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Abstract

This paper presents a method for efficiently maintaining and searching a data-
base of three-dimensional models so thev can be reliably recognized from arbi-
trary two-dimensional projections in the presence of noise and occlusion. The
core of the process is the topologically-defined network of invariants which breaks
three-dimensional models down into small. local groups of features and indexes
these groups using translation. rotation. scaling and orthographic projection in-
variant functions. The network encodes the geometrical relationships between

these groups so that grouping informaticn can be used to increase the speed of
matching.



1. Introduction

The problem of matching a large collection of models to an image can be broken
down into two components: 1) finding a group of features in the image that are likely
to be one object and 2) finding the best match for this group in the model-base.
The first step has taken the name of grouping and recent work by [HW], [L] and [J]
among others have produced algorithms that produce experimentally valid groups in
low-order polynomial time. This paper approaches the second step by creating an
topologically-defined network of invariants which acts as an index to the collections of
models that allows the parts to be lookuped in the collection from any pose and in
spite of a certain measure of occlusion.

The core of this network is a set of functions that maps a set of points to a
tuple of values. The important detail is that these functions are invariant under
any combination of translation. rotation and scaling followed by an orthographic
projection. This network encodes the collection by breaking each model up into small
clusters of features. applying the invariant function to each cluster and storing the
tuples returned in a database. A cluster of points in the image can be identified by
applying the invariant function to it and finding all clusters in the network which
return the same or similar values.

This system has been designed to integrate easily with a grouping methods which
identifies features in an image which are likely to correspond to the same object.
(E.G. [HW], [J], or [L].) These groups are then broken into the small parts which are
looked up with the indexing function. The grouping method provides the geometri-
cal information about the relationship between the small parts and this information
corresponds to the structure of the invariant data base.

The major features of this system are:

1. Works with Three-Dimensional Objects. This system uses either invariants of
three-dimensional sets of points. The structure of the network also allows in-
variants to three-dimensional sets of points to be constructed from two sets
of two-dimensional sets of points. This allows three-dimensional objects to be
recognized easily.

)

Works with One Two-Dimensional Image. The system requires only the use of
one, two-dimensional image. Stereopsis and range data are not necessary.

3. No Need to Store Descriptions of Multiple Views. Many systems for calculat-
ing the appearance of an object form descriptions of all potential views such as
aspect graphs, producing complex descriptions of the objects with computation-
ally expensive algorithms. This method of reducing an object into topologically
defined networks of invariants is simple to implement and compute.

4. Resistant to Missing Features The clusters of features are deliberately kept small
(4 points) to ensure that some cluster of points is still visible in the image from
any pose. Only one cluster is necessary to begin identification.
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5. Uses Grouping to Reduce Complezity. This method is well-integrated with a
robust method for identifying groups in an image. This substantially reduces
the complexity of the matching process. Work by [CJ] shows that grouping is
necessary for fast recognition.

6. Ezpandability- The set of indexing functions can be expanded using other in-
variant functions. This system can combine information from different indexing
functions on the same object in the same image.

This paper begins with description of how transformation-invariant functions have
been used in other work. The basic mathematics of three different invariants will be
summarized in the next section. After this. the paper will describe a technique for
creating a topologically defined network of invariants by decomposing a model into
small clusters of features so they can be encoded as a network of invariant indices.
Finally, experimental results of using the system will be presented.

The current system discussed in the paper will be limited to polygonal models,
although there are many cases where the work can easily be extended to handle curved
objects. In these cases, suggestions for ways for extentions will be included.

2. Prior Work

The problems of indexing objects has been examined by a number of different re-
searchersin several different contexts. Forsythe. Mundy. Zisserman and Brown [FMZB]
give a detailed explication of the mathematics of two-dimensional planar. projective
invariants and show how several different invariants could be constructed and success-
fully used to identify two-dimensional forms. Their method relies upon finding either
two second-order, co-planar curves (conic sections) or four co-planar, parallel lines in
an image. They describe functions of these two geometric arrangements which are
invariant under projective transformation. Experimental verification is provided by
demonstrating the method on cards with two conics printed upon them and several
objects, like scissors. which have a silouette with two elliptical figures.

Hopcroft and Huttenlocher [HH] described an algorithm for recognizing sets of
points which may have been changed by an affine transformation. The algorithm
relies upon defining sets of affine invariants which uniquely describe the locations
of the points. These algorithms, and the several others described here using affine
coordinates, are useful for machine vision because if co-planar points are rotated in
three-space and then projected orthographically onto a plane, this corresponds to an
affine transformation of the orthographic image of the points.

The problem of recognition using affine invariants was also addressed in earlier
work by Huttenlocher and Ullman in [HU]. The paper showed how to align three-
points in an image with three-points in a model and compare other features for recog-
nition. In [TM], Thompson and Mundy also discuss using affine coordinates to align
objects with the image.



An affine invariant hashing scheme first described by Lamdan and Wolfson in
[LW] and later optimized by Mauro Costa. Robert Haralick and Linda Shapiro in
[CHS] also relies upon the mathematical structure of the affine plane. Their method
computes the affine coordinates of all features in a two-dimensional model relative to
three features in the model and then hashes the values in a two-dimensional table. It
repeats this process for every possible triple of features. Recognition is achieved by
finding a set of features in an image. choosing a subset of three features, computing
the affine coordinates relative to this subset and then checking the appropriate entries
in the hash table for matches.

In [SM1], Fridtjof Stein and Gérard Medioni. propose a hashing system based
upon an approximation to curvature called super-structures. which are converted into
a grey-code-like number and stored in a table for lookup. This work was later extend
to three-dimensional objects in [SM2] which could recognize objects using range data.

Clemens and Jacobs [CJ] discuss some of the theoretical constraints to indexing a
collection of three-dimensional models for recognition using two-dimensional images.
They show that grouping is a necessity if the system is to work sufficiently quickly.
Grimson [Grimson]| also considers some of the complexity issues of indexing.

Bruel [Br] also attacks the problem of indexing in a large data base and describes a
method for minimizing the number of stored views and creating an indexing function
which can use a simple bitwise AND operation for search.

3. Grouping Methods

The method described in this paper looks-up small, local collections of features from
an image in a large model-base. Although it is possible to simply iterate through
all possible combinations of features in an image and use the network of invariants
successfully, the method is intended to work in concert with a grouping algorithm like
the one in [HW], [L] or [J]. In each of these algorithms, properties like parallelism or
convexity are used to identify sets of features which might belong to the same ob ject.

Jacobs [J] considers pairs of features and determines whether or not they are likely
to be from the same objects and then given this result, proceeds with recognition.
Lowe’s [L] method’s uses properties like parallelism or proximity of edge-segments to
produce larger groups which are then used by the recognition step. The structure
of the topologically-defined network of invariants can be modified to include clusters
that might be returned from this grouping method.

The technique in [HW] groups features together if they could be part of a convex
object and this grouping principle has the advantage of being both invariant under
projection and locally computable. Also, Jacobs has shown in [J] that this convexity
is unlikely to occur at random in images. Although objects are often non-convex,
they are usually composed of convex sub-pieces, and the algorithm reliably will iden-
tify these. [HW] uses a Delaunay triangulation to define the neighborhood around
each feature and tries to string the features together into a path with a constant



turning direction. The algorithm produces a O(n) groups in O(nlogn) time where
n is the number of features in the image. This efficient bound is mainly due to the
fact that convexity is locally computable. The Delaunay triangulation computes this
neighborhood quickly. A more elaborate summary follows:

The process begins after an edge detector identifies all of the high-contrast regions
and primatives are fitted to the edges. The method uses straight-lines as the sole
primative, but there is no reason why it cannot be extended to second-order curves
as well. These primatives become nodes in a graph and arcs are added between local
neighbors which could be part of convex ohjects.

More specifically, each primative (line) has two endpoints. A local neighborhood
of each of these primatives is defined by computing the Delaunay triangulation of the
endpoints. Any pair of endpoints from different image primatives which are joined by
the Delaunay triangulation are said to be neighbors. This relationship is converted
into a local neighborhood graph which has one node for each image primative and one
arc for each pairing in the triangulation. (The word arc will be used in this paper to
refer to graphs and the word edges to refer to regions of high-gradiant in an image.
In this particular case, each arc is a symbol for an edge in the image.) Since each
node corresponds to an image primative with two endpoints, each arc in the graph
could correspond to a triangulation line pairing one of the four possible pairs. The
arcs are marked according to which of the four possible pairings they represent. This
information is later used to define consistent paths that enter one endpoint of an edge
and leave the other.

The local neighborhood graph is converted into a local convezity graph by removing
all arcs representing pairings that could not belong to the same convex object. Figure 1
shows six images edges in two configurations. In the first, all triangulation lines are
drawn between the endpoints. This represents the local neighborhood graph. The
second only has the triangulation lines drawn which join two images edges that could
be part of the same convex object. This. in effect, shows what the local convexity
graph is.

A path in the graph can correspond to a convex form in the image if every arc
entering a node through one endpoint leaves through an arc which leaves through
the other endpoint of the primative. The algorithm enumerates a useable set of these
paths and cycles by using a choice function to make local decisions at each node. This
reduces the complexity of the final ordering to be linearly proportional to the number
of image edges. Some choices which have been used successfully are ones which either
choose the nearest neighbor of the most-inline neighbor.

Figure 2 shows some of the groups detected in this very poor image of the pentagon.
The grouping method successfully finds many different parts of the image which cor-
respond to individual convex objects. These groups make ideal starting points for the
matching algorithm described here because they are local sets of features which are
quite likely to match sub-parts of the pentagon.
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Figure 1: Two intermediate views of the («) local neighborhood graph and (b) of the
local convexity graph. Note that arcs from the triangulation that join two edges in a
way that couldn’t conform to a convex object are missing from (b).

4. Invariants and Indices

The gronping techniques will return clusters of image features that are likely to be part
of the object. The task is to identify which models might have subparts which might
match the clusters. The approach is to construct a database containing all possible
small clusters which are subsets of the models. The invariant functions which follow
are used to create a pose-independent index to this data-base. They are all applied
to clusters of four features. This keeps the complexity of the data-base low and also
introduces a measure of resistance to occluded features.

These next several sections will describe three different indexing functions based
upon invariant theory. These functions complement each other well and at least one is
applicable to any set of four features. In some cases. the limitations of some functions
are the strengths of others. They are:

1. fa: Uses affine coordinates and will he useful for sets of features which lie in a
plane.

[AV]

. fo: This indexes three orthogonal vectors which represent four points in three
space. It relies upon the basic invariants of three-dimensional objects under
rotation.

3. fs: This version uses matrix theory of singular values to classify three non-
orthogonal vectors.

In each of the cases. the paper will analyze the sensitivities to error and the distribu-
tion of index values over the domain.



The structure of the network of invariants can also be extended to use other
invariant functions. They will not be specificially discussed or implemented here,
but their potential will be noted. The work by Forsythe et. al. [FMZB] notes that
a function of two co-planar conic segments (essentially ellipses) can be constructed
which is invariant under projective transformation. The action of the projective group
models the effects of a camera quite well and provides an efficient way to index into
the space of objects. This method. though. relies upon finding ob jects with two easily
detectable conics which are also co-planar.

4.1 Co-Planar Points— The Affine Case.

As the section on previous work has made clear. one section of invariant theory which
has proven to be useful to problems in recognition is the structure of the affine plane.
If a camera is modeled by orthographic projection, then a three-dimensional similarity
transformation applied to co-planar points is equivalent to a two-dimensional affine
transformation of the plane. In this case. all of the invariants of the two dimensional
affine plane can be used to recognize co-planar points translating, rotating and scaling
in three-space. This approximation of the camera action works best if the distance
from the camera to the object is either much greater than the depth of the object
and/or if the camera has a tele-photo lens. In the affine trasformation, parallel lines
are preserved so there is no bending together associated with lines heading off to the
horizon. Train tracks heading to the horizon are one good example of an image which
breaks the orthographic projection. The mathematics of the affine plane are the basis
for most of the work described and left unproven here. Curious readers can examine
[E] or [HH] which gives a good summary of many of the properties.

One of the classical theorems of invariant theory states that all functions of a two-
dimensional sets of points which remain invariant under affine transformation can be
expressed in terms of ratios of the area of triangles. ([E]. pg 402) A simple example
of this can be created from four co-planar points a, b, c and d, Let Aa, b, c represents
the area of the triangle with the corners a.b and c¢. The function:

Aa.b,c Aa,b,d
Ab.c.d” Ab,c,d

is unchanged as the points undergo any two-dimensional affine transformation and
consequentally is also unchanged when the points undergo a three-dimensional simi-
larity transformation. Although, f4 is defined as a pair of numbers here, it is better
to think of it as a pair of ranges because noise and error introduce fluctuation. The
next section introduces the methods for computing the bounds of the ranges.

fa 1s an indexing function for a small part of an object and can be constructed from
sets of four co-planar points. If four features are found in an image, corresponding
models in the model base can be found simply computing f4 for these points and
looking for a set of four features in the model base with similar values. After the

fa(a.b.c.d) = ( ) (1)

b |



error properties of this particular function and the details of the other functions
are described in the next section, the rest of the paper will concentrate on how to
efficiently segment the models into subsets of points so that the information from the
grouping method can be effectively used.

4.2 Error Bounds and Distribution Functions of the 2-D Affine
Invariants

While invariant functions might make an excellent indexing function in theory. there
are two properties which govern their practical value for model-based vision. First. if
the ratios are highly unstable or chaotic, position error from sensing data will make
them un-useable. Second. if all of the index values are clustered in a region smaller
than the error bounds. then every set of four points could potentially match any other
set of points in the model-base. Therefore, it is desirable that the error-bounds and
the distribution of points be examined to anticipate problems.

To estimate the effects of error on the affine-index function, consider the diagram
in Figure 3 which shows a typical pair of triangles constructed from four points. Note
that one side of the triangle is shared. Let this be the base of both triangles. Since
the area of a triangle is just one half of the base times the height, the ratio of the
area becomes:

sbase - height,

Zbase - heighty

where height, is the perpendicular distance of point a from the base. The length of
the base cancels out. Any error in the position of the points a and d govern their
perpendicular distance from the base line. If maximum sensing error for each point
is € then the error bounds become:

height, — 2¢  height,  height, + 2¢

. < — : (2)
heighty + 2¢ ~ heighty — heighty — 2¢

In practice, the bounds on the error can be calculated simultaneously with the
index function itself. When the table is checked. all index values which fall within the
range can selected. In practice, most cases will not vary much beyond this value.

Estimating the distribution of the values of the index function can use the same
construction. First assume that a, b, ¢ and d occur randomly. If b and ¢ form the
shared base of the triangle, the distribution depends upon the relative distances of
the other two points. a and d. If the four points are randomly located throughout the
entire infinite plane, then all ratios are equally likely.

This assumption of infinity. though, is deceptive and doesn’t match with practice.
Most digital cameras computers only have resolutions of 512 x 512 and so the distances
from the base-line in these images will only fall within a certain range. To visualize
this. construct a two-dimensional grid of n by n points representing the possible pairs



of perpendicular distances of a and d to the base line. Counting the points using
good combinutorical arguments is possible. but a continuous approximation will be
substituted here for simplicity. The question is how many pairs lead the same ratio.
This can be approximated by the length of a line drawn through the origin of a square
at the correct angle. The slope of the line is equal to the ratio of the area of the
triangles. This length varies from n to ny/2 back to n. Figure 4 shows the normalized
distribution which is constructed of secant(arctan=(z)) when « lies between 0 and 1
and secant(90 — arctan='(x)) when v is greater than 1. This graph gives impression
of the relative distribution of the values of f4 for random points.

The usefulness of this approximation, though, is limited because man-made objects
don’t always consist of randomly distributed proportions. Note that there is a peak at
the index value of 1. This peak is even more exaggerated in real applications because
man-made objects are often rectangular and a rectangular set of points always has
an index function of 1. Unfortunately, this cannot be avoided. Note that any two-
dimensional sets of points forming a parallelogram can be transformed into any other
parallelogram-shaped set of points in an image three-dimensional rotation, scaling
is followed by an orthographic transformation. The next several sections will show
several hashing functions which complement this one and work well in these situations.

4.3 Three-Dimensional Points: The Orthogonal Case

The last section described an indexing function that had two limitations: 1) it only
works for co-planar sets of points and 2) it hashes all rectangular objects to the same
value. The second problem is more significant hecause man-made objects will often be
rectangular. This next function works only on collections of three vectors which are
orthogonal in three-space. These vectors can be constructed from four points in the
image. Since this function discriminates between rectangular objects with different
ratios of length, height and width. it complements the previous function. Together
they compensate for each others weaknesses.

The function is based on another fundamental theorem of invariance ([W], pg 53)
which states that all functions of vectors invariant to rotation in three-dimensions are
functions of the mutual dot-products of the vectors with each other. These invariants
only hold for three-dimensions and do not. in general, carry through an orthographic
projection. The next sections will show one way to reconstruct the value of this
three-dimensional invariant from a two-dimensional image.

4 points in 3 can be represented as an 3 x 3 matrix by filling column ¢ of the
matrix with the vector between point ¢ — 1 and point i. Let A signify the matrix, 4,
the i-th column, A,, 4, the first and second row and 4;, the first entry (x-coordinate)
of the :-th column.

The mutual dot-products are formed by taking the inner square, A'4, where A
is the transpose of A. Let 4 be shorthand for A'A and .A_lry represent A;yA‘ry. Note
that the lengths of the vectors. 4;. lie along the diagonal of 4’4 and the dot-product



of column A; and column 4; is in entry (¢.)). The matrix is symmetric. If the three
vectors in A are orthogonal. than 4’4 or 4 is diagonal. This matrix is invariant under
multiplication by rotation matrices. R. because

(RA)(RA) = A'R'RA = A'A = 1. (3)

which follows from the fact that R® = R~! because R is orthogonal.

Let A,y represent the first two rows of the matrix 4. This 2 X 3 matrix can be
constructed from 4 points in a two-dimensional image as before, by setting column A,
to be t the vector between point / —1 and point ;. Orthographic projection corresponds
to leaving out the last row of a matrix. This is the result of projecting the points
from R;3; down to the two-dimensional plane defined by the & and y axes. Similarly. 4.
represents the lost information of the depth of these poiuts. The effects of projection
can be quantified as:

A=A, + 4, (4)

In this case, 4,, differs from A'A4 by a rank-one matrix, A.. If the columns in 4
are orthogonal, as they are in many 323 cases from the man-made, rectangular world,
then the vector A. can be reconstructed. In this case, equation (4) becomes:

A - A 0 0 AL+ ‘4%,!, —(A1:42:) —(A1:43:)
0 Az Ay 0 = —(Ar-des) AF 4+ AT, —(Ag.dss)
0 0 Az - Az —(A1:43.) —(Ap:43.) A3, + .4.§_y
AL Arsds: AraAs
+o| Aredy. A2, Ap.As, ()

‘41.:"13.: ‘4-2.:-43.: ‘45,:

The off-diagonal elements of A,, are enough to reconstruct the values of A, because
the off-diagonal elements of A'A are zero. That is:

42 - (‘41,214-2.:) ) (‘41,:"13.:) — (-"Iry)l.} : (-‘ixy)l,S (6)
b (‘4‘2,: 4-3,:) (‘41'y)2.3

2 _ (A2,3‘43.:) : (‘41.:—'{2.:) _ (‘iry)2.3 ' (A:ry)l.Z -

A2 z - T ( l )
' (Al.:A-B,z) (-Ary)l,?.

Aradss) (Aoads:)  (Agha- (Azy)as
A2 — ( 1,723, ) ) y/1.3 y/2, 8
e (Al,z-‘l‘Z,z) (Azy)1,2 ( )

The numerical subscripts in (A4,,);; mean the entry (¢.j) in matrix 4,, because
the alphabetical subscripts have no direct meaning.

The lengths of the three vectors in three-dimensional space can be calculated by
adding the amounts from these equations together. That is:
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A A = A, AL = (), 4 Bode (9)
' ' ) (Ary)2s

Ay = A AT AT = () 4 rwlze (An (10)
. Y - (A-Iy)l..'j

Ay = A+ A+ AL = (), 4 redis (s (11)
. ) ’ (‘41'1./)1.2

Once these values are computed. they can be combined to form an scale-invariant
indexing function of these three-orthogonal points:

.41 . .‘11 :1-2 . A~2 .4.3 . .4.3
‘-‘.2 M ._12 ) .-1'3 * ¢‘13’ 4".1 * 1-11
where the 4 is the matrix assembled from the four points and the values of 4;- A, are
either calculated directly from a 3 x 3 matrix or indirectly from a 2 x 3 matrix and
the equations [9 - 11]. As before, the three-tuple, fo. should be thought of as three
ranges not three numbers. The details for computing these ranges is described in the
next section. fp solves two problems with f4 because it works for three-dimensional
points and it differentiates between rectangular objects with different proportions. fo
doesn’t. however, work for general 3 x 3 matrices. One for these will be discussed
later.

fola,b.c.d) = ( ) (12)

4.4 Error Bounds and Distribution Functions of the 3-d Or-
thogonal Function

The distribution properties of the orthogonal indexing function in Equation (12) dis-
criminate between all rectangular objects which have different proportions. This
makes it easy to rely upon the function tc index a table filled with many different
entries. The sensitivities of the function to error are not as simple to analyze because
there is one singularity caused by the division in the equations used to calculate the
lost depth information.

The error in equations [9- 11] can be calculated in two ways. In absolute terms it
becomes:

[(Azy)r,2] - [(Azy)1,3] [(Azy)1,2] - [(Azy)13],

[(Azy)ra] + <13)

< "11 . -'11 < ((fixy)l,l] +

[(A‘ixy)2,3:| B I.(;lxy )2.3—J
[(Ary)aa] + “‘4‘”}1& ')“‘4]’”5"2'3] a4z < (gl + 1 AW)LI('}] ')[ ﬁ“‘””'“{lw
ry)1,3 ry)1,3
i L(*‘ixy)l,SJ ) l.(“iry)2-3j . i r(jxy)lﬁ] ) [(firy)ll{l,
|(Aey)sa] + E < Az A3 < [(Agylas] + (Lo)1a) (15)
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where ([(Azy)is], [(Asy)i;]) is the interval of the real numbers where the value of
(A.y)i,; must ie. The upper and lower ends of this interval can be calculated by
estimating the possible error in calculating the dot-products which make up 4,,. In
the two dimensional case which holds for images. the error in calculating the dot-
product of two vectors. [p.q] and [r.s] when p.q.r and s can be shifted by some error
bound, e, is:

P+ eate) - [r+e.s+e] = pr+gs+re,+ pe + qe, + seq + €pr + €46,(16)
< pr+gs+e(lpl+ gl + v+ |s]) + €
> pr+gs—e(lpl + gl + |r| + |s]) — €

where ¢€,, €4, €,, €, are errors in the individual coordinates which satisfy —e < €, €,, €, €, <
€.

As, before the bounds on the error can be calculated simultaneousl with the index
function itself to restrict the search of the table. Experiments have shown, however,
that the system is rarely as sensitive to error as the absolute bounds in equations
(13 - 15). It is been prudent, in most cases. to simply compute the bounds using
traditional gaussian models of noise. If this fails to produce an acceptable answer.
than the absolute bounds can be used.

4.5 Knowing When the Orthogonal Indexing Function Doesn’t
Apply

The equation (12) can be applied to any collection of points in an image, even if
the collection of four points could not be an image of three orthogonal vectors. The
mathematical structure of this particular case allow a stronger result than in the
other cases. Collections of four points which could not possibly be generated by three
orthogonal vectors can be eliminated using the following fact about 3 x 3 matrices
composed of orthogonal vectors. A;,4, and Aj:

A2,
DBk (17

=1

This can be proven by noting that every 3 x 3 matrix A composed of orthogonal
vectors, can be decomposed into RD where R is a rotation matrix from SU(3) and D
is a diagonal matrix with the lengths of the vectors along the diagonal. If the columns
of A are normalized to unit length, then the matrix becomes a member of SU(3). The
basic format of these rotation matrices are:

coscosg — coslfsindsiny  costsino + cosbcospsiny:  sinysind
—SINYCcosd — coshsinocost’ —sinysino + cosbcospcosy cosysind (18)
sinfsing —sinfcosg cost



where ¢,¢ and 6 are the Euler angles of rotation which the unit basis is rotated. The
last row of R represents the z-coordinate of the rotation matrix whose length is:

sin?(8)sin*(0) + sin*(8)cos*(d) + cos*(0) = 1 (19)

This can be extended to prove equation (17) by generalizing the result to non-unit
vectors. Equations (13 - 15) can be extended to calculate the bounds of error on
equation (17) or models of gaussian noise can he used for better estimations.

4.6 Three-Dimensional, Non-orthogonal Sets of Points.

The previous three sections described indexing function which worked for four-points
which could be represented by three orthogonal vectors. This function is only useful
for rectangular solids. This next section will describe another function which uses the
same vector representation. but is not limited to orthogonal vectors.

The function is based upon the fact that singular values are invariant under ro-
tation (4 = UDV,RA = (UR)DV = U'DV) and an important theorem from matrix
algebra ([GVL], page 286) that states that if 7, and o, are the singular values of A,,
and dy, &; and &, are the singular values of 4, then:

do <01 S0 <0< o (20)
These can be converted into an indexing function by computing the ratio:

fsa.bye.d) =2 (21)
0o
where &, and dy are the largest and smallest singular values of the 3 x 3 matrix derived
from the points, a,b,c and d. This ratio is also known as «,, which is the condition
number of the matrix A under the norm, || - ||;. It roughly measures the numerical
stability of the matrix.

Four features in a 2-D image can be looked up in the table by converting them
into a 2 x 3 matrix and computing the two singular values oy and ¢,. The result of
equation (20) shows that these points could only potentially match values when:

1< D2
Jp Op

Like the other two functions, fo and f4, this function specifies a range of values
whose size is determined by the error. Unlike the other two functions, this range
has a fixed lower-bound of one for all cases. Unfortunately, if fs of four features
in an image is 1, then it could potentially match all other features. There is some
intuition, though, that suggests that it is not possible to do better than this. Consider
two examples, 1) three equal-length, orthogonal vectors and 2) three almost co-linear
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vectors of widely differing lengths. It is possible to rotate 2) to appear like (1) , but
it is not possible to do the reverse. Figure 5 illustrates this case.

4.7 Distribution and Error Properties of the Non-Orthogonal
Index Function

It is possible to estimate the effects of error on this indexing function using some
classic theorems from matrix algebra. A corollary to the Wielandt-Hoffman theorem
([GVL], pg 287) states that if 4 and a perturbed matrix, 4 + E, are in R, x,. then:

n
Y ow[d+ E] —on[4] < ||E|% (22)
k=1
where ||E||F is the Frobenius norm, or the square-root of the sum of the squares of
the entries in E. The 2 x 3 case is the important one, and if the simple assumption is
made that all the error affects either the larger or the smaller singular value then:

oy —\V6e o2 oy + \/6e

01+\/ée<01 <01—\/ée

As before, this value is an absolute bound on the error and not practical for
regular usage. An empirical estimate of the bounds was computed by constructing
10.000 random 3 x 3 matrices and permuting the entries by 5%. Figure 6a histograms
the distributions of the percentage change in fs for these matrices.

The distribution of the values of fs has been extensively studied in physics and
multivariant analysis. The work of [Ed] provides a good introduction to the distri-
bution of singular values in the limiting case as the size of the matrices increases.
Since this paper is only concerned with 3 x 3 cases, the distribution in Figure 6b was
calculated empirically using MATLAB. The condition number of 50,000 random 3 x 3
matrices was calculated and the distribution is shown here. All values larger than 100
were set to 100 to increase the resolution of the graph.

(23)

5. Breaking up Three-Dimensional Models

Once a collection of index functions has been chosen and their error and distribu-
tion properties analyzed, the problem becomes how to convert a collection of models
into a model-base so potential matches can be indexed and evaluated. The main
considerations are:

1. Size — How large does the data-base grow with the number of models? How
does it depend on the complexity of the model?

2. Access Complexity—- How many matches are made? What percentage of them
are viable?
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3. Grouping Information— How can the data base be structured so that grouping
information can be used successfully?

This part of the paper will consider the problem of breaking apart a three-
dimensional model and adding it to a topologically-defined network of invariants. It
will also describe how the structure of this network of invariants will make it possible
to look up groups of features in the model efficiently. Although it won't be discussed
until the next section, the basi¢ structure of the network is designed to interface with
the grouping method that finds convex groups such as [HW].

5.1 Construction the Topologically Defined Network of Invari-
ants

Consider an object. There are certain, characteristic areas that are likely to appear
as sharp shifts in intensity in digital images. These are often corners and edges
which delinate different planes that receive different illumination, but they can include
patterns. textures and different colorings of the surface. The boundaries between the
distinctive areas can be identified in advance and their pattern converted into a graph
where the arcs represent the boundaries and the nodes represent the corners where
two or more arcs meet. The graph of a simple, uniformly colored cube would have
eight nodes and twelve arcs linking the nodes.

If an object is present in an image, then the network of image edges and their
intersections should be a subset of this graph. Some parts of the graph will be missing
because the orientation of the object obscures half of the object and occlusion may
obscure othe parts. Also, some arcs that should be visible might be missing because
of the lighting of the scene. Noise and lighting can also act counter to our interests
by introducing new, spurious edges that are not part of the object. The observation
to be made here (and it has been made many times before in Computer Vision) is
that the nodes in the graphs have a geometrical relationship with each other, and the
goal is to encode these relationships so that small subsets can be recognized. The first
several sections on the transformation-invariant give ample information about how to
encode subsets of these nodes so they can be recognized from any pose. The principle
problem is encoding this relationship efficiently so grouping information can be used.

Wolfson’s method [LW] simply chooses three feature points on the model and stores
the affine-invariant coordinates of all other features relative to these three points. This
step is then repeated for all triples on the model. In Costa, Haralick and Shapiro's
paper [CHS], only numerically stable triples are used, but this number is still O(n?)
triples. While this may be reasonable in two-dimensional cases when most features
could be visible, it becomes less efficient in three-dimensions where one half of the
object is obscured from the camera.

The topologically-defined network of invariants will only use the transformation-
invariant functions discussed earlier on neighboring features. The geometrical rela-
tionship between these small, locally-connected groups of features are encoded with a
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network of pointers between overlapping groups. There is no need to hash collections
of features relative to all possible frames of reference. This substantially reduces the
size of the data base and simultaneously encodes geometric and topological structure
which can usefully be exploited by a grouping systemn like the one described in [HW].

The topologically-defined network of invariants is constructed by taking each arc
in the model and encoding the subsets formed by considering all combinations of the
arc’s neighbors. Before beginning. let each arc be denoted. «; with endpoints. n, and
ny. Let Attach(np) be the set of arcs which are attached to n,. More formally:

1. Construct a list of models, .M. Each model should be a list of nodes representing
corners and arcs representing edges between corners.

o

Construct one database for each index function: D4. Dy, Ds and/or any ad-
ditional functions. All possible triples composed of the edges in .M will be
constructed in the subsequent steps and placed in the appropriate database.
They can either be simple sorted lists or more complex structures for better ac-
cess. The sections on the distribution of values (4.2,4.4 and 4.7) can be used to
design the implementation of the database. The use of special memory hardware
like that described in [B],[WS] and [Z] can also be used effectively.

3. Each arc. q;. connects two nodes n, and ny. For each arc, find Attach(n;) — a;
and Attach(n) — a; which are the sets of arcs attached to the two endnodes less
the arc, a;.

4. Foreach arc. find all possible triples of arcs. (a,. a;. a,) such that a, € Attach(n;)—
a; and a, € Attach(ng) — a;.

5. For each triple, apply the appropriate indexing function and add it to the correct
database. (Either (12) if the three edges are orthogonal, (1) if the three edges
are co-planar or (21) if the three edges are neither.)

6. Add a pointer from the arc itself, a;, in the list of models, M, to this triple,
(ar,ai,ay), in either D4, Do or Ds. This will speed the intersection process
described later.

The size of this network can be estimated from the complexity of the model. If
{a;} is the set of arcs, then the size of the list of models, M, is equal to the size
of {a;}. The size of each additional database depends upon the complexity of the
models. If the set is entirely made up of flat objects. then the affine index function.

fa will apply and the size of D4 will contain all of the triples. In any case, the sum
of all of these will be:

Z(Attach(nj) —1) x (Attach(ng) — 1) (24)
Va;
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where 1j and n; are the nodes attached to «,.

The figure 7 illustrates this process and shows one edge from a cube being broken
up into triples. There are four different sub-parts containing this node since each
endpoint has two adjacent edges. Two of them contain three co-planar edges and the
other two contain three orthogonal edges. The affine index function. fs, would be
applied to the first two and the orthogonal indexing function. fo, would be applied
to the second two because it is a cube with right-angles.

5.2 Matching with the Network of Invariants

Matching a set of features is straight-forward. In the next section, the actual interface
with a grouping algorithm such as [HW] will be discussed. but this section just assumes
that there is a subset of image features which are presumed to belong to the same
object. The algorithm needs to identify all possible items in the model base which
might correspond to it.

Begin with the simple case of four ordered features which can converted into three
edges. If there is no ordering to the features then all possible ordering can be tried.
Each possible indexing function (i.e. fai,fo.fs and any others) is applied and the
values which are returned are used to look up possible matches in either D4,Do or
Ds. Equation (17) is used to screen the search of Dp. The error functions described
in the earlier sections guides the search through D4,Do or Ds so that all potential
matches are noted given preliminary assumptions about the noise and error bounds.
At this point, a potential pose is calculated from the positions of the four points
and after a hidden line algorithm determines what the model should like from this
pose, the image and this two-dimensional projection of the model are aligned. The
amount of correspondence between the features is noted and the model system can
rank the results using a method like [HK]. If no satisfactory match emerges, then
the assumptions about the potential for error can be re-evaluated and the processes
repeated.

If more than four features are identified in the image, then there are two or more
triples of data available and the network of pointers can be exploited. Again, assume
that there is an ordering drawn from the grouping algorithm so that the features can
be converted into a list of arcs. The figure (8) shows two different sets of points: a
polygonal chain of straight-lines with 5 corners and a three-dimensional ‘H’ of points
from two faces sharing the same central line. The network of invariants can be used to
lower the number of potential matches that must be tested and ranked by alignment
by dividing the set of features into two triples of edges, matching the first and then
using the second triple to eliminate inconsistent candidates.

The process of intersection can be demonstrated easily with a 5 sided polygon
example. Let the polygon have the corners {c;, ¢, c3,cq,c5}. Here are the steps:

1. Compute fx(c;.cz2,¢3,¢4) and fx(cz,c3.¢c4.¢5) for X = A.0,S and any other
indexing functions used.
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2. fx(e1,c¢2,¢3,cq) matches a list of triples of arcs of the form (a;;, aj,ax) in the Dy.
Let Fx(c1,cy.c3,c¢4) stand for this set of triples of arcs.

3. Find all models which are consistent with both triples. The model base, M,
contains pointers from each arc to all the triples in either D4,Dy or Ds derived
from it and these pointers can be combined with the value of fx(c;,c3,c4,c5) to
reduce the number of matched models. For each (a;.a;.ar) € Fx(c;.cs,c3,c4).
the model-base arc of a; contains a pointer to each triple formed with a; at
the center. If fx(cs,cs3,c4,c5) does not match any of of these triples, then the
(ai,a;, ai) is inconsistent. This triple can then be eliminated from consideration.

4. Pose determination and alignment can be used to complete the process with the
new, smaller intersection of the two lists of models.

If an "H’ arrangement of features is identified. then the same intersection pro-
cess can be used by considering the other class of pointers. If the form has corners
{c1,¢2,¢3. ¢4, 5. c6} With c3 and ¢4 as the shared base, then compute fx(c,cz,c3,¢4)
and fy(c3,cy,¢s.¢6), look up one and use the second to eliminate mismatches by using
the pointer to intersect the sets. Alignment finishes the process.

It should be noted, though. that this structure does not make any assumptions
about the amount of data which is present. There only needs to be four features
grouped into three edges. If some features are missing because of occlusion or noise,
the system uses the information it has and will try to find the best match through
alignment.

6. Using Grouping.

The grouping algorithm described in the paper by [HW] returns groups of lines which
could be part of the same convex object. It will serve as an example on how to
interface the two methods. Other techniques, such as [L] or [J], can also be used
successfully. The convex forms can be reduced to a set of points in the following
manner. If {l;...1,} is the set of line segments, let {c;...c,} be the set of points
where ¢; is the intersection of /; and [;,. If the grouping algorithm returns the set of
lines as a closed curve, then c, is the intersection of I, and I;. These sets of points
can be identified using the pointers between planar overlapping quadruples.

The grouping process makes it likely that these points correspond to the same ob-
ject, but it does not guarantee it. For that reason., it is necessary to first compute the
index function of the successive quadruples. {c;. c, ¢3, ¢}, {c2, c3,¢4,¢5} . .. {€n, €1, €2, C3}.
Then look up each value and use the intersection procedure to produce viable matches.
The best chances will be closed, convex curves.

One advantage of the convex-grouping method in [HW] is that it will place a
particular line in two different types of groups- one for each side. This information can
be used to reduce the set of possible matches by using the technique of intersections
between “H"-overlapping quadruples.
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7. Experimental Results

This section contains two different types of experimental results. The first type comes
from tests with real data from a camera and objects resting on the table. The second
type was gathered from simulated experiments using a large collection of models which
were recognized in artificially constructed images. These results, which are not as not
desirable as real data. still are useful for confirming many claims about the average
behavior of the system.

The real data was gathered with Panasonic camera and digitized using a MaxVideo
card. A Canny edge detector found the important edges In the image in Figure 9,
the system was able to recognize the four models despite occlusion. The dark lines
superimposed over the models shows the triples of image edges used for looking up the
data. In each case. several false matches were found and eliminated after alignment.

The simulated experiments were conducted by building a collection of 300 random
models in memory. They were either rectangular blocks, bent blocks, s-shaped blocks.
Figure possible-blocks shows some of the shapes. The dimensions of the blocks were
determined randomly.

The first experiment consisted of choosing a random model, displaying it on the
screen from a random pose, choosing a random triple of edges along the side, permut-
ing the end-points by a random amount and then using fo to look-up the value in
the Do This process was repeated 100 times. The next reports the average number of
triples in Do which fell within the error bounds. This number is essentially the num-
ber of models which needed to be aligned and checked for correspondence. Note that
1n many cases two triples from the same mcdels have the same value of fo because of
symmetry. This means that many triples found refer to the same model.

I Percentage error ‘ Triples in tablelAvemge Triples Found ’

2 11402 43.33
3 11402 69.63
4 11402 99.51
5 11402 172.03

This table shows the data for a model-base consisting of 300 random bent blocks
and accesses using the affine function, f,.

I Percentage er'rorl Triples in table I Average Triples Found |

1 4155 102.77
2 4155 192.97
3 4155 294.76
4 4155 607.29
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The main advantage of the topologically-defined network of invariants are the
links between the overlapping triples. In the second simulated set of experiments.
the value of these links was tested using the first database of rectangular blocks. As
before a random block was displayed at a random pose. This time, five features were
extracted, permuted and the algorithm from section 5.2 was used to try and recognize
the object. Table shows the number of triples that needed to found before and after
the intersection.

Percentage | Triples in table | Average Triples Before | Average Triples After

FError, € (Do and Dy4) | Intersection Intersection

2 22804 24.27 16.10

3 22804 80.33 36.9

4 22804 83.24 43.17

3 22804 129.82 77.99
8.Conclusion

The system described in this paper can be used to efficiently characterize a large
collection of three-dimensional ob jects so that one of them can be recognized quickly
when it appears in an image. The topologically-defined network of invariants allows
the smallest possible collections of features to act as indices for the table of models.
while efficiently storing relative positions of the small parts.

Although the paper has only discussed one well-known invariant and two new
ones, it should be quite easy to extend the concept of the network to include other
invariant functions like the ones discussed by [FMZB]. It is just a matter of defining
a new function and its error bounds. The grouping method in [HW] can be extended
to find second order curves. When this is done, it would remove any limitation to
polygonal objects. The basic strength of the structure, though. remains.

The possible structure of the storage of the network of invariants was not discussed
at all. Standard methods for constructing hash-tables or indexed data-bases can
certainly be applied. The specialized memory hardware like the chips designed by
the Database Accelerator project worked on by Charles Sodini, Jon Wade, Sharon
Marie Britton and Richard Zippel (WS], [B],[Z] at MIT could also be used effectively
to search the table in constant time.

To a large extent, this paper has ignored the question of what happens when
grouping information is not available. This is because several papers [Grimson],
[Grimson & Lozano-Pérez] have suggested that model-based recognition must rely
upon it. One section suggested trying all possible orderings of four features. This ap-
proach is clearly O(n*) when n is the number of features in the image. But grouping
methods such as [HW] or [J] operate quickly (e.g. O(nlogn)) and so this approach is
clearly less desirable if the grouping methods work successfully.
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The approach to indexing here also underscores the desirability of grouping. The
system only makes one entry in the table for each triple of adjoining edges. For a cube,
there are 48 entries. This grows linearly if the connectivity of the features remains
constant. [LW] are forced to hash their models using all possible combinations of
three features. For a cube this is 220 entries and it grows cubically. Grouping is
responsible for this gain.
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Figure 2: Some of the major groups detected by running the program on this image
of the pentagon.
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Figure 3: Two triangles formed by four points sharing a common base-line.
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Figure 4: The graph showing an approximation of the relative distribution of the
values of the affine indexing function when applied to four random points.
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Figure 5: Intuitional evidence for why Equation credible. (2) can be rotated to look
like (1). but (1) cannot look like (2).
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Figure 6: (a) The graph shows a histogram of the percentage change of fs when 10.000
3 x 3 matrices are permuted by a random 5% . (1)The graph showing the distribution
of fs for 50.000 random. 3 x 3 matrices.



Figure 7: Some of the groups formed by coustructing triples from one arc on the side
of a cube.
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Figure 8: Two different groups with more than four points. (a) shows five planar
points and (b) shows six non-planar points in an ‘H’ pattern.
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Figure 9: The edges from a picture and the four models recognized in it. The dark lines
superimposed over the models show the triple of image edges used in the recognition
step.
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