eCommons

 

Nutrients in agroecosystems: Rethinking the management paradigm

Other Titles

Abstract

Agricultural intensification has greatly increased the productive capacity of agroecosystems, but has had unintended environmental consequences including degradation of soil and water resources, and alteration of biogeochemical cycles. Current nutrient management strategies aim to deliver soluble inorganic nutrients directly to crops and have uncoupled carbon, nitrogen and phosphorus cycles in space and time. As a result, agricultural ecosystems are maintained in a state of nutrient saturation and are inherently leaky because chronic surplus additions of nitrogen and phosphorus are required to meet yield goals. Significant reductions of nutrient surpluses can only be achieved by managing a variety of intrinsic ecosystem processes at multiple scales to re-couple elemental cycles. Rather than focusing solely on soluble, inorganic plant-available pools, an ecosystem-based approach would seek to optimize organic and mineral reservoirs with longer mean residence times that can be accessed through microbially- and plant-mediated processes. Strategic use of varied nutrient sources, including inorganic fertilizers, combined with increases in plant diversity aimed at expanding the functional roles of plants in agroecosystems will help restore desired agroecosystem functions. To develop crops that can thrive in this environment, selection of cultivars and their associated microorganisms that are able to access a range of nutrient pools will be critical. Integrated management of biogeochemical processes that regulate the cycling of nutrients and carbon combined with increased reservoirs more readily retained in the soil will greatly reduce the need for surplus nutrient additions in agriculture.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2005-06-14T14:56:35Z

Publisher

Keywords

Agroecosystems; nutrient cycling; coupled biogeochemical processes; plant species functions; microbial community structure; microbial community function

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

book

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record