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Abstract

For sequences of iid random variables whose common tail 1-F is regularly varying
at infinity with an unknown index —a < 0, it is well known that Hill’s estimator is
consistent for a~! and usually asymptotically normally distributed. However, because
the Hill estimator is a function of k = k(n), the number of upper order statistics used
and which is only subject to the conditions k — oo, k/n — 0, its use in practice is
problematic since there are few reliable guidelines about how to choose k. The purpose
of this paper is to make the use of Hill’s estimator more reliable through an averaging
technique which reduces the asymptotic variance. As a direct result the range in which
the smoothed estimator varies as a function of k decreases and the successful use of the
estimator is made less dependent on the choice of k. A tail empirical process approach
is used to prove the weak convergence of a process closely related to Hill’s estimator.
The smoothed version of Hill’s estimator is a functional of the tail empirical process.

1 Introduction.

Hill’s estimator is one of the most popular tools for detecting the presence of heavy tails of
the marginal distribution of stationary sequences of random variables. Sets of data displaying
characteristics of heavy tails are encountered in diverse fields such as hydrology, finance,
reliability or teletraffic engineering. Introduced by Hill (1975), the large sample properties
of this estimator have been thoroughly studied. In practice however, the estimator is difficult
to use, the main reasons being bias and high sensitivity to the choice of the number of upper
order statistics used in estimation. The purpose of this paper is to show that a simple
averaging technique and an alternative graphical tool can minimize these difficulties. The
averaging technique is theoretically justifiable and can overcome to a certain extent the high
volatility of the estimator. Of course, averaging will not correct bias and we hope to address
bias in the future.

*Partially supported by NSF Grant DMS-DMS-9400535 at Cornell University.
tSupported by NSF Grant DMS-9400535 at Cornell University.
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Let {X,} be a sequence of positive random variables having the same marginal distribu-
tion function F, where F:= 1 - F is (—a) regularly varying at oo (written F € RV_,); that
is, for a > 0 we have

F(tz) o

(1.1) tirgxo—_l—.?:@i-—:c , z>0.

We are interested in estimating « based on observing X1, Xa, ..., X,. Set
F(y) = inf{z: F(z) > y}, 0 <y<1

and | N\ )

1.2 bt::(—————-—) N=F-(1-2), t>1,
(1.2 0= (=5) O=F0-D t>

and regular variation implies

(1.3) F (b(t)) ~ t7, (t = o0).

For 1 <i < n, write X(;) for the ith largest value of Xy, Xs, ..., Xan. Then, with this
notation, Hill’s estimator based on k upper order statistics is defined as

1 k
(1.4) Hip = T E log X(;) — log X(k+1)-
=1

When X, is iid, it is known that Hill’s estimator is a consistent estimator of a™!, a
fact which is equivalent to regular variation of 1-F in a way made precise by Mason (1982).
The consistency requires k=k(n), the number of upper order statistics used in estimation
to satisfy k — oo, k/n — 0. Asymptotic normality of Hi, has also been considered and
under additional assumptions Hy, is asymptotically normal with asymptotic variance o2
Considerable interest has been shown in understanding the asymptotic behaviour of the
estimator in depth (see for example Hall (1982), Csorgé and Mason (1985), Hausler and
Teugels (1985), Csorgd, Deheuvels and Mason (1985)).

Later developments (Hsing (1991), Rootzen, Leadbetter and de Haan, (1990), Resnick
and Stiricd (1994)) have shown that Hill’s estimator could be successfully applied to a
variety of dependent sequences of random variables. Together with accompanying tools,
Hill’s estimator can be of great help in studying sets of real data (cf. Feigin, Resnick and
Starica (1994)).

When using Hill’s estimator in practice, what is frequently done is to produce the so
called Hill plot by graphing {(k, Hy,),1 < k < n} and hoping that one can infer a value
of a from a stable regime of this plot. Unfortunately, the practical use of the estimator is
hampered by the already mentioned high volatility of the plot and bias problems. It is often
the case that volatility of the Hill plot prevents a clear choice of «. The estimate is often
highly sensitive to the choice of k, the number of upper order statistics used to calculate
Hy.,. A relevant example is shown in the left hand picture of Figure 1 which displays the
Hill plot for a sequence of 700 independent random samples from a Pareto distribution, with
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no region where the graph is sufficiently stable that reliable estimates can be achieved. The
range of the plot is rather large and the practitioner is left to the mercy of inspiration when
estimating o from the graph.

Hill esfimate of aipha
11
Hill and avHil estimate of alpha
1

L

(o] 200 400 Ss00 o 200 400 Ss00
number of order statistics number of order statistics

Figure 1

The simple averaging technique proposed in this paper reduces the volatility of the plot.
The smoothing procedure consists in averaging the Hill estimator values corresponding to
different numbers of order statistics:

1 uk
(1.5) avHy, = ——— Hy,
(u—1)k p;{-—l

where u > 1. An important conclusion of our paper is that through averaging the variance of
the Hill estimator can be considerably reduced and the volatility of the plot thereby tamed.
The estimate of a suggested by avHill can be used as the basis for further studies which
would, for example, use bootstrap techniques to correct for bias. The averaging technique,
though simple and obvious, seems quite useful and it is illustrated in the right hand picture
of Figure 1 which shows the result of the smoothing (the dotted graph) in comparison with
the original Hill estimate (the solid graph). The real value of & which is 0.93 is also plotted.
Due to the fact that u in (1.5) was 2, the averaging stopped when k reached 350. This
explains why the smoothed graph (the dotted line) does not go all the way to the right of
the picture.

As an alternative to the Hill plot, we found it useful to display the information provided

by the Hill estimation as

where we write [y| for the smallest integer greater or equal to y > 0. We call such a plot
the alternative Hill plot. As in the case of the traditional Hill plot one tries to read the
estimated value from a stable portion of the graph. The reason the alternative display is
helpful is that the significant part of the graph, i.e. the part corresponding to a relatively

3



small number of order statistics gets to be shown more clearly, covering a bigger portion
of the displayed space. On the other hand, the part of the graph corresponding to a high
number of order statistics, which covers a disproportionately large part in the traditional
Hill plot gets rescaled. Thus, the interpretation of the graph is easier and more accurate.
More detailed discussion of this procedure follows in Section 5.

The improvement that the smoothed estimator brings can be better assessed if one uses
the alternative Hill plot which is displayed in Figure 2. The solid graph is the alterna-
tive Hill plot {(8,H P, lel’n),O < 6§ < 1}, the dotted graph is the alternative avHill plot

{(H,avHﬁmleLn),O < 6 < 1}. Due to the fact that u in (1.5) was 2, the averaging stopped

when k reached 700°87. This explains why the smoothed graph (the dotted one) does not
go all the way to the right of the picture.
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Figure 2

Looking at Figure 2 one sees that the practitioner is now left with less doubts. The
smoothed graph, drawn by the dotted curve, has a narrower range over its stable regime,
with less sensitivity to the value of k.

In practice one quickly notices that Hill’s estimator can be subject to considerable bias
even for big sample sizes. An example where the sample size is big (1,000,000 observations)
and where the bias displayed by the estimator is considerable follows. Consider the distribu-
tion of a random variable X obtained by applying the function U(z) = zlogz to a random
variable with a Pareto distribution with parameter 5; that is

(1.6) X =U(Y)=YlogY, PY >z)=z2"% z>1.

A sample of 1,000,000 observations is drawn from this distribution.
Note that U~ (z) ~ z/log z for z — oo. Thus

P(X>z)=PUY)>z)=PY >U"(2)) = (U (2))°> ~2 % log’x
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when z — oo. Therefore the tail of X belongs to RV_s and the Hill plot should give an
estimate of 5. Figure 3 shows such an alternative Hill and alternative avHill plot where
the range of the graph stays far from value 5. The smoothed estimator points toward an
estimate of 3.3. Obviously when considerable bias is present, averaging technique offers no
improvement.
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Figure 3

We now introduce some notation: For z € Rand AC R define

1, ifze A
éx(A)‘{o, ifze A

On [0, 00) define the tail empirical process and its normalization as

1 & “1i/a
(1.7) Exn(y) = ";ZeXg/b(n/k)[y 12 oo
=1

1& 1/a
(1.8) Een(y) i= VE(Ernly) —y) = VE (;; > exippinrmly e, 00] = y)
t=1
and the Hill process and its normalization on (0, 00), by

(1.9) Hiu(y) = Hipgin

(1.10) Hinly) = VE (Hk,n(y) - i—) ~VE (HMW _ é) .

The Hill process defined here is a modification of the Hill process of Mason and Turova
(1994). The reason for the modification was that we wished to focus on statistical estimation
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of the index of regular variation rather then the study of the general asymptotic behaviour of
the Hill process. The centering and scaling sequences in Hill’s process of Mason and Turova
were functionals of the quantile function of F. Therefore, though theoretically interesting
their process was statistically unsuitable as it depended on the unknown quantile function.
To render the process more suitable to our purpose we chose to center and scale the process
differently. With some effort it is possible to derive our result from the convergence proved
by Mason and Turova. However a proof using the tail empirical process provides insight into
the phenomena of heavy tails and consolidates the evidence for the importance of the tail
empirical process in studying the tail behoavior of heavy tailed distributions. This technique
was also used by Resnick and Stirici (1995) to prove the consistency of the Hill estimator
for infinite moving averages.

We emphasize the following approach to the problem: Associate the tail empirical process
to the sequence X;, Xa, ..., Xy, show the weak convergence of the normalized tail empirical
process to a Brownian motion and deduce from this the convergence of the normalized
Hill process. By a simple process of integration the asymptotic behaviour of the smoothed
estimator is obtained.

The paper is organized as follows: Section 2 covers the asymptotic behaviour of the
normalized tail empirical process

= VEBunls) ~3) = VE (1 3 cxpormly %001 )

=1

in D[0, o). Section 3 studies the behaviour of the normalized Hill process

y —Vk (Hk,n(y) - '2;) =k (Hrkyl,n - é)

in D(0,00). The theoretical ground for the smoothing of the Hill estimator is provided
in Section 4. Comments on the practical use of the smoothed estimator, more examples
with simulated data and one where our technique proves helpful in analyzing real data are
contained in Section 3.

We will assume throughout the paper that X,,n >1 is iid. For proving asymptotic
normality of the Hill estimator, a second order regular variation condition is needed.

Condition 1 : F:= 1 - F is second order (—a,7) regularly varying at oo (written
F € 2RV (—a,7)); that is, there exists an & >0, v < 0, Ke R such that F' = z7*L(z) and

Li=) _q 71
(1.11) lim 20— — g7
t—oo g(t) o

where g € RV, for all z > 0. (See, for example, de Haan and Stadtmiiller (1994), Geluk
and de Haan (1987)). Furthermore, by Goldie and Smith (1987), Theorem 2.1.1, Proposition
2.5.2

(i) the convergence in (1.11) is uniform on [1, c0),
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(i) [7° (%(%‘)l - 1) u™*"tdu ~ C”(Cf{_w)g(:zc) as T — 00.

The function g appearing in (1.11) is sometimes used to further restrict the sequence
k = k(n).
Condition 2 : The sequence k(n) satisfies

(1.12) VEg(b(3)) = 0

for n — oo where b(n/k) is defined in (1.2).
Condition 2 has been used by many authors. See for example Hall (1982), Héausler and
Teugels (1985), Dekkers and de Haan (1991).

2 Asymptotic behaviour of the tail empirical process

The derivation of the asymptotic behaviour of the tail empirical process is the first step
in our endeavour of smoothing the Hill estimator.

Proposition 2.1 Assume that Condition 1 and Condition 2 hold. Then, as n — o0, k
— oo and k/n — 0,

(2.1) Eenly) = vk (% }5 GX,'/b(n/k)[y"l/a, o] — y) = W(y),

=1
in D[0,00), where {W(t),t > 0} is a standard Brownian motion.
Proof: We first prove an invariance principle by centering to zero expectations and show
(2:2) Xo(y) := VE(Een(y) — E(Brn(y)) = W(y)

in D[0,00). Proving convergence of the finite dimensional distributions is straightforward
(see de Haan and Resnick (1994)). From Theorem 15.6 of Billingsley (1968), in order to
show (2.2) in D[0, 00), it suffices to show for any 0 < y1 <y <y2 that

(2.3) lim sup B (160 (y) = Ea(w)PlEnly2) — E)) < (32 —11)"
Set

a; = EXg/b(n/k)[y—l/a7yi_1/a) — P(X1/b(n/k) € Yy %) = in/b(n/k)[y_l/asy;I/a) —p,
Bi = GX.-/b(n/k)[y;l/a,y*l/a) — P(X1/b(n/k) € [y; /oy ) = €X,-/b(n/k)[?/z_l/a,y_1/a) - q.

Note as n — o0
n n
—-p — Y — —g = Yo — Y.
kp Y-, kq Ya — Y
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Then the expectation in (2.3) is the same as

Lo (5 07 = a3 + " pa ) + 2 Bl

2
=1 =1 k

n n(n—1 2n(n —1
= ("’ +9°0) + —(—E;-—ZPQU —p)(1—q)+ -—(—k—z—lﬁqz

n(n —1) k
= gt o( ) ~ (y =) —9) < (12— v
as n — oo as required for tightness.

Now it remains to remove the centering by expectations and replace by centering by the

identity function. This is accomplished by means of the second order condition since (1.11)
and (1.12) imply:

vk (—Z—P(b—(?-‘z(-/l];)— > g1/ - t) -0

when n — oo. O

3 Asymptotic behaviour of the Hill process

The derivation of the asymptotic behaviour of the Hill process H k() has as starting point
Proposition 2.1. The proof is based on the observation that Hill process can almost be
expressed as a functional of the tail empirical process and its inverse process. The main
ingredients are continuity arguments and a convergence together technique.

Proposition 3.1 Under Condition 1 and Condition 2, as n — 00, k — oo and k/n

— 0,

o

1 1
in D(0,00), where W is a standard Brownian motion.

Proof: We first sketch the outline of the proof. The Hill process is a functional of a process
akin to the tail empirical process:

3 Hooly) = ——— 'S “a o4
(3.2) kn(y) = _W/O Zexi/x([kyl)[w , 0] z—1l/a”

i=1

The weak convergence proved in Proposition 2.1 will allow us to take STEP 1

1 1 & “1/a de='* 1—a™®
\/’; (7;:'; /l/a"‘ ; eXi/X([ky'l)[:E 700} z-1/a -

1({n de=e 1—a™®
53) S ([ wen - )

(8%




in D(0,00), for any a > 1. Step 2 will be to prove that the same convergence holds even
when @ = co. The natural way to attempt this is a converging together argument. Together
with (3.2) this will imply

k 1 1
(3.4) vk (%Hrkm,n - g) = 'C‘;?;W(y)
in D(0,00). Finally Step 3 will cover the distance between this last convergence and the
conclusion of the theorem. Now that we have a broad image of the path to follow let us
detail the steps:
STEP 1
Let us first note that the inverse of the tail empirical process is given by

prw = (20)

and it is an element in D[0,00). By Vervaat’s lemma (Vervaat (1972)) and Proposition 2.1
it follows that
X\
3.5 k 2 ([kyl) — W
(3.5) \/_((b(n/k) y| = -Wy)
in D[0,00). Define D;[0,00) to be the set of all positive, increasing functions in D[0, 00)

with the topology which it inherits from D[0,00). By a continuity argument the following
joint convergence holds:

(3.6) (\/E (% é ex.fo(afiylz /%5 00] = m) ’ (g(%%) L ((%’%) - Z))

in D[0,00) x D1[0,00) x D[0,00). For a > 0, define the operator
T : D[0,00) x D;[0,00) x D[0,00) — D(0, 00)
by
11 dz=t* 1—a
T h = - h(y).
o) =1 [ o) g + oy —h )

Note that this operator is continuous at continuous functions, a fact which together with
(3.6) implies

Lroly X)) Xy || de®
vk [kZCX*/“"/’“){(“’(b(n/k)) Rl Gy | e

Y J1/ac =31
l1—a@ (1 X((k 0 -
PR (e (=17 R
Wi (y (b(n/k> :
1 1 de'* 1—a®
- W — w
= Y 1/a°‘ (.'IZy) $_1/a ay (y)7



in D(0, 00) which is equivalent to:
s “1/a X))\ d=7
ﬁ(ky e (gq"’)‘”’*m” o) ””(bm/k) z= 1/

o () )

1 dz=V/*  1—a™®
= :1; 1/ae W(:I?y) =y - ay W(y)
in D(0,00). This completes Step 1.
Step 2
We now prove (3.4) using Theorem 4.2 of Billingsley (1968). First notice that as ¢ — oo
1 de~V/* 1-a" d:v‘l/o‘ 1
fue W o = W)= [ W) - gV,
in D(0, 00), if, for example
1/a® dz~1/° —o
(3.7) P ( sup / a:y)——x-_—i—/—- EL———I/V(y) > 5) — 0
yE[LZ] * o

for a — oo. But

1/a® dz~te a7
/0 W(zy)——7e + ‘;‘“W(?/)‘

sup
96[112]
/e |W Ty dx-—l/a a=° 2
< sup / ( )‘:c "1/ \/ W (s)l
ye[1,2]v0 zY z oy
9q- 2" W(s a2
<20 R W)
5=0 s==1

Now (3.7) follows easily from the last inequality. Also one easily can check that

1 dz=1/e 1 d
| Wen S - W) £ W)
To finish the converging together argument we should verify that

n

- dw-1/a
-1/ >

X
“1/a ([ky])
> X/ X[z %5 0] =k (b("/k))

=1
X\ AN
(b(n/k) y|>a agy =0.
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The fact that the second term goes to zero follows from

Xgen)) ™ _,
b(n/k)
which is a consequence of (3.5). We concentrate now on the remaining term. Let ¢ > 0.
First, perform a change of variables u = &(X([ry)/b(n/k))™* and notice that

dx——l/a é
g~ > 2

Vk sup

y€12]

= sup |W(y)l,

y€[1,2]

o X))\
S e e 0] — bz ( ” ”“)

1 1/a®
P | —= sup
(\/% y€[1,2]v0 i=1 b(n/k)

1 (aX([ry1)/b(n/ k)2 du=1/= 5)
<P|—= su €X, /b(n Ve o] — ku > -
(\/7; ye[1p2] ; ;oo ] ule 72
1 plaX@/bn/k)— du~te §
<P/ wlu™?, 00] = k| S > 2
- (w; : 3 exopnle™* 05 = k| T > 5

T

> ooy, 00] = ku

=1

IA

du=t/> ¢
u-te > 9

(Gl
Vk Jo

+p(

due to (Xquy /b(n/K)) < (Xo/bn/B)= for y € [1,2] and (Xgo/b(n/k))™ D 1 (by
(3.5)). We therefore concentrate on

1 (1+E)a—-a 1 du"'l/a 5
P ( - /0 ;ex.«/b(n/k)[“ ,00] = ku| ——72= > 5
1 (14)a=a e n i/ du-—l/a
(38) < P(—= / 3 exuppinsiy a5 00] = B(Y ex,patnyiy [u™%5 00])| =575
\/_ i=1 =1 v
S ¢ (14e)a=| . n du'/°
>3k / E(; ex. /bty [u %, 00]) = k| =)

We now claim that

| Q4| @ " du~1/=
'\/75/0 EQY exipinpiole™ 1 00]) = k| S
1 (1+£)a—* X du-—lla
S P L >y — kul ——
f/ " (b(n/kr” ) Y ume
(1+€)a= X; du~1/=
. — > “la ) _
(39 [V (s 2 )~
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tends to 0 for n — co. Once proved, this claim will allow us to substitute § for

du~te
yu—1/o

) 1 (1+e)a™"

2 VkJo

in (3.8). Notice that due to the uniform convergence in Condition 1.(i) the expression

_ . o — = — > ) —
kE(?;; €X./b(n/k)[u ,00]) — u kP (b(n/k) Zu u

keeps constant sign for large n and for any u > 1. After performing the change of variable
y = u~'/* the integral becomes

[ =)
/ T Uk ( Pl / PR u) %
/a:—e)—lfa Vi (% - 1) wd

Condition 1(ii) together with (1.12) assure us the previous claim is correct. We are in the
position now to undertake the last step of our proof, i.e.
du_l/a '
> 6 )

hmhmsupP (\/_/ —i/a

equals 0. By making use of the Chebyshev inequality we get

E(Z eXg/b(n/k)[u—l/a’ oo]) — ku

=1

du~1e
y—He

~ | M|VEg(b(n/k))-

n

(1+€)a—
—l/a, OO] -

> (exi/pinsmylu Eex, jo(n/r) [u=1/%, o0))

i=1

TL

du=1

u— e

du~1/\?
u—1/e

(14£)a™

>6)

fXg/b(n/k) [u=/*, 00] — Eex, jpnymy[u™'%, 00])

\/_/ z—l
1 (1+e)a™= e /o

= ZSTEE (/ 3 (ex sl 00] = Eexyuiapmlu*, 00]))

i=1

(1+€)a™ n N du—-l/a
<37 / Var (Z ex.p(afiy ™! ,00]> 7

i=1

_n [ -1/a du < _1_]00 n X du
=57 /a(1+s)—1/a Var(ex, o/ [u™ /%, 00)) = < 5 1)t =P b/ F) >u) =

By Potter’s inequality (Bingham, Goldie, Teugels (1987), Theorem 1.5.6), for a given 6, there
exists an ng such that, for v > 1

(1—éu™’ < %’F (b (%) u> < (1+&ur
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for any n > ng. Therefore it follows that:

. oo - n du o0 52
hmnsup /a(l—a)"l/o‘ —];F (b <-l;> u) = < /a(l—e)—lla(l + 8)u du.

Making sure that § < 1 and letting @ — oo completes the proof of Step 2. Thus we have
proved (3.4). We now discuss the last step of the proof.

Step 3

We note that

e R )

- %’f- (x/E (H{ky],n - %) +Vk (21; clx f%))

Due to the fact that
\/76_ (M — 1) - 0
ky

as k — oo the conclusion of the theorem follows. O

4 Asymptotics of the smoothed Hill estimator

As we have already mentioned, the smoothing procedure consists in averaging the Hill
estimator values Hy, over a broad range of k, the number of order statistics. The order of
the number of terms involved in the averaging is k. Therefore, when n,k — oo we will be
averaging larger and larger numbers of Hill estimator values with a consequent reduction in
asymptotic variance. Let us state the result precisely:

Proposition 4.1 Let 0 <s<t be fized. Then forn — oo
[kt]

\/]Z(k(t{-s) 3 Hp,n—é) = N(0,¢)

p=[ks]

where

o= 2 (1..%).

a’t—s t—s

Proof: By the continuous mapping theorem integrate both sides of (3.1) to get:

t 1 1 rt1
(4.1) \/];/S (H[ky],n — E) dy = _0:/3 }/-W
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After some elementary computations we get the left hand side to look like
t 1
VE [ (Hno = 5)

ks| — ks 1 W kt — |kt 1
= \/]; ("L‘]?C——_kas'],n + - Z Hp,n + “—_L'_J—H[kﬂ,n - (t - 3)“—

kopeirga k o

1 1\ [ks] —ks—1 tk— |kt] —1
4.2 =Vk|= E H,,—{t—s)— L 2 Huygn + ——=—Hgn
) (k,mw S VE vEo

[kt] 1

= (t—s)Vk (k(tl-— 3 pz%ﬂ H,,— &-) OP(’%)(kas],n + Higesm)-

An easy computation shows that

Var /st -;;W(y)dy = 2[(t — s) — sIn(t/s)].

This computation together with (4.2) ends the proof. O
It is useful to write the previous theorem in terms of a different pair of variables (s, u :=
t/s). Let 1 <s,2 < u. Then for n — o0

Vi [ — rkf Hy, — ) = N(©,¢)
ks(u—1) 254 P

where

12 ] Inu
T a?s(u—1) u—1)"

How does the choice of s and v influence the size of the variance? Note that
2 Inu
U — 1-
u—1 u—1

1
s — —
s

are decreasing in u, respectively s. Therefore the bigger u and s the better. The next figure
shows the dependence of the variance on (s, u). The vertical axis represents the quotient be-
tween the asymptotic variance of the smoothed (s, u) estimator and the asymptotic variance
of Hill’s estimator. The decrease is rather sharp even for small values of s and .

and
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Figure 4

5 Using the smoothed Hill estimator

This section discusses the use of Proposition 4.1 for estimating . Several remarks and
examples about the alternative Hill plot introduced in the first section of the paper end the
section.

The first point to be made is that Proposition 4.1 offers considerable assistance in esti-
mating o. Proposition 4.1 lessens the emphasis on choosing the right number of upper order
statistics needed to calculate the estimate. Due to the fact that the range of the smoothed
estimator is reduced in comparison to the classical Hill estimator, the importance of wisely
selecting k diminishes.

Several previous studies advocate choosing k to minimize the asymptotic MSE of Hill’s
estimator (Hall (1982), Dekkers and de Haan (1991)). For example, adapting the method of
Dekkers and de Haan (1991) one finds that for the Cauchy density

1
4 T v——— P
F(x)—w(1+w2)’ 0o <z < oo
the optimal choice k* = k*(n) of k is
. nd/5
k* ~ W’ (n - OO)

For n = 1000 for instance, the right side evaluates to k* = 139. There are two problems with
such formulas. First, these formulas require one to know the distribution rather explicitly
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and thus, although interesting and welcome, are of dubious practical value. Second, the
formulas are frequently only asymptotic formulas and the asymptotic equivalence is not
helpful for finite samples. If k* has the asymptotic form given above, then the following is
equally acceptable as an asymptotic solution:

=01+ T)k .

Evaluating the right side now for n = 1000 would yield a rather different value from the
one obtained previously, namely (1 + 10%)k*. Even if one accepts a value of k* for finite
n from a displayed formula, these seldom work well in practice. For example, in Figure 5
we have displayed the alternative Hill and alternative avHill plots for 1000 iid data from a
Cauchy density and evaluating the plot at k = 139 gives disappointing results, namely the
estimate given by the horizontal line. Therefore, we conclude that attempts to compute an
optimal value of k have little applied value and thus we were led to seek alternative methods

of inferring the value of a.

1.0

0.8

0.6

Hill and avHill estimates of alpha
0.4

0.2

0.0 0:2 0j4 0:6 O:B 1 :0
theta

Figure 5

In order to use the traditional Hill plot, there are at least two important decisions to
be made. First, a sensible range of k has to be determined. Once this decision is made,
the practitioner is usually confronted with a second difficult choice, namely deciding on the
specific value of k inside the range which gives the point estimate. This is problematic due
to volatility inside the range. It is this second step where our procedure offers assistance:
Assuming we believe that k € [ky, ko] is suitable range, we make the avHill plot

uk -1
(, (E(’JIZ'ISECH ) )k € [k, ko]
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Due to the fact that the range of the smoothed estimator is reduced in comparison to classical
Hill, the importance of selecting the optimal k diminishes.

What about the choice of u? Since the asymptotic variance is a decreasing function of u,
one would like to choose u as big as possible to ensure the maximum decrease of the variance.
However the choice of u is limited by the sample size. Due to the averaging, the bigger the
u, the fewer points one gets on the avHill plot. Therefore an equilibrium should be reached
between variance reduction and a comfortable number of points on the plot. Usually we use
u between n®! and n®? where n is the sample size.

We conclude this section with a discussion of the alternative Hill plot introduced in the
beginning of the paper.

The alternative Hill plot was defined as the plot displaying the information provided by
the estimation as

(0, H,),0 <0< 1},

As we have already mentioned, a significant advantage of the alternative plot over the Hill
plot is the way the displayed space is used. In the alternative plot the significant part of
the graph, i.e. the part corresponding to a relatively small number of order statistics gets
to be shown more clearly, covering a bigger portion of the displayed space. On the other
hand, the part of the graph corresponding to a high number of order statistics, which covers
a disproportionately large part in the Hill plot gets rescaled. Thus, interpretation of the

graph is easier and more accurate.
Here is an example where the difference is striking. The data is drawn from a distribution

defined by
(5.1) X =Ylog(Y), P(Y >z)=z".

The length of the sample is 60,000. The results are shown in Figure 6.

(=1 L3
~ —
© 2 © o
£- £ S
«3 «3
S k=
< <
g 3 g g
b B <
D <@
o =
< ~t
<>
o~
<>
o4
p=]
O 30000 80000 0.0 0.2 0.4 0.6 0.8 1.0
number of order statistics theta
Figure 6
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The left hand side of the figure shows the traditional Hill plot and the right hand side
shows the altenative plot of the Hill’s estimator (the solid graph) together with the smoothed
version (the dotted graph).

As in the case of the Hill plot, when dealing with the alternative plot one tries to read
the estimated value from a stable portion of the graph. Compare the two plots. The Hill
plot does not look too encouraging and can be misleading. A rushed conclusion would be
that the estimate is around 0.8. In the case of the alternative Hill plot the graph is put in
a better perspective and we can clearly see that for an important number of upper order
statistics, i.e. between 1 and 60000°4°, the estimate is around 1. The alternative plot leaves
us with less doubt about the estimate. For sure one could display only the initial portion of
the traditional Hill plot on an expanded scale. Even then the significant part of the graph
does not get enough of the display space.

We end the section with an example of a set of real data which exhibits large values
and seems to be generated by a sequence of independent random variables. The data set
represents the interarrival times between packets generated and sent to a host by a terminal
during a logged-on session. The terminal hooks to a network through a host and commu-
nicates with the network sending and receiving packets. The length of the periods between
two consecutive packets received by the host were recorded as our data. The total length of
the data is 783. Figure 7 is a time series plot of our data set showing indications of heavy
tails.

interarrival time
400 600 800

200

(0] 200 400 600 800
number of observations

Figure 7
The left hand side of the Figure 8 shows the Hill plot, the right hand side displays the
Hill’s estimator (the solid graph) together with the smoothed version (the dotted graph) in
an alternative Hill plot.
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Figure 8

One can see again that the Hill plot can be misleading by visually emphasizing a value
close to 0.85. However the number of order statistics used to get an estimate around 0.85 is
very large. The alternative plot puts things in better perspective and yields a value around
1.1. One can also see how efficent the smoothing procedure is in this case. The range of the
smoothed estimator is seriously reduced in comparison to classical Hill. No matter what two
estimates are chosen from the stable part of the graph they are not going to differ by more
then 0.02. Therefore the importance of selecting the optimal & diminishes.

Aknowledgement. Paul Feigin suggested averaging the Hill estimator when working
on Feigin, Resnick and Staricd (1994). Our endeavour was to provide this procedure with
the mathematical backing it needed.
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