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Abstract 

A pooled sample approach to the construction of high resolution genetic maps is 

described. The strategy depends on the existence of an easily selectable target locus 

and the ability to produce large segregating populations. If these requirements are met, 

the pooled sample mapping approach allows tightly linked markers (e.g. RFLPs) to be 

mapped relative to the target with a great economy of effort. The recombination 

fractions among loci can be estimated by the maximum likelihood method and a simple 

approximate estimator is derived. The order of loci is deduced using a Bayesian 

statistical framework to yield posterior probabilities for all possible orderings of a 

marker set. Optimal pooling strategies and the effects of misclassification of selected 

individuals are discussed and studied by computer simulation. The feasibility of this 

method is demonstrated by the high resolution mapping of a region on chromosome 5 of 

tomato that contains a gene regulating fruit ripening. 
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Introduction 

The idea of using restriction fragment length polymorphisms (RFLPS) for genetic 

mapping was introduced in 1980 (1 ). Since that time there has been rapid progress in 

the development of genetic maps in a variety of organisms, including human, mouse, 

and many crop species (2-5). One of the reasons for constructing DNA-based genetic 

maps is for use in chromosome walking. Currently many interesting and important 

genes are known only by their phenotype. Lack of knowledge of their gene products 

inhibits traditional methods of gene cloning; however, knowing the position of such 

genes on a DNA-based map opens the opportunity for walking to the gene from 

adjacent marker(s). In this manner, a number of genes have been cloned from humans 

and other higher eucaryotes in recent years (6). 

Two requirements for chromosome walking are: 1) availability of tightly linked 

DNA marker(s) in the vicinity of the gene of interest and 2) knowledge of the position 

of these markers relative to the targeted gene. In the past, finding markers near a gene 

of interest proved to be very time consuming. However, increased efforts in genome 

mapping have led to the generation of RFLP-based maps for many organisms (2-5). In 

addition, there are now methods in place for rapidly identifying new DNA markers 

specific to any region of a genome (7-11). 

Once a number of markers tightly linked to a gene of interest have been identified, 

the two markers that most closely flank the targeted gene must be identified since it is 

these two markers that provide the most efficient starting points for a walk. In cases 

where the markers are very tightly linked to the targeted gene (e.g., < 1 eM) analysis of 

hundreds or even thousands of segregating progeny may be required to determine the 

order of markers in the vicinity of the target gene (12). This can be costly and time 

consuming since it requires isolation and analysis of DNA from each individual in a 

segregating population. 

In an effort to overcome the problem encountered with mapping large populations, 
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we have devised and tested a pooled-sample method for high resolution mapping around 

genes targeted for cloning. The method exploits the fact that when mapping many 

markers in a small segment of a chromosome, very few individuals (from a segregating 

population) contain chromosomes with a crossover in the region of interest and thus 

most individuals provide little useful information. By pooling individuals for analysis, 

the effort required to construct a high resolution map can be reduced many fold. The 

steps for using this pooled-mapping technique in a segregating population (e.g., F2) are 

as follows: 1) Identify (by phenotype) those individuals that are homozygous (usually 

homozygous recessive) for the target gene; 2) divide these individuals into pools (see 

Results section for optimum pool sizes). Extract DNA en masse from each pool using 

approximately equal amounts of tissue from each individual. This bulked DNA is then 

probed with clones known to be located in the vicinity of the gene. The proportion of 

pools containing at least one crossover event is recorded and the resulting data used to 

construct a high resolution map. Using that method, the number of samples from 

which DNA must be isolated and analyzed can be reduced by a factor of 10 or even 

greater. 

We present here basic theoretical considerations necessary for utilizing pooled­

mapping and demonstrate the technique by mapping a gene regulating fruit ripening in 

tomato. This method leads to the identification of the two markers most closely 

flanking the targeted gene. It can also be used to determine the map order of other 

markers and an estimate of map distance from the targeted gene. While the method 

has been demonstrated in a plant, it can be used in any diploid, sexually reproducing 

organism for which large segregating populations can be obtained. 

Material and Methods 

Calculations and computer simulations. The algorithms described below have been 

implemented in the C programming language and tested on a SUN workstation. 
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Simulations and Monte Carlo integrations were implemented usmg the 48-bit 

congruential pseudo-random number generator drand48() supplied with the UNIX 

operating system. 

Pooling. Individuals from an F2 population segregating for a target locus (T) are 

determined to be homozygous for the target locus (either T /T or tft) and are divided 

into n pools of k individuals each. Since each individual contains two chromosomes, the 

number of independent meiotic events represented by each pool equals 2k. If a 

backcross population is used, the number of meiotic events represented by each pool 

equals k, and the results below should be modified accordingly. DNA is isolated en 

masse from each pool and analyzed with markers thought to be linked to T but not 

necessarily ordered with respect to T or each other. It is assumed that a single 

recombinant chromosome can be detected m a pool of otherwise non-recombinant 

chromosomes, but that the exact number of recombinant chromosomes cannot be 

determined. Therefore, the results from probing a pooled DNA sample with a linked 

marker is classification of that pool as recombinant (i.e., contains at least one 

chromosome that is recombinant between the marker and the target gene) or 

nonrecombinant. The combined result of probing a pool with a set of m markers, 

M = {M1, M2, ... , Mm}, is a classification of the pool into one of 2m possible pool types. 

A pool type is defined by the set S of markers in M that are recombinant with respect 

toT for at least one chromosome in the pool. The observed number of pools of typeS 

will be denoted by Y 8 and the 2m vector of observed counts will be denoted by Y. 

Ordering of Markers. The goal of a pooled sample mapping experiment is to infer 

the map order among a set of markers relative to the target locus. In particular, we 

wish to identify the two markers which most closely flank the target locus. One widely 

used approach to the problem of inferring map order among a set of markers is to 

choose that order which has the highest maximized likelihood {15, 16). However, the 
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maximum likelihood approach has several limitations. First, when markers are known 

to be tightly linked to the target locus, this prior knowledge should be incorporated into 

the linkage analysis. This will generally be the case when a pooled sample approach to 

mapping is being considered, although unlinked or loosely linked markers will be 

detected by this method. Second, the different order hypotheses are not nested and 

thus one cannot construct a likelihood ratio to formally test the best order. For these 

reasons we have employed a Bayesian approach to the marker ordering problem. 

Let H denote the map order of markers in the set MuT and let R= (r1, r2, ... , rm) 

denote the recombination probabilities between adjacent markers in the ordered set. 

Inference of the map order will be based on the posterior probability of H which can be 

computed as 

Pr(HIY) ex Pr(H)Pr(YIH) 

= Pr(H) f Pr(YIR, H) Pr(RIH) dr, (1) 

where Pr(H) is the prior distribution on map orders, Pr(RIH) is the prior distribution 

on recombination probabilities and Pr(YIR, H) is the likelihood of the observed counts. 

The integral can be evaluated to desired numerical precision by the Monte Carlo 

method of composition (18). 

The likelihood of the observed counts is multinomial on 2m classes which are the 

pool types, 

Pr(Y = y!R, H) ex I1 p~S 
S~M 

(2) 

where the pool type probabilities Ps are to be defined in RESULTS. The multinomial 

distribution follows from assumptions that individual pools contain identical numbers of 

chromosomes generated by independent meioses and that each pool is probed 

independently of others. 
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Prior Distributions. The pnor knowledge available about map order and 

recombination probabilities will depend on the source of the markers. For example, we 

may consider markers selected at random from a fixed interval of known size (e.g., 

markers identified using nearly isogenic lines, ref. 9), markers known to segregate closely 

with the target locus in previous crosses, or markers selected in the vicinity of the target 

locus from a previously constructed high density genetic map. For purposes of this 

analysis, the markers are assumed to be uniformly placed in a region around T with 

known density D markers /lOOcM. 

In the cases of unmapped or cosegregating markers, it is natural to assume that all 

possible orders are equally likely. For a set of m markers plus the target T, there are 

( m+ 1)! f 2 distinct orders and the equally likely prior distribution is 

Pr(H=h) = 2/(m+l)!, (3) 

for all orders h. In situations where order information 1s available, the posterior 

probabilities from previous experiments can be used as the prior distribution for the 

new experiment. 

The prior distribution on recombination probabilities is taken to be a product of 

m-1 independent Beta distributions {13), 

Pr(R=riH) ex TI r?--1 (1-r·)b-1 . 
i=1 1 I 

(4) 

The Beta distribution with parameters a and b has mass on the interval (0, 1) with 

mean a/(a+b). It is an analytically convenient choice and when the genetic distances 

involved are small, approximates the distribution of spacing between randomly placed 

markers. For unmapped markers selected from a region with local density D 

markers/lOOcM, the parameters a=1 and b=D -1 are appropriate. Because 

recombination probabilities can vary significantly in different crosses it is not clear what 

form of prior information should be used when previous experimental data are available. 



-8-

Decision Rules. The posterior probabilities (eq. 1) are used to make decisions 

about the map order. The decision rule c5(Y) which chooses the order with highest 

posterior probability as an estimate of the true map order is optimal in the sense of 

being the Bayes rule for a 0-1 loss function (ref. 13, p. 163). However, if the markers 

are to be used to attempt a chromosome walk, an incorrect decision could be very 

costly. We wish to ensure that the two nearest markers which span the target are 

correctly ordered with high probability. A more stringent criterion is to decide that an 

order is correct only if its posterior probability exceeds a specified critical value (e.g., 

0.95 or 0.99). Otherwise, no decision is made and probing of additional pools will be 

required to resolve the map order. 

Our criterion for comparing different pooling strategies and decision rules will be 

one minus the Bayes risk (ref. 13, p. 11) for assigning an order to triplets of adjacent 

loci (i.e., two markers plus the target). For a decision rule 6 and a 0 -1 loss function 

the Bayes risk is just the probability of an incorrect (or no) decision averaged over all 

realizations of Y and over all possible orders H, 

p(o) = f[Pr(H =h)[~ 1(c5(y) #h) Pr(Y = yiH = h)J] (5) 

where the summations run over all possible values of handy. 

Exact calculation of the Bayes risk involves extensive summations and integration 

over a high dimensional space. However, its value can be approximated by the 

following Monte Carlo algorithm: 

1. Generate h* "'Pr(H). 

2. Generate r* "'Pr(RIH = h*). 

3. Generate y* "'Pr(YIR = r*, H = h *). 

4. If c5(y*) = h* increment # correct. 

5. Repeat steps 1-4 N times. 

6. The estimated Bayes risk is p(c5) = 1-# correct/N. 
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Results. 

Estimating the genetic map distance between a marker and the target gene. Let T 

denote the large locus, A denote a marker locus near T and r the probability of 

recombination between A and T within a single chromosome. The probability that the 

ith pool contains at least one recombinant is 

When r is small·, this probability is approximated by 1-e-2kr. An approximate 

maximum likelihood estimator (MLE) for r is 

r=-2\ en(1-Yt), (7) 

where y A is the total number of recombinant pools. The large-sample variance of this 

estimator (the reciprocal of Fisher's information), 

~ 1 (1- e-2kr) 
Var ( r) = 4kln e-2kr ' (8) 

can be used to place approximate confidence limits on r. 

An exact MLE for the pooled sample mapping problem can be obtained by an EM 

algorithm (Expectation-Maximization, see ref. 19). This iterative optimization 

procedure has a long history in genetic linkage studies (see for example 14, 15, 16). In 

the E-step, a current estimate of r is used to compute the expected composition of each 

pool, given the pool type. In theM-step, the expected compositions are treated as data, 

recombinants are counted and a new estimate of r is obtained. These steps are iterated 

until the estimate converges. This EM algorithm can be readily generalized to 

multipoint mapping for a given map order. Numerical comparisons of the exact and 

approximate MLEs show very close agreement when the true value of the recombination 

probability is small (less than 0.1). Because the EM algorithm becomes cumbersome to 

compute for large pool size, we prefer to use the approximation. 
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Ordering markers relative to the target gene. Two-point data can be used to 

estimate map distances from the target to each member of a set of markers but will not 

be sufficient to order the markers relative to the target. For this purpose three-point 

data (i.e., a target T and two segregating markers A and B) are required. It is well 

known that there is a significant information gain in standard (unpooled) genetic 

mapping when one considers triplets of markers rather than pairwise data (17). Thus 

we expect that three-point data will also be useful in resolving the order of markers 

which may be unresolved by two-point data. 

For the three-point analysis we will focus on the ordering problem. There are three 

distinct orders to consider: 

H1: A--T--B 

H2: A--B--T 

H3: T--A--B 

each with its own set of recombination parameters R = ( r1, r2). The probability of a 

recombination between the "left" pair of markers is r1 and the recombination 

probability for the "right" pair is r2• Assuming a no-interference model, recombination 

between the outer pair of markers will occur with probability (1 - r1)r2 + r1 (1 - r2). 

The individual chromosomes in a pool can be classified into four types ( t/J, A, B, 

and AB) indicating which markers are recombinant with respect to T. The 

chromosome type probabilities, denoted by q, depend on the order of markers as shown: 

Hl H2 H3 

qt/J - (1-r1)(1-r2) (1-r1)(1-r2) (1-r1){1-r2) 

qA - r1 (1-r2) r1{1-r2) rlr2 

qB - (1-r1)r2 rlr2 (1-r1)r2 (9) 

qAB - rlr2 (1-r1)r2 r1(1-r2). 

The pool type is determined by the collection of chromosome types contained in 

the pool. For example, a pool of type A will contain at least one chromosome of type A 
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and none of types B or AB. A pool of type AB may contain one or more AB 

chromosomes or at least one each of the types A and B. The outcome probabilities are 

PtfJ = r4k 

- ( )2k -2k PA - qt/J + qA - If¢, 

PB = (q¢ + qB)2k- r4k (10) 

PAB = 1- (qt/J + qA)2k- (qt/J + qB)2k + ,f/. 
The probability PtfJ that a pool contains no recombinant chromosomes decreases to zero 

and the probability p AB increases to one as the pool size is increased. The probabilities 

PA and PB initially increase and then fall off toward zero (Figure 1). The pool type 

probabilities are substituted into the likelihood (equation 2) and together with the prior 

distributions (equations 3 and 4) define the posterior distribution over map orders 

(equation 1 ). Intuitively, the best results should be obtained when a moderate number 

of pools are expected to contain at least one recombinant chromosome but few pools are 

expected to contain more than one. 

Multipoint Mapping. The results for three point mapping with pooled data are 

readily generalized to the problem of ordering a set of m markers relative to a target. 

Let M = {M1, M2, ... , Mm} denote the set of markers. An ordering on M U T divides the 

set M into a "left set" L = {L1, L 2, ... , Lm1} and a "right set" R = {R1, ~' ... , Rmr} 

whose elements are ordered as they radiate outward from the target. 

As before, our approach is to determine the probabilities of each chromosome-type 

and then express the pool-type probabilities in terms of these. Chromosome-type 

probabilities will be denoted by q8 where S ~ M is the set of markers that are 

recombinant with respect to T. For a given order H and recombination probabilities R, 

the calculation proceeds as follows. Let L0 = R0 = T and note that T ¢. S. Consider first 

the left set L. A recombination has occurred in the ith interval of the left set if exactly 

one of Li and Li-l is an element of S. The corresponding recombination probability 7J is 
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included as a factor in qs· Otherwise, no recombination has occurred and a facto.. 1 - rj 

is included. Factors for all intervals in the right set are similarly included. The pool­

type probabilities are computed from the chromosome-type probabilities by the method 

of inclusion-exclusion 

Ps = ( 2: qv)2k + 2: (-1) 11 S\V 11 Pv 
v~s vcs 

(11) 

where II · II denotes cardinality of a set. The recursion terminates at P,p =if¢. 
Posterior probabilities can now be computed for each of the (m+1)!/2 possible 

orders (equation 1). These computations will become impractical for large collections of 

markers. However, in most cases the order will be resolved by the three-point !Ulalysis 

and the multipoint· analysis will not be needed. 

Optimum pool size. We consider two criteria for determining an optimum pool 

size. First, maximization of the information for mapping a single marker relative to the 

target yields a simple expression for optimum pool size. Second, we maximize the 

probability of inferring the correct order among triplets of adjacent loci (including the 

target). The latter criterion is motivated by the chromosome walking application and is 

studied by computing the BayPs risk (Equation 5) over a range of pool sizes. These two 

approaches to determining optimum pool size give similar results, with the latter 

criterion tending to give slightly smaller (by one or two F2 individuals) optimum pool 

sizes. Additional considerations for determining pool size are discussed below. 

The optimum number of individuals to include in a pool is determined primarily 

by the local density of markers around the target locus. Consider the nearest adjacent 

markers to T. The probability that a chromosome is recombinant for either of these 

markers will decrease as the local density of markers is increased. If the pool size is 

small, most pools will contain no recombinant chromosomes and the amount of 

mapping information per pool will be very low. If the pool size is very large, most pools 

are likely to contain multiple recombinant chromosomes and mapping also becomes 
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very inefficient. An optimum pool size is tound between these two extremes and is 

larger for higher marker densities. 

Exact inference for pooled binary experiments is discussed by Thompson (1962) 

who also considered the problem of choosing an optimal pool size. He showed that, for 

a fixed number of pools, a pool size of 

k . 1.594 
opt=~ (12) 

minimizes the variance of the estimator r (egn. 8). He also points out that kopt tends 

to overestimate the true optimum when n is small. Note that when the pool size is near 

kopt' the expected number of recombinations per pool in the interval is near 1. 

It is clear that during the planning stages of an experiment r will be unknown. 

The purpose of pooling samples is to increase the efficiency of an experiment and even 

small pool sizes (2 to 5 plants) can greatly reduce the total effort required. However, in 

some circumstances, if the pool size is too large a very inefficient experiment can result. 

To protect against the possibility of overpooling, a value r0 should be chosen which is 

an upper bound on the possible values of r. For example, if the target gene and the 

markers to be mapped are known to lie within a 10 eM interval, a pool size of k :$8 

would protect against overpooling. 

Maximum information yield per pool is a reasonable goal if the cost per plant is 

negligible compared to the cost per pool. If however, the cost per plant is substantial, 

one may wish to find the pool size which yields the maximum information per unit cost. 

The information yield per unit cost is proportional to 

4/il e-2kr 
2ck+ 1 l-e-2kr' 

(13) 

where c is the ratio of the cost per plant to the cost per pool. Optimization of this 

quantity with respect to k for r = 0.10 and c = 1.0, 0.1 and 0.01 yields optimal pool sizes 

of 2.0, 4.6 and 7.2 respectively. These approach kopt in the limit as c goes to zero. 

To study the effect of pool size on the inference of map order we considered sets of 



-14-

three adjacent loci (one of which is the target locus) selected from a region with known 

marker density D markers/100cM. Simulations were carried out to estimate the 

probability of correct ordering (see METHODS for the algorithm) as a function of pool 

size for different marker densities, numbers of pools, critical values for the decision rule, 

and misclassification rates (see below). Selected results are summarized in Figure 2. 

An optimal pool size gives the highest probability of correct ordering. 

The local density of markers has the greatest effect on optimal pool size. At low 

marker densities smaller optimal pool sizes are obtained and overpooling can result in a 

very inefficient experiment. Higher marker densities give larger optimal pool sizes and 

are more robust to overpooling. For the lowest marker density studied (D=16 

markers/lOOcM in Figure 2A), the maximum probability of correct ordering is attained 

with a pool size of 3 individuals. This density corresponds to 3 loci in an interval of 

18.75cM (r=3/D) and the optimal pool size (equation 12) is kopt = 4.25. At this low 

density of markers, an experiment with more than about 8 pooled individuals becomes 

less efficient than probing single individuals. For higher densities (D=32 and 64 

markers/100cM) the maximum ordering probabilities are attained with larger pool sizes 

and the range of efficient experiments is much broader. The maxima correspond well 

with the optimal sizes kopt = 8.5 and kopt = 17 respectively. For the highest marker 

density tested (D=128 markers/100cM) the maximum is not sharply defined by the 

simulation. The curve reaches its peak at some point beyond a pool size of 15 and does 

not drop noticeably out to a pool size of 40. The kopt value corresponding to D=128 is 

34 F2 individuals. 

As more pools are sampled, the probability of selecting the correct order increases 

but the number of pools sampled has little effect on the optimum pool size. This is 

illustrated in Figure 2B for sample sizes of N = 20, 40 and 80. The shapes of the three 

curves are very similar suggesting that the probability of correct ordering increases 

uniformly for all pool sizes. 
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The critical value of the decision rule also effects the probability of choosing the 

correct order but has little effect on the optimum pool size. Figure 2C illustrates that 

optimal pool sizes are not altered by changing the cut off. We would like to note that 

most of the curves in Figure 2 are well below 1.0 because we have used a high critical 

value (c = .90 for most of the curves). Although the true order may have the highest 

posterior probability, if this probability does not exceed c, no decision is made. If the 

decision rule is very stringent ( c=0.99) large sample sizes may be needed to assign order 

unambiguously but confidence in the chosen order is very high. 

Misclassi:fication. When forming pools of individuals of type t/t it is possible that 

one or more individuals of type T ft or T /T may be misclassified and included in a pool. 

Such a pool may appear to contain recombinant chromosomes. Misclassification will 

alter the outcome probabilities on which order inferences are based. If the 

misclassification rate is a per chromosome (i.e., q for T /t heterozygote and q2 for T /T 

homozygote), the new chromosome type probabilities are 

qg=(1-a)qg+aqM\S. 

The pool type probabilities are as before. The misclassification rate can be estimated 

by extension of the EM algorithm but the expected precision of this estimate is very 

·low. 

We have studied the effects of misclassification by simulating data with 

misclassification and analyzing the data assuming none. If the misclassification rate is 

low (1 to 2 percent) correct ordering inferences are made with high probability. As 

misclassification increases, fewer correct inferences are made. The effect is more 

pronounced for large pool sizes (2k > 20) and for high marker densities. Figure 2D 

illustrates the effect of misclassification. At higher misclassification rates, the optimum 

pool size is slightly reduced and the loss of efficiency due to overpooling is more serious. 

The posterior probability of the true order is obtained assuming that there is no 
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misclassification. The presence of a misclassified individual in a pool will generally 

reduce the posterior probability for the two markers flanking the target and thus the 

procedure is conservative. Pools which contain a misclassified individual will typically 

be recombinant for all markers and will inflate the estimated recombination fractions in 

the intervals immediately flanking the targe locus. Pools which are recombinant for 

markers flanking the target but are non-recombinant for more distant markers contain 

an obligate double crossover or a misclassification. The phenotypes of individuals in 

such pools should· be rechecked if possible (see the example below). 

Technical limits in detecting recombinants in a pooled sample. One of the 

assumptions of pooled mapping is that a single recombinant chromosome can be 

detected in a pool of otherwise non-recombinants. The degree to which this is 

technically possible depends on the organism being studied and the molecular detection 

techniques being employed. RFLPs represent the common type of molecular marker 

now being used in higher organism and they are normally detected on southern blots 

with single copy probes (1). Tomato (Lycopersicon esculentum), like most eucaryotes, 

has a genome that is relatively large and complex (haploid DNA content= 900Mb). To 

test the limits of pooling, DNA from tomato plants of two different genotypes was 

mixed and subjected to southern analysis with a single copy DNA probe (REF). The 

results indicate that in a mixture as great as 40: 1, one can still detect the rare allele. 

This is comparable to detecting a single recombinant chromosome in a pool of 20 plants. 

However, since the pooling is done before DNA extraction, and is based on utilizing 

approximately equal amounts of tissue from individuals within the pool, there is room 

for additional error. For this reason, for the purposes of testing pooled-mapping, we 

decided to use pools of five plants (see next section). 

Pooled mapping of the rin locus. To test the pooled mapping strategy, a large F2 

population (1840 plants), segregating for the rin (ripening inhibitor) gene, was planted 

in the field and grown to maturity. Fruit from plants homozygous for the recessive rin 



-17-

allele do not ripen and it is believed that rin represents an upstream regulatory switch 

for the ripening process (21). rin is on chromosome 5 and a number of DNA markers 

have been identified that are in the vicinity of the gene (22). 190 plants were 

unambiguously determined to be homozygous ( rin/rin) and tissue from these plants was 

pooled into groups of 5 to form 38 pools. DNA was extracted from each pool and scored 

for six RFLP markers known from previous, experiments to be linked to the rin locus. 

After the pools were formed and scored, a misclassified plant was discovered in one 

pool. Thus, the analysis presented is based on the remaining 37 pools. 

Previous analyses suggested that the seven loci ( rin plus six RFLP markers) are 

located in approximately a 20 eM interval (22). Thus the local density is 35 

markers/100cM. The prior distribution for recombination probabilities was taken to be 

Beta (a=1, b=15). All orders were assumed to be a priori equal likely. 

Two point analyses were carried out to estimate distances between the marker and 

the target. Results are summarized in Table 1. The left and right groupings were 

readily established by three-point analysis. Posterior probabilities for ordering adjacent 

markers are shown in Table 2. The critical ordering inference involves markers E and B 

which appear to span the rin locus. The posterior probability of the three-point 

ordering ETB is 0.899, strong evidence in favor of this ordering. When the data of 38 

pools, including the misclassified pool, are analyzed there is only one substantial change 

in the results (see Table 2). The three-point order ETB is still the most likely order of 

markers immediately flanking the target, however, the posterior probability of this 

order is reduced to 0. 709. 

Discussion. 

We have presented the basic theory necessary to create high resolution genetic 

maps using pooled DNA samples. Our results suggest that this is a practical and highly 

efficient approach to high resolution mapping of DNA markers. A number of factors 
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were shown to affect the probability of choosing the correct order for a set of markers. 

We summarize these findings: 

The pool size can be optimized to yield maximal probability of choosing the correct 

order. The optimal pool size is determined primarily by the local density of markers. 

For a low marker density, small to moderate pool sizes are most likely to yield the 

correct order. Overpooling can result in an inefficient experiment. H the local density 

of markers is higher, larger pool sizes are optimal and the analysis is more robust to 

overpooling. 

As more pools are sampled, the probability of the correct order increases. This 

consistency property may hold even when certain model assumptions are violated. In 

particular, Speed et al. (20) have shown that inferences of order assuming a no­

interference model are consistent in the presence of interference. For the densities 

considered in our simulation studies, (up to 128 markers/100 eM) sample sizes of 40 to 

80 pools can yield high posterior probabilities for the correct order. Increasing the 

stringency with which we will accept an order as being correct decreases the probability 

of making a correct decision (by increasing the probability of no decision). 

Applications of pooled mapping. Map-based cloning represents one of the most 

promising strategies for isolating genes known only by the phenotype they impart (23). 

High resolution mapping is a prerequisite for map-based cloning and the pooled method 

described in this paper can facilitate this process and may therefore aid in the isolation 

of new genes from both plants and animals. In tomato alone, there are more than 1000 

genes identified by the phenotype they impart to the plant (24). Included in the list are 

genes for resistance to a broad spectrum of plant pathogens as well as genes controlling­

differentiation and plant architecture. Currently none of these genes have been cloned, 

but all are prime candidates for map-based cloning. The same situation exists for most 

crop species as well as model species for genetic and molecular research including 
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A rabidopsis, Drosophila and mouse. Pooled mapping could be utibzed in these species 

in the same manner as demonstrated here for tomato. Moreover, in species with smaller 

genome (less DNA), larger numbers of individuals could be pooled making this strategy 

even more effective. 

Finally, it should be noted that pooled-mapping results in the ordering of all 

markers in the vicinity a scorable locus. Therefore easily scorable loci can be used to 

develop region-specific, high resolution maps, even if the scorable loci themselves are 

not the target of map-based cloning. Thus high resolution maps might be constructed 

for genes that are not readily assayed, but which are linked to genes that are easily 

scored, including quantitative trait loci. 
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Table 1: Estimated distances from target locus rin 

marker r standard error 

CT93 0.0353 0.0107 

TG96 0.0315 0.0100 

ACC4 0.1046 0.0223 

CD64 0.0903 0.0199 

TG503 0.0056 0.0039 

TG448 0.0838 0.0188 

Approximate recombination probabilities (Equation 7) between markers and the 

target gene and their standard errors (Equation 8) were estimated from two-point data. 
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Table 2: Three point ordering probabilities 

posterior probability 

ordered markers N = 37 N = 38 

CD64-CT93-rin 0.9993 0.9996 

CT93-TG503-rin 0.9237 0.9749 

TG503-rin-TG96 0.8978 0.7227 

rin-TG96-TG448 0.9991 0.9995 

rin-TG448-ACC4 0.9994 0.9994 

Posterior probabilities (equation 1) were computed for ordering all 15 prurs of 

markers relative to the target. The prior distribution for spacings was taken to be Beta 

(a=1, b=15). The integral in equation 1. was computed by the Monte-Carlo method 

using 10,000 random samples from Pr(RIH) for each order H. Only 5 of the 15 ordered 

triplets are needed to confirm the map intervals in Figure 3. The second column shows 

order probabilities using the data from 37 pools. The third column shows results when 

all 38 pools including the misclassification are analyzed. 
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Figure 1: Pool type probabilities. 

The pool-type probabilities from probing a pooled sample of DNA with two 

markers A and B (Equation 10) are shown as a function of pool size (k =number of F2 

individuals per pool). The assumed locus order is H1: A-T- B and the recombination 

probabilities are r1 = 0.05 and r2 = 0.02 in this example. 
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Figure 2: Probability of correct order. 

The probability of determining the correct ordering of three adjacent loci (two 

markers and the target) is computed to be 1 minus the Bayes risk (Equation 5) and is 

plotted as a function of pool size. All orders are assumed to be equally likely. The 

effects of marker density D, sample size N, critical value for the decision rule c and 

misclassification rate a were studied. The curves shown are based on constant values of 

D = 0.32 markers per eM, N = 40 pools, c = 0.90 and a = 0.0% except that one factor 

is varied as follows: 

A. The marker density is varied over 0.16, 0.32, 0.64 and 1.28 markers per eM. 

B. The sample size is varied over N = 20, 40 and 80 pools. 

C. The critical level of posterior probability for calling a correct order is varied 

over 0.5, 0.90, 0.95 and 0.99. 

D. The proportion of misclassifed chromosomes is varied over 0%, 1%, 2% and 5%. 

We wish to note that the sample size and critical values were chosen to give curves 

for which the correct order probability is well below one. Such curves are most 

informative regarding optimal pool sizes. In general, the true order is found to have the 

highest posterior probability and by reducing the stringency or increasing the sample 

size the correct order will be chosen with probability near one. 
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Figure 3. Map of the rin region. 

The positions of seven markers relative to the target locus rin are shown. The 

distances indicated on the figure are estimated percent recombination ( ~ eM) between 

each marker and the target are shown. Precisions of the estimates are indicated by 95% 

confidence intervals ( r±2~Var(r) ), shown as vertical bars to the left of the figure. Note 

that the individual markers are not mapped independently and thus overlapping 

confidence intervals do not necessarily indicate uncertainty in the map order (see table 

2). 
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