eCommons Collection:
http://hdl.handle.net/1813/3439
Sat, 20 Sep 2014 07:58:36 GMT2014-09-20T07:58:36ZMany-body fermion density matrices
http://hdl.handle.net/1813/11559
Title: Many-body fermion density matrices
Authors: Cheong, Siew-Ann
Abstract: This four-part thesis is on the reduced many-body density matrices of systems of noninteracting and interacting spinless fermions, and the exact solution of ladder models of interacting spinless fermions. In the first part (Chapters 2 and 3), we derived an exact formula relating the density matrix and Green function for a cluster of sites within a system of noninteracting spinless fermions in any dimensions. Based on the thermodynamic form of the cluster density matrix in this exact formula, we proposed a truncation scheme in which the new Hilbert space is built from a truncated set of spinless fermion operators.
In the second part (Chapter 4), we studied various finite size effects in the cluster density-matrix spectra, and looked at how these can be reduced or eliminated using the method of twist boundary conditions averaging, for finite two-dimensional systems of noninteracting and interacting spinless fermions. We also checked the feasibility of the operator-based truncation scheme for interacting systems.
In the third part (Chapters 5, 6, and 8), we developed a systematic and unbiased machinery, based on the decomposition of the density matrix of two disjoint clusters $a$ and $b$, into a sum of products of an operator on cluster $a$ and an operator on cluster $b$, to extract the various quantum-mechanical correlations, from a numerical exact-diagonalization ground-state wave function. This machinery was applied to explore the ground-state phase diagram of the extended Hubbard ladder of spinless fermions with correlated hops (which are next-nearest-neighbor hops that occur in the presence of occupied nearest neighbors).
Description: Ph.D. thesis, submitted January 2006, supervisor Prof. Christopher Henley.Thu, 23 Oct 2008 22:02:19 GMThttp://hdl.handle.net/1813/115592008-10-23T22:02:19Z