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This dissertation presents characteristics and utilities of enhanced microsensors for 

chemical land oncological applications. Simple and cheap techniques for fabrication of 

mechanical and electrical sensing devices in micro scale have been developed. 

Critically buckled resonant microbrides with active sensing polymer layer detect 

chemical gases as it swells volumetrically and its resonant frequency shifts due to 

altered tension in the microbridges. Substantial improvements in quality factor and 

frequency stability of the microresonators under ambient pressure and temperature 

condition have been demonstrated. For potential applications in monitoring electrical 

behavior of human colorectal carcinoma cells, bio-functionalized electrical graphene 

microsensors on a sapphire substrate have been developed. The biosensors have 

shown substantial increase in impedance compared to its baseline with a small number 

of captured cells. In addition to the development of microsensors, experimental 

procedure for visualization of metastatic colorectal tumor cells in mice using multi-

photon fluorescent microscopy is presented.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction and Overview 

Microelectromechanical systems (MEMS), the technology of miniaturized 

devices, incorporate a range of useful functionalities, both electrical and mechanical, 

into a small chip-scale package. With dimensions on the order of microns (10-6 m) or 

less, these systems range from complex machines to simple flexural elements, and 

typically include some form of electrical or optical integration. Devices are often 

fabricated using microelectronics technology. Successfully fabricated and marketed 

MEMS technologies include airbag accelerometers, injet printer nozzles, micromirrors 

for projector and television displays, and motion sensors (such as accelerometers and 

gyroscopes) for video game controllers. Further promising applications of 

microdevices include sensors of pressure1,2, temperature3-5, charge6, spin7 and mass8-15. 

This kind of sensing applications is benefited by moving to smaller size scales. 

Smaller devices have the potential to consume less power and offer greater sensitivity 

than their larger scale mechanical or electrical counterparts. 

In this dissertation, issues related to the characteristics and utility of improved 

microsensors will be discussed. Specific achievements presented in this work will 

include the development of simple and cheap techniques for fabricating mechanical 

and electrical sensing devices in micro scale, demonstration of sensing chemical 

vapors in ambient conditions using critically buckled doubly clamped functionalized 

mechanical resonators, and the use of graphene nanosheets for a novel electrical 
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biosensor to detect large-sized bio-species such as cancer cells. In addition to the 

development of microsensors, visualization of invading colorectal cancer cells with 

multi-photon microscopy using genetically engineered mouse models (GEMM) will 

be discussed. 

 

1.2 Stress-based Resonant Micro Gas Sensors 

1.2.1 Comparison with Other Micro Gas Sensors 

There is great demand for fast, sensitive, and inexpensive gas sensors. Aiming 

towards large-scale lab-on-a-chip integration, the development of microsensors 

implemented by micro and nanoelectromechanical systems (M/NEMS)16,17 are being 

adopted for biological, chemical, and environmental sensing applications18–21. For 

example, in biomedical and clinical studies, miniaturized olfactory microsensors can 

diagnose diseases such as asthma and diabetes through exhaled breath analysis22–24. 

Miniaturized chemical gas sensors have been developed to detect very small amounts 

of flammable gases and trace explosive gases for public safety and security uses25–28. 

In these applications, different types of chemical microsensors have been investigated, 

including deflection-based functionalized MEMS cantilever arrays29,30, 

chemiresistors31, capacitive chemical microsensors32, nanowire arrays28,33, quartz 

crystal microbalance (QCM)34, surface acoustic wave (SAW) devices35,36, and mass-

based detection in NEMS arrays37,38. Table 1.1 summarizes estimated sensitivities and 

response times of some of these methods. 
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Methods 

Estimated 

Response 

Time 

Estimated Minimum 

Detectable 

Concentration 

Pressure 

and 

temperature 

Analyte 

Deflection-based 

MEMS array29 
~ 50 s 1000 ~ 2000 ppm 

atmosphere, 

room 

temperature 

water, 

ethanol, 

acetone, 

etc. 

Chemiresistor31 ~10 ms 4~5 ppm 

atmosphere, 

room 

temperature 

methanol, 

water, 

benzene, 

etc. 

Nanowire array33 ~ 10 s 0.1~1 ppm 
atmosphere, 

300 °C 
ethanol 

Mass-based 

detection in MEMS 

array37 

40 ms 0.6 ppb 
atmosphere, 

40 °C 

toluene, 

octane, etc. 

 

Table 1.1 Estimated response time and minimum detectable concentration among 

selected methods for micro- and nano- gas sensors 

 

 

1.2.2 Previous Work and Motivation 

In previous work, the stress-based detection approach and water vapor 

detection in silicon-polymer composite resonant microbridges (RMBs)39 has been 

demonstrated. Doubly clamped RMBs functionalized with thermally evaporated 

nanoporous polymer film exhibited significant positive resonant frequency shifts in a 

silicon-polymer bilayer due to stress changes from adsorbed vapors that cause the 

polymer layer to swell. This mechanism is dominant over mass-loading effects from 

the vapors that would induce negative frequency shifts. The RMBs under compressive 

stress have a calculated sensitivity as low as 170 parts-per-million (ppm) with a 

response time of few seconds39.  
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 In this dissertation we present the resonant response of polymer-spincoated 

doubly-clamped beams to ethanol, benzene and water vapor. Our beams operate near 

their critical bucking stress40 (also known as the Euler stress), where the sensitivity of 

the devices is potentially greater than cantilevers or doubly-clamped beams far away 

from the critical stress. This critical stress, σcrit, is known to be 

 

2 2

23
crit

Et

l


        (1.1) 

 

where E is the Young’s modulus, t is the thickness, and l is the effective beam length. 

Here we demonstrate functionalization of reproducible spin coated polymer layer of a 

few tens of nanometers thickness on top of 140 nm thick near-critically buckled 

microbridge resonators, yielding sensitivity and response time comparable to state-of-

art devices29-38.  

 

1.3 Electrical Graphene Biosensors 

Graphene, a two-dimensional single or a few sheets of sp2-hybridized carbon 

atoms, exhibits exceptional material properties such as high intrinsic carrier mobility, 

semi-metallic properties, high optical transparency and high surface area-to-mass ratio 

at room temperature41-45. In addition to its unique properties, graphene is a potential 

alternative to carbon nanotube (CNT) structures for certain applications. For instance, 

it is known to be difficult to manipulate CNTs for device fabrication if only a few 

CNTs are used46,47. Two-dimensional planar structure of graphene allows for simpler 
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device process and more complex integration using established semiconductor 

processes. Additionally, its high Young’s modulus and optical transparency is 

remarkably useful to fabricate competent optical devices and sensors implemented by 

nanoelectromechanical systems (NEMS)44,48.49. As it exhibits unique and attractive 

properties, graphene has been considered to be a novel nanomaterial for biological and 

chemical sensor development in various applications50,51. These include detection of 

gases52, pH53, cells54-56, bacteria57, and biomolecules such as glucose, DNA, and 

protein58-62. Graphene-based biosensors, for example, have shown advantages such as 

improved detection sensitivity due to high surface area-to-volume ratio, unique optical 

properties, and ease of effective surface modification63,64. 

In this work, we describe simple, label-free electrical impedance detection of 

cancer cells using bio-functionalized graphene on sapphire substrate. A single or a few 

nanosheets of high-quality graphene film is grown using a catalyst-free chemical 

vapor deposition (CVD) method, confirmed by both Raman spectroscopy and atomic 

force microscopy (AFM)65,66. Fabricated using traditional microfabrication 

technology, the electrical graphene biosensors are structurally simple with size-

controlled graphene sensing surface and easily operated without presence of solution-

gate. The graphene active surface is coated with immoblizied the Epithelial Cell 

Adhesion Moledule (EpCAM) antibodies, which capture human colorectal carcinoma 

cells and result in changes in conductance. With a low electric field that avoids any 

damage to biomolecules or cells, a small number of captured cells cause impedance 

changes as large as ~20% of the baseline value in the functionalized graphene 

microsensors. 
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1.4 3D Printed Intestinal Stage for Visualization of Metastatic Colorectal Cancer  

 Colorectal cancer (CRC) is a leading cause of cancer death worldwide67,68. As 

they proliferate through multiple distinct stages, CRCs eventually acquire the ability to 

invade outside the colorectum and metastasize into difference organs such as liver 

lung, and peritoneum69,70. When metastatic CRCs are treated with chemotherapy, they 

almost invariably become chemoresistant. Consequently, five-year survival for 

patients with metastatic CRCs is only ~15% and, despite recent advances, current 

chemotherapy regimens almost never cure advanced disease. 

 Two-photon fluorescence microscopy is used to image CRC metastasis in live 

mouse tissue. This direct visualization approach has the ability to track fluorescently 

labeled metastatic CRCs at single cell level. Under isoflurane anesthesia, a portion of 

the small intestine (for non-survival surgery) is externalized in order to visualize 

metastatic CRCs from the orthotopic tumor. The mouse intestine is covered with a 

glass coverslip and supported by a 3D printed intestinal stage for improved stability 

and imaged with a custom-built multiphoton microscope optimized for in vivo 

imaging. Vasculature is labeled with an intravenous injection of dextran labeled dye, 

which allows better visualization of labeled intravasating tumor cells.  This approach 

has the potential to capture fluorescently labeled human CRC cells in the process of 

intravasating and disseminating through the vasculature in live animal models, which 

provides profound insights into the mechanism of metastasis. 
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CHAPTER 2 

BUCKLED BEAM MECHANICAL RESONATOR 

  

2.1 Introduction 

In this chapter we describe sensing of chemical vapors from the atmosphere 

using critically buckled polycrystalline silicon doubly-clamped mechanical resonators. 

Our method of sensing is based on stress-induced resonant frequency shifts through 

volumetric swelling of the 60 nm thick polymethyl methacrylate layer resulting in 

altered tension in the beams. The stress change produces shifts in the resonant 

frequency as large as 150 % of the baseline frequency. In order to maximize the 

sensitivity, we tailor residual stress of the polycrystalline silicon resonators to slightly 

exceed the critical buckling stress. We incorporate a relatively large gap between the 

bridge and a substrate to provide optical readout and minimize squeezed film effects. 

We show that the larger gap results in substantial improvements of the quality factor 

and frequency stability of our resonators under ambient pressure and temperature 

conditions compared to previous implementations. These lead to resonant frequency 

shift per concentration change of ethanol vapors of ~360 Hz/ppm with a response time 

of a few seconds measured in our gas delivery and readout system. 

 

2.2 Fabrication and Operation of Resonant Microbridges for Gas Sensing 

Established lithographic fabrication techniques have been developed for the 

micro gas sensor reported in this dissertation. Most of the fabrication work was 

performed in the Cornell Nanoscale Science and Technology Facility (CNF). 
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Substrates consisted of thin films grown on single crystal silicon handle wafers, which 

are typically ~500 µm thick and 4 inch diameter. The resonant microbridges (RMBs) 

are fabricated using n+ doped polycrystalline silicon (poly-Si) films grown by low 

pressure chemical vapor deposition (LPCVD) at 596 ± 3 °C on top of a thermal 

sacrificial oxide layer. The deposition temperature controls the residual stress in the 

poly-Si layer and is selected to consistently yield near-critically buckled 20 µm long 

and 140 nm thick resonators.  The thickness of the poly-Si film is approximately 140 

nm, while that of the sacrificial oxide is 1.2 µm, both of which are deposited on a 

(100) silicon substrate. Doubly clamped beams that are 20 µm long and 2 µm wide are 

patterned, followed by HF wet-etch release and critical point drying (CPD) of the 

suspended beams. The CPD is used to prevent stiction in the device. The residual 

compressive film stress is relieved upon the wet-etch release of the beams, which 

cause the RMBs to be slightly buckled either out of plane or towards the silicon 

backplane. Prior to their surface functionalization, we deposit a 1H, 1H, 2H, 2H-

perfluorooctyltrichlorosilane (FOTS) monolayer coating on top of the doubly clamped 

RMB and substrate surface by molecular vapor deposition (MVD). This FOTS 

monolayer film, which makes the resonator surface substantially hydrophobic, 

prevents stiction of the bridges to the substrate during the last spin coating process of 

the functionalizing polymer. A brief low-power oxygen plasma etch removes the 

FOTS coating from the top surface of the wafer. Approximately 60 nm of polymethyl 

methacrylate (PMMA) is then deposited by spin coating method, a polymer known as 

effective for sensing flammable vapors71. The thickness of our PMMA layer is 

estimated by spin coating a separate silicon piece under the same spin conditions 
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(measured by FilMetrics F40 (San Diego, CA, USA)). A schematic of our fabrication 

process is illustrated in Figure 2.1. Both optical microscope and scanning electron 

microscope (SEM) images of the spin coated RMBs, which are presented in Figure 

2.2, show that the bridges are buckled and that the spin coated PMMA adhered to the 

top of the bridges. We find that the midpoint displacements of the non-coated and 

PMMA-coated RMBs are 137 and 265 nm toward the substrate (~1% of the beam 

length) as measured by an optical surface profiler (Zygo, Middlefield, CT, USA). 

Therefore, the RMBs are near their critically buckled state. In case that the deposition 

temperature of poly-Si films during the LPCVD process is considerably higher than 

the selected temperature (~596 ºC), we find that the amount of compressive stress 

exerted in its axial direction notably exceeds the Euler stress given by eq. (1.1), which 

causes the RMB to be highly buckled72. An example of a highly buckled RMB prior to 

the functionalization is shown in Figure 2.3.  
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Figure 2.1 Fabrication process of a critically buckled micromechanical resonator 

functionalized with PMMA spin coating. Buckling of the bridges is not depicted in 

this figure. 

 

 

 

 

3) Molecule vapor deposition of FOTS film 
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Figure 2.2 Optical microscope (left), SEM image tilted by 30 degrees (middle), and 

surface profile (right) of the micromechanical bridge (a) before (top) and (b) after 

(bottom) its functionalization, respectively (20 µm × 2 µm × 0.14 µm). 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 2.3. SEM image of a highly buckled RMB with dimensions and residual stress 

values significantly different than in Figure 2.2 (dimensions: 25 µm × 6 µm × 0.14 

µm)  
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Before their functionalization, the RMBs are wire bonded and mounted on a 

dual-in-line package (DIP), after which they are loaded into a flow chamber for device 

characterization (See Figure 2.4). The experimental setup for gas delivery and 

resonant measurements is described in Figure 2.5, whereas gas concentrations are 

mixed through a dual channel flow-line39. The doubly clamped beams are driven by 

electrostatic force between the RMBs and the substrate through a spectrum analyzer, 

which is coupled with DC biasing voltage, and their out of plane motion is detected 

using an interferometric optical technique73. In order to maximize the optical 

reflectance signal, the gap between the poly-Si bridge and the substrate is chosen to be 

1.2 μm. The resonance spectrum of the bridges is monitored, as mixtures of dry 

nitrogen and vapor of interest with various concentrations, are delivered to the devices 

through the flow line system. Concentrations are controlled by mass flow controllers 

in each of two flow channels. The desired concentration of analyte vapor is obtained 

by altering the ratios of dry nitrogen and analyte vapor through the liquid state 

analytes. Here we assume that vapors from the analyte channels are fully saturated. 

Under this assumption and through knowledge of the mixing ratio, we obtain the 

analyte concentration in parts-per-thousand (ppt) in the high concentration range and 

parts-per-million (ppm) in the low concentration range. Before each set of 

measurements, saturated ethanol vapor is loaded into the flow chamber and then fully 

vented after a few minutes in order to effectively purge the flow chamber, resetting the 

RMB near the critically-buckled and dry state. 
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Figure 2.4 Wire-bonded device chip mounted on a dual in-line package
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Figure 2.5 Comprehensive schematic of the experimental setup for stress-based 

resonant microbridge 
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2.3 Resonance Characteristics 

According to the derivation in Appendix A, the fundamental frequency of 

microbridges in the first buckled configuration f0 can be approximated by 

 
0 4

2
2 1

3 E

EI
f

mL






 
  

 
      (2.1) 

 

where is the axial compressive stress and 2 2 24E Er L is the Euler’s buckling 

stress. Resonant frequency shift Δf0 resulting from small effective mass and axial 

stress variations only (Δm and Δσ, respectively) without other stiffness property 

variations, can be approximated to the first order by the expansion 

 

0

0

1

2 E

f m

f m



 

   
   

 
     (2.2) 

 

According to eq. (2.2), the resonant frequency may drop due to loaded analyte mass 

(Δm>0) or increase due to altered axial stress exerted to the functionalized resonant 

microbridge (RMB) (Δσ). For a buckled RMB, swelling of the polymer layer alters the 

stress of the bridges towards more compressive as it reacts with the analyte, causing a 

positive Δσ and a rise in the resonant frequency. On the other hand, the frequency 

decreases in a pre-buckled RMB configuration when compressive stress is applied as 

it induces negative change in Δσ.  As the RMB approaches closer to its critical 

buckling state, the difference between the axial and Euler stress becomes much 

smaller, which results in relatively higher induced change in normalized axial stress, 
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or Δσ/(σ–σE). (Note that an additional increase in the sensitivity can be expected due to 

the influence of the stress gradient between the polymer layer and the beam) In case of 

a flat beam structure, however, change in the normalized axial stress is much smaller 

than that of a critically buckled RMB, and other stiffness changes might become more 

dominant. Providing large increase in its resonant frequency due to introduction of 

each analyte, the functionalized RMB has fundamental mode resonant frequencies of 

1.3, 2.7, 2.9 and 3.6 MHz in dry nitrogen, saturated water, benzene, and ethanol vapor, 

respectively (See Figure 2.6). These values are obtained without significant 

deterioration of the functionalized surface, allowing numerous cycles of consistent 

device operation with the analytes chosen for this study. 

Figure 2.7 shows time traces of the functionalized micromechanical resonator 

response for each saturated analyte vapor. For saturated ethanol vapor, approximately 

2 MHz increase in the resonant frequency (that is, ~150 % of the baseline frequency 

with dry nitrogen) has been observed, while less than 0.5% increase in its normalized 

resonant frequency has been observed for the non-spincoated RMB that has only the 

FOTS layer. In addition to rise in resonant frequency unique to each saturated analyte, 

the frequency-time trace may be indicative for each chemical. The time response for 

each analyte absorbed into the polymer coating can be modeled as a solution of the 

Fick’s law of diffusion in terms of a series of exponential terms74,75. To first order 

approximation, assuming that the resonant frequency shifts are linearly proportional to 

the ratio of vapors diffused into the polymer at a given time, we model the resonant 

frequency as an exponential relaxation function76 to extract the response time constant, 

which we define as the time taken to achieve 70% of the total frequency shift. Time 
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constants of 8.4, 11.7, and 26.9 seconds have been measured for the spin coated RMB 

with the injection of saturated ethanol, water and benzene vapor into the flow 

chamber, respectively (See Figure 2.7). For the ethanol vapor, we observe that the 

resonant frequency overshoots, but this effect is not seen for diluted ethanol vapor 

whose concentration is 2.9 ppt (See Figure 2.7) or less. 

The relationship between resonant frequency and squeeze film effect in the 

RMBs is examined. The squeeze film effect governs the gas flow between a 

microbridge and substrate moving towards each other. If the bridge moves slowly, gas 

is squeezed out and dissipation loses result. For fast movement, it compresses the air, 

resulting in spring forces. According to Blech77, a characteristic dimensionless 

squeeze number, σsqn, can be defined as 

 

2

2

12
sqn

a

a

P d

 
       (2.3) 

 

where d is the distance between the substrate and the resonator, Pa is the ambient 

pressure, μ is the viscosity of air, and a is the typical dimension (or the width for a 

doubly clamped beam structure) of the RMB. For a low squeeze numbers (and 

frequencies), the air can flow out from below the resonator without compression and 

thus there is no significant fluid increase in the device stiffness. On the other hand, at 

high squeeze numbers, the gas does not have sufficient time to flow out from below 

the device and the air acts like a compressible spring. The squeeze number for our 
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RMB is estimated to be σsqn = 0.074 << 10, so that the ambient pressure gas is not 

trapped under the resonator but readily flows from the compressed area. 

The significantly reduced squeeze film damping effect is due to a relatively 

large gap (~1.2 μm) between the resonator and the substrate that leads to a higher 

qualify factor74. In Figure 2.6, the functionalized RMB has fundamental mode quality 

factors of 8.7, 23.7, 26.6 and 28.8 in dry nitrogen, saturated water, benzene, and 

ethanol vapor, respectively. This provides an improvement of more than a factor of 

two in the quality factor in comparison with previous implementations39 in ambient 

condition because of reduction in energy dissipation of the RMB due to the reduced 

squeeze film damping. Figure 2.8 shows that despite the decrease in amplitude, as the 

resonant frequency shifts upward, the quality factors of the resonators scale with 

resonant frequency as vapors are introduced into the flow chamber, similar to the 

mechanical behavior in other mechanical resonators in air78,79. This also suggests that 

the mechanical behavior of the bilayer is strongly dominated by the poly-Si RMB, 

where as the PMMA layer serves mostly to introduce stress changes only. The 

magnitudes of resonant frequency shifts (dry nitrogen, water, benzene, and ethanol by 

increasing order) and frequency dependence of quality factor have been reproducibly 

observed in several devices functionalized by the same protocol in our laboratory. 
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Figure 2.6 The resonant peaks and qualify factors of a resonant micromechanical 

bridge surrounded by saturated analyte vapor before baseline subtraction 
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Figure 2.7 Resonant frequency shift evolution in time of the functionalized 

micromechanical resonator after exposure to individual saturated analytes following 

baseline subtraction. In order to extract the response time constant τ, we define as the 

time taken to achieve 70% of the total frequency shift. In case of ethanol vapor, whose 

concentration is greater than 2.9 parts-per-thousand, resonant frequency overshoot 

effect has been observed. 
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Figure 2.8 Quality factor vs. resonant frequency of the RMB (ΔQ/Δf = 8.64 MHz-1) 
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2.4 Device Performance 

In order to characterize vapor detection sensitivity of functionalized RMBs, we 

first consider basic limits on our device performance. One important consideration is 

the pressure dependence of the RMB’s resonant frequency. According to eq. (2.3), the 

squeeze number is very low, which ensures that the RMB is not in the regime where 

the resonant frequency increases linearly with the pressure80-82. Instead, the resonant 

frequency actually decreases in our experiment as the pressure inside the flow cell 

increases presumably due to mass entrainment83. For example, Figure 2.9(a) shows an 

example of the averaged resonant frequency variations of the RMB due to pressure 

variations inside the flow chamber. Here, the sign of the frequency change is opposite 

to that introduced by swelling of the polymer layer. Frequency shift per unit pressure 

change (Δf/ΔP) is measured to be -3.86 ± 0.41 kHz/Torr, while the temperature is kept 

stable throughout the experiments. The flow rate of dry nitrogen is fixed as 10,000 

sccm for this measurement, which causes an increase in pressure of about 16 Torr 

inside the flow chamber. However, pressure fluctuation for a nominally constant dry 

nitrogen flow is found to be 0.32 ± 0.05 Torr as measured for an hour. In addition to 

the frequency change observed due to the pure pressure variation, we note that due to 

the imbalance in our flow system there is a small pressure rise per ethanol 

concentration increase (ΔP/ΔC). This is measured to be 0.36 ± 0.08 Torr/ppt (See 

Figure 2.9(b)). Combining these results by multiplying Δf/ΔP with ΔP/ΔC, the 

frequency shift per change in ethanol concentration contributed by pressure change, 

Δf/ΔC,pressure, is estimated to be only -1.39 Hz/ppm. It is essential for the RMB to 
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achieve vapor detection sensitivity higher than this value, in order to accurately sense 

the analyte vapor. 

Other important considerations regarding limits on our device performance are 

baseline frequency drift and noise. The resonant frequency of the RMB surrounded by 

flowing dry nitrogen gas represents the baseline measurement. The baseline exhibits a 

slow, but continuous exponential drift with a characteristic time constant that is two 

orders of magnitude greater than the response time to typical analyte vapors. After the 

ethanol purge is completed, the overall magnitude of rise in the baseline during the 

course of the measurement is ~ 120 kHz in average for each run (usually 30 minutes – 

1 hour). An example of the natural baseline drift is shown in Figure 2.10(a). We 

speculate this slowly upward-drifting baseline frequency as effects of either moisture 

from the environment, or a slow stress-strain relaxation of the buckled beam. Similar 

results in the resonant frequency shifts have been obtained for each run in spite of the 

baseline rises. For further analysis, the exponential-like baseline is subtracted from the 

observed resonant frequency. For example, Figure 2.10(a) shows steps of frequency 

rises upon increase in vapor concentration before and after baseline subtraction. 

In addition to the long-term frequency drifts, short-term frequency noise also 

limits vapor detection resolution of the functionalized RMBs. For instance, Figure 

2.10(b) illustrates an example of such frequency noise. In this figure, the short term 

frequency noise, Δfnoise, which represents a standard deviation of the frequency 

fluctuations in a minute, is measured to be approximately Δfnoise = ± 0.25 kHz. 

Compared to the width of the resonant frequency, Δf0 (= ~200 kHz), this frequency 

noise component is very small (that is, ~0.25 % of Δf0). We believe that this frequency 
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noise is mainly due to thermal fluctuations in the polymer coating around the detection 

laser spot, which adds to other sources of frequency noise. Pressure fluctuations 

combined with the baseline rise and frequency noise sets the resolution limit of our 

vapor sensing method with the current gas delivery and readout system. 
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Figure 2.9 (a) Pressure calibration of the RMB in ambient condition (Δf/ΔP = -3.86 ± 

0.41 kHz/Torr). (b) Pressure rise per ethanol concentration increase (ΔP/ΔC = 0.36 ± 

0.08 Torr/ppt) 
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Figure 2.10 (a) Steps of frequency rises upon increase in vapor concentration before 

and after baseline subtraction (b) Short term frequency noise, Δfnoise, or a standard 

deviation of the frequency fluctuations (Δfnoise = ± 0.25 kHz) in a minute 
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2.5 Frequency Shift Analysis and Device Sensitivity 

Thanks to their dynamic range, PMMA coated RMBs can detect the presence 

of analyte vapors well below their saturated vapor pressure. According to a simplified 

model39 of doubly clamped beams under compressive stress, the dependence of the 

frequency shift on the analyte vapor concentration is approximately 

 

( )f C C        (2.4) 

 

where Δf is the resonant frequency shift from baseline, C is the concentration of 

analyte vapor, and α is the analyte-dependent hygrometric expansion coefficient of 

PMMA. Here we assumed linearity between the strain and the stress of hygrometric 

expansion in the polymer exposed to vapor. Figure 2.11 demonstrates measured 

resonant frequency shifts in the functionalized RMB of Figure 2.1 and 2.2 with their 

fitting graphs for each analyte. These experimental results agree with the theory of 

dynamics of buckled beams83,84, showing that the resonant frequency shifts are 

proportional to the square root of analyte vapor concentration, in the case of the 

volatile vapors ethanol and benzene. In particular, ethanol showed the highest 

sensitivity among all analytes for this study. On the other hand, water vapor exhibited 

weak square-root dependence of resonant frequency shifts with changing 

concentration. We speculate these observations to partially result from unique 

complex diffusion mechanism of water in PMMA, which consists of dual mode 

sorption kinetics present in microvoids due to retarded swelling of the polymer74. 
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Similar device characteristics have been observed in other spin coated RMBs, 

proving a reliable device fabrication scheme (See Figure 2.1). Figure 2.12 shows 

corresponding measurements of another functionalized RMB, in which the initial 

buckling is further from the critical buckling state than the RMB tested in Figure 2.11. 

According to Emam85, the relieved stress, σrel, or the difference between the residual 

stress, σres, and the critical buckling stress, σcrit, of a beam structure, is given by (See 

Eq. (A7) in Appendix)) 

 

2 2 2
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where qB is the displacement of the beam in out-of-plane direction. While calculated 

relieved stress of the critically buckled RMB is ~59.5 MPa that of more buckled RMB 

is ~113 MPa. This increase in the relieved stress leads to the reduced hygrometric 

expansion coefficient α measured in all analytes with corresponding ratios. Despite 

their different initial buckling states, both RMBs exhibit similar behavior of frequency 

shifts with introduction of vapors, verifying consistent device operations of the RMB. 

With these PMMA-coated RMBs, we have demonstrated detection of ethanol 

vapors in a few hundred ppm range. Figure 2.13 and 2.14 show experimental resonant 

frequency shifts of the functionalized RMB as a function of time and ethanol 

concentration in ppm range, respectively. In this regime, dependence of the frequency 

shift on the analyte vapor concentration effectively becomes linear, yielding 

Δf/ΔC,ethanol = 360 Hz/ppm to first order approximation after 200 seconds (See Figure 
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2.14). This value is ~ 250 times greater in magnitude than the frequency shift that 

results solely due to pressure increase induced by ethanol vapor injection into a flow 

cell (Δf/ΔC,pressure = -1.39 Hz/ppm calculated results from Figure 2.9 (a) and (b)). As 

we consider 500 Hz of the short-term resonant frequency noise, corresponding to 

Figure 2.10(b)), it leads to an estimated minimum detectable concentration of ~1.39 

ppm of ethanol vapor (500 Hz / 360 Hz/ppm = 1.39 ppm). With a more sensitive 

detection scheme than the one used in the current experiment, together with more 

stable baseline frequencies over time under stabilized conditions, the sensitivity of our 

RMB could potentially be enhanced significantly below one ppm level. 
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Figure 2.11. Response vs. analyte concentration after its normalization with vapor 

pressure in a critically buckled RMB (calculated relieved stress = ~72.6 MPa) 
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Figure 2.12. Response vs. analyte concentration after its normalization with vapor 

pressure in a RMB with initial buckling which is further from the critical buckling 

state (calculated relieved stress = ~138 MPa). 
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Figure 2.13 Time response of diluted ethanol vapor in ppm range. Response time 

constant is greater for diluted vapor than saturated vapor 
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Figure 2.14 Response in frequency shift vs. ethanol concentration in ppm range for 

the RMB operated near the critical buckling state, 200 seconds after the ethanol 

injection (Δf/ΔC,ethanol = ~360 Hz/ppm) 
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2.6 Space-Domain Visualization of Resonant Microbridges 

In addition to frequency-domain spectral measurements, dynamics of space-

domain vibration profiles (VPs) have also been characterized. VPs in MEMS are 

traditionally imaged optically with vibrometric86-88, interferometric89,90, or 

stroboscopic91,92 microscopy. Recently, spatiotemporal evaluations of resonant VPs in 

high-frequency RMBs have been demonstrated using resonant realtime synchronous 

imaging (RSI) with a pulsed low duty-cycle nanosecond laser as an implementation of 

stroboscopic MEMS microscopy92. The main feature in RSI is a rapid production of 

time-resolved interference pattern movies and static profiles, as well as the fast 

evaluation of VPs, thus supplanting scanned probes that are expensive and inherently 

slow. This technique is applicable for resonant frequencies up to f0 ∼ 1GHz and has 

shown maximum lateral VP imaging resolution of 250 nm, given high optical contrast. 

In this work, we use RSI as a tool to study the VPs in RMBs under critical 

compressive stress as a function of the driving amplitude and ambient pressure. Effects 

of high drive nonlinearity and damping on the resonator VPs are directly monitored.  
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Figure 2.15. (a) Schematics of the experimental setup. (b) SEM images in bridges of 

dimensions 25×6×0.12 µm
3 

(top, slightly buckled) and 20×1×0.14 µm
3 

(bottom, flat) 

and ~220 nm elevations. (c) Calibration curves for synchronous imaging in a device 

with film thickness t = 138 nm and static midpoint elevation d0 =220 nm. Left: 

absolute reflection coefficient R. Right: differential reflection ΔR/R0. A negative value 

of ΔR corresponds to a negative intensity contrast in the image.  
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Figure 2.15(a) illustrates a schematic of our RSI configuration. A dual channel 

pulse source feeds the RMB and optical imaging pulse source multiplexer (Toptica 

iPulse, λ0 = 661.5 nm) in synchrony. The collimated illumination at a glancing angle θ 

≈ 45° is reflected off the RMB and collected by a microscope objective followed by a 

4f lens pair. The latter is used for spatial filtering of the outgoing waveform at the 

Fourier plane93.
 
The light is finally focused on a standard CCD camera at the image 

plane. Changes in the reflection with respect to the static image of the RMB, due to 

resonant motion, are monitored as a function of the RF source frequency f0, voltage 

and phase. The pressure within the chamber is set with a vacuum pump and venting 

tubes and read using an auxiliary Pirani gauge above the RMB. In order to calibrate 

the physical VPs from measured reflection images, an intereferometric analysis is 

carried out in the out-of-plane direction (inset in Figure 2.15(a)). Applying a 50% 

duty-cycle to the imaging pulses (full synchronization with the capacitive drive), high 

inphase sensitivity to average actuation amplitudes is attained at the expense of 

temporal resolution. Knowing the static film elevation profile d0, thickness t, the 

refractive indices of the film nf (n-doped polySi, n=3.916) and substrate nS (single 

crystal Si, n=3.834), the reflectance coefficient R(x,y) is computed from a Fabry-Perot 

multilayer analysis in normal incidence, as a function of the total elevation d1
94.

 
The 

measured RSI reflectance Rmeas, within the CCD dynamic range, corresponds to the 

differential reflectance with respect to the static RMB profile. This signal corresponds 

to:  
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     (2.6) 

 

With full sampling synchronization the observed average amplitude <A> at transverse 

position (x, y) is then:  

1 0( , ) ( , ) ( , )A x y d x y d x y       (2.7) 

 
 
Under a periodic unipolar square wave excitation, <A> = Amax/2, and the glancing 

angle of illumination (see Figure 2.15(a)) introduces an additional geometric scaling 

factor cos θ to the apparent amplitude. The actual peak VP amplitudes can thus be 

deduced from:  

 max 1 0

2
( , ) ( , ) ( , )

cos
A x y d x y d x y


     (2.8) 

 
giving rise to a normalization factor of 2.83 in our implementation. The glancing angle 

also introduces shadow effects at the edges of the resonator, corresponding to the 

shadow’s changing reflection coefficient during vibration. The latter can be eliminated 

physically using appropriate phase masks at the Fourier plane, or artificially with post-

processing Fourier image analysis. We consider only the reflectance variations at the 

positions of the RMB itself to constitute its real VPs. An example of total and 

differential reflectance curves as a function of total elevation d1, as calculated for a 

device with thickness t = 138 nm, is shown in Figure 2.15(c). The differential 

reflectance during motion is taken with respect to the reflectance R0 at the static mid-
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point elevation d0 = 220 nm. Using Eqs. (2.7) and (2.8), together with the calibration 

curve, the average and maximum amplitude profiles are estimated. We assume that the 

film thickness t does not change during the vibrations. Here we will concentrate on 

characterizations of the fundamental (lowest) resonant mode, even though the method 

is easily extended to higher harmonics. 
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Figure 2.16. Drive amplitude dependence in a nearly buckled resonator's fundamental 

mode. (a) Reference image of the static bridge. (b) Frequency domain spectra of low-

voltage ac actuation voltage under a constant 5V dc bias. (c) Static height profile of 

the bridge along the Y direction taken from AFM measurements (0 is defined as the 

height of the trench and known film thickness of 140 nm is subtracted on the bridge). 

(d),(e) Measured synchronous images at f0 = 4.1 MHz under different ac amplitudes; 

(f)-(i) corresponding VPs integrated along Y [in (f),(g) X-profiles], and along X [in 

(h),(i), Y-profiles].  
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Figure 2.16 shows studies for a RMB with dimensions (25×6×0.14 μm3), and a 

midpoint elevation gap of 0.22 μm [d0 = 220 nm and t = 140 nm, corresponding to 

Figure 2.16(c)], under low pressure settings (P < 1 Torr). The undriven RMB was 

almost flat (see Figure 2.16(c)) whereas other slightly longer devices exhibit 

noticeable static upward buckling, suggesting a compressive force whose magnitude is 

close to the critical load for buckling. Figure 2.16(a) shows the static image of the 

unactuated device in its initial reference configuration. In Figure 2.16(b) the frequency 

response under low-voltage actuation is shown. Even with drive amplitudes as low as 

45 mV and a dc bias of 5 V we observe the formation of Duffing nonlinearity and 

significant spectral broadening. An AFM measurement of the static bridge height pro-

file is shown in Figure 2.16(c). RSI images under intermediate and high ac drive 

voltages, at a frequency corresponding to the maximum resonant amplitude, optimal 

phase and a dc bias of 5 V, are shown in Figs. 2.16(d) and 2.16(e), respectively. Upon 

calibration of the amplitudes (using Eqs. (2.6)-(2.8)) and integration across the beam 

width, the X-profiles (along the length of the beam) are shown in Figs. 2.16(f) and 

2.16(g), respectively, and the Y-profiles of motion in Figs. 2.16(h) and 2.16(i). An 

automated procedure for calibrating each peak amplitude profile requires a processing 

time of ~2 min and yields reproducible profiles. Under all low and intermediate drive 

amplitudes the VPs resemble those in Figure 2.16(f) and 2.16(h). Under high drive 

amplitudes central regions on the beam appear to undergo diminished displacement 

(Figure 2.16(g)). However, detuning of the imaging frequency in these cases to values 

near multiples of the fundamental frequency (mostly ∼ 2f0 and the same phase 

settings) show some vibrations forming at these locations under these conditions. We 
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interpret this recurring phenomenon as resulting from either: 1) nonlinear 

electromechanical processes inducing transfer of energy to higher harmonics at spatial 

positions of large vibration amplitudes on the RMB, 2) nonlinearity due to the optical 

response passing at extreme points of the reflection (e.g. see Figure 2.15(b)), or a 

combination of both of these effects. The exact role could not be discerned 

unambiguously in the current experiment, but regardless, diminished signal positions 

such as the one indicated by the vertical arrows in Figure 2.16(f) would clearly not be 

beneficial to employ for applications of phase-locked-loop (PLL) sensing at this 

wavelength. Along the Y-profiles, slight localization of the motion at the central 

region of the bridge is also observed. 
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Figure 2.17 Pressure-dependent study in a slightly buckled resonator. (a) Reference 

image of the static bridge. (b) Frequency domain spectra (inset) and inverse quality 

factors (dissipation) as a function of ambient chamber pressure, under continuous 315 

mV ac drive and a 5 V dc bias. (c) Measured interferometric images at f0 =2.4 MHz as 

a function of the pressure, and (d) overlayed Y -integrated X -profiles of vibration.  
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Figure 2.17 shows studies in a narrow microbridge with dimensions (x × y × z = 25 

× 1 × 0.12 µm
3
) and a midpoint elevation gap of 0.66 µm (i.e., corresponding to d0 = 

660 nm and t = 120 nm in Eqs. (2.6)-(2.8)), under varying ambient pressures and 

constant driving conditions of 1.2 V ac voltage and 5 V dc bias. This beam was 

slightly buckled in the upward direction, as observed in the static reference image of 

Figure 2.17(a). Figure 2.17(b) shows the dissipation (inverse quality factor, Q
−1 

) of 

the fundamental resonant mode as a function of pressure, and corresponding spectra 

(inset). Various pressure ranges correspond to different well known dominant 

dissipation mechanisms86-88. In the current experiment we have the ability to record 

RSI images only at low pressures that are below the viscous (gas-dominated) regime, 

namely, corresponding to the intrinsic and intermediate molecular regimes. It is 

estimated that the most significant limiting factors are the low spectral signal-to-noise 

(S/N) bandwidth at low quality factors (below Q ∼ 50) combined with diminished 

amplitudes of motion under external friction. Figure 2.17(c) shows RSI images of the 

RMB as a function of increasing pressure, with a transition from intrinsic to molecular 

damping where the SN vanishes. Calibrated maximum amplitude X-profiles, 

integrated across the beam width (Y), are shown in Figure 2.17(d). A larger error in 

the VP estimation results from the diminished available RSI S/N that gives rise to 

larger error in the numerical fits. It is consistently found here, however, that with 

increasing pressure the VPs become suppressed around the regions corresponding to 

the bridge overhang (Figure 2.17(d)). This edge suppression effect was not observed 

in a repeated experiment under low pressure and drive conditions (0.3 V ac voltage 

and 5 V dc bias), that yield available S/N close to the detection limit, with extracted 
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vibration amplitudes comparable to the highest pressure case shown here and with 

noticeable motion near the overhang.  

 

2.7 Conclusion 

In summary, we have demonstrated that resonant frequency shifts for PMMA 

functionalized stress-based resonant volatile gas microsensors, operated near their 

critically buckled point, can be used in chemical sensing applications. The 

microsensors exhibit high sensitivity and dynamic range (as large as 150% frequency 

shifts) enabled by operation near the critical buckling stress with rapid frequency 

response due to the swelling of the thin polymer coating, effectively increasing 

surface-to-volume ratio and thus promote faster polymer swelling response. In 

addition to fast response and high dynamic range, significant improvements in the 

quality factor of the microsensors in ambient condition were achieved and sensing 

with the RMB of individual volatile vapors has been demonstrated. The standard 

microfabrication procedure of doped poly-Si RMBs suggests that the miniaturized 

microsensors are comparable with electrical detection implemented by complementary 

metal-oxide-semiconductor (CMOS) based electronics95 and could be integrated with 

surface functionalization. Microsensors coated with a high yield functionalization 

polymer surface can improve their sensitivity, provided that the RMB is pre-stressed 

closer to its critical buckling. In addition we anticipate that reduction of thermal noise 

(by use of all-electric detection), and further evolved functionalized coatings will 

result in higher sensitivity to specific analytes. The mechanism of the stress-optimized 

doubly clamped beam resonator with surface functionalization is of interest for real-
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time volatile-organic-compound ambient gas sensing in applications of breath analysis 

for trace vapors, biomedical, clinical, and military applications. 
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CHAPTER 3 

ELECTRICAL GRAPHEN SENSOR FOR BIOSENSING  

 

3.1 Introduction 

Graphene has its unique physical, optical and electrical properties such as 2-D 

planar structure, high optical transparency, and high carrier mobility at room 

temperature. In this study, we describe the use of graphene nanosheets for a novel 

electrical biosensor. Using a catalyst-free chemical vapor deposition (CVD) 

method65,66, the graphene film is grown on a sapphire substrate, confirmed to be a 

single or a few sheets by Raman spectroscopy and atomic force microscopy (AFM). 

Simple electrical graphene biosensors are fabricated using traditional microfabrication 

technology to detect large-sized bio-species such as cancer cells. Human colorectal 

carcinoma HCT116 cells are sensed through impedance change of an active bio-

functionalized graphene device as the cells are captured by immobilized antibodies on 

the device surface. The functionalized sensors show increase in impedance as large as 

~20% of the baseline with a small number of captured cells. This study suggests that 

the bio-functionalized electrical graphene sensor on sapphire, which is a highly 

transparent material, is a promising technology to monitor cellular electrical behavior 

while allowing simultaneous fluorescence-based bioasssays. 

 

3.2 Fabrication and Experimental Methods for Graphene Biosensors 

The graphene biosensors are fabricated (mostly in CNF cleanroom) using CVD 

grown graphene film on sapphire. Alignment marks are first patterned and etched 
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using RF oxygen plasma for about a minute and RIE aluminum oxide etch for about 

an hour to etch graphene and sapphire, respectively. Afterwards we pattern the 

graphene film and briefly apply RF oxgen plasma etch again to define active regions 

of the sensors. The active graphene channels are 100 µm long and 10 or 20 µm wide. 

To form drain and source metal contacts, approximately 10 nm thick titanium and 200 

nm thick gold are deposited onto both ends of the patterned graphene region by an 

electron-gun evaporator. A schematic of our fabrication process is illustrated in Figure 

3.1. 

As shown in Figure 3.2, the bio-functionalization of CVD-grown graphene 

surface prior to antibody immobilization is performed in the following order: (a) 

MPTMS is deposited onto the graphene region using MVD in order to create a thiol 

terminated surface. (b) GMBS solution is applied to the MPTMS-functionalized 

surface with 30 minutes of incubation and washed with ethanol to generate NHS 

terminated surface. (c) NeutrAvidin dissolved in 1x PBS is prepared for the 

subsequent functionalization step and 1 hour incubation is allowed, followed by the 

PBS wash. And (d) biotinylated EpCAM antibody (Cat. #, BAF960, R&D Systems) is 

introduced to the NeutrAvidin-functionalized surface. Its concentration is at 15 µm/ml 

dissolved in 1x PBS with 1% (w/v) BSA (bovine serum albumin) and 0.01% (w/v) 

sodium azide. BSA and sodium azide are used to prevent non-specific hydrophobic 

binding and to preserve the antibodies longer, respectively. The antibody-coated 

surface is washed with 1x PBS after1 hour of incubation in order to remove any excess 

EpCAM (Epithelial Cell Adhesion Molecule) antibody.  
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Human colorectal carcinoma HCT116 cells are cultured in McCoy’s 5A (Life 

Technologies) with 10% FBS (fetal bovine serum) and 1% P/S (penicillin-

streptomycin) solution. The cells are washed with 1x PBS, trypsinized to be detached 

from the plate, and collected in a centrifuge tube. After the cells (~ 1×106 cells per ml) 

are suspended, 4% PFA (paraformaldehyde) is applied in the tube on nice for 10 

minutes to fix the cells. Subsequently, the cells are washed with 1x PBS and re-

suspended with 1x PBS containing 1% (w/v) BSA and 2mM EDTA solution. After the 

cells, the analyte for this study, are added onto the EpCAM antibody-coated surface, 

the device is incubated for 1 hour to allow antibody-cell binding interaction and 

washed with 1x PBS to remove excess cells.  

In order to measure its electrical characteristics, each electrical biosensor is 

connected to a commercial precision semiconductor parameter analyzer (Agilent 

4165c) using a probe station as shown in Figure 3.3. A DC voltage source is connected 

between drain and source metal contacts, which is swept from -500 mV to 500 mV 

with step of 10 mV and DC output current is measured. While measuring electrical 

characteristics of bio-functionalized devices, a 10 µl drop of PBS is placed on the 

sensors (See Figure 3.4). HCT116 cells are added using a micropipette and each 

sensor with captured cells is confirmed through an optical microscope and measured. 

Data is collected from graphene device prior to functionalization before analyte is 

dropped and after cells are captured. 
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Figure 3.1 Schematic representation of fabrication process of an electrical graphene 

biosensor prior to the functionalization 
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Figure 3.2 Schematic representation of functionalization procedures for the electrical 

graphene biosensors 
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Figure 3.3 Simple schematic of measurement setup prior to graphene surface 

modification 
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Figure 3.4 Schematic of measurement setup after graphene surface has been modified 
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3.3 CVD Growth of Graphene on Sapphire 

Sapphire, which is inherently transparent, is used as a substrate for electrical 

insulation of the graphene microsensors. It is also suitable for high temperature 

graphene growth in order to achieve high-quality graphene nanosheet as it can stay at 

~2000 °C. For the growth of graphene, double-sided polished C-plane (001) sapphire 

substrates are prepared. The substrates are cleaned using acetone and methanol and 

placed on a graphite carrier to be baked inside a vertical, cold wall and stainless steel 

CVD chamber (Figure 3.5) at ~600 °C for 30 minutes. Growth temperature is 

measured and controlled by a pyrometer and a feedback system is raised by a DC 

electric resistance heater with graphite filaments located at the bottom side of the 

wafer carrier. Substrate temperature initially increases to be 1000 °C at a rate of 100 

°C/min and then reaches its final growth temperature (1350 °C to 1650 °C) at 250 

°C/min. Ar, main carrier gas, is introduced into the growth chamber during outgassing 

with growth rate and set pressure at ~10,000 sccm and 600 Torr, respectively. 

Methane (CH4) as a carbon source and hydrogen (both flow rate of 5-15 sccm) are also 

supplied to the chamber in order to control the growth rate of the graphene film. 

Typical growth time is as short as 1-5 minutes at higher growth temperature (1550 °C 

and 1650 °C) and as long as 10-15 minutes for lower growth temperature (1350 °C 

and 1450 °C). After the growth is completed, sample are immediately cooled down 

under Ar at a rate of 150 °C/min. 
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Figure 3.5 Schematic of graphene film growth by chemical vapor deposition 

(CVD) on sapphire substrate in a chamber 
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3.4 Characterization: Raman Spectroscopy and Atomic Force Microscopy (AFM) 

Raman signatures of graphene are detected from the metal free CVD grown 

graphene on sapphire as shown in Figure 3.6. G-band from in-plane and 2D-band 

associated with phonons are observed at ~1600 cm-1 and 2700 cm-1, respectively. D-

peaks involved in defects are found at ~1350 cm-1 and the thickness of graphene is 

measured, 1 or 2 monolayer (ML) by optical transmission measurements. The 

intensity ratio between the 2D-peak and G-peak (I2D/IG = ~1.5) in Raman 

spectroscopy empirically supports the thickness of graphene. Surface morphology of 

the grown graphene film on sapphire is also examined using AFM as shown in Figure 

3.7. It scans the surface over 2 µm x 2 µm and shows smooth surface with the root 

mean square (rms) roughness of 0.31 nm over the area. The step-like surface features 

are expected to rist from the sapphire substrate underneath the graphene sheet. There 

is no wrinkle, fold and grain boundary, which can be easily detected in SiC–based 

epitaxial graphene. 
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Figure 3.6 Raman spectrum of graphene grown on sapphire 

 

 

 

 

 

 

 



 

58 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 AFM image of graphene layer 
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3.5 Prior to Surface Modification 

After we confirm the CVD growth of graphene film on sapphire substrate, 

electrical biosensors are fabricated using standard photolithography and etch 

processes. Connecting to a precision parameter analyzer, we measure the electrical 

characteristics of the graphene biosensor prior to its surface modification at room 

temperature. A schematic of the electrical measurements is illustrated in Figure 3.3. 

Drain and source metal contacts of each sensor are connected to a DC voltage source 

with low voltage bias sweep from -500 mV to 500 mV. Each graphene sensor exhibits 

a linear relationship between applied DC voltage measured output DC current, 

confirming each sensor is ohmic. In addition to calculation of output impedance for 

each sensor, contact resistance between graphene layer and metal contacts is evaluated 

based on transmission line measurement (TLM). Figure 3.8 shows resistance plotted 

against TLM gap spacing, or incremental distance between two contact pads ranged 

from 10 to 120 µm. According to TLM methods, specific contact resistance of ρC is 

calculated as 

 

2( )t
c

s





      (3.1) 

 

where ρt is the transfer resistance (half of the y-intersect in Figure 3.8 multiplied by 

the width of contact pad) and   ρs is the sheet resistance (slope of the curve in Figure 

3.8 multiplied by the width of contact pad) of the graphen layer.  Its specific contact 
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resistance is calculated to be ρC= 4.1 × 10-3 (Ω-cm2) (See Figure 3.8). 
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Figure 3.8 contact resistance analysis of graphene device by transmission line 

measurement (TLM) methods 
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3.6 Surface Modification 

After electrical characteristics of the graphene sensors are measured, we 

functionalize the surface of graphene active channel, followed by antibody 

immobilization. Bio-functionalization of graphene film requires several steps as 

described in Figure 3.2. Similar to its previous electrical characterization, the surface 

functionalized graphene biosensors are loaded to a probe station and tested with a 

precision parameter analyzer at room temperature. A cross-sectional illustration of 

electrical measurements for graphene sensors after surface modification is described in 

Figure 3.2. DC voltage bias applied between drain source metal contacts is maintained 

to be no greater than 500 mV, hence keeping a low electrical field to avoid any 

damages to bio-species. Probe tips are gently connected to both metal contacts as they 

penetrate through a small drop of PBS buffer solution (~10 µl), which covers the 

entire functionalized sensor surface. The volume and concentration of the PBS drop 

are maintained to be the same as the devices are kept at high humidity to prevent 

evaporation. Neither metal gate electrode nor electrolyte-gate has been implemented 

for this device configuration, which enables simpler fabrication procedure and 

experimental setup The leakage current between the solution and the Ti/Au electrodes 

is measured as the ends of both probe tips are placed inside the PBS solution with a 

same distance between drain and source metal contacts. It is found to be negligible 

(less than 30 nA) with the same range of DC voltage bias, as shown in Figure 3.9. 
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Figure 3.9 Measured leakage current between the solution and the Ti/Au 

electrodes 
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3.7 Device Performance 

The dependence of electrical impedance of graphene biosensors due to surface 

functionalization and captured cells is evaluated. Figure 3.10(a) and (b) show optical 

microscopy images of graphene biosensors array before and after their surface 

modification followed by immobilization of HCT116 cells. PFA (paraformaldehyde) 

is applied to fix cells in PBS suspension before they are put on the EpCAM-coated 

surface. After a period of incubation time (which allows antibody-cell binding 

interaction) followed by thorough PBS washes to remove excess cells, the electrical 

dependence of graphene devices is re-characterized. Group of cell clusters were 

observed as shown in Figure 3.10(b), which caused the electrical impedance of the 

graphene sensor to increase. The I-V characteristics of the graphene sensor with 

captured cells are plotted in Figure 3.11, which shows non-linear response between 

output DC current and the input DC voltage, in contrast to the linear relationship from 

the bare graphene device (without captured cells) when PBS acgts as the electrolyte. 

Electrical impedance of graphene biosensor is tabulated in Table 3.1. 
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Impedance (kΩ) Graphene Only After Antibody After Cell Attachment 

With Cell 9.48 16.2 19.3 

Without Cell 10.4 18.6 18.7 

 

 

Table 3.1 Electrical Impedance of Graphene Biosensor 
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b) 

 

 

 

 

 

 

 

 

Figure 3.10 Optical microscopy images of graphene sensors a) before b) after 

surface functionalization followed by antibody and cell immobilization 
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

Figure 3.11 I-V characteristics of the graphene biosensor before/after surface 

functionalization (a) with bound cells (b) without bond cells 
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Figure 3.12 Analysis of normalized resistance change 
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3.8 Further Exploration/Further Consideration 

In this work, we have described the use of surface modified electrical 

biosensors with CVD grown grapheme film. We have demonstrated that cancer cells 

are sensed through impedance change of the graphene device as large as ~20% of the 

baseline with a small number of captured cells. However, in order to validate the 

functionalized electrical grapheme sensor on sapphire as a promising technology to 

monitor cellular electrical behavior, more sets of experiments are suggested to be 

performed. First of all, it is needed for the biosensor to be tested with different types 

of antibodies and other cells as both positive and negative control (e.g. macrophages). 

It is also suggested that we experimentally verify that the graphene sensors on a 

sapphire substrate (which is highly transparent) monitor cellular electrical behavior 

simultaneously with traditional fluorescence-based bioassays (for example, the 

relationship between cell impedance change and anti-cancer drug dose). Lastly, we 

may try to improve performance of the sensitivity of biosensors at the level of single-

cell sensing. 
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CHAPTER 4 

VISUALIZATION OF METASTATIC CANCER CELLS 

 

4.1 Introduction 

Colorectal cancer (CRC) is a leading cause of cancer death worldwide. The 

most common site of CRC metastasis is the liver96. When CRC hepatic metastases are 

treated with chemotherapy, they almost invariably become chemoresistant. 

Consequently, five-year survival for metastatic CRC is only ~15% and, despite recent 

advances, current chemotherapy regimens almost never cure advanced disease.  

Genetically engineered mouse models (GEMM) are powerful tools for 

studying CRC, but they only represent a subset of CRC driver mutations. Human 

subcutaneous xenograft and orthotopic models in immunodeficient mouse hosts are 

widely used for mechanistic studies, drug screening, and have provided many critical 

insights into CRC pathogenesis97-102. However, the persistence of poor outcomes 

among many CRC patients highlights the need for new approaches to complement 

existing models.  

For example, there is currently no robust non-survival surgery requiring model 

that recapitulates the process of human CRC cell metastasis from the GI tract to the 

liver, the site of more than 50% of CRC metastases. Another problem is that pre-

clinical evaluation of new CRC therapies has a high false-positive success rate98-101 

and there is an urgent medical need for less chemosensitive pre-clinical models to 

reduce the number of futile CRC clinical trials conducted. A third problem is that 

human cancer cell studies in vivo require immunodeficient mouse hosts to avoid xeno-
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immunorejection, a barrier that has limited mechanistic studies of adaptive immunity 

in CRC progression, tumor vaccines and immunotherapies101.  

To expand the range of pre-clinical human CRC models, we created a resource 

of mechanistically diverse CRC cell and patient-derived xenograft (PDX) lines that 

collectively carry the majority of common recurrent somatic CRC mutations, represent 

all major molecular subtypes and robustly model primary CRCs in the native GI 

micro-environment via simple tail-vein injection. By controlling the CCR9-CCL25 

chemokine axis, these human CRC cells traffic to the GI tract and form orthotopic 

tumors103. This minimally invasive approach avoids potential survival surgery 

experimental confounders (e.g. needle exit wound tracts, iatrogenic local inflammation 

and systemic stress), and reduces administrative compliance burden and ethical 

concerns of surgery associated animal morbidity.  

We further develop this resource and demonstrate sequential metastasis of 

primary human CRC tumors to liver, recapitulating the anatomical route occurring in 

patients. Finally, we use these hepatic metastases to show that for commonly used 

anti-CRC therapies such as oxaliplatin, in vivo CRC liver metastases have elevated 

DKK4 levels and upregulated Notch signaling (both of which have previously been 

associated with CRC chemoresistance)104,105 and are significantly less chemosensitive 

vs. paired sub-cutaneous xenografts generated from the same cells. 
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4.2 Preparation for In Vivo Visualization of Colorectal Cancer Cells in Mice 

4.2.1 Two-photon Fluorescence Microscopy 

Two photon fluorescence microscopy106 has revolutionized tissue imaging for 

medical areas such as physiology, neurobiology, embryology and tissue engineering 

because it enables deep tissue imaging in live animals107. Regular fluorescence 

imaging involves exciting a fluorophore from the electronic ground state to an excited 

state by a single photon, for biological applications within the ultraviolet or blue/green 

spectral range. However, in two-photon microscopy, excitation generated by the 

simultaneous absorption of two less energetic photons (typically in the infrared 

spectral range) under sufficiently intense laser illumination106,107. This nonlinear 

process can occur if the sum of the energies of the two photons is greater than the 

energy gap between the molecule’s ground and excited states. Since this process 

depends on simultaneous absorption of two infrared photons, the probability of two-

photon absorption by a fluorescent molecule is a quadratic function of the excitation 

intensity. Under sufficiently intense excitation, three-photon and higher photon 

excitation is also possible and deep UV microscopy based on these processes has been 

developed106,107. 

Two-photon microscopy has a number of advantages over conventional 

microscopy (such as confocal microscopy) for thick, scattering samples. First, two-

photon excitation wavelengths are typically about twice the one-photon excitation 

wavelengths. This wide separation between excitation and emission spectrum ensures 

that the excitation light and the Raman scattering can be rejected without filtering out 

many fluorescence photons. Second, two-photon microscopy is particularly suited for 
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imaging in optically thick specimens. Near-infrared radiation used in two-photon 

excitation has orders of magnitude less absorption in biological specimens than UV or 

blue-green light. The attenuation of excitation light from scattering is also reduced, as 

the scattering cross-section decreases with increasing wavelength. Third, confocal 

microscopy uses the emission pinhole aperture to reject out-of-focus light. Inside thick 

specimens, scattering of the fluorescent photons is inevitable. The resultant path 

deviation causes a significant loss of these photons at the confocal pinhole. Two-

photon microscopy requires no pinhole aperture and minimizes signal loss. 

 

4.2.2 Surgical and Imaging Procedures with 3D Printed Devices 

 In order to perform in vivo real-time imaging metastatic colorectal cancer cells 

(CRC) in the GI (gastrointestinal) tract of live animal models using two-photon 

microscopy, we have developed a surgical and imaging platform. First of all, mice 

injected with RFP-labeled (Red Fluorescence Protein) CRC tumor cells via tail vein 

are monitored typically for a few weeks. When the size of CRC tumor becomes 

significant for our purpose of study, the mice are prepared for the surgery and imaging 

session. At the beginning of the surgery, mice receive an injection of glycopyrrolate, 

an anticholinergic, intramuscularly at 0.002 mg/100g mouse to assist in keeping the 

airways clear of fluid build-up. During the surgery all animals are breathing oxygen. 

All areas to be incised are cleaned and shaved with #40 clippers, cleaned with 70% 

ethanol, swabbed with proviodine, and numbed with a subcutaneous injection of 

bupivacaine 0.125% (~0.1 ml). Under anesthesia, we inject fluorescence dyes 

(typically FITC-Dextran) to the animal to label vasculature and externalize a portion 
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of the intestine, whose moisture is controlled with saline perfusion. Body temperature 

is monitored and regulated with a rectal thermometer that controls a heating pad 

placed under the animal. Using 3D printing methods, we customized coverslips and 

intestinal supports, which are specifically designed to accommodate our needs for the 

surgery procedure and imaging microscopy setup. Diameter of a hollow-out cover slip 

frame is 12 mm, which fits to the 20x water-immersion objective used for the 

customized imaging setup. 3D printed intestinal stage is designed to contain saline 

(roughly ~2 ml) while its each edge is smoothened to avoid any tissue damage of 

mouse small intestine. Schematic mouse with externalized small intestine during 

surgery and 3D-printing designed cover slip and intestinal support are shown in Figure 

4.1(a) and (b), respectively. 

 While it is under anesthesia, the animal is brought into a custom built two-

photon imaging setup108. Excitation laser wavelength we used for our experiment is 

typically 880 nm. A small glass window is put on top of the portion to be imaged (See 

Figure 4.2). Using the two-photon setup, we first search for CRC tumor location and 

aim to image cancer and inflammatory cell intravasation, extravasation, 

vascularization, perfusion and dynamic morphology. The time-lapse images provides 

direct visual evidence for the evolution of the stem cell niche. The length of an 

imaging session is typically four hours or less and anesthesia is maintained throughout 

the procedure. The animal is euthanized imaging with a lethal dose of sodium 

pentobarbital at the end of a set of the imaging session. 
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Figure 4.1 (a) Left Simple schematic representation of mouse with externalized small 

intestine for two-photon fluorescence imaging setup (b) Right: Design of a cover slip 

and an intestinal support made by a 3D printer 
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Figure 4.2 Picture of mouse intestine with tumor covered by a glass coverslip on top. 
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4.3 Modeling Recurrent Human Primary CRC Mutations 

Chemokines are secreted ligands that regulate cell trafficking between different 

organs109. Small intestine and colon epithelia produce Chemokine 25 (CCL25), which 

binds to Chemokine Receptor 9 (CCR9) expressing cells110-113. Previously, we 

reported that CCR9 is up-regulated in primary tumors from early-stage CRC patients, 

but down regulated in invasive and metastatic CRC tumors. Furthermore, via only 

mouse tail-vein injection, early-stage CRC cells that endogenously express CCR9 

spontaneously form primary CRCs in the colorectum and intestine, attracted by 

CCL2596,103.In contrast, blocking the CCL25-CCR9 chemokine axis by short-hairpin 

RNA (shRNA) or antibodies against CCL25 promotes metastasis and formation of 

extra-intestinal tumors.  

Based on these findings, we established a Chemokine-Targeted Mouse Model 

(CTMM) system that can be used to study primary human CRC mechanisms of 

progression and chemoprevention in the native GI microenvironment. Recent genome-

wide characterization studies have highlighted the extreme molecular heterogeneity 

among human CRCs114. We therefore systematically generated a panel of 15 

doxycycline- inducible CCR9+ cell and PDX lines (See Figure 4.3) to model a diverse 

spectrum of primary human CRC tumors that carry the majority of common recurrent 

somatic mutations occurring in patients. This includes not only well-established 

examples (e.g. KRAS and BRAF) but also mechanistically poorly characterized 

recurrently mutated genes such as ASXL1,MLL3 and LIFR. Orthogonally, this resource 

includes multiple examples from all the major histopathological and molecularly 



 

78 

defined CRC sub-types, such as DNA mismatch repair proficient and deficient, CpG 

Island Methylator Phenotype (CIMP), adenocarcinoma and mucinous sub-types.  

To facilitate quantitative experimental monitoring, each model also co-

expresses constitutive luciferase and RFP reporters (See Figure 4.3(a)).Using tail-vein 

injection and luciferase monitoring (See Figure 4.4(a),(b)), within 3 weeks, each 

CTMM model forms mean 1.88±0.57 colorectal tumors per affected mouse host, 

(whereas the CCR9- parental lines rarely, if at all, form colorectal tumors (mean 0-

0.15)) (Fig. 4.4(c) ).  

In summary, we have developed a CTMM system to model primary human 

CRC tumor growth and progression in the native GI microenvironment. This system 

includes a molecularly diverse resource that spans the majority of recurrent patient 

CRC somatic mutations. CTMM models can be generated easily within weeks and 

avoid potential experimental confounding factors from survival surgery implantation 

(e.g. needle tract exit wounds, iatrogenic local inflammation and systemic stress from 

anesthesia), as well as reduce administrative compliance burden and ethical concerns 

of surgery associated animal morbidity. These qualities make CTMM a potentially 

useful system for evaluation of early-stage CRC progression mechanisms and 

chemoprevention drug screening.  
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Figure 4.3. Engineering inducible CCR9+ CRC lines and in vitro functionally 

evaluating the efficiency of CCR9+cells. (a). Schematic of inducible CCR9 

expression system which consists of two vectors: the regulatory vector encoding the 

Tet repressor (TetR) under the control of the human CMV promoter; and an inducible 

expression vector expressing human CCR9 or mouse Ccr9 genes under the control of 

CMV promoter and two tetracycline operator 2 (TetO2) sites. This CMV promoter 

also drives luciferase (Luc) and Red fluorescence protein (RFP) expressions. After 

packaging the two vectors into lentivirus particles, TetR expression lentivirus was first 

used to infect common CRC or PDX lines. After puromycin selection, the TetR 

expressing lines were then infected with the CCR9 inducible expression lentivirus and 

followed with blasticidin selection and RFP FACS purification. The CCR9 expression 

can be induced by1-1.5 ug/ml (in vitro) or 1-2mg/ml (in vivo) doxycycline. (b). CCR9 

protein level expression in parental CRC cells (Ctrl), CRC cells with (+ Doc) or 

without (- Doc) doxycycine induction were tested by using anti-human CCR9 

antibody in western blots.β-actin is loading control.(c).In vitro migration of CRC lines 

toward CCL25 was significantly increased with CCR9 expression, evaluated by 

Boyden chamber experiments as described in METHOD section. *P< 0.01mean 

compared to parental CRC cells transfected with control vector by 2-sided MW 

test.Error bars indicate S.E.M.All cell lines control vs CCR9, P=0.001 2-sided Student 

t test. (n = 8 each for CCR9+ and CCR9- arm for each cell line analyzed). 
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 Figure 4.4 Modeling Primary Human CRC Recurrent Mutations in Mice 

without Survival Surgery (a). Schematic of experimental approach: Lentiviral 

infection with virus containing a Tetracycline inducible CCR9 expression cassette and 

constitutive luciferase-RFP reporter genes. After puromycin selection and FACS, 0.5-

1 x 106 CCR9+ cells were injected into 6-8 week old male or female (m/f) non-obese 

diabetic/severe combined immunodeficient (NOG) mice by tail vein and intestinal 

tumor formation monitored after 2-3 weeks by IVIS-luciferase imaging. Blue dots: GI 

tumors. (b). Representative whole body IVIS images of mice injected with CRC cells 

expressing a control luciferase reporter only (CCR9-), constitutive CCR9 expression 

and luciferase (CCR9+) or a mixture (CCR9+/-); Luciferase photon signals are 

shown.(c). Quantification of mean luciferase-detectable large intestinal tumors in 6-8 

week mice injected with CCR9 expressing cells (CCR9+) via tail vein. * P< 0.01 

CCR9+ compared to the control group by 2-sided Mann-Whitney test. Error bars 

indicate S.E.M. (stand. error of mean). All cell lines combined control vs. CCR9+, 

P=0.001; Student paired t test. 
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4.4 Sequential Primary Human CRC-live Metastasis Formation 

Seven CTMM models (CCR9-PDX1, HT15, HCA7, SW48, Colo205, DLD1 

and LS174T) spontaneously form liver tumors (mean 3.1-8.2 liver tumors/mouse by 8 

weeks) but only in mice that have previously developed primary CRCs (See Figure 

4.5) IVIS imaging revealed luciferase-detectable primary CRCs (mean 1.8 weeks post-

inoculation) preceded liver tumors (mean 5.8 weeks post-inoculation). In contrast, 

liver tumors were rarely detected in non-CTMM models, in which tail-vein injected 

CRC cells usually form tumors in the lung (See Figure 4.5). 

These findings are potentially consistent with a model whereby CTMM 

promotes cells from primary CRC tumors to metastasize to liver, most likely via the 

portal circulation. To test this model, we tail-vein injected mice to generate primary 

CRC CTMM models. After primary GI tumor formation was detected by IVIS 

imaging, we next withdrew doxycycline to suppress CCR9 expression. In all CTMM 

lines tested liver tumor multiplicity was significantly higher when CCR9 levels were 

suppressed. Additionally, FACS of mouse liver cells 48 hours after tail vein injection 

of CCR9+ CRC cells showed that RFP+ cells were essentially undetectable arguing 

against an alternative model in which CCR9 suppression stimulated expansion of 

previously resident human CRC cells in liver.  

Next, to confirm that CTMM primary CRC tumor cells could enter the portal 

circulation, we injected mice with FITC-Dextran to label vasculature and used Multi-

Photon Microscopy (MPM) to image the primary tumor and liver metastatic tumors in 

vivo as we have previously described (See Figure 4.1). This revealed that RFP+ 

human CTMM cells co-localize with and travel through host blood vessels, consistent 



 

82 

with vascular intravasation (an important step prior to entry into the portal circulation 

that drains to the liver). 

In summary, our data are consistent with a subset of molecularly well-

characterized CTMM primary CRC tumors that are capable of sequentially modeling 

the progression of primary human CRC to liver metastases via the portal circulation 

that occurs in over 50% of stage IV CRC patients. Furthermore at even later time-

points, luciferase+ cells spreading at additional sites such as lung were also observed. 
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Figure 4.5. Sequential human CRC primary GI tumor- metastasis formation 

(a).Schematic of sequential human primary CRC and liver metastasis. Using the same 

approach as in Figure 4.4, in 6-8 week m/f NOG mice were injected with CCR9+ human 

CRC cells and monitored by IVIS imaging for primary CRC formation. Once primary GI 

tumors were detected, CCR9 expression was silenced by withdrawing doxycycline from 

drinking water. Mice were monitored using IVIS-luciferase imaging over the next 4-6 weeks 

and sacrificed. Blue dots: GI tumors; green dots: metastatic tumors. (b).Representative whole-

body IVIS images(CRC line DLD1 as representative) show sequential lower abdominal and 

right upper quadrant abdominal detectable photons, with ex vivo confirmation of abdominal 

right upper quadrant tumors as liver-localized(4X)(n = 8 each for CCR9+ and CCR9- arm for 

each cell line analyzed).(c).Histopathology (H+E staining) examples of different primary CRC 

tumors detectable as submucosal (2nd week), with invasion of submucosa (4thweek)and 

muscularis(6th week). Arrows indicate histopathologically confirmed tumors; M, mucosa; SM, 

submucosa. Scale bars, 100μ.(d).Quantification of liver metastases in mice (n = 8 each for 

CCR9+ and CCR9- arm for each cell line analyzed) tail vein injected with control lentiviral 

vector infected CRC cells (control) or CRC cells with inducible CCR9 expression. * P< 0.05 

compared to the control group by 2-sided Mann-Whitney test. All CCR9+ vs. control cell 

lines, P=0.001 2-sided Student t test. (e).Time post-injection of cells with inducible CCR9 

expression to luciferase-detectable signal in histopathologically confirmed primary GI or liver 

tumors (n = 8 mice each for CCR9+ and CCR9- arm for each cell line analyzed). ** P< 0.01 

by 2-sided Mann-Whitney test. All cell lines liver vs. GI tumors, P=0.001 2-sided Student t 

test. 
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Figure 4.6.Two-photon microscopy imaging of hepatic metastatic tumors 

The experiment procedure to form primary CRC and sequential liver metastases was described 

in Figure 4.5. (a).two-photon microscopy imaging of orthotopicxenograft tumors. 

(representative images on tumors formed with CCR9+ DLD1 cells) (I. Schematic of surgical 

and imaging preparation (also referred in METHOD part); II – IV. low magnificence images 

of intestine; V – VI. High magnificence imaging of intestinal tumors expressing RFP (red) 

surrounding vasculature labeled by FITC-Dextran (green).White arrows designate 

intravasating tumor cells.)(b).(Representative images on liver tumors formed with DLD1 

cells)Hepatic tumor cells expressing RFP (red) surrounding vasculature labeled by FITC-

Dextran (green).White arrows designate extravasating tumor cells out of blood vessel.) Scale 

bars, 50μ (left) & 10μ (right). N=6 mice were examined. 
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4.5 Discussion  

Recent comprehensive molecular studies such as TCGA have provided a broad 

range of insights with an unprecedented level of molecular resolution into the precise 

molecular alterations that drive human CRC pathogenesis and progression. However, 

new pre-clinical models are needed to augment existing ones and recapitulate more 

fully the diverse nature of both cell-autonomous signaling pathways and non-cell 

autonomous interactions between tumor cells and their orthotopic primary, metastasis-

route and -destination site microenvironments.  

Towards this goal, we systematically generated a resource of human primary 

CRC CTMM models that collectively carry the major recurrent somatic alterations 

occurring in CRC patients. This can be used to study the mechanistic role of the 

majority of recurrent human CRC mutations multi-dimensionally. In order to confirm 

the model, we used in vivo real-time two-photon microscopy to image primary and 

liver metastatic tumors. We successfully imaged fluorescently labeled intravastating 

and extravasating tumor cells along with surrounding vasculature (See Figure 4.6), 

which is direct visual evidence of the tumor cells that metastasize through the 

vasculature. 

With regard to modeling primary CRC tumor progression, current hepatic 

metastasis models using human CRC cells are time- and labor-intensive and 

technically challenging, which limits their usage for drug development. Direct 

injection of human CRC cells into the heart left ventricle, kidney capsule or spleen are 

potentially confounded by anatomical routes to the liver that do not recapitulate the 

microenvironment favorable for transit from the gut through the portal circulation and 
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lymphatics that occur in almost all advanced stage CRC patients96. The portal 

circulation is known to have distinct features that distinguish its microenvironment 

from other vasculature. For example, hepatic vein, lymphatic and tributary flow to the 

liver is unique in that it receives both oxygenated and deoxygenated blood (the latter 

from gut) and consequently has lower pO2 and hemodynamic perfusion pressure than 

other organs115-117. Furthermore, hypoxia can promote metastasis in multiple types of 

cancer118-123. Therefore, it is highly likely that not only GI microenvironment pre-

conditioning from interactions with colon myofibroblasts, dendritic cells, the gut 

microbiome and native intestinal extracellular matrix impacts CRC liver metastasis, 

but also pre-conditioning by the portal circulation microenvironment as well.  

In summary, we anticipate that the CTMM resources described here can help 

improve our mechanistic understanding of primary CRC-microenvironment 

interactions (particularly those involving adaptive immunity and immunotherapies), 

liver metastasis pre-conditioning by transit through the portal circulation, and 

potentially improve the clinical relevance of pre-clinical anti-CRC drug screening. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

The work presented in this dissertation has discussed characteristics, and utility 

of microdevices for sensing applications. We have shown several achievements that 

include development of micro fabrication techniques for mechanical and electrical 

sensing devices and demonstration of chemical vapor sening in ambient condition 

using critically buckled functionalized resonant microbriges and detection of cancer 

cells using electrical graphene biosensor. In latter part of this work, we presented 

visualization of metastatic colorectal cancer cells using multi-photon microscopy 

based on genetically engineered mouse models (GEMM). However, there is still 

substantial room for improving the utility of microsensors and which will hopefully be 

addressed in the future. For example, the surface functionalized gas microsensors may 

be constructed as a series of an array where each critically buckled microbridge is 

coated with different polymer. We anticipate that this will enable selective sensing of 

individual volatile vapors with high sensitivity, which can be used in applications of 

breath analysis for trace vapors, biomedical, clinical, and military applications. There 

is still plenty room for improvement of surface modified electrical graphene 

biosensors on sapphire in terms of testing different antibodies and cells (or even 

different bio-species such as DNA or protein) and of verification of sensor usage 

simultaneously with traditional fluorescence-based bioassays. We expect that it can 

become a promising technology to monitor cellular electrical behavior. 
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APPENDIX A:  DERIVATION OF FUNDAMENTAL FREQUENCY OF A 

BUCKED BEAM 

 

In order to highlight the main ideas beyond the operational principle of the 

sensor, we first consider the resonant behavior of the pre-buckled beam and, 

specifically, the influence of the axial compressive force on the fundamental 

frequency of the device.  The dynamics of free undamped vibrations of the beam, 

considered in the framework of the Euler-Bernoulli theory, are governed by the 

equation 

 

24 2 2

4 2 2

0

ˆ ˆ ˆ ˆˆ 0
ˆˆ ˆ ˆ2
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z EA z z z

EI P m
x L x x t

  (A1) 

 

Here ˆˆˆ ,z x t  is the deflection of the beam (the elevation with respect to its straight 

stress-free state), x̂  and t̂ are the coordinate along the beam and time, respectively, 

L is the length of the beam, m is the mass per unit length, E is the Young’s modulus. 

In addition,  I  and A are the second moment of the cross-section and the cross-

sectional area, respectively.  The equation (A1) is completed by the boundary 

conditions corresponding to the fixed (in both x and z directions) ends of the beam. 

The non-dimensional, more convenient for the analysis, counterpart of Eq. (S1)83 is 
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Here  
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One observes that the deflection of the beam is normalized by the gyration radius r of 

the cross-section and the compressive axial force is normalized by the Euler’s 

buckling force of a double-clamed beam 2 24EP EI L . 

Note that the natural frequencies and natural modes of the beam pre-buckled by 

the force 1P were analyzed in Nayfeh et al.83. However, the exact characteristic 

equation used for the calculation of the natural frequencies is cumbersome and 

difficult for analysis. Here we present a simple, based on the Galerkin decomposition, 

approximation allowing estimation of the frequency and illustrating the influence of 

the axial stress on the spectral characteristics of the beam. Since 1P , we represent 

the elevation of the beam in the form   

, ,Bz x t z x w x t      (A4) 

where Bz x  represents the buckled shape of the beam and ,w x t is the deflection 

with respect to the buckled shape. We substitute (A4) into (A2), linearize the resulting 

equation for 
0,1

max( ) 1
x

w and, taking into account that  Bz x z x  satisfies the 

static counterpart of Eq. (A2), we obtain  
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In the framework of the single degree of freedom approximation, we set  

, , i t

B Bz x q x w x t q x e      (A6) 
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Here 1 cos 2 / 2x x is the first buckling mode of the beam and83 

 

 4 1Bq P       (A7) 

is the midpoint elevation of the beam in the post-buckled configuration. Substituting 

Eq. (A6) into (A5), multiplying it by x , integrating by parts and taking into 

account fixed boundary conditions  yields the eigenvalue problem 

1 1 1 1 1 1
2 2 2 22 2 2 2
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2
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The lowest natural frequency of the buckled beam is therefore given by the expression 
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We use the first buckling mode of the beam as the base function, i.e.,   

1
1 cos 2

2
x x x     (A9) 

and obtain 

 

2 2 2
2

0 2 2

1 1

3
4

32 1 4
2
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s s

P q
a b b

  (A10) 

where the coefficients 
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1 1 12
2 24 2

0 0 0

3
2 , ,

2 8
b dx s dx a dx    (A11) 

are associated with the bending, stretching stiffness and the mass, respectively and 

0 2

1 4 / 3b a is the (Rayleight quotient) approximation of the fundamental 

mode frequency of the beam without an axial force.  Note that 0

1 =22.792 while the 

exact value is 4.732=22.373. Substituting (A11) into (A10) and taking into account the 

expression for Bq , Eq. (A7), we obtain 

0

1 1 2 1P      (A12) 

or, taking into account Eq. (A7) 

0

1
1

2 2

Bq
     (A13) 

Equation (A13) indicates that in the framework of the single mode approximation the 

frequency of the buckled beam is a linear function of the midpoint elevation of the 

beam. Comparison between Eq. (A12) and the exact result given in Nayfeh et al.83 

shows that the relative error in the frequency is 4.8% for P=2 (which corresponds to 

qB=4 or to the midpoint deflection to the thickness ratio of  ˆ 2 3Bq d ). 

Note in passing that in the pre-buckling case 1P  the expression for 

the ladnumadnuf frequency 
1
of the straight beam can be obtained from Eq. (A10) by 

setting 0Bq , which yields the value 0

1 1 1 P . One can conclude therefore that 

the sensitivity of the frequency to the axial force in the buckled configuration is two 

times higher than in the pre-buckled case. 
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The fundamental frequency of microbridges in the first buckled configuration 

f0 can therefore be approximated by the expression  

 
0 4

2
2 1

3 E

EI
f

mL






 
  

 
      (A14) 

where is the axial compressive stress and 2 2 24E Er L is the Euler’s buckling 

stress. 
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