eCommons

 

High Performance Techniques for Reducing Cache Power

Other Titles

Abstract

Minimizing power consumption continues to grow as a critical design issue for many platforms, from embedded systems to chip multiprocessors (CMP) to ultra scale parallel systems. Embedded systems, like their desktop counterparts, have migrated to a multicore architecture. Power is a first-order design component in the embedded domain, and advances in process technology have led to a cascading effect. Chiefly, decreasing feature sizes have led to lower voltage thresholds (to retain performance), thereby resulting in exponential increases in leakage. Leakage has now become a fundamental design concern with respect to total power budget. This issue has been postponed by using different SRAM cell designs on current process technologies.

Two approaches have been proposed to reduce the power requirements of cache memories: voltage scaling (or "drowsiness") and partitioning. Voltage scaling targets leakage current by reducing the voltage to cache lines unlikely to be referenced soon. Partitioning targets dynamic switching power by splitting the cache into smaller structures, either banks or regions. We combine the best of these two approaches by developing a new region cache organization. We add a new voltage scaling design that enables finer control of cache lines than previous voltage scaling policies. We evaluation this new organization on embedded and high performance architectures, finding it provides similar high performance and much lower power consumption than previously published low-power cache designs.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2008-04-30T20:45:10Z

Publisher

Keywords

performance; power; cache; memory

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record