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ABSTRACT:  

 

Flash memory cells are typically quantified as extremely reliable as their 

endurance cycles have far exceeded the requirements of the actual application. However, 

as the dimension of device shrinks further in the near future, the reliability issue in flash 

memory cells has become a major concern in industries and evokes many research 

interests in universities worldwide. This thesis proposes a reliability model based on three 

contributing factors: stress-induced leakage current, random telegraph noise and reading 

errors caused in peripheral circuits. Each of the three factors is modeled mathematically 

as a function of threshold voltage. The resulting model is a probabilistic one where it 

indicates the probability of an error read at a given time. Numerical variable values used 

in the probabilistic models are extracted using Simulated Annealing algorithm. 

Simulation results are run in MATLAB environments and are compared to experimental 

data to validate the accuracy and consistency of the model.  In addition, a random number 

generator (RNG) using the randomness factors in RTN phenomenal is devised. The 

detailed generating algorithm and feedback loop scheme are introduced. The RNG is then 

tested using exploratory data analysis techniques, theoretical statistical tests and an 

industry standard NIST test suites.  
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1. Introduction 

 

1.1 Background 

 

Flash memories are non-volatile storage chips that can be easily programmed and 

erased by end users. In the past two decades, the tremendous advancement of design and 

manufacturing technology in semiconductor industry lead to a drastic transformation in 

personal computers and mobile devices. As the Moore’s Law continues as of today, the 

number of transistors on a single die has doubled almost every two years [1]. This is 

certainly no exception with flash memory chips. With the state of art technology in 2011, 

the size of transistors of flash memory could be as low as 20 to 25 nm, which leads to a 

density as much as 230 Gigabytes per inch square for multiple level cell flash chips 

shown in an industry demonstration a couple years back.  

 The advancement of flash memory technology has played a significant role in 

information technology in the last decade. The costs of the flash memories are far less 

than byte-programmable EEPROM, or electrically erasable programmable read-only 

memories. Therefore, it has become the dominant technology wherever a significant 

amount of non-volatile and solid state drive is needed. The flash memories were 

originally mainly used in portable storage devices, digital camera memory cards or digital 

audio players. Recently, the popularity in smart phones and tablet computers lead to a 

shift in flash memory market shares. According to a latest study by Gartner, more than 50% 

of flash memories produced are used in these mobile devices in 2011. The flash memory 

industry is dominated by large players such as Samsung, Toshiba and Micron 
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Technology, where they combine and produce annual revenue in excess of 20 billion US 

dollars.  

 Although flash memory is a groundbreaking technology, it was invented not long 

ago by Japanese engineer named Shoji Ariizumi working for Toshiba in 1980. The flash 

memory works as a floating-gate transistor where it stores the information in the memory 

cell. The traditional single-level cells (SLC) devices store one bit per transistor, whereas 

the newly invented multi-level cell, or MLC devices, can store multiple bits per transistor 

with different applied electrical charges. There are two main types of flash memory, the 

NAND type and the NOR type. The connections of the individual cells and the interface 

between reading and writing are different for these two types. However, the NAND type 

has been the dominant technology due to its lower cost and higher density. 

 In the past thirty years, many researchers in universities and technology 

corporations have been working to understand the physics behind flash memories, thus to 

improve the transfer rate, density, reliability and the overall performances of flash 

memory cells. This imposes a unique but challenging problem to researchers and 

engineers worldwide. This thesis will present the proposed theoretical model based on 

physical behaviors, experiments setups and analyses performed in order to understand the 

reliability issue of flash memories on a system level.   
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1.2 Motivation 

 

Historically speaking, flash memories are quantified as extremely reliable and 

their endurance cycles have far exceeded the requirements of the actual application.  For 

example, in a typical flash memory application such as portable disk drives or cellular 

phones, the memory information is programmed and erased no more than a thousand 

times in its life cycle. However, modern flash memory chips from major manufactures 

have a mean time to failure time on the order of 100,000 endurance cycles.  

The extreme reliability of flash memory chips leads to the ignorance of reliability 

study in industries. However, as the transistors size gets reduced further and multiple-

level cells in flash memories are used, the behavior of flash memory in stress have 

recently attracted many attentions in both academia and industries. Flash memory chips 

pose an interesting but challenging problem in terms of reliability compared to other 

integrated circuits. They are composed of the same basic materials and processing steps 

as other types of integrated circuits and similar physical degradation process apply, such 

as oxide breakdown, hot-electron damage, failure-in-time rates and bathtub curves. 

However, flash memory chips are nevertheless significantly different from other types of 

chips, thus lead to unique and challenging reliability characteristics.  

Flash memories are designed to be able to program, erase and retain charge on its 

floating gates. The uniqueness of this functionality requires higher electric fields than 

other traditional devices due to its reliance on oxide tunneling and hot-electron injection 

for its operations. Reliability issues with these mechanisms have somewhat impede the 

scaling issues of flash memory chips. In addition, the functionality of flash memory relies 
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on analog operations within the chip. In another words, the digital information of bits are 

stored in analog forms as threshold voltage distribution, then the analog information is 

later read and translated into digital information. In fact, the control circuits are analog 

while all other circuits, including charge pumps, sense amplifiers and voltage regulating 

circuits are all analog. With the state of art technology in multiple level cell flash 

memories, multiple bits of information are stored in one physical cell by different but 

precise placement and readout of threshold voltages. Obviously, the precise control of 

these analog threshold voltages would have major impact on the reliability of flash 

memory chips.  

It is essential to state that there are two major modes of operations for flash 

memory cells: low-voltage operations (the powered down mode) and high voltage mode 

(the operation of program and erase). The low voltage operations are similar to other 

traditional integrated circuits while the high voltage mode is unique. Typically, the flash 

memory cells fail due to the high voltage operations. This thesis study will focus on the 

behaviors of cells after many program and erase cycles and thus learn the reliability 

behaviors of flash memory cells. 

In the past, there have been some sporadic studies relating to the cause of failure 

of flash memories. Researchers speculate the failures might be related to cycling-induced 

degradations in flash memories, stress-induced tunnel oxide leakage current, process-

impacts on flash memory reliability and high-voltage periphery circuit variation. These 

above phenomenal might all contribute to the reliability problem of flash memory. 

However, as the transistor size gets reduced significantly and approaching the diameter of 
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an atom, the impacts of random telegraph noise, or commonly known as RTN, could be 

the biggest factor affecting the reliability of flash memory in the future.  

Random Telegraph Noises have been a major concern for analog and radio 

frequency in CMOS technologies. It is also projected to be a serious issue in flash 

memory chips as the dimension of transistors shrink. The voltage threshold caused by 

random telegraph noise could be estimated by the formula below: 

                      
 

                
                                                                   

where q is the elementary charge, Leff  is the effective channel length, Weff is the effective 

channel width, Rc is the coupling coefficient of control gate to floating gate and Cox is the 

capacitance of the gate dielectric.  The coupling coefficient amplifies the threshold 

voltage due to the stack-gate structure in flash memories. In addition, it is difficult to 

enlarge Cox to reduce oxide thickness due to leakage current. As a result, the reduction in 

dimension of transistors would lead to an abrupt increase in threshold voltage where it 

negative affects the performance and reliability of memory chips.  

 Beside random telegraph noises, stress-induced leakage currents and variation in 

peripheral circuits are the two other main reasons lead to reliability problems. It is 

advantageous to reduce the tunnel oxide thickness thus increases scalabilities. However, 

this leads to increase in leakage current and it causes serious issue in data retention and 

read disturbance. In addition, reading errors in peripheral circuits would also be a major 

reason that causes failures in flash memory cells. Although both of the behaviors were 

well studied in the past years, researchers rarely considered the incremental effect of 
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random telegraph noises, thus not accurately model the behavior of flash memory cells in 

stress. 

 The motivation of this thesis is to build a generic model considering the effects of 

random telegraph noises, stress-induced leakage current and peripheral circuit reading 

errors. It is intended to come up with a model involving the three major factors above to 

explain the failure behaviors of common flash memory chips. With the proposed model, 

its main objective is to better understand flash memories in stress and the main reasons 

that lead to breakdown.  After fully understanding the breakdown behavior of flash 

memory chips, there are many interesting applications that can be applied with the 

knowledge. First of all, the random telegraph noise is a stochastic process and this 

characteristic could help devise a random number generator using common flash memory 

chips. In addition, different bits could be characterized by leakage current, RTN and 

peripheral circuit parameters and this information could essentially be identified as 

signatures of certain flash memory chips.  Last but not least, if the failure behavior is 

entirely characterized and fully understood  by this model, better error correction codes 

could be developed in order to increase the mean-to-failure time for flash memory chips.  
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1.3 Overview 

 

The thesis is divided up into three main components. First of all, a literature 

review is conducted to study the researches done by people at other universities or 

industries on the topic of flash memory reliability. This includes the current knowledge 

about stress-induced leakage current, random telegraph noises, reading errors in 

peripheral circuits and random number generation techniques using physical mechanisms. 

Secondly, the proposed model to explain the failure behaviors is presented in details. The 

physical meanings of the six parameters used in the model are explained as well. The 

experimental procedures performed on flash memory chips and the results are 

documented. Signal processing techniques are applied on raw experimental data in order 

to analyze them in a systematic way. MATLAB simulations are also performed to verify 

the proposal model, and the simulation results are compared with actual results received 

from experiments. Last but not least, the applications using the proposal model are 

illustrated in the third part of the thesis. It mainly presents the random number generation 

mechanism applying the random nature of RTN behavior. It shows the signal processing 

technique used as well as the loop feedback algorithm needed to detect the suitability of 

various bits. The performance of this random number generator is compared with other 

random number generator schemes. The conclusion of the thesis summarizes the main 

results achieved from the study and explains the future direction of researched needed to 

better understand the reliability issues in flash memory cells.  
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2. Literature Review 

 

The literature review section is divided up into four components. The first part 

writes about the current research in the area of stress-induced leakage current. The second 

component illustrates the research performed on random telegraph noises and the main 

characteristics of RTN. The third section explains the current knowledge on peripheral 

circuits and the reading error associated with it. The three factors above all contribute to 

the overall failures of flash memory cells thus are significant to flash memory reliability 

studies. The last part presents the current schemes used in random number generator and 

the benchmark criteria associated with physical model based random number generators.  

 

2.1 Stress-Induced Leakage Current 

 

As the dimension of transistor shrinks, reducing the thickness of tunnel oxide is a 

technique used to reduce the voltage used in programming and erase operations. Flash 

memory chips use high-field injection of electrons through a layer of very thin tunnel 

oxide to charge or discharge the floating gates in order to perform programming and 

erase operations. It was studied as early as 1985 by D.A. Baglee and M. Smayling, in 

their paper “The effects of Write/Erase cycling on Data loss in EEPROMs” [2], they 

claimed that high-field stressing of the gate oxides increases the low-field leakage current 

and named it as stress-induced leakage current, or in short SILC. It was also studied by 

scientists lead by F. Masuoka in 1993[3] where they concluded that SILC could cause 

serious issues on data retention and read disturbance in flash memory chips and it 

becomes more severe with reduction of transistor size. In S. Ahn’s paper “Scaling Down 
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of Tunnel Oxynitride in NAND Flash Memory”[4], they modeled SILC as a trap-assisted 

tunneling process and caused by high stressing and generation of oxide electron traps. 

Indeed, the stress-induced leakage current depends on many factors, including but not 

limited to stress field, waveform, polarity, oxide thickness, time, and oxide fabrication 

variations.  

 Although stress-induced leakage current is a challenging subject, it still generates 

intensive studies on the topic. P. Kuhn and others, in their paper “Statistical Modeling of 

the Program/Erase Cycling Acceleration of Low Temperature Data Retention in Floating-

Gate Nonvolatile Memories” published in 2002 [5], established a statistically accelerated 

reliability model and it tried to generate reliability failure rate that incorporated many 

determining factors including retention time, cycle count, temperature, cycling voltage 

and other conditions. It was concluded that the statistical distribution of the cells were 

well behave despite the difficulty to model many individual characteristics such as 

occasional erratic erase current. With this model, it has been demonstrated that stress 

induced leakage current related tail of statistical distributions have an extreme-value 

shape and the threshold voltage shifts with logarithm of time. This is consistent with 

exponential or quasi-exponential voltage characteristics for leakage current.   

 It was also shown that the difference in manufacturer technology could also lead 

to various SILC-related retention loss or reliability issues. In the paper “New Reliability 

Model for Post-cycling Charge retention of Flash Memories” published by N. Mielke in 

2002 [6], it showed that erasing operations were the major causes of damage, indicating 

that hot-hole injection being an important source of damage. For another manufacturer, it 

was demonstrated that leakage current was mainly caused by drain-disturb-induced hole 
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injection and the experiment results exposed that cells with the most drain disturb 

exposure had more leakage current [7]. Lastly, in Kuhn’s paper published in 2002[8], it 

was shown that 99% of the defection due to leakage currents were caused by the source, 

or in other words, caused by erase operations. These above papers obviously showed 

contradictory results and it indicated that vast variation involved in band-to-band 

tunneling in existences of hot hole in various manufacturing technologies. This imposes 

the difficulty to have a complete and comprehensive model that explains the reliability 

behavior of many flash memory cells. 

 In addition, quantum-mechanical models for trap-assisted tunneling mechanism 

were developed to explain the behavior of individual cells caused by leakage currents in 

G. Tempel’s paper published in 2004 [9]. It was agreed in scientific community that 

stress induced leakage current lead to data retention loss in flash memory cells and trap-

assisted tunneling consist of two traps in the most common case. In recent researches, 

scientists moved away from one-dimensional WKB-based models to comprehend three-

dimensional effects and enhancement from phonon-assisted tunneling. As a result, non-

exponential characteristics of the leakage current were observed for individual flash 

memory cells [10]. However, for the simplicity of this proposed model, stressed induced 

leakage current is assumed to behave as an exponential distribution throughout the 

analysis. The detailed assumption and proposed model is explained in details in Section 3.  
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2.2 Random Telegraph Noises 

 

Random Telegraph Noises, or commonly known as RTN, are a major concern in 

analog and radiofrequency application in CMOS technology. It consists of a sudden step-

like transition between multiple discrete voltage levels at random and unpredictable times. 

Each shift in offset voltage lasts from several milliseconds to a few seconds. As the 

dimension of transistor shrinks, RTN will become a serious issue in flash memory cells. 

It was explained in Section 1.2 that reduction of transistor size by half would lead to a 

four time increase in the voltage threshold of one trap RTN. In the paper “Multi-Level 

NAND Flash Memory with 63nm-Node TANOS (SiOxide-SiN-Al2O3-TaN) Cell 

Structure” published by K. Kim and others in 2006 [11], they believed that random 

telegraph noises will become a major bottleneck in performance for multiple level cell 

flash memories. The stack-gate structure increases the threshold voltage multiple times 

by the coupling coefficient. In addition, the oxide capacitance cannot be increased due to 

the fact that it is difficult to reduce gate oxide thickness because of leakage current. 

Figure 1: Effective channel length vs. Threshold voltage amplitude 
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As shown in Figure 1 on previous page, the amplitude of threshold voltage 

caused by random telegraph noises increase significantly as the dimension of device 

shrinks. For example, the threshold voltage could be in excess of 100 mV at the 45 nm 

node. With the state of art technology in the 22nm range, the threshold voltage jump 

caused by RTN could be well over 200 mV or more. In paper “The Impact of Random 

Telegraph Signals on the Scaling of Multilevel Flash Memories,” published by O. 

Tsuchiya and others in 2007 [12], they used experimental results to demonstrate that 

random telegraph noise have become a significant concern in design and manufacturing 

of multiple level cell flash memory operations. They also illustrated that variations in 

threshold voltage is caused by random telegraph noise and confirmed the existence of tail 

bits generated by random telegraph noise, as illustrated in Figure 2 below.  

Figure 2: Example of time-series change in drain current in flash memory 

 

In addition, it was shown that additional interface traps would be generated after 

many program and erase (P/E) cycles. In O. Tsuchiya’s paper “The Impact of Random 

Telegraph Signals on the Scaling of Multilevel Flash Memories” [13] published in 2006, 
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he reported experimental results where increased P/E cycles led to increased threshold 

voltage caused by RTN effects. It is shown in Figure 3 below that the amplitude of 

threshold voltages more than doubled after ten thousand program and erase cycles.  

Figure 3: Amplitude of threshold voltage caused by RTN vs. P/E Cycles 

 

As the dimension of device shrinks further in flash memory cells, the number of 

electron representing one bit reduced further in multi-level cell flash memories.  For 

example, it is shown that two states are differentiated by less than 100 electrons in a sub-

40 nm floating gate MLC devices. Currently, there has little knowledge on the full impact 

of reliability caused by RTN in flash memories and it would definitely be an interesting 

area of research in the near future.  
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2.3 Peripheral Circuits caused Reading Errors 

 

As stated previously in Section 1.2, flash memory cells require high voltage to 

complete the operation of program and erase. Typically speaking, the voltage could reach 

as high as 25V for NAND and poly-to-poly tunnel-erase flash memories. The tunnel 

oxide is not expected to get reduced further due to concern related to stress-induced 

leakage current. As a result, the voltages required for tunneling program and erase cycles 

are not expected to scale down further.  

Circuits that control the memory array, commonly known as peripheral circuits, 

use low voltage for read operations and high voltage for program and erase operations. 

Low voltage needed could be as low as 3.3 V while the high voltages might reach up to 

25 V. The vast difference in voltage requirement leads to the usage of dual-gate oxide 

technology, where one type provides high voltage with thicker oxide while the other 

provides high-performance low-voltage transistors with thinner oxide.  The exact voltage 

and oxide thickness depend on the manufacturing technology as well as the types of flash 

memory cells.  

The reliability of peripheral circuits, mainly in high-voltage circuits, are not often 

discussed in literatures or researched in details. But it is essential to note that many flash 

failures are not due to the cell itself but rather the peripheral circuits. In general, the 

voltages generated by peripheral circuits might not be accurate enough to represent the 

correct reading level; therefore it might lead to reading errors thus failures of the cell. As 

shown in F. Masuka’s paper “A 4-Mbi NAND-EEPROM with Tight Programmed Vt 

Distribution” [14] and “A NAND Structured Cell with a New Programming Technology 

for Highly Reliable 5-V Only Flash EEPROM” [15] , typical hot-carrier injection (HCI) 
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stress was conducted during program and erase cycles. Junction breakdown and punch-

through voltage are in excess of 20V to withstand the stress. The reliability issues for hot-

carrier stress, high-voltage oxide damage, high-field junction damage, latch-up and 

snapback.  

Figure 4: Drain and substrate current of HV transistor before/after stress 

 

As shown in Figure 4 above, the drain, source and substrate currents of a high 

voltage transistor behave differently before and after enduring program and erase stress. 

In order to ensure product reliability, high-voltage transistors in peripheral circuits should 

be investigated carefully. However, the research conducted is on a system level where the 

physical behavior of each failure mechanism was not the focus of this study. A simplified 

model involving a Fermi function is developed to estimate the reading errors in 

peripheral circuits and they are shown in Section 3 below.  
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2.4 Random Number Generation Schemes 

 

Random number generation has been an interesting problem in the field of 

mathematics and computer science for a long period of time. One might argue that true 

randomness does not exist in the nature but scientists keep innovating to find better 

algorithm or devices to generate pure random numbers.  

There are two main principle methods used to generate random numbers. One use 

computational algorithm that produce long sequence of apparently random results, which 

is typically determined by an initial value called seed or key. This type of random number 

generated is called pseudorandom number generation. The random functions in many 

programming language such as C, C++, JAVA and MATLAB use this scheme where the 

first generated number is always the same unless a different seed is specified explicitly. 

This mechanism is not considered truly random because the output is inherently 

predictable although the repeating sequence could be extremely long. On the other hand, 

there is a random number generator mechanism based on physical phenomenon that is 

expected to be random. The physical method is most interested in the study because it 

would be comparable to the random number generation using the characteristics of 

random telegraph noise.  

As early as of April 1947, RAND corporation started generating random digits 

with an “electronic roulette wheel”,  consisting of a random frequency pulse source of 

about 100,000 pulses per second gated once per second with a constant frequency pulse 

and fed into a 5-bit binary counter. Later on, there were many random physical devices or 

processes used to generate random numbers, including gamma ray radioactive decaying 

materials, quantum mechanical noises, thermal noises from resistors, avalanche noise 
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generated from an avalanche diode or atmospheric noise detected by radio receivers. The 

latest innovation came from a team of researchers from Bar-Ilan University in Israel 

where they were able to use optical property to design a physical random bit generator at 

300 Giga bits per second, making it the fastest ever random number generator [14].  

Although the theory behind physical random number generators is a pure random 

event in nature, the practicability or feasibility of many of these devices are quite poor. 

The results tend to be biased due to many unknown reasons and the randomness tends to 

decrease as the device degrades. This is caused by the fact that entropy sources are often 

fragile and fail suddenly. It is difficult to continuously perform statistical tests on these 

devices. As a result, many of these hardware random number generators have to be 

constantly monitored to ensure performance.  

After proposing the probabilistic model used to characterize the behavior of flash 

memory failure, an application measuring the parameters of random telegraph noises is 

used as an innovative approach to generate random numbers from physical flash 

memories in Section 4. The flash memory random number generators are tested and the 

results are compared with current state-of-art physical random number generators.  
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3. Proposed Reliability Model 

 

3.1 Introduction 

 

The proposed model to study reliability behaviors of flash memory cell and the 

verification and simulation processes are presented in this section. In the first part, the 

three main physical phenomenal that lead to failure of flash cells are explained in details. 

In addition, mathematical expressions used to model the behaviors are presented.  In the 

second section, experimental methodology and setup procedures are shown and the 

experimented results are analyzed and compared with simulation results perform in 

MATLAB. In the last section, the six parameters proposed in the model are extracted 

from the physical experiments. Exhaustive search and simulated annealing approach of 

parameter extraction are demonstrated in this part, and the actual results are compared 

with simulation results to ensure accuracy.  

 

3.2 Proposed Reliability Model 

 

Flash memory reliability problem is a complicated issue that it could be caused by 

many random factors such as manufacturing process variation, temperature, or its 

physical characteristics. However, it is essential to understand the failing mechanisms for 

most of the flash cells within a chip in order to improve the performance and endurance 

of the next generation flash memory chips. A simplified mathematical model intended to 

do so is presented below with three major contributing factors: stressed-induced leakage 

current, random telegraph noises and peripheral circuit caused reading errors.  
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3.2.1 Stressed-Induced Leakage Current 

 

Stated previously in Section 2.1, leakage current increases due to a higher stress 

level in flash memory cells as more program and erase cycles are performed. It was 

concluded that the statistical distribution of the cells were well behave as an exponential 

function despite the difficulty to model many individual characteristics such as 

occasional erratic erase current.  As a result, the threshold voltage as a function of time is 

assumed to be an exponential decay with time constant  . It is assumed that the threshold 

voltage in equilibrium state is zero. The mathematical expression of this deterministic 

model is shown below: 

                                       ( 
 

  
)                         (2) 

where Vth0 represents initial threshold voltage and   represents the time constant of the 

exponential decay. Due to the nature of flash memory cells, after each erase cycle, the 

initial threshold Vth0 is expected to be a bit different than the previous one. A bit that 

shows no error can be modeled with initial threshold that is far away from the tail and a 

large time constant  . 

 

3.2.2 Random Telegraph Noises  

 

Random Telegraph Noises (RTN) consist of a sudden step-like transition between 

multiple discrete voltage levels at random and unpredictable times. The exact number of 

traps, or sudden jump in voltage level, is unknown and depends on the probabilistic 

model of electron tunneling. However, it is most likely that at most one trap RTN occurs 

during the entire endurance cycle of flash memories. It is observed that the time threshold 
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voltage stays in up-state and the time threshold voltage stays in down-state are two 

independent exponential distributed random variables with different mean time.  As a 

result, a probabilistic model to estimate the Random Telegraph Effects on the threshold 

voltage is used and the mathematical expression are shown below: 

              (   )  
 

        
       

   

        
)                               (3) 

                      
 

          
       

     

          
)                    (4) 

Where tup and tdown represents the time it stay in up and down states, respectively; 

         and            represent the mean time for up and down time distributions, 

respectively. The equations above indicate the probability density function for the up and 

down time. Monte-Carlo simulation should be used in order to incorporate the 

probabilistic nature of this representation. 

 

3.2.3 Peripheral Circuit caused Reading Errors 

 

In flash memory cells, peripheral circuits are always needed to generate various 

voltages for the analog nature of operations. As multi-level cell flash chips become more 

prevalent, different levels in floating gates only separated by a few hundred of a millivolt. 

Therefore, the reliability of peripheral circuits, in other words the reading error caused by 

it, would play a significant role in determining the error pattern of flash chips. A Fermi 

function is proposed to model this behavior.  This is a probabilistic model and the 

mathematical expression is expressed below: 

              
 

   (  (             ))  
                              (5)      
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Vfermi is voltage level chosen to be exactly at the border of failure, α is the variable that 

controls the steepness of probability of failure, P(t) represents the probability of getting 

the wrong read as a function of time. A random number between the interval of 0 and 1 

has to be generated for every point of time. If the generated number is greater than the 

actual probability, then it indicates that an error occurs. On the other hand, it shows a 

correct read if the random number generated is less than the probability. It is worthwhile 

to note that the probability of correct read would reach 1 if the threshold voltage is far 

away from the Fermi level.  

 

3.2.4 MATLAB simulation  

 

Based on the probabilistic model shown previously, MATLAB simulation is 

performed and used to compare and validate experimental results. The threshold voltage 

based on solely the effect of leakage current is computed. A set of exponentially 

distributed random numbers are generated using the exprnd function in MATLAB with 

specified up and down mean time is generated to represent the time spent on up and down 

states, respectively. Then a pointer is used to keep tracking the position where RTN 

occurs and compute the threshold voltage based on the accumulated effect of SILC and 

RTN. Lastly, the probability of the Fermi function is used as a decision rule to determine 

if an error does happen or not. Please refer to Appendix I for the detailed code used for 

simulation.  
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3.3 Experimental Setup and Results 

 

3.3.1 Experimental Setup 

 

Physical experiments to test the reliability behaviors of flash memory chips are 

performed. Various 4G NAND04G-B2D flash memory chips from Numonyx are used in 

testing. Self-made printed circuit board with a microprocessor serves as the hardware 

platform and the flash chips are plugged into the socket for testing. Program, Erase and 

Read operations are performed via instructions from the microcontroller and the results 

are transferred back to the PC.  The detailed hardware setup is shown in Figure 5 below. 

   Figure 5: Hardware setup for reliability study experiment 

 

Initially, one block of the chips are stressed out with ten million program and 

erase cycles. This procedure is designed to wear out the chip, therefore the errors would 

occur more frequently and it would be more convenient to analyze the error patterns. 

After that, various bits are continuously read many times. A correct read is recorded as a 

0 and an error is recorded as 1. A sampling frequency of 17.96 kHz is used in the 

continuously reading operation. This is the highest reading frequency we could achieve 
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with the in-house hardware. The high frequency reading is intended to reduce the aliasing 

in the output signal whereas the pattern of RTN would be recognized.  

 

3.3.2 Experiment Results 

 

Raw results received from the experiment described above are sets of binary bits 

where 1 indicates an error and 0 indicate a correct read. Two sets of binary results are 

selected and shown in Figure 6 below.  The x-axis is the number of samples and the y-

axis is bit number tested in the experiment.  

Figure 6: Raw Experiment Data (dots indicating errors) 

 

Obviously the challenging task is to translate the binary results into numerical 

values of the six parameters in the proposed model where we can quantify the failing 

behaviors. Two different analysis tools are used in this study. The first approach involves 
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repeating the continuous reading operation 5000 times, then averaging the results of the 

200 traces and considers it as the error pattern for a specific bit. This analysis comes from 

the idea where each trace might involve randomness based on the probabilistic model. By 

considering the average of 200 runs, the randomness factors from each program and erase 

operation would be cancelled out and the error pattern would be the end results of the 

model proposed previously. Figure 7 below illustrates the result using this first approach.  

Figure 7: Percentage of Error vs. Time Graph for Average Trail Analysis 

  

The second approach is to analyze each trace of error pattern rather than the 

average of many runs. This is intended to illustrate the behaviors of memory cells after 

each program and erase cycle, thus the parameters extracted from each run could be 

compared and analyzed. Moving average of a window 100 is used to process the original 

binary sequence and it is intended to smooth out the short term fluctuation in order to find 

the effects of the three contributing factors proposed in the model. Figure 8 below shows 

a graph of moving average of an error pattern performed in MATLAB.  
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Figure 8: Moving Average Error Pattern for a Single Trace 

 

 

3.4 Parameter Extraction Algorithms 

 

With the proposed model illustrated in Section 3.1 above, the difficulty is that 

how to translate the experimental results into numerical values for variables shown in the 

model. Two parameter extraction algorithms are presented in this section. The first 

approach uses exhaustive search mechanism where every combination of parameters is 

tested. The second approach uses simulated annealing algorithm to minimize the total 

error. A brief description of each algorithm is shown first, then the approaches are 

compared and the results are discussed.   
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3.4.1 Exhaustive Search 

 

Exhaustive search is an algorithm that every combination of possible results is 

tested in order to find the best optimal result. Obviously, this approach is extremely 

accurate given the condition that the optimal solution is in the domain of the search. 

However, the major drawback of this algorithm is that the speed is extremely slow and 

lots of computational power is wasted. For example, given 6 parameters in the proposed 

model and each variable takes on 100 possible values, a total number of 10 to the power 

of 12 comparisons have to made in order to achieve the optimal result. It is estimated that 

it takes about 1 minute to complete 200,000 comparisons with an Intel Dual-core i5 

2.4GHz processor. Therefore, it is required to take 10 years to complete the entire 

calculation! For simplicity and time efficiency, a set of 12 possible values for each 

variable is chosen and shown in Table 1 below. For every combination of parameters, the 

probability of a correct read with a given time is calculated. The minimum mean square 

error criteria are used and the summation of error for the entire set of times is the 

objective function for this exhaustive search algorithm. The main MATLAB script for 

exhaustive search algorithm is shown in Appendix II.  

 

3.4.2 Simulated Annealing Algorithm 

 

The main drawback of exhaustive search algorithm is its inefficiency. Most of the 

time, it is not feasible to compute every combination of possible parameters. Therefore, a 

less computational intensive optimization scheme has to be devised. However, the 

performance of the new scheme should not compromise too much to compensate time 
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Table 1: Parameter Values used in Exhaustive Search Algorithm 

Parameter Name Minimum Value Maximum value Interval 

Vth0 -0.001 -0.221 0.02 

1/   50 650 50 

  50 380 30 

Vfermi -0.001 -0.221 0.02 

up_mean/dt 20 1220 100 

down_mean/dt 20 1220 100 

 

complexity.  Simulated Annealing algorithm is the approach used in this experiment. The 

name and inspiration of this algorithm comes from annealing in metallurgy. It is a 

technology where controlled heating and cooling of material increase the size of crystals 

and reduce their defects as well.  

As analogy to the physical process, each step in simulated annealing optimization 

algorithm replaces the current solution with a neighboring solution, giving a probability 

that is dependent on the difference between the corresponding values and a global 

variable K. This methodology allows the results move to a “worse” solution with a low 

probability, but it prevents the solution to be trapped in a local minima rather than the 

global minima required by the solution. The simulated annealing result will eventually 

reach the global minima if it is run at an infinite time. Practically speaking, the algorithm 

will run until the incremental error gets extremely small, or after a fair amount of 

computation is performed and the results are assumed to be reasonable well. This 



28 
 

algorithm was described by Scott Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi in 

1983. [15] 

The Pseudo Code of implemented simulated annealing algorithm with comments 

is shown below: 

S = S0;  e=E(s)                 // initial state 

Sbest=s; Ebest=e;          // initialize the error 

While count<max_count and enew-ebest<Epson  

              //while loop until count reached or error small 

 Snew=neighbor(s);         // randomly generate the neighbor 

 Enew=E(snew);            // calculate the new error 

 If  accept_prob>random() then // decide if it is going to move 

  S = Snew; e=Enew    // calculate error 

  If Enew<Ebest then                 // keep track the best solution 

   Sbest->Snew; Ebest->Enew; 

  Count=count+1;                    // increment the count 

 Return Sbest 

The formula used in acceptance probability is shown below: 

 Acceptance Probability: 

 If e’<= e, p=1 

 Else e’>e, p = exp((e-e’)/K)  

           // K is a global parameter K=200 is chosen for this experiment 

The MATLAB simulation code for simulated annealing algorithm is shown in Appendix 

III below.  
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3.4.3 Comparison and Results 

 

Both exhaustive search and simulated annealing algorithm are implemented in 

MATLAB. The SA algorithm sacrifices accuracy of the results to improve the time 

efficiency of the algorithm. The difficulty of the exhaustive search algorithm is to chosen 

the initial set of parameters where the optimal combination lies within the range. As 

illustrated in Section 3.4.1 above, a maximum of 12 values for each variable can be set as 

a search domain. On the other hand, simulated annealing would allow a much larger 

search domain where many more data points can be examined. However, the difficulty 

with the SA algorithm is that how many sets to combination have to be run in order to 

conclude that it is a reasonable good result. By trial and error approach, this count is set 

to be 500,000 times where the incremental improvement on reducing total error becomes 

irrelevant.    

A set of experiment is design to actually test the performance of the two 

algorithms. The first experiment sets the range of variables to be exactly the same (12 

possible values for each parameter) for both algorithms and the accuracy of results and 

the computational time is analyzed. Please note that 500,000 runs are set for the 

simulated algorithm. The experimental results are shown in Table 2 below.   

The second experiment sets the range of variables to be all possible ranges given 

the physical characteristics of each variable. However, the intervals of variables in 

exhaustive search algorithm have to be much greater than the simulated annealing 

approach in order to finish running within a reasonable amount of time. The error % 

column records the improvement in error reduction as a percentage. The experimental 

results are shown in Table 3 on next page.   



30 
 

Table 2: Result of the First test to compare Exhaustive Search vs. SA algorithm 

Bit # Search Error Op Time SA Error Op Time Error  % 

2 0.274 153s 0.286 30s -4.4% 

21 0.162 152s 0.165 31s -1.8% 

26 0.0897 151s 0.115 30s -12.8% 

31 0.0013 149s 0.0013 29s 0% 

58 0.132 150s 0.145 30s -9.8% 

 

Table 3: Result of the Second Test to compare Exhaustive Search vs. SA algorithm 

Bit # Search Error Op Time SA Error Op Time Error  % 

2 0.334 148s 0.225 28s +48.4% 

21 0.262 136s 0.135 30s +94.1% 

26 0.159 145s 0.118 31s +34.5% 

31 0.0015 152s 0.0013 29s +15.3% 

58 0.162 153s 0.135 27s +20.0% 

 

Based on the results shown in Table 2, it is observed that the discrepancy in 

accuracy between the Exhaustive Search and the Simulated Annealing approach is 

minimal while the time consumed in SA algorithm is almost one fifth. Similarly, with 

smaller intervals in the range of variables in the SA algorithm, the actual result performs 

significantly better than the exhaustive search and it is with much shorter computation 

time.  As a result, in order to extract parameters with a higher accuracy, it is concluded 

that simulated annealing approach would best fit with this study. All future experiments 
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and parameter extraction cases use the simulated annealing algorithm demonstrated in 

Section 3.4.2 above.   

 

3.5 Result Analysis 

 

In this analysis, 80 bits (or 10 bytes) in the given flash memory chip are tested 

after 10 million program and erase cycles using the proposed reliability model stated in 

Section 3.1. After wearing out the chip, continuous reads for 50 seconds is performed 

after each program and erase operation. It is observed that 20 bits does not exhibit any 

error patterns. There are 22 bits that exhibit somewhat error patterns, but the 

experimental results are inconclusive to determine the parameters using the proposed 

model. However, there are 38 bits that shows conclusive evidence or enough error 

patterns to demonstrate the validity of the model. There are 3 bits that reach “always error 

state” in less than 0.07 seconds. There are 7 bits that reach “always error state” in less 

than 1 second. In addition, there are another 5 bits that reach “always error state” in less 

than 10 seconds. Lastly, there are 23 bits that exhibit “always error state” within 50 

seconds. Two sets of experiments are performed on the 38 bits that exhibit obvious error 

patterns. Simulations are performed in MATLAB to compare with experimental results. 

Parameters in the proposed model are extracted and analyzed in the following sections.  

 

3.5.1 Average Trial Analysis and Results 

 

As illustrated previously, the results received from the experiment are in binary 

forms which errors are recorded as 1’s and correct reads are recorded as 0’s. The first 

analysis performed is to perform the same operation 200 times then average out the error 
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results. This approach transforms the error pattern into numerical scales where it could 

analyzed despite random or erratic behaviors after each program and erase operation.  

The analysis procedure is divided into three main components. The first step is to 

perform the experiment 200 times, collect the results, and then calculate the average of 

the errors in the 200 runs. The second step is to use the Simulated Annealing algorithm 

described in Section 3.4.2 to extract the numerical values of the six parameters. The last 

step involves running simulation with the parameters extracted from the previous step, 

then to compare the simulation results with the experimental results and conclude if it 

actually fits with the model described above. This procedure is repeated multiple times 

for the same bit to confirm the consistency of the results. The parameter extraction results 

for Bit 2 and Bit 21 are shown in Table 4 and Table 5 below where each analysis is 

repeated 5 times for the same bit.  

 

Table 4: Parameter Extraction Results for Bit 2 

Parameter Name Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Vth0 -0.034 -0.058 -0.052 -0.055 -0.052 

1/   14.9 14.7 16.1 18.2 16.1 

  203 173 186 168 173 

Vfermi -0.010 -0.009 -0.013 -0.017 -0.013 

up_mean/dt 1930 2050 1785 1820 2180 

down_mean/dt 220 216 210 159 175 

Total Error 0.274 0.287 0.207 0.163 0.242 
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Table 5: Parameter Extraction Results for Bit 21 

Parameter Name Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Vth0 -0.075 -0.080 -0.092 -0.100 -0.086 

1/   25.1 23.3 22.6 20.1 13.9 

  70 74 93 85 72 

Vfermi -0.034 -0.038 -0.066 -0.050 -0.050 

up_mean/dt 4560 3850 3260 3520 3750 

down_mean/dt 302 248 310 342 285 

Total Error 0.138 0.160 0.145 0.092 0.126 

 

The plots includes the experimental error pattern with the simulated error patter using 

extracted parameters are shown in Figure 9 and Figure 10 below.  

Figure 9: Simulation vs. Experimental Result for Bit 2 (Trial 1) 
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Figure 10: Simulation vs. Experimental Result for Bit 27 (Trial 1) 

 

In the previous plots, the red colored curve shows the experimental result while 

the blue one shows the simulation result. It is observed that the blue colored curve has 

many small hops and it is the evidence of Random Telegraph Noises. Based on the 

analysis performed for average trial experiment for many bits, it is concluded that the 

extracted parameters fit extremely well with the proposed model with the total error is 

significantly smaller than 1, as illustrated in Figure 9 and Figure 10 above. In addition, 

as shown in Table 4 and Table 5, the results obtained from multiple trials are consistent 

with each other with minimal discrepancy in numerical variables.  These results 

demonstrated that the proposed model agrees with averages of experimental results and it 

helps validate the model as fairly accurate and consistent.  
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3.5.2 Individual Trace Analysis and Results 

 
In the previous section, an average trial approach is used for parameters extraction 

and data analysis. However, it is believed that the random factors in erratic erase or 

effects from random telegraph noise might cancel out each other by averaging out the 

error patterns, thus not accurately characterizing the error patterns of each individual 

trace. In this analysis, each individual trace performed after a program and erase cycle is 

analyzed using signal processing techniques and the resulting patters are analyzed in 

details.  

As demonstrated in Section 3.3.2, moving average is the first technique used to 

process the data. It is selected to smooth out short-term fluctuations and highlight the 

long-term trends of error patterns. However, the processed signal is still relatively noisy 

whereas the overall pattern of the signal is still difficult to observe illustrated in Figure 8. 

As a result, a Low Pass filter is imposed on the signal to filter out the overall shape of 

each signal then the Simulated Annealing Algorithm is used to extract non-RTN 

parameters from the pattern. The Low Pass filter filters out high frequency components of 

the signal, thus including the component caused by the effects of random telegraph noises.  

The entire process of simulation and signal processing is performed in MATLAB. 

The analysis is mainly divided into four steps. The first step involves obtaining the binary 

results representing the error patterns, and then performing a moving average with 

window size using MATLAB command output=tsmovavg(data,’s’,100). The second step 

is to use Low Pass filter to find the low frequency component in the signal. A Finite Input 

Response Filter with appropriate passing frequency is chosen for each trace. The passing 

frequency is selected accordingly to reflect the true low frequency component of the 
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signal. The filter is also designed to be with 20
th

 order thus that it does not compromise 

performance with complexity of the filter. The third step is to use the Simulated 

Annealing approach to extract non-RTN parameters of the cell. Lastly, a simulation is run 

to compare the low pass filtered signal with the simulated result.  

Many bits are tested for individual traces. Due to the limitation of space, only the 

results from bit 17 are shown in details below. This bit is representative to the majority of 

the bits tested and illustrates the main results achieved here. The graphs of the moving 

average signal (in blue) vs. the low pass filtered signal (in red) for five different traces are 

shown in Figure11, Figure 12, Figure 13, Figure 14 and Figure 15, respectively. 

 

Figure 11: Moving Average vs. LP filter result in Trace 1 
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Figure 12: Moving Average vs. LP filter result in Trace 2 

 

            Figure 13: Moving Average vs. LP filter result in Trace 3 
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  Figure 14: Moving Average vs. LP filter result in Trace 4 

 

Figure 15: Moving Average vs. LP filter result in Trace 5 
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After careful examination of the plots shown above, it is observed that all charts 

follow the pattern of the proposed model. It is seen that the total number of errors 

generally increase as the time goes on due to the effects of the leakage current. In 

addition, the ups and downs of the moving average signal are caused by the contribution 

of random telegraph noise and peripheral circuits reading errors. However, after further 

investigation, the same experiment repeated multiple times has enormous discrepancy 

among them. For Trace 2, 3 and 5, the error pattern almost reaches complete error states 

with 1 million reads while Trace 1 and 4 reach complete error state much slower with 

about 3 million reads. Furthermore, the ups and downs in Trace 1 and 4 are much more 

significant compared to other traces. More importantly, the parameters extracted from the 

simulated annealing algorithm among different traces are quite different as well, which is 

illustrated in Table 6 below.  

 

Table 6: Non-RTN Parameters for Different Traces for Bit 17 

Parameter Name Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

Vth0 -0.002 -0.015 -0.032 -0.003 -0.027 

1/   24.9 49.2 42.7 26.5 50.3 

  66 145 158 79 182 

Vfermi -0.009 -0.029 -0.045 -0.008 -0.039 

 

Based on the parameters extracted from various traces after program and erase 

operations, it is observed that the results include great discrepancy among different traces. 

It is expected that the results should somewhat behave similarly because the results from 

the same bit with same stress. Bit 17 is not unique in terms of its characteristics. Many 
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other bits behave irrationally with different exponential decay constants for two 

consecutive trials. This imposes a great challenge on how to explain the behavior using 

physical behaviors. One obvious reason to speculate is that the initial voltage after each 

program and erase cycle is somewhat different. It might cause different leakage current 

with respect to other traces thus lead to different error patterns. Temperature could also 

play a factor where more experiments result higher temperature that causes erratic flash 

cell behaviors. In short, with the current experiment setup, the proposed model is unable 

to explain the vast difference in difference traces of the same bit. Model modifications or 

more sophisticated experiments are needed to further investigate the behaviors of 

individual traces.  

 

3.6 Summary 

 

With the proposed reliability model, the average trial experiments verify that the 

model fits well with experimental data and it is shown in simulation results. With the 

individual trace analysis, it is determined that the error pattern for each trace follows the 

model involving leakage current, random telegraph noise and peripheral circuit reading 

errors. The characteristics of each factor are obvious and they play a significant role in 

determining the total error patterns. Therefore, it is safe to conclude that the proposed 

model correctly explain the quantitative behaviors of flash memory cells in stress.  On the 

other hand, it is a challenging and open question that if the proposed model 

comprehensively represent the failing behaviors of flash memory cells? According to the 

analysis performed for individual traces, it is difficult to account the drastic behavior of 

various traces of the same bit. One might assume that the average trial would cancel out 
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some random factors involved in individual traces thus lead to a perfect match with the 

proposed model.  Erratic erase, manufacturing process variations and temperature effects 

could all be contributing factors to the failures of flash memory cells, but they are 

considered insignificant thus not accounted to this proposed model. In short, the proposed 

reliability model gives a basic and accurate representation of the major contributing 

factors of flash cell failures, but it is inconclusive to say that this model fully represent 

the failure mechanism of every single cells. Therefore, more experiments or even further 

improvement in the proposed model might be needed to explain the phenomenal shown 

in previous tests.  
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4.  Random Number Generator using RTN 

 

4.1 Motivation on RNG using RTN 

 

Given the proposed reliability model, there are many interesting applications with 

flash memory chips in stress. Random number generators using the physical phenomenal 

of random telegraph noises embedded in flash memory cell is the first one that comes 

into mind. In addition, using the numerical values of parameters in the reliability model 

as a digital signature to distinguish authentic chips would also be a fascinating 

application that imposes unique challenges to researchers. Lastly, comprehensive 

understanding of flash cell failures is the ultimate goal of this study where innovative 

error correction codes could be designed to improve the endurance cycles of flash 

memory chips. This study focuses only on the first example where random numbers are 

generated using the characteristics within a flash memory chip.  

The objective of this study is to test the feasibility of random number generator 

based on the physical phenomenal of random telegraph noises (RTN). Many sets of 

random numbers are generated, tested using a variety of techniques and then compared 

with other well-known random number generators. Flash memory chips are useful, cost-

effective, and mass production products. It has become ubiquitous that almost everyone 

has a small flash memory chips in his pocket, either embedded in smart phones or MP3 

players or in the form of a stand-alone portable storage device. It would be impressive 

and convenient that if a simple software algorithm can generate true random numbers 

from a piece of flash memory chip efficiently and effectively. Just imagine in the future 
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that an app on your iPhone generating random numbers using idle on-chip flash memory 

cells? 

The chapter is divided into five subsections. The first part gives an introduction 

on random numbers. It provides the formal definition of random numbers and briefly 

describes the main applications that use many random numbers. The second section lists 

the two main types of RNG: true RNGs (TRNG) and pseudo RNGs (PRNG), and 

compares the advantages and disadvantages among them. The third subsection presents 

the detailed algorithm that generates random numbers from random telegraph noises. The 

fourth section presents various methods used in testing random numbers, including 

exploratory data analysis techniques, theoretical tests and a comprehensive test suite of 

binary sequence from National Institute of Standards and Technology (NIST). The 

random sequences of numbers generated using the RTN algorithm is tested using the 

above mechanism. The fifth section analyzes results and compared with other popular 

random number generators. It summarizes the results and proposes some 

recommendations on how to improve this random number generator in future research.  

 

4.2 Introduction on Random Numbers 

 

4.2.1 Definition of Random Numbers 

 

Intuitively speaking, random numbers are deemed that the next generated number 

is unpredictable given previous numbers. For a binary sequence, the true randomness is 

given by this formal mathematical statement: 

Let Xn be a sequence of random variables, where n = 1, 2, 3 … 

Xn is a binary random variable, meaning that the possible values of Xn are 0 and 1.  
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If P (Xn =1 | all others) = 0.5 

Or equivalently, the joint distribution of all the sequence is 0.5
N
 and every point of 

the sample space, or which there are 2
N
 points.  

Should a sequence satisfy this definition then it can be considered random.  

 

  In addition, the random binary sequence could be transformed into integer forms 

under a uniform distribution. For random numbers generated between 1 and 100, they 

should possess the following mathematical properties: 

 Uniform: If a set of random numbers between 1 and 64 are generated. The first 

number in the sequence to appear is equally likely to be 1, 2, 3, …, 64. Also, the 

i
th

 number is also equally likely to be any number within the range. The average 

of the numbers generated should be 32.5. 

 Independence: The values must not be correlated. If it is possible to predict 

something about the value in the sequence, given that the previous values are 

known, then the sequence is not random. Thus the probability of observing each 

value is independent of previous values.  

 Summation: The sum of two consecutive numbers is equally likely to be even or 

odd.  

 

4.2.2 Applications of Random Numbers 

 

Random Numbers have been used in a variety of fields in everyday lives. They 

include but not limited to applications in cryptography, sampling, simulation, gaming, 

decision making, aesthetics, and other areas where producing an unpredictable results are 
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desirable. How random numbers are used in the above fields is briefly described in 

subsections below.  

 

1) Cryptography 

Cryptograph is the science of turning meaningful sequence of information into 

apparently random noise in such a way that only a key-holder can recover the original 

data. The main objective is to preclude an adversary from gaining advantages through 

knowing what the message says. Sequences that are hard to predict unless the mechanism 

generating them is known are required to achieve the goal. The heart of all cryptographic 

is the generation secret and unguessable numbers – random numbers. Cryptography has 

been used in many areas including securing e-commerce around the word, protecting 

private communication over internet, not to mention used by all governments to protect 

national secrets.  

2) Sampling 

It is often difficult to exanimate every possible case in real world situations. With 

random sampling, it always provides insights to a typical behavior of the system.  

Sampling with random numbers gives each member of the population an equal chance of 

getting selected, avoiding the problem of biases. In both academia and many industries, 

random numbers are used in selection by researchers around the world.  

3) Simulation 

Simulation is the re-creation of complex phenomenal, environments, or 

experience, allowing people to have new understanding about the theory behind it. 

Random numbers are often required during the simulation process. For example, in 

nuclear physics, particles are simulated subject to the phenomenal of random collisions. 
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In addition, in the field of operation research, engineers have to simulate the rate people 

come to a shopping mall, which is random in nature.  Increasingly sophisticated 

simulation studies require more involved random numbers and the results sometimes 

become more sensitive to the quality of underlying random numbers.  

4) Gaming 

Many games involve random numbers and chances, including rolling a dice, 

shuffling deck of cards, spinning roulette wheels and others. Randomness is obviously 

central to games of chances and vital to the gaming industry. As online casinos or online 

poker games become prevalent worldwide, the game provider certainly hopes to generate 

the true random numbers to protect their profit margin and the industry have increasingly 

becoming a huge consumer of random numbers online.   

 

4.3 Types of Random Number Generators 

 

There are two main types of Random Numbers Generators (RNGs). The first one 

is called a True random number generator based on physical randomness effects. The 

second type is called pseudorandom generators. The main difference between the two 

types is that TRNGs sample a source of entropy whereas PRNGs use a deterministic 

algorithm to generate random numbers. A short description of the two schemes is shown 

below and they are compared in a later subsection.  

 

4.3.1 True RNGs 

 

A true random number generator uses a naturally occurring source of randomness 

to generate random numbers. It samples the source of entropy and then usually processed 
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through a computer to generate a sequence of random numbers. True RNGs should not be 

taken as complete random because of its name. The entropy usually consists of some 

physical quantities, such as atmospheric noise from radio, thermal noises from a 

semiconductor diode, frequency instability of a free running oscillator or the time elapsed 

between the emissions of particles in radioactive decays.  

 

4.3.2 Pseudo-RNGs 

 

Hungarian-American mathematician once said “Anyone who attempts to generate 

random numbers by deterministic means is, of course, living in a state of sin”. However, 

pseudorandom generators (PRNG) indeed use deterministic algorithms and it is more 

widely used compared to TRNGs. Pseudo random numbers do not depend on a source of 

entropy and they are not strictly random.  They use a mathematical algorithm to compute 

random sequences. If the algorithm and the seed are known, then the sequences of 

random numbers are predictable. The objective with PRNGs is to generate sequences that 

behave like random. The output sequences of many PRNGs are statistically 

indistinguishable from completely random sequences. Ironically, PRNGs often appear to 

be more random than numbers generated from TRNGs [16]. However, in theory, the 

maximum length of sequences produced by all those algorithms is finite and these 

sequences are reproducible, and thus can only be random in some limited sense [17].  

 

4.3.3 Comparison between TRNGs and PRNGs 

 

Both True Random Number Generators and Pseudorandom Generators have their 

advantages and drawbacks. Each random number generator scheme is suitable for a 

particular application. This study mainly focuses on TRNG using the characteristics of 
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Random Telegraph Noises in Flash memory cells. Table 7 below lists the advantages and 

disadvantages of TRNG. It is assumed that the numbers generated from TRNG are 

completely random.  

Table 7: Advantages vs. Disadvantages of TRNGs 

Advantages Disadvantages 

No periodicities Slow and Inefficient 

No dependencies present Sequence are not reproducible 

No predictability based on prior knowledge Cumbersome to install and run 

High level of security More expensive 

Conceptually random, not deterministic Possibility of manipulation 

 

 

 

4.4 Algorithm Description 

 

4.4.1 Partial Erase Operations 

 

Random telegraph noises are sudden step-like jumps in threshold voltages. In past 

literatures and experiments, it is observed that the times threshold voltage spent in up or 

down states in threshold voltage are two exponential distributed random variables with 

different mean values. The key points in the algorithm to generate random numbers is to 

accurately capture the one-step transition RTN behaviors and then transform the 

exponential random variable into an uniformly distributed random variable, where a 

sequence of random numbers are generated based on the probability density function. 

This might seem a relatively straight-forward procedure but it does impose unique 

challenges to capture the RTN behavior. Some of the difficulties include the fact that one 
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has to select the bits that have the best RTN behavior, and to determine on the 

methodology to process the original error pattern and how to determine and tabulate the 

time spends in up or down RTN states. 

With millions of program and erase cycles performed in the experiment to study 

the reliability model, it is determined that the error signal are too noisy in many bits 

tested. It is concluded that it would be extremely difficult to single out the one-trap RTN 

behaviors to accurately model the exponentially distributed random behavior with such a 

high stress level. As a result, one innovative approach to use partial erase is devised and 

found effective for modeling the RTN parameters. The microcontroller that controls the 

operation of the flash memory chips has an “Abort” operation. Using the “Abort” 

command during the erase operation would allow the flash cell to perform a partial erase 

operation. Physically speaking, erase operation represents a decrease in threshold voltage 

from a relatively high point to a relatively low point. The partial erase allows the 

threshold voltage not to go back to the low value but a range in the middle. This 

procedure makes the flash chips more prone to errors with less imposed stress. By trial 

and error, experiments show that the RTN phenomenal occurs with as little as 1000 

program and erase cycles and the processed signal behave well to form a one-trap step-

like signal. This is suitable to extract the parameter for RTN thus generating random 

number based on the exponentially distributed random variable. The specific bits are 

selected manually to be the sources for testing RTN parameters and thus generating 

random numbers. 
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4.4.2 Feedback Algorithm 

 

As described above, accurate generation of random numbers require 

microprocessor to know the exact point to stop during an erase cycle. This point should 

be best suitable to generate one-trap RTN signal with long duration. It is essential that the 

aborted threshold voltage is not too close to the full erase voltage where almost no error 

will occur for a long period of reads. On the other hand, the threshold voltage should not 

be close to program voltage where many errors would occur. This leads the signal to be 

extremely noisy where one-trap RTN model would not apply. A simplified feedback loop 

algorithm is used to choose the proper stop point during erase cycle. Once a stop point is 

reach, continuous read is performed for thousands of times. Then the moving average of 

the signal with window size 50 is used as criteria to determine if a proper stop point is 

reached. The feedback algorithm is written in microprocessor’s code in C language. The 

main component of this feedback algorithm is shown below: 

if (tot_max-tot_min>8 && tot_min<15)  
 break; 
else if (tot_min>=15)  //erase too little, too much error 
 terase=terase+1; 
else if (tot_max<8)  //erased too much, few error 
 terase=terase-1; 
else 

break; 
 
By trial and error, the numerical values in moving averages are selected. It is required 

that the difference between maximum error and minimum error have to be in excess of 8 

in order to distinguish the two trap levels. In addition, the minimum errors have to be less 

than 15 in order to prevent too many errors in the signal. The above feedback algorithm is 

used in following experiments to determine the proper “abort levels”.  
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4.4.3 Signal Processing 

 

After picking the best point to abort the erasing operation with the feedback 

algorithm, the microprocessor performs a continuous read operation of 2 million times 

and the error patterns are collected. The reading and recording process take 

approximately 4 to 5 minutes to complete. The number of consecutive reads is seek to be 

as large as possible in order to generate as many random number as possible from each 

P/E cycles. However, as leakage current caused by stress level increases as a function of 

time, the collected error pattern does not behave well as a step-like function. This leads to 

the problem that too many reads would negatively impact the signal thus 2 million reads 

is properly selected as well.  

With the recorded binary error patterns, the signals are analyzed before further 

processing. It is observed that some of the raw data are excellent where errors are 

clustered together as illustrated in Figure 16. These signals are considered well behaved 

and no more signal processing is required. The frequency spectrum of the data is plotted 

in Figure 17 and it clearly shows a 1/f behavior and agrees with theory. On the other 

hand, some signals are a bit noisy where moving average with window size 50 is 

analyzed. They are shown in Figure 18 and Figure 19. Noise cancelling techniques are 

utilized in order to smooth the curve in order to approximate the step behaviors.  
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Figure 16: Raw Experimental Data (Good Bit, no processing required) 

 

 

Figure 17: Frequency Spectrum of raw data (Good Bit, no processing required) 
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Figure 18: Moving Average of Processed Signal 

 

 

Figure 19: Enlarged Moving Average of Processed Signal 

 

 

4.4.4 Transformation and Generation 

After signal processing, the next step is to tabulate the time spent in up states or 

down states as a sequence of numbers. These times are known to behave as an 

exponential distributed random numbers in theory. The probability density function of an 

exponential random variable is shown below: 

                                     (6) 
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where x is a random variable and represents the time spent in up/down state, β is a 

parameter of this density. The mean of an exponentially distributed random variable is 
 

 
 . 

Given the sequence of random variables, the mean of these numbers could easily be 

calculated. Thus the parameter β is based on the measurements of up/down state times.  

10000 values of times spent in down states of a specific bit are collected and plotted in 

the histogram with 100 bins below in Figure 20.  The histogram is then fitted with an 

exponential function shown in red.   is estimated to be 0.00413 and it corresponds with a 

mean of 242.13.  

Figure 20: Histogram of Time Spend in Down States 

 

 In addition, it is known in theory that a transformation between uniformly 

distributed random number and exponentially distributed random number exists. Assume 

that Y is a uniformly distributed random number on the interval between 0 and 1, or 

commonly known as a true random number, the transformation             β would 

leads to an exponentially distributed random number. A simple algebraic manipulation 
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would yield the result that a perfect random variable Y between interval of 0 and 1, or 

uniformly distributed in the intervals, would exist using the following expression given a 

perfect exponentially distributed X. The histogram of a set of translated data is shown in 

Figure 21 below.  

Figure 21: Histogram of Transformed data 

 

 With the above transformation, the sequence of time spent in up/down states is 

translated into a sequence of random numbers between 0 and 1. This numbers would 

represent the outcome of this proposed random number generator. Once the total number 

runs out, a new program and erase cycle with abort would be implemented to generate the 

new set of random numbers. In theory, the random numbers produced are perfectly 

random subject to measurement errors given the fact that the RTN behaviors in the chip 

are truly random.  
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4.5 Test of Randomness and Analysis 

 

With the random sequences produced using the algorithm described above, it is 

essential to test the performance of the RNG. Three different types of tests are used in 

this study: exploratory data analysis, statistical tests and industry standard binary 

sequence test suites. Each of the three approaches is described and the results are shown 

below. For the purpose of EDA and Statistical tests, the generated random numbers in the 

interval between 0 and 1 are times 64 to represent random integers from 1 and 64. This 

technique is used to help visually the data. For NIST test suites, the numbers are 

translated in binary sequences for testing, where number below 0.5 represents 0 and 

numbers greater than 0.5 represent 1. The performance testing of this RNG is still at the 

beginning stage. This section is mainly focuses on testing a set of 10000 random numbers 

generated from a specific bit’s down time distribution at the beginning of the endurance 

cycle.  

 

4.5.1 Exploratory Data Analysis 

 

Exploratory Data Analysis (EDA) is an approach to analyzing data for the 

purpose of formulating hypotheses worth testing, complementing the tools of 

conventional statistics for testing hypothesis. It is always necessary to conduct 

exploratory data analysis on a data beset before more formal tests are applied. EDA 

techniques are usually graphical and they are especially helpful in providing a visual 

exploration of the data. Summary statistics are used to give an overview of the main 

parameter of the data. These values are: the count (number of values in the sequence), the 

mean (average), the median, the maximum and the minimum value. The P (even) 
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demonstrates that the summation property of the numbers holds and that the probability 

of the sum of two consecutive numbers given in the data set is 0.498, which is extremely 

close to the theoretical value of 0.5.  

Table 8: Summary Statistics for Testing Sequence 

Count Mean Median Maximum Minimum P(even) 

10000 32.74 33 64 1 0.498 

 

There are many EDA techniques available and most of them are graphical in nature. Four 

of them are selected to provide a visual measure of randomness of the sequence. They are 

Run Sequence Plot, Lag Plot, Histogram and Autocorrelation Plot. It is important to note 

that the EDA does not prove the randomness of the data by itself but it highlights pattern, 

outliers and apparent non-randomness relationship and bias. Any irregularity that is 

identified can be further investigated when conducting statistical and empirical tests.  

1) Run Sequence Plot 

The Run Sequence plot is a graph of each observation against the order it is in the 

sequence. Figure 22 below is the run sequence on a set of 1000 number. It is 

observed that the plot fluctuates around 32, which is the expected mean of this 

sequence. In addition, the fluctuations in the plots appear random and there is no 

upward, downward or cyclical trend evident in this graph.  

2) Lag Plot 

The Lag Plot is a scatter of each observation against the previous observation. This 

plot is most useful in detecting outliers. Outliers should always be examined and 

deleted from the dataset if necessary before analysis carry out. If there are many 

outliers in the data set, it is an indication that the random number generator could 
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have flaws. The Lag Plot of this data set is shown in Figure 23 below. It shows no 

outliers  

Figure 22: The Run Sequence Plot of Tested Sequence 

 

Figure 23: The Lag Plot of Test Sequence 
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and the data are spread evenly across the plane. This is a good indication that the 

generated sequence is truly random. 

3) Histogram 

The histogram represents a frequency distribution and in this case it shows the count 

of observations that occurs in each sub-interval. Therefore, it is expected that almost 

the same number of observation lies in each bin. As shown in Figure 24 below, 

approximately 1250 observations fall into each interval. The histogram confirms the 

property of uniformity for the sequence.  

Figure 24: Histogram 

 

4) Autocorrelation Plot 

Autocorrelation is the correlation of a variable with itself over successive time 

intervals. It occurs when an observation is somehow determined by proceeding 

observation. The x-axis is the lag between measurements and the y-axis shows the 

autocorrelation coefficient. The autocorrelation plot is shown in Figure 25 below. It 
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is observed that all the values are in control (inside the blue line) and the correlations 

are extremely small. It is found that the autocorrelation is bounded by 0.02, which is 

well below the key threshold of 0.1. This demonstrates that there is almost no 

dependence in successive observations it demonstrates the property of independence.  

Figure 25: Autocorrelation Plot 

 

In summary, the exploratory data analysis shows to support the hypothesis that 

the numbers are random. The summary statistics illustrates the size of the dataset and 

provides a reasonable evidence of randomness. The mean of 32.74 agrees with the 

property of uniformity and it is also confirmed in the histogram. The low autocorrelation 

bound validates the properties of independence. In addition, the run sequence and the lag 

plot dos not highlight any outliers and inconsistencies in the data. The randomness of the 

sequence is further tested in statistical and empirical tests outlined below.  
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4.5.2 Theoretical Tests 

 

Theoretical tests are primarily concerned with theories or hypotheses rather than 

practical considerations. The tests are formulated to test a null hypothesis. For the 

purpose of this test, the null hypothesis under test is that the sequence tested is random. 

Associated with this null hypothesis is the alternative hypothesis, which implies that the 

sequence is non-random. For each applied test, a decision or conclusion is derived that 

either accepts or rejects the null hypothesis. Three theoretical tests are selected to test the 

sequence: The Chi-Squared Test, the Test of Runs Above and Below the Median Test 

and the Reverse Arrangement Test.  

 

1) The Chi-Squared Test 

The Chi-Squared test focuses on the property of uniformity of the sequence. The test 

is aimed to see if the observed frequencies in each class are significantly different 

from those that could be expected. Observed and Expected Frequency for the Chi-

Squared Test on the sequence of 10000 numbers is shown in Table 9 below. The 

deviations are shown in Figure 26 as well. The procedure of this hypothesis testing is 

shown below: 

 

H0: The numbers follow a uniform distribution 

Ha: The numbers do not follow a uniform distribution 

Test Statistics:     ∑
       

 

  

 
     where k is the number of categories 

                        ∑
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Table 9: Observed and Expected Frequency for the Chi-Squared Test 

Category Observed (Oi) 

(O(Oi) 

Expected (Ei) 

0.100 1262 1250 

0.200 1217 1250 

0.300 1234 1250 

0.400 1246 1250 

0.500 1244 1250 

0.600 1269 1250 

0.700 1198 1250 

0.800 1330 1250 

Total 10000 10000 

 

Figure 26: Frequency Histogram (Expected vs. Actual) 

 

Level of Significance: α = 0.05 

Critical Value:        
        (Critical value with 7 degree of freedom) 

0

250

500

750

1000

1250

1 2 3 4 5 6 7 8

Frequency Histogram 

Actual Frequency Expected Frequency



63 
 

The test statistics is less than the critical value so the null hypothesis is accepted at 5% 

significant level. The resulting numbers fit into a uniform distribution and the RNG 

passes this test.  

 

2) Test of Runs Above and Below the Median Test 

The Test of Runs Above and Below the Median Test looks at the order of numbers in 

the sequence to determine if the order is random or attributable to a pattern in the data.  

A run is defined as a set of consecutive numbers that are either all less than or all 

greater than the median value. The total number of runs, u, the total numbers in the 

sequences greater than the median, n1, and the total numbers less than the median n2 

of the sequence are collected. Then u is distributed with the following mean    and 

standard deviation    

   
     

     
                          √

                  

       
          

 

The sampling distribution of u can be approximated to normal distribution if n1 and n2 

are sufficiently large. In this case, it is assumed that u has a normal distribution. The 

hypothesis that the sequence is random cannot be accepted when the test statistics z is 

less than z-α/2 or exceed zα/2 where 

  
          

  
 

The      is a continuity correction included to incorporate values of u less than and 

greater then  . -0.5 is used when     and +0.5 is used when     . 

The summary Statistics for the Runs Test are shown in Table 10 below.  
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           Table 10: Summary Statistics for the Runs Test 

u n1 n2       z 

4923 4887 4959 4922 49.61 0.01 

 

H0: The sequence of numbers are generated in a random order 

HA: The sequences of numbers are not generated in a random order 

Test Statistics:  

  
          

  
 

               

     
      

Level of Significance: α = 0.05 

Critical Value:  

z-α/2 < 0.01 < zα/2    =>   z-0.025 < 0.01 < z0.025   =>    -1.96 < 0.01 < 1.96 

The test statistics z=0.01 lies between  1.96. Therefore, the null hypothesis is 

accepted at the 5% significance level. There is no evidence to suggest a bias in the 

sequence of generated random numbers. The result of this test confirms that the 

random patterns identified in the EDA test are indeed random.  

 

3) Reverse Arrangement Test 

The Reverse Arrangement Test focuses on the detection of biases and monotonic 

trends in the sequence of generated random numbers. Take N observations from a 

random variable X, denoted by xi where I = 1, 2, 3 … N. Then count the number of 

times that xi>xj for each i<j. Each such inequality is called a reverse arrangement. The 

total number of reverse arrangements is denoted by A.  

From the observations x1, x2, x3, …, xn 

 Let       {
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Then   ∑ ∑    
 
     

   
    

If the sequences of N random numbers are independent observations on the same 

random variable, then the number of reverse arrangements, A is a random variable 

with the following mean and standard deviation.  

   
      

 
                    √

            

  
        

Test Statistics: A=25135236, or z=0.8265 (z-score) 

Level of Significance: α = 0.05 

Critical Value:  

z-α/2 < 0.8265 < zα/2    =>   z-0.025 < 0.8265 < z0.025   =>    -1.96 < 0.8265 < 1.96 

Based on the above experimental data, the null hypothesis is accepted at 5% 

significant level. The test shows that there is no evidence that the data has monotonic 

trends. This supports the assumption that there is no biased in generated random 

numbers.  

 

4.5.3 Comprehensive NIST Test Suites 

 

With Exploratory Data Analysis and Statistical Tests shown above, it is still 

inconclusive to show the randomness of the sequence. In the past few decades, many tests 

suites, including empirical tests, have been developed for testing randomness in a binary 

sequence for the purpose of cryptography. Here are the descriptions of the three most 

significant test suites  

 



66 
 

1) Knuth: Donald Knuth’s (Professor from Computer Science Department) book 

“The Art of computer Programming (1
st
 edition, 1969)” [18] is the most quoted 

reference in statistical testing for RNGs in literature. Although it was a standard 

for many decades, it appears to be outdated in today’s view. He fails to mention 

cryptographic applications and perhaps it was not as important as of today. His 

tests are seen as mild today and it allows many “bad” generators to pass the tests.  

2) Diehard: As computers become more advanced, more random numbers are 

consumed than ever before. Random numbers generators once were satisfactory 

are no longer good enough for sophisticated applications in physics, 

combinatorics and stochastic geometry. In 1995, Professor Marsaglia from 

Statistics Department in Florida State University introduced a suite of stringent 

tests that go beyond the approach Knuth’s classical approaches and named it 

“Diehard Suites”. They are stringent in the sense that they are difficult to pass. 

However, as Marsaglia retired and the suites have not been maintained in the past 

few years. Therefore it was not selected as the tests for this study.  

3) National Institute of Standards and Technology (NIST): National Institute of 

Standards and Technology (NIST) is a measurement standard laboratory and it is 

a non-regulatory agency of the United States Department of Commerce. It 

promotes U.S. The institute’s official mission is to “promote innovation and 

industrial competitiveness by advancing measurement science, standards, and 

technology in ways that enhance economic security and improve our quality of 

life”. Released in 2001, the NIST Statistical Test Suites is a package consisting of 

15 tests that were developed to test the randomness of arbitrary long binary 
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sequence produced by either hardware or software. The test suites is the result of 

collaboration between the Computer Security Division and the Statistical 

Engineering Division at NIST in response to a perceived need for a credible and 

comprehensive set of tests for binary (not uniform) random number generations. 

The test suites make use of both existing algorithm from past literatures and 

newly developed tests. NIST is now by and large the standard in the world of 

RNG testing. As a result, NIST suites are used as the comprehensive testing 

criteria to determine the quality of the RNG. The list of 15 tests in the suite is 

shown below and the purpose of each test is described briefly. Please refer to 

NIST Special Publication 800-22rev1a (dated April 2010) “A Statistical test Suite 

for the Validation of Random Number Generators and Pseudo random Number 

Generators for Cryptographic Applications” for detailed description for the 

purpose and procedure of each test.  

 

1. The Frequency (Monobit) Test: Tests proportion of zeros and ones for the whole 

sequence 

2. Frequency Test within a block: Tests the proportions of ones within M-bit Block 

3. The Run Test: Test the total number of runs in the sequence, where a run is an 

uninterrupted sequence of identical bits 

4. Tests for the Longest-Run-of-Ones in a Block: Test the longest run of ones within 

M-bit Block and consistency with theory 

5. The binary Matrix Rank Test: Test rank of disjoint sub-matrices of the entire 

sequence and independence 
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6. The Discrete Fourier Transform (Spectral) Test: Tests the peak heights in the 

Discrete Fourier Transform of the sequence, to detect  periodic features that indicates 

deviation of randomness 

7. The Non-overlapping Template Matching Test: Tests the number of occurrences 

of a pre-specified target strings 

8. The overlapping Template Matching Test: Test the number of occurrences of a 

pre-specified target strings. When window found, slide only one bit before the next 

search 

9. Maurer’s “Universal Statistics” Test: Tests the numbers of bits between matching 

patterns 

10.  The Linear Complexity Test: Tests the length of a linear feedback shift register, 

test complexity  

11. The Serial Test: Test the frequency of all possible overlapping m-bit pattern  

12. The Approximate Entropy Test: Tests the frequency of all possible overlapping m-

bits pattern across the entire sequence 

13. The Cumulative Sums (Cusums) Test: Tests maximal excursion from the random 

walk defined by the cumulative sum of adjusted (-1, +1) digits in the sequence 

14. The random Excursion Test: Test the number of cycles having exactly K visits in a 

cumulative sum random walk 

15. The Random Excursions Variant Test: Test the total number of times that a 

particular state is visited in a cumulative sum random walk   
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The software to test the binary random sequences are created and maintained by 

NIST engineers and it is published online free to users [19]. Software patch sts-2.1.1 

publish in August 2010 is download and run in Linux machine as benchmark to test 

randomness. The result is reported as a pass/failure based on critical p-values and it is 

given by the software in finalAnalysisReport.txt file. Due to the limitation of space, the 

detailed description and observation from two of the tests are shown here.  

 

1) Test #5: Random Binary Matrix Test 

The binary Matrix Rank test checks linear dependence among fixed-length substrings of 

the original sequence. Matrices of successive zeros and ones are constructed and check 

the linear independence among the rows or columns. The deviation of the rank, or rank 

deficiency, of the matrices is calculated using a chi-square distribution. The matrices used 

in the test have dimensions of 32 by 32. The probabilities of matrices with the following 

ranks are shown below: 

p32=0.2888, p31=0.5776, p30=0.1284 

To apply the Chi-Squared Test, use the classical statistics: 

   
             

       
 

               

       
 

                    

       
 

The p-value is calculated with the following expression: 

        
       

 
  

 

CASE 1: 10000 Binary Bits Generated from the Original Sequence 

For this case, the random integers generated are converted to binary sequence on a one-

to-one basis. A binary value of 0 is generated when the integer value is between 1 and 32 
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and a binary value of 1 is generated when the integer value is between 33 and 64. The 

results of the test is outputted by the software are shown below. The calculated p-value is 

less than 0.01, which indicates that the alternative hypothesis should be accepted rather 

than the null hypothesis.  

 

     COMPUTATIONAL INFORMATION: 
        --------------------------------------------- 
        (a) Probability P_32 = 0.288788 
        (b)             P_31 = 0.577576 
        (c)             P_30 = 0.133636 
        (d) Frequency   F_32 = 0 
        (e)             F_31 = 4 
        (f)             F_30 = 5 
        (g) # of matrices    = 9 
        (h) Chi^2            = 12.27 
        (i) NOTE: 784 BITS WERE DISCARDED. 
        --------------------------------------------- 
FAILURE        p_value = 0.002 

 

The results indicate a pattern of linear independence with the tested sequence and show 

evidence of non-randomness. However, only 9 matrices were generated in this test and it 

is a relatively small sample. A large input data might be needed to make conclusive 

decisions and determine if it is a statistical anomaly. 

 

CASE II: 60000 Binary Bits Generated from the Original Sequence 

For this case, the integer generated on the interval between 1 and 64 are subtracted by 1 

and then converted to a 6 bit binary output. As a result, a sequence with 60000 binary bits 

is generated from the algorithm. The results of the test is outputted by the software are 

shown on next page. The calculated p-value is less than 0.01, which indicates that the 

alternative hypothesis should be accepted rather than the null hypothesis.  
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COMPUTATIONAL INFORMATION: 
        --------------------------------------------- 
        (a) Probability P_32 = 0.288788 
        (b)             P_31 = 0.577576 
        (c)             P_30 = 0.133636 
        (d) Frequency   F_32 = 4 
        (e)             F_31 = 38 
        (f)             F_30 = 16 
        (g) # of matrices    = 58 
        (h) Chi^2            = 10.31 
        (i) NOTE: 608 BITS WERE DISCARDED. 
        --------------------------------------------- 
FAILURE        p_value = 0.0057 

 
Although more bits were generated from the new algorithm, the Binary Rank Test still 

fails. It indicates that the mapping from random integer numbers to random binary 

sequence is not the cause of the failure. It shows that there exist three matrices with full 

rank compared to none in the first test. However, the deviation in rank compared to 

theoretical values is still significant that it causes the failure of the test with Chi-Square 

distribution. More statistical tests and further investigation is required to determine that if 

the sample size is the main cause of failure.  

 

CASE III: A Million Bits Generated from the New Experiment  

In order to evaluate whether dependence exists in the sequence, more experimental data 

are generated using the same algorithm with a new bit. One million random numbers 

between the range of 1 to 64 are generated and one to one conversion is used in 

generating the binary sequence. The results of the test is outputted by the software are 

shown on next page. There are in total 976 matrices with dimension 32 by 32 being tested. 

The deviations of ranks are much smaller compared to the two sequences from the 

original data. The p-value of this test is 0.567, which is well above the critical value of 

0.01. This indicates that the sequence is considered random and there is no evidence  
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COMPUTATIONAL INFORMATION: 
        --------------------------------------------- 
        (a) Probability P_32 = 0.288788 
        (b)             P_31 = 0.577576 
        (c)             P_30 = 0.133636 
        (d) Frequency   F_32 = 296 
        (e)             F_31 = 556 
        (f)             F_30 = 124 
        (g) # of matrices    = 976 
        (h) Chi^2            = 1.132 
        (i) NOTE: 576 BITS WERE DISCARDED. 
        --------------------------------------------- 
SUCCESS        p_value = 0.567775 

 

showing dependence with previous observations. This test shows that previous failures 

are mainly due to the length of the data or the nature of that specific sequence. The RTN 

based random number generating algorithm is acceptable and passes the binary rank test.  

   

2) Test #12: Approximate Entropy Test 

The Approximate Entropy Test focuses on the frequency of all possible m-bit patterns 

across the entire sequence. The purpose of the test is to compare the frequency of 

overlapping blocks of two consecutive/adjacent lengths (m and m+1, note m=4 for this 

specific test) against the expected random sequence. The count of all possible 

combination of bit lengths m and m+1 is tabulated then the entropy for length m and 

m+1 is calculated accordingly. The Test Statistics is given by: 

     [            ]  where ApEn(m) = entropy(m) - entropy(m+1) 

Then the P-value is computed as following: P-value = igamc(2
m-1

,       

where igmac denotes incomplete gamma distribution.  

The result outputted from the software is shown on next page: 
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 APPROXIMATE ENTROPY TEST 
        -------------------------------------------- 
        COMPUTATIONAL INFORMATION: 
        -------------------------------------------- 
        (a) m (block length)    = 4 
        (b) n (sequence length) = 10000 
        (c) Chi^2               = 16.703866 
        (d) Phi(m)           = -2.771524 
        (e) Phi(m+1)           = -3.463836 
        (f) ApEn                = 0.692312 
        (g) Log(2)              = 0.693147 
        -------------------------------------------- 
SUCCESS       p_value = 0.405005 
 
The p-value is greater than 0.01, which indicates that the null hypothesis is accepted. 

Therefore, the given sequence passed the Approximate Entropy Test and shows no 

evidence s of non-randomness.  

 

Odd-Even Based Sampling:  

In addition to the random number generating scheme using the transformation 

from exponential to uniform distribution, an extremely simple odd-even based sampling 

is performed to test the randomness of the sequence. Similar to the previous algorithm, 

the times that the error patterns stay in up/down states are tabulated as an integer multiple 

of sampling times. The binary sequences are generated based on whether this integer 

number is even or odd. Conceptually, this set of binary sequence is random due to the 

fact that Random Telegraph Noise is random. With this sampling approach, the original 

sequences with length 10000 and the new sequence with lengths 1 million are both tested 

with the comprehensive NIST suites. Both sequences pass all 15 tests in the suites and it 

confirms with the early assumption. The advantage of this sampling algorithm is 

obviously its simplicity thus it leads to a faster number generation. However, the 
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throughput produced from this sampling scheme is much smaller compared to the 

algorithm presented earlier, where 6 bits could be generated with each time count.  

Summary: 

The original sequence passed 14 out of 15 tests in the NIST binary sequence 

testing suites. It failed Test #5 Random Binary Matrix Test as shown above. The failed 

test focuses on linear dependence of sub-block within the sequence. After further 

investigation, only nine matrices are generated from the small sample size and it might 

not fully represent the statistical distribution of matrices ranks. With the new 

experimental data about one million bits, the new sequence passes the binary rank test 

with a p-value 0.57. Therefore, it shows that the random number generator presented 

indeed performs well and the results are truly random. However, the testing is still at 

beginning stage and more experimental data from many bits are needed to test the 

consistence of the results. More data sample should also be collected and the test should 

be conducted again to make sure the result is valid. Furthermore, in the event that some 

tests that fail, additional numerical experiments should be conducted on different samples 

of the RNG to determine whether the phenomenon was a statistical anomaly or indeed it 

is a clear evidence of non-randomness.  

 

4.6 Comparison with other RNGs 

 

With the proposed RNG using RTN, it is essential to compare it with other state 

of art RNG’s. In this study, the test results are compared with ones from the MATLAB 

default random number generator and Random.org generator. It is worthwhile to note that 
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MATLAB uses a pseudorandom generator and Random.org is a true RNG. The 

descriptions of generating algorithms are stated below.  

1) MATLAB default RNG 

MATLAB default RNG is a pseudorandom number generator and it uses an 

algorithm called “Mersenne Twister” with seed 0. The algorithm was developed 

in 1997 by two Japanese mathematicians. It is based on a matrix linear recurrence 

over a finite binary field F2. It provides for fast generation of very high-quality 

pseudorandom numbers as it was designed specifically to rectify flows in older 

algorithms.  

2) Random.org RNG 

Random.org’s random numbers are generated using a TRNG. Its source of 

entropy is atmospheric noise. It is obtained by tuning a radio to a station that no 

one is using. It is then played into a workstation server where a program converts 

it to an 8-bit mono-signal at a frequency of 8 kHz. Then the first seven bits are 

  

Table 11: Comparison of RNG using Theoretical Statistics Test 

 Test Statistics 

Test Critical value RTN MATLAB Random.org 

Chi-Squared Test        
               

 =15.13        
 = 8.21        

   7.04 

   Accept H0 Accept H0 Accept H0 

Test of runs above and 

below the Median 

-1.96<z <1.96 z = 0.552 z = 0.365 z = -0.351 

  Accept H0 Accept H0 Accept H0 

The Overlapping Sums 

Test 

-1.96<z <1.96 z = 0.937 z = -0.682 z = -0.452 

  Accept H0 Accept H0 Accept H0 
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Table 12: Comparison of RNG using NIST Test Suites 

Test # Test Name RTN MATLAB Random.org 

1 Frequency test    

2 Test for Frequency within a block    

3 Runs Test    

4 Test for Longest Run of Ones in a block    

5 Random Binary Matrix Rank Test    

6 Discrete Fourier Transform Test    

7 Non-Overlapping Template Test    

8 Overlapping Template Test    

9 Maurer’s Universal Statistics Test    

10 Linear Complexity Test    

11 Serial Test    

12 Approximate Entropy    

13 Cumulative Sum Test    

14 Random Excursion Test    

15 Random Excursions Variant Test    

 

discarded and the remaining bits are collected. This stream of bits has very high entropy. 

The last step is to perform a skew correction on the stream to ensure that an even 

distribution of 0’s and 1’s.   

Sequences of 10000 random numbers are generated using each of the three 

schemes of RNGs. The three theoretical tests are tested on the samples and the 

comparisons of the three theoretical statistics tests results are shown in Table 11 on 

previous page. The NIST suites to test binary random sequences are also used and the 

comparisons of results are shown in Table 12 on previous page as well.  
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Based on the results shown in Table 11 above, it is observed that all three RNGs 

passed the theoretical statistics tests with 5% significant level. With the NIST random 

sequence test, it is shown that the original sequence generated by RTN based RNG 

passed 14 out of 15 tests but the new sequence with large sample size passes the failing 

tests. The pseudorandom number generator and the random.org’s TRNG passed all 15 

tests. It is difficult to make a definitive conclusion based on the small test sample. The 

preliminary result indicates the trend that the RNG based on RTN satisfy the needs of 

random number generation. However, the speed of number generations for RTN based 

RNG is significantly slower compared to MATLAB’s pseudorandom algorithm as well 

as the random.org scheme.  The methodology applied in this chapter is still primitive in 

nature. The process in selecting specific bits to generate bit error pattern, the signal 

processing and analyzing algorithms, the measurements methodology implied in this 

original study still requires improvement. A skew correction mechanism should be 

investigated and see if it could help the randomness of the sequence. In addition, more 

detailed testing with a large quantity of bits within different blocks should be tested as 

well as different flash memory chips from various vendors. The study demonstrates the 

existence of RTN noise in Flash memory chips and it shows the encouraging and 

promising trends of generating random numbers based on this physical phenomenal.  
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5.  Conclusion and Future Work 

 

5.1 Conclusion 

 

In this study, an innovative model to characterize the behavior of flash memory 

cells in stress is proposed to study the reliability issue. The simplified theoretical model 

includes three main factors: stress induced leakage current, random telegraph noises and 

peripheral circuits caused reading errors. Experimental data of error patterns after ten 

million erase cycles from one physical flash memory chip is collected and analyzed. 

Simulated Annealing algorithm is implemented to extract the parameters in the model. 

MATLAB simulations are then performed in order to validate the model. The proposed 

model fits well with the average trial experiment but shows discrepancy in individual 

trials as erratic erase and various initial threshold voltages might contribute to the 

unpredictability. It is concluded that the proposed model gives a basic and accurate 

representation of the major contributing factors of flash cell failures, but it is inconclusive 

to say that this model fully represent the failure mechanism of every single cells. 

Random Number Generations using the Random Telegraph Noises phenomenal is 

an interesting application based on the proposed model. A novel approach of partial erase 

with relatively small stress is implemented in order to extract the best one-trap behaviors 

in error patterns suitable for random number generator. The time threshold spend in up or 

down states are measured and modeled as an exponential distribution. The random 

variable is then transformed into a uniform distribution in the interval between 0 and 1. 

The sequence of random numbers is then tested using a rigorous approach.  Exploratory 

Data Analysis, Theoretical Statistical Test and industry standard National Institute of 
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Standard and Technology random binary sequence testing suites for cryptography 

applications are all used as means to verify the quality of the random numbers. The 

testing work is still at preliminary stage where only a limited amount of number is tested. 

It is shown the feasibility of random number generation using the RTN phenomenal as it 

satisfies the main requirements of randomness test, but it fails 2 out of 15 tests in a more 

sophisticated random testing scheme. The reason of failure is still unknown and more 

numerical tests should be performed to see if it is a statistical anomaly or indeed the 

sequence shows evidence of non-randomness.   

 

5.2 Future Work 

 

Although the study shown in this thesis demonstrated an enormous 

accomplishment, there are still many future researches ahead in order to have a 

comprehensive understanding on the reliability issue.  The proposed model is unable to 

explain the weird and inconsistent behavior of stress induced leakage current after each 

erase operation. It is speculated that transient current might play a significant during the 

short period after erase operation and it should be taken into consideration as part of the 

model. This is only one of the possible improvements in the model that future project 

should work on in the near future. It is still an unknown question whether this model 

comprehensively characterize the behavior of flash cells in stress. More experiments 

should be performed with various manufacturing technology in order to show conclusive 

results. 

There are many applications with the proposed reliability model. Random 

Number Generation is simply one of them that is in focus for this study. The initial study 
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shows promising results on the feasibility of RNG based on RTN, but more systematic 

testing should be performed as well with the existing infrastructures. In addition, skew 

correction algorithm should be investigated and tested to see if it helps improve the 

performance of the RNGs.  

Digital signature within a flash chip is another mind-boggling application that 

future research could work on. The numerical values of parameters for various bits in 

different blocks could be used as a unique signature of each flash chip and information 

could be hidden within the physical layer of flash chips as well. The digital signature 

application could also be as a way to validate and different authentic flash chips against 

fake ones. In addition, an error correction code to improve the mean time to failure of 

flash memory chips is another challenging project in industry. There are enormous 

possibilities ahead with the reliability issues in flash memory cells as the dimension of 

device size gets reduce further. The researches on this topic will continue and it will 

impose unique but challenging problems to scientists and engineers worldwide.  
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Appendix I:  MATLAB simulation of the Proposed Model 

 

len=length(t); 
 
       for i=1:len 
               Vth(i)=Vth0*exp(-t(i)*tao1); 
      end 
     
      tdis=zeros(1,len); 
 
      for ss=1:200 

             up=exprnd(up_mean, [1, len]); 
      down=exprnd(down_mean, [1,len]); 
 
      for i=1:len 
              up(i)=round(up(i)); 
              down(i)=round(down(i)); 
      end 
      RTN=zeros(1,len); 
       i=1; 
       ptr=1;  %pointer 
       while(i<len) 
        j=down(ptr); 
        i=i+j; 
       j=up(ptr)+i; 
        while(i<j) 
               RTN(i)=deltaV; 
               i=i+1; 
        end 
        ptr=ptr+1; 
       end 
       vtemp=Vth+RTN(1:len); 
  
       for i=1:len 
                ferr(i)=1-1/(exp(alpha*(vtemp(i)-Vread))+1); 
                temp=rand(1,1); 
                if temp<=ferr(i) 
                 cell1(i)=1; 
                tdis(i)=tdis(i)+1; 
                end 
       end 
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Appendix II: Exhaustive Search Algorithm 

 

for i=1:length(alpha) 
for r=1:length(ratio_enum) 

             ratio=ratio_enum(r); 
             upmean=downmean*(1-ratio)/ratio; 
     for j=1:length(downmean) 
          for k=1:length(Vth0) 
              for m=1:length(tao1) 
                    for p=1:length(Vread) 
                          err_t=0; 
                           for z=1:length(input) 
                               temp1=(1-1/(exp((alpha(i))*(Vth0(k)*exp(-1*z*dt/tao1(m))-

Vread(p)))+1)); 
                               temp2=(1-1/(exp((alpha(i))*(Vth0(k)*exp(-z*dt/tao1(m))-

Vread(p)+deltaV))+1)); %% 
                              P1=ratio+(1-ratio)*exp(-z*dt*(1/downmean(j)+1/upmean(j))); 
                              error=temp1*P1+temp2*(1-P1); 
                              error=(input(z)-error)^2 
                              err_t=error+err_t; 
                              loop=loop+1; 
                           end 
                           if (count==0) 
                                 min_e=err_t; 
                                 count=count+1; 
                          else 
                                 if(err_t<min_e) 
                           min_e=err_t; 
                            ind_i=i; 
                            ind_j=j; 
                            ind_k=k; 
                            ind_m=m; 
                            ind_p=p; 
                            ind_ratio=r; 
                             end 
                  end 
                   end 
                  end 
              end 
         end 
     end 
 end 
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Appendix III: Simulated Annealing Algorithm 

 

    while (count<count_max && err_cur > err_min) 
         
        if (mod(count,10000)==0) 
            fprintf('count=%d, Error=%.4d\n',count,err_cur); 
        end 
         
        num=randi(12,1,1); 
  
        if (num==1 && cur_i~=length(Vread)) 
            cur_i=cur_i+1; 
        elseif (num==2 && cur_i~=1) 
            cur_i=cur_i-1; 
        elseif (num==3 && cur_j~=length(Vth0)) 
            cur_j=cur_j+1; 
        elseif (num==4 && cur_j~=1) 
            cur_j=cur_j-1;   
        elseif (num==5 && cur_k~=length(tao1)) 
            cur_k=cur_k+1; 
        elseif (num==6 && cur_k~=1) 
            cur_k=cur_k-1;  
        elseif (num==7 && cur_m~=length(alpha)) 
            cur_m=cur_m+1; 
        elseif (num==8 && cur_m~=1) 
            cur_m=cur_m-1; 
        elseif (num==9 && cur_p~=length(ratio_enum)) 
            cur_p=cur_p+1; 
        elseif (num==10 && cur_p~=1) 
            cur_p=cur_p-1;   
        elseif (num==11 && cur_q~=length(downmean)) 
            cur_q=cur_q+1; 
        elseif (num==12&& cur_q~=1) 
            cur_q=cur_q-1;  
        end 
  
        ratio=ratio_enum(cur_p); 
        upmean=downmean(cur_q)*(1-ratio)/ratio; 
        err_t=0; 
         
        for z=1:length(input) 
            temp1=(1-1/(exp((alpha(cur_m))*(Vth0(cur_j)*exp(-z*dt*tao1(cur_k))-
Vread(cur_i)))+1)); 
            temp2=(1-1/(exp((alpha(cur_m))*(Vth0(cur_j)*exp(-z*dt*tao1(cur_k))-
Vread(cur_i)+deltaV))+1)); 
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            P1=ratio+(1-ratio)*exp(-z*dt*(1/downmean(cur_q)+1/upmean)); 
            error=temp1*P1+temp2*(1-P1); 
            error=(input(z)-error)^2; 
            err_t=error+err_t; 
        end     
  
        if (err_t>err_cur) 
            acc_prob=exp((err_cur-err_t)/T_const); 
            if (acc_prob<rand(1,1)) 
                if (num==1 && cur_i~=length(Vread)) 
                    cur_i=cur_i-1; 
                elseif (num==2 && cur_i~=1) 
                    cur_i=cur_i+1; 
                elseif (num==3 && cur_j~=length(Vth0)) 
                    cur_j=cur_j-1; 
                elseif (num==4 && cur_j~=1) 
                    cur_j=cur_j+1;   
                elseif (num==5 && cur_k~=length(tao1)) 
                    cur_k=cur_k-1; 
                elseif (num==6 && cur_k~=1) 
                    cur_k=cur_k+1;  
                elseif (num==7 && cur_m~=length(alpha)) 
                    cur_m=cur_m-1; 
                elseif (num==8 && cur_m~=1) 
                    cur_m=cur_m+1; 
                elseif (num==9 && cur_p~=length(ratio_enum)) 
                    cur_p=cur_p-1; 
                elseif (num==10 && cur_p~=1) 
                    cur_p=cur_p+1;   
                elseif (num==11 && cur_q~=length(downmean)) 
                    cur_q=cur_q-1; 
                elseif (num==12&& cur_q~=1) 
                    cur_q=cur_q+1;  
                end 
            else 
                err_cur=err_t; 
            end 
        else 
            err_cur=err_t; 
        end 
        count=count+1; 
    end 
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