonicity of
NIz, (). Claim (vii) follows.

We conclude by proving (viii). If @1 = Q2 then NI 4(t.(0)) = NIy (t.(0))+
Qs > NIp,_(t(0)) + Q1 = r1(Q1) + Q1, where the first equality follows by (5.42)
and the last equality follows by (5.41).0

The following properties related to the above cost structures are the basis for

the effectiveness results to be presented later in this chapter.

Lemma 5.4.5 (i) The total cost incurred in the interval [t.(o) Viu(o+), t(c+))

is the same under [C1] and [C4].

(ii) Assume that
ty(o+) > te(0) (5.47)
and that Case 1 of Step 1 of Algorithm 5.4.2 holds, that is, that NI ,(t.(0)) <
r1(Q1) + Q1. Then the expected total cost incurred in [t.(0),t,(0+)) is the

same under both [C1] and [C4].

(iii) Assume that (hy + p)/hy > 6 and that Case 2 of Step 1 of Algorithm 5.4.2
holds, that is, that NIy,(t.(0)) > r(Q1) + Q1. Then the expected costs
incurred during the interval [t.(c),t,(c+)) under [C1] do not exceed the ex-

pected costs incurred during the same interval under [C4] by more than 7%.

Proof

To prove (i), note that the inventory-related costs are equal because of Lemma 5.4.4
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(iv-b) and (5.14). If t.(0) < t.(c) then no shipping costs are incurred under [C4].
By Lemma 5.4.4 (v), no shipping costs are incurred under [C1]. If t.(0) > tu(o+)
then by Lemma 5.4.4 (v) and Policy P(r2, Q1, Q2), We incur a cost of K, for making
a single shipment at time t.(o’) under [C1]. By Lemma 5.4.4 (i), tu(o) < ty(o+) <
to(c), 50 t.(0) = ta(c). By Lemma 5.4.4 (iv-b), r1(Q1) > NIo(t.(0)) = Nlao(ta(o)).
Under [C4] we incur a shipping cost of J(NIx(ta{(0))), which is equal to K; by
(5.15). This proves (i).

To prove (ii), note that Case 1 in Step 2 of Algorithm 5.4.2 applies. By
the definition of P(rg, Q1,Q2) a retailer-shipment is sent at time t.(o) and no
other shipments are sent during the interval [t.(c),tu(o+)). Thus [Py (t) is mono-
tonic and continuous for t € [t(0),tu(c+)). By (5.47) and Lemma 5.4.4 (vi),
[Py(ty(o+)") = 71(Q1). Lemma 3.1.7 implies that the expected total cost in-

curred under [C1] during the interval [t.(c), t.(0+)) is equal to

| [Pilt(o)
Kl -+ A e (©1) Gl(y) dy (548)

Setting G(y) = ¢} in (3.10), Lemma 3.1.7 also implies that
. L IR
& - Bltu(o+) — to(0)] = A / o G (5.49)

By Lemma 5.4.4 (iv-a), Hi(NIy(t)) = ¢j for t € [t.(0),tu(0+)). By Lemma 5.4.4
(vii), (5.15) and (5.49), the expected total cost incurred under [C4] during the

interval [t.(c+),t.(0)) is equal to

N Etal0) 465 Elta(o4) ()] = TRt +3 2 [ cidy. (5.50)

1 1

Note that by Lemma 5.4.4 (iv-a), 71(Q1) < IPi(t.(0)) < Nlpo(te(o)) <
r1(Q1) + Q1. The expected costs (5.48) and (5.50) are equal by (5.15), so (ii)

holds.
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To prove (iii), note that Case 2 of Step 2 in Algorithm 5.4.2 applies. By (5.39)
and the monotonicity of NIy, (-), Nlx(ta(c)) = NIy o(ta(o)) > NIpo(tc(0)) >
71(Q1) + @1, so no ordering costs are incurred for the current cycle under [C4].

Let [ denote the number of shipments sent to facility 1 during the interval
[te(0),tu(c)). Policy P(r2, Q1, Q) and Lemma 3.1.7 imply that the expected cost

incurred under [C1] during this interval is equal to

By Lemma 5.4.4 (iv-a), Hi(NIy(t)) = ] forallt € [te(o), tu(o+)). By (B.5), under
[C4] the expected value of the same cost is equal to [ - A7! - ¢f - SQ1. These two
expected costs differ by at most 7% as a result of Corollary 5.1.3 and the definition

of SQ1(0)0
Theorem 5.4.6 Policy P(re, Q1,Q2) satisfies the following properties.
(i) If (ha +p)/h1 = 6 then
C(P(re, QF,Q2)) < 1.07- Cy(ra, Q2;0), for all 79, Qo > Q1

(ZZ) C(P(r27 QI& Q;)) = CB(T%Q;; O), fOT’ all T2.
(i11) C(P(re, Q2Q2)) = Cp(re, Q2; A(Q2)), for all ra, Q2 < Q3.

Proof

First recall that for all (72, @1, Q2), C(P(r2, Q1, Q2)) results from accounting costs
[C0] to each realization of P(rs, Q1, Q2) and B(P(ry,Q1, Q2)) results from account-
ing costs [C5] to each realization of P(rz, @1, Q.). Furthermore, [CO] and [C1] are
equivalent in expected cost, and so are [C4] and [C5]. Thus it is sufficient to

compare the expected cost incurred by P(ry, @1, Q2) under [C4] to the long-term
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average cost incurred by P(re, @1, @2) under [C1] . By Remark 5.4.4 (ii) it is suf-
ficient to consider the expected cost during the interval [t.(c),t.(c+)) for any o.
For expositional purposes, in this proof we alter [C4] by assuming that the cost
Ji(NIy(t.(0))) associated with the receipt of shipment o is incurred at time t.(0).

First we prove (i). By Lemma 5.4.5(i), the proof of the theorem is complete if
tu(o+) < to(o). Thus it is sufficient to assume that t,(c+) > t.(c) and consider
total expected cost incurred during time interval [t.(c),t,(0+)) under [C1] and
[C4]. Consider each of the two cases in Step 1 of Algorithm 5.4.2. If Case 1 holds,
the expected costs under [C1] and [C4] are equal by Lemma 5.4.5 (ii). If Case 2
holds, the expected cost under [C1] does not exceed the expected cost under [C4]
by more than 7% by Lemma 5.4.5 (iii). This proves (i).

If Qt = Q., the argument used to prove (i) is still valid, and besides Case 2
never occurs because of Lemma 5.4.4 (viii). This proves (ii).

To prove (iii), note that (5.27) and (5.28) imply that

. ) r1(Q2)+Q2 L
G1(r1(Q2)) = Gi(ri(Q2) + Q2)) = ME: ~ A(Q2) +Q€1(Q2) &) dy; (5.51)

note also that 0 < A(Q2) < K; because Q2 < Q7.

Part (iii) follows because

C(P(ra,Q2,Q2) = Ca,)(P(r2,Q2,Q2)
- B(p(T%Q%A(QZ)))
The first equation is true by Claim 5.1. To prove the second equation, consider the

transfer of A(Q;) shipping cost units from the retailer to the depot. Theorem 3.1.8

and (5.51) imply that Q; is the optimal lot size for the single-stage subproblem
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induced by the retailer after this transfer of shipping costs. Thus (5.52) follows by
(i))d
Claim 5.2 (i) A(@2) >0& Q2 < @]

(ii) For allro, @2 < Q1, 0< 6 < K
Cp(re, Q2;6) < Cp(re, @2, A(Q2))

Proof
Part (i) follows from definitions (5.27) and (5.28) and because Gi(-) is strictly

convex. To prove (ii), note that

Cp(r2,@2;8) = Bs(P(r2, Q2,Q2))
Cs(P(rz, Q2, @2))
C(P(r2, Q2,Q2))
Cr(r2, Q2; A(Q2))

IN A

i

The first equation is true by definition. The next two inequalities follow from
(5.19) and Lemma 5.3.4, respectively. The last equality holds by Theorem 5.4.6(ii)

and (ii1). Part (ii) follows O
Theorem 5.4.7 Optimal Parameters
(1) Cp(r2,Q2;0) achieves its minimum.

(i) Cg(re, Q2; A(Q2)") achieves its minimum.

(iii) If there exists a solution (r3, @3) to min,, g, Cp(rs, @2;0) such that Q3 > Q7

then (r, @%;0) is a solution to min,, g, Cp(r2, @2, A(Q2)™).
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Proof

Theorem 3.3.4 implies (i). Next, note that Cp(r2, @2, ) is non-negative and contin-
wous, and that for all (rg, ), Cp(re, @2,6) — 0o as Q2 — 0. Recall that G2(N1I2) is
nonnegative and tends to infinity as |NIo| — oo. Thus for all § Cp(rz, Q2;8) — oo
as max(|r|, @2) — oo. Consequently {(r2,Q2) : Cp(r2, Q2, A(Q2)) < C5(0,1;0)}
is compact, and (ii) holds.

Next, note that for all 73, Q2
CB<Tg> ng O) < CB(T% QZ; 0) < CB(T27 QQ; A(Q2)+> (552)

The first inequality in (5.52) follows from the optimality of (r3,@%). The second
inequality follows from Claim 5.2(ii) for Q2 < @} and from Claim 5.2(i) for Q> >
Q1. Part (iii) follows immediately O

The following corollary is the main result of this chapter.

Corollary 5.4.8 If (hy + p)/h1 > 6, there exist parameters (3%, Q1", Q3") such

that P(rs*, Q%*, Q%) is 93%-effective within W, the class of weakly-nested policies.

Proof

Theorems 5.4.7(ii) and 5.3.6 imply that there exist parameters r3, Q5 such that
inf ey C(m) > Cp(rs, Q5 A(Q3)T). If Q3 > Q3, then P(r3, QF, Q3) is 93%-effective
by Theorem 5.4.6(i); otherwise P(r3, Q3, Q%) is optimal by Theorem 5.4.6(ii) and

(iii) O



Chapter 6

Conclusions

The 93%-effective policy for developed in chapter 5 substantiates the following

recommendations for managers of distribution inventory systems.

1. Make replenishment decisions based on shipment-based echelon inventories.
This recommendation has the following implications for the management of

a depot:

(a) Shipments to replenish the depot should be triggered by external de-

mand, not by orders placed by the retailer.

(b) Replenishment of a depot should take into account the stock located
downstream from the depot. An empty depot does not necessarily need
to be replenished if enough stock has been shipped to the facilities that

replenish their stock from the depot.

2. Keep reordering levels fixed and adjust shipping quantities, if necessary, to

equally distribute fixed shipping costs.

98



99

Extending the validity of these recommendations for more complex systems is
an interesting research topic. Policies based on the same principles could be evalu-
ated for any distribution system by comparing their cost, obtained via simulation,
to the lower bounds developed in chapter 3.

Some features of this dissertation are of theoretical interest and help to better
understand multi-echelon inventory systems. These features include the decompo-
sition approach and the imputed costs for the lower bound developed in Chapter
3. For the 93%-efficiency result developed in Chapter 5, interesting features in-
clude the concept of weak nestedness and the use of heuristic policies that keep
reordering points fixed while adjusting shipping quantities.

The following problems are not well understood today and would be impor-
tant areas for future research: the development of algorithms to compute efficient

policies, and extensions to multi-item models.



Appendix A

Accounting for Holding and

Backordering Costs

The purpose of this appendix is to show the relationship between the parameter
p,, used in (3.17), and the basic holding and backordering cost parameters, which
are not based in echelon net inventories.

For all facilities 7, we define the following:

1. The installation net inventory at facility n is equal to the stock-on hand at
the facility minus the amount backordered at the facility. This quantity is
restricted to be non-negative for facilities with no successors because backo-
rdering of demand does not occur at those facilities. The notation I NI,(t)
denotes the installation net inventory of facility n observed after dispatching

and delivery of shipments at time ¢.

2. The inventory in transit to a facility is defined as the stock already dispatched

from the facility’s supplier that has not yet arrived to the facility. The
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notation I7T,(t) denotes the inventory in transit to facility n after dispatching

and delivery of shipments at time .

3. The set consisting of facility n and all its descendants is defined recursively

as follows:
o*(n) = {n} U[Ugmeac™(m)]-
Similarly,

w*(n) = {n} U [Uwnmeat k)],

is the set composed of n and all its direct and indirect predecessors.

4. The echelon net inventory for facility n (see Definition 3.2.6) is equal to

NL(@t) = S INL,)+ Y ITi). (A.1)

meEo*(n) keo* (n)\n

5. The conventional holding cost parameter for facility n is defined as

he = gjiL (A.2)

men*

We also define S = {m : o(m) # 0} to be the set of all facilities with successors,

and 8 = {m : o(m) = 0} to be the set of all facilities without successors.

Claim A.1 The following results follow from these definitions:
(i) n € o*(m) if and only if m € m*(n);
(ii) If n € S, then IN1,, > 0;

(iii) Ifn € S, then NI, = INI,.
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We suppress the dependence of inventory levels on time for notational conve-
nience. Holding and backordering costs are conventionally accounted using the

cost rate

STRGUNILY 4+ 3 ITi)+ Y paINI,

(nk)eA nes

=3 > hdNL+ 3 hadTe+ 3 (b +5a)INI,

7 meEn*(n) men*(n),(nk)eA neSs

= S ha X INL+ 3 ITy) + Y (hy + D) IN I,

nea* (m) neo*(m), (n,k)€A nes

S haNILn+ Y (hi+Pa)NI.

nes

i

The first equation follows from the definition of A, and (ii). The second one is
based on (i). The third one is a result of (A.1).
It follows that the backorder cost in (3.17) is related to the basic holding and

backordering cost parameters by the equation:



Appendix B

Proof of Lemma 3.1.7.

Let 7(z;w) = inf{t > 0: D(t) > z} if > 0, and 7(z;w) = 0 otherwise. Then
7(z;w) is a stopping time for F° = o({D(t) : t > 0}) for all z. As in (B.5), for
any z > 0, let

M(z) = Eyere[r(z;w)],

and note that M(-) is non-decreasing in z.

Take any z,y > 0. Because of the continuity and the monotonicity of the
sample paths, the demand process visits x exactly once before reaching = + y.
Taking expected values and applying the strong Markov property we conclude
that

M(z +y) = M(z) + M(y), for all z,y > 0.

It is well known that the only non-decreasing function that satisfies this equa-
tion is

M(z) =c- z, (B.1)

for some ¢, 0 < ¢ < o0.
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The renewal process obtained from observing D(t) only at discrete points in
time will be useful in finding the value of c. Let D'(t) = {D(t) : t = 0,1,2,...},
7(z;w) = inf{t = 0,1,2,...: D'(t) > z}, and M'(z) = E[r'(z;w)]. It follows that

for all sample paths w: 7(z;w) — 1 < 7(z;w) < 7'(z;w), which implies that
M'(z) — 1< M(z) < M'(z). (B.2)
Since M'(z) < co by (3.3) and (3.4), it follows that
M(z) < oo for all z < oo. (B.3)

Next we prove that ¢ = 1/A. This is true because

c = limy oo —=

)
1
— tim, . M®) _ 5 (B.4)
T

The first equality holds by (B.1) and (B.3). The second inequality holds by (B.2).
The third one is a consequence of the elementary renewal theorem. By (B.1) and
(B.4), we conclude that

M(z) = <. (B.5)
The proof will be complete if we prove that
T(S—ryw) 1 rS
Baerl[ " GS=DEw)d] = [ ) dy. (B.6)

We will prove (B.6) for step functions first, i.e., for functions of the form:

N
Gn(m) = Z CkX[z;>a>mit1]
k=1

for some S = zg > z1 > - -+ > oy = 7, where x(j is the indicator function.
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The continuity and monotonicity of the sample paths implies that T(S—zo;w) =
0< 7(S —z3w) < -+ < 7(8§—ayp;w) <7(S— zy;w) = 7(S — r;w) for all

w € F° Thus

7(S—rw)
Bocrl [ GY(S—D(tw)) ]

T(S—zpw)

= Boero] Z[ G (S — D(t;w)) di] (B.7)

(5 -2k 1w)
T(S—zpiw)

= ZEwep/ © cpd]

(S —Tg-1:w)

N
= Z Buero[T(S — z;w) — 7(S — Zp-1;w)]
N
_ Z (zh- 1—$k) (B.8)
= ;—\/ "(y) dy, (B.9)

where (B.7) follows from the definition of G"(z), and (B.8) holds by (B.5).

Since G is measurable and non-negative, there exists a sequence of step non-
negative functions G, < G a.e. which converges to G a.e.; by (B.9), each G"
is measurable. Applying the monotone convergence theorem (as stated in Roy-

den [70], p. 227) we get

T(rw) w7 (riw)
E /0 G(S — D(tw))dt = K| /0 lim G™(S — D(t; w)) dt]
M 1 S d)
= tms [ G"(v)dy

1 /5

which completes the proof.0]



Appendix C

Proof of Theorem 3.3.5 for

Periodic Review Systems

We start by proving that the minimal cost incurred by the facility during any
finite time horizon is the same for policies both measurable 7 and F. This
is accomplished by formulating a dynamic program for each of these cases and
proving that any optimal cost for the first dynamic program is also optimal for the
second dynamic program. This result is then extended to long-term average costs
by taking limits as the time-horizon length tends to infinity.

Dynamic Programming Formulation for Policies Measurable F°.

We formulate the single-stage subproblem as a standard dynamic program in which

the time horizon is equal to the set {0,1,2,... , M}

1. The state =¥ represents the facility’s inventory position before any order is

placed.

2. The action y? = z{ + g7, where ¢f > 0 is equal to the amount shipped to
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the facility at the beginning of period ¢, represents the facility’s inventory

position after a decision to ship inventory to the facility is made.

3. A cost equal to (%, 4Y) = Xpys>ep) (K +o0rd(y7)) + G(y?) is incurred imme-
diately after the shipping decision is made. Recall that x7j is the indicator

function.

4. A random demand d¢ occurs introducing the system evolution constraint
ZE?+1 = fo(xtoa yf) d:) = yg - d?

The dynamic programming algorithm states that the cost functional JP(zy),
defined as the optimal expected cost for the remaining periods t,t + 1,..., M
when starting at period ¢ with inventory position z7, is uniquely determined by

the equations:

Ji(esy) = inf {5509} (C.1)
Joxf) = inf{g°(s7,4°) + EglJa (v’ — 4]} (C.2)
y° >0

t=0,1,...,. M -1
Dynamic Programming Formulation for Policies Measurable F.

The introduction of information external to the facility results in the following

formulation, in which the time horizon is also equal to the set {0,1,2,..., M 1.

1. The state z; = (z¢,z}), where z} represents the state of the rest of the system

before any shipping decision for period t is made.

9. The decision y, = (3°,v,), where y7 > z{ and Y, represents actions taken

outside the facility.
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3. The one-period cost is given by the function g(z:,y:) = 7°(29,y?) because

only the costs incurred by the facility are considered.

4. The random disturbance d; = (d?,d,) introduces the system evolution con-

straint

Tep1 = f(fﬂ'ta Y, dt)

- (yi(i) - d?) fl(a:tayt,di))'

The dynamic programming algorithm applied to this case states that the cost
functional J,(z;), defined as the optimal expected cost for the remaining periods

t,t +1,..., M when starting at period ¢ in state z, is uniquely determined by the

equations:

Ju(@i o) = inf {g(zu,y)} (C.3)

) ij\,jv Y
Jt($§> mlt) = yoi>%fy!{§(:ct, y) + Ed;’,d; [Jt+1(f($t> Yt, dt))]} (6-4)
t=0,1,...,.M-1
Claim C.1
Ji(28, 2}) = JP(x)), for allz¢, t=0,1,..., M.

Proof

We prove this claim by induction. The claim is clearly true for t = M by (C.1),
(C.3) and g(z:, %) = 9°(F, 47)-
Now assume that the claim is true for t + 1 and let us prove that the claim also

holds for t.

Jt(fcf,fcé) = inf ,{?i(fﬂt»y)+Ed;’,d;[JtH(f(xtaytadt))]}

y° >0,y
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= inf y,{‘go(z;’,yo) + Eg a[Jer1 (¥ — )1}

Yoy,

= inf {g°(2],y°) + Ea[Je1 (v} — d)]}

y° 2]

= JP(=));

where the second equation follows from the definition of g(z,y) and the induction
hypothesis.O]

The theorem we want to prove follows because the problem of minimizing the
long-term average cost incurred by the facility starting at state zg is equivalent to

minimizing the expression

lim (1/M)E{ g (e v},

M~—yo00

and claim C.1 proves that the minimization for any finite time horizon is equivalent

under both F° and F. This concludes the proof.0]
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