Skip to main content


eCommons@Cornell >
American Physical Society Division of Fluid Dynamics >
Fluid Dynamics Videos >

Please use this identifier to cite or link to this item:
Title: Bouncing of a Droplet on Superhydrophobic Surface in AC Electrowetting
Authors: Lee, Seung Jun
Lee, Sanghyun
Kang, Kwan Hyoung
Keywords: Electrowetting
Bouncing of a droplet
Superhydrophobic surface
Digital microfluidics
Issue Date: 16-Oct-2009
Abstract: The movie shows a droplet jumping from the superhydrophobic surface under an alternating electrical actuation close to the resonance of the droplet vibration, which enables a sessile droplet to accumulate sufficient energy at the droplet surface to overcome the adhesion and the gravity. After jumping, the droplet bounces on the superhydrophobic surface, where the minimized adhesion and hysteresis make the decay of the bouncing height considerably slow. The resonant electrical actuation is the key for the droplet to accumulate sufficient energy for jumping; thereby the deformation and the jumping of a droplet are substantially affected by applied frequencies. Superhydrophobic surfaces are preferable in maximizing the jumping height because of the effective energy conversion from the surface energy to the kinetic energy. In addition, the stability and the reproducibility of the droplet jumping can be ameliorated because of the minimized adhesion superhydrophobic surfaces provide. The stability and the reproducibility of commercially available superhydrophobic surfaces used in this demonstration are fairly acceptable for the controlled jumping of a droplet on demand (CJDD), which is expected to play a key role in realizing three-dimensional droplet manipulations in digital microfluidics. The increasing demand for the three-dimensional configuration in microfluidics is also applicable to the digital microfluidics to manipulate droplets in three-dimensions. The three-dimensional droplet manipulation could be the radical solution to the difficult problems in current digital microfluidics such as the cross-contamination and the degradation of electrodes, and it will significantly broaden the scope of applications in digital microfluidics due to the expanded degree-of-freedom in z-direction. The controlled droplet jumping made by the resonant AC electrowetting shown in this movie could be a historical milestone in digital microfluidics, as suggesting a potential way to realize three-dimensional digital microfluidics by simply transporting droplets in z-direction based on current single plate EWOD configurations.
Appears in Collections:Fluid Dynamics Videos

Files in This Item:

File Description SizeFormat
mpeg_2 for display.mpgMain video for display at the meeting38.39 MBMPEGView/Open
mpeg_1 for web.mpgvideo for display on the web page9.85 MBMPEGView/Open

Refworks Export

Items in eCommons are protected by copyright, with all rights reserved, unless otherwise indicated.


© 2014 Cornell University Library Contact Us