
EMPIRICAL METHODS FOR FINE-GRAINED
OPINION EXTRACTION FROM TEXT

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Eric John Breck

August 2008

c© 2008 Eric John Breck

ALL RIGHTS RESERVED

EMPIRICAL METHODS FOR FINE-GRAINED OPINION EXTRACTION

FROM TEXT

Eric John Breck, Ph.D.

Cornell University 2008

Opinions are everywhere. The op/ed pages of newspapers, political blogs, and

consumer websites like epinions.com are just some examples of the textual opin-

ions available to readers. And there are many consumers who are interested in

following these opinions – intelligence analysts who track the opinions of for-

eign countries, public relation firms who want to ensure positive opinions for

their clients, pollsters who want to know the public’s opinions about politicians,

and companies who want to know customers’ opinions about their products.

The problem faced by all of these consumers of opinion is that there is such a

wealth of text to process that it is hard to read it all. Central to processing the

opinions in these text will be solving two specific problems - identifying expres-

sions of opinion, and identifying their hierarchical structure. We demonstrate

solutions involving empirical natural language processing techniques.

Although empirical, data-driven methods such as these have become the

norm in natural language processing, little work has been done in analyzing

their impact on the reproducibility, efficiency, and effectiveness of research. We

address two specific problems in this area. We introduce a lightweight com-

putational workflow system to improve the reproducibility and efficiency of

machine learning and natural language processing experiments. And we in-

vestigate the process of feature generation, setting out desiderata for an ideal

process and exploring the effectiveness of several alternatives. Both are investi-

gated in the context of the natural language learning tasks set out earlier.

BIOGRAPHICAL SKETCH

Eric Breck received a Bachelor of Science degree in Mathematics and Linguistics

from the University of Michigan. He then worked at the MITRE Corporation in

the Intelligent Information Access group for three years. After that, he came to

Cornell to pursue this PhD in Computer Science. While at Cornell, he served as

an intern in the Natural Language Processing group at Microsoft Research.

iii

This thesis is dedicated to James & Sandra Breck, the best parents anyone could

possibly have.

iv

ACKNOWLEDGMENTS

Claire Cardie has been a fantastically supportive mentor over the past nearly

seven years. She has cheered me on through successful and unsuccessful

projects and taught me about science and writing and what it means to be a

researcher. I am glad to have produced work to pass Lillian Lee’s keen analyti-

cal standards. Mats Rooth has tried to keep me linguistically honest. And I am

grateful for Charlie Van Loan’s presence and for his leadership as our depart-

ment chair through most of my term at Cornell.

I’ve also greatly benefited from the wisdom and expertise of Thorsten

Joachims and Rich Caruana. The students in the Cornell natural language pro-

cessing group and the machine learning discussion group have been valued col-

leagues. Marc Light and Lynette Hirschman were my first mentors in computa-

tional linguistics, and they and the other folks at MITRE provided a wonderful

introduction to life as a researcher and to the field of NLP.

John Lawler taught the first linguistics class I ever took, and stoked the fires

of my interest in language. I still use some of the anecdotes he told in that class

today when I try to share my excitement. Bill Harris and Rick Bednarz taught

me calculus and geometry in high school and middle school, but more than that

they showed me how much fun mathematics can be.

A couple of students have been especially helpful to me in completing this

process. Dan Grossman offered his just-a-bit-ahead experience, providing sage

advice to me as a young student. Sharon Goldwater walked a parallel path to

mine and we shared our different takes on similar programs.

Graduate school is about more than research, and many students have

helped make this experience richer, more productive, and more fun. The Books-

n-Cooks book club forced me to read some fantastic (and some terrible) litera-

v

ture, as well as providing a wide sampling of delectable cuisine. The Cornell

Chordials welcomed me into a world entirely distinct from my usual one, filled

with music and laughter and stories. And there’s really nothing like the ex-

perience I had with them of hearing our name called and rushing onstage for

a victory encore, or standing in Town Hall and getting chills from the perfor-

mance of my fellow singers. Thanks to Joss Whedon and Rob Thomas, Amy,

Alexa, Dave, Mohan, Riccardo, Rif, Tom, Vicky, and I spent many nights enjoy-

ing the exploits of Buffy and Veronica. And over all the years, I’ve been glad to

share an office with Alex, Filip, Jeff, Matt, and Steve, as we weathered the ups

and downs of grad school together.

Amy, Cynthia, Gretchen, Janine, Jasmine, Justin, Karen, Kyla, Michelle,

Sarah, Sean, and Will have all enriched my life in ways too numerous to count.

Emily has brought me joy I never knew. My brother Jason knows everything I

do and more, despite having had six fewer years to learn it all in — he’s amaz-

ing and I’m so proud to be his big brother. And I owe everything I am and have

to my ever-loving parents, Jim and Sandy.

This work was supported in part by the Advanced Research and Develop-

ment Activity (ARDA), by NSF Grants IIS-0535099 and IIS-0208028, by Depart-

ment of Homeland Security Grant N0014-07-1-0152, by gifts from Google and

the Xerox Foundation, by an NSF Graduate Research Fellowship, and by a Cor-

nell Cognitive Studies Fellowship.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgments . v
Table of Contents . vii
List of Tables . ix
List of Figures . x

List of Abbreviations xi

1 Introduction 1
1.1 Opinion analysis . 2

1.1.1 Opinion-oriented information extraction 3
1.1.2 Tasks addressed here . 6

1.2 Methods . 6
1.2.1 Computational workflow 7
1.2.2 Feature generation . 8

1.3 Contributions and Structure of This Thesis 9

2 Related Work 11
2.1 Classification . 12

2.1.1 Document classification . 12
2.1.2 Sentence classification . 13

2.2 Extraction . 14
2.2.1 Extraction from reviews . 15
2.2.2 Extraction from news . 17

2.3 Lexicon building . 19
2.3.1 Polarity lexica . 20
2.3.2 Subjectivity lexica . 20

3 Identifying expressions of opinion in context 22
3.1 Related work . 24
3.2 Identifying single-word direct subjective and speech expressions 26
3.3 New features for identifying single-word direct subjective and

speech expressions . 32
3.4 Identifying all direct subjective and speech expressions 35

3.4.1 Results and Discussion . 38
3.5 Identifying direct subjective expressions and expressive-subjective

elements . 41
3.5.1 The class variable . 41
3.5.2 New feature . 42
3.5.3 The learning method . 42
3.5.4 Evaluation . 43

vii

3.5.5 Baselines . 43
3.5.6 Results . 44
3.5.7 Discussion . 45
3.5.8 Conclusions . 49

4 Determining the hierarchical structure of opinions 50
4.1 Related Work . 52
4.2 The Approach . 54
4.3 Data Description . 60

4.3.1 Evaluation . 62
4.4 Results . 63
4.5 Discussion . 64

5 A lightweight system for natural language processing and machine
learning workflows 67
5.1 A Typical NLP Experiment . 69

5.1.1 Approach 1: A UNIX Shell Script 70
5.1.2 Approach 2: A makefile 72
5.1.3 Approach 3: zymake . 75

5.2 Benefits of zymake . 79
5.3 Using zymake . 82
5.4 Parallel Execution . 82
5.5 Other approaches . 83
5.6 Future Extensions . 84
5.7 Conclusion . 85

6 Towards improved feature engineering for natural language process-
ing 86
6.1 Related Work . 88
6.2 A reusable, efficient, and lightweight infrastructure for pre-

calculating feature values during feature engineering in natural
language processing . 91
6.2.1 Query encoding . 95
6.2.2 An example: identifying DSESEs (from Section 3.2) 96
6.2.3 Queries . 99

6.3 Automatic feature engineering . 102
6.3.1 Automatic feature engineering for identifying direct sub-

jective expressions . 103
6.3.2 Examining automatic feature engineering 111
6.3.3 Active feature engineering 112

7 Conclusion 116

Bibliography 118

viii

LIST OF TABLES

3.1 More examples of opinion expression types 23
3.2 Breakdown of classes of DSESEs 25
3.3 Breakdown of number of DSESEs per sentence 25
3.4 Original features for three tokens of example sentence 5 28
3.5 Tenenbaum’s features for example sentence 5 29
3.6 Statistics for test data . 30
3.7 MPQA results for identifying single-word DSESEs with original

approach . 32
3.8 Results for identifying DSESEs with original approach 32
3.9 Additional features . 34
3.10 Results for DSESE identification 35
3.11 Results for DSESE identification 40
3.12 Results for identifying direct subjective expressions 48
3.13 Results for identifying expressive subjective elements 48
3.14 Results for identifying expressions that are either DSEs or ESEs . 48
3.15 Results for feature ablation . 49

4.1 Training instances generated from sentence 1 55
4.2 Features for three training instances from sentence 1 59
4.3 Breakdown of number of direct subjective and speech expres-

sions per sentence . 62
4.4 Performance on test data . 63
4.5 Performance by number of DSESEs per sentence 64

5.1 Training regimes . 69

6.1 A possible result of a feature query 95
6.2 Results of feature queries in our infrastructure 96
6.3 The token table . 98
6.4 The cass table . 98
6.5 The lev fn table . 98
6.6 The dsese table . 99
6.7 SQL queries to generate the original features for DSESE identifi-

cation from Section 3.2 . 99
6.8 The result of the queries in Table 6.7 101

ix

LIST OF FIGURES

1.1 An Opinion Summary . 5

3.1 Example sentence 5, with direct subjective expressions and
speech expressions (DSESEs) marked in bold. 27

3.2 Identifying single-word DSESEs: binary classification 27
3.3 The filter modification . 36
3.4 The core modification . 37
3.5 A possible system response . 38
3.6 How to encode the class variable 41

4.1 Hierarchical structure of the direct subjective and speech expres-
sions in sentences 1 and 2 . 51

4.2 Dependency parse of sentence 1 according to the Collins parser. . 53
4.3 Algorithm for identifying hierarchical DSESE structure 55

5.1 A shell script . 70
5.2 A partial makefile . 73
5.3 A non-functional makefile for testing three independent decisions 76
5.4 Simple zymakefile #1 . 77
5.5 Simple zymakefile #2 . 78
5.6 Simple zymakefile #3 . 79
5.7 An example zymakefile. The exact commands run by this make-

file are presented in Figure 5.8. 80
5.8 Output of the zymakefile in Figure 5.7 81

6.1 The steps of feature engineering 86
6.2 Typical natural language processing annotations 93
6.3 Typical natural language processing annotations – standoff . . . 93
6.4 Naive data generation . 93
6.5 An infrastructure for feature engineering 97
6.6 Results on training set of automatic feature engineering for iden-

tifying direct subjective expressions 108
6.7 Results on devtest set of automatic feature engineering for iden-

tifying direct subjective expressions 109
6.8 Selecting features according to several information criteria 110
6.9 Active feature engineering . 114

x

LIST OF ABBREVIATIONS

AIC Akaike Information Criterion, see page 105

BIC Bayes Information Criterion, see page 105

CASS A partial parser developed by Steve Abney, see page 28

CRF Conditional Random Field, see page 42

DSE Direct Subjective Expression, see page 22

DSESE Direct Subjective and Speech Expression, see page 23

ESE Expressive subjective element, see page 23

F-measure The harmonic mean of precision and recall. Sometimes referred to

in the literature as F1 or F-score, see page 30

GATE General Architecture for Text Engineering, see page 27

IIC Information Investment Criterion, see page 105

IND A decision tree package developed by Wray Buntine, see page 60

IOB In / Out / Begin, an encoding of extent tagging as per-word tag-

ging. Sometimes called BIO., see page 41

MALLET Machine Learning for Language Toolkit, see page 42

MPQA Multi-Perspective Question Answering - a workshop and resulting

annotated corpus, see page 29

NLP Natural Language Processing, see page 1

OSE Objective Speech Expression, see page 23

xi

PSE Potentially Subjective Element, see page 17

RIC Risk Inflation Criterion, see page 105

SE Speech Expression, see page 23

SQL Structured Query Language, see page 96

SVM Support Vector Machine, see page 31

XML eXtensible Markup Language, see page 92

xii

CHAPTER 1

INTRODUCTION

There are several reasons for pursuing research into natural language process-

ing (NLP). One is that for those who enjoy puzzles, language is a rich source

of fun problems to solve1. Another is that since everyone speaks a language,

everyone can relate to the issues that arise in researching it. Moreover, language

is a pillar of cognition, lending hope that language research will advance our

understanding of mind, and natural language processing research will advance

our understanding of artificial intelligence.

There are compelling practical motivations for studying natural language

processing as well. The ever-more-technological world abounds with linguistic

problems begging for practical solutions. Machine translation promises to break

down communication barriers among the people of the world(MTX, 2007). Au-

tomatic question answering could provide straightforward access to the wealth

of information now avalable online (Voorhees, 1999). Summarization may al-

low a reader to get the gist of far more information than they have time to read

(DUC, 2007).

Most research in these areas has been focused on analyzing factual content.

Recently, however, there has been increasing interest in going beyond facts to

subjective, opinionated content.

1The North American Computational Linguistics Olympiad, organized since 2007, provides
quite a variety of such puzzles for the interested reader.

1

1.1 Opinion analysis

There are several reasons why studying the automatic analysis of opinionated

text is important. First of all, there are many users who would potentially ben-

efit. Second, there is an ever-growing amount of data available to process. And

third, the tasks are different in a number of respects from the factual text analy-

sis that has been common in the field up until recently.

Users Intelligence analysts are interested in the opinions of foreign govern-

ments, and of other entities that might affect them (e.g., terrorists). Public rela-

tions firms want to make sure the public and other businesses have a positive

opinion of their clients. Pollsters are interested in the opinions of citizens about

issues and candidates. Companies want to know what their customers think of

their products. Finally, individuals are interested in the opinions of other people

about the products and issues they care about, for help in making decisions

Data Newspapers have op/ed pages, with opinionated content from anony-

mous editors and recurring columnists, in addition to often opinionated letters

from their readers. Blogs offer opinions on everything from politics to games to

hobbies. Many retailers such as Amazon.com offer their customers the oppor-

tunity to comment on the products they buy. This data offers rich, interesting

phenomena, such as metaphor, idioms, and other creative uses of language.

Non-factual Researchers have found that the techniques developed for ex-

tracting purely factual information serve as a starting point for analyzing opin-

ions, but that opinions present unique challenges. To take just one recent ex-

2

ample, Pang and Lee (2004) find that while in news summarization using the

first n sentences is a good baseline, on a movie-review domain using the last n

sentences performs much better.

This dissertation focuses on key problems in opinion analysis that will be

necessary for creating applications for any of the above users. While the domain

evaluated is news text, the techniques applied should largely carry over to other

domains. Finally, since the problems discussed here have not previously been

directly studied, we introduce novel problem encodings and feature sets.

1.1.1 Opinion-oriented information extraction

Consider the following sentences:

1. Philip Clapp, president of the National Environment Trust, sums up well the gen-

eral thrust of the reaction of environmental movements: “There is no reason at all

to believe that the polluters are suddenly going to become reasonable.”

2. John McCain will be the 2008 Republican nominee for President.

3. Harold and Kumar go to White Castle is one of the finest films in American cinema.

The prevailing tasks in the natural language processing literature involve

answering questions about opinions.

• Is this sentence positive, negative, or neutral? Sentence 3 expresses a positive

opinion about the movie. Sentence 1 is in general negative. Sentence 2 is

neutral.

3

• Is this sentence subjective or objective? Sentence 2 reports an objective fact,

while the other two sentences contain subjectivity.

These questions may also be asked of larger or smaller linguistic units – for

example, is a particular movie review positive or negative, or is a particular

word positive or negative? These questions are important and useful and much

work has gone into being able to answer them. However, the work we will

discuss in this thesis aims to answer a wider variety of questions.

We are interested in fine-grained extraction of opinions. As such, we want

to be able to answer questions such as the following.

• Who is it that holds a given opinion? Sentence 1 presents an opinion held by

the environmental movement. Sentence 3 presents an opinion held by the

author of the sentence.

• What is the opinion about? Sentence 1 presents an opinion about polluters,

and Sentence 3 presents an opinion about a movie.

• How strong is the opinion? Sentence 3 presents a quite strong opinion, while

the opinion in Sentence 1 is milder.

• How is the opinion filtered? Sentence 3 presents an opinion directly to us by

the author of the sentence. Sentence 1 presents the opinion of the environ-

mental movements, but only as it is reported to us via Philip Clapp, and

then by the writer of the sentence.

The eventual goal of our research is to be able to answer all of these questions

about any sentence. There are a number of potential uses for such a system.

One is simply a question answering system, like those described earlier, that

4

Figure 1.1: An Opinion Summary (Marsh, 2005)

would answer not questions about facts, but questions like these about opin-

ions. Another is a system that could produce a summary of the opinions in one

or more documents. Figure 1.1 presents an example summary of negative opin-

ions expressed following the Hurricane Katrina disaster. This summary allows

the reader to quickly see an overview of the parties involved and how they react

to one another.

5

1.1.2 Tasks addressed here

In this thesis, we will address two specific tasks. The first is to build a sys-

tem to automatically identify the regions of a text corresponding to expressions

of opinion. This is a necessary precursor to further analysis, since all of the

other questions in which we are interested relate to the expression of opinion

– for example, the opinion holder and topic of the opinion can be identified

as the agent and topic semantic roles once the opinion expression is identified.

Although much previous work has relied on the identification of opinion ex-

pressions for a variety of sentiment-based NLP tasks (Riloff and Wiebe, 2003;

Wiebe and Wilson, 2002), none has focused directly on this important support-

ing task. Moreover, none of the proposed methods for identification of opinion

expressions has been evaluated at the task that they were designed to perform.

The second task addressed by this thesis is to identify how the opinions are

filtered. The facts, events, and opinions appearing in text are often known only

second- or third-hand, and as any child who has played “telephone” knows,

this relaying of facts often garbles the original message. Properly understand-

ing the information filtering structures that govern the interpretation of these

facts, then, is critical to appropriately analyzing them. As with the first task, no

previous work has addressed a computational solution to it.

1.2 Methods

The previous sections have introduced the natural language processing prob-

lems addressed in this thesis. Here we briefly discuss the methods used to

6

solve them. The field of natural language processing has changed over the past

twenty years from using top-down, knowledge-driven methods (Norvig, 1987;

Hobbs et al., 1988, e.g.) to focus on empirical, data-driven methods (Church

and Mercer, 1993). We follow this trend, and use machine-learning methods

based on human-annotated corpora in our work. One question that arises with

these methods is that, since they are relatively recent, how effective are they? A

scientific method should allow for reproducibility of results, it should support

researchers in efficiently conducting their research, and it should lead to a high-

quality result. We are aware of little research that has considered the extent to

which typical empirical methods address these concerns of reproducibility, re-

searcher efficiency, and quality of output. This thesis addresses these issues in

two ways.

1.2.1 Computational workflow

Experiments in natural language processing and machine learning typically in-

volve running a complicated network of programs to process data and evaluate

algorithms. Ensuring that the workflow of these processes is done in a manner

that is reproducible and efficient is critical to maintaining the goals for good

methods set out above.

Researchers often write one or more UNIX shell scripts to “glue” together

these various pieces, but such scripts are suboptimal for several reasons. With-

out significant additional work, a script does not handle recovering from fail-

ures, it requires keeping track of complicated filenames, and it does not support

running processes in parallel. We present zymake as a solution to all these

7

problems. zymake scripts look like shell scripts, but have semantics similar to

makefiles. Using zymake improves repeatability and scalability of running ex-

periments, and provides a clean, simple interface for assembling components.

A zymake script also serves as documentation for the complete workflow. We

present a zymake script for a published set of NLP experiments, and demon-

strate that it is superior to alternative solutions, including shell scripts and

makefiles, while being far simpler to use than complex scientific grid computing

systems.

1.2.2 Feature generation

One crucial part of using machine-learning methods for natural language pro-

cessing is problem encoding, and specifically generating features. Since the

tasks addressed in this thesis are new problems, no feature set is yet standard.

Coming up with features for a new task is time-consuming, and also critical to

producing a high-quality learned system.

In the introduction to a recent special issue of the Journal of Machine Learn-

ing Research on feature selection, Guyon and Elisseef (2003) provide a heuristic

checklist on how to proceed in choosing features for a new problem. The very

first item on their list is the following:

1. Do you have domain knowledge? If yes, construct a better set of “ad hoc”

features. (Guyon and Elisseef, 2003, page 1159)

Despite the apparent importance of such domain-specific ad hoc features,

no further advice is given in this special issue on how to construct them. This

8

is typically treated as a problem for the domain expert (not the learning re-

searcher) to solve. Yet in natural language processing (NLP) work, the learning

researcher is also the domain expert. We are interested in discovering to what

extent we can exploit this dual role to allow the researcher to more quickly and

effectively solve natural language learning problems. We set out desiderata for

an ideal process of feature generation, and explore the effectiveness of a number

of alternatives.

1.3 Contributions and Structure of This Thesis

This thesis provides several contributions to the field of natural language pro-

cessing.

Identifying expressions of opinion We present the first published work that

produces and evaluates a system on the task of identifying opinion expressions.

Our approach achieves expression-level performance within 5% of the human

interannotator agreement. This will be a basic building block for future opinion-

extraction work, just as identifying and classifying proper names is a building

block for factual information extraction. This is discussed in Chapter 3.

Identifying opinion hierarchies We present the first work that identifies the

structure where one opinion is filtered through another. This work will be im-

portant in analyzing the reliability of expressed facts and opinions as they are

passed from one source to another. This is discussed in Chapter 4.

9

A lightweight system for natural language processing and machine learning

workflows We introduce a tool that we have found quite useful in organiz-

ing the execution of complex experiments in natural language processing and

machine learning. This is discussed in Chapter 5.

Feature engineering for natural language processing We present work im-

proving the effectiveness of a researcher’s efforts in feature engineering. This is

discussed in Chapter 6.

In addition, we present related work in Chapter 2, and conclude in Chap-

ter 7.

10

CHAPTER 2

RELATED WORK

There has been a tremendous amount of research in opinion-oriented informa-

tion extraction in recent years. It touches on a wide variety of research topics,

so no single keyword would suffice to find related work. Such work might in-

clude terms such as affect, commonsense psychology, genre, opinion, opinion mining,

perspective, point of view, polarity, private state, reputation, semantic orientation, sen-

timent, subjectivity, or valence1. For simplicity, we will refer to all of this work

under the umbrella term opinion.

Although boundaries are hard to draw, we divide research in opinion-

oriented information extraction into three subareas: classification, extraction,

and lexicon building. The work discussed and proposed in this thesis most nat-

urally falls into the extraction area, but all the following research is potentially

relevant. We note that Pang and Lee (2008) provide a comprehensive overview

of many areas of opinion-related research. In Chapter 4, we discuss work not

focusing on opinions in particular but relevant to the notion of reporting dis-

cussed there.

This thesis also discusses problems in the empirical methods used in natural

language processing research, namely feature engineering and coordination of

experiments. Related work for experiment coordination is discussed in Chap-

ter 5. In Chapter 6, we discuss feature engineering research as it relates to our

work.
1Note that the most common meaning of valence in linguistics has to do with the number and

type of arguments taken by a verb. We refer here to the meaning more common in psychology
having to do with the difference between positive and negative semantic orientation.

11

2.1 Classification

Research in this area seeks to classify linguistic units (documents or sentences)

into a small number of opinion-based categories. The document classification

is sometimes referred to as genre or style. We do not here attempt to survey all

research in this area but simply to indicate some of the areas of emphasis. While

some of the work proposes a larger set of categories, most focus on subjective

versus objective and positive versus negative. This work is complementary to

our research in two ways. First, work that can classify areas of text as subjec-

tive versus objective can be used to identify where our opinion identification

can best proceed. Second, work that classifies texts as positive versus negative

might be adapted to classify the polarity of our recognized opinions.

2.1.1 Document classification

Dave et al. (2003) approach the problem of classifying online reviews from

C|Net and Amazon as positive or negative. Beginning with just unigram bag of

words, they try a wide variety of techniques to develop more complex models.

They find approaches based on document metadata, WordNet, negation and the

MiniPar parser prove ineffective, but get some benefit from stemming. N -gram

features prove useful, and they get a slight benefit from feature weighting, but

not from smoothing. Finally, they try several machine learning algorithms, but

find in almost all variations that a method that returns the sign of an average of

simple term scores performs better. As a follow-on task, they attempt to apply

their classifier to general documents to find reviews, with mixed results.

12

Pang et al. (2002) learn to classify movie reviews as positive or negative.

A random baseline gives 50% accuracy, and brief human-elicited word-lists

achieve up to 64% accuracy. However, perusing the corpus including the test

data to find a (probably suboptimal) set of just 14 keywords provides 70% per-

formance. Using a bag of unigrams with three learning methods achieves about

82% performance. Adding a variety of more complex features, such as bigrams,

part of speech, etc. does not improve performance.

2.1.2 Sentence classification

Wiebe et al. (2004) learn lists of subjectivity clues, learn to disambiguate these

clues in context, and then apply the disambiguated clues to sentence- and

document-level subjectivity classification. The clues are based on hapax legom-

ena as well as n-grams learned from corpora of documents annotated for sub-

jectivity at the expression and document level. Clues are measured for effective-

ness by their “precision”, the fraction of documents (or sentences) in which they

appear that are opinionated. After using these techniques to find high-precision

clues, the authors describe methods for determining whether, in a given context,

a clue actually represents an opinion. Finally, the disambiguated clues are used

to identify subjective or objective sentences and documents, with quite good

results.

Wiebe and Riloff (2005) approach sentimental sentence classification using

an unsupervised method. They begin by creating rule-based classifiers, whose

input is fed to a system for learning extraction patterns. This system gener-

ates higher-recall classifiers, which are finally used to produce training data

13

for a Naive Bayes classifier, which is self-trained to higher performance. The

rule-based classifiers combine large sets of clues learned in previous work or

extracted from manually-created knowledge resources. These clues are used as

a baseline in Chapter 3.

Yu and Hatzivassiloglou (2003) motivate their opinion-oriented classifica-

tion by the problem of opinion-oriented question answering, but do not actu-

ally directly address question answering in this work. Instead, they address

three components of opinion detection and organization: document-level clas-

sification as to subjective versus objective, sentence-level classification subjec-

tive versus objective, and the polarity of words and sentences. Document level

classification achieves 97% results distinguishing the news from editorial sec-

tions of the Wall Street Journal using a Naive Bayes classifier. A much more

complicated model also using a similarity classifer and a bootstrapping method

achieves mixed results on sentence-level subjectivity classification. They mea-

sure the polarity of words by the log-likelihood of cooccurrence with between 1

and 600 seed terms, measuring sentences by the average word polarity.

2.2 Extraction

This subarea, rather than focusing on the classification of documents or sen-

tences, focuses on learning to extract smaller pieces of text, words or phrases,

and/or create more complex annotation schemes. This is the category into

which our work falls. Section 3.1 discusses one particularly close piece of work,

that of Bethard et al. (2004). Here we discuss two categories of work, divided

by the type of text analyzed: reviews and newswire.

14

2.2.1 Extraction from reviews

Review text classification was discussed in the previous section, but another

set of work seeks to extract more detailed information from reviews. Much of

this work centers around identifying features or attributes of a product that a

customer might have an opinion about, and then extracting particular opinions

about each feature. This is rather different from the news domain discussed

in the next section, in which an opinion might be about any topic (not just a

feature of the target of the review) and held by any entity (not just the writer of

the review).

In Kobayashi et al. (2004), the goal is to find attribute and value expressions

for a given domain. Examples from an automotive domain might be seat, win-

dow or door for the former category and comfortable for the latter. The semi-

automatic process proceeds by applying a set of 8 hand-written co-occurrence

patterns to web data, which are then filtered by a human. The authors compare

this approach to a purely manual collection of terms, and find that the semiau-

tomatic approach is much faster but doesn’t find all the human-selected terms,

because of a poor treatment of complex phrases.

Yi, Nasukawa and colleagues (Nasukawa and Yi, 2003; Yi et al., 2003) iden-

tify phrasal sentiments expressed towards a particular product or company.

Nasukawa and Yi (2003) create a hand-built lexicon of sentiment terms. Given

a target term, such as IBM or Range Rover, plus context, their system determines

the polarity of the sentiment expressed in that context, along with the partic-

ular sentiment terms used there. They evaluate their system by precision and

recall on some small labeled corpora and by precision alone on larger corpora.

Their system achieves high precision (around 95%) but lower recall (around

15

20%). They also note that more complex sentence structure confuses their sim-

ple parser.

Yi et al. (2003) extend this approach by allowing the target terms to be not

just products and companies but also “feature terms” such as lens or battery life

that are related to the target term. They introduce two statistical algorithms for

finding feature terms for a given domain, and find that one achieves extremely

high precision for digital camera and music reviews. They then evaluate their

sentiment analysis algorithm on the review corpus.

Jindal and Liu (2006) extend the task of feature extraction to identify com-

parative relations. A comparative relation is a four-tuple, such as (better, op-

tics, Canon, Sony, Nikon), which one might gloss as “Canon’s optics are better

than the optics of Sony or Nikon.” The authors first identify sentences contain-

ing comparatives, using a combination of part-of-speech-based keyword and a

machine learning method, and then extract the four parts of the tuple from the

comparative sentences using a technique called label sequential rules. They find

their method outperforms one based on conditional random fields, and achieves

72% F-measure across the latter three elements of the tuple.

Morinaga et al. (2002) introduce “Reputation Analysis”, a tool for marketing

researchers to examine how their product is seen by customers. Essentially, they

learn a set of probabilistically ranked if-then rules: based on a conjunction of

lexical items, assign a sentence the label positive or negative and which product

it describes. They then find cooccurring words, rank opinions by typicality for

a given category, and perform principal component analysis on categories and

words. The output is thus intended for a human user, rather than applied to a

specific quantifiably evaluable task.

16

2.2.2 Extraction from news

In this section we discuss extraction of opinions from news text. Since news

covers many different domains, and reports the opinions of many different par-

ties, there are a wide variety of potential tasks, such as identifying low-level

opinions and their holders, the strength and polarity of the opinions, as well as

higher-level tasks such as question-answering and summarization. Our work

fits neatly into this section, with the other work here filling out other parts of

the story.

Wiebe and Wilson (2002) note that while one can create a list of potentially

subjective elements (PSEs), in context a PSE might not actually be subjective.

They evaluate on several Wall Street Journal corpora and find that features

based on the density of nearby PSEs help in determining whether a given PSE

is actually subjective.

Wilson et al. (2005b) introduce the notion of “contextual polarity” – that is,

the polarity of an opinion expression in context may differ from its prior polarity

due to negations, modality, or other factors. They hand-annotate a corpus for

this task, and then collect a large prior polarity lexicon based on clues used in

prior work as well as resources such as a dictionary and a thesaurus. Using

only this prior polarity lexicon achieves performance on their task of just 48%,

but using a two-step machine learning method results in 65.7% performance.

The clue dictionary developed in this work is used as a baseline and as features

in Chapter 3.

Munson et al. (2005) use two opinion extraction problems (along with two

other problems) to evaluate the utility of “ensemble selection” to optimize a

17

machine learning method to a variety of different metrics (not just error). The

two opinion extraction problems used are DSESE identification (discussed in

Section 3.2) and opinion hierarchy identification (discussed in Chapter 4).

Choi et al. (2005) attempt to identify entities that are sources of opinions.

Defining the problem as an I/O/B tagging task, the authors use both automati-

cally derived extraction patterns and conditional random fields to solve it. The

best results come from combining the two approaches.

Choi, Breck, and Cardie (2006) combine the system described in the previous

paragraph with the system described in Chapter 3, along with a global inference

system using integer linear programming, to jointly identify (a) expressions of

opinion, (b) sources of opinion, and (c) the relation that a particular source ex-

pressed a particular opinion.

Wilson et al. (2004) take on the task of classifying the strength of opinions

at the clause level. The authors amass a large stable of opinion “clues” from

previous work, and also add some new syntax-based clues for this problem.

They discuss how the clues can be used as features, and show that re-organizing

the clues for the current task helps performance. They evaluate several machine

learning algorithms and provide an ablation study to examine several variations

in the feature set.

Stoyanov et al. (2005) approach the problem of answering opinion-oriented

questions. They introduce the OpQA corpus, containing both opinion and fact

questions along with text spans corresponding to their answers. Corpus anal-

ysis shows that answers to opinion questions differ substantially in form from

answers to fact questions, in that they are longer, more apt to be partial, and less

18

likely to be confined to a single constituent. The authors use manual and auto-

matic filters to remove factual sentences returned by the information retrieval

component when their system is faced with opinion questions, and find that

performance is improved.

Kim and Hovy (2006) seek to identify not just opinion holders but also the

topics of opinions. They manually construct an opinion lexicon, then identify

the frame from FrameNet associated with each word in the lexicon (using a

clustering method to assign frames to words not in FrameNet). Then, using a

semantic role labeling system, they select the frame elements corresponding to

topic and holder. They evaluate their system on a selection of about 2000 sen-

tences from FrameNet as well as 100 sentences from online news text, achieving

good results on both.

2.3 Lexicon building

In this section we describe a small sample of existing research on meth-

ods for classifying word types (as opposed to tokens) based on their opin-

ion content, independent of context. In addition to the work described here

that focuses on learning lexica, much of the other opinion research uses lex-

ica in service of another task, either lexica built by hand (e.g. Tong (2001;

Subasic and Huettner (2001; Das and Chen (2001)) or learned (e.g. (Wilson et

al., 2005b; Wiebe and Riloff, 2005)). We discuss work in two categories – po-

larity lexica, where the lexica include a categorization as to the polarity of each

item, and subjectivity lexica, where the words and phrases in the lexicon are

typically subjective. The former category may be useful in extending our work

19

to categorize the polarity of opinions; some lexica in the latter category are used

in this work as features for identifying opinion expressions in context.

2.3.1 Polarity lexica

Hatzivassiloglou and McKeown (1997) learn to predict the semantic orientation

of adjectives (positive or negative). They use a Wall Street Journal corpus, with

automatically assigned part-of-speech labels, and form a graph. The nodes of

the graph are adjectives, and edges are created for adjectives found linked by

conjunctions or by morphological similarity. The authors then cluster the nodes

and label as positive the cluster with higher average frequency.

Turney and Littman (2002; 2003) learn the polarity (here, “semantic orien-

tation”) of individual words using seeded unsupervised learning. The basic

method is to assign a score to each word a score SOA(w) =
∑

p∈Pos assoc(w, p)−∑
n∈Neg assoc(w, n), where Pos and Neg are sets of positive and negative words.

The function assoc is either pointwise mutual information (PMI) based on Al-

taVista NEAR queries, or latent semantic analysis (LSA). LSA appears to give

better results than PMI, but does not scale to larger corpora.

2.3.2 Subjectivity lexica

Riloff and Wiebe (2003) note that hand-built lists of subjective expressions are

always going to be low-recall, if high-precision. They therefore begin with a

list of such expressions and use a bootstrapping method (AutoSlog-TS) to learn

further patterns. Unlike typical usages of AutoSlog, since the goal is not to

20

extract phrases but simply to use the patterns to detect subjectivity, a ranking

measure and threshold was used to produce a fully automatic bootstrapping

method. The resulting method achieves significantly higher recall with only a

small drop in precision compared to the original lists.

Riloff et al. (2003) use two varieties of bootstrapping to learn lists of subjec-

tive nouns. With 20 seed words, the two algorithms produce about 4000 words,

which with a few hours work are filtered to a list of a thousand good indica-

tors. Applying these new indicators to the task of Wiebe et al. (1999), the au-

thors achieve a solid 2% precision increase over that previous work.

21

CHAPTER 3

IDENTIFYING EXPRESSIONS OF OPINION IN CONTEXT1

The goal of our research is to create a system for fine-grained information ex-

traction of opinions. As we have argued in Chapter 1, central to all such analysis

is first identifying the expressions that denote opinions.

Consider the following sentences, in which we denote two kinds of opinion

expression in boldface and italic (described below).

1: Minister Vedrine criticized the White House reaction.

2: 17 persons were killed by sharpshooters faithful to the president.

3: Tsvangirai said the election result was “illegitimate” and a clear case of “high-

way robbery”.

4: Criminals have been preying on Korean travellers in China.

5: The speaker argued that the committee has rejected the president’s bid to

open a dialogue with China.

Wiebe et al. (2005) distinguish two types of opinion expressions, and we

follow their definitions here. We also define three further types of expressions

related to opinions.

Direct subjective expressions (DSEs), shown in boldface, are spans of text that

explicitly express an attitude or opinion. “Criticized” and “faithful to” (exam-

ples 1 and 2), for example, directly denote negative and positive attitudes to-

wards the “White House reaction” and “the president”, respectively. Speech

1Portions of this chapter are adapted from Breck et al. (2007).

22

events like “said” in example 3 can be DSEs if the propositions that they intro-

duce express subjectivity.

Expressive subjective elements (ESEs), shown in italics, are spans of text that in-

dicate, merely by the specific choice of words, a degree of subjectivity on the part

of the speaker. The phrases “illegitimate” and “highway robbery”, for example,

indirectly relay Tsvangirai’s negative opinion of “the election result” (example

3), and the use of “preying on” (instead of, say, “robbing”) indicates the writer’s

sympathy for the Korean travellers in example 4.

Speech expressions (SE), such as “said” or “criticized” in the examples above,

can play a role in the information flow of a sentence whether they are subjective

or not. Chapter 4 discusses this information flow among opinions and speech

expressions.

Objective speech expressions (OSEs) are defined as as SE − DSE (set differ-

ence), i.e. speech expressions that only express factual content.

Direct subjective and speech expressions (DSESEs) are defined as DSE ∪ SE,

i.e. any of the expressions discussed so far except ESEs2.

Table 3.1: More examples of opinion expression types

types expression
DSE, DSESE Peter believes that Narnia is real.
ESE Casablanca is the best film of all time.
OSE, SE, DSESE Jack told Susan it was raining.
DSE, SE, DSESE “That’s a terrible idea”, Murray said angrily.

Table 3.1 presents further examples of DSEs, ESEs, OSEs, SEs, and DSESEs.

2What we are calling here DSESEs have been referred to in the past as ons (Wiebe et al.,
2003), pses (Breck and Cardie, 2004), (I apologize for having used that abbreviation as it might
be confused with PSE, meaning potentially subjective expression) and psfs (Munson et al., 2005).

23

While some previous work identifies opinion expressions in support of

sentence- or clause-level subjectivity classification (Riloff and Wiebe, 2003;

Wiebe and Wilson, 2002), none has directly tackled the problem of opinion ex-

pression identification, developed methods for the task, and evaluated perfor-

mance at the expression level. Instead, previous work in this area focuses its

evaluation on the sentence-level subjectivity classification task.

In this chapter, we will present four approaches to the problem of identify-

ing opinion expressions. Section 3.1 discusses one piece of related work that

identifies some expressions of opinion. In Section 3.2, we review our initial ap-

proach to identifying single-word DSESEs, and later extensions by others. In

Section 3.3, we extend this model with additional features. In Section 3.4, we

extend our approach to include multi-word DSESESs. Finally, in Section 3.5,

we describe an approach to identifying just the opinionated expression types

defined above, DSEs and ESEs. We achieve F-measures of 63.43% for ESEs and

70.65% for DSEs, within 5% of the human interannotator agreement for DSEs

and within 10% for ESEs.

3.1 Related work

Before presenting our own approach to identifying opinion expressions, we re-

view one piece of closely related work. Bethard et al. (2004) seek to extract

propositional opinions and their holders. They define an opinion as “a sen-

tence, or part of a sentence that would answer the question ‘How does X feel

about Y?’ ” A propositional opinion is an opinion “localized in the proposi-

tional argument” of certain verbs, such as “believe” or “realize”. Expressed in

24

Table 3.2: Breakdown of classes of DSESEs. “writer” denotes DSESEs with the writer
as source. “No parse” denotes DSESEs in sentences where the parse failed, and so the
part of speech could not be determined.

DSESE class count
writer 9808
verb 7623
noun 2293
no parse 278
adjective 197
adverb 50
other 370

Table 3.3: Breakdown of number of DSESEs per sentence

number of DSESEs number of sentences
1 3612
2 3256
3 1810
4 778
5 239

>5 113

our nomenclature, their task corresponds to identifying a DSESE, its associated

direct source, and the content of the private state. However, they consider as

DSESEs only verbs, and further restrict attention to verbs with a propositional

argument, which is a subset of the direct subjective and speech expressions that

we consider here. Table 3.2, for example, shows the diversity of word classes

that correspond to DSESEs in the MPQA corpus introduced in Section 3.2. Per-

haps more importantly for the purposes of this work, their work does not ad-

dress information filtering issues, i.e. problems that arise when an opinion has

been filtered through multiple sources. Namely, Bethard et al. (2004) do not

consider sentences that contain multiple DSESEs, and do not, therefore, need

to identify any indirect sources of opinions. As shown in Table 3.3, however, we

find that sentences with multiple non-writer DSESEs (i.e. sentences that contain

3 or more total DSESEs) comprise a significant portion (29.98%) of the MPQA

25

corpus. An advantage over our work, however, is that Bethard et al. (2004) do

not require separate solutions to DSESE identification and the identification of

their direct sources.

3.2 Identifying single-word direct subjective and speech ex-

pressions

We chose to begin by identifying a broad category of opinion-related expres-

sions, namely direct subjective and speech expressions (DSESEs). In this section,

we present a problem encoding, features, data, evaluations, and machine learn-

ing methods used by our initial experiments (Wiebe et al., 2003; Wiebe et al.,

2002) as well as by some follow-on work by others (Tenenbaum, 2004; Munson,

2004).

Problem encoding Most of the DSESEs in the data (like the first one in Fig-

ure 3.1) consist of a single word – 56.8% in the development data. Therefore, as

a first step we chose to focus on the problem of single-word DSESE identification.

That is, every token in the corpus is an instance, and the class of an instance

is 1 if that token alone is a DSESE, and 0 otherwise. Figure 3.2 shows example

sentence 5 with the class labels that would be given to each token. Importantly,

note that all tokens in a multi-word DSESE are assigned a class label of 0. All

previous work had used this problem encoding3.

3OpinionFinder (Wilson et al., 2005a) does have one rule which finds multiple word phrases.

26

The speaker argued that the committee has rejected the president’s bid to
open a dialogue with China.

Figure 3.1: Example sentence 5, with direct subjective expressions and speech
expressions (DSESEs) marked in bold.

The speaker argued that the committee has rejected the president’s bid to
open a dialogue with China.
The/0 speaker/0 argued/1 that/0 the/0 committee/0 has/0 rejected/0 the/0
president’s/0 bid/0 to/0 open/0 a/0 dialogue/0 with/0 China/0 ./0

Figure 3.2: Identifying single-word DSESEs: binary classification

Features We include features to allow the model to learn at various levels of

generality. We include lexical features to capture specific phrases, local syntactic

features to learn syntactic context, and dictionary-based features to capture both

more general patterns and expressions already known to be opinion-related.

For pedagogical reasons, we present the features as categorically valued, but

in our model we encode all features in binary. That is, for every value v of

every feature f , we create a binary feature (f, v) whose value is 1 for a token

t if f(t) = v and 0 otherwise. We do not create binary features for the special

value null. Table 3.4 shows feature values for the first three tokens of example

sentence 5.

Lexical features We include features wi, defined to be the word at position i

relative to the current token. We include w−2, w−1, . . . w2.

Syntactic features We include a feature pos, defined to be the part of speech

of the current token according to the GATE part-of-speech tagger (Cunningham

et al., 2002). We also include three features prev, cur, and next, defined to be the

previous, current, or following constituent type, respectively, according to the

27

Table 3.4: Original features for first three tokens (t1, t2, t3) of example sentence
5. w−2 through w2 are a word-window about the target word, pos is the part of
speech of the target word, cur, next, and prev are based on a partial parse, and
lev and fn are based on the Levin and FrameNet word lists.

feature f f(t1) f(t2) f(t3)
class 0 0 1
w−2 - - The
w−1 - The speaker
w0 The speaker argued
w1 speaker argued that
w2 argued that the
pos DT NN VBD
prev - nx nx
cur nx vx vx
next vx vx vx
lev - - verb of communication
fn - - comm

CASS partial parser (Abney, 1996)4. Examples of these features are presented in

Table 3.4.

Dictionary-based features In this model, we include two dictionary-based

features. The first feature, referred to as lev in Table 3.4, is based on Levin’s

(1993) categorization of English verbs. A verb may appear in one or more sec-

tions of Levin’s book. Paul Davis, a linguist then at the Ohio State University,

identified three sections that may be likely to represent speech event verbs: sec-

tion 37 (“verbs of communication”), section 33 (“judgment verbs”), and subsec-

tions 1-5 of section 29 (“verbs with predicative complements”). For each word

w, the lev returns the name of the major section in which w appears, or null if w

appears in none of the sections5. The second dictionary-based featured, labeled

4Cass is available for download at http://www.vinartus.net/spa/.
5If a verb appears in more than one section, 37 takes precedence over 33, which takes prece-

dence over 29. This is based on Davis’ judgment that verbs in section 37 are most likely to be
speech events, followed by 33 and then 29.

28

http://www.vinartus.net/spa/

Table 3.5: Tenenbaum’s features for first three tokens (t1, t2, t3) of example sen-
tence 5

feature f f(t1) f(t2) f(t3)
target word The speaker argued
noun synset - {speaker, talker}07596348 -
verb synset - - {argue, reason}00524590
adjective synset - - -
adverb synset - - -

fn in Table 3.4, is based on the categorization of nouns and verbs in FrameNet6.

Davis selected certain frames in FrameNet7 as being indicative of speech events,

and so the value of the fn feature for a word w is f if FrameNet lists w as a lexical

unit for the frame f and f is one of the selected frames, and null otherwise.

Wordnet features Tenenbaum (2004) extended the feature set with four addi-

tional features based on the WordNet database (see Table 3.5). One feature is

created for each of the four open-class parts of speech (noun, verb, adjective,

adverb). Given a part of speech, she looks up the target word in WordNet (or

its lemma if the target word is not present), and returns the synset ID of the first

(most frequent) sense of the word or lemma.

Data The Multi-Perspective Question Answering (MPQA) corpus (Wiebe et

al., 2005)8 consists of 535 newswire documents annotated with a variety of anno-

tations of interest for subjectivity research. In particular, all DSESEs, DSEs and

ESEs in the documents have been manually identified. 135 documents are re-

served for feature engineering and model development, with the remaining 400

6http://www.icsi.berkeley.edu/∼framenet/
7 Davis selected the body-movement frame from the body domain, the candidness, cogitation,

coming-to-believe, invention, and judgment frames from the cognition domain, and the commit-
ment, communication noise, communication response, conversation, encoding, gesture, hear, manner,
questioning, request, statement, and volubility frames from the communication domain.

8Available at http://www.cs.pitt.edu/mpqa/. We use version 1.1 of the corpus.

29

http://www.icsi.berkeley.edu/~framenet/
http://www.cs.pitt.edu/mpqa/

Table 3.6: Statistics for test data
number of sentences 8297
number of DSESEs 8992
number of DSEs 6712
number of ESEs 8640
average length of DSESEs 1.78 words
average length of DSEs 1.86 words
average length of ESEs 3.33 words

kept blind for testing. Munson (2004) used 10-fold cross-validation of these 400

documents for evaluation, and Tenenbaum (2004) followed the same document

splits and evaluation procedure. We use the same splits and cross-validation

for the remainder of the experiments in this chapter. Table 3.6 presents some

statistics on these 400 documents.

Evaluation Since this problem involves binary classification with a large class

skew, accuracy is not an appropriate evaluation metric. Therefore, recall

(Rsingle), precision (P single), and F-measure (F single) have been used for evalu-

ation. Munson et al. (2005) also employed breakeven point and a number of

other standard machine learning metrics, which we will not present. We define

Rsingle =
|S ∩W |
|W |

P single =
|S ∩W |
|S|

F ∗ =
1

1
P∗ + 1

R∗
2

=
2P ∗R∗

P ∗ + R∗

where S is the set of tokens identified by the system as being single word DSESEs

and W is the set of tokens that are single word DSESEs according to the manual

annotations. F ∗ is defined generically for any variant of precision and recall,

since later in this chapter we will define additional metrics.

30

Methods and Results Our initial experiments on this task were conducted

as part of an 8-week summer workshop called the Multi-Perspective Question

Answering workshop, led by Janyce Wiebe (Wiebe et al., 2002). The full corpus

described above was not available during the workshop, and in fact annotated

data only became available near the end. As a result, we were only able to

conduct a small set of initial experiments on 92 documents. We used the k-

nearest-neighbor and naive Bayes learning methods, both using default settings

of the Weka9 machine learning package. We compare to a baseline that predicts

any word found on the Levin/FrameNet lists to be a DSESE. The results are

presented in Table 3.7, copied from Wiebe et al. (2002). We see that the learning

methods outperform the baseline according to recall and F-measure and that

results are encouragingly high.

Further experiments were performed by others using the same feature set

but different learning algorithms and with the larger amount of data described

earlier. Table 3.8 presents the results of Munson (2004), who used a number

of methods: nearest-neighbor or memory-based learning10, support vector ma-

chines (SVM)11, decision trees12, and rule learning13, and found that again, the

learning methods outperformed the baseline according to recall and F-measure,

and often according to precision as well. Table 3.8 also presents the results of

Tenenbaum (2004), who performed experiments using the additional WordNet-

based feature described above, and found that using certain learning methods,

a large performance improvement could be found.

9Weka (Witten and Frank, 1999), available at http://www.cs.waikato.ac.nz/ml/
weka.

10TiMBL, (Daelemans et al., 2000), available at http://ilk.uvt.nl/timbl.
11SV M light, available at svmlight.joachims.org.
12C4.5 (Quinlan, 1986)
13RIPPER (Cohen, 1995)

31

http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://ilk.uvt.nl/timbl
svmlight.joachims.org

Table 3.7: Results for identifying single-word DSESEs using the approach of
Wiebe et al. (2003)

method P single Rsingle F single

Baseline 69.9 47.7 56.7
Naive Bayes 46.7 76.6 58.0
k-NN 69.6 63.4 66.4

Table 3.8: Results for identifying DSESEs using the approaches described in
Section 3.2.

method P single Rsingle F single

Baseline 74.5 41.1 53.2
Results from Munson (2004)

TiMBL (k=1) 74.5 65.3 69.6
SVMlight 88.7 55.2 68.0
RIPPER 80.1 53.4 64.0
C4.5 77.9 42.8 55.1

Results from Tenenbaum (2004)
TiMBL 73.9 65.9 69.7
SVMlight 85.6 64.3 73.4
RIPPER 83.9 42.7 56.6
C4.5 88.0 41.7 56.5

3.3 New features for identifying single-word direct subjective

and speech expressions

The results in the previous section show that the DSESE identification problem

is amenable to automatic analysis. However, the features there were, as men-

tioned, developed quickly during a short summer workshop. In this section,

we explore the result of adding a number of new features. We intend to include

more features both to provide additional context to the learner and to allow it

to better generalize from the training data.

The new features we add are listed for the third word of example sentence

5 in Table 3.9. First of all, while Tenenbaum had previously included features

32

based on the synsets of the target word in WordNet, we hoped to allow ad-

ditional generalization by including more of the hierarchy, so we included as

features every synset that is an ancestor of a synset containing any sense of the

target word. These features are referred to subsequently as wordnet. We also

expanded the word window to four words on either side of the target word,

included the lemmas14 of all the words in the window, and word bigrams be-

ginning with all the words in the window. Finally, we included the original

categories from Levin’s work, as opposed to Davis’ selected categories, as well

as all prefixes of the original category. These additional features are referred to

subsequently as other.

Methods In previous work, while the performance of the different methods

varied, linear support vector machines were either the best or second best, as

measured by F single. Due to their performance, quick training speed, and easy

handling of thousands of features, we chose to perform the experiments re-

ported in this section using linear support vector machines with default pa-

rameters.

Results and Discussion Table 3.10 presents the results of using the new

other features and the new wordnet feature. Row 1 is equivalent to the

SVMlight results of Munson (2004) presented in Table 3.2, and row 3 is equiv-

alent to the SVMlight results of Tenenbaum (2004)15. Row 5 presents a system

called OpinionFinder (Wilson et al., 2005a), which has a fixed set of words pre-

14We use Abney’s program stemmer, part of the SCOL package, to identify inflectional lem-
mas.

15The small differences between row 1 and the Munson results are due to small differences in
data encoding.

33

Table 3.9: Additional features for third token (t3) of example sentence 5 (argued).
The list of WordNet hypernyms is abbreviated. For the SVM classifier, all fea-
tures are encoded as binary indicator features: 1 if a given (feature name, feature
value) appears for the instance in question, and 0 otherwise.

feature f f(t3)
hypernym for lemma 0 {00524590}

argue, reason
hypernym for lemma 0 {00525080}

present, lay out
hypernym for lemma 0 {00682542}

state, say, tell
hypernym for lemma 0 {00636716}

express, utter,
give tongue to

hypernym for lemma 0 {00525378}
argue, contend,
debate, fence

hypernym for lemma 0
...

word -2 The
word -1 speaker
word 0 argued
word 1 that
word 2 the
word 3 committee
word 4 has
lemma -2 The
lemma -1 speaker
lemma 0 argue
lemma 1 that
lemma 2 the
lemma 3 committee
lemma 4 have
bigram -2 The speaker
bigram -1 speaker argued
bigram 0 argue that
bigram 1 that the
bigram 2 the committee
bigram 3 committee has
bigram 4 has rejected
Levin category for lemma 0 29.2
Levin category for lemma 0 29

34

Table 3.10: Results for DSESE identification. All rows include the lexical and
syntactic features and the Levin/FrameNet dictionary features. The first row
is the base system, identical to that used in previous work. wordnet indicates
adding our WordNet features. other denotes adding our additional new fea-
tures. Superscripts denote one standard deviation.

row# other wordnet Rsingle P single F single

1 . . 54.844.2 88.961.6 67.793.5

2 X . 60.064.4 89.341.8 71.773.6

3 . X 64.524.2 86.352.8 73.833.6

4 X X 64.574.5 86.822.6 74.023.8

5 OpinionFinder 47.393.8 68.782.8 56.073.4

judged to be likely opinions, and predicts any word on its list to be an opinion16.

While we had hoped that our different encoding of information from Word-

Net would be helpful, in fact the differences between our wordnet feature (row

3) and Tenenbaum’s (see Table 3.2) are quite small. Also while both new features

are useful, we see that the wordnet feature is more helpful (row 3 - row 1) than

the other feature (row 2 - row 1). Moreover, using both features together (row

4) does not provide a significant improvement over just using the wordnet

feature (row 3)17. As a result, in subsequent experiments, we omit the other

feature, except for expanding the word-window to 4 words on either side of the

target.

3.4 Identifying all direct subjective and speech expressions

The previous approaches have sought to identify single-word DSESEs, because

most DSESEs consist of a single word. However, there are two problems with

16OpinionFinder has since been updated and now uses a variant of the classifier described in
Section 3.5.

17Using a paired t-test of the cross-validation folds at a p < 0.05 significance level; all other
differences between pairs of rows are significant, except for the precisions of rows one and two.

35

The/0 speaker/0 argued/1 that/0 the/0 committee/0 has/0 rejected/0 the/0
president’s/0 bid/0 to/0 open/0 a/0 dialogue/0 with/0 China/0 ./0

Figure 3.3: The filter modification: remove the italicized tokens from the
training data.

this – first, this is not really what we want, since not all DSESEs are a sin-

gle word, and second, it may actually be harder for a learner to identify just

single-word DSESEs, because the training data is confusing. In this section, we

introduce two modifications to the training procedure designed to reduce the

confusion to the learner. We measure this by evaluating using a new metric

that judges the learner on its ability to identify all DSESEs, not just single-word

DSESEs.

Training modifications: filter Words like rejected sometimes occur as a sin-

gle word DSESE, but sometimes (as in sentence 5) occur in a multiple word

DSESE, which are considered negative examples for our single-word DSESE

identification task. We feared this might confuse the learner, so we implemented

a simple filter which removes from the training data all instances (tokens) that

occur inside multiple-word DSESEs. In Figure 3.3, the italicized tokens would

be removed from the training (but not test data). We refer to this modification

subsequently as filter.

Training modifications: core We next observed that many DSESEs, while

consisting of multiple words, in fact appear to have a single “core” word plus

a few auxiliaries. In example sentence 5, has rejected consists of the core rejected

plus the auxiliary has. Another example is remark in the common DSESE the

remark. To utilize this observation, we modify the training data as follows. Pre-

36

The/0 speaker/0 argued/1 that/0 the/0 committee/0 has/0 rejected/1 the/0
president’s/0 bid/0 to/0 open/0 a/0 dialogue/0 with/0 China/0 ./0

Figure 3.4: The core modification: change the class variable (in training data) of
the italicized words to positive.

viously, the class variable for an instance (token) was 1 if the token, by itself, was

a DSESE, and 0 otherwise. Now, the class variable is 1 if the token is the core of

a DSESE, and 0 otherwise. Figure 3.4 shows the new class values for example

sentence 5. To find the core word of a DSESE, we employ a simple heuristic.

Any single word DSESE is its own core. If a multiple word DSESE consists of an

optional series of determiners, auxiliaries and negations, followed by one word,

followed by an optional preposition or complementizer, then that single word

in the middle is the core. Other DSESEs simply have no core – as before, all

their tokens are marked with class label 0. However, in the development data,

this heuristic finds a core for 77.6% of the DSESEs. We refer to this training data

modification subsequently as core.

Evaluating all DSESEs The existing single word evaluation metrics are rea-

sonable for the single word DSESE problem. However, they produce unintu-

itive results when considered as evaluating the system on all, possibly multi-

word DSESEs. Consider the hypothetical system response in Figure 3.5. On this

sentence, P single = 1
2
, that is,

(
|{argued}|

|{argued,rejected}|

)
, even though every token

proposed by the system is actually contained in a DSESE. Also Rsingle = 1, that

is,
(

|{argued}|
|{argued}|

)
, even though one DSESE in the sentence is completely missed

by the system.

As a result, we introduce additional metrics that evaluate against not just

single-word DSESEs, but all DSESEs. However, since our method only iden-

37

human annotation
The/0 speaker/0 argued/1 that/0 the/0 committee/0 has/0 rejected/0 the/0
president’s/0 bid/0 to/0 open/0 a/0 dialogue/0 with/0 China/0 ./0
system response
The/0 speaker/0 argued/1 that/0 the/0 committee/0 has/0 rejected/1 the/0
president’s/0 bid/0 to/0 open/0 a/0 dialogue/0 with/0 China/0 ./0

Figure 3.5: A possible system response. The true DSESEs are marked in italics,
and the class assigned either by the original problem encoding or by the system
is marked after the token by 0 or 1.

tifies single words, we soften the standard definitions of precision and recall.

We define soft precision as SP a = |{s|s ∈ S ∧ ∃ c ∈ C s.t. a(c,s)}|
|S| and soft recall as

SRa = |{c|c ∈ C ∧ ∃ s ∈ S s.t. a(c,s)}|
|C| , where a(c, p) is a predicate that is true just when

expression c “aligns” to expression p in a sense defined by a. Here S is again the

set of words predicted to be DSESEs, but C is the set of all DSESEs. We report

results according to the overlap(c, s) predicate, true when s is one of the words

in the expression c.

3.4.1 Results and Discussion

Table 3.11 presents the results of our modifications to the approach. Our re-

vised model is intended to identify all DSESEs, not just single-word DSESEs, so

we present results using the new all-DSESE metrics; however, we also present

results using the single-word DSESE metrics, for comparison. Also for compari-

son, we again include the OpinionFinder baseline, and the systems described in

the previous section, equivalent to previous work. The rest of the table presents

the performance of the base system, supplemented by various combinations of

our WordNet features (wordnet) and the two training modifications (core and

filter). Note that model complexity roughly increases as one reads down the

38

rows of the table. Nearly all differences between rows are significant, using a

paired t-test on the cross-validation folds18.

First of all, note that according to the SF overlap metric, our three main modifi-

cations (wordnet, core, and filter), raise the performance from 51% to over

78% (row 1 to row 7). The recall (measured by SRoverlap) doubles from 35% to

70%. The individual contributions of each of these three modifications are also

quite large (compare row 1 to rows 2, 3, or 4).

We note that the differences in precision between the various metrics are

quite large, especially with the more complex models. The final model (row

7) in particular is judged to have 57% precision by P single but 89% precision

by SP overlap, confirming our suspicion that P single is drastically underestimating

the true precision of the model. We are also quite excited to note that as the

models increase in complexity (moving down the table), recall steadily increases

(according to all of the recall versions), while precision (as measured by P single)

decreases only slightly. Note that since the support vector machine produces

a prediction that can be interpreted as a confidence, we can straightforwardly

tune our model to perform at a desired precision level, trading off recall.

The reader may wonder at two features of Table 3.11. First, the performance

on the single-word DSESE metrics steadily decreases as one reads down the ta-

ble, indicating that our more complex models are hurting, rather than helping,

performance. In fact, the recall (Rsingle) does steadily increase, and the decrease

is explained by a loss in precision (P single). This is, as mentioned, due to the met-

ric penalizing the more complex models for in fact identifying DSESEs which

18At a p < 0.05 significance level, all differences between rows are significant except for the
following: Rsinglebetween rows 2 and 4; P singlebetween rows 3 and 8; F singlebetween rows 1
and 4, 1 and 6, 1 and 7, 3 and 5, 4 and 6, 6 and 7; SP overlapbetween rows 3 and 4, 3 and 8, 4 and
8, 5 and 6, 5 and 8, 6 and 8; and SF overlapbetween rows 1 and 8.

39

Table 3.11: Results for DSESE identification. All rows include the lexical and
syntactic features and the Levin/FrameNet dictionary features. The first row
is the base system, identical to that used in previous work. wordnet indi-
cates adding our WordNet features. filter denotes filtering out multi-word
DSESEs from the training data. core denotes classifying as positive training
instances the core words of some multi-word DSESEs. See Section 3.4 for more
detail and for descriptions of the various evaluation metrics. Superscripts de-
note one standard deviation.

single-word DSESEs all DSESEs

r
o
w
#

w
o
r
d
n
e
t

c
o
r
e

f
i
l
t
e
r

Rsingle P single F single SRoverlap SP overlap SF overlap

1 . . . 54.844.2 88.961.6 67.793.5 34.793.6 96.450.7 51.033.8

2 X . . 64.524.2 86.352.8 73.833.6 41.513.4 95.091.1 57.723.4

3 . X . 58.574.9 69.482.3 63.493.5 46.194.7 93.941.4 61.804.2

4 . . X 63.634.1 72.312.9 67.663.4 47.783.5 93.681.6 63.213.1

5 . X X 66.364.1 62.072.6 64.133.2 56.343.7 91.251.4 69.613.0

6 X X . 70.404.3 64.432.6 67.263.2 58.453.7 92.101.3 71.462.9

7 X X X 78.842.7 57.002.6 66.152.5 70.532.4 88.901.1 78.641.7

8 OpinionFinder 47.393.8 68.782.8 56.073.4 36.063.4 92.731.7 51.853.6

happen not to be single-words. Second, while the “soft” precision SP overlap

metric always has a higher value than P single, the soft recall SRoverlap is lower

than Rsingle, which is counter to the usual meaning of “soft”. Again, this has

to do with the fact that the metrics on the right-hand-side penalize the learned

models for not identifying all DSESEs, while the metrics on the left-hand-side

only require that the models identify single-word DSESEs.

In summary, we have reanalyzed the problem of identifying DSESEs. By

considering a more precise definition of the problem rather than the original,

single-word problem, we have developed simple modifications to the learning-

based approach that increase the performance from an F-measure of 51% to over

78%.

40

IOB . . . faithful/B to/I the/O president/O ./O
IO . . . faithful/I to/I the/O president/O ./O

Figure 3.6: How to encode the class variable: The IOB method and the IO
method. IO is used in this work.

3.5 Identifying direct subjective expressions and expressive-

subjective elements

The approach described in the previous section worked well for DSESEs (di-

rect subjective and speech expressions), and we now wish to tackle the expres-

sions that are purely subjective, DSEs (direct subjective expressions) and ESEs

(expressive-subjective elements). However, as Table 3.6 suggests, ESEs are sig-

nificantly longer than DSESEs, so an approach like the previous one based on

predicting single words will not work well. Therefore, we take a different ap-

proach for both of these expression types, instead using a model that predicts

multi-word prhases.

3.5.1 The class variable

A common encoding for extent-identification tasks such as named entity recog-

nition is the so-called IOB encoding. Using IOB, each word is tagged as either

Beginning an entity, being In an entity (i.e. an opinion expression), or being

Outside of an entity (see Figure 3.6). While we initially used this encoding, pre-

liminary investigation on separate development data revealed that a simpler

binary encoding produces better results for opinion identification. We suspect

this is because it is rarely the case in our data that two opinion entities are ad-

41

jacent, and so the simpler model is easier to fit. Thus, we tag each token as

being either In an entity or Outside of an entity. When predicting, a sequence of

consecutive tokens tagged as In constitutes a single predicted entity.

3.5.2 New feature

Since the other features added in the previous section turned out not to be

very useful, we do not use them here, except that we do include the wider word-

window. In addition to the dictionary-based features from WordNet, FrameNet,

and Levin described earlier, we include an additional feature that specifically

targets subjective expressions. Wilson et al. (2005b) identify a set of clues as

being either strong or weak cues to the subjectivity of a clause or sentence. We

identify any sequence of tokens included on this list, and then define a feature

Wilson that returns the value ‘-’ if the current token is not in any recognized clue,

or strong or weak if the current token is in a recognized clue of that strength.

3.5.3 The learning method

The previous learning methods have all been per-token classifiers, while now

we need to predict multi-word phrases. We chose to use a linear-chain condi-

tional random field (CRF) model for all of our experiments, using the MAL-

LET toolkit (McCallum, 2002). This discriminatively-trained sequence model

has been found to perform extremely well on tagging tasks such as ours (Laf-

ferty et al., 2001). Based on pilot experiments on development data, we chose a

Gaussian prior of 0.25.

42

3.5.4 Evaluation

In addition to the overlap predicate used in the prior section, we also report re-

sults according to the exact(c, p) predicate, true just when c and p are the same

spans - this yields the usual notions of precision and recall. Note that since

we are now predicting not single words but extents, there is a potential issue

with soft precision and recall, that the measures may drastically overestimate

the system’s performance. A system predicting a single entity overlapping with

every token of a document would achieve 100% soft precision and recall with

the overlap predicate. We can ensure the performance overestimate does not

happen by measuring the average number of expressions to which each correct

or predicted expression is aligned (excluding expressions not aligned at all). In

our data, this does not exceed 1.13, so we can conclude these evaluation mea-

sures are behaving reasonably.

3.5.5 Baselines

For baselines, we compare to two dictionaries of subjectivity clues identified by

previous work (Wilson et al., 2005b; Wiebe and Riloff, 2005). These clues were

collected to help recognize subjectivity at the sentence or clause level, not at the

expression level, but the clues often correspond to subjective expressions. Each

clue is one to six consecutive tokens, possibly allowing for a gap, and matching

either stemmed or unstemmed tokens, possibly of a fixed part of speech. In the

following experiments, we report results of the Wiebe baseline, which predicts

any sequence of tokens matching a clue from Wiebe and Riloff (2005) to be a

subjective expression, and the Wilson baseline, using similar predictions based

43

on clues from Wilson et al. (2005b). When predicting DSEs using either list, we

remove all clues from the list that never match a DSE in the test data, to make

the baseline’s precision as high as possible (although since many potentially

subjective expressions are often not subjective, the precision is still quite low).

We similarly trim the lists when predicting the other targets below. Apart from

this trimming, the lists were not derived from the MPQA corpus. Note that

the higher-performing of these two baselines, from Wilson et al. (2005b), was

incorporated into the feature set used in our CRF models19.

3.5.6 Results

Tables 3.12 and 3.13 present experimental results on identifying direct subjective

expressions and expressive subjective elements in several settings, as well as

presenting the two baselines for comparison purposes. We experiment with two

variants of conditional random fields, one with potentials (features) for Markov

order 1+0 (similar to the features in a hidden Markov model, labeled crf-1 in

the tables), and one with features only for order 0 (equivalent to a maximum

entropy model, labeled crf-0 in the tables). Orthogonally, we compare models

trained separately on each task (classifying each token as in a DSE versus not or

in an ESE versus not, labeled just DSE or ESE in the tables) to models trained to

do both tasks at once (classifying each token into one of three classes: in a DSE,

in an ESE, or neither20, labeled DSE&ESE in the tables).
19The CRF features based on the Wilson dictionary were based on the entire dictionary, in-

cluding clues not relevant for the particular problem being tested. Also, the choice to use only
the Wilson dictionary and not the Wiebe for features was made during development of the
model on a separate development dataset. So the model tested was in no way developed using
the test data.

20A small number of tokens are manually annotated as being part of both a DSE and an ESE.
For training, we label these tokens as DSEs, while for testing, we (impossibly) require the model

44

Because the baselines were not designed to distinguish between DSEs and

ESEs, we run another set of experiments where the two categories are lumped

together. The rows labeled DSE&ESE use the models trained previously to dis-

tinguish three categories, but are here evaluated only on the binary decision of

opinion expression or not. The rows labeled DSE+ESE are trained to classify a

token as I if it is in either a DSE or ESE, or O otherwise. The results of these

experiments are reported in Table 3.14.

Finally, to determine the effect of the various dictionaries, we examine all

combinations of the various dictionaries - WordNet, Framenet, Levin, and the

clues from Wilson et al. (2005b) (to save space, we combine the two smallest

dictionaries, Framenet and Levin, into one). These results, on the DSE task, are

reported in Table 3.15.

3.5.7 Discussion

Tables 3.12, 3.13, and 3.14 present experiments studying the effect of varying

four variables, so we will discuss these each in turn - Markov order, three-

versus-two class training, fixed rules versus learning, and the varying target

class. All statistical significance results are computed using a paired t-test

between the metric values on ten cross-validation folds, with a threshold of

p < 0.05.

The order-0 models outperform the order-1 models in Tables 3.12, 3.13, and

3.14 according to overlap F-measure and recall, but by exact F-measure and ei-

ther precision metric, the order-1 models are superior21. The creators of the

to annotate both entities.
21All differences are statistically significant, except the difference in exact F-measure between

45

dataset state “we did not attempt to define rules for boundary agreement in

the annotation instructions, nor was boundary agreement stressed during train-

ing.” (Wiebe et al., 2005, page 35). For example, whether a DSE ought to be

annotated as “firmly said” or just “said” is left up to the annotator. Therefore,

we hypothesize that the model with greater capacity (the order 0+1) may overfit

to the somewhat inconsistent training data.

Looking at Tables 3.12 and 3.13, the differences between the two-class train-

ing (target class versus non-opinion) and three-class training (one model that

distinguishes DSE versus ESE versus non-opinion) are small (0-2% absolute),

and in many cases, not statistically significant 22. As with the Markov order, we

find a difference in recall versus precision – the two-way training yields slightly

greater precision, and the three-way training yields slightly better recall. I do

not have an explanation for this result.

All of the learned models in Tables 3.12 and 3.13, significantly outperform

the rule-based baselines according to all metrics, except for recall on the ESE

task, confirming our hypothesis that learning methods were necessary for this

task. The slightly higher recall of the baselines on the ESE task is likely due

to the very large number of different phrases that are used as ESEs; note that

the baseline precision is quite low on this task, even when the baselines were

allowed to “cheat” at precision as described in Section 3.5.5. Table 3.14 presents

results which are even more fair to the baselines, not requiring them to make the

DSE-versus-ESE distinction which they cannot do, which does raise their preci-

sion, but they are still significantly outperformed by the learning methods23.

crf-1-ESE and crf-0-ESE.
22 p 6< 0.05 for the following metrics and settings: exact recall and F for crf-1-DSE, exact

F for crf-0-DSE, overlap precision, exact recall, and exact F for crf-1-ESE, all exact metrics for
crf-0-ESE, overlap precision for crf-1-both, and both Fs and exact recall for crf-0-both.

23According to the same test, except for the 1% difference between the Wilson baseline and

46

Finally, while the results are not strictly comparable, we note that the results

on the DSE task, Table 3.12 are superior to those of the ESE task, Table 3.13 The

interannotator agreement results for these tasks are relatively low; 0.75 for DSEs

and 0.72 for ESEs, according to a metric very close to overlap F-measure24. Our

results are thus quite close to the human performance level for both of these

tasks.

The ablation results in Table 3.15 indicate that the WordNet features are by

far the most helpful. The other two dictionary sets are individually useful 25

(with the Wilson features being more useful than the Levin/Framenet ones), but

beyond the WordNet features the others make no significant difference26. This is

interesting, especially since the WordNet dictionary is entirely general, and the

Wilson dictionary was built specifically for the task of recognizing subjectivity.

Ablation tables for the other two targets (ESEs and DSE&ESE) look similar and

are omitted.

In looking at errors on the development data, we found several causes which

we could potentially fix to yield higher performance. The category of DSEs in-

cludes speech events like “said” or “a statement,” but not all occurrences of

speech events are DSEs, since some are simply statements of objective fact.

Adding features to help the model make this distinction should help perfor-

mance. Also, as others have observed, expressions of subjectivity tend to clus-

the crf-1-DSE&ESE model, which is not significant.
24 Using the agr statistic, the interannotator agreement for ESEs on the MPQA data is 0.72

(Wiebe et al., 2005, page 36), and for DSEs is 0.75 (Theresa Wilson, personal communication).
agr is the arithmetic (rather than harmonic) mean of overlap recall and precision between two
annotators.

25Providing a statistically significant improvement in recall, with no significant difference in
overlap precision but a small significant loss according to exact precision.

26Except for adding the Wilson feature to either model already containing WordNet, which
does result in a small (< 1%) but statistically significant improvement according to overlap F
and overlap recall.

47

ter, so incorporating features based on the density of expressions might help as

well (Wiebe and Wilson, 2002).

Table 3.12: Results for identifying direct subjective expressions. Superscripts
designate one standard deviation.

overlap exact
method recall precision F recall precision F
Wiebe baseline 45.692.4 31.102.5 36.972.3 21.521.8 13.911.4 16.871.4

Wilson baseline 55.152.2 30.731.9 39.441.9 25.651.7 13.321.0 17.521.2

crf-1-DSE 60.221.8 79.343.2 68.442.0 42.652.9 57.652.8 49.012.8

crf-1-DSE&ESE 62.732.3 77.993.1 69.512.4 43.232.9 55.382.8 48.542.8

crf-0-DSE 65.482.0 74.853.5 69.832.4 39.952.4 44.522.2 42.102.2

crf-0-DSE&ESE 69.221.8 72.163.2 70.652.4 42.132.3 42.692.5 42.402.3

Table 3.13: Results for identifying expressive subjective elements. Superscripts
designate one standard deviation.

overlap exact
method recall precision F recall precision F
Wiebe baseline 56.362.1 43.034.5 48.663.3 15.091.1 9.911.6 11.921.4

Wilson baseline 66.102.6 40.944.7 50.384.0 17.231.9 8.761.5 11.561.6

crf-1-ESE 46.364.1 75.216.6 57.143.6 15.111.7 27.282.3 19.351.5

crf-1-DSE&ESE 48.793.2 74.096.7 58.703.7 15.581.1 26.182.1 19.460.8

crf-0-ESE 61.223.4 64.845.4 62.823.3 18.311.7 17.113.0 17.612.2

crf-0-DSE&ESE 63.463.3 63.765.7 63.433.3 18.961.4 16.792.5 17.731.8

Table 3.14: Results for identifying expressions that are either DSEs or ESEs.
Superscripts designate one standard deviation. DSE&ESE indicates a model
trained to make a three-way distinction among DSEs, ESEs, and other tokens,
while DSE+ESE indicates a model trained to make a two-way distinction be-
tween DSEs or ESEs and all other tokens.

overlap exact
method recall precision F recall precision F
Wiebe baseline 51.592.0 61.354.6 55.992.8 17.700.8 19.612.0 18.581.2

Wilson baseline 61.232.1 58.484.7 59.733.1 20.611.4 17.681.5 19.001.3

crf-1-DSE+ESE 64.772.2 81.334.4 72.032.2 26.682.7 39.232.6 31.702.4

crf-1-DSE&ESE 62.362.1 81.904.1 70.742.2 28.242.7 42.641.9 33.922.3

crf-0-DSE+ESE 74.702.5 71.644.5 73.052.8 30.932.5 28.202.3 29.442.0

crf-0-DSE&ESE 71.912.2 74.044.5 72.882.6 30.302.2 29.642.3 29.911.8

48

Table 3.15: Results for feature ablation for identifying DSEs. All rows include
the lexical features and the syntactic features. The bottom line represents the
same model as CRF-0-DSE&ESE in Table 3.12.

feature set overlap exact
Le

vi
n/

Fr
am

eN
et

W
ils

on

W
or

dN
et

recall precision F recall precision F
. . . 47.142.6 70.914.4 56.603.0 30.552.7 45.123.1 36.412.8

X . . 50.573.1 70.514.1 58.863.3 32.203.1 44.113.3 37.203.1

. X . 54.922.4 70.734.0 61.812.9 34.612.5 43.602.9 38.572.5

X X . 57.212.6 70.794.1 63.263.0 35.772.4 43.422.8 39.212.5

. . X 68.292.4 71.823.5 70.002.8 41.802.5 42.712.5 42.242.4

. X X 68.932.1 72.063.3 70.452.6 42.102.5 42.712.6 42.402.5

X . X 68.482.4 71.873.3 70.132.8 41.922.2 42.802.5 42.342.3

X X X 69.221.8 72.163.2 70.652.4 42.132.3 42.692.5 42.402.3

3.5.8 Conclusions

Extracting information about subjectivity is an area of great interest to a vari-

ety of public and private interests. We have argued that successfully pursuing

this research will require the same expression-level identification as in factual

information extraction. Our method is the first to directly approach the task of

extracting these expressions, achieving performance within 5% of human inter-

annotator agreement.

49

CHAPTER 4

DETERMINING THE HIERARCHICAL STRUCTURE OF OPINIONS1

The next step toward our goal of creating a system for fine-grained informa-

tion extraction of opinions is to accurately identify the hierarchical structure of

direct subjective and speech expressions. Consider for example, the following

sentences (in which direct subjective expressions are denoted in bold, speech

expressions are underlined, and sources are denoted in italics):

1. Charlie was angry at Alice’s claim that Bob was unhappy.

2. Philip Clapp, president of the National Environment Trust, sums up well the gen-

eral thrust of the reaction of environmental movements: “There is no reason at all

to believe that the polluters are suddenly going to become reasonable.”

Direct subjective expressions in Sentence 1 describe the emotions or opinion of

three sources: Charlie’s anger, Bob’s unhappiness, and Alice’s belief. Direct

subjective expressions in Sentence 2, on the other hand, introduce the explicit

opinion of one source, i.e. the reaction of the environmental movements.

In this chapter, we focus on the filtering of information through sources. By

filtering, we mean the fact that while a speech event or subjective expression

passes information to the reader, the information is affected by the biases and

perspective of the source of the speech event or expression. Both direct sub-

jective expressions and speech expressions perform filtering in these examples.

The reaction of the environmental movements is filtered by Clapp’s summariza-

tion, which, in turn, is filtered by the writer’s choice of quotation. In addition,

the fact that Bob was unhappy is filtered through Alice’s claim, which, in turn,

1This chapter is adapted from Breck and Cardie (2004).

50

is filtered by the writer’s choice of words for the sentence. Similarly, it is only

according to the writer that Charlie is angry2.

Given sentences 1 and 2 and their DSESEs (direct subjective and speech

events), for example, we will present methods that produce the structures

shown in Figure 4.1, which represent the multi-stage information filtering that

should be taken into account in the interpretation of the text.

Sentence 1:
writer’s implicit speech event

claim

unhappy

angry

Sentence 2:
writer’s implicit speech event

sums up

reaction

Figure 4.1: Hierarchical structure of the direct subjective and speech expressions
in sentences 1 and 2

We propose a supervised machine learning approach to the problem that

relies on a small set of syntactically-based features. We compare the approach

to two heuristic-based baselines — one that simply assumes that every DSESE

is filtered only through the writer (the writer baseline), and a second that is

based on syntactic dominance relations in the associated parse tree (the syntax

baseline). In an evaluation using the opinion-annotated MPQA corpus (de-

scribed in Section 3.2), the learning-based approach achieves an accuracy of

2As with any linguistic construction, there may be multiple readings of these sentences. We
present here analyses for the most salient reading according to our judgment.

51

78.30%, significantly higher than both the writer baseline (65.57%) and the

syntax baseline (71.64%).

4.1 Related Work

While no approach has been proposed for the specific task here, there is some

relevant prior work. Wiebe (1994) describes an algorithm to track the change of

“point of view” in narrative text (fiction). That is, the “writer” of one sentence

may not correspond to the writer of the next sentence. Although this is not as

frequent in newswire text as in fiction, it may occur, and is relevant because in

this chapter, we only find the filtering structure for each sentence, leaving open

the question of whether the writer or speaker of one sentence is the same as the

next.

Bergler et al (Anick and Bergler, 1991; Bergler, 1991; Bergler, 1993) have ex-

amined several aspects of the lexical semantics of reporting verbs using the

framework of the generative lexicon theory. Briefly, the generative lexicon as-

serts that the lexicon isn’t simply a flat mapping from words to some knowl-

edge representat ion, but rather that the lexicon has significant structure. In

Anick and Bergler (1991), the authors focus on treating selectional restricti on

violations in this framework (rather than using pragmatics). In particular, they

investigate logical metonymies of the source of reporting verbs - for examp le, a

reporting verb’s subject, while theoretically an agent, may be expressed using a

city, an organization, a building, etc. Bergler (1991) relates these metonymies to

the notion of a “semantic collocation.” A semantic collocation is similar to a col-

location, but in semantic space, so insist requires that some proposition oppos-

52

was

Charlie angry

at

claim

’s

Alice

that

was

Bob unhappy

Figure 4.2: Dependency parse of sentence 1 according to the Collins parser.

ing its object be nearby. Bergler argues such collocations form part of the lexical

semantics of reporting verbs, and supports this with a corpus study of TIME

magazine. Bergler (1993) discusses the “semantic dimensions” of the semantic

field of reporting verbs. These dimensions, such as polarity of the complement

or official vs formal content, are what distinguish members of the field from one

a nother.

Gerard (2000) proposes a computational model of the reader of a news arti-

cle. Her model provides for multiple levels of hierarchical beliefs, such as the

nesting of a primary source’s belief within that of a reporter.

53

4.2 The Approach

Our task is to find the hierarchical structure among the DSESEs in individual

sentences. One’s first impression might be that this structure should be obvious

from the syntax: one DSESE should filter another roughly when it dominates

the other in a dependency parse. This heuristic, for example, would succeed

for “claim” and “unhappy” in sentence 1, whose DSESE structure is given in

Figure 4.1 and parse structure (as produced by the Collins parser) in Figure 4.2.3

Even in sentence 1, though, we can see that the problem is more complex:

“angry” dominates “claim” in the parse tree, but does not filter it. An analysis

of the syntax heuristic on our training data uncovered numerous additional

sources of error. Therefore, rather than trying to handcraft a more complex col-

lection of heuristics, we chose to adopt a supervised machine learning approach

that relies on features identified in this analysis. Our approach has two steps:

1. Train a binary classifier to make pairwise decisions as to whether a given

DSESE is the immediate parent of another.

2. Combine the decisions of the classifier decisions to find the hierarchical

information-filtering structure of all DSESEs in a sentence. This is done

using a simple approach described below.

We assume that we have a training corpus of sentences, annotated with

DSESEs and their hierarchical DSESE structure (Section 4.3 describes the cor-

pus). Training instances for the binary classifier are all pairs of DSESEs from the
3For this heuristic and the features that follow, we will speak of the DSESEs as if they had a

position in the parse tree. However, since DSESEs are often multiple words, and do not neces-
sarily form a constituent, this is not entirely accurate. The parse node corresponding to a DSESE
will be the highest node in the dependency parse corresponding to a word in the DSESE. We
consider the writer’s implicit DSESE to correspond to the root of the parse.

54

Table 4.1: Training instances generated from sentence 1

target t parent p class
claim writer 1
angry writer 1
unhappy claim 1
claim angry 0
claim unhappy 0
angry claim 0
angry unhappy 0
unhappy writer 0
unhappy angry 0

1: for Each DSESE d0 in the sentence do
2: for Each other DSESE d1 in the sentence do
3: confidence(d0, d1)← binary classifier(d0, d1).
4: end for
5: parent(d0)← argmaxd1

confidence(d0, d1)
6: end for

Figure 4.3: Algorithm for identifying hierarchical DSESE structure

same sentence, 〈t, p〉4. We assign a class value of 1 to a training instance if p is

the immediate parent of t in the manually annotated hierarchical structure for

the sentence, and 0 otherwise. For sentence 1, the training instances generated

are listed in Table 4.1. The features used to describe each training instance are

explained below.

During testing, we construct the hierarchical DSESE structure of an entire

sentence as described in Figure 4.3. For each DSESE in the sentence, ask the

binary classifier to judge each other DSESE as a potential parent, and choose

the DSESE with the highest confidence. There is an ambiguity if the classifier

assigns the same confidence to two potential parents. For evaluation purposes,

we consider the classifier’s response incorrect if any of the highest-scoring po-

4We skip sentences where there is no decision to make (sentences with zero or one non-writer
DSESE). Since the writer DSESE is the root of every structure, we do not generate instances with
the writer DSESE in the t position.

55

tential parents are incorrect. Finally, join these immediate-parent links to form

a tree. The directed graph resulting from flawed automatic predictions might

not be a tree (i.e. it might be cyclic and disconnected). Since this occurs very

rarely (5 out of 9808 sentences on the test data), we do not attempt to correct

any non-tree graphs.

We considered other variations of this approach. In particular, we found that

assigning the class value of a training case 〈t, p〉 based on whether p was an an-

cestor (rather than immediate parent) of t was an easier task for our model to

learn (given the features below). However, reconstructing the hierarchical struc-

ture from this information is more complex than doing so from the immediate-

parent decisions.

One might also try comparing pairs of potential parents for a given DSESE,

or other more direct means of ranking potential parents. We chose what seemed

to be the simplest method for this first attempt at the problem.

Features

Here we motivate and describe the 21 features used in our model. The val-

ues of these features for three instances generated from sentence 1 are given

in Table 4.2. Unless otherwise stated, all features are binary (1 if the described

condition is true, 0 otherwise).

Parse-based features (6). Based on the performance of the parse-based heuris-

tic, we include a p-dominates-t feature in our feature set. To compensate for

parse errors, however, we also include a variant of this that is 1 if the parent of

56

p dominates t (p’s-parent-dominates-t).

Many filtering expressions filter DSESEs that occur in their complements,

but not in adjuncts. Therefore, we add variants of the previous two syntax-

based features that denote whether the parent node dominates t, but only if

the first dependency relation is an object relation (p’s-object-dominates-t,

p’s-parent’s-object-dominates-t).

For similar reasons, we include a feature calculating the domination relation

based on a partial parse. Consider the following sentence:

3. He was criticized more than recognized for his policy.

One of “criticized” or “recognized” will be the root of this dependency

parse, thus dominating the other, and suggesting (incorrectly) that it fil-

ters the other DSESE. Because a partial parse does not attach all con-

stituents, such spurious dominations are eliminated. The partial parse feature

p-dominates-t-partial-parse is 1 for fewer instances than p-dominates-t,

but it is more indicative of a positive instance when it is 1.

So that the model can adjust when the parse is not present, we include a

feature parse-failed that is 1 for all instances generated from sentences on

which the parser failed.

Positional features (4). Forcing the model to decide whether p is the parent of

t without knowledge of the other DSESEs in the sentence is somewhat artificial.

We therefore include several features that encode the relative position of p and t

in the sentence. Specifically, we add a feature p-is-root that is 1 if p is the root

57

of the parse (and similarly for t, t-is-root). We also include a feature p-pos

giving the ordinal position of p among the DSESEs in the sentence, relative to t

(-1 means p is the DSESE that immediately precedes t, 1 means immediately fol-

lowing, and so forth). To allow the model to vary when there are more potential

parents to choose from, we include a feature giving the total number of DSESEs

in the sentence (number-DSESEs-in-sentence).

Special parents and lexical features (5). Some particular DSESEs are special,

so we specify indicator features for four types of parents: the writer DSESE

(p-is-writer) , and the lexical items “said” (the most common non-writer

DSESE) and “according to” (p-is-‘‘said’’, p-is-‘‘according to’’).

“According to” is special because it is generally not very high in the parse, but

semantically tends to filter everything else in the sentence.

In addition, we include as features the part of speech of p and t (reduced to

noun, verb, adjective, adverb, or other), since intuitively we expected distinct

parts of speech to behave differently in their filtering (p-part-of-speech,

t-part-of-speech).

Genre-specific features (6). Finally, journalistic writing contains a few special

forms that are not always parsed accurately. Examples are:

4. “Alice disagrees with me,” Bob argued.

5. Charlie, she noted, dislikes Chinese food.

The parser may not recognize that “noted” and “argued” should dominate

all other DSESEs in sentences 4 and 5, so we attempt to recognize when a sen-

58

Table 4.2: Features for three training instances from sentence 1. The journalistic
features are not included because the sentence does not match the patterns (see
Section 4.2).

〈unhappy, angered〉
〈unhappy, claim〉
〈claim, writer〉

feature for 〈t, p〉
class 1 1 0
p-dominates-t 1 1 1
p’s-parent-dominates-t 1 1 1
p’s-object-dominates-t 1 1 0
p’s-parent’s-object-dominates-t 1 1 1
p-dominates-t-partial-parse 1 0 0
parse-failed 0 0 0
p-is-root 1 0 1
t-is-root 0 0 0
p-pos -1 -1 1
number-DSESEs-in-sentence 4 4 4
p-is-writer 1 0 0
p-is-‘‘said’’ 0 0 0
p-is-‘‘according to’’ 0 0 0
p-part-of-speech - N V
t-part-of-speech N J J
p-is-last 0 0 0

tence falls into one of these two patterns. For 〈disagrees, argued〉 generated

from sentence 4, features p-pattern-1 and t-pattern-1 would be 1, while

for 〈dislikes, noted〉 generated from sentence 5, feature p-pattern-2 would

be 1. We also add features (p-in-quote, t-in-quote) that denote whether

the DSESE in question falls between matching quote marks. Finally, a simple

feature (p-is-last) indicates whether p is the last word in the sentence.

Resources

We rely on a variety of resources to generate our features. The corpus (see Sec-

tion 4.3) is distributed with annotations for sentence breaks, tokenization, and

59

part of speech information automatically generated by the GATE toolkit (Cun-

ningham et al., 2002). GATE’s sentences sometimes extend across paragraph

boundaries, which seems never to be warranted. Inaccurately joining sentences

has the effect of adding more noise to our problem, so we split GATE’s sen-

tences at paragraph boundaries, and introduce writer DSESEs for the newly

created sentences. For parsing we use the Collins (1999) parser. We convert the

parse to a dependency format that makes some of our features simpler using a

method similar to the one described in Xia and Palmer (2001). We also employ

a method from Adam Lopez at the University of Maryland to find grammat-

ical relationships between words (subject, object, etc.). For partial parses, we

employ CASS (Abney, 1997). Finally, we use a simple finite-state recognizer to

identify (possibly nested) quoted phrases.

For classifier construction, we use the IND package (Buntine, 1993) to train

decision trees (we use the mml tree style, a minimum message length criterion

with Bayesian smoothing).

4.3 Data Description

Again, the data for these experiments come from version 1.1 of the MPQA cor-

pus described in Section 3.2. The corpus consists of 535 newswire documents,

of which we used 66 (1375 sentences) for developing the heuristics and features,

while keeping the remaining 469 (9808 sentences) blind (used for 10-fold cross-

validation). These numbers differ from those in the previous chapter because

the experiments reported here were conducted earlier, and at the time, only 66

documents were designated as “development.”

60

Although the MPQA corpus provides annotations for all DSESEs, it does

not provide annotations to denote directly their hierarchical structure within a

sentence. This structure must be extracted from an attribute of each DSESE an-

notation, which lists the DSESEs’ direct and indirect sources. For example, the

“source chain” for “unhappy” in sentence 1, would be (writer, Alice, Bob), where

writer, Alice, and Bob are arbitrary identifiers assigned by the human annota-

tor to denote each source. The source chains allow us to automatically recover

the hierarchical structure of the DSESEs: the parent of a DSESE with source

chain (s0, s1, . . . sn−1, sn) is the DSESE with source chain (s0, s1, . . . sn−1). Unfor-

tunately, ambiguities can arise. Consider the following sentence:

6. Bob said, “Welcome!” and then he told us that Mary was happy.

Because the annotators also performed coreference resolution on sources,

“said” and “told” have the source chain (writer, Bob), while “was happy” has

the source chain (writer, Bob, Mary). It is therefore not clear from the manual

annotations whether “was happy” should have “told” or “said” as its parent.

5.82% of the DSESEs have ambiguous parentage (i.e. the recovery step finds

a set of parents P (DSESE) with |P (DSESE)| > 1). For training, we assign

a class value of 1 to all instances 〈t, p〉, p ∈ P (t). For testing, if an algorithm

attaches DSESE to any element of P (DSESE), we score the link as correct (see

Section 4.3.1). Since ultimately our goal is to find the sources through which

information is filtered (rather than the DSESEs through which it is filtered), we

believe this is justified.

For training and testing, we used only those sentences that contain at

least two non-writer DSESEs – for all other sentences, there is only one way

to construct the hierarchical structure. Under certain circumstances, such as

61

Table 4.3: Breakdown of number of direct subjective and speech expressions per
sentence

number of DSESEs number of sentences
1 3612
2 3256
3 1810
4 778
5 239

>5 113

paragraph-long quotes, the writer of a sentence will not be the same as the

writer of a document. In such sentences, the MPQA corpus contains additional

DSESEs for any other sources besides the writer of the document. Since we are

concerned in this work only with one sentence at a time, we discard all such

implicit DSESEs besides the writer of the sentence. Also, in a few cases, more

than one DSESE in a sentence was marked as having the writer as its source.

We believe this to be an error and so discarded all but one writer DSESE. Again,

Table 4.3 presents a breakdown (for the test set) of the number of DSESEs per

sentence – thus we only use approximately one-third of all the sentences in the

corpus.

4.3.1 Evaluation

How do we evaluate the performance of an automatic method of determining

the hierarchical structure of DSESEs? Lin (1995) proposes a method for evaluat-

ing dependency parses: the score for a sentence is the fraction of correct parent

links identified; the score for the corpus is the average sentence score. Formally,

the score for a method evaluated on the entire corpus (Lin) is

62

Table 4.4: Performance on test data. Lin is Lin’s dependency score, perfect is
the fraction of sentences whose structure was identified perfectly, and binary is
the performance of the binary classifier (broken down for positive and negative
instances). “Size” is the number of sentences or DSESE pairs.

metric size writer syntax our method
Lin 2940 65.57% 71.64% 78.30%
perfect 2940 36.02% 45.37% 54.52%
binary 21933 73.20% 77.73% 82.12%
binary + 7882 60.63% 66.94% 70.35%
binary − 14051 80.24% 83.78% 88.72%

Lin(m) =

∑
s∈S

|{d|d∈N(s)∧m(d)=c(d)}|
|N(s)|

|S|

where S is the set of all sentences in the corpus, N(s) is the set of non-writer

DSESEs in sentence s, c(d) is the correct parent of d, and m(d) is the automati-

cally identified parent of d, according to method m.

We also present results using two other (related) metrics. The perfect met-

ric measures the fraction of sentences whose structure is determined entirely

correctly. The binary is the accuracy of the binary classifier (with a 0.5 thresh-

old) on the instances created from the test corpus. We also report the perfor-

mance on positive and negative instances.

4.4 Results

We compare the learning-based approach (denoted “our method” in the ta-

bles below) to the heuristic-based approaches introduced in Section 4.2 — the

writer baseline assumes that all DSESEs are attached to the writer’s implicit

DSESE; the syntax baseline is the parse-based heuristic that relies solely on

63

Table 4.5: Performance by number of DSESEs per sentence

#DSESEs # sentences writer syntax our method
3 1810 70.88% 75.41% 81.82%
4 778 59.17% 67.82% 74.38%
5 239 53.87% 61.92% 68.93%

>5 113 49.31% 58.03% 68.68%

the dominance relation – that is, the syntax baseline attaches a DSESE to the

DSESE most immediately dominating it in the dependency tree. If no other

DSESE dominates it, a DSESE is attached to the writer’s DSESE.

We use 10-fold cross-validation on the evaluation data to generate training

and test data (although the heuristics, of course, do not require training). The

results of the decision tree method and the two heuristics are presented in Ta-

ble 4.4.

4.5 Discussion

Encouragingly, our machine learning method uniformly and significantly5 out-

performs the two heuristic methods, on all metrics and in sentences with any

number of DSESEs. The difference is most striking in the perfect metric,

which is perhaps the most intuitive. Also, the syntax baseline significantly6

outperforms the writer baseline, confirming our intuitions that syntax is im-

portant in this task.

As the binary classifer sees many more negative instances than positive, it

5p < 0.01, using an approximate randomization test with 9,999 trials. See (Eisner, 1996, page
17) and (Chinchor et al., 1993, pages 430-433) for descriptions of this method.

6Using the same test as above, p < 0.01, except for the performance on sentences with more
than 5 DSESEs, because of the small amount of data, where p < 0.02.

64

is unsurprising that its performance is much better on negative instances. This

suggests that we might benefit from machine learning methods for dealing with

unbalanced datasets.

Examining the errors of the machine learning system on the development

set, we see that for half of the DSESEs with erroneously identified parents, the

predicted parent is either the writer’s DSESE, or a DSESE like “said” in sen-

tences 4 and 5 having scope over the entire sentence. For example,

7. “Our concern is whether persons used to the role of policy implementors can ob-

jectively assess and critique executive policies which impinge on human rights,”

said Ramdas.

Our model chose the parent of “assess and critique” to be “said” rather than

“concern.” We also see from Table 4.5 that the model performs more poorly

on sentences with more DSESEs. We believe that this reflects a weakness in

our choice to combine binary decisions, because the model has learned that in

general, a “said” or writer’s DSESE (near the root of the structure) is likely to

be the parent, while it sees many fewer examples of DSESEs such as “concern”

that lie in the middle of the tree.

Although we have ignored the distinction throughout this chapter, error

analysis suggests speech event DSESEs behave differently than private state

DSESEs with respect to how closely syntax reflects their hierarchical structure.

It may behoove us to add features to allow the model to take this into account.

Other sources of error include erroneous sentence boundary detection, paren-

thetical statements (which the parser does not treat correctly for our purposes),

other parse errors, partial quotations, and some errors in the annotation.

65

Examining the learned trees is difficult because of their size, but looking at

one tree to depth three reveals a fairly intuitive model. Ignoring the probabil-

ities, the tree decides p is the parent of t if and only if p is the writer’s DSESE

(and t is not in quotation marks), or if p is the word “said.” For all the trees

learned, the root feature was either the writer DSESE test or the partial-parse-

based domination feature.

66

CHAPTER 5

A LIGHTWEIGHT SYSTEM FOR NATURAL LANGUAGE PROCESSING

AND MACHINE LEARNING WORKFLOWS1

Running experiments in natural language processing and machine learning

typically involves a complicated network of programs. One program might ex-

tract data from a raw corpus, others might pre-process it with various linguistic

tools before finally the main program being tested is run. Further programs

must evaluate the output, and produce graphs and tables for inclusion in pa-

pers and presentations. All of these steps can be run by hand, but a more typical

approach is to automate them using tools such as UNIX shell scripts. We argue

that any approach should satisfy a number of basic criteria.

Reproducibility At some future time, the original researcher or other re-

searchers ought to be able to re-run the set of experiments and produce iden-

tical results2. Such reproducibility is a cornerstone of scientific research, and

ought in principle to be easier in our discipline than in a field requiring physical

measurements such as physics or chemistry.

Simplicity We want to create a system that we and other researchers will find

easy to use. A system that requires significant overhead before any experiment

can be run can limit a researcher’s ability to quickly and easily try out new ideas.

Support for a realistic life-cycle of experiments A typical experiment evolves

in structure as it goes along - the researcher may choose partway through to add

1This chapter is adapted from Breck (2008).
2 User input presents difficulties that we will not discuss.

67

new datasets, new ranges of parameters, or new sets of models to test. More-

over, a computational experiment rarely works correctly the first time. Com-

ponents break for various reasons, a tool may not perform as expected, and

so forth. A usable tool must be simple to use in the face of such repeated re-

execution.

Support for good software engineering Whether writing shell scripts, make-

files, or Java, one is writing code, and software engineering concerns apply. One

key principle is modularity, that different parts of a program should be cleanly

separated. Another is generality, creating solutions that are re-usable in differ-

ent specific cases. A usable tool must encourage good software engineering.

Support for the combinatorial nature of our experiments Experiments in

natural language processing and machine learning typically compare different

datasets, different models, different feature sets, different training regimes, and

train and test on a number of cross-validation folds. This produces a very large

number of files that any system must handle in a clean way.

In this chapter, we present zymake3, and argue that it is superior to several

alternatives for the task of automating the steps in running an experiment in

natural language processing or machine learning.

3Any name consisting of a single letter followed by make already refers to an existing soft-
ware project. zymake is the first pronounceable name consisting of a two letter prefix to make,
starting from the end of the alphabet. I pronounce “zy-” as in “zydeco.”

68

Table 5.1: Training regimes

training regime classes
two-way distinction DSE vs ESE+O
two-way distinction ESE vs DSE+O
three-way distinction DSE vs ESE vs O
baseline comparison DSE+ESE vs O

5.1 A Typical NLP Experiment

As a running example, we will use the experiments described in Section 3.5.

To recap, the task is one of entity identification — we have a large dataset in

which two different types of opinion entities are tagged, DSEs, and ESEs. We

will use a sequence-based learning algorithm to model the entities, but we want

to investigate the relationship between the two types. In particular, will it be

preferable to learn a single model that predicts both DSEs and ESEs, or two

separate models, one predicting DSEs, and one predicting ESEs? The former

case makes a three-way distinction between DSEs, ESEs, and entities of type O,

all other words. The latter two models make a distinction between DSEs and

both other types or between ESEs and both other types. Furthermore, the list-

based baselines to which we wish to compare do not distinguish between DSEs

and ESEs, so we also need a model that just predicts entities to be either DSEs

or ESEs, versus the background O. These four training regimes are summarized

in Table 5.1.

Given one of these training regimes, the model is trained and tested using

10-fold cross-validation, and the result is evaluated using precision and recall.

The evaluation is conducted separately for DSEs, for ESEs, and for predicting

the union of both classes.

69

for fold in ‘seq 0 9‘; do
extract-test-data $fold raw-data $fold.test
for class in DSE ESE DSE+ESE; do

extract-2way-training $fold raw-data $class \
> $fold.$class.train

train $fold.$class.train > $fold.$class.model
predict $fold.$class.model $fold.test \

> $fold.$class.out
prep-eval-2way $fold.$class.out > $fold.eval-in
eval $class $fold.$class.eval-in > $fold.$class.eval

done
extract-3way-training $fold raw-data > $fold.3way.train
train $fold.3way.train > $fold.3way.model
predict $fold.3way.model $fold.test > $fold.3way.out
for class in DSE ESE DSE+ESE; do

prep-eval-3way $class $fold.3way.out \
> $fold.3way.$class.eval-in

eval $class $fold.3way.$class.eval-in \
> $fold.3way.$class.eval

done
done

Figure 5.1: A shell script

5.1.1 Approach 1: A UNIX Shell Script

Many researchers use UNIX shell scripts to co-ordinate experiments4. Figure 5.1

presents a potential shell script for the experiments discussed in Section 5.1.

Shell scripting is familiar and widely used for co-ordinating the execution of

programs. However, there are three difficulties with this approach - it is diffi-

cult to partially re-run, the specification of the filenames is error-prone, and the

script is badly modularized.

4Some researchers use more general programming languages, such as Perl, Python, or Java to
co-ordinate their experiments. While such languages may make some aspects of co-ordination
easier – for example, such languages would not have to call out to an external program to
produce a range of integers as does the script in Figure 5.1 – the arguments that follow apply
equally to these other approaches.

70

Re-running the experiment The largest difficulty with this script is how it

handles errors - namely, it does not. If some early processes succeed, but later

ones fail, the researcher can only re-run the entire script, wasting the time spent

on the previous run. There are two common solutions to this problem. The sim-

plest is to comment out the parts of the script that have succeeded, and re-run

the script. This is highly brittle and error-prone. More reliable but much more

complicated is to write a wrapper around each command that checks whether

the outputs from the command already exist before running it. Neither of these

is desirable. It is also worth noting that this problem can arise not just through

error, but when an input file changes, an experiment is extended with further

processing, additional graphs are added, further statistics are calculated, or if

another model is added to the comparison.

Problematic filenames In this example, a filename is a concatenation of sev-

eral variable names - e.g. $(fold).$(class).train. This is also error-prone

- the writer of the script has to keep track, for each filename, of which attributes

need to be specified for a given file, and the order in which they must be spec-

ified. Either of these can change as an experiment’s design evolves, and subtle

design changes can require changes throughout the script of the references to

many filenames.

Bad modularization In this example, the eval program is called twice, even

though the input and output files in each case are of the same format. The

problem is that the filenames are such that the line in the script that calls

eval needs to be include information about precisely which files (in one case

$fold.3way.$class, and in the other $fold.$class) are being evaluated.

71

This is irrelevant – a more modular specification for the eval program would

simply say that it operates on a .eval-in file and produces an .eval file. We

will see ways below of achieving exactly this.5

5.1.2 Approach 2: A makefile

One solution to the problems detailed above is to use a makefile instead of a

shell script. The make program (Feldman, 1979) bills itself as a “utility to main-

tain groups of programs”6, but from our perspective, make is a declarative lan-

guage for specifying dependencies. This seems to be exactly what we want, and

indeed it does solve some of the problems detailed above. make has several new

problems, though, which result in its being not an ideal solution to our problem.

Figure 5.2 presents a portion of a makefile for this task. When a makefile

rule is executed, $ˆ is replaced with all input files (dependencies) of the current

rule, and $@ is replace the output filename. For this part, the makefile ideally

matches what we want. It will pick up where it left off, avoiding the re-running

problem above. The question of filenames is sidestepped, as we only need to

deal with the extensions here. And each command is neatly partitioned into

its own section, which specifies its dependencies, the files created by each com-

mand, and the shell command to run to create them. However, there are three

serious problems with this approach.

5One way of achieving this modularization with shell scripts could involve defining func-
tions. While this could be effective, this greatly increases the complexity of the scripts.

6GNU make manpage.

72

a .model file is built from a .train file
%.model: %.train

train $ˆ > $@

a .out file is built from a .model file and a .test file
%.out: %.model %.test

predict $ˆ > $@

Figure 5.2: A partial makefile

Files are represented by strings The first problem can be seen by trying to

write a similar line for the eval command. It would look something like this:

%.eval: %.eval-in

eval get-class $ˆ > $@

However, it is hard to write the code represented here as get-class. This code

needs to examine the filename string of $ˆ or $@, and extract the class from that.

This is certainly possible using standard UNIX shell tools or make extensions,

but it is ugly, and has to be written once for every time such a field needs to

be accessed. For example, one way of writing get-class using GNU make

extensions7 would be:

GETCLASS = $(filter DSE ESE DSE+ESE,$(subst ., ,$(1)))

%.eval: %.eval-in

eval $(call GETCLASS,$@) $ˆ > $@

7For an explanation of how this works, see http://www.gnu.org/software/make/
manual/make.html#Text-Functions. However, the reader need not follow the details to
see that this method is rather arcane.

73

http://www.gnu.org/software/make/manual/make.html#Text-Functions
http://www.gnu.org/software/make/manual/make.html#Text-Functions

A related problem is that the above predict command is slightly different

from the predict command given in the shell script, in that the test file passed

to it as an argument must include the class variable in its name, since the model

and output file do. This requires duplicating the test file for each class variable,

even though the files are the same. The basic problem here is that to make, a

file is represented by a string, its filename. For machine learning and natural

language processing experiments, it is much more natural to represent a file as

a set of key-value pairs. For example, the file 0.B.model might be represented

as { fold = 0, class = B, filetype = model } .

Combinatorial dependencies The second problem with make is that it is very

difficult to specify combinatorial dependencies. If one continued to write the

makefile above, one would eventually need to write a final all target to specify

all the files that would need to be built. There are 60 such files: one for each fold

of the following set

$fold.3way.DSE.eval

$fold.3way.ESE.eval

$fold.3way.DSE+ESE.eval

$fold.DSE.eval

$fold.ESE.eval

$fold.DSE+ESE.eval

There is no easy way in make of listing these 60 files in a natural manner.

One can escape to a shell script, or use GNU make’s foreach function, but

both ways are messy.

74

Non-representable dependency structures The final problem with make also

relates to dependencies. It is more subtle, but it turns out that there are some

sorts of dependency structures that cannot be represented in make. Suppose

one wants to compare the effect of using one of three parsers, one of three part-

of-speech-taggers and one of three chunkers for a summarization experiment.

This involves three separate three-way distinctions in the makefile, where for

each, there are three different commands that might be run. A non-working

example is in Figure 5.3. The problem is that make pattern rules (rules using

the % character) can only match the suffix or prefix of a filename8. This makefile

does not work because it requires the parser, chunker, and tagger to all be the

last part of the filename before the type suffix.

5.1.3 Approach 3: zymake

zymake is designed to address the problems outlined above. The key principles

of its design are as follows:

• Like make, zymakefiles can be re-run multiple times, each time picking

up where the last left off.

• Files are specified by key-value sets, not by strings

• zymake includes a straightforward way of handling combinatorial sets of

files.

• zymake syntax is minimally different from shell syntax.

8Thus, if we were only comparing two sets of items – e.g. parsers and taggers but not chun-
kers – we could write this set of dependencies by using a prefix to distinguish one set and a
suffix to distinguish the other. This is hardly pretty, though, and does not extend to more than
two sets.

75

%.taggerA.pos: %.txt
tagger_A $ˆ > $@

%.taggerB.pos: %.txt
tagger_B $ˆ > $@

%.taggerC.pos: %.txt
tagger_C $ˆ > $@

%.chunkerA.chk: %.pos
chunker_A $ˆ > $@

%.chunkerB.chk: %.pos
chunker_B $ˆ > $@

%.chunkerC.chk: %.pos
chunker_C $ˆ > $@

%.parserA.prs: %.chk
parser_A $ˆ > $@

%.parserB.prs: %.chk
parser_B $ˆ > $@

%.parserC.prs: %.chk
parser_C $ˆ > $@

Figure 5.3: A non-functional makefile for testing three independent decisions

Figure 5.4 presents the simplest possible zymakefile, consisting of one rule,

which describes how to create a $().test file, and one goal, which lists what

files should be created by this file. A rule is simply a shell command9, with some

number of interpolations10. An interpolation is anything between the characters

$(and the matching). This is the only form of interpolation done by zymake,

so as to minimally conflict with other interpolations done by the shell, scripting

9Users who are familiar with UNIX shells will find it useful to be able to use input/output
redirection and pipelines in zymakefiles. Knowledge of advanced shell programming is not
necessary to use zymake, however.

10This term is used in Perl; it is sometimes referred to in other languages as “substitution” or
“expansion.”

76

languages such as Perl, etc. The two interpolations in this example are file in-

terpolations, which are replaced by zymake with a generated filename. Files in

zymake are identified not by a filename string but by a set of key-value pairs,

along with a suffix. In this case, the two interpolations have no key-value pairs,

and so are only represented by a suffix. Finally, there are two kinds of file in-

terpolations - inputs, which are files that are required to exist before a command

can be run, and outputs, which are files created by a command11. In this case,

the interpolation $(>).test is marked as an output by the > character12, while

$().test is an input, since it is unmarked.

extract-test-data raw-data $(>).test

: $().test

Figure 5.4: Simple zymakefile #1

The goal of the program in Figure 5.4 is to create a file matching the interpo-

lation $().test. The single rule does create a file matching that interpolation,

and so this program will result in the execution of the following single com-

mand (note that the interpolation $() expands to the empty string here because

zymake does not need to distinguish different kinds of .test files):

extract-test-data raw-data .test

Figure 5.5 presents a slightly more complex zymakefile. In this case, there

are two goals - to create a .test file with the key fold having the value 0, and

11Unlike make, zymake requires that each command explicitly mention an interpolation cor-
responding to each input or output file. This restriction is caused by the merging of the com-
mand part of the rule with the dependency part of the rule, which are separate in make. We felt
that this reduced redundancy and clutter in the zymakefiles, but this may occasionally require
writing a wrapper around a program that does not behave in this manner.

12zymake will also infer that any file interpolation following the > character, representing
standard output redirection in the shell, is an output.

77

another .test file with fold equal to 1. We also see that the rule has become

slightly more complex – there is now another interpolation. This, however, is

not a file interpolation, but a variable interpolation. $(fold) will be replaced

by the value of fold.

extract-test-data $(fold) raw-data $(>).test

: $(fold=0).test $(fold=1).test

Figure 5.5: Simple zymakefile #2

Executing this zymakefile results in the execution of two commands:

extract-test-data 0 raw-data 0.test

extract-test-data 1 raw-data 1.test

Note that the output files are now not just .test but include the fold num-

ber in their name. This is because zymake infers that the fold key, mentioned

in the extract rule, is needed to distinguish the two test files. In general the

user should specify as few keys as possible for each file interpolation, and allow

zymake to infer the exact set of keys necessary to distinguish each file from the

rest13.

Figure 5.6 presents a small refinement to the zymakefile in Figure 5.5. The

commands that will be run are the same, but instead of separately listing the

two test files to be created, we create a variable folds that is a list of all the

folds we want, and use a splat to create multiple goals. A splat is indicated

13Each file will be distinguished by all and only the keys needed for the execution of the
command that created it, and the commands that created its inputs. A unique, global ordering
of keys is used along with a unique, global mapping of filename components to (key, value)
pairs so that the generated filename for each file uniquely maps to the appropriate set of (key,
value) pairs.

78

by the asterisk character, and creates one copy of the file interpolation for each

value in the variable’s list.

extract-test-data $(fold) raw-data
$(>).test

folds = 0 1

: $(fold=*folds).test

Figure 5.6: Simple zymakefile #3

Figure 5.7 is now a straightforward extension of the example we have seen

so far. It uses a few more features of zymake that we will not discuss, such

as string-valued keys, and the range function, but further documentation is

available on the zymake website14. zymake wants to create the goals at the

end, so it examines all the rules and constructs a directed acyclic graph, or DAG,

representing the dependencies among the files. It then executes the commands

in some order based on this DAG – see Section 5.4 for discussion of execution

order.

5.2 Benefits of zymake

zymake satisfies the criteria set out above, and handles the problems discussed

with other systems.

• Reproducibility. By providing a single file that can be re-executed many

times, zymake encourages a development style that encodes all informa-

14Binaries for Linux, Mac OS X, and Windows, as well as full source code, are available at
http://www.cs.cornell.edu/∼ebreck/zymake/.

79

http://www.cs.cornell.edu/~ebreck/zymake/

extract-test-data $(fold) raw-data $(>).test

extract-2way-training $(fold) raw-data
$(class) > $(train="2way").train

extract-3way-training $(fold) raw-data
> $(train="3way").train

train $().train > $().model

predict $().model $().test > $().out

prep-eval-3way $(class) $().out > $(train="3way").eval-in

prep-eval-2way $().out > $(train="2way").eval-in

eval $(class) $().eval-in > $().eval

classes = DSE ESE DSE+ESE
ways = 2way 3way

: $(fold = *(range 0 9)
class = *classes
train = *ways).eval

Figure 5.7: An example zymakefile. The exact commands run by this makefile
are presented in Figure 5.8.

tion about a workflow in a single file. This also serves as documentation

of the complete workflow.

• Simplicity. zymake only requires writing a set of shell commands, anno-

tated with interpolations. This allows researchers to quickly and easily

construct new and more complex experiments, or to modify existing ones.

• Support for experimental life-cycle. zymake can re-execute the same file

many times when components fail, inputs change, or the workflow is ex-

tended.

80

extract-2way-training 0 raw-data DSE > DSE.0.2way.train
train DSE.0.2way.train > DSE.0.2way.model
extract-2way-training 0 raw-data ESE > ESE.0.2way.train
train ESE.0.2way.train > ESE.0.2way.model
extract-2way-training 0 raw-data DSE+ESE > DSEESE.0.2way.train
train DSEESE.0.2way.train > DSEESE.0.2way.model
extract-3way-training 0 raw-data > 0.3way.train
train 0.3way.train > 0.3way.model
extract-test-data 0 raw-data 0.test
predict DSE.0.2way.model 0.test > DSE.0.2way.out
prep-eval-2way DSE.0.2way.out > DSE.0.2way.eval-in
eval DSE DSE.0.2way.eval-in > DSE.0.2way.eval
predict ESE.0.2way.model 0.test > ESE.0.2way.out
prep-eval-2way ESE.0.2way.out > ESE.0.2way.eval-in
eval ESE ESE.0.2way.eval-in > ESE.0.2way.eval
predict DSEESE.0.2way.model 0.test > DSEESE.0.2way.out
prep-eval-2way DSEESE.0.2way.out > DSEESE.0.2way.eval-in
eval DSE+ESE DSEESE.0.2way.eval-in > DSEESE.0.2way.eval
predict 0.3way.model 0.test > 0.3way.out
prep-eval-3way DSE 0.3way.out > DSE.0.3way.eval-in
eval DSE DSE.0.3way.eval-in > DSE.0.3way.eval
prep-eval-3way ESE 0.3way.out > ESE.0.3way.eval-in
eval ESE ESE.0.3way.eval-in > ESE.0.3way.eval
prep-eval-3way DSE+ESE 0.3way.out > DSEESE.0.3way.eval-in
eval DSE+ESE DSEESE.0.3way.eval-in > DSEESE.0.3way.eval

Figure 5.8: Output of the zymakefile in Figure 5.7 Only the commands run for
fold 0 are presented, not for all 10 folds. In actual execution zymake adds a
prefix to each filename based on the name of the zymakefile, so as to separate
different experiments. This is only one possible order that the commands could
be run in.

• Support for software engineering. Each command in a zymakefile only needs

to describe the inputs and outputs relevant for that command, making the

separate parts of the file quite modular.

• Support for combinatorial experiments. zymake includes a built-in method

for specifying that a particular variable needs to range over several possi-

bilities, such as a set of models, parameter values, or datasets.

81

5.3 Using zymake

Beginning to use zymake is as simple as downloading a single binary from the

website. Just as with a shell script or makefile, the user then writes a single

textual zymakefile, and passes it to zymake for execution. Typical usage of

zymake will be in an edit-run development cycle.

5.4 Parallel Execution

For execution of very large experiments, efficient use of parallelism is necessary.

zymake offers a natural way of executing the experiment in a maximally par-

allel manner. The default serial execution does a topological sort of the DAG,

and executes the components in that order. To execute in parallel, zymake steps

through the DAG starting at the roots, starting any command that does not de-

pend on a command that has not yet executed.

To make this practical, of course, remote execution must be combined with

parallel execution. The current implementation provides a simple means of ex-

ecuting a remote job using ssh, combined with a simple /proc-based measure

of remote cpu utilization to find the least-used remote cpu from a provided set.

We are currently looking at extending zymake to interface it with the Con-

dor system (Litzkow et al., 1988). Condor’s DAGMan is designed to execute

a DAG in parallel on a set of remote machines, so it should naturally fit with

zymake. Interfaces to other cluster software are possible as well. Another im-

portant extension will be to allow the system to throttle the number of con-

82

current jobs produced and/or collect smaller jobs together, to better match the

available computational resources.

5.5 Other approaches

Deelman et al. (2004) and Gil et al. (2007) describe the Pegasus and Wings sys-

tems, which together have a quite similar goal to zymake. This system is de-

signed to manage large scientific workflows, with both data and computation

distributed across many machines. A user describes their available data and re-

sources in a semantic language, along with an abstract specification of a work-

flow, which Wings then renders into a complete workflow DAG. This is passed

to Pegasus, which instantiates the DAG with instances of the described re-

sources and passes it to Condor for actual execution. The system has been used

for large-scale scientific experiments, such as earthquake simulation. However,

we believe that the added complexity of the input that a user has to provide

over zymake’s simple shell-like syntax will mean a typical machine learning or

natural language processing researcher will find zymake easier to use.

The GATE and UIMA architectures focus specifically on the management

of components for language processing (Cunningham et al., 2002; Ferrucci and

Lally, 2004). While zymake knows nothing about the structure of the files it

manages, these systems provide a common format for textual annotations that

all components must use. GATE provides a graphical user interface for run-

ning components and for viewing and producing annotations. UIMA provides

a framework not just for running experiments but for data analysis and appli-

cation deployment. Compared to writing a zymake script, however, the re-

83

quirements for using these systems to manage an experiment are greater. In

addition, both these architectures most naturally support components written

in Java (and in the case of UIMA, C++). zymake is agnostic as to the source

language of each component, making it easier to include programs written by

third parties or by researchers who prefer different languages.

make, despite dating from 1979, has proved its usefulness over time, and is

still widely used. Many other systems have been developed to replace it, in-

cluding ant15, SCons16, maven17, and others. However, so far as we are aware,

none of these systems solves the problems we have described with make. As

with make and shell scripts, running experiments is certainly possible using

these other tools, but we believe they are far more complex and cumbersome

than zymake.

5.6 Future Extensions

There are a number of extensions to zymake that could make it even more use-

ful. One is to allow the dependency DAG to vary during the running of the

experiment. At the moment, zymake requires that the entire DAG be known

before any processes can run. As an example of when this is less than ideal, con-

sider early-stopping an artificial neural network. One way of doing this is train

the network to full convergence, and output predictions from the intermediate

networks at some fixed interval of epochs. We would like then to evaluate all

these predictions on held-out data (running one process for each of them) and

15http://ant.apache.org/.
16http://www.scons.org/.
17http://maven.apache.org/.

84

http://ant.apache.org/
http://www.scons.org/
http://maven.apache.org/

then to choose the point at which this score is maximized (running one process

for the whole set). Since the number of iterations to convergence is not known

ahead of time, at the moment we cannot support this structure in zymake. We

plan, however, to allow the structure of the DAG to vary at run-time, allowing

such experiments.

We are also interested in other extensions, including an optional textual or

graphical progress bar, providing a way for the user to have more control over

the string filename produced from a key-value set18, and keeping track of pre-

vious versions of created files, to provide a sort of version control of the output

files.

5.7 Conclusion

Most experiments in machine learning and natural language processing involve

running a complex, interdependent set of processes. We have argued that there

are serious difficulties with common approaches to automating these experi-

ments. In their place, we offer zymake, a new scripting language with shell-like

syntax but make-like semantics. We hope our community will find it as useful

as we have.

18This will better allow zymake to interact with other workflows.

85

CHAPTER 6

TOWARDS IMPROVED FEATURE ENGINEERING FOR NATURAL

LANGUAGE PROCESSING

In previous chapters, we have described the empirical, machine learning meth-

ods used to solve our natural language problems. In this section, we will dis-

cuss one of those methods, feature engineering. In machine learning, problem

encoding or feature engineering is a critical part of developing an effective clas-

sifier for a learning task. However, the machine learning literature has little to

say about this, typically leaving it up to an unspecified domain expert.

1: training data, development data← collect raw data
2: learner← choose learner
3: feature set← choose initial features
4: while (error is too high and time remains) do
5: predictor← learner(training data, feature set)
6: predictions← predictor (development data, feature set)
7: diagnosis← error analysis(predictions, development data)
8: feature set← add/remove features(feature set, diagnosis)
9: end while

Figure 6.1: The steps of feature engineering. Italics indicate steps involving per-
task researcher intervention.

Figure 6.1 presents pseudocode of the process of feature engineering, based

on our experience in applying machine learning to problems in natural lan-

guage processing. We believe these steps to be typical for most researchers in

natural language processing. The researcher begins a new project by collecting

“raw” data, typically the original text of documents along with any existing an-

notations, and splitting it into training data and development data (the latter

is sometimes called the “devtest”, in that it is used for testing during develop-

ment of the model). The researcher also chooses a learning model, such as sup-

port vector machines or maximum entropy models. The researcher next chooses

86

an initial set of features. The loop of feature engineering starts by training the

model on the training data, and using the learned model to make predictions

on the development data. The researcher then examines the output, scrutiniz-

ing the errors, trying to produce a diagnosis of what’s causing the errors. Based

on this diagnosis, the researcher may remove features that appear to be unhelp-

ful and/or add new features that may improve the model, and then iterates this

process.

In this chapter, we explore two ways in which this process can be improved.

First, many machine learning algorithms, such as support vector machines,

decision trees, and others, expect that feature values for the data set be pre-

calculated before learning or prediction take place. Many features are complex,

and so this pre-calculation can be a very computationally expensive step. More-

over, feature calculation is typically a two-step process. A knowledge resource

is collected and perhaps applied to the data. For a natural language process-

ing task, a knowledge resource might be a part-of-speech tagger, parser, or an

information source such as the WordNet hierarchy (Miller, 1995). Then, feature

values are extracted for each data instance based upon the knowledge resource.

In this chapter, we introduce a simple infrastructure based on databases that

supports this two-step process and makes the step of feature pre-calculation

more efficient.

A natural question that then arises is whether the steps in the feature engi-

neering process that require per-task researcher intervention (those in italics in

Figure 6.1) can be conducted in a semi-automatic, or entirely automatic manner.

To this end, we report experiments that intend to produce automatic feature engi-

87

neering. We further introduce the idea of active feature engineering, a process that

leaves the human in the loop, but minimizes the effort required.

The rest of this chapter proceeds as follows. In Section 6.1, we discuss re-

lated work in feature engineering. In Section 6.2, we discuss our database-based

infrastructure for pre-calculation of feature values during feature engineering.

Finally, in Section 6.3, we discuss performing feature engineering in an entirely

automatic manner.

6.1 Related Work

Here we discuss feature engineering research as it relates to our work. It is well

known that the formal representation with which an automatic learning proce-

dure is presented matters greatly in the ability of the learner to successfully gen-

eralize from training data to novel examples. Hence, there is a huge literature

in automatically transforming data from one representation to another. That is,

the data is assumed to exist in an input formal representation M (having some

structure), and the learning procedure needs instead a set of feature vectors in

Kn, where K can be R, {0, 1} or some finite set of values, and n is a positive

integer denoting the dimension of the output space. Research in automatically

changing representation, then, searches the space of functions f : M → Kn.

We further discuss three subareas: feature selection, constructive induction and

user-assisted constructive induction.

Feature Selection Guyon and Elisseef (2003) provide an overview of recent re-

search in feature selection. Most of this research assumes that the researcher has

88

a (large) set of initial features, but only a small number are relevant, so a learner

can produce a better predictor if the relevant subset can be identified. Methods

used include ranking features by a scoring function, analyzing the correlation

among features, and greedily choosing a subset that directly maximizes the per-

formance of a chosen learning algorithm. Another subarea involves mappings

that do not simply choose features individually but project the input features

onto a different space, using functions from PCA to wavelets. Either way, re-

search in this area begins with the assumption that instances are represented by

feature vectors, while one of our goals is to start with a more basic representa-

tion.

Constructive Induction Fawcett (1993) provides an overview of work in con-

structive induction (albeit older work). The input representation assumed in

this work is potentially richer than that assumed in feature selection - some

tractable variant of first-order logic is typically used. To cope with this, re-

searchers make a variety of assumptions. One type of assumption is that a for-

mal domain theory is available to guide the search. Such domain theories are

rarely available for NLP tasks. Another type of (implicit) assumption assumes

that the search will proceed by combining existing features using a small num-

ber of combinators (such as logical AND, OR or arithmetic operations). While

this may succeed if useful features are a simple combination of a small number

of existing features, such methods cannot efficiently explore a very large space

of potential features. We hypothesize that for many NLP tasks, the space of

potential features is so large that existing methods for automatic exploration of

the space will be much less effective than they have been in their original prob-

89

lem domains (we are not aware of constructive induction work that specifically

targets a natural language processing task).

User-assisted constructive induction We are aware of a small amount of re-

search which explores a similar problem to constructive induction but involves

the user in the feature creation process. Lo and Famili (1997) develop a system

in which a user can, through a simple graphical interface, introduce novel fea-

tures that are simple arithmetic combinations of existing features. They also

explore a number of metrics and methods for evaluating the utility of the new

features in the context of data mining. Ngai and Yarowsky (2000) compare an

active learning approach to humans writing regular-expression rules for the

task of noun phrase chunking. The authors find that active learning appears

to be more efficient in terms of human effort for this task.

Active Learning In this chapter, we discuss feature engineering, and several

variants from a fully manual process to a fully automatic one. In between would

be a process involving back-and-forth interaction between a human and a ma-

chine, and a related area of work is called active learning. Active learning is an

area of research in which the learning algorithm “has some control over the in-

puts it trains on” (Cohn et al., 1994, page 201). One typical scenario called “sam-

ple selection” involves a large initial pool of unlabeled instances, from which the

learner selects a subset for a human to annotate. For example, the learner may

select instances on which its prediction has a low confidence. Given this manual

annotation, the learner learns a new model, and selects a new subset, and the

human and learner iterate back-and-forth until a desirable level of performance

is reached. Typically this results in the human needing to annotate far fewer

90

instances than without active learning.

6.2 A reusable, efficient, and lightweight infrastructure for pre-

calculating feature values during feature engineering in

natural language processing

In this section, we introduce a reusable, efficient, and lightweight infrastructure

for pre-calulating feature values during feature engineering in natural language

processing tasks. The infrastructure is motivated by two key observations about

the process of Figure 6.1.

• Specifying the format of the raw data will allow more reusability of the infrastruc-

ture code A researcher might argue that a fixed format for data would be

insufficient to capture any desired annotation. However, without a fixed

formal format for storing data, it is difficult to produce an infrastructure

that can be re-used across tasks.

• Calculating feature values can be very inefficient At every iteration, the values

for all features for all data instances must be calculated before the rest

of the loop can proceed, and yet this calculation can require substantial

engineering to operate efficiently. While this is true of other steps in the

while loop, training and predicting with machine learning have received

considerable attention in the literature. If a reusable infrastructure can

improve this efficiency while allowing the researcher to write cleaner code,

the researcher’s time can be spent more effectively.

91

Data format What is a reasonable format to use for natural language process-

ing annotations? Many NLP tools natively produce annotations in an “in-band”

or “inline” format that intersperses the annotation with the text it modifies. Sev-

eral examples of inline formats in use in NLP are presented in Figure 6.2. How-

ever, in-line annotation has problems. In a typical NLP pipeline, where a succes-

sion of programs adds more and more annotations, each program must be able

to fully parse the output from all prior annotations, and faithfully reproduce

all prior annotations as well as its own on output. Especially when using tools

developed by different researchers, this can be a problem, for reasons such as

character sets and varied annotation formats. Many in-line annotation formats,

such as those derived from XML or SGML, expect tree-structured annotation,

meaning that crossing brackets (e.g. <a>) cause problems.

A more robust strategy is to produce “out-of-band” or “standoff” annota-

tions, which simply list pairs of an index into the text with the desired anno-

tation information. The GATE system (Cunningham et al., 2002), for example,

stores annotations logically as attached to start and end locations in text, and

physically in an XML representation. A more abstract structure for annotations

is described by Bird and Liberman (1999). There are many ways of specifying

annotations, but one possible set of standoff versions of the annotations in Fig-

ure 6.2 is presented in Figure 6.3.

There are potentially many physical ways of storing such standoff anno-

tations, but we note that relational databases, a proven and well-understood

technology, seem like a very close fit to the annotations in Figure 6.3. We will

describe here an implementation that stores each annotation in a separate re-

lational database table, and leave for future work implementations involving

92

Named entity
<ENAMEX TYPE="PERSON">President Bush</ENAMEX> is in
<ENAMEX TYPE="LOCATION">Texas</ENAMEX>
Part-of-speech
President/NNP Bush/NNP is/VBZ in/IN Texas/NNP
Constituent parse
(S (NP President Bush) (VP is (PP in (NP Texas))))

Figure 6.2: Typical natural language processing annotations

Constituent parse Part-of-speech
start end nonterminal position part-of-speech
1 5 S 1 NNP
3 5 VP 2 NNP
1 2 NP 3 VBZ
4 5 PP 4 IN

5 NNP
Named entity

start end TYPE
1 2 PERSON
5 5 LOCATION

Figure 6.3: Typical natural language processing annotations – standoff

XML databases or other formats.

Efficient data generation Figure 6.4 depicts an obvious but flawed approach

to generating training and test data during feature engineering. With each new

1: . . .
2: while (error is too high and time remains) do
3: for instance i in data do
4: for feature f do
5: calculate f(i), store in output file
6: end for
7: end for
8: . . .
9: end while

Figure 6.4: Naive data generation

93

iteration of feature generation, for every instance, for every feature, we calculate

the value of the feature for that instance, and store it in the training or test data

file. There are two problems with this approach. The first is that since feature

calculation can be very inefficient, it is expensive to re-calculate feature values at

every iteration of data generation. Instead, we should cache them once, when

the features are invented. The second problem is that multiple features may

share common computation, which again is wastefully duplicated. For exam-

ple, the prev, next, and cur features from Section 3.2 are all based on running

the CASS partial parser, but clearly we do not want to re-run the parser for each

feature calculation. Instead, we want to cache shared computation. However,

the shared computation is simply another sort of annotation, which we store, as

with other annotations, in the annotation database.

Once all annotations and shared computations are stored in the database, the

computational specification of a feature becomes simply a database query. Sec-

tion 6.2.2 below provides a complete example of this encoding. One immediate

advantage of defining a feature in this way is that a complicated information

source can be stored in the database without specifying exactly how to encode

it as a feature, and then the process of feature engineering can be simply explor-

ing alternate queries. For example, one could store all of WordNet as a database,

and then explore variant encodings of WordNet-based features by simply writ-

ing different queries. Tenenbaum’s WordNet-based features for opinion expres-

sion identification (see Table 3.5) and our alternate WordNet-based features (see

Table 3.9) could be described by writing different queries to the same database.

The example in the next section gives a number of specific queries for features

for the opinion expression identification task.

94

6.2.1 Query encoding

One subtlety to be discussed is the exact format in which queries representing

features should return their results. Consider the features and feature values in

Table 3.4. How should the queries for these features return their result? One

way would be to return a table with one record per instance, one column per

feature value. For tokens t1, t2 and features w0, pos, this would result in Ta-

ble 6.1.

Table 6.1: A possible result of a feature query

w0 pos · · ·
The DT · · ·
speaker NN · · ·
...

... . . .

There are two problems with this sort of encoding. One is that it does not

accommodate features with multiple values. For example, the wordnet feature

in Table 3.9 would be difficult to include in this sort of encoding. The other

problem is that in practice, it is useful to be able to issue feature queries inde-

pendently and collect the results later, but since this format does not identify

the instances, it requires the construction of a single database query that en-

codes the entire current feature set. While not impossible, making this query

efficient can be problematic. Therefore, we assume that our result tables have

a rotated structure, with one record per feature-value, and with every record

having three columns - a globally unique instance identifier, a string denoting

the name of each feature, and another string denoting the value of the feature.

Table 6.2 gives an example of this format. It is easy to issue each query sepa-

rately and concatenate (union) the results. It is straightforward to convert from

this format to a binarized feature-value format for input to SVMlight or other

95

machine learning programs.

Table 6.2: Results of feature queries in our infrastructure

instance identifier feature name feature value
t1 w0 The
t1 pos DT
t2 w0 speaker
t2 pos NN
...

...
...

One aspect of problem encoding that is not always discussed is the question

of what exactly is an instance. From a high-level description of a research task,

it may not always be clear whether an instance for machine learning is, for ex-

ample, a word or a phrase, a sentence or a paragraph, and so forth. Obviously a

computational encoding of the problem must address this, and this infrastruc-

ture provides a convenient language for answering this question. One specifies

the set of instances by providing a query that returns a set of instance identifiers.

Putting it all together, Figure 6.5 describes our infrastructure for feature en-

gineering. Note that the code that the researcher writes is code that adds tables

to databases, and database queries. This remains language agnostic as bindings

to popular databases exist in most popular languages.

6.2.2 An example: identifying DSESEs (from Section 3.2)

We will use relational databases and SQL1 in this example, although we could

have used XML databases and xquery (The World Wide Web Consortium, 2005)

or other databases. We construct SQL queries corresponding to the features

1SQL is the Structured Query Language, the standard for relational databases such as Oracle
or MySQL.

96

1: (training data, development data)← collect raw data
2: learner← choose learner
3: database← choose initial knowledge sources
4: feature queries← choose initial feature set
5: feature cache← issue feature queries to database
6: while (error is too high and time remains) do
7: (training vectors, development vectors) ← combine values from fea-

ture cache {Only use features in current feature queries set}
8: predictor← learner(training vectors)
9: predictions← predictor (development vectors)

10: diagnosis← error analysis(predictions, development vectors)
11: database← if needed, add new knowledge source
12: feature queries← add/remove features(diagnosis, feature queries)
13: feature cache← issue new feature queries to database
14: end while

Figure 6.5: An infrastructure for feature engineering. Italics indicate processes
not handled by the infrastructure.

used in DSESE identification (described in Section 3.2), from which an SQL en-

gine can produce feature vectors. We do not intend these to be necessarily the

most efficient queries for the problem, but merely to make clear how a query

language can be used for the purpose of defining features.

The problem of identifying DSESEs uses the MPQA corpus introduced in

Section 3.2. This corpus is the “raw data” of Figures 6.1 and 6.5. We repre-

sent all the data in the corpus – the raw text and manual annotations – as well

as knowledge sources like part of speech and parse information as tables in a

relational database. Schema design is a difficult problem, but here we simply

assume that we have one table per type of annotation. Thus we have four tables

in our database: token, cass, dsese, and lev fn.

Consider Table 6.3, depicting the token table. The table has one row per

token in all documents in the corpus. The fields are, in order, the character

index of the start of the token in the raw text, the index of the end of the token,

97

the ordinal index of the token in the corpus, the part-of-speech of the current

token, and the string itself.

Table 6.3: The token table
start end ind pos string
1 4 1 DT The
5 8 2 NN speaker
10 13 3 VBD argued
...

...
...

...
...

The cass table, in Table 6.4, contains information extracted from the partial

parse provided by the CASS parser. Besides the information common to all

tables, this table gives the previous, current, and following node in the partial

parse tree. The lev fn table, in Table 6.5, lists categories of words based on

Beth Levin’s verb categorization and the Framenet resource. Finally, the dsese

table, in Table 6.6, lists all the DSESEs, including for each one, its source and

whether it is explicit in the text or implicit (e.g. the writer’s DSESE is implicit).

Table 6.4: The cass table
start end prev cur next
1 4 empty nx vx
5 8 empty nx vx
10 13 nx vx vx
...

...
...

...
...

Table 6.5: The lev fn table
start end type
10 13 levin strong verb
10 13 framenet speech event verb
...

...
...

98

Table 6.6: The dsese table
start end is implicit source
1 1 true writer
10 13 false speaker
...

...
...

...

6.2.3 Queries

With the raw data for the problem stored according to this schema, we can ex-

press the original features for DSESE-identification with the SQL queries de-

picted in Table 6.7. Each query is required to return a table of records with three

fields - a numerical instance identifier, a string naming which feature this is a

value of, and a third string that denotes the value of that feature. The infrastruc-

ture handles translating these categorically-valued features into binary features.

Table 6.7: SQL queries to generate the original features for DSESE identification
from Section 3.2
feature query
instance select ind from token
class select token.ind,’class’,1 from token join dsese

using (start,end) where not dsese.is implicit
w−4 . . . w4 select t0.ind,’w’||(t1.ind-t0.ind),t1.string from

token as t0,token as t1 where t1.ind >= t0.ind-4
and t1.ind <= t0.ind+4

lev, fn select token.ind,’lev fn’,type from token join
lev fn using (start,end)

cur select token.ind,’cur’,cur from token join cass
using (start,end)

next select token.ind,’next’,next from token join cass
using (start,end)

prev select token.ind,’prev’,prev from token join cass
using (start,end)

pos select ind,’pos’ as name,pos as value from token

Table 6.8 depicts the result of executing this query on the tables shown. A

simple wrapper script can transform this table into feature vectors for input to

99

the base learner.

Evaluation A system like this is difficult to evaluate. Anecdotally, our work

described in Chapter 3 was done using a preliminary implementation of this

framework. It allowed us to easily add new features by writing a short SQL

query for each new feature, and to quickly test various combinations of features.

We have also done feature engineering using a procedural encoding of features,

and found that the effort involved in making the pre-calculation efficient and

in adding new features was substantially more than in using this infrastructure.

Finally, note that while this discussion has used a simple stand-off annotation

scheme and relational databases, a similar infrastructure could be built using

other annotation schemes and other databases, and we are interested in explor-

ing this in the future.

100

Table 6.8: The result of the queries in Table 6.7

ind name value
3 class 1
...

...
...

1 cur nx
2 cur nx
3 cur vx
...

...
...

1 next vx
2 next vx
3 next vx
...

...
...

1 pos DT
2 pos NN
3 pos VBD
...

...
...

1 prev empty
2 prev empty
3 prev nx
...

...
...

3 w-2 The
...

...
...

2 w-1 The
3 w-1 speaker
...

...
...

1 w0 The
2 w0 speaker
3 w0 argued
...

...
...

1 w1 speaker
2 w1 argued
...

...
...

1 w2 argued
...

...
...

3 lev fn levin strong verb
3 lev fn framenet speech event verb
...

...
...

101

6.3 Automatic feature engineering

A natural question that follows from the previous section is whether we can

fully or partially automate those steps of the feature engineering process that

required human intervention. We introduce automatic feature engineering, a pro-

cess that attempts to take raw data and a learning algorithm, and determine

automatically the ideal feature set. This is distinct from constructive induction

as no base set of features is provided, only knowledge sources, encoded in rela-

tional databases.

Researcher intervention during feature engineering in the infrastructure de-

scribed in Figure 6.5 comes in three parts: diagnosing the errors; based on di-

agnosis, adding new knowledge sources; and based on diagnosis, adding or

removing feature queries. In this section, we investigate the hypothesis that

each of these steps can be done fully automatically.

We automate each of these three pieces in a simple way as follows.

• Diagnosing the errors. Ideally, we would have a system that could auto-

matically examine the predictions of the learned model, identify errors,

determine the causes of errors and propose solutions. In this simple exper-

iment, however, we simply identify errors, i.e. we will identify whether or

not a test instance from the development corpus was assigned the correct

class.

• Adding new knowledge sources. It is not clear what a reasonable way of

automatically adding new knowledge sources would be. One potential

solution, discussed below, is to build up a very large stable of knowledge

sources useful across NLP, so that a new task would not be likely to need

102

additional sources. In this simple experiment, we simply begin with a

small number of initial knowledge sources and not add any more during

feature engineering.

• Adding or removing new features. Since we do not have diagnosis, we have

no guide for what features to add. Instead, we simply choose a large set of

potentially useful features before feature engineering begins, and add one

feature from the set at each iteration. We only consider removing the most

recently added feature, based on the results of automatic evaluation.

In the next section, we describe an experiment run using this setup. In fol-

lowing sections, we analyze these automatic steps, and suggest potential av-

enues for alleviating the difficulties encountered.

6.3.1 Automatic feature engineering for identifying direct sub-

jective expressions

Given the automatic steps above, we will run experiments to test the efficacy of

automatic feature engineering on the task of identifying direct subjective expres-

sions defined in Chapter 3. We will compare the automatically learned features

to hand-engineered features. We hope to be able to substantially outperform the

hand-engineered features, as well as to discover one or more “killer features”

that we did not think of when doing manual feature engineering.

103

Adding and removing features

For this experiment, rather than exploring the full complexity of SQL queries,

we will explore a simple space of potential features. The space will consist of

features bi, where b is a basis feature, and i is the offset from the target word - i.e.

b0 represents evaluating b on the current word, while b2 represents evaluating b

on the word two to the right of the current word.

The basis features we use are based on the features described in Chap-

ter 3. From Section 3.2 we include the word itself w, the part-of-speech pos,

the partial-parse features prev, cur, next, and the Levin and FrameNet fea-

tures lev and fn. From Section 3.3 we include the lemma, hypernyms of the

lemma wordnet, and the original Levin category levinorig. We also include

a version of levinorig that is only active for words tagged as verbs, called

levinorig-verb. From Section 3.5, we include a feature based on the wordlist

from Wilson et al. (2005b) wilson, as well as analogous features based on the

wordlist from Wiebe and Riloff (2005) wiebe, another wordlist used by Wiebe2

wiebe1, and on the original baseline dictionary oldbase.

There are many potential ways of exploring this space of features. One typi-

cal method, called greedy forward stepwise feature selection, involves consider-

ing every feature at each iteration, and choosing the best one. We were intrigued

by the work of Ungar et al. (2005) on Streamwise Feature Selection. The idea of

this paradigm is that a space of features may be so large that traditional forward

stepwise selection is not feasible, as it is too expensive to consider every poten-

tial feature at each iteration. Instead, they suggest ordering the features, and

considering each feature only once, in order, accepting or rejecting it. Evaluat-

2Personal communication, the list transmitted from Wiebe in August 2005.

104

ing on a synthetic dataset, a bankruptcy prediction dataset, and a link predic-

tion task based on CiteSeer, they find that Streamwise Feature Selection is able

to successfully cope with extremely large potential feature sets and is robust to

large numbers of noise features. We adopt this paradigm for these experiments,

and compare to a model using the features manually selected in Chapter 3 and

to a model using all features within a window of six words.

The next decision to make is how to decide to accept or reject each feature.

Ungar et al. (2005) suggest using statistical model selection criteria to make this

decision, and we follow their suggestion.

Model selection criteria The statistics and information theory literature have

produced a number of model selection criteria, among them the Akaike In-

formation Criterion (AIC) (Akaike, 1974), Bayes Information Criterion (BIC)

(Schwarz, 1978), the Risk Inflation Criterion (RIC) (Foster and George, 1994),

the Information Investment Criterion (IIC) (Ungar et al., 2005). Each criterion

computes a score for a model such that, when choosing between two potential

models, the one having the lower score is to be selected. The formulas for each

score are presented below.

AIC(model) = 2k − 2 ln L

BIC(model) = k ln n− 2 ln L

RIC(model) = 2k ln p− 2 ln L

105

Here k is the number of parameters in the trained model, L is the likelihood

for the model, n is the number of instances in the data set, and p is the total

number of available features – that is, the number of features that will ever be

considered. We assume that the learned model has one parameter per feature, so

k will be equal to the current number of features. In our case, we are interested

in whether to choose a model with a particular feature, or without that feature.

At the ith iteration, we compute the likelihood Li−1 for the model with ki−1

features, add the new feature, compute the likelihood Li for the model with

ki−1 + 1 features. All criteria are of the form C = 2kx − 2 ln L, and suggest

that we choose the model with the smaller criterion value, i.e. accept the new

feature if Ci < Ci−1. This works out to 2(ki−1 + 1)x− 2 ln Li < 2ki−1x− 2 ln Li−1,

or x < ln Li − ln Li−1 — in other words, each criterion type sets a threshold that

the increase in log-likelihood must be above for the feature to be accepted by

the model. From the definitions above, the threshold x is 1 for AIC, 1
2
ln n for

BIC, and ln p for RIC.

The IIC criterion works slightly differently from the rest, in that its value

changes over time, becoming less restrictive as valuable features are added to

the model and more restrictive as the selection process moves later into the

stream of features. The threshold is set to w∆ + b− log w
2i

, where w∆ is a constant,

specifying the amount by which the “wealth” is increased each time a valuable

feature is added to the model (here set to 0.5, following Ungar et al. (2005)), b is

the coding cost for the coefficient (here set to 3, following Ungar et al. (2005)),

w is the current wealth, adjusted as the process proceeds, and i is the iteration

number.

106

Experiments

Our experiment in automatic feature engineering is based on the experiments

to identify opinion expressions described in Section 3.5. We choose in particular

to identify direct subjective expressions, and based on the results in Table 3.12,

we use order-0 conditional random fields trained to predict both direct subjec-

tive expressions and expressive-subjective elements. We will report the SF overlap

statistic of Section 3.2 . We diverge from the experimental setup in Section 3.5 in

just two ways - first, we train and test solely on the 135-document development

data3 (due to the computationally-intensive nature of these experiments), and,

of course, we use a different set of features. At each iteration, we consider a

single feature from the ordered set described above, and accept or reject it ac-

cording to the IIC criterion. We begin by using the IIC criterion because it was

found to be superior by Ungar et al. (2005), and because, as we will see below,

all the criteria turn out to be equally poor.

Results Figures 6.6 and 6.7 present the results of the experiment described

above and including performance on test and training data. Results are also

presented for a model using the manually selected feature set described in Sec-

tion 3.5 and a model using all potential features above within a six-word win-

dow on either side of the target word.

Discussion The results are disappointing, showing that the algorithm heavily

overtrains, with training set performance continually increasing while test set

performance peaks early (at iteration 27) and then declines. The automatic fea-

3We use the 66 documents of development data referred to in Chapter 4 for (dev)testing, and
the remaining 69 documents of development data for training.

107

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ov
er

la
p

F-
m

ea
su

re

iterations

automatic feature engineering
all features for 6-word window

manually selected features

Figure 6.6: Results on training set of automatic feature engineering for identify-
ing direct subjective expressions.

ture engineering results for the test set performance do slightly outperform the

hand-selected features (the peak value at iteration 27 is 64.94 versus 63.87 for

the hand-selected features). The hand-selected feature set has greater test set

performance than using all features (again, 64.94 at its peak versus 60.13 for all

features).

The key problem turns out to be that the model selection selection criteria are

a poor match for this task. When we examine which features were selected, we

see a difficulty with this algorithm - nearly all features are being selected. Recall

that the information criteria select any feature if adding it produces a gain in

log-likelihood bigger than some decision threshold. Figure 6.8 plots the gain in

108

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ov
er

la
p

F-
m

ea
su

re

iterations

automatic feature engineering
all features for 6-word window

manually selected features

Figure 6.7: Results on devtest set of automatic feature engineering for identify-
ing direct subjective expressions

log-likelihood at each iteration of the experiment, and also the decision thresh-

old corresponding to each of the four information criteria (again, the criterion

actually used for choosing features was IIC). The figure shows that the various

information criteria’s thresholds are quite similar, and all are well below the re-

quired change in log-likelihood for most features. Moreover, the log-likelihood

increase for features remains quite high for later iterations, even as the features

are less and less helpful to F-measure performance, so that all criteria will con-

tinue to select features throughout the process. It is not clear why the model

selection criteria relate so poorly to F-measure test set performance. One rea-

son may be that in the calculations above, we assumed each feature adds one

109

-2

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

ch
an

ge
 in

 lo
g-

lik
el

ih
oo

d

iterations

AIC
BIC
RIC
IIC

change in log-likelihood, capped at 10

Figure 6.8: Selecting features according to several information criteria. This
graph plots change in log-likelihood during the experiment described in the
text, using IIC to select features. It also plots the decision threshold correspond-
ing to each of four information criteria.

model parameter, while in fact many of our features (such as w0, the current

word, or wordnet, the wordnet hypernyms of the current word), correspond to

tens or hundreds or thousands of features when binarized for use in the condi-

tional random field, and thus correspond to equally large numbers of weights.

There are a number of potential ways of coping with this, but all have difficul-

ties. Dividing the log-likelihood gain at each step by the corresponding number

of features would downweight the usefulness of a feature like WordNet that is

extremely helpful but corresponds to tens of thousands of binary features. Con-

sidering each binary feature separately would be computationally infeasible.

110

6.3.2 Examining automatic feature engineering

Our simple fully automatic feature engineering experiment was not successful.

That experiment was based on simple automation of several steps of the feature

engineering process. Here we examine these automations and their impact on

the success of the experiment.

Diagnosing the errors The above feature generation method does not include

diagnosis of the errors. Without diagnosis, the method must be “generate-and-

test” - that is, it generates potential features (by generating successively more

complex queries, or expressions in some language), and then either generates

several of them and does feature selection, or chooses, one-by-one, whether to

include each feature. Neither of these is really ideal; it would be preferable to

learn, given the problem at hand, what the feature is that can “solve it”. Existing

rule-learning systems, however, are only guided search at the level of how to

combine atomic features, and here, atomic features are the problem.

Adding and removing features The space of features considered in the exper-

iments above in is not particularly large. In this case, existing machine learn-

ing methods (such as support vector machines or maximum entropy models)

can often cope with reasonably large feature sets. Even if they have relatively

poor performance, the problem then reduces to feature selection, which is well-

studied. On the other hand, if the space of features is something like “SQL

queries less than a page long”, we believe that (a) no system could possibly cope

with the ridiculous number of potential features, but (b) nearly all features of in-

terest (not involving significant external knowledge sources) for many problems

111

could be encoded. We have yet to find a problem domain between these two ex-

tremes - too large to reduce to “just feature selection”, but too small to actually

contain any nonobvious “killer features” worth generating/searching for in the

first place.

Adding new knowledge sources The method above requires that a set of

knowledge sources be computed before automatic feature generation begins.

Knowing in advance of a given project what information will be useful is a

daunting expectation. However, it may be possible to canvass the literature on

natural language processing to come up with a moderately large set of standard

knowledge resources, beyond which a particular problem will require little ad-

ditional new information.

6.3.3 Active feature engineering

One potential point between fully automatic and fully manual feature engineer-

ing would be a semi-automatic process that keeps the human in the loop but

tries, similar to active learning, to carefully target their efforts to the most useful

point. We call this process active feature engineering, and discuss two problems

to be solved so that this process can be used.

A better query language Relational databases and SQL are a reasonable ap-

proach and we have used them successfully in many experiments. However,

there are difficulties with these tools. Portable SQL is not able (although ex-

tensions may exist) to handle notions such as “ancestor” that are important in

112

tree-based knowledge bases like WordNet or in computing features from parses.

It is also difficult to compute argmax, a central notion in many natural language

processing models. The XQuery (The World Wide Web Consortium, 2005) lan-

guage, a Turing-complete language for querying XML databases, may present

a solution to some of these problems, or it may be worthwhile developing a

domain-specific language for feature queries.

Automatic error analysis and error views Error analysis typically involves a

tedious process of looking at system outputs, trying to figure out what’s causing

the errors, and hypothesizing how they might be eliminated. Our goal is to

bring as much systematicity to this process as possible. In an ideal world, a

fully automatic process could analyze a system’s outputs and report back to

a human with a causal account of the system’s mistakes. We feel that this is

unlikely to be achieved in the near term, so our goal is simpler: to provide a

system that will canvass the system’s output, find patterns of error, and provide

a coherent report to the researcher in the form of error views. These error views

come in two classes: views of the data as a whole, and views of individual

errors. Views of the data as a whole might include confusion matrices, learning

curves, or bias/variance decompositions. Views of individual errors might sort

the instances by some criterion, or group instances by a common trait. Since

we have not yet implemented any of these ideas, we leave further details for

Section 7, but the general idea is to provide the researcher with tools for looking

at the data in such a way that the causes of error will be immediately apparent.

Figure 6.9 presents a new architecture, which we call active feature engineer-

ing. Rather than the researcher coming to a conclusion about the sources of error

unaided, we propose a step of “automatic error analysis”, that provides a set of

113

1: training data, development data← collect raw data
2: learner← choose learner
3: database← choose initial knowledge sources
4: feature queries← choose initial feature set
5: feature cache← issue feature queries to database
6: while (error is too high and time remains) do
7: (training data, development data) ← combine values from fea-

ture cache {Only use features in current feature queries set}
8: predictor← learner(training data)
9: predictions← predictor (development data)

10: error views ← automatic error analysis(system output, development
data)

11: diagnosis← manual error analysis(error views)
12: database← if needed, add new knowledge source, based on diagnosis
13: feature queries← add/remove features (diagnosis, feature queries)
14: feature cache← issue new feature queries to database
15: end while

Figure 6.9: Active feature engineering. Italics indicate manual steps

“error views” from which the researcher can more easily deduce the causes of

error4. Once the researcher has (manually) inspected these views, rather than

having to write new program code to modify the system, he or she simply pro-

poses one or more new features, written in a feature language. Note that the

training step might include automatic feature selection, so the researcher’s new

features might or might not actually be utilized by the system.

In this chapter, we have discussed the problem of feature engineering for

natural language processing, and introduced two improvements to the process.

We introduced a simple framework based on databases for improving the effi-

ciency of pre-calculating feature values. In the future we hope to more effec-

tively evaluate this framework, and to consider incorporating other annotation

schemes. We also set up an experiment in automatically conducting the process

4We are interested in investigating whether commercial data mining tools may already pro-
vide useful functionality of this type.

114

of feature engineering. While not successful, this experiment leaves a number

of interesting questions for future research.

115

CHAPTER 7

CONCLUSION

This thesis has introduced several problems in empirical natural language pro-

cessing and demonstrated solutions. Here we recap the contributions of this

work and discuss some promising directions for future work.

Identifying expressions of opinion We have created and evaluated a system

that identifies several types of opinion expressions with high accuracy. This sets

up a basic building block for opinion-oriented information extraction systems.

Identifying opinion hierarchies We have presented work that identifies with

high accuracy the hierarchical structure of opinion expressions. This structure

reflects the manner in which information is passed from one source to another

and will be crucial in analyzing the reliability of the information available to a

reader.

A lightweight system for machine learning workflows We have introduced

a tool for coordinating the execution of programs for machine learning and nat-

ural language processing experiments. We have argued that this tool is superior

to alternatives such as shell scripts and makefiles for coordinating experiments.

We hope to extend this tool to make it even more useful, for example to allow it

to integrate with grid computing resources. Moreover, we are interested in ex-

ploring other ways of encouraging reproducibility in computational linguistics

research.

116

Feature engineering for natural language processing We have analyzed the

process of feature engineering and introduced a simple infrastructure for im-

proving the efficiency of the process. We also conducted experiments to test

the difficulty of automating feature engineering, discovering that a simple ap-

proach does not work. We outlined a number of future approaches, including

building a library of reusable knowledge resources to make feature engineering

easier on future tasks.

117

BIBLIOGRAPHY

[Abney1996] Steven Abney. 1996. Partial parsing via finite-state cascades. Jour-
nal of Natural Language Engineering, 2(4):337–344.

[Abney1997] Steven Abney. 1997. The SCOL manual. cass is available from
http://www.vinartus.net/spa/scol1h.tar.gz.

[Akaike1974] Hirotugu Akaike. 1974. A new look at the statistical model iden-
tification. IEEE Transactions on Automatic Control, 19(6):716–723.

[Anick and Bergler1991] Peter Anick and Sabine Bergler. 1991. Lexical struc-
tures for linguistic inference. In Workshop in Lexical Semantics and Knowledge
Representation.

[Bergler1991] Sabine Bergler. 1991. The semantics of collocational patterns for
reporting verbs. In EACL91.

[Bergler1993] Sabine Bergler. 1993. Semantic dimensions in the field of report-
ing verbs. In Proceedings of the Ninth Annual Conference of the University of Wa-
terloo Centre for the New Oxford English Dictionary and Text Research, Oxford,
England, September.

[Bethard et al.2004] Steven Bethard, Hong Yu, Ashley Thornton, Vasileios
Hatzivassiloglou, and Dan Jurafsky. 2004. Automatic extraction of opinion
propositions and their holders. In Working Notes of the AAAI Spring Sympo-
sium on Exploring Attitude and Affect in Text: Theories and Applications. March
22-24, 2004, Stanford.

[Bird and Liberman1999] Stephen Bird and Mark Liberman. 1999. A formal
framework for linguistic annotation. Technical Report MS-CIS-99-01, Depart-
ment of Computer and Information Science, University of Pennsylvania.

[Breck and Cardie2004] Eric Breck and Claire Cardie. 2004. Playing the tele-
phone game: Determining the hierarchical structure of perspective and
speech expressions. In The 20th International Conference on Computational Lin-
guistics (COLING 2004), pages 120–126.

[Breck et al.2007] Eric Breck, Yejin Choi, and Claire Cardie. 2007. Identifying
expressions of opinion in context. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI-2007), Hyderabad, India, Jan-
uary.

118

[Breck2008] Eric Breck. 2008. zymake: A computational workflow system for
machine learning and natural language processing. In Working Notes of the
Workshop on Software Engineering, Testing, and Quality Assurance for Natural
Language Processing. A workshop of ACL-2008.

[Buntine1993] Wray Buntine. 1993. Learning classification trees. In D. J.
Hand, editor, Artificial Intelligence frontiers in statistics, pages 182–201. Chap-
man & Hall,London. Available at http://ic.arc.nasa.gov/projects/bayes-
group/ind/IND-program.html.

[Chinchor et al.1993] Nancy Chinchor, Lynette Hirschman, and David Lewis.
1993. Evaluating message understanding systems: An analysis of the
third message understanding conference (MUC-3). Computational Linguistics,
19(3):409–450.

[Choi et al.2005] Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth Patward-
han. 2005. Identifying sources of opinions with conditional random fields
and extraction patterns. In Human Language Technology Conference/Conference
on Empirical Methods in Natural Language Processing, Vancouver, Canada, Oc-
tober.

[Choi et al.2006] Yejin Choi, Eric Breck, and Claire Cardie. 2006. Joint extraction
of entities and relations for opinion recognition. In Proceedings of the 2006
Conference on Empirical Methods in Natura l Language Processing (EMNLP-2006).

[Church and Mercer1993] Kenneth Ward Church and Robert L. Mercer. 1993.
Introduction to the special issue on computational linguistics using large cor-
pora. Computational Linguistics, 19(1), March. Special Issue on Using Large
Corpora.

[Cohen1995] William W. Cohen. 1995. Fast effective rule induction. In A. Priedi-
tis and Stuart Russell, editors, Proceedings of the 12th International Conference
on Machine Learning, pages 115–123, Tahoe City, CA. Morgan Kaufmann.

[Cohn et al.1994] David A. Cohn, Les Atlas, and Richard E. Ladner. 1994. Im-
proving generalization with active learning. Machine Learning, 15(2):201–221.

[Collins1999] Michael John Collins. 1999. Head-driven Statistical Models for Nat-
ural Language Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia.

[Cunningham et al.2002] Hamish Cunningham, Diana Maynard, Kalina Bont-
cheva, and Valentin Tablan. 2002. GATE: A framework and graphical devel-
opment environment for robust NLP tools and applications. In Proceedings

119

of the 40th Anniversary Meeting of the Association for Computational Linguistics
(ACL ’02), Philadelphia, July.

[Daelemans et al.2000] W. Daelemans, J. Zavrel, K. van der Sloot, and
A. van den Bosch. 2000. TiMBL: Tilburg memory based learner, version 3.0,
reference guide. Technical report, Tilburg University.

[Das and Chen2001] Sanjiv Das and Mike Chen. 2001. Yahoo! for amazon:
Sentiment parsing from small talk on the web. In Proceedings of the Asia Pacific
Finance Association Annual Conference, Bangkok, Thailand, July.

[Dave et al.2003] Kushal Dave, Steve Lawrence, and David M Pennock. 2003.
Mining the peanut gallery: Opinion extraction and semantic classification of
product reviews. In WWW2003.

[Deelman et al.2004] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman,
Gaurang Mehta, Sonal Patil, Mei-Hui Su, Karan Vahi, and Miron Livny. 2004.
Pegasus : Mapping scientific workflows onto the grid. In Across Grids Confer-
ence, Nicosia, Cyprus.

[DUC2007] 2007. Proceedings of the Document Understanding Conference,
Rochester, NY, April. Presented at the NAACL-HLT 2007.

[Eisner1996] Jason Eisner. 1996. An empirical comparison of probability models
for dependency grammar. Technical Report IRCS-96-11, IRCS, University of
Pennsylvania.

[Fawcett1993] Tom E. Fawcett. 1993. Feature Discovery for Problem Solving Sys-
tems. Ph.D. thesis, University of Massachusetts, Amherst, May. CMPSCI
Technical Report 93-49.

[Feldman1979] Stuart I. Feldman. 1979. Make-a program for maintaining com-
puter programs. Software - Practice and Experience, 9(4):255–65.

[Ferrucci and Lally2004] David Ferrucci and Adam Lally. 2004. UIMA: an ar-
chitectural approach to unstructured information processing in the corporate
research environment. Nat. Lang. Eng., 10(3-4):327–348.

[Foster and George1994] Dean P. Foster and Edward I. George. 1994. Annals of
Statistics, 22(4):1947–1975.

120

[Gerard2000] Christine Gerard. 2000. Modelling readers of news articles us-
ing nested beliefs. Master’s thesis, Concordia University, Montréal, Québec,
Canada.

[Gil et al.2007] Yolanda Gil, Varun Ratnakar, Ewa Deelman, Gaurang Mehta,
and Jihie Kim. 2007. Wings for pegasus: Creating large-scale scientific ap-
plications using semantic representations of computational workflows. In
Proceedings of the 19th Annual Conference on Innovative Applications of Artificial
Intelligence (IAAI), Vancouver, British Columbia, Canada, July.

[Guyon and Elisseef2003] Isabelle Guyon and André Elisseef. 2003. An intro-
duction to variable and feature selection. Journal of Machine Learning Research,
3:1157–1182.

[Hatzivassiloglou and McKeown1997] Vasileios Hatzivassiloglou and Kath-
leen R. McKeown. 1997. Predicting the semantic orientation of adjectives.
In ACL97.

[Hobbs et al.1988] Jerry Hobbs, Mark Stickel, Paul Martin, and Douglas Ed-
wards. 1988. Interpretation as abduction. In Proceedings of the 26th annual
meeting of the Association for Computational Linguistics.

[Jindal and Liu2006] Nitin Jindal and Bing Liu. 2006. Mining comparative sen-
tences and relations. In Proceedings of AAAI.

[Kim and Hovy2006] Soo-Min Kim and Eduard Hovy. 2006. Extracting opin-
ions, opinion holders, and topics expressed in online news media text. In Pro-
ceedings of ACL/COLING Workshop on Sentiment and Subjectivity in Text, Syd-
ney, Australia.

[Kobayashi et al.2004] Nozomi Kobayashi, Kentaro Inui, Yuji Matsumoto,
Kenji Tateishi (NEC), and Toshikazu Fukushima (NEC). 2004. Collecting
evaluative expressions for opinion extraction. In Proceedings of the First Inter-
national Joint Conference on Natural Language Processing, pages 584–589.

[Lafferty et al.2001] John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models for segmenting and
labe ling sequence data. In ICML.

[Levin1993] Beth Levin. 1993. English Verb Classes and Alternations. University
of Chicago Press.

121

[Lin1995] Dekang Lin. 1995. A dependency-based method for evaluating
broad-coverage parsers. In IJCAI, pages 1420–1427.

[Litzkow et al.1988] Michael Litzkow, Miron Livny, and Matthew Mutka. 1988.
Condor - a hunter of idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June.

[Lo and Famili1997] Suzanne Lo and Abolfazl Famili. 1997. Development of
a knowledge-driven constructive induction mechanism. In Proceedings of the
Second International Symposium on Intelligent Data Analysis (IDA-97), London,
England, August.

[Marsh2005] Bill Marsh. 2005. The blame game, October 1. The New York
Times.

[McCallum2002] Andrew Kachites McCallum. 2002. MALLET: A machine
learning for language toolkit. http://mallet.cs.umass.edu.

[Miller1995] George A. Miller. 1995. WordNet: a lexical database for English.
Communications of the ACM, 38(11):39–41, November.

[Morinaga et al.2002] Satoshi Morinaga, Kenji Yamanishi, Kenji Tateishi, and
Toshikazu Fukushima. 2002. Mining product reputations on the web. In
KDD 2002.

[MTX2007] 2007. Proceedings of Machine Translation Summit XI, Copenhagen,
Denmark, September.

[Munson et al.2005] M Arthur Munson, Claire Cardie, and Rich Caruana. 2005.
Optimizing to arbitrary NLP metrics using ensemble selection. In HLT-
EMNLP05.

[Munson2004] M Arthur Munson. 2004. Automatic annotation of speech events
and explicit private state in newswire. Unpublished class project.

[Nasukawa and Yi2003] Tetsuya Nasukawa and Jeonghee Yi. 2003. Sentiment
analysis: capturing favorability using natural language processing. In Pro-
ceedings of the international conference on Knowledge capture.

[Ngai and Yarowsky2000] Grace Ngai and David Yarowsky. 2000. Rule writing
or annotation: Cost-efficient resource usage for base noun phrase chunking.

122

In Proceedings of the 38th Annual Meeting of the Association for Computational
Linguistics (ACL-2000).

[Norvig1987] Peter Norvig. 1987. Inference in text understanding. In Proceed-
ings of the National Conference on Artificial Intelligence.

[Pang and Lee2004] Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summarization based on mini-
mum cuts. In Proceedings of ACL 2004.

[Pang and Lee2008] Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment
analysis. Now publishers, July.

[Pang et al.2002] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002.
Thumbs up? sentiment classification using machine learning techniques. In
EMNLP.

[Quinlan1986] J.R. Quinlan. 1986. Induction of decision trees. Machine Learning,
1(1):81–106.

[Riloff and Wiebe2003] Ellen Riloff and Janyce M Wiebe. 2003. Learning extrac-
tion patterns for subjective expressions. In Proceedings of the 2003 Conference
on Empirical Methods in Natural Language Processing.

[Riloff et al.2003] Ellen Riloff, Janyce Wiebe, and Theresa Wilson. 2003. Learn-
ing subjective nouns using extraction pattern bootstrapping. In CoNLL-2003.

[Schwarz1978] Gideon E. Schwarz. 1978. Estimating the dimension of a model.
Annals of Statistics, 6(2):461–464.

[Stoyanov et al.2005] Ves Stoyanov, Claire Cardie, and Janyce Wiebe. 2005.
Multi-perspective question answering using the opqa corpus. In HLT-
EMNLP05.

[Subasic and Huettner2001] Pero Subasic and Alison Huettner. 2001. Affect
analysis of text using fuzzy semantic typing. In IEEE-FS, volume 9, pages
483–496, August.

[Tenenbaum2004] Sofya Tenenbaum. 2004. Applying wordnet to automatic
annotation of speech events and private state. CS790 report (Master’s of En-
gineering project).

123

[The World Wide Web Consortium2005] The World Wide Web Consortium.
2005. XQuery 1.0: An XML query language. W3C working draft.
http://www.w3c.org/TR/xquery.

[Tong2001] Richard M Tong. 2001. An operational system for detecting and
tracking opinions in on-line discussions. In SIGIR 2001 Workshop on Opera-
tional Text Classification Systems.

[Turney and Littman2002] Peter D. Turney and Michael L. Littman. 2002. Unsu-
pervised learning of semantic orientation from a hundred-billion-word cor-
pus. Technical report, National Research Council Canada. NRC Technical
Report ERB-1094.

[Turney and Littman2003] Peter D Turney and Michael L Littman. 2003. Mea-
suring praise and criticism: Inference of semantic orientation from associa-
tion. ACM Transactions on Information Systems, 21(4):315–346.

[Ungar et al.2005] Lyle Ungar, Jing Zhou, Dean Foster, and Bob Stine. 2005.
Streaming feature selection using IIC. In AI and Statistics.

[Voorhees1999] Ellen Voorhees. 1999. The trec-8 question answering track re-
port. In Proceedings of TREC-8.

[Wiebe and Riloff2005] Janyce Wiebe and Ellen Riloff. 2005. Creating subjective
and objective sentence classifiers from unannotated texts. In Proceedings of the
Sixth International Conference on Intelligent Text Processing and Computational
Linguistics (CICLing-2005). Springer-Verlag. Invited paper.

[Wiebe and Wilson2002] Jaynce Wiebe and Theresa Wilson. 2002. Learning to
disambiguate potentially subjective expressions. In Sixth Conference on Natu-
ral Language Learning, Taipei, Taiwan, August.

[Wiebe et al.1999] Janyce M. Wiebe, Rebecca F. Bruce, and Thomas P O’Hara.
1999. Development and use of a gold standard data set for subjectivity clas-
sifications. In Proc. 37th Annual Meeting of the Assoc. for Computational Linguis-
tics, pages 246–253.

[Wiebe et al.2002] Janyce Wiebe, Eric Breck, Chris Buckley, Claire Cardie, Paul
Davis, Bruce Fraser, Diane Litman, David Pierce, Ellen Riloff, and Theresa
Wilson. 2002. NRRC Summer Workshop on Multiple-Perspective Question
Answering Final Report. Tech report, Northeast Regional Research Center,
Bedford, MA.

124

[Wiebe et al.2003] Janyce Wiebe, Eric Breck, Chris Buckley, Claire Cardie, Paul
Davis, Bruce Fraser, Diane Litman, David Pierce, Ellen Riloff, Theresa Wilson,
David Day, and Mark Maybury. 2003. Recognizing and Organizing Opinions
Expressed in the World Press. In Papers from the AAAI Spring Symposium on
New Directions in Question Answering (AAAI tech report SS-03-07). March 24-
26, 2003. Stanford University, Palo Alto, California.

[Wiebe et al.2004] Janyce M. Wiebe, Theresa Wilson, Rebecca F. Bruce, Matthew
Bell, and Melanie Martin. 2004. Learning subjective language. Computational
Linguistics, 30(3):277 – 308, September.

[Wiebe et al.2005] Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005. An-
notating expressions of opinions and emotions in language. Language Re-
sources and Evaluation (formerly Computers and the Humanities), 39(2-3):165–210.

[Wiebe1994] Janyce M Wiebe. 1994. Tracking point of view in narrative. Com-
putational Linguistics, 20(2):233–287.

[Wilson et al.2004] Theresa Wilson, Janyce Wiebe, and Rebecca Hwa. 2004. Just
how mad are you? finding strong and weak opinion clauses. In Proceedings
of the Nineteenth National Conference on Artificial Intelligence.

[Wilson et al.2005a] Theresa Wilson, Paul Hoffmann, Swapna Somasundaran,
Jason Kessler, Janyce Wiebe, Yejin Choi, Claire Cardie, Ellen Riloff, and Sid-
dharth Patwardhan. 2005a. OpinionFinder: A system for subjectivity anal-
ysis. In Human Language Technology Conference, Vancouver, Canada, October.
Demo abstract.

[Wilson et al.2005b] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005b.
Recognizing contextual polarity in phrase-level sentiment analysis. In
Proceedings of Human Language Technologies Conference/Conference on Empiri-
cal Methods in Natural Language Processing (HLT/EMNLP 2005). Vancouver,
Canada.

[Witten and Frank1999] Ian Witten and E. Frank. 1999. Data Mining: Practi-
cal Machine Learning Tools and Techniques with Java Implementations. Morgan
Kaufman.

[Xia and Palmer2001] Fei Xia and Martha Palmer. 2001. Converting depen-
dency structures to phrase structures. In Proceedings of the HLT Conference,
March.

125

[Yi et al.2003] Jeonghee Yi, Tetsuya Nasukawa, Razvan C. Bunescu, and Wayne
Niblack. 2003. Sentiment analyzer: Extracting sentiments about a given topic
using natural language processing techniques. In Proceedings of the 3rd IEEE
International Conference on Data Mining, Melbourne, Florida, December.

[Yu and Hatzivassiloglou2003] Hong Yu and Vasileios Hatzivassiloglou. 2003.
Towards answering opinion questons: Separating facts from opinions and
identifying the polarity of opinion sentences. In Proceedings of the 2003 Con-
ference on Empirical Methods in Natural Language Processing.

126

	Biographical Sketch
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Opinion analysis
	1.1.1 Opinion-oriented information extraction
	1.1.2 Tasks addressed here

	1.2 Methods
	1.2.1 Computational workflow
	1.2.2 Feature generation

	1.3 Contributions and Structure of This Thesis

	2 Related Work
	2.1 Classification
	2.1.1 Document classification
	2.1.2 Sentence classification

	2.2 Extraction
	2.2.1 Extraction from reviews
	2.2.2 Extraction from news

	2.3 Lexicon building
	2.3.1 Polarity lexica
	2.3.2 Subjectivity lexica

	3 Identifying expressions of opinion in context
	3.1 Related work
	3.2 Identifying single-word direct subjective and speech expressions
	3.3 New features for identifying single-word direct subjective and speech expressions
	3.4 Identifying all direct subjective and speech expressions
	3.4.1 Results and Discussion

	3.5 Identifying direct subjective expressions and expressive-subjective elements
	3.5.1 The class variable
	3.5.2 New feature
	3.5.3 The learning method
	3.5.4 Evaluation
	3.5.5 Baselines
	3.5.6 Results
	3.5.7 Discussion
	3.5.8 Conclusions

	4 Determining the hierarchical structure of opinions
	4.1 Related Work
	4.2 The Approach
	4.3 Data Description
	4.3.1 Evaluation

	4.4 Results
	4.5 Discussion

	5 A lightweight system for natural language processing and machine learning workflows
	5.1 A Typical NLP Experiment
	5.1.1 Approach 1: A UNIX Shell Script
	5.1.2 Approach 2: A makefile
	5.1.3 Approach 3: zymake

	5.2 Benefits of zymake
	5.3 Using zymake
	5.4 Parallel Execution
	5.5 Other approaches
	5.6 Future Extensions
	5.7 Conclusion

	6 Towards improved feature engineering for natural language processing
	6.1 Related Work
	6.2 A reusable, efficient, and lightweight infrastructure for pre-calculating feature values during feature engineering in natural language processing
	6.2.1 Query encoding
	6.2.2 An example: identifying DSESEs (from Section 3.2)
	6.2.3 Queries

	6.3 Automatic feature engineering
	6.3.1 Automatic feature engineering for identifying direct subjective expressions
	6.3.2 Examining automatic feature engineering
	6.3.3 Active feature engineering

	7 Conclusion
	Bibliography

